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We construct a two-tailed peaks-over-threshold Hawkes model that captures asymmetric self-
and cross-excitation in and between left- and right-tail extreme values within a time series. We
demonstrate its applicability by investigating extreme gains and losses within the daily log-returns
of the S&P 500 equity index. We find that the arrivals of extreme losses and gains are described
by a common conditional intensity to which losses contribute twice as much as gains. However,
the contribution of the former decays almost five times more quickly than that of the latter. We
attribute these asymmetries to the different reactions of market traders to extreme upward and
downward movements of asset prices: an example of negativity bias, wherein trauma is more salient
than euphoria.

I. INTRODUCTION

Heuristics such as imitation and herding are signific-
ant drivers of human agents within social systems. These
reflexive behaviours of individuals lead to self-exciting
dynamics at the group level that often feature time-
clustering of extreme events at the macro scale [1, 2].
Such extreme events often have profound consequences,
which motivates a strong interest in their accurate fore-
casting. This problem is often approached through ex-
treme value analysis (EVA), where asymptotic tail be-
haviour is modelled independently from bulk behaviour,
with the justification that the two are often generated
by distinct mechanisms and, therefore, that the bulk
provides little information about the tail and vice versa
[3–5]. Non-stationary EVA methods that account for the
time-clustering of extremes promise both improved fore-
casting accuracy and potential insight into the underlying
mechanisms that generate extreme events.

Peaks-over-threshold (POT) Hawkes models provide
a parsimonious framework to describe macroscopic self-
excitement of extreme values [6, 7]. In these models,
the arrivals of threshold exceeding values within a time
series become the discrete events of an inhomogeneous
point process in which past events cause a time-decaying
increase in the arrival rate of future events [2, 8]. Having
first emerged as a stochastic model for the self-reflexive
pattern of foreshocks and aftershocks that decorate ma-
jor seismic activity [6, 7, 9, 10], Hawkes-type models have
since found application to broader classes of systems that
exhibit similar activity bursts, including neural networks
[11, 12], inter-group conflict [13, 14], social media [15],
and financial markets [8, 16–30].

Here, we present a novel two-tailed peaks-over-
threshold (2T-POT) Hawkes model that captures asym-
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metric self- and cross-excitation in and between left-
and right-tail extreme values within the same univari-
ate time series. This model assumes a conditional ar-
rival intensity common to extreme events from both tails
and is conceived as a stochastic model for the time clus-
tering of extreme fluctuations within drift-diffusion-like
processes. Previous work has seldom investigated the
possibility of asymmetric interactions between the two
sets of extremes; however, such interactions are a dis-
tinct possibility, especially, for example, in socially driven
processes, where the guiding heuristics of human agents
may include different responses to the two sets of tail
events [31, 32]. To illustrate this point, we apply our
model to the extreme gains and losses within the historic
daily log-returns of the S&P 500 equity index; we use
likelihood-based inference methods to compare its per-
formance against the limiting case of symmetric inter-
actions between tails, as well as to a bivariate Hawkes
model in which left- and right-tail extremes are treated
as the events of two distinct point processes – both with
and without cross-excitement between them.

Financial asset price time series as a class represent an
ideal case study for our model. Prices are often modelled
as geometric random walks, in which the log-returns (i.e.
changes in the log-price) are independent and identically
distributed (i.i.d.) white noise [33, 34]. However, con-
trary to this description, log-returns are characterized by
heavy-tailed marginal distributions and positively auto-
correlated conditional heteroscedasticity (a stylized fact
known as volatility clustering) [34–37]. Accordingly, ex-
treme price fluctuations - measured as large magnitude
log-returns - cluster in time, especially within periods
of sustained overall negative price growth. These bursts
of extremes are evident in Fig. 1 for the S&P 500 daily
log-returns: in the left panel, they manifest as step-like
increases in the count of extreme returns as a function
of time; in the right panels, we observe that short in-
terarrival times between such extremes are much more
frequent than expected under the null hypothesis of i.i.d.
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Figure 1. Arrival processes of extreme S&P 500 daily log-returns. Left-tail (right-tail) extremes are defined as daily log-
returns less (greater) than the 2.5% (97.5%) sample quantile in the training period. Left panel: left- (light orange) and right-tail
(dark blue) exceedance count against time. The Kolmogorov-Smirnov (KS) test [38] is used against the null hypothesis implied
by i.i.d. log-returns, i.e. H0 : dN�/dt ≡ λ�(t) = 0.025 d−1

t (where dt denotes trading days): the grey shaded areas show the
95% (lighter) and 99% (darker) KS confidence intervals; also shown are the training period KS p-values for the left-tail (N←),
right-tail (N→), and both-tails (N↔) processes, all of which are rejected at the 95% confidence level. The vertical black line
marks the end of the training period on 2008-09-01. Right panels: histogram of the interarrival times ∆t for exceedances from
the left tail (top-right panel, light orange), right tail (middle-right panel, dark blue), and both tails (bottom-right panel, green);
the solid lines show the expected exponential distribution under the assumption of i.i.d. log-returns.

returns. Our 2T-POT Hawkes approach is of particu-
lar interest here, because extreme gains and losses, while
highly correlated [39], tend to be described by asymmet-
ric distributions and persistence relationships [34–37, 40].
Moreover, heuristics such as negativity bias and loss aver-
sion (i.e. the tendency for human agents to prefer avoid-
ing losses to acquiring equivalent gains) are well estab-
lished within behavioural economics [41, 42], and these
could be expected to have effects at the group level, in-
cluding asymmetric excitation of extremes. This is also
supported by the leverage effect – a stylized fact of fin-
ancial returns that states that the standard deviation of
returns becomes larger when the average of returns be-
comes more negative [34, 35]. Indeed, our model suggests
that extreme losses contribute significantly more (by a
factor of 2) than extreme gains to the conditional in-
tensity. However, their importance as a function of time
decays more rapidly.

We construct our Hawkes models in Section II. In
Section III, we apply them to the daily log-returns of
the S&P 500 index between 1959-10-02 and 2020-11-20;
their performance is then evaluated through likelihood-
based inference and residual analysis. In Appendix A, we
demonstrate that our observations cannot be wholly at-
tributed to asymmetric volatility clustering as described
by generalized autoregressive conditional heteroscedasti-
city (GARCH) models, even after including the leverage
effect. In Appendix B, we detail our procedure of para-
meter estimation for the 2T-POT Hawkes model.

II. HAWKES MODELS FOR TWO-TAILED
THRESHOLD EXCEEDANCES

Starting from the discrete time series {xt}, where
t indexes the data points (and is effectively the time
as measured in trading days, a unit for which we use
the symbol dt), we extract two sets of extreme events,
{mk←} = {xt − u← < 0} and {mk→} = {xt − u→ > 0},
where u← and u→ are the thresholds for the left and
right tails of the data distribution, respectively, and k←
and k→ index the left- and right-tail exceedance events.
Note that here we use the subscripts← and→ to denote
the left and right tail, respectively, and the subscript �
is used to represent either tail (i.e. either ← or →) in
generic expressions. We thus extract two point processes
N�(t), wherein events are fully described by their arrival
time tk� and excess magnitude mk� , such that

dN�(t) =
∑
k�

δ(t− tk�), (1)

where δ(t′) is the Dirac delta function. The arrival rate
of events within either point process is the conditional
intensity for that process,

λ�(t|It) = E
[
dN�(t)

dt

∣∣∣∣It], (2)

where E[.] is the expectation operator. The explicit time-
dependence of λ�(t|It) specifies N�(t) to be inhomogen-
eous point processes; Hawkes-type behaviour is specified
by the conditional dependence on the event history up to
the present time t, It = {(tk� ,mk�) : tk� < t}.
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A. Bivariate 2T-POT Hawkes model

We start our discussion from the most general descrip-
tion: a bivariate Hawkes model in which the left- and
right-tail exceedances are treated as distinct point pro-
cesses. Note that this is incompatible with the fact that
the arrivals of left- and right-tail events within the ori-
ginal time series are mutually exclusive. We remedy this
in Section II B and here only point out that the bivariate
description becomes an increasingly valid approximation
as λ� → 0. With this in mind, we write the bivariate
model, (

λ←
λ→

)
=

(
µ←
µ→

)
+

(
γ←← γ←→
γ→← γ→→

)(
χ←
χ→

)
, (3)

or, in vector notation,

λ(t|θbi; It) = µ + Γχ(t|θbi; It), (4)

where θbi is the parameter vector for the bivariate model,
µ ≡ (µ←, µ→)T are the constant exogenous background
intensities for each process, Γ is the 2×2 branching mat-
rix, and χ are the endogenous excitements generated by
the arrivals of events in each respective process. The re-
sponse of this model, as parametrized below, to a sample
activity cluster is shown in Fig. 2.

The endogenous excitements χ are the sums of contri-
butions from all past events within each process,

χ�(t|θ; It) =
∑

k�:tk�<t

φ�(t− tk�)κ�(mk�), (5)

where the time kernel φ� is a monotonically decreas-
ing function of the time between the arrival of the past
event, tk� , and the present, t. Here, this is taken as an
exponential decay with constant β�,

φ�(t′) = β�e
−β�t′ , (6)

which allows for Eq. (5) to be recast in Markov form,

dχ� = β� [−χ�dt+ κ�(mk�)dN�] . (7)

The impact function κ� is a monotonically increasing
function of the excess magnitude mk� . Following the
approach of [24, 25], this is defined so that the intensity
jump from the exceedance event arriving at time tk� is
determined by the conditional quantile of mk� at the
arrival time,

κ�(mk�) =
1− α� ln [1− F�(mk� |tk�)]

1 + α�
, (8)

where F� is the cumulative distribution function for the
excess magnitudes. When the mark parameter α� > 0,
larger magnitude events produce greater jumps in the
excitement. Crucially, this reduces sensitivity on the
choice of threshold value, since κ�(mk�)→ (1 + α�)−1

as |mk� | → 0. Conversely, when α� = 0, κ� be-
comes unity and we recover an unmarked Hawkes pro-
cess in which χ� is independent of the magnitudes of
past events. Also, note that E[κ�(m)] ≡ 1 for all values
of α�.

The excess magnitudes are assumed to be described
by a conditional generalized Pareto distribution (GPD).
This choice is motivated by the Pickands-Balkema-de
Haan theorem [43, 44], which states that the GPD is
the limiting distribution for linearly rescaled threshold
excesses within a series of i.i.d. random variables 1.
Moreover, since the GPD is specified with a shape para-
meter ξ�, it can describe a range of tail heaviness from
faster-than-exponential decay (ξ� < 0) to increasingly
leptokurtic power-law decay (ξ� > 0). The cumulative
density function for excess magnitudes is

F�(m|t) =

1−
[
1∓ ξ� m

σ�(t)

]−1/ξ�
, ξ� 6= 0,

1− exp [±m/σ�(t)], ξ� = 0,
(9)

where conditional dependence on the excess (i.e. non-
background) intensity of the Hawkes process is intro-
duced via the conditional scale parameter

σ�(t) = ς� + η� [λ�(t)− µ�] . (10)

Thus, when η� > 0, larger magnitude events become
more likely in high activity clusters, as is generally ob-
served in price data [35]. Conversely, when η� = 0 the
excess magnitudes are drawn from an unconditional GPD
with scale parameter ς�.

The self-exciting dynamics of the Hawkes process can
be understood as a branching process, in which daughter
events are triggered by the additional endogenous intens-
ity produced by the arrival of prior mother events. Γ
is called the branching matrix, because γij is the mean
number of daughter events in the process Ni that are
triggered by a mother event in the process Nj . This is
so because the time kernel φ� and impact function κ�
are normalized, such that the expected lifetime contri-
bution of each event in process N� to the endogenous
excitement χ� is 1; this normalization also guarantees
that the model is uniquely fitted. The process is subcrit-
ical (i.e. non-explosive) provided the spectral radius of
branching matrix ρ(Γ) is less than 1 [45].

Overall, the bivariate model is characterized by a set
of parameters, θbi = {µ,Γ,β,ξ, ς,η,α}, where vector
quantities are of the form, µ ≡ (µ←, µ→)T . Note that the
two distinct Hawkes processes describing each tail can be
decoupled by applying the constraints γ←→ = 0 = γ→←,
i.e. we recover two independent univariate Hawkes pro-
cesses between which there is no cross-excitation. This
decoupled bivariate 2T-POT Hawkes model is denoted
by the parameter vector θdbi.

1 The GPD has become the classical asymptotically motivated dis-
tribution for threshold excesses within extreme value analysis for
this reason [5].
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Figure 2. Bivariate 2T-POT Hawkes model θbi fitted to historic S&P 500 daily log-returns. Left panels: endogenous
excitement time kernels φ (top-left panel) and excess magnitude impact functions κ (bottom-left panel) for left- (light red)
and right-tail (dark green) exceedance events. Right panels: response (top-right panel, equation shows the fitted values of the
branching matrix Γ) of the conditional intensities λ (λ← in light orange, λ→ in dark blue; N.B. λ← and λ→ overlap almost
perfectly because the rows of Γ are approximately equal) and endogenous excitements χ (χ← in light red, χ→ in dark green)
to a sample cluster of extreme S&P 500 daily log-returns (bottom-right panel, excesses marked in bolder shading).

B. Common intensity 2T-POT Hawkes model

As noted in the beginning of Section II A, the bivariate
model assumes that the arrivals of left- and right-tail ex-
ceedances form two distinct point processes. This, how-
ever, does not guarantee that these two types of events
are mutually exclusive. To enforce this requirement, we
assume that both sets of exceedance arrivals constitute
the events of a single, common point process, N↔, whose
arrival rate is given by the one-dimensional common con-
ditional intensity, λ↔.

To develop a general common intensity model that al-
lows for asymmetric cross-excitation between asymmetric
tails, we modify Eq. (4) by reducing the branching mat-
rix Γ to the branching vector γT↔ ≡ 〈1|Γ ≡ (γ↔←, γ↔→)
and by reducing the background intensity to a scalar,
µ↔ ≡ 〈1|µ〉 ≡ µ← + µ→. Thus,

λ↔(t|θci; It) = µ↔ + γT↔χ(t|θci; It), (11)

where θci = {µ↔,γ↔,β,ξ, ς,η,α, w↔} is the parameter
vector for the common intensity model.

Each event is then stochastically drawn from either
tail upon arrival just as the excess magnitude is also ran-
domly sampled. This can be realized as the excess mag-
nitude being drawn from a probability distribution that
is a weighted piecewise union of the left- and right-tail
distributions, i.e. from a probability density function of
the form

f↔(m) =

{
S(−w↔)f←(m), m < 0,

S(+w↔)f→(m) , m > 0,
(12)

where f� are the probability density functions for the
left- and right-tail excess magnitude distributions, and

the weighting of probability between the two tails is de-
termined by the logistic function,

S(w↔) = 1/(1 + e−w↔), (13)

with the tail-weight asymmetry parameter w↔, such
that the relative frequency of left- to right-tail events
is E[N←/N→] = exp (−w↔).

Note that, if w↔ = 0 and all parameters in θci are
constrained to be symmetric (i.e. so that the left- and
right-tail components of all vector parameters are equal),
then the common intensity 2T-POT model is equivalent
to a single-tail POT Hawkes model applied to the abso-
lute values of a copy of the original time series that is
centred on the mid-point between the thresholds, x∗t =
xt−(u→+u←)/2. That is, the set of absolute exceedances
{|mk↔ |} = {|x∗t | − u↔ > 0}, where u↔ = (u→ − u←)/2,
is a union of {|mk← |} and {|mk→ |}, and a univariate
Hawkes model applied to this exceedance series describes
equal self- and cross-excitation between left and right
tails that are symmetric in all properties. This symmet-
ric common intensity 2T-POT model is denoted by the
parameter vector θsci.

III. APPLICATION TO S&P 500 DAILY
LOG-RETURNS

To demonstrate the utility of the two-tailed extension
to the classic POT Hawkes model, we apply the 2T-POT
Hawkes models developed in Section II to the daily log-
returns of the S&P 500 equity index between 1959-10-
02 and 2020-11-20. The data are partitioned into an
in-sample training period and an out-of-sample forecast
period, with the former ending (and the latter beginning)



5

on 2008-09-01. The data were sourced from Yahoo Fin-
ance [46].

In accordance with previous literature [24, 25, 28, 30,
39], we do not attempt to normalize the local volatility
before fitting the 2T-POT models and we use constant
threshold values. This raises the question of whether ex-
treme events should be defined with respect to the mag-
nitude of recent behaviour or against the longer history of
the time series. We choose the latter for practical consid-
erations. First, model-based estimates of local volatility
introduce assumptions to which residual extreme events
are highly sensitive; thus, POT Hawkes models applied
to the residual series tend to be dominated by the noise
these assumptions introduce (see Appendix A). Secondly,
POT Hawkes models applied to the raw series of log-
returns have been found to more accurately forecast tail
behaviour than conditional volatility models [30]; we in-
tend to explore this aspect further in a follow-up paper.

We acknowledge that, under our definition of extreme
events, symmetric self- and cross-excitement may be per-
ceived as an artefact of volatility clustering. However,
one advantage of our two-tailed approach is that we may
identify asymmetries that cannot be likewise attributed
to volatility clustering as described by standard condi-
tional volatility models. If, for instance, the log-returns
are generated by a GARCH(1, 0, 1) process [34], then,
under mean-symmetric thresholds, we would expect all
vector parameters of the fitted 2T-POT models to be

symmetric, i.e. θ̂
s

ci would be the optimal model (this is
explored, along with more complex cases, including the
GJR-GARCH leverage effect [47], in Appendix A). To
test this, we set the fixed threshold values according to
a symmetric pair of sample quantiles within the training
period. This also guarantees an equal number of left-
and right-tail training period exceedances, and, there-
fore, that w↔ = 0 for the common intensity models.
Guided by where the marginal distribution of training
period log-returns diverges from the normal distribution
(Fig. 3), we set the threshold values to the 2.5% and
97.5% sample quantiles. We have verified that the results
reported here are robust against small changes of these
threshold values. Hereafter, we refer to exceedances of
the two thresholds as extreme losses and extreme gains.

The parameters of each model are estimated from the
training period data through the maximum likelihood
(ML) procedure detailed in Appendix B. The parameter
estimates are listed in Table I for the bivariate models
and in Table II for the common intensity models.

A. Likelihood-based inference

The general bivariate and common intensity 2T-POT
Hawkes models (θbi and θci) are novel descriptions of
asymmetric cross-excitement between asymmetric left-
and right-tail extreme events; their constrained forms
(θdbi and θsci) are equivalent to single-tail models that
have been applied to financial returns in previous literat-
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Figure 3. Normal quantile plot of the S&P 500 daily log-
returns xt in the training (dark blue) and forecasting (light
grey) periods. The exceedance thresholds (black, dashed) co-
incide with the visual divergence of the training data from
the maximum likelihood (ML) fitted normal distribution
NML,Train (red).

ure [24, 25]. We use likelihood-based inference to meas-
ure and compare the goodness of fit of each model to the
data sample It, and so determine which best describes
the underlying data generating process of It.

The goodness of fit of the model θ to It is measured by
the log-likelihood function `(θ|It) [defined as Eq. (B1) in
Appendix B], with higher values of ` indicating a better
fit. The log-likelihood is often quoted as the deviance
−2`, for which lower values are better optimized. While
the deviance can itself be used to compare the fitness, it
is more common to use the Akaike information criterion

AIC(θ|It) = 2dim(θ)− 2`(θ|It), (14)

which approximates the expected deviance of a hypothet-
ical new sample that is independent of It, and, in doing
so, penalizes redundant complexity [48]. An alternative
penalized deviance is the Bayesian information criterion
[48]

BIC(θ|It) = ln [dim(It)]− 2`(θ|It). (15)

Table III lists the penalized deviance scores for all mod-
els in both the training and forecasting periods. A clear
hierarchy of fitness emerges from these scores. The de-
coupled model with no cross-excitation θdbi yields the
worst fit, followed by the symmetric common intensity
model θsci. The novel 2T-POT models with asymmet-
ric interactions provide the best fit, with comparatively
little difference between the two: θci is preferred to θbi

by AIC and BIC in the training period, but the opposite
is true in the forecasting period.
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Table I. L-BFGS-B parameter estimates (± standard errors) for the coupled and decoupled bivariate 2T-POT Hawkes models
trained on the extreme losses and gains of the S&P 500 daily log-returns from 1959-10-02 to 2008-09-01.

θ̂bi θ̂
d

bi

Parameter ←a →b ← →
µ/d−1

t (4.9± 1.2)× 10−3 (3.1± 0.8)× 10−3 (5.7± 1.0)× 10−3 (6.8± 1.2)× 10−3

γ (5.8± 0.7)× 10−1 (2.2± 0.8)× 10−1 (7.8± 0.6)× 10−1

γ (6.0± 0.6)× 10−1 (2.8± 0.6)× 10−1 (7.4± 0.7)× 10−1

β/d−1
t (7.4± 1.0)× 10−2 (1.7± 0.4)× 10−2 (3.9± 0.7)× 10−2 (2.5± 0.4)× 10−2

ξ (2.2± 0.6)× 10−1 (−3.1± 7.4)× 10−2 (2.5± 0.7)× 10−1 (9.1± 6.7)× 10−2

ς (3.8± 0.5)× 10−3 (3.4± 0.6)× 10−3 (3.7± 0.5)× 10−3 (5.1± 0.7)× 10−3

η (3.2± 0.9)× 10−2 (5.2± 0.8)× 10−2 (3.1± 0.9)× 10−2 (2.9± 1.0)× 10−2

α (3.6± 2.0)× 10−1 2.2± 3.6 (1.6± 2.0)× 10−1 4.0± 4.1

a Left-tail: xt < u← = −0.01840.
b Right-tail: xt > u→ = +0.01872.

Table II. L-BFGS-B parameter estimates (± standard errors) for the asymmetric and symmetric common intensity 2T-POT
Hawkes models trained on the extreme losses and gains of the S&P 500 daily log-returns from 1959-10-02 to 2008-09-01.

θ̂ci θ̂
s

ci

Parameter ← → ↔c

µ↔/d
−1
t (7.7± 1.4)× 10−3 (8.5± 1.4)× 10−3

γ↔ 1.2± 0.1 (5.4± 1.0)× 10−1 (8.3± 0.5)× 10−1

β/d−1
t (7.6± 1.0)× 10−2 (1.6± 0.4)× 10−2 (4.9± 0.5)× 10−2

ξ (2.2± 0.6)× 10−1 (−3.2± 6.1)× 10−2 (1.6± 0.4)× 10−1

ς (3.7± 0.5)× 10−3 (3.4± 0.6)× 10−3 (3.5± 0.4)× 10−3

η (3.2± 0.9)× 10−2 (5.3± 0.8)× 10−2 (2.2± 0.3)× 10−2

α (3.6± 1.9)× 10−1 1.5± 2.4 (7.0± 3.0)× 10−1

c Common-tail: |xt − (u→ + u←) /2| > u↔ = (u→ − u←) /2 = 0.01856.

The relative fitness of pairs of models is compared dir-
ectly through the likelihood ratio test [34]. Specifically,
for a given pair of models, θ0 and θ1, where dim(θ0) <
dim(θ1), the null hypothesis, H0 : `(θ0) = `(θ1), is
tested against the alternative, H1 : `(θ0) < `(θ1). H0

is rejected when the higher-dimensional (i.e. more com-
plex) model yields a significantly better fit to the data
sample It. Since the contributions to the log-likelihood
` from left- and right-tail events are independent, the
likelihood ratio test can be used to compare the relative
fitness to each process – N←, N→, and N↔ – separately.

Table IV lists the p-values for the likelihood ratio test
applied to model pairs with respect to all three processes.
The results for N↔ – which correspond to the scores
quoted in Table III – confirm that the classical POT
Hawkes models are rejected in favour of the 2T-POT
models with asymmetric interactions at the 95% signi-
ficance level. The results for N← and N→ show that this
is primarily because the latter provide a significantly bet-
ter fit to the right-tail exceedances events – supporting
the finding that the excitement of λ→ is mostly influ-
enced by the history of left-tail events. Notably, θci is
never rejected in favour of θbi. By directly examining
the parameter estimates in Tables I and II, we find that
the estimated parameters for θbi are effectively equival-

ent to those for θci (i.e. γ←← ≈ γ→← ≈ γ↔←/2 and
γ←→ ≈ γ→→ ≈ γ↔→/2), hence, the comparable good-
ness of fit between the two models. This can also be
seen in Fig. 2, where, by visual inspection, λ← ≈ λ→.
We therefore infer that the arrival of extreme losses and
gains is governed by a common conditional intensity, and
that this intensity is best approximated by λ↔(t|θci; It).

For developed market indices, such as the S&P 500,
it is known that extreme returns on consecutive trad-
ing days exhibit an asymmetric sign persistence: extreme
gains are persistent, meaning they are more likely to be
directly followed by another extreme gain than by an ex-
treme loss; conversely, extreme losses are reversive, mean-
ing they are also more likely followed by an extreme gain
[40]. However, these persistences only exist over a single
trading day – a timescale that is too short to be de-
tected by a Hawkes model with inverse decay constants
β−1 > 101 dt. It is therefore intuitive that extreme losses
and gains are found to share a common arrival intensity.

Having concluded that the common intensity model
best describes the data It, we examine the values of

its estimated parameters θ̂ci when fitted to these data,
as listed in Table II. We observe significant asymmet-
ries in the values estimated for the two tails. First,
there is an asymmetry in the excitation vector γ↔, such
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Table III. Deviance and penalized deviance scores of all 2T-POT Hawkes models against the extreme losses and gains of the
S&P 500 daily log-returns in both the training and forecasting periods.

Train (1959-10-02 – 2008-09-01) Forecast (2008-09-01 – 2020-11-20)

Deviance score θ̂bi θ̂
d

bi θ̂ci θ̂
s

ci θ̂bi θ̂
d

bi θ̂ci θ̂
s

ci

−2`(θ̂) 46.42 250.30 48.43 138.85 -6.72 113.06 -4.44 27.43

AIC(θ̂) 78.42 278.30 74.43 152.85 -6.72 113.06 -4.44 27.43

BIC(θ̂) 160.29 349.93 140.94 188.66 -0.37 118.62 0.72 30.20

Table IV. Likelihood ratio test p-values for the 2T-POT
Hawkes models during the training and forecasting periods.
H0 : `(θ0) = `(θ1). H1 : `(θ0) < `(θ1). Rejections of H0 at
the 95% confidence level are highlighted in bold.

pLR

Process θ0 θ1 Train Forecast

N← θ̂
s

ci θ̂ci 7.5× 10−87.5× 10−87.5× 10−8 5.2× 10−2

θ̂
d

bi θ̂ci 9.3× 10−1 7.5× 10−2

θ̂ci θ̂bi 9.5× 10−1 3.5× 10−1

N→ θ̂
s

ci θ̂ci 2.4× 10−82.4× 10−82.4× 10−8 3.6× 10−33.6× 10−33.6× 10−3

θ̂
d

bi θ̂ci 1.9× 10−401.9× 10−401.9× 10−40 1.4× 10−201.4× 10−201.4× 10−20

θ̂ci θ̂bi 6.5× 10−1 1.0

N↔ θ̂
s

ci θ̂ci 2.5× 10−172.5× 10−172.5× 10−17 1.7× 10−51.7× 10−51.7× 10−5

θ̂
d

bi θ̂ci 8.1× 10−468.1× 10−468.1× 10−46 2.2× 10−272.2× 10−272.2× 10−27

θ̂ci θ̂bi 5.7× 10−1 5.2× 10−1

that γ↔←/γ↔→ = 2.2 ± 0.5. This means that, on av-
erage, extreme losses trigger more than twice as many
daughter events (from either tail) as extreme gains. At
the same time, the ratio between the decay constants,
β←/β→ = 4.6 ± 1.2, means that the excitation from
losses decays significantly faster, and, therefore, that this
excitement is more concentrated in time to the imme-
diate aftermath of the mother event’s arrival. These
asymmetries are consistent with previous studies of de-
veloped market indices, which have found that extreme
daily losses are a better predictor of future daily extremes
(gain or loss) than are extreme daily gains [39]. Ap-
pendix A examines in detail whether these asymmetries
can be explained by invoking volatility clustering and the
leverage effect as described by GARCH models. We find
that the leverage effect as described by the GJR-GARCH
model [47] can account for the asymmetry in γ↔ but not
the asymmetry in β. The latter, a novel insight of the
2T-POT Hawkes model, suggests a more complex data
generating process for log-returns, in which the leverage
effect is more pronounced at shorter timescales.

B. Residual analysis

We further assess the performance of the 2T-POT
Hawkes models at describing the arrival process through
the residual analysis technique developed by Ogata [49].

If the continuous time arrivals of the point process
Ni(t) are described by the conditional intensity λi(t),
then, in the residual time

τi(t) =

∫ t

0

λi(t
′)dt′, (16)

the residual process Ni(τi) is a homogeneous unit Poisson
process and the residual interarrivals ∆τi,ki = τi(tki) −
τi(tki−1) are therefore i.i.d. unit exponential random vari-
ables. If event arrivals instead occur in discrete time with
a minimum time-step δt, then these expected distribu-
tions are asymptotic in the limit λiδt→ 0.

The bivariate model natively yields separate residual
processes for left- and right-tail exceedances. Generically,
it can be shown that λ↔ ≡ 〈1|λ〉 ≡ λ← + λ→, and so
a residual time for exceedances from both tails, τ↔, is
trivial to derive from λ. It is less trivial to derive τ←
and τ→ from the common intensity model, since there
is no inverse function to calculate λ← and λ→ from λ↔.
Instead, the residual interarrivals of these processes are
derived from the probability of an event occurring in N↔
and then being stochastically drawn from either tail, with
relative frequency E[N←/N→] = exp (−w↔):

∆τ�,k� = ∆τ↔,k� ∓
w↔
2

+ ln

[
± sinh

w↔
2

+

√
sinh2 w↔

2
+ e−∆τ↔,k�

]
.

(17)

If w↔ = 0, Eq. (17) reduces to ∆τ�,k� = ∆τ↔,k�/2.
The residual processes under the common intensity

model θci are shown in Fig. 4; this is also representative
of the corresponding residual processes under θbi, due to
the approximate equivalence of the estimated paramet-
ers, as discussed in Section III A. In contrast to Fig. 1,
we observe that the residual processes are approximately
unit Poisson, and, therefore, that the true conditional in-
tensities are well approximated by λ(t|θci; It). A minor,
but notable exception is seen in the bottom-right panel of
Fig. 4, where there is a decline in the observed frequency
relative to expectation in the limit ∆τ↔ → 0, i.e. there
are fewer than expected instances of exceedance events
arriving almost simultaneously in N↔(τ↔). This is a dis-
cretization error that arises because the arrivals occur in
discrete time: since E[λ↔/λ←] = E[λ↔/λ→] = 2, λ↔
is always further from the asymptotic limit in which the
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Figure 4. Residual arrival processes of extreme S&P 500 daily log-returns under θci. Left panel: left- (light orange) and
right-tail (dark blue) exceedance count against residual time. The KS test is used against the null hypothesis, H0 : λ�(t) =
λ�(t|θci; It): the grey shaded areas show the 95% (lighter) and 99% (darker) KS confidence intervals; also shown are the
training period KS p-values for N←, N→ and N↔, none of which are rejected at the 95% confidence level. The vertical black
line marks the end of the training period on 2008-09-01. Right panels: histogram of the residual interarrivals for exceedances
from the left tail (top-right panel, light orange), right tail (middle-right panel, dark blue), and both tails (bottom-right panel,
green); the solid lines show the unit exponential distribution expected under H0.

approximation of continuous time arrivals is valid; this
suppresses severe under-forecasting, because the interar-
rival times cannot be less than discrete time step δt.

We note that there are persistent inequalities in the
arrival frequencies of losses versus gains in the resid-
ual time. This is especially pronounced in the forecast-
ing period, i.e. for data outside of the sample whose
symmetric quantiles were used to define the thresholds.
While our method of threshold definition guarantees an
equal number of left- and right-tail exceedances within
the training period, we find a 168 to 124 split within
the forecasting period. This reflects the use of constant
thresholds without prior normalization of the original
time series: while this approach avoids interference with
the short timescale signals of self-excitement, it cannot
account for long timescale changes in the distribution of
returns. Future work may look to incorporate these long-
term trends while minimizing such interference.

We test the null hypothesis that the true conditional
intensity and the conditional intensity approximated by
the Hawkes model are the same, i.e. H0 : λi(t) =
λi(t|θ; It), by performing the Kolmogorov-Smirnov (KS)
test [38] on the null hypothesis that the residual process
derived from λi(t|θ; It) is unit Poisson. Table V shows
the p-values of this test performed for each tail intens-
ity – λ←, λ→, and λ↔ – within both the training and
forecasting periods. There are few rejections at the 95%
significance level and there are no such rejections for tests
performed on λ↔. We note that, with one exception, the
KS p-values under θci are higher than under θbi, sup-
porting the conclusion in Section III A that the common
intensity model is the optimal choice for the S&P 500
data set.

Table V. Kolmogorov-Smirnov (KS) test p-values for the re-
sidual processes of exceedance arrivals from either and both
tails under the 2T-POT Hawkes models during the training
and forecasting periods. H0 : λi(t) = λi(t|θ). H1 : λi(t) 6=
λi(t|θ). Rejections of H0 at the 95% confidence level are
highlighted in bold.

pKS

Train Train and Forecast

Model λ← λ→ λ↔ λ← λ→ λ↔
θbi 0.113 0.946 0.416 0.206 0.0140.0140.014 0.671
θd
bi 0.194 0.192 0.077 0.444 0.379 0.223

θci 0.217 0.857 0.449 0.287 0.0290.0290.029 0.702
θs
ci 0.098 0.867 0.205 0.061 0.168 0.428

We complement the residual analysis of the arrivals
processes with a residual analysis of the excess mag-
nitudes. If the excesses {mk�} are distributed accord-
ing to the conditional GPD specified in Eq. (9), then the
residual excess magnitudes,

E(mk�) =

ξ−1
� ln

[
1 + ξ�

mk�

σ�(tk�)

]
, ξ� 6= 0,

mk�/σ�(tk�), ξ� = 0,
(18)

are approximately i.i.d. unit exponential random vari-
ables. In Fig. 5, we compare in the top and bottom
panel, respectively, the left- and right-tail residual excess
magnitudes for our extreme events under the model θci

to the unit exponential distribution. We observe a very
good agreement between the two apart from in the vi-
cinity of the median where the left-tail residuals cross
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Figure 5. Kolmogorov-Smirnov (KS) test for left- (top
panel, light orange) and right-tail (bottom panel, dark blue)
residual excess magnitudes for the S&P 500 extreme daily
log-returns under θci compared against the unit exponential
distribution. The grey shaded areas show the 95% (lighter)
and 99% (darker) KS confidence intervals.

the KS 99% confidence interval bounds. We attribute
this to an underestimation of the left-tail conditional in-
tensity λ← (and, therefore, of the left-tail conditional
scale parameter σ←) at the onset of high-activity clusters
within the forecasting period. Notably, these clusters cor-
respond to the Global Financial Crisis (2007-9) and the
Covid-19 pandemic (2020). This result is consistent with
there being additional sources of non-constant exogenous
intensity that we have not accounted for here.

We investigate serial dependence within the resid-
ual interarrivals as a signal of systemic under- or over-
forecasting. This has implications for the forecasting
ability of the model in practice, but it could also her-
ald additional dynamics within the true underlying ar-
rival process that are not captured by the model. For
this analysis, we transform the residual interarrivals from
an expected unit exponential distribution to an expected
unit normal distribution via the operation

N (∆τi,ki) = F−1
normalFexpon(∆τi,ki)

=
√

2 erf−1(1− 2 exp [−∆τi,ki ]), (19)

where erf−1 is the inverse error function. Thus, if the
exceedance event at time tki is under-forecast (i.e. arrived
sooner than expected) by the model, then N (∆τi,ki) < 0.

Fig. 6 shows that, over the full data sample, there is
negligible autocorrelation within the normalized resid-
ual interarrivals under θci (and, therefore, under θbi).
Conversely, Fig. 7 shows peaks of statistically signific-
ant localized autocorrelation. For the residual interar-
rivals of N↔, three notable peaks of positive lag-1 auto-
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Figure 6. Correlograms for the transformed residual interar-
rivals of S&P 500 extreme daily log-returns under θci; derived
from N← (top panel, light orange), N→ (middle panel, dark
blue), and N↔ (bottom panel, green). The grey shaded areas
show the 95% (lighter) and 99% (darker) confidence intervals
for ACFh = 0, respectively.

correlation are observed: these follow the high-activity
clusters corresponding to the 1973-4 stock market crash,
Black Monday (1987), and the Global Financial Crisis
(2007-9). We infer this to be a signal of systemic overes-
timation of the conditional intensity (i.e. systemic over-
forecasting) in the latter stages of high activity regimes.
We speculate that this is also a consequence of neglect-
ing significant additional sources of non-constant exogen-
ous intensity at the start of these regimes: without these
sources, all excess intensity must be attributed to en-
dogenous self-excitement alone; this leads to an overes-
timation of the branching matrix elements, which then
works against the relaxation of the conditional intensity
at the end of high activity clusters. Rather than being the
mechanism by which the system reaches the excited state,
self-excitement may more so be the mechanism by which
the excited state persists, having been initially instigated
by a sudden increase in exogenous intensity correspond-
ing to either impactful news or other complex dynamics
within the market.

IV. SUMMARY

We have developed a two-tailed peaks-over-threshold
Hawkes model that captures asymmetric self- and cross-
excitation between the left- and right-tail extremes based
upon a common conditional intensity. Such a model
provides a way to measure and describe self-exciting pro-
cesses with more than one mutually exclusive but in-
teracting types of extreme behaviours. When compared
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to its symmetric version as well as a bivariate model in
which each tail contributes to either coupled or decoupled
distinct point processes, our model, applied to daily log-
returns of the S&P 500 index, was found to provide the
most parsimonious fit to the data as measured by penal-
ized deviance.

By accounting for asymmetric interactions between
the tails, our model finds that, for the S&P 500 daily
log-returns, extreme losses trigger on average more than
twice as many daughter events as do extreme gains. The
excitation from losses is also found to decay more than
four times as quickly as that from gains. While the
former of these asymmetries can be explained by invok-
ing the GJR-GARCH leverage effect, the latter is a novel
insight of the 2T-POT Hawkes model that provides evid-
ence for the leverage effect being more pronounced at
shorter timescales. The greater, more immediate im-
pact of losses is consistent with the greater psychological
weight assigned to them by human agents, i.e. this result
reflects a negativity bias wherein negative events gener-
ally provoke a stronger response than equivalent positive
events [31, 32].

Beyond the demonstrated application to financial data,
we anticipate possible extensions of our model to other
drift-diffusion-like processes in which a clustering of ex-
treme fluctuations is observed.
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Appendix A: Volatility clustering and leverage effect

When exceedance events are defined against fixed
thresholds, a clustering of exceedance arrivals can arise as
a consequence of non-constant variance in xt. Volatility
clustering is a stylized fact of financial returns: it states
that the standard deviation of log-returns (known as the
volatility) is non-constant and exhibits significant posit-
ive autocorrelation. Another stylized fact – the leverage
effect – states that volatility increases when returns be-
come more negative [34, 35]. This Appendix examines
whether the asymmetric self-excitement reported in this
paper can be attributed to these well-established features
of financial data.

GARCH models have become the standard model for
log-returns in financial engineering due to their parsimo-
nious description of these two stylized facts [34]. These
models take the form of a conditional volatility process
where log-returns are generated as

xt = µ+ σtεt, (A1)
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where µ is the unconditional mean, σt is the conditional
volatility, and εt is random noise drawn from a para-
metric distribution with zero mean and unit variance. In
the GARCH(p, o, q) model, the conditional variance σ2

t is
described by an autoregressive moving average (ARMA)
process

σ2
t = ω +

p∑
i=1

αi(σt−iεt−i)
2

+

q∑
j=1

βjσ
2
t−j

+

o∑
k=1

γk(σt−kεt−k)
2
It−k, (A2)

where ω is the minimum conditional variance and
{αi, βj , γk} are the ARCH coefficients. When o 6= 0,
Eq. (A2) is a GJR-GARCH model [47] that accounts for
the leverage effect through the indicator function

It =

{
1, εt < 0,

0, εt ≥ 0,
(A3)

If the data xt is generated by the specified conditional
volatility model, then the normalized residuals zt are
i.i.d. unit white noise, i.e.

zt = F−1
normalFε[(xt − µ) /σ] ∼ N (0, 1). (A4)

In this Appendix, we consider the
GARCH(p = 1, o, q = 1) model with (o = 1) and
without (o = 0) the leverage effect. Hereafter, we label
variants of this model as G(o, .), where the second
argument is a letter specifying the parametric error
distribution: N denotes the unit normal distribution
[εt ∼ N (0, 1)] and t denotes the unit Student’s t
distribution [εt ∼ t(0, 1, ν)] [34].

To examine whether the asymmetric self-excitement of
S&P 500 log-returns reported in this paper can be attrib-
uted to volatility clustering and the GJR-GARCH lever-
age effect alone, we fit the 2T-POT Hawkes model to the
normalized residuals of four GARCH models – G(0,N ),
G(0, t), G(1,N ), and G(1, t) – fitted to the S&P 500 data
(see Table VI for the fitted GARCH parameters). The ex-
ceedance thresholds in zt for the 2T-POT Hawkes model
are defined by the 2.5% and 97.5% sample quantiles of
zt in the training period. Fig. 8 shows that, just like for
the log-returns xt in Fig. 3, this is approximately where
the marginal distribution of training period normalized
residuals diverges from the normal distribution.

If the log-returns xt are perfectly described by the
fitted conditional volatility models, such that the nor-
malized residuals zt are i.i.d. unit white noise, then ex-
ceedances of an arbitrary threshold should arrive as a
Poisson point process. That is, the conditional intens-
ity is not excited by past events (Γ = 0), and is instead
equal to the constant background (λ = µ). It would also
be expected that the distribution of excess magnitudes
mk� would be stationary and decay with exp(−mk�

2):
the second of these conditions implies that the GPD

Table VI. GARCH model parameter estimates (± standard
errors) and AIC penalized deviance for the S&P 500 daily
log-returns from 1959-10-02 to 2008-09-01.

Parameter G(0,N ) G(0, t)
µ (4.5± 0.6)× 10−4 (4.8± 0.6)× 10−4

ω (6.1± 0.9)× 10−5 (4.8± 0.9)× 10−5

α1 (8.0± 0.5)× 10−2 (7.0± 0.5)× 10−2

β1 (9.2± 0.0)× 10−1 (9.3± 0.1)× 10−1

ν 7.5± 0.5
AIC 29402.3 28832.5

Parameter G(1,N ) G(1, t)
µ (3.0± 0.6)× 10−4 (3.7± 0.6)× 10−4

ω (7.3± 1.0)× 10−5 (5.5± 0.9)× 10−5

α1 (3.1± 0.4)× 10−2 (2.7± 0.4)× 10−2

γ1 (8.4± 0.7)× 10−2 (8.2± 0.8)× 10−2

β1 (9.2± 0.0)× 10−1 (9.3± 0.0)× 10−1

ν 8.0± 0.5
AIC 29199.0 28679.6
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Figure 8. Normal quantile plot of the S&P 500 GARCH
normalized residuals zt in the training period (1959-10-02
to 2008-09-01) under G(0,N ) (dark blue) and G(0, t) (light
grey). The exceedance thresholds (black, dashed) approxim-
ately coincide with the visual divergence of the training period
residuals from the unit normal distribution N (0, 1) (red).

shape parameter ξ < 0. Finally, if the 2T-POT Hawkes
model is fitted to i.i.d. unit white noise using symmetric-
ally defined exceedance thresholds u, then all parameters
should be symmetric, as is described by θsci.

Fig. 9 shows that, without the leverage effect (o = 0),
the null hypothesis of i.i.d. normalized residuals is rejec-
ted at the 95% confidence level with respect to right-tail
exceedances, but not for left-tail exceedances; this result
holds when the leverage effect is included (o = 1, not
shown). Thus, none of the four GARCH variants com-
pletely captures the data generating process. The fit-
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level highlighted in bold. The vertical black line marks the end of the training period on 2008-09-01.

Table VII. Fitted parameters (± standard errors) for the 2T-POT Hawkes bivariate model θbi with the constraints η = 0 = α
fitted to unit white noise zt|N (0, 1) and the normalized residuals of the S&P 500 daily log-returns under the GARCH models
zt|G(0,N ), zt|G(0, t), zt|G(1,N ), and zt|G(1, t). Standard errors for zt|N (0, 1) are obtained through 10 000 simulated series.

Parameter zt|N (0, 1) zt|G(0,N ) zt|G(0, t) zt|G(1,N ) zt|G(1, t)
u← −1.959 −2.072 −2.033 −2.031 −2.004
u→ 1.959 1.915 1.895 1.934 1.909

µ←/d
−1
t 2.5× 10−2 (2.1± 0.1)× 10−2 (2.1± 0.1)× 10−2 (2.3± 0.9)× 10−2 (2.5± 0.7)× 10−2

µ→/d
−1
t 2.5× 10−2 (2.2± 0.1)× 10−2 (2.2± 0.1)× 10−2 (6.8± 3.0)× 10−3 (7.1± 3.1)× 10−3

γ←← 0 (4.7± 2.7)× 10−2 (4.9± 2.7)× 10−2 (1.6± 3.0)× 10−1 (5.4± 29.6)× 10−2

γ←→ 0 0.0± 0.0 0.0± 0.0 (1.8± 2.3)× 10−1 (2.0± 0.9)× 10−1

γ→← 0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
γ→→ 0 0.0± 0.0 0.0± 0.0 (6.9± 1.1)× 10−1 (6.8± 1.2)× 10−1

β←/d
−1
t 0 (2.8± 2.0)× 10−1 (2.8± 1.8)× 10−1 (3.0± 3.0)× 10−3 (3.4± 5.3)× 10−3

β→/d
−1
t 0 (2.1± 0.0)× 10−1 (3.1± 0.0)× 10−2 (1.6± 0.8)× 10−3 (1.6± 0.8)× 10−3

ξ← −(1.2± 0.6)× 10−1 (2.8± 0.7)× 10−1 (8.6± 6.0)× 10−2 (3.3± 0.7)× 10−1 (1.3± 0.6)× 10−1

ξ→ −(1.2± 0.6)× 10−1 (8.9± 5.8)× 10−2 (−6.3± 4.7)× 10−2 (6.1± 5.3)× 10−2 (−6.6± 4.3)× 10−2

ς← (4.2± 0.3)× 10−1 (4.5± 0.4)× 10−1 (3.3± 0.3)× 10−1 (4.1± 0.4)× 10−1 (3.2± 0.3)× 10−1

ς→ (4.2± 0.3)× 10−1 (4.1± 0.3)× 10−1 (3.3± 0.2)× 10−1 (4.4± 0.3)× 10−1 (3.4± 0.2)× 10−1

ted 2T-POT parameters in Table VII show further devi-
ations from the behaviour expected under the null. First,
there is significant residual self-excitement of left-tail ex-
ceedances when o = 0 and of right-tail exceedances when
o = 12, although the evidence for cross-excitement is
much weaker. With the exception of the right-tail under
Student’s t errors, the fitted ξ show that the tails of the
GARCH residuals remain significantly heavy. All para-
meters but ς exhibit significant asymmetries. Finally, we

2 When o = 1, β−1
→ is found to be of the order 103 dt, meaning

that the average daughter event occurs almost four years after
the mother event. This does not describe clustering, instead the
model is reflecting a long timescale variation that is not naturally
described by a Hawkes-type self-exciting process.

note that there is significant disagreement in the para-
meters across the different GARCH variants from which
the residual series are derived. This recalls the point in
Section III, namely that the residual exceedance events
are highly sensitive to the assumptions of the chosen con-
ditional volatility model, and, as a consequence, so is the
fitting of a POT Hawkes model on the GARCH residuals.

We also use the fitted conditional volatility models to
simulate log-returns. Using each GARCH model spe-
cified in Table VI, we generated 50 series of length equal
to the original S&P 500 training data (12 311), then fit
the 2T-POT Hawkes model to each of these simulated
series. Table VIII compares the average parameter val-
ues for the simulated data against those for the S&P
500 daily log-returns. Without the leverage parameter
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Table VIII. Fitted parameters (± standard errors) for the 2T-POT Hawkes bivariate model θbi fitted to S&P 500 daily log-
returns xt|S&P 500 and 50 simulated series of log-returns from the GARCH models xt|G(0,N ), xt|G(0, t), xt|G(1,N ), and
xt|G(1, t).

Parameter xt|S&P 500 xt|G(0,N ) xt|G(0, t) xt|G(1,N ) xt|G(1, t)
u← −1.840× 10−2 (−2.4± 0.3)× 10−2 (−2.0± 0.3)× 10−2 (−2.0± 0.7)× 10−2 (−1.8± 0.3)× 10−2

u→ 1.872× 10−2 (2.4± 0.3)× 10−2 (2.1± 0.3)× 10−2 (2.1± 0.8)× 10−2 (1.8± 0.2)× 10−2

µ←/d
−1
t (4.9± 1.2)× 10−3 (2.3± 0.3)× 10−2 (2.3± 0.3)× 10−2 (1.3± 0.2)× 10−2 (1.3± 0.3)× 10−2

µ→/d
−1
t (3.1± 0.8)× 10−3 (2.2± 0.3)× 10−2 (2.2± 0.3)× 10−2 (3.2± 0.3)× 10−2 (3.3± 0.3)× 10−2

γ←← (5.8± 0.7)× 10−1 (4.2± 0.6)× 10−1 (4.1± 0.7)× 10−1 (6.2± 0.6)× 10−1 (6.1± 0.7)× 10−1

γ←→ (2.2± 0.8)× 10−1 (4.6± 0.7)× 10−1 (4.3± 0.6)× 10−1 (2.0± 0.5)× 10−1 (1.9± 0.7)× 10−1

γ→← (6.0± 0.6)× 10−1 (4.4± 0.7)× 10−1 (4.3± 0.7)× 10−1 (6.4± 0.7)× 10−1 (6.5± 0.7)× 10−1

γ→→ (2.8± 0.6)× 10−1 (4.3± 0.7)× 10−1 (4.1± 0.6)× 10−1 (1.9± 0.5)× 10−1 (1.6± 0.6)× 10−1

β←/d
−1
t (7.4± 1.0)× 10−2 (5.3± 0.9)× 10−2 (4.4± 0.7)× 10−2 (5.2± 0.7)× 10−2 (4.8± 0.6)× 10−2

β→/d
−1
t (1.7± 0.4)× 10−2 (5.0± 0.9)× 10−2 (4.4± 0.8)× 10−2 (5.5± 1.4)× 10−2 (4.7± 1.5)× 10−2

ξ← (2.2± 0.6)× 10−1 (−1.5± 0.6)× 10−1 (1.3± 6.2)× 10−2 (−1.4± 0.6)× 10−1 (1.4± 5.1)× 10−2

ξ→ (−3.1± 7.4)× 10−2 (−1.3± 0.6)× 10−1 (1.9± 5.9)× 10−2 (−1.4± 0.7)× 10−1 (2.0± 7.2)× 10−2

ς← (3.8± 0.5)× 10−3 (3.8± 0.7)× 10−3 (4.6± 0.9)× 10−3 (3.6± 1.2)× 10−3 (4.1± 0.7)× 10−3

ς→ (3.4± 0.6)× 10−3 (3.8± 0.8)× 10−3 (4.6± 0.8)× 10−3 (3.3± 0.6)× 10−3 (4.0± 0.8)× 10−3

η← (3.2± 0.9)× 10−2 (7.7± 1.9)× 10−2 (6.3± 1.5)× 10−2 (7.0± 7.1)× 10−2 (5.4± 1.7)× 10−2

η→ (5.2± 0.8)× 10−2 (7.4± 1.9)× 10−2 (6.1± 1.7)× 10−2 (7.1± 7.3)× 10−2 (5.5± 1.5)× 10−2

α← (3.6± 2.0)× 10−1 1.3± 1.7 8.8± 24.5 1.1± 1.6 1.5± 0.8
α→ 2.2± 3.6 1.0± 0.7 9.0± 24.2 6.1± 20.4 (2.5± 4.3)× 101

(o = 0) the conditional volatility models are fully sym-
metric with respect to the 2T-POT model (i.e. they are
naturally described by θsci). The introduction of the
leverage parameter (o = 1) introduces asymmetries in
µ and Γ that match with those seen in the original S&P
500 data, meaning that the asymmetries in the back-
ground arrival rates and the branching matrix may be
generated by the GJR-GARCH leverage effect. However,
the asymmetries in the decay constant β and GPD tail
shape parameter ξ observed in the original data are not
reproduced by any conditional volatility model: here, the
2T-POT model detects an aspect of the data generating
process that cannot be attributed to the volatility clus-

tering or the leverage effect as described by GARCH-
type models. Instead, the asymmetry in β suggests a
more complex version of the leverage effect, whereby the
greater impact of losses on volatility is more pronounced
over shorter timescales.

Appendix B: Maximum likelihood (ML) estimation

The parameters of the 2T-POT Hawkes models are
found through maximum likelihood (ML) estimation.
The log-likelihood under the parameters θ over the data
It is

`(θ|It) =
∑
i

−
∫ t

0

λi(t
′|θ; It)dt′ +

∑
ki:tki

<t

lnλi(tki |θ; It) + ln fi(mki |tki), (B1)

where i ∈ {←,→} for the bivariate model and i ∈ {↔}
for the common intensity model [25].

We use the L-BFGS-B algorithm [50, 51] to find the
parameters that maximize Eq. (B1),

θ̂(It) = arg max
θ

`(θ|It). (B2)

The standard errors of the parameter estimates, SEθ̂, are
then obtained by finite difference approximation of the

Hessian matrix. The estimated θ̂ and SEθ̂ are shown in

Tables I and II; the corresponding deviances, −2`(θ̂|It),
are given in Table III under the training period columns.

We demonstrate the reliability of this procedure by
comparing the estimated values and standard errors of
the parameters against a Bayesian Markov chain Monte
Carlo (MCMC) exploration of the parameter space us-
ing the No-U-Turn sampler in PyMC3 [52]. As shown in
Fig. 10, the Bayesian posterior distributions clearly con-
verge to the estimates and standard errors found via our
numerical optimization procedure.
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Figure 10. Bayesian Markov chain Monte Carlo (MCMC) exploration of the θs
ci parameter space for extreme S&P 500 daily

log-returns. The upper-right off-diagonal panels show scatter plots of the trace in two-parameter sub-spaces; the lower-left
off-diagonal panels show the sample correlations between these parameter pairs. The diagonal panels show the distributions of
the L-BFGS-B parameter estimates and standard errors (light green), the Bayesian prior (blue), and a kernel density estimate
of the trace (dark blue, dashed) along with its median (vertical, red) and 95% confidence interval (vertical, black).
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