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Abstract— Ultrasound computed tomography (USCT) is 

gaining interests in many application areas in industrial 
processes. The recent scientific research focuses on the 
possible uses of USCT for varied fields of industry such as 
flow monitoring in pipes, non-destructive inspection, and 
monitoring of stirred tanks chemical processes. Until now, 
most transmission tomography (UTT) and reflection 
tomography (URT) have been demonstrated individually for 
these applications. A full waveform USCT contain large 
amount of information on process under evaluation. The 
developed approach in this paper is focusing on 
demonstration of a triple modality USCT. First, an optimised 
transmission image is formed by fusion of time-of-flight (TOF) 
and acoustic attenuation (AA) images. Secondly, a reflection 
image is being optimised by using the information from the 
transmission image.  This triple modality method enables 
integration of a shape-based approach obtained by URT 
mode with the quantitative image-based approach UTT mode. 
A delicate combination of the different information provided 
by various features of the full-wave signal offers optimal and increased spatial resolution and provides complementary 
information. Verification tests have been implemented using experimental phantoms of different combinations, sizes, and 
shapes, to investigate the qualitative imaging features. Moreover, experiments with different concentrations solutions 
further validate the quantitative traits to benefit from both reflection and transmission modes. This work displays the 
potential of the full-waveform USCT for industrial applications. 
 
Index Terms—Ultrasound Computed Tomography (USCT); Ultrasound Process Tomography (UPT); Industrial processes; 
multi-modality ultrasound tomography; TOF imaging; AA imaging; Reflection imaging; full-waveform rich tomography 

  

 

I.  Introduction 

ltrasound computed tomography (USCT) has been studied 

lately on a broad spectrum of industrial applications with 

significant success [1-10]. Its usage has drawn a special 

attention notably relating to the imaging of biphasic medium 

and liquid mixtures in pipe flows and stirred reactors 

environments [11-15]. USCT works by analysing the acoustic 

wave propagation, via sound velocity or pulse amplitude decays 

of different materials. It aims to the mapping of medium’s 

acoustical properties. It is non-invasive and non-destructive, 

compatible with high dynamical processes, like oil and gas 

flow. A better understanding of the measurement process and 

fast reconstructions algorithms are imperative for the use of 

USCT within the industry. Moreover, complex stirred tank 
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processes, require sophisticated algorithms, which can provide 

accurate results. Due to the complex physical behaviour of 

acoustics propagation, there are multiple reconstruction modes, 

which use different waveform’s properties. The transmission 

and reflection modes have been traditionally used in ultrasound 

tomography reconstructions, accounting for transmitted 

diffracted and reflected waves. Functional features of these 

reconstruction modes can be complementary. For instance, 

reflection tomography offers good resolution at the boundary of 

different media, while the transmission method has better 

resolution in distinguishing discontinuities along the signals’ 

propagation path. Transmission mode properties, such as 

acoustic attenuation (AA) or the time-of-flight (TOF), can be 

used to determine the amplitude and sound-speed profiles of the 
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region of interest (ROI), offering quantitative information. All 

the AA, TOF, and reflection modes have drawbacks with 

artefacts under certain biphasic medium distributions. Thus, the 

performance of single-modality Ultrasonic Process 

Tomography (UPT) is limited. However, these shortcomings 

may be compensated with a multi-modality reconstruction. For 

instance, in a liquid-liquid mixture, the reflected signals will be 

significantly low, leading to a possible reflection reconstruction 

failure. However, transmission image should be more 

meaningful in such scenarios. On the other hand, in a liquid-

solid or liquid-gas medium, reflected waves may be exploited. 

For instance, in many stirred tanks chemical processes like 

fermentation and crystallization, localised super-saturated 

suspensions may be formed due to process malfunction e.g., 

stirrer malfunction. In this case, a drastic structural phase 

difference may occur. Thereafter, reflection mode might be 

used as a malfunction detection by detecting the localised high 

concentrated suspensions. It would be also possible to detect 

complex dynamic phenomena such as a gas-flow or vortexes 

coming from a high stirring effect. Although, the use of 

reflection mode in that direction needs to be further 

investigated.  

The multiple mechanisms (transmission, diffraction, 

reflection) during ultrasound propagation and the rich 

information (attenuation, time-delay, distortion) contained in an 

ultrasonic full signal, establishes the need for a multi-modality 

method. Therefore, a multi-modality approach, that can 

facilitate multiple reconstruction methods, is expected to result 

in more accurate imaging, as it can process measurements 

coming from different signal’s features. Several studies show 

that dual-modality UPT (transmission/reflection) is superior to 

single-modality, confirming that multi-modality offers 

tremendous benefits [16], [17]. As a result, a novel triple-

modality image reconstruction method combining AA and TOF 

transmission as well as TOF reflection is proposed.  

In a small circular setup filled with a non-homogeneous 

medium, significant back-scattering and reflections are 

expected to happen. Thus, the “noise” levels are higher. Most 

common issues in ultrasound tomography revolve around the 

estimation of TOF and AA from the full-waveforms, especially 

in instruments that are not calibrated or that are characterised 

by high “noise” levels [18], [19], [20], [21]. A novel reflection 

TOF picking method was built to tackle this problem. It exploits 

a forward reflection solver based on ray acoustics, to optimise 

the recorded reflected TOF values and subsequently the 

reflected image. The proposed method fits well in the robust 

triple-modality proposed approach. The amplitude of the 

transmitted pulses and time-of-flight of both the transmitted and 

reflected pulses have been used to produce three different 

reconstructions (TOF, AA, reflection). Finally, a method of 

image fusion, using the results of TOF-UTT, AA-UTT and 

URT methods, was developed and used to generate the final 

image.   

The paper is organised as follows. Section II presents the 

main functionality of the tomographic system and details its 

specifications. Moreover, the methods undertaken for 

transmitted and reflected TOF and AA picking are further 

characterised. Section III describes the reconstruction formulas 

for transmission and reflection tomography, while section IV 

presents the proposed algorithm for reflected TOF picking, 

which helps optimising the recordings. Section V presents the 

developed fusion method. Finally, in section VI, the 

experimental results are presented and evaluated, and in section 

VII, the conclusions and discussion occur. 

 

II. MEASURING SYSTEM 

 

Figure 1 depicts the design of such a triple-modality 

ultrasound tomographic concept.  For a 16-channel transducer 

system each sensor acts as both transmitter and receiver and 

complete tomographic data is collected by exciting each sensor 

in turn.  When Tx1 is an excitation transducer Rx1, 

Rx2,…,Rx15 represent the receivers.  The transmission mode 

uses AA and TOF data for Rx3, Rx4, Rx5, ... , Rx13 and for 

reflection mode Rx1, Rx2, Rx14, Rx15 data are used. The 

actuated receivers in transmission mode are those that are 

included in the fan beam of 120-degree angle where the best 

quality of transmission data is possible. Those, located in the 

neighbourhood of the transmitter are excluded from 

transmission mode data but used in reflection mode.  

 

 

 

The multi-modality USCT approach utilizes TOF and 

amplitude information from transmission and reflection waves. 

These waves come from the interaction of different phase 

structure within the medium. Acoustical properties are 

dependent on changes in the structural phases (i.e., acoustic 

impedance, velocity). Sound transmission and reflection would, 

therefore, change within these phases. Acoustic impedance Z 

affects the propagation and nature of pulse excitation and is 

dependent on the material’s structural phase. It indicates the 

intensity of a medium’s regions to block the vibrations of the 

particles in the acoustic field [22]. The ratio of the reflected 

pulse’s amplitude, 𝑃𝑟 , to the incident wave’s amplitude, 𝑃𝑜, is 

called the acoustic pressure reflection coefficient R  [23], and it 

is defined as: 

 

𝑅 =
𝑃𝑟

𝑃𝑜

=
𝑍1𝑐𝑜𝑠𝜃0 − 𝑍2𝑐𝑜𝑠𝜃𝑡

𝑍1𝑐𝑜𝑠𝜃0 + 𝑍2𝑐𝑜𝑠𝜃𝑡

   
 (1) 

 

By the same way, the acoustic pressure transmission 

coefficient, T, is defined as: 

 

 
Figure 1. Triple-modality ultrasonic tomography (transmission/ 

reflection). Design of transmitted and reflected signals’ paths. 
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𝑇 =
𝑃𝑟

𝑃0

=
2 𝑍1𝑐𝑜𝑠𝜃0

𝑍1𝑐𝑜𝑠𝜃0 + 𝑍2𝑐𝑜𝑠𝜃𝑡

   
(2) 

 

Where 𝑃𝑟 , 𝑃𝑡  define the reflection and transmitted wave’s 

acoustic pressure; 𝜃0 , 𝜃𝑡  represent the wave’s angle of 

incidence and angle of transmission, respectively; 𝑃0  is the 

acoustic pressure of the incident wave. 𝑍1  and 𝑍2  are the 

acoustic impedances of medium 1 and medium 2.  

When a sound wave propagates through a medium, its 

intensity decreases with the distance travelled, as expressed in 

eq. (3). 

 
𝐴 = 𝐴0𝑒−µℎ    (3) 

 

Where A0 is the amplitude of the propagating wave at a given 

location. A is the reduced amplitude at another location. In this 

case, h is the distance travelled between the two locations, and 

µ is the attenuation coefficient in Neper (Np)/length. The two 

primary mechanisms that cause the attenuation of sound energy 

are absorption and scattering. Industrial processes usually 

consist of multiple phase media with a drastic difference in 

structural phase. Such conditions are favourable for a multi-

modality approach in ultrasonic reconstructions, exploiting 

attenuation, sound-speed and acoustic impedance change 

within the medium. 

 

A. Tomographic device 

The ultrasonic tomograph has 32 independently working 

channels that can perform measurements in transmission and 

reflection modes.  In this paper, we use 16 channel sensors in a 

single plan 2D USCT mode. The bottom layer was used for the 

data collection. At the same time, a sensor sends an ultrasonic 

signal of 5 cycles (tone burst), while remaining sensors record. 

Respectively, receivers measure the full-waveform signal. The 

sequence repeats until every sensor produces an excitation 

signal. The system inside the reinforced suitcase consists of 

eight four-channel measurement cards connected via a FD CAN 

bus to the measurement module. The measurement module is a 

bridge between a microprocessor measuring system and a touch 

panel or external control application (Figure 2). Each device 

channel has its own analogue signal processing module and its 

own 12-bit ADC 4MSPS converter. In TOF and amplitude 

measurement mode, the signal is normalised to voltages from 

0-3.3V, according to the transducer’s reference voltage. The 

sampling frequency is 0.25 samples per micro-second, which 

results directly from the ADC converter speed. A Built-in 

envelope converter was used for converting an analogue 

acoustic signal to the envelope with the possibility of switching 

its configuration to a frequency of 400 kHz. In addition, the 

measurement module can monitor the measuring sequence, 

store user-specific parameters, control the high voltage inverter, 

and switch the USB HS bus between the front panel’s socket 

and the touch panel. The touch panel was made using a 

RaspberryPi 4B 2GB RAM board and a 7-inch capacitive touch 

screen. The most crucial data buses have been led to the front 

panel of the device. Each sensor has its own signal conditioning 

for both transmission and receiving mode as shown in green 

box in figure 2a.  

 

 

B. TOF/ AA picking method for transmission 
tomography 

Transmission signals directly travel from the transmitter to 

the receivers without any reflection. These signals undergo 

either diffraction or direct transmission, without significant 

change of direction. A transmission pulse usually travels faster 

and transmits at a larger amplitude.  Figure 3(a) shows a full-

waveform signal and its envelope, recorded by Rx6 upon Tx1 

excitation. Moreover, it illustrates signal specific TOF and AA 

picked points, calculated by the applied method. Figure 3(b), 

(c) present background and full calculated TOF and amplitude 

data. The picking method of transmitted TOF values is 

described below. 

First, the analytic envelope of the signal processed using 

Hilbert transform. Using the envelope, signal oscillation can be 

removed, facilitating more accurate peak detection. The 

advantage of using the envelope is to migrate the effect of 

arbitrariness and to eliminate the effect of phase changes. Then, 

the enveloped is processed to detect the transmitted pulse and 

record its x-value, defining the pulse’s travel-time, and y-value, 

determining the recorded pressure. The method is described in 

eq. (4-8), where 𝑣(𝑖)  represents an enveloped signal, in our 

experiments the receiving signal contains 1665 samples or time 

steps. A minimum threshold of 10%, 𝑡ℎ, is used to cut down the 

minor pulses caused by back-scattering or equipment-related 

noise, eq. (4). 𝑇𝑂𝐹 value is determined by the projection of the 

first signal’s point after threshold, 𝑡ℎ, to the x-axis. According 

to the sampling frequency, the TOF must be multiplied by 0.25, 

to be converted in μsec. Eq. (5-7) describe this in a linearised 

fashion. Comparatively, the biggest y-value within a 20% 

signal’s window in the transmitted pulse “region” indicates the 

recorded pulse’s amplitude, eq. (8).  

 

𝑡ℎ = 0.1 max(𝑣(𝑖)), 𝑤ℎ𝑒𝑟𝑒 𝑖 = {1,2, … , 𝑛}, 𝑞 = 1665 

 

(4) 

𝑣′(𝑖) = {
𝑣(𝑖)    𝑓𝑜𝑟 𝑣(𝑖) > 𝑡ℎ

0      𝑓𝑜𝑟 𝑣(𝑖) < 𝑡ℎ
 

(5) 

 
Figure 2. (a) Measurement system: Ultrasonic tomograph block 

diagram. (b) ultrasound tomographic system. (c) tank with sensors.  
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𝑘𝑗 = 𝑖|𝑣′(𝑖) ≠ 0, 𝑗 = {1,2, … , 𝑚} 𝑤ℎ𝑒𝑟𝑒 𝑚 ≤ 𝑛   

 

(6) 

𝑇𝑂𝐹 = 0.25𝑘1 

 

(7) 

𝐴𝐴 = max (𝑣′(𝑙)), 
 𝑤ℎ𝑒𝑟𝑒{ 𝑙 = 𝑘|𝑙 = {𝑖, 𝑖 + 1, … , 𝑖 + 0.2𝑞}  

(8) 

 

All reconstructions are generated by using difference 

imaging, collecting background data (reference data), TOFback, 

and full data (data collected by scanning a non-uniform 

medium), TOFfull . TOF measurement data, TOFtr , originates 

from the subtraction of full data from the background data and 

define the travel-time delays (μs), eq. (9).  

 

 TOFtr = TOFback-TOFfull where 

TOFtr {
0        for TOFtr < 0
TOFtrfor TOFtr > 0

 

(9) 

 

AA measurement data are computed by eq. (10) [24]. 

 

𝐴𝐴𝑡𝑟 =
1

𝑓𝑐

ln (
𝐴𝐴𝑏𝑎𝑐𝑘

𝐴𝐴𝑓𝑢𝑙𝑙

) 
(10) 

 

Where 𝐴𝐴𝑏𝑎𝑐𝑘  is the signal’s amplitude at each receiver when 

there is only water (reference data) in the field of view (FOV) 

and 𝐴𝐴𝑓𝑢𝑙𝑙  is the amplitude of the full data. 𝑓𝑐  is the centre 

frequency of the excitation pulse.  

In both TOF and amplitude data, the “Deleting Outliers” 

statistical filtering method was used to handle this noise for all 

the datasets [25]. Specifically, “outlier” TOF values usually are 

generated from back-scattering or reflected signals. Iterative 

implementation of the Grubbs Test was used to identify the 

outlier signals. In any given iteration, the tested value is either 

the highest or lowest value, represented by the furthest value 

from the sample mean. 

C. TOF picking method for reflection tomography 

The “traditional” picking method of reflected pulses is 

described in this section. This method makes full use of all the 

four transducers positioned in pairs, on each side of the emitter. 

Contrasting full and background measurements, cancels tank-

related back-scattering and reflection, as expressed in eq. (11). 

As both background and full data are assumed to present similar 

tank specific back-scattering and reflection. The recorded 

maximum pulse peak is assumed as the observed reflected TOF, 

𝑇𝑂𝐹𝑟𝑓𝑙, as shown in eq. (12).  

 

𝑝𝑖 = |(𝑣(𝑖)𝑏𝑎𝑐𝑘 − 𝑣(𝑖)𝑓𝑢𝑙𝑙)|,

𝑤ℎ𝑒𝑟𝑒 𝑖 = {1,2, … ,1665} 

 

(11) 

𝑇𝑂𝐹𝑟𝑓
𝑜𝑏𝑠 = max(𝑝

𝑖
) , 𝑤ℎ𝑒𝑟𝑒 𝑖 = {1,2, … ,900} 

 

(12) 

 

Figure 4(a) illustrates the experimental setting. Figure 4(b) 

represents the plots of full (background and inclusions) and 

background waveforms and their respective envelopes. The 

first peak comes from the transmission pulse and exists in both 

signals. The two second peaks come from the reflected pulse 

within the inclusion surface and exist only in Full data. Lastly, 

the third peak represents tank-related back-scattered signal,  

 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3. (a) Recorded full-waveform signals from Tx1-Rx6 pair, with its envelope. Each timestep is ¼ μsec. (b) TOF data computed from 

the enveloped signals. (c) AA data calculated from the enveloped signals.  
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existing in both signals as well. Absolute subtraction optimises 

reflected pulses measurements, reducing overall noise and 

back-scattered effects. As the reflected pulse remain 

unchanged, it is easily trackable. Figure 4(c) depicts the 

absolute subtracted signal. 

 

 

III. METHODS 

A. Transmission mode reconstruction 
Transmission can be measured either via a travel-time or an 

acoustic attenuation technique. Transmission  reconstruction 

would take place via either travel-time or the amplitude decay 

of the first-arrival pulse [26]. The most used approximation for 

transmission USCT is the ray-based method. It is fundamental 

in most tomographic schemes, as the line integral defines the 

path of a high frequency propagating pulse between an emitter 

and a receiver. It is a simplified approach, which does not 

account for the diffraction effect caused by non-homogeneous 

medium. Therefore, a computational model based on diffraction 

on the 1st Fresnel zone [27], was used. Fresnel volume or ‘fat 

ray’ tomography is an appealing compromise between the 

efficient ray theory tomography and the computationally 

intensive full waveform tomography [28]. Using a finite 

frequency approximation to the wave equation leads to a 

sensitivity kernel where the sensitivity of the travel-time delay 

also appears in a zone around the fastest ray path. The delay 

time is given as: 

 

𝛥𝑡(𝑥) = 𝑡(𝑠, 𝑥) + 𝑡(𝑥, 𝑟) − 𝑡0(𝑠, 𝑟) (13) 

 

Here t(s, x) and t(x, r) are the travel-time from the source (s) to 

x and from x to the receiver (r) and 𝑡0(𝑠, 𝑟) is the travel-time 

along the ray path from the source to receiver. The times of 

travelling can be evaluated using the ray-tracing method. A 

point x is always within the first Fresnel zone if the 

corresponding travel-time satisfies the eq. (14), in which T 

defines the emitted wave’s period:  

 

 
|𝛥𝑡(𝑥)| <

𝑇

4
 

(14) 

 

The following function defines the sensitivity of a Frechet  

 

kernel based on the first Fresnel zone: 

 
 𝑆(𝑥)

= 𝐾 V(𝑠, 𝑥) V(𝑥, 𝑟) cos (2𝜋
𝛥𝑡(𝜒)

𝛵
) exp (− (

𝑎𝛥𝑡(𝑥)

𝑇
4

)

2

) 

 

(15) 

 

Where 𝑆(𝑥)  is the sensitivity at 𝑥 , V(𝑠, 𝑥)  and V(𝑥, 𝑟)  are the 

amplitude values of the wavefield at 𝑥 propagating from 𝑠 to 

𝑥    and from 𝑥 to 𝑟, respectively, and k is a constant value for 

normalisation purpose. The cosine factor models the alternating 

sensitivity being positive in the odd Fresnel zones and negative 

in the even Fresnel zones. The 𝑎, in the Gaussian factor controls 

the degree of cancellation in Fresnel zones. The geometrical 

spreading approximates the amplitude factors in a 

homogeneous medium. The normalisation of the kernels is 

achieved by ensuring that the integrated sensitivity over the 

whole medium is equal to the length of the reference ray path 

[29]. SIPPI MATLAB software has been used to generate these 

sensitivity kernels [30]. These kernels represent the acoustic 

distribution of the medium of each sensor’s excitation, forming 

the sensitivity matrix. A Normalisation method based on the 

geometric wave path was applied to the generated kernels to 

ensure an accurate time-of-flight (TOF) and acoustic-

attenuation (AA) mapping, as described in eq. (16). 

 

 
𝐴𝑖,𝑗 =

𝐻𝑖,𝑗

∑ ∑ 𝐻𝑖1,𝑗1𝑗1=𝑗
𝑚
𝑖1=1

 
(16) 

 

where 𝐻𝑖,𝑗 is the sensitivity matrix based on the Frechet method 

and 𝐴𝑖,𝑗 is the normalized matrix, used for reconstructions, and 

for m measured data and n number pixels,   i = [1, … m] and 

j = [1, … , n].  
In a tomographic approach, the transmission sensitivity 

matrix simulate the propagation of the measured energy from a 

excitation sensor. The measurement data for UTT includes TOF 

and AA data. The so-called forward problem is formed by the 

multiplication of the sensitivity matrix with the measurement 

data. Below the notation defines 𝛥𝑀 stands for both TOF and 

AA data for TOF and AA reconstructions, respectively. A 

generalised tomographic forward problem can be expressed as: 

 

 
 

 

(a) (b) (c) 

Figure 4. (a) Schematic of the setup. (b) Background and Full measurements in full waveforms. (c) Difference data in full waveforms. Each 

timestep is ¼ μsec. 
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𝛥𝑀 =  A 𝛥𝑆 + 𝑒 (17) 

 

Where 𝛥𝑆 is the reconstructed distribution based on acoustic 

features, A is the modelling operator which expresses the 

sensitivity distribution in the FOV, 𝛥𝑀 is the sensor’s recorded 

data, and 𝑒  is the noise in the measurements. A simplified 

inversion can be done using back projection. 

 

 𝛥𝑆 ≈  𝐴𝑇 𝛥𝑀 (18) 

 

Total Variation regularisation (TV) [31], [32] was used, 

which has more significant potential in solving the regularised 

inverse problem in a stabilised fashion. The TV problem is 

defined as an optimisation problem, minimizing 

 

||𝐴 𝛥𝑆 − 𝛥𝑀||2 +  𝑎 ||𝛻𝛥𝑆||
1
  (19) 

 

Where 𝑎, the regularisation parameter, ∇ is the gradient and 

||. ||
1

 is the 𝑙1 −norm. Then the problem to be solved is the 

constrained optimisation problem, as shown in eq. (20). 

 

𝑥𝑎 = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝛥𝑆  ( 𝛼 ||𝛻𝛥𝑆||
1

)   such that   

 ||A 𝛥𝑆 − 𝛥𝑀||
2

< 𝑝,  

(20) 

 

Where p is determined based on our knowledge of measurement 

noise. The problem is solved by the Split Bregman based TV 

algorithm [33], [34]. Then, carefully choosing the 

regularisation parameters, we optimise the image by deleting 

undesired artefacts. 

B. Reflection Reconstruction  
A time-of-flight reflection method has been applied to 

reconstruct the captured reflected pulse travel-times. The 

objective of this method is to locate the reflected pulses, which 

lie between the interaction of the object’s boundaries with the 

medium. Figure 5 (a) presents a geometric representation of the 

sensors and directly transmitted and reflected waves. Tx1 emits 

a tone burst pulse while Rx1, Rx2, Rx14, and Rx15 record the 

reflection signals. In this case, a relevant algorithm is developed 

to connect every Tx with its four Rx points. For instance, in 

Tx1-Rx1, the algorithm connects the two points, finds the mid-

point P of the line, then connects P to the centre of the circle 

(centre of the circular object); the intersection point C is the 

estimated reflection point. Using the coordinates of C, one can 

compute the travelling distance of the pulse and subsequently 

the reflected TOF data. This method comprises the reflection 

forward problem and can be used to calculate simulated 

reflection TOF data. 

To reconstruct the acoustic profile of the medium using 

captured reflected TOF data, a reflection reconstruction model 

based on an ellipse intersecting algorithm was used[35], [36], 

[37], [38]. If transmitter and receiver are different, the back-

projection is an ellipsoidal locus with the ellipse's foci at 

transducer positions. The image is reconstructed by drawing 

arcs of an ellipse along the reflection path. Input TOF values 

are translated to the pulse’s travelled distance by using the prior  

 

information of the sensors’ coordinates, as shown in eq. (21). 

 

𝑑 = 𝑠0𝑇𝑂𝐹𝑟𝑒𝑓𝑙   

𝑤ℎ𝑒𝑟𝑒 𝑑 = 𝑑Tx1−C + 𝑑Rx1−C 

(21) 

 

Where 𝑑Rx1−C  and 𝑑Tx1−C  denote the axial distance between 

the reflection point and the receiver and between the reflection 

point and the transmitter, respectively. 𝑇𝑂𝐹𝑟𝑒𝑓𝑙   represents the 

time of flight and 𝑠0  is the sound speed in the water. 

Superimposing the arcs of ellipses generate an image where the 

intersection of these ellipses highlights the boundary of the 

circular object. The eq. (16) is used to produce all these ellipses 

that can define the edges of the medium that allow reflection: 

 

𝐴𝐶 + 𝐶𝐵 = 2𝑎 = 𝑑 (22) 

 

A and B are two foci of the ellipse, and C is a point located in 

the ellipse curve, 𝑎 stands for the long axis length of the ellipse. 

A and B represent the transmitter and receiver; respectively, C 

stands for a particular point of the target surface, reflecting the 

ultrasound wave. The value of 𝑎 can be easily calculated, using 

also the ellipse equation of eq. (23). 

 

𝑎2 = 𝑏2 + 𝑐2 (23) 

 

The value of b and c can also be easily obtained where b is the 

short axis length of the ellipse and c is the distance between 

focus and the ellipse centre. The distance can be calculated by 

the equation: 

 

𝑐 =
1

2
√(𝑥𝑟 − 𝑥𝑅)2 + (𝑦𝑟 − 𝑦𝑅)2 

(24) 

 

where 𝑥𝑟 , 𝑥𝑅 , 𝑦𝑟 , 𝑦𝑅  are the transducer coordinates, their 

subscripts indicate the transducer mode. When all ellipse 

parameters are obtained, a particular ellipse can be drawn in a 

determined position and dimension. At last, the target image 

can be found by many ellipses that are mutually intersected. 

Figure 5 (b) presents ellipses generated by the developed 

reflection reconstruction program. 

 

 
Figure 5. (a) Functionality of the reflection tomography and 

geometrical computation of reflection points 𝐶1  and 𝐶2 . (b) 

Reflection image by superimposing all the ellipses.  
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IV. NOVEL REFLECTION PULSE PICKING APPROACH AIDED BY 

TRANSMISSION RECONSTRUCTION 

Dual modality ultrasound imaging, fusing transmission and 

reflection reconstructions, have been recently researched as an 

optimised ultrasound tomography method [9], [16], [39]. 

Indeed, combining the two different modalities, which use 

different full-waveform’s features, can aid reconstructions by 

combining complementary information. Despite the good 

performance of transmission imaging, reflection imaging can 

aid more towards the improvement of outcomes, especially in 

well-characterizing the domain boundaries. Therefore, a robust 

algorithm for reflection reconstruction needs to exploit the 

medium’s boundaries. In practice however, picking algorithms 

struggle to locate the correct reflection pulse many times, and 

noise is added to the measurements. This is a common issue of 

all ultrasonic tomographic instruments, caused by the back-

scattering effect [40]. Therefore, a reflection TOF picking 

method guided by transmission image was developed. The 

developed method is based on the reflection forward solver to 

produce better-reflected TOF values than those coming from 

picking the reflected pulses, described in section IV. 

 

A. Image segmentation & Reflection forward solver 

An acoustic profile domain of the ROI is created by 

transmission image and used from the reflection forward solver 

to produce the simulated reflected data, 𝑇𝑂𝐹𝑟𝑓
𝑠𝑖𝑚. In that case, 

the fused transmission image is used as described below in 

Section V. A segmentation approach has been developed to 

define the acoustic distribution on the fused transmission 

image. First, the global Otsu’s thresholding method was used 

[41]. Then, a labelling method calculates the number of 

noncontinuous detected regions [43]. For every region, the 

centre of mass and its boundaries’ shape are calculated. The 

solver uses the regions’ information to find the closest region to 

the corresponding pair of transmitter-receiver, to avoid multiple 

reflection signals.  

 

This aims to improve accuracy, notably considering the impact 

of more complex distributions on the reflective forward solver. 

Then, as shown in Figure 5(a), a line is computed from the 

middle point of sensors to the region’s centre of mass. The 

intersection of this line with the region’s boundaries forms the 

intersection point 𝐶 . Using eq. (22), given that A and B 

represent the two sensors, calculates the wave’s travelled 

distance 𝑑. Finally, the simulated reflected data, 𝑇𝑂𝐹𝑟𝑓
𝑠𝑖𝑚, are 

generated by eq. (25). 

 

 𝑇𝑂𝐹𝑟𝑓
𝑠𝑖𝑚 =

𝑠0

𝑑
 (25) 

 

Figure 6(a-f) present the true, transmission reconstructed 

and segmentation images of two single and double inclusions 

cases. Figure 6(g-h) present the recorded, 𝑇𝑂𝐹𝑟𝑓
𝑜𝑏𝑠 , and the 

simulated, 𝑇𝑂𝐹𝑟𝑓
𝑠𝑖𝑚, reflection data, using the reflection forward 

solver. In the reflected data, there are lower-values region for 

every positioned object, coming from the time-delays that they 

introduce. In Figure 6(g), a single low-values region can be 

noticed, while Figure 6(h) two of them. Furthermore, a clear 

resemblance between simulated and observed data can be 

noticed, showing the good performance of the reflection 

forward solver. The number of reflection points reduces 

significantly in multiple inclusions cases, which is clearly a 

disadvantage of the method. However, a ring setup with more 

sensors would increase the spatial resolution and the accuracy 

of the method.  

B. Minimum distances method 

This method incorporates an optimised travel-time picking 

method. It picks a signal’s value, using as an a priori 

information the simulated reflection data, 𝑇𝑂𝐹𝑟𝑓
𝑠𝑖𝑚, to optimise 

the observed data, 𝑇𝑂𝐹𝑟𝑓
𝑜𝑏𝑠 . At first, an appropriate threshold 

was set, and all the potential reflected peaks above that 

threshold were stored, (𝑃𝑚,𝑛).  

 

 

      
(a) (b) (c) (d) (e) (f) 

  

(g) (h) 

Figure 6. (a), (d) True images. (b), (e) Fused transmission images. (c), (f) Segmented Images used as domain in forward reflection solver. (g), 

(h) Reflection simulated data.  
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In this way, no peak is being excluded. Then, the algorithm 

calculates the “closest” peak to the corresponding simulated 

TOF value, 𝑇𝑂𝐹𝑟𝑓
𝑠𝑖𝑚 . The calculated point represents the 

predicted travel-time value, 𝑇𝑂Frf
pred

, eq. (26).  

 

𝑇𝑂F𝑟𝑓
pred

= 𝑃| min
𝑛𝜀𝑁

(P − 𝑇𝑂𝐹𝑟𝑓
𝑠𝑖𝑚)   (26) 

 

Where 𝑃  is a 𝑚 = [1, … , 𝑀]  by 𝑛 = [1, … , 𝑁]  matrix, 

containing the peaks of the full-waveforms; 𝑀 is the number of 

the measurements and 𝑁  the number of peaks for each 

measurement. Usually, the generated 𝑇𝑂F𝑟𝑓
pred

 data were 

optimised compared to the observed ones, 𝑇𝑂𝐹𝑟𝑓
𝑜𝑏𝑠 . 

Nevertheless, the data were occasionally highly affected by the 

simulated data, leading to overfitting cases. Therefore, a 

polynomial least square fitting model was used between the 

observed reflection data and the “optimal” data, to smooth the 

data. A convergence criterion of the average percentage of 

similarity of the observed data, 𝑇𝑂𝐹𝑟𝑓
𝑜𝑏𝑠,and the predicted data, 

𝑇𝑂𝐹𝑟𝑓
𝑝𝑟𝑒𝑑

, was also used. Eq. (27) describes this criterion 

 

 

 

𝐶 =
|𝑇𝑂𝐹𝑟𝑓

𝑜𝑏𝑠 − 𝑇𝑂𝐹𝑟𝑓
𝑝𝑟𝑒𝑑

|

𝑇𝑂𝐹𝑟𝑓
𝑜𝑏𝑠  𝑤𝑖𝑡ℎ 𝐶 < 0.1 

(27) 

 

If the convergence criterion is true, then the optimisation is 

applied to the data. Such a technique is widespread in concepts 

of full-waveform inversion [44], [45], [46] The simulated data 

are used to optimise the already captured data,  solving the cost 

function in eq. (27). 

 

𝜀 =
1

2
∑ [𝑇𝑂𝐹𝑟𝑓

𝑜𝑏𝑠(𝑚) − TOF𝑟𝑓
𝑝𝑟𝑒𝑑(𝑚)]

2
𝑀

𝑚=1

 
(28) 

 

𝜉𝑜𝑝𝑡 = arg 𝑚𝑖𝑛||𝜀(𝜉)|| (29) 

 

Where 𝜉 represents the acoustical property distribution to be 

recovered, and 𝜀(𝜉)  is the error functional. This final step 

produces the last reflection data 𝑇𝑂𝐹𝑟𝑓
𝑜𝑝𝑡

, which is optimal. 

Figure 7(a) shows the difference data signal, computed by eq. 

(12), and a zoomed window of the reflection pulse. The black 

dot represents the travel-time of the reflected pulse coming 

from the straightforward method of section II.B (𝑇𝑂𝐹𝑟𝑓
𝑜𝑏𝑠). The 

green dot is the simulated travel-time, 𝑇𝑂𝐹𝑟𝑓
𝑠𝑖𝑚.  

 
(a) 

 
(b) 

Figure 7. (a) Subtracted full-waveform signal with Peaks, observed, simulated, optimised data depicted. The corresponding pulse is represented 

zoomed. (b) The plot of experimental, simulated, and “optimal” data of all waveforms. 
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The red dots represent all the captured peaks of the waveform 

above the threshold value. Finally, the blue circle represents the 

“optimal” reflected travel-time value that results from the 

“minimal distances method”, 𝑇𝑂Frf
opt

. The effect of the method 

is noticeable in Figure 7(b). The blue function represents the 

optimised data, there red function the simulated data and the 

black function the recorded data. The black function missed 

calculating a correct TOF value in few cases, where zeros are 

observed. However, the zeros have been replaced with 

estimated values, in the optimised data, with the aid of 

simulated data, concluding in the well-behaviour of the 

optimization. These travel-time values are assumed to be 

refined when compared to the observed data. This method 

ensures a significantly richer dataset than the straightforward 

way of picking the reflected pulses. This method is named as 

“minimum distances method”. 

Figure 8 presents the reflection data optimisation process for 

two single and double inclusions cases. Specifically, Figure 8 

(a), (d), show the true images, while Figures 8 (b)-(e) present 

reflection reconstructions using the straightforward 

“traditional” way for reflection TOF picking data from and 

“proposed” reflection TOF picking methods. Finally, figure 8 

(f) presents the reflection TOF of observed, simulated and 

optimal data. The observed data come from the “traditional” 

method, the simulated data come from the reflection forward 

solver, and the optimal one come from the “proposed” method. 

Both two stages of “minimal distances” and “least-square 

fitting” were plotted for optimal data. In the first case, the two 

functions coming from optimal data are the same, which means 

that the convergence criterion is not valid. On the contrary, in 

the second case, these functions differ. In both cases, the effect 

of the simulated data for the computation of optimal data is 

pronounced. Optimal data seem to be a processed function 

dragged by the optimised ones. 

 

The novel reflection data picking algorithm consists of all the 

previously described methods and aims to provide optimal 

reflection TOF data. The proposed algorithm fits the optimal 

data to the captured ones with respect to a priori information of 

the simulated data, as shown in Figure 7. It can be summarised 

into the following steps: (i) execution of transmission 

reconstruction; (ii) segmentation using Otsu’s threshold; (iii) 

execution of reflection forward solver to produce simulated  

data; (iv) calculation of optimised reflection TOF by “minimum 

distances”; (v) checking the convergence criterion and if true, 

finding the misfit data 𝑇𝑂𝐹𝑟𝑓
opt

 by solving the cost function for 

𝑇𝑂𝐹𝑟𝑓
𝑜𝑏𝑠  and 𝑇𝑂𝐹𝑟𝑓

𝑝𝑟𝑒𝑑
. The whole method is displayed in 

Algorithm 1. 

 

 
ALGORITHM 1. Novel Reflection signal picking 

1 : Compute 𝑻𝑶𝑭𝒓𝒇𝒍
𝒐𝒃𝒔 by using the “traditional” TOF 

picking method. 

2 : Produce fused AA-TOF transmission image. 

3 : Create the acoustic domain by segmentation of fused 

transmission image. 

4 : Compute 𝑻𝑶𝐅𝐫𝐟𝐥
𝐬𝐢𝐦 by solving the reflection forward 

problem. 

5 : Detect all waveform’s peaks, 𝑷, above a minimum 

threshold. 

6 : Calculate 𝑻𝑶𝑭𝒓𝒆𝒍𝒇
𝒑𝒓𝒆𝒅

 by locating the shortest distance 

peaks from 𝑻𝑶𝑭𝒓𝒇𝒍
𝒔𝒊𝒎 by using the minimum distance 

method. 

7 : Calculate the average percentage of similarity, 𝐶. 

8 : If (𝐶 <0.1) 

9 : Solve the cost function of 𝑻𝑶𝑭𝒓𝒆𝒍𝒇
𝑝𝑟𝑒𝑑

 and 

  𝑻𝑶𝑭𝒓𝒆𝒇𝒍
𝒐𝒃𝒔 . 

10 : end 

 

 

 

      
(a) (b) (c) (d) (e) (f) 

       
(g) (h) 

Figure 8. (a) True images of two tested configurations. (b), (d) Reflection images generated by the “traditional” method. (c), (e) Reflection 

images generated by the “proposed” method. (f) Plots of observed, simulated and optimal reflection data. 
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V. TRIPLE MODALITY 

The developed triple modality approach consists of three sets of 

information, and the fusing method is described by a specific 

pipeline which is depicted in Figure 9. First, the TOF and AA 

transmission images are fused using a “wavelet transform 

method” [47]. This intensity-based method was chosen due to 

the similarities of the TOF and AA images as they both come 

from transmission reconstruction. The two images were 

normalised, before being merged, to have the same scale. The 

result contains both the information coming from TOF and AA 

data subsequently proved as an optimised reconstructed image. 

Then, the transmission image is combined with the reflection 

image.  

 

 

Because of the different nature of the transmission and 

reflection images, a different fusion method was used. The 

transmission images usually contain high “regions” in the 

position where the objects are located, due to significantly high 

TOF-delays and amplitude attenuation due to object 

introduction. On the other hand, the reflection image has almost 

zero values to the locations of the objects, as all the reflections 

are encountered in their boundaries and, according to the ellipse 

algorithm, no ellipse interaction is happening within the object. 

Therefore, a method that accounts for these characteristics, by 

superimposing regions of the images, was applied to fuse the 

transmission and reflection images. This is described in eq. (30) 

method. 

 

𝑇𝑀𝑖,𝑗 = {
𝑇𝑖,𝑗    𝑤ℎ𝑒𝑟𝑒 𝑅𝑖,𝑗 > 0

0       𝑤ℎ𝑒𝑟𝑒 𝑅𝑖,𝑗 = 0
  where , 

 𝑖 = [1, … ,32] 𝑗 = [1, … ,32] 

(30) 

 

Where 𝑇𝑖,𝑗 is the transmitted image, 𝑅𝑖,𝑗 is the reflection image 

and 𝑇𝑀𝑖,𝑗 is the triple-modality image; 𝑖, 𝑗 represents the rows 

and columns of the image that is 32 by 32.  

 

VI. RESULTS AND ANALYSIS 
The system was experimentally validated by applying 

several single and multiple static inclusions tests with different 

shapes and sizes. All the inclusions are made from plastic 

(PVC) and are not compact; thus, the sound can only be 

diffracted and reflected. Circular inclusions of 1cm, 2cm and 

3cm of diameter, square inclusion of 4cm side-length and an 

equilateral triangle inclusion of 3cm were used to provide 

various testing cases. These tests aimed to simulate dispersed 

phases of a liquid mixture existing in industrial processes. The 

change in the structural phase aims to simulate the change 

happening during a crystallization or fermentation process. 

Figure 10 presents results using different reconstruction 

methods of 10 different experimental configurations. Among 

the reconstructed methods are TOF, AA, fused transmission, 

“traditional” reflection, “proposed” reflection and triple-

modality reconstructions. It is evident that transmission mode 

can be used in object localisation, notably upon multiple 

inclusions. On the other hand, reflection is significantly better 

in detecting the boundaries of the domain accurately. However, 

reflection has a clear disadvantage in reconstructing regions 

that lie between two objects. Therefore, in those cases, the 

transmission mode aid more the triple-modality results than the 

reflection. 

To quantify the imaging quality of the proposed 

reconstruction approach, Correlation Coefficient (CC) and 

Root Mean Square Error (RMSE) were calculated, eq. (31) and  

eq. (32) respectively. The segmentation method described in 

section IV. Normalisation was applied to all the images to turn 

them into a uniform form, aiming at quantitative similarities. 

 

𝐶𝐶 =
∑ (𝜎𝑛 − 𝛿)(𝜎𝑛

∗ − 𝛿∗)𝑁
𝑛=1

√∑ (𝜎𝑛 − 𝛿)2 ∑ (𝜎𝑛
∗ − 𝛿∗)2𝑁

𝑛=1
𝑁
𝑛=1

 
(31) 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝜎 − 𝜎∗)2𝑁

𝑛=1

𝑁
 

(32) 

 

Where 𝜎  is the calculated acoustic distribution by the 

reconstruction algorithms and 𝜎∗ is the real one (true image), 

𝜎𝑛 and 𝜎𝑛
∗ are nth elements of 𝜎 and 𝜎∗ respectively, 𝛿 and 𝛿∗ 

are the mean values of 𝜎 and 𝜎𝑛
∗ , respectively. Figure 11 shows 

the CC and the RMSE of TOF, AA, fused transmission, 

“traditional” reflection, “proposed” reflection and triple-

modality reconstructions. In almost all the cases, the proposed 

algorithm proved to be more efficient by acquiring the overall 

highest CC and lowest RMSE value. CC was higher and RMSE 

was lower in single inclusion cases comparing with the multiple 

inclusions cases due to the medium’s complexity.  

Concluding in the supremacy of the proposed reflection 

algorithm, a triple modality approach was applied using TOF, 

AA and reflection images. The MRSE of triple-mode images is 

generally smaller, while CC is more prominent than all the other 

methods. TOF and AA images converted to binary form using 

a high threshold to segment the inclusions. Then transmission 

and reflection images were fused in binary format. Regarding 

CC, in almost all cases, the final image is closer to the real 

geometry. The significant aid of the triple modality method can 

clearly be noticed as, in all cases, the TOF, AA and reflection 

reconstructions’ accuracy differs, but the triple-modality 

reconstruction is always higher.  

 
Figure 9. Image fusion algorithm for triple modality USCT. 
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The qualitative difference can be noticed in multiple inclusions 

cases, as they consist of more complex nature. The quantitative 

analysis indicates that the multi-modality method provides 

more accurate reconstruction on both the area and the location 

of the objects than a single modality of either transmission or 

reflection mode. 

To further test the performance of the proposed system and 

the multi-modality approach, different setups of water/sucrose 

solutions were used. These experimental scenarios simulate 

miscible liquids and multi-phase flow in industrial tanks and 

pipes scenarios. A plastic cup of 1mm length, filled with the  

 

solutions, was used as a static inclusion. The cup’s sound 
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                  Figure 10. Image reconstructions of the Triple-Modality USCT. 
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transmissivity has been tested and approved. The system 

acquired transmitted signals passed through the water/sucrose 

solutions and reflected signals came from the cup’s surface. 

Figure 12 displays experimental photos and reconstructions of 

three different water/sucrose cases. Figure 12(a) shows a 60.7% 

solution positioned in the centre, Figure 12(b) a combination of 

50% and 42.8%, and Figure 12(c) a combination of 20% and 

42.8%. The TOF mapping distinguished well between different 

concentrations in multiple inclusions experiments. 

Furthermore, the tests TOF-delays scale follows the overall 

concentration increase, as shown in Figure 12(b), (c). 

Additionally, six different single inclusions cases with 

water/sucrose concentrations of 20%, 33%, 42.8%, 50%, 56.7% 

and 60.7% were reconstructed. Table 1 shows the TOF delays 

caused due to the existence of the solution. The presented TOF- 

delays, calculated as the object was segmented and its mean 

value was calculated. Difference imaging was used by 

subtracting the background from the full TOF measurements. 

Since the sound velocity of the concentrations is higher than the 

medium (water in 20oC), the produced difference data were 

negative. Small positive values were caused by noise and 

therefore were neglected. TOF delays showed good response, 

as they form an ascending function over the increasing 

concentration of the solutions. The solutions experiment proved 

efficient in distinguishing between low changes of 

concentration, showing the high quantitative resolution that the 

system can provide.  

 

 

 

 

 

 

 

  
(a) (b) 

Figure 11. (a) CC and (b) RMSE of several different reconstruction methods. 

  
                                (a)                               (b)                  (c) 

Figure 12. Experimental photos and reconstructions of water/sucrose solutions of (a) 60.7% in the centre (b) 50% down-left and 42.8% up-right 

(c) 20% down-left and 42.8% up-right. 
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TABLE I 
TOF DELAYS FROM THE EXPERIMENTAL PROCESS WITH WATER/SUCROSE 

SOLUTIONS. 

Mass concentration 

(mass/volume) 

TOF delays 

20% m/vol 1.94 μsec 

33% m/vol 2.85 μsec 

42.86% m/vol 3.69 μsec 

50% m/vol 3.96 μsec 

56.52% m/vol 4.14 μsec 

60.78% m/vol 4.42 μsec 

 

 

VII. CONCLUSIONS 

 

This work presents the advantages of triple-modality 

ultrasound tomographic imaging for real industrial processes. 

Accurate results of multiple solid objects and various 

concentrated solutions could significantly benefit complex 

industrial processes of two-phase media and multi-material 

interactions. Reflection and transmission reconstruction 

methods can work in a complementary way and provide optimal 

results. Moreover, acoustic attenuation measurements were 

proven effective, facilitating the transmission of TOF 

reconstructions, especially in more inhomogeneous media. So, 

there is great potential in the combination of two types of 

transmission mode tomography. This kind of rich full-

waveform tomography proved to work well in exploiting full-

waveform information. Without introducing heavy 

computational algorithms, it can benefit from combining 

different reconstructions and at the same time perform at a high 

temporal frequency. Therefore, it comprises a potential solution 

to many industrial processes that need inspection over time and 

a good temporal resolution. 

The developed methods provided good qualitative and 

quantitative performance regarding the quality image 

measurements and the correlation of TOF-delays with various 

solutions. Static experiments showed good system performance 

in distinguishing objects of different sizes and shapes in single 

and multiple objects. The solutions used in the experiments 

showed that the triple-modality imaging could also use the TOF 

scale to characterise small changes in the density of biphasic 

media, which is a significant addition to the system. The results 

of this research show that this rich full-waveform USCT can aid 

industrial processes and may be used for stirred tanks chemical 

processes. Given the existence of biphasic media, which 

include integration of liquid solutions and suspensions, the 

added value of the multi-modality full-waveform system will 

become apparent in our future studies.  In case of cup with 

multiple percentage solution both a reflection image due to the 

cup and a quantitative transmission image due to particle 

concentration can be produced.  
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