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Highlights

Bayesian Generalized Network Design ?

Yuval Emek, Shay Kutten, Ron Lavi, Yangguang Shi

• Studying the problem of Bayesian Generalized Network Design (BGND),
where agents only have partial information regarding the global system
configuration, and resources have superlinear cost functions.

• Proposing a new metric, Bayesian competitive ratio (BCR), which eval-
uates the result by comparing it with the output of an omnipotent al-
gorithm that has a global view and unlimited computational resources.

• Developing a fully combinatorial framework that has a constant BCR
only depending on the exponents of the cost functions of resources, and
runs in strongly polynomial time.

• Analyzing the proposed framework with the smoothness toolbox for
Bayesian games.

• Designing a polynomial-time procedure with the double-sided guaran-
tee for computing the estimation of the expected cost shares over ex-
ponentially many possibilities in a Bayesian game with nonlinear costs.
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Abstract

We study network coordination problems, as captured by the setting of gen-
eralized network design (Emek et al., STOC 2018), in the face of uncertainty
resulting from partial information that the network users hold regarding the
actions of their peers. This uncertainty is formalized using Alon et al.’s
Bayesian ignorance framework (TCS 2012). While the approach of Alon et
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1. Introduction

In real-life situations, network users are often required to coordinate ac-
tions for performance optimization. This challenging coordination task be-
comes even harder in the face of uncertainty, as users often act with partial
information regarding their peers. Can users overcome their local views and
reach a good global outcome? How far would this outcome be from optimal?

For a formal treatment of the aforementioned questions, we adopt the
Bayesian ignorance framework of Alon et al. [1]. Consider N agents in a
routing scenario, where each agent i ∈ [N ] should decide on a (ui, vi)-path
ai in the network with the objective of minimizing some global cost function
that depends on the links’ load. The (ui, vi) pair, also referred to as the type
of agent i, is drawn from a distribution pi. All agents know this distribution,
but the actual realization (ui, vi) of each agent i is only known to i herself.

Our goal is to construct a strategy for each agent i that determines her
action ai based only on her individual type (ui, vi). These strategies are
computed in a “preprocessing stage” and the actual decision making happens
in real-time without further communication. We measure the quality of a
tuple of strategies in terms of its Bayesian competitive ratio (BCR) defined
as the ratio of the expected cost obtained by these strategies to that of an
optimal solution computed by an omnipotent algorithm (refer to Section 1.1.1
for the exact definition). To the best of our knowledge, this algorithmic
evaluation measure has not been studied so far.

Our main technical contribution is a generic framework that yields strongly
polynomial-time algorithms constructing agent strategies with low BCR for
Bayesian generalized network design (BGND) problems — a setting that in-
cludes routing and many other network coordination problems. Our frame-
work assumes cost functions that exhibit diseconomy of scale (DoS) [2, 3, 4],
capturing the power consumption of network devices that employ the popular
speed scaling technique.

1.1. Model

For clarity of the exposition, we start with the special case of Bayesian
routing in Section 1.1.1 and then present the more general BGND setting in
Section 1.1.2. Conceptually, the new algorithmic problem of Bayesian rout-
ing that we define here is related to oblivious routing [5, 6, 7], where routing
requests should be performed without any knowledge about actual network
traffic. This means that the routing path chosen for a routing request may
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only depend on the network structure and the other parameters of the prob-
lem. Oblivious algorithms are attractive as they can be implemented very
efficiently in a distributed environment as they base routing decisions only
on local knowledge. As will become formally clear below, Bayesian routing
has a similar flavor, but with an important additional ingredient. We will as-
sume that the algorithm is equipped with statistical (“Bayesian”) knowledge
about network traffic. Thus, in a sense, we replace internal randomization
techniques, that oblivious routing usually employs, with actual data, while
still being oblivious to other actual routing decisions and thus still maintain-
ing the locality principle.5

1.1.1. Special Case: Bayesian Routing

In the full information variant of the routing problem, we are given a
(directed or undirected) graph G = (V,E) and a set of N agents, where each
agent i ∈ [N ] is associated with a node pair (ui, vi) ∈ V × V , referred to as
the (routing) request of agent i. This request should be satisfied by choosing
some (ui, vi)-path in G, referred to as the (feasible) action of agent i, and
the collection of all such paths is denoted by Ai.

Let A = A1 × · · · × AN be the collection of all action profiles. The load
on edge e ∈ E with respect to action profile a ∈ A, denoted by lae , is defined
to be the number of agents whose actions include e, that is, lae = |{i ∈ [N ] :
e ∈ ai}|. The cost incurred by load lae on edge e is determined by an (edge
specific) superadditive cost function Fe : R≥0 7→ R≥0 such that for any l ≥ 0,

Fe(l) = ξe · lα , (1)

where ξe > 0 (a.k.a. the speed scaling factor) is a parameter of edge e and
α > 1 (a.k.a. the load exponent) is a global constant parameter. Such a
superadditive cost function captures, for example, the power consumption of
network devices employing the popular speed scaling technique [8, 9, 10, 11,
12, 13] that allows the device to adapt its power level to its actual load. In
particular, for those network devices that employ the speed scaling technique,
the value of α generally satisfies 1 < α ≤ 3 [14, 15]. Another application of
the cost function (1) with α = 2 is to model the queuing delay of users in
a TCP/IP communication networks [16]. The goal in the (full information)

5This is different from stochastic network design as these algorithms are not oblivious.
More details are given below.
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routing problem is to construct an action profile a ∈ A with the objective of
minimizing the total cost C(a) =

∑
e∈E Fe(l

a
e).

Extending to Partial Information. In the current paper, we extend the full
information routing problem to the Bayesian routing problem, where the
request of agent i ∈ [N ] is not fully known to all other agents. In this
problem variant, agent i ∈ [N ] is associated with a set Ti of types so that
each type ti ∈ Ti specifies its own routing request (utii , v

ti
i ) ∈ V × V . Let

Atii be the set of all (feasible) actions for (the request of) type ti, namely, all
(utii , v

ti
i )-paths in G and let Ai =

⋃
ti∈Ti A

ti
i .

Agent i is also associated with a prior distribution pi over the types in Ti
and the crux of the Bayesian routing problem is that agent i should decide
on her action while knowing the realization of her own prior distribution pi
(that is, the routing request she should satisfy) but without knowing the
realizations of the prior distributions of the other agents j 6= i. Formally, let
T = T1×· · ·×TN be the collection of type profiles and A = A1×· · ·×AN be
the collection of action profiles. The set of (feasible) action profiles for a type
profile t ∈ T is denoted by At = At11 × · · · × A

tN
N and the prior distribution

over the type profiles in T is denoted by p. In this paper, p is assumed
to be a product distribution, i.e., the probability of type profile t ∈ T is
p(t) =

∏N
i=1 pi(ti).

The goal in the Bayesian routing problem is to construct for each agent
i ∈ [N ], a strategy si : Ti 7→ Ai that maps agent i’s realized type ti ∈ Ti
to an action ai ∈ Atii . We emphasize that the decision of agent i is taken
irrespective of the other agents’ realized types which are not (fully) known to
agent i. Intuitively, a strategy si can be viewed as a lookup table constructed
in the “preprocessing stage”, and queried at real-time to determine a (fixed)
path for every (ui, vi) pair associated with i (cf. oblivious routing [17, 7]).

The set of strategies available for agent i is denoted by Si and S =
S1×· · ·×SN denotes the set of strategy profiles. For each type profile t ∈ T ,
the strategy profile s ∈ S determines an action profile a = s(t) ∈ A defined
so that ai = si(ti), i ∈ [N ]. Using this notation, the objective in the Bayesian
routing problem is to construct a strategy profile s ∈ S that minimizes the
total cost

C(s) = Et∼p

[∑
e∈E

Fe
(
ls(t)e

)]
.
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Bayesian Competitive Ratio. Consider an algorithm A that given a Bayesian
routing instance, constructs a strategy profile s. To evaluate the performance
of A, we compare the total cost C(s) to Et∼p[OPT(t)], where

OPT(t) = min
a∈At

∑
e∈E

Fe(l
a
e)

is the cost of an optimal action profile for the type profile t ∈ T . This can
be regarded as the expectation, over the same prior distribution p, of the
total cost incurred by an omnipotent algorithm that has a global view of
the whole type profile t and enjoys unlimited computational resources. The
Bayesian competitive ratio (BCR) of algorithm A is the smallest β ≥ 1 such
that for every Bayesian routing instance, the strategy profile s constructed
by A satisfies C(s) ≤ β · Et∼p[OPT(t)].

Alon et al. [1] introduced the related criterion of Bayesian ignorance de-

fined as C(s∗)
Et∼p[OPT(t)] , where s∗ = argmins∈S C(s) is an optimal strategy profile

for the given instance. This criterion quantifies the implication of the agents’
partial knowledge regarding the global system configuration, irrespective of
the computational complexity of constructing this optimal strategy profile.
By definition, for any strategy profile s ∈ S,

C(s) = Et∼p
[∑
e∈E

Fe
(
ls(t)e

)]
≥ Et∼p

[
min
a∈At

∑
e∈E

Fe(l
a
e)
]

which implies that the Bayesian ignorance is at least 1. Notice that the
BCR is equivalent to the product of the approximation ratio C(s)

C(s∗)
and the

Bayesian ignorance, therefore it evaluates the loss caused by both algorithmic
(computational complexity) considerations and the absence of the global in-
formation. The first contribution of the current paper is cast in the following
theorem.

Theorem 1.1. For the Bayesian routing problem, there exists an algorithm
whose BCR depends only on the load exponent parameter α. This algorithm
is fully combinatorial and runs in strongly polynomial time.

We emphasize that the BCR of the algorithm promised in Theorem 1.1 is
independent of the number of agents N , the underlying graph G, the speed
scaling factors ξe, e ∈ E, and the probability distribution p. Therefore, as α
is assumed to be a constant, so is the BCR.
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1.1.2. Bayesian Generalized Network Design

Generalized Network Design. The (full information) routing problem has re-
cently been generalized by Emek et al. [18] to the wider family of generalized
network design (GND) problems. In its full information form (the form con-
sidered in [18]), a GND instance is defined over N agents and a set E of
resources. Each agent i ∈ [N ] is associated with an abstract (not necessarily
routing) request characterized by a set Ai ⊆ 2E of (feasible) actions out of
which , some action ai ∈ Ai should be selected. As in the routing case, the
action profile a = (a1, . . . , aN) induces a load of lae = |{i ∈ [N ] : e ∈ ai}|
on each resource e ∈ E that subsequently incurs a cost of Fe(l

a
e), where

Fe : R≥0 7→ R≥0 is a resource specific cost function. The goal is to construct
an action profile a ∈ A = A1×· · ·×AN with the objective of minimizing the
total cost C(a) =

∑
e∈E Fe(l

a
e).

The request of agent i ∈ [N ] is said to be succinctly represented [18] if
its corresponding action set Ai can be encoded using poly(|E|) bits. Iden-
tifying the resource set E with the edge set of an underlying graph G, the
routing requests defined in Section 1.1.1 are clearly succinctly represented
since each Ai corresponds to the set of (ui, vi)-paths in G, hence Ai can be
encoded by specifying ui and vi (and G). Other examples for succinctly rep-
resented requests, where the resource set E is identified with the edge set of
an underlying (directed or undirected) graph G = (V,E), include:

• multi-routing requests in directed or undirected graphs, where given a
collection Di ⊆ V ×V of terminal pairs, the action set Ai consists of all
edge subsets F ⊆ E such that the subgraph (V, F ) admits a (u, v)-path
for every (u, v) ∈ Di; and

• set connectivity (resp., set strong connectivity) in undirected (resp.,
directed) graphs, where given a set Ti ⊆ V of terminals, the action set
Ai consists of all edge subsets F ⊆ E that induce on G a connected
(resp., strongly connected) subgraph that spans Ti.

All requests mentioned (implicitly or explicitly) hereafter are assumed to be
succinctly represented.

Bayesian GND. In the current paper, we extend the (full information) GND
setting to Bayesian GND (BGND). This extension is analogous to the exten-
sion of full information routing to Bayesian routing as defined in Section 1.1.1.
In particular, agent i ∈ [N ] is now associated with a set Ti of types, where
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each type ti ∈ Ti corresponds to a request whose action set is denoted by Atii ,
and a prior distribution pi over the types in Ti. A strategy si of agent i is a
function that maps the agent’s realized type ti ∈ Ti to an action si(ti) ∈ Atii .

Similarly to the notation introduced in Section 1.1.1, let T = T1×· · ·×TN
be the set of type profiles. Let Ai =

⋃
ti∈Ti A

ti
i and let A = A1× · · · ×AN be

the set of action profiles. Let Si be the set of strategies available for agent i
and let S = S1 × · · · × SN be the set of strategy profiles. Given a strategy
profile s ∈ S and a type profile t ∈ T , let a = s(t) ∈ A be the action profile
defined so that ai = si(ti), i ∈ [N ]. The goal in the BGND problem is to
construct a strategy profile s ∈ S with the objective of minimizing the total
cost

C(s) = Et∼p

[∑
e∈E

Fe
(
ls(t)e

)]
. (2)

The BCR of Algorithm A is the smallest β ≥ 1 such that for every BGND
instance, the strategy profile s ∈ S constructed by A satisfies C(s) ≤ β ·
Et∼p[OPT(t)], where

OPT(t) = min
a∈At

∑
e∈E

Fe(l
a
e) .

Generalized Cost Functions. In addition to the generalization of (full infor-
mation) routing to GND, [18] also generalizes the cost functions defined in
Eq. (1) to cost functions of the form

Fe(l) =
∑
j∈[q]

ξe,j · lαj , (3)

where q is a positive integer, ξe,j is a positive real for every e ∈ E and j ∈ [q],
and αj is a constant real no smaller than 1 for every j ∈ [q].6 We define
αmax = maxj∈[q] αj and assume hereafter that αmax > 1. As discussed in
[18], this generalization of Eq. (3) is not only interesting from a theoretical
perspective, but also makes the model more applicable to practical network
energy saving applications. Indeed, in realistic communication networks,
a link often consists of several different devices (e.g., transmitter/receiver,
amplifier, adapter), all of which are operating when the link is in use. As

6The cost functions considered in [18] have a fixed additional term, capturing the
resource’s startup cost, that makes them even more general. Due to technical difficulties,
in the current paper we were not able to cope with this additional term.
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their energy consumption can vary in terms of the load exponents and speed
scaling factors [15], Eq. (3) may often provide a more accurate abstraction
of the actual link’s power consumption.

Action Oracles. For a BGND problem P , this paper develops a framework
which generates an algorithm with BCR O(%αmax) when provided with an
action %-oracle for P . An action %-oracle with parameter % ≥ 1 for BGND
problem P (cf. the reply %-oracles of [18]) is a procedure that given agent
i ∈ [N ], type ti ∈ Ti, and a weight vector w ∈ RE

≥0, generates an action

ai ∈ Atii such that
∑

e∈ai w(e) ≤ % ·
∑

e∈a′i
w(e) for any action a′i ∈ A

ti
i . An

exact action oracle is an action %-oracle with parameter % = 1.
Notice that the optimization problem behind the action oracle is not a

BGND problem: It deals with a single type of a single agent and the role
of the resource cost functions is now taken by the weight vector. These
differences often make it possible to implement the action oracle with known
(approximation) algorithms.

For example, the Bayesian routing problem, which requires paths between
the given node pairs, admit an exact action oracle implemented using, e.g.,
Dijkstra’s shortest path algorithm [19, 20]. In contrast, the BGND prob-
lem with set connectivity requests in undirected graphs (P1), the BGND
problem with set strong connectivity requests in directed graphs (P2), the
BGND problem with multi-routing requests in undirected graphs (P3), and
the BGND problem with multi-routing requests in directed graphs (P4) do
not admit exact action oracles unless P = NP as these would imply exact (ef-
ficient) algorithms for the Steiner tree, strongly connected Steiner subgraph,
Steiner forest, and directed Steiner forest problems, respectively. However,
employing known approximation algorithms for the latter (Steiner) prob-
lems, one concludes that BGND problem (P1) admits an action %-oracle for
% ≤ 1.39 [21]; BGND problem (P2) admits an action νε-oracle, where ν is
the number of terminals [22]; BGND problem (P3) admits an action 2-oracle
[23]; and BGND problem (P4) admits an action k1/2+ε-oracle, where k is
the number of terminal pairs [24]. This means, in particular, that BGND
problems (P1) and (P3) always admit an action %-oracle with a constant
approximation ratio %, whereas BGND problems (P2) and (P4) admit such
an oracle when ν and k are fixed [23, 22, 24, 21]. The guarantees of our
approximation framework are cast in the following theorem.

Theorem 1.2. Consider a BGND problem P with an action %-oracle OP .
When provided access to OP , the framework proposed in this paper generates
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an algorithm AP whose BCR depends only on the load exponent parameters
α1, . . . , αq of Eq. (3). This framework is fully combinatorial and runs in
strongly polynomial time, hence if OP can be implemented to run in strongly
polynomial time, then so can AP .

Again, we emphasize that the BCR of the algorithm promised in Theo-
rem 1.2 is independent of the number of agents N , the number of resources
|E|, the speed scaling factors ξe,j, j ∈ [q], e ∈ E, and the probability dis-
tribution p. Therefore, as α1, . . . , αq are assumed to be constants, so is the
BCR. Since the Bayesian routing problem admits an exact action oracle,
Theorem 1.1 follows trivially from Theorem 1.2. Throughout the remainder
of this paper, we focus on the BGND framework promised in Theorem 1.2.

1.2. Related Works

The technical framework that we use is inspired by [18]. Section 3 gives
a detailed technical overview including a full comparison.

In the full information case, network design problems with superadditive
cost functions as defined in Eq. (1) have been extensively studied with the
motivation of improving the energy efficiency of networks [2, 3, 4]. To the best
of our knowledge, none of these studies has been extended to the Bayesian
case.

In the research works on oblivious routing (e.g., [6, 7, 25, 26]), the absence
of global information in routing is modeled in an adversarial (non-Bayesian)
manner. In particular, oblivious routing assumes that no knowledge about t−i
is available when determining every ai, and the performance of the algorithm

is evaluated by means of its competitive ratio maxt∈T
∑
e∈E Fe(l

s(t)
e )

OPT(t)
. For the

cost function Fe(l) = lα with α > 1, Englert and Räcke [6] propose an
O(logα |V |)-competitive oblivious routing algorithm for the scenario where
the traffic requests are allowed to be partitioned into fractional flows. Shi et
al. [7] prove that for such a cost function, there exists no oblivious routing

algorithm with competitive ratio O
(
|E|

α−1
α+1

)
when it is required to choose

an integral path for every request.
The Bayesian approach is often used in the game theoretic literature to

model the uncertainty a player experiences regarding the actions taken by
the other players. Roughgarden [27] studies a routing game (among other
things) in which the players share (equally) the cost of the edges they use and
proposes a theoretical tool called smoothness to analyze the price of anarchy
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(PoA) of this game in a Bayesian setting, defined as
max

s∈SBNE C(s)

Et∼p[OPT(t)] , where

SBNE denotes the set of Bayes-Nash equilibria. In particular, he proves that
with the cost function Fe(l) = ξe,1 · l+ ξe,2 · l2, the PoA is bounded by 5

2
. We

employ the smoothness toolbox in our algorithmic construction, as further
described in Section 6 (see also the overview in Section 3).

Alon et al. [1] investigate the Bayesian routing game with a constant

cost function Fe = ξe and prove that the Bayesian ignorance C(s∗)
Et∼p[OPT(t)] is

bounded by O(N) (resp., O(log |E|)) in directed (resp., undirected) graphs
G = (V,E). They also introduce game theoretic variants of the Bayesian
ignorance notion and analyze them in that game.

To deal with the inherent uncertainty of the demand in realistic networks,
many research works have been conducted on stochastic network design [28,
29, 30], formulated as a two-stage stochastic optimization problem: in the
first stage, each link in the network has a fixed cost and the algorithm needs
to make decisions to purchase links knowing the probability distribution over
the network demands; in the second stage, the network demands are realized
(according to the aforementioned probability distribution) and should be
satisfied, which may require purchasing additional links, this time with an
inflated cost. The objective is to minimize the total cost of the two stages
plus a load dependent term, in expectation.

The BGND setting considered in the current paper is different from two-
stage stochastic optimization (particularly, stochastic network design) in sev-
eral aspects, the most significant one is that in BGND, an agent’s strategy
should dictate her “complete action” (e.g., a path for routing requests) for
every possible type, obliviously of the realized types of the other agents. In
particular, one cannot “update” the agents’ actions and purchase additional
resources at a later stage to satisfy the realized demands. Moreover, the
current paper evaluates the performance of a BGND algorithm by means of
its BCR that takes into consideration computational complexity limitations
as well as the lack of global information (see Section 1.1) whereas the lit-
erature on two-stage stochastic optimization typically evaluates algorithms
using standard approximation guarantees that accounts only for computa-
tional complexity limitations.

In [31], Garg et al. investigate online combinatorial optimization problems
where the requests arriving online are drawn independently and identically
from a known distribution. As an example, Garg et al. [31] study the online
Steiner tree problem on an undirected graph G = (V,E). In this problem, at
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each step the algorithm receives a terminal that is drawn independently from
a distribution over V , and needs to maintain a subset of edges connecting all
the terminals received so far.

Our work differs from [31] in following four aspects. First, in the stochas-
tic online optimization problem studied in [31], when each request i arrives,
the previous requests {1, · · · , i − 1} have been realized, and the realization
is known. By contrast, in the BGND problem, every agent i needs to be
served without knowing the actual realization of the other agents. Second,
the cost function studied in [31] maps each resource e to a fixed toll, which is
subaddtive in the number of requests using e, while our cost function is su-
peraddtive. Third, in the BGND problem with the set connectivity requests,
for each agent i, each type ti is a set of terminals rather than a single termi-
nal, and each action in Atii is a Steiner tree spanning over the set of terminals
corresponding to ti. Fourth, in the BGND problem, each prior distribution
pi is over the types of agent i, while there is no distribution over the agents.

1.3. Paper Organization

The rest of this paper is organized as follows. Section 2 introduces some of
the concepts employed in our approximation framework together with some
notation and terminology. The main challenges that we had to overcome
when developing this framework and some of the techniques used for that
purpose are discussed in Section 3. Section 4 is dedicated to a detailed
exposition of our approximation framework. Its performance is then analyzed
in Section 5 using certain game theoretic properties which are investigated
in Sections 6–8.

2. Preliminaries

We follow the common convention that for an N -tuple x = (x1, . . . , xN)
and for i ∈ [N ], the notation x−i denotes the (N−1)-tuple (x1, . . . , xi−1, xi+1,
. . . , xN). Likewise, for a Cartesian productX = X1×· · ·×XN and for i ∈ [N ],
the notation X−i denotes the Cartesian product X1 × · · · × Xi−1 × Xi+1 ×
· · · ×XN .

2.1. The BGND Game

Given an instance I =
〈
N,E, {Ti, pi}i∈[N ], {ξe,j}e∈E,j∈[q], {αj}j∈[q]

〉
of a

BGND problem P , we define a BGND game by associating every agent i ∈
[N ] with a strategic player who decides on the strategy si with the objective
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of minimizing her own individual cost defined as follows. Given an action
profile a ∈ A and a resource e ∈ E, the corresponding cost Fe(l

a
e) is equally

divided among the players i ∈ [N ] satisfying e ∈ ai; in other words, the cost
share of player i in resource e under action profile a, denoted by fi,e(a), is
defined to be

fi,e(a) =

{
0 , e /∈ ai
Fe(lae )
|i:e∈ai| =

∑
j ξe,j (lae)

αj−1 , otherwise
.

Informally, the individual cost of player i is the sum of her cost shares over
all resources.

For a more formal treatment of the BGND game, we occasionally need to
explicitly specify the type ti of player i in the expressions involving her cost
share in which case we use the notation fi,e(ti; a), following the convention
that fi,e(ti; a) = fi,e(a) if ai ∈ Atii ; and fi,e(ti; a) = ∞ otherwise. The
individual cost of a player i with respect to the type ti and a fixed action
profile a is defined as Ci(ti; a) =

∑
e∈E fi,e(ti; a). Correspondingly, for each

player i ∈ [N ] and each type ti ∈ Ti, we define the type-specified expected
individual cost

Ci(ti; s) = Et−i∼p−i [Ci(ti; s(ti, t−i))] .

The objective function that player i wishes to minimize is her type-averaged
expected individual cost

Ci(s) = Eti∼pi [Ci(ti; s)] ,

irrespective of the total cost C(s), often referred to as the social cost.

Observation 2.1. The social cost satisfies C(s) =
∑

i∈[N ]Ci(s) for every
strategy profile s ∈ S.

Let fi,e(ai; s−i) = Et−i∼p−i [fi,e(ai, s−i(t−i))] be the expected cost share
of player i ∈ [N ] on resource e ∈ E with respect to action ai ∈ Ai and
strategy profile s−i ∈ S−i. Fixing a−i ∈ A−i (resp., s−i ∈ S−i), the cost share
fi,e(ai, a−i) (resp., expected cost share fi,e(ai; s−i)) of player i on resource
e is the same for every action ai ∈ Ai such that e ∈ ai. Therefore, it
is often convenient to ignore the specifics of action ai and use the notations
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fi,e(+, a−i) and fi,e(+; s−i) instead of fi,e(ai, a−i) and fi,e(ai; s−i), respectively,
given that e ∈ ai.7

2.2. Definitions for the Algorithm Design and Analysis

The following definitions play key roles in the design and analysis of our
approximation framework.

Definition (Choice Function [27]). A choice function σ : T 7→ A maps every
type profile t ∈ T to an action profile a ∈ At. The action specified by σ for
player i ∈ [N ] with respect to type profile t is denoted by σi(t). In particular,
the choice function that maps each type profile t to an action profile that
realizes OPT(t) is denoted by σ∗.

Definition (Smoothness [27]). Given parameters λ > 0 and 0 < µ < 1, a
BGND game is said to be (λ, µ)-smooth if∑

i∈[N ]

Ci(ti; (σ∗i (t), a−i)) ≤ λ · OPT(t) + µ ·
∑
i∈[N ]

Ci(t
′
i, a)

for every type profiles t, t′ ∈ T and action profile a ∈ At′ .

Definition (Potential Function). A function Φ : S 7→ R≥0 is said to be a
potential function of the BGND game if

Φ(s)− Φ(s′i, s−i) = Ci(s)− Ci(s′i, s−i)

for every strategy profile s ∈ S, player i ∈ [N ], and strategy s′i ∈ Si. The
potential function Φ(·) is said to be K-bounded for a parameter K ≥ 1 if
Φ(s) ≤ C(s) ≤ K · Φ(s) for every strategy profile s ∈ S.

Definition ((η, η)-Estimation). Given real parameters η, η ≥ 1, a value
x is said to be an (η, η)-estimation of the expected cost share fi,e(ai; s−i)
(resp., fi,e(+; s−i)) if it satisfies x/η ≤ fi,e(ai; s−i) ≤ x · η (resp.,
x/η ≤ fi,e(+; s−i) ≤ x · η). We typically denote this estimation x by

7To avoid ambiguity concerning the definition of fi,e(+, a−i) and fi,e(+; s−i) for re-
sources e /∈ Ai, we assume (in the scope of using these notations) that Ai = E for all
i ∈ [N ]. This is without loss of generality as one can augment Ti with a virtual type t̃i
such that At̃i

i = {E} and pi(t̃i) is arbitrarily small.
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f̂i,e(ai; s−i) (resp., f̂i,e(+; s−i)). The BGND game is said to be poly-time (η, η)-
estimable if for every player i ∈ [N ] and strategy profile s−i ∈ S−i, there
exists an algorithm which runs in time poly(N, q, |T1|, · · · , |TN |) and outputs
an (η, η)-estimation of the expected cost share fi,e(+; s−i). The BGND game
is said to be tractable if it is poly-time (η, η)-estimable with η = η = 1.

Fix some player i ∈ [N ], type ti ∈ Ti, and (η, η)-estimations f̂i,e(si(ti); s−i),

e ∈ E. With respect to these variables, let Ĉi(ti; s) =
∑

e∈E f̂i,e(si(ti); s−i)

and Ĉi(s) = Eti∼pi [Ĉi(ti; s)]. By the linearity of expectation, we know that

Ĉi(ti; s)/η ≤ Ci(ti; s) ≤ Ĉi(ti; s) · η and Ĉi(s)/η ≤ Ci(s) ≤ Ĉi(s) · η .

Consequently, we refer to Ĉi(ti; s) and Ĉi(s) as (η, η)-estimations of Ci(ti; s)
and Ci(s), respectively.

Definition (Approximate Best Response). For strategy profile s ∈ S and
player i ∈ [N ], strategy si ∈ Si is said to be an approximate best response
(ABR) of i with approximation parameter χ ≥ 1 if Ci(si, s−i) ≤ χ ·Ci(s′i, s−i)
holds for any s′i ∈ Si. We may omit the explicit mention of the approximation
parameter χ when it is clear from the context. A best response (BR) is an
ABR with approximation parameter χ = 1.

Definition (Approximate Best Response Dynamics). An approximate best
response dynamic (ABRD) is a procedure that starts from a predetermined
strategy profile s0 ∈ S and generates a series of strategy profiles s1, · · · , sR
such that for every 1 ≤ r ≤ R, there exists some player i ∈ [N ] satisfying (1)
sr−i = sr−1−i ; and (2) sri is an ABR of i to sr−1−i .

3. Overview of the Main Challenges and Techniques

The approximation framework presented in Section 4 for BGND prob-
lems is inspired by the framework designed in [18] for full information GND
problems only in the conceptual sense that both algorithms employ approx-
imate best response dynamics. In a high-level, for a certain number R of
rounds that will be carefully chosen in order to achieve the approximation
promise, and starting from some properly chosen initial strategy profile s0,
for each round 1 ≤ r ≤ R the strategy profile sr is generated from sr−1 in
the following manner:
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1. For every player i ∈ [N ] and resource e ∈ E, compute an (η, η)-

estimation f̂i,e(+; sr−1−i ) of the expected cost share fi,e(+; sr−1−i ).
2. For every player i ∈ [N ], construct the strategy s′i by mapping each

type ti ∈ Ti to the action ai ∈ Atii computed by invoking the action

%-oracle with weight vector w defined by setting w(e) = f̂i,e(+; sr−1−i ).
3. Choose player i ∈ [N ] according to the game theoretic criterion pre-

sented in Section 4 regarding the estimations Ĉi(s
r−1) and Ĉi(s

′
i, s

r−1
−i )

of the type-averaged expected individual costs. Construct sr by updat-
ing the strategy of the chosen player i to s′i.

However, beyond the similar high-level structure, the technical construc-
tion in this paper is entirely different from [18] since the incomplete infor-
mation assumption of the BGND setting exhibits new algorithmic challenges
that require novel techniques. Specifically, the main challenges that our tech-
nical analysis in this paper handles are as follows.

A first obstacle here is the difficulty in computing the estimation
f̂i,e(+; sr−1−i ) = Et−i∼p−i [fi,e(+, s−i(t−i))] in step 1 since there are exponen-
tially (in N) many possibilities for t−i. Another source of difficulty in this

regard is that the function fi,e(+, s−i(t−i)) is nonlinear in l
s−i(t−i)
e . One may

hope that Jensen’s inequality [32] can resolve this issue, however, as we ex-
plain in the technical sections, it is not enough for obtaining proper bounds
on both η and η. This obstacle is addressed in Section 8 where we employ
probabilistic tools from [33] and using Cantelli’s inequality [34] to obtain the
required estimation of the expression Et−i∼p−i [fi,e(+, s−i(t−i))].

A second obstacle is that the ABRD-based approximation framework ex-
presses its approximation guarantees in terms of smoothness parameters and
bounded potential functions. However, neither the smoothness parameters
nor the existence of a bounded potential function are known for the BGND
game that we have defined here. We provide a new analysis for these two
issues in Sections 6 and 7, respectively.

A third obstacle involves the stopping condition of the best response dy-
namics. A stopping condition for the full information case, via the smooth-
ness framework, was developed by [35] (showing that if the current outcome
in a best response dynamics is far from optimal there must exist a player
whose best response significantly improves his own utility). For the Bayesian
case, to the best of our knowledge, no such general stopping condition was
known prior to the current paper. In fact, the smoothness framework for
the Bayesian case which was developed in [27] did not include any results
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on best response dynamics. One specific technical difficulty is that Bayesian
smoothness is defined in [27] w.r.t. a deviation to the optimal choice func-
tion rather than to a best response. This obstacle is resolved in Section 5
where we provide such a stopping condition by proving that if the outcome
of the current step of the ABRD in the Bayesian case is far from optimal,
there must exist a player whose approximate best response must significantly
improve her utility.

A fourth obstacle regards the output of the algorithm, once the ABRD
terminates. Although we prove that there exists at least one strategy profile
sr, 1 ≤ r ≤ R, with a sufficiently small social cost C(sr), we do not know
how to find it. In particular, we wish to emphasize that we cannot simply
evaluate the social cost function C(·) (see Eq. (2)) due to the exponential
number of type profiles. This obstacle does not exist in [18] where they can
explicitly go over all steps of the full information ABRD and find the exact
step whose outcome has minimal cost. To resolve this issue, we output the
last strategy profile sR generated in the ABRD and bound its loss. This is
described in Section 5.

Our technical constructions and our analysis employ various techniques
from algorithmic game theory, demonstrating once again (as in [18]) the
usefulness of this literature as a toolbox for algorithmic constructions that,
on the face of it, have nothing to do with selfish agents. In particular, in
this paper (and as assumed in the literature on oblivious routing [5, 6, 7]),
we construct an algorithm that receives a correct input and outputs routing
tables that the agents are going to follow without issues of selfish deviations.

4. The Algorithm

In this part, we present an algorithm, which is referred to as Bayes-ABRD,
for a given BGND problem P . The algorithm is assumed to have free access
to an action %-oracle for P , which is denoted by OP .

With an input instance I =
〈
N,E, {Ti, pi}i∈[N ], {ξe,j}e∈E,j∈[q], {αj}j∈[q]

〉
,

the first step of the algorithm is to (conceptually) construct a BGND game,
and choose a tuple of parameters (λ, µ,K, η, η) such that the BGND game

1. is (λ, µ)-smooth with %(ηη)2µ < 1,

2. has a potential function Φ that is K-bounded,

3. is poly-time (η, η)-estimable.
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The existence and exact values of the parameters in this tuple are presented
in the following sections. In particular, the smoothness parameters (λ, µ) are
analyzed in Section 6, the potential function is established in Section 7, and
the estimation parameters (η, η) are specified in Section 8.

Lemma 4.1. For any i ∈ [N ] and any s−i ∈ S−i, there exists a
poly(|E|, N, q, {|Ti|}i∈[N ])-time procedure which generates a strategy si ∈ Si
and the corresponding (η, η)-estimation Ĉi(si, s−i) of the individual costs such

that Ĉi(si, s−i) ≤ % · η · Ci(s′i, s−i) for any s′i ∈ Si. This means in particular
that si is an ABR of i to s−i with approximation parameter % · ηη.8

Proof. For each player i ∈ [N ], construct the weight vector wi,s−i : E → R≥0
by setting wi,s−i(e) to be the (η, η)-estimation f̂i,e(+; s−i) of the expected
share. This weight vector can be obtained in time poly(|E|, N, q, {|Ti|}i∈[N ])
since the BGND game is poly-time (η, η)-estimable. By definition, for any
action a′i ∈ Ai satisfying e ∈ a′i, it holds that fi,e(a

′
i; s−i) = fi,e(+; s−i). It

implies that wi,s−i(e) can be taken as an (η, η)-estimation f̂i,e(a
′
i; s−i) of the

expected share fi,e(a
′
i; s−i).

Then, through accessing the action %-oracle OP for each type ti ∈ Ti, a
strategy si can be found such that for any strategy s′i ∈ Si,∑

e∈E

f̂i,e(si(ti); s−i) =
∑

e∈si(ti)

wi,s−i(e)

≤ % ·
∑

e∈s′i(ti)

wi,s−i(e)

≤ % · η
∑
e∈E

fi,e(s
′
i(ti); s−i) ,

which means that Ĉi(ti; (si, s−i)) ≤ % · η · Ci(ti; (s′i, s−i)).
By the linearity of the expectation,

∑
ti∈Ti pi(ti)

∑
e∈si(ti)wi,s−i(e) gives

8All subsequent occurrences of the term ABR (and ABRD) share the same approxima-
tion parameter %ηη, hence we may refrain from mentioning this parameter explicitly.
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the desired (η, η)-estimation Ĉi(si, s−i), and for any s′i ∈ Si, it holds that

Ĉi(si, s−i) =
∑
ti∈Ti

pi(ti) · Ĉi(ti; (si, s−i))

≤ %η
∑
ti∈Ti

pi(ti) · Ci(ti; (s′i, s−i))

≤ %ηCi(s
′
i, s−i) .

Employing the procedure promised by Lemma 4.1, Bayes-ABRD simulates
an ABRD of at most R rounds s0, s1, . . . for the BGND game induced by
I. Here R is a positive integer depending on the tuple (λ, µ,K, η, η), and its
exact value is also deferred to the following parts (Section 5). The ABRD
simulated in our algorithm is done as follows.

Each player i chooses her initial strategy s0i by taking each s0i (ti) to be
the action generated by OP for type ti with respect to the weight vector w0

defined by setting w0(e) =
∑

j∈[q] ξe,j, that is, as if i is playing alone. The

obtained strategy s0i is broadcast by player i to all the other players such
that the full strategy profile s0 is known by every player. Assuming that
sr−1, 1 ≤ r ≤ R, was already constructed and known by all the players, sr is
obtained as follows. Every player i ∈ [N ] employs the procedure promised by

Lemma 4.1 to generate an ABR ŝ r−1i to sr−1−i , and computes ∆r
i = Ĉi(s

r−1)−
(ηη) · Ĉi(ŝ r−1i , sr−1−i ). Both the strategy ŝ r−1i and the value ∆r

i are broadcast
to all the other players. If ∆r

i ≤ 0 for all i ∈ [N ], then the ABRD stops, and
every player i sets sri = sr−1i ; in this case, we say that the ABRD converges.
Otherwise, fix ∆r =

∑
i∈[N ] ∆

r
i and choose some player i′ ∈ [N ] so that

∆r
i′ > 0 and ∆r

i′ ≥
1

N
∆r (4)

to update her strategy, setting sr = (ŝ r−1i′ , sr−1−i′ ) (the existence of such a
player is guaranteed by the pigeonhole principle, and ties are always broken
by choosing the player with the smallest index). Such an update can be
performed by each player in a distributed manner, as every player has the
knowledge of the full vectors {sri}i∈[N ] and {∆r

i}i∈[N ].
When the ABRD terminates (either because it has reached round r = R

or because it converges), Bayes-ABRD outputs the strategy generated in the
last round.
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Remark 4.2. Note that Bayes-ABRD is designed for computing the strategy
profile, not for invoking the strategies to decide the actions in real-time. All
the operations of Bayes-ABRD, including broadcasting the strategy ŝ r−1i and
the value ∆r

i for every player i in every round r ∈ [R], are carried out in a
“precomputing stage” without seeing the realized type profile. The decision
making that happens in real-time does not involve any further communica-
tion.

5. Bounding the BCR with Game Theoretic Parameters

Lemma 5.1. For every player i and every strategy profile s, if s′i is the BR
of i to s, then

Ci
(
ti; (s′i, s−i)

)
≤ Et−i∼p−i

[
Ci
(
ti; (ai, s−i(t−i))

)]
holds for every type ti and every action ai ∈ Atii .

Proof. Suppose that there exists a type t′i and an action a′i ∈ A
t′i
i such that

Ci
(
ti; (s′i, s−i)

)
> Et−i∼p−i

[
Ci
(
ti; (ai, s−i(t−i))

)]
. Now construct a new strat-

egy s′′i of player i which maps every type ti 6= t′i to the same action as s′i, and
maps t′i to a′i. Then

Ci(s
′′
i , s−i) = Eti∼pi

[
Ci
(
ti; (s′′i , s−i)

)]
=
∑
ti 6=t′i

pi(ti)Ci
(
ti; (s′′i , s−i)

)
+ pi(t

′
i)Et−i∼p−i

[
Ci
(
ti; (ai, s−i(t−i))

)]
<
∑
ti 6=t′i

pi(ti)Ci
(
ti; (s′′i , s−i)

)
+ pi(t

′
i)Ci(t

′
i, (s

′
i, s−i)) = Ci(s

′
i, s−i) ,

which conflicts with the assumption that s′i is the BR of i to s.

Lemma 5.2. For a BGND game that is (λ, µ)-smooth with λ > 0 and 0 <
µ < 1

%(ηη)2
and every strategy profile s, let s′i be the BR of each player i to s,

then ∑
i∈[N ]

Ci(s
′
i, s−i) ≤ λ · Et∈T [OPT(t)] + µ · C(s) .

19



Proof. For every fixed t′−i ∈ T−i, Lemma 5.1 indicates that for every i, every
ti, and every t′−i ∈ T−i,

Ci(ti; (s′i, s−i)) ≤ Et−i∼p−i
[
Ci
(
ti; (σ∗i (ti, t

′
−i), s−i(t−i))

)]
,

because the action σ∗i (ti, t
′
−i) does not depend on t−i. Taking the expectation

over ti, we get∑
i∈[N ]

Ci(s
′
i, s−i) =

∑
i∈[N ]

Eti∼pi
[
Ci(ti; (s′i, s−i))

]
≤
∑
i∈[N ]

Eti∼pi
[
Et−i∼p−i

[
Ci
(
ti; (σ∗i (ti, t

′
−i), s−i(t−i))

)]]
=
∑
i∈[N ]

Et∼p
[
Ci
(
ti; (σ∗i (ti, t

′
−i), s−i(t−i))

)]
.

The last transition holds because the prior distribution p is assumed to be a
product distribution. Since the formula above holds for every t′−i ∈ T−i, it
can be derived from the definition of expectation that∑

i∈[N ]

Ci(s
′
i, s−i) ≤ Et′−i∼p−i

[ ∑
i∈[N ]

Et∼p
[
Ci
(
ti; (σ∗i (ti, t

′
−i), s−i(t−i))

)]]
=
∑
i∈[N ]

Et∼p
[
Et′−i∼p−i

[
Ci

(
ti;
(
σ∗i (ti, t

′
−i), s−i(t−i)

))]]
.

The last transition holds because t′−i is independent of t. In [27], it is proved
that in a BGND game that is (λ, µ)-smooth, it holds for any strategy profile
s that∑
i∈[N ]

Et∼p
[
Et′−i∼p−i

[
Ci

(
ti;
(
σ∗i (ti, t

′
−i), s−i(t−i)

))]]
≤ λ·Et∼p [OPT(t)]+µC(s) .

Since µ < 1
%(ηη)2

≤ 1, this proposition follows.

Lemma 5.3. If the ABRD simulated in Bayes-ABRD converges at round r
for any r ∈ [R], then the last strategy profile sr satisfies

C(sr) ≤
%(ηη)2λ

1− %(ηη)2µ
· Et∼T

[
OPT(t)

]
.
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Proof. Recalling that we use s′i and ŝ ri to respectively represent the BR and
ABR of player i to sr, we observe that

C(sr) =
∑
i

Ci(s
r) ≤ η

∑
i

Ĉi(s
r)

≤ η(ηη)
∑
i

Ĉi(ŝ
r
i , s

r
−i)

≤ %(ηη)2 ·
∑
i

Ci(s
′
i, s

r
−i)

≤ %(ηη)2(λ · Et∼T
[
OPT(t)

]
+ µ · C(sr)) ,

where the second transitions follow from the definition of the (η, η)-estimation
of the individual cost, the third transition holds since the ABRD converges
at round r, the fourth transition holds following Lemma 4.1, and the fifth
transition follows from Lemma 5.2.

Lemma 5.4. The initial strategy profile s0 of Bayes-ABRD satisfies C(s0) ≤
% ·Nαmax−1 · Et∼T

[
OPT(t)

]
.

Proof. The construction of s0 guarantees that∑
e∈s0i (ti)

∑
j∈[q]

ξe,j ≤ % ·
∑

e∈σ∗i (ti,t−i)

∑
j∈[q]

ξe,j

holds for any i, any ti, and any t−i. It implies that,∑
i∈[N ]

∑
e∈s0i (ti)

∑
j∈[q]

ξe,j ≤ % ·
∑
i∈[N ]

∑
e∈σ∗i (ti,t−i)

∑
j∈[q]

ξe,j

≤ % ·
∑
i∈[N ]

∑
e∈σ∗i (ti,t−i)

∑
j∈[q]

ξe,j

(
lσ
∗(ti,t−i)
e

)αj−1
= % · OPT(ti, t−i) ,

where the second transition holds because l
σ∗(t)
e ∈ Z≥1 for any e ∈ σ∗i (t), and
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αj − 1 ≥ 0. Then,

C(s0) =Et∼T
[∑
e∈E

∑
j∈[q]

ξe,j

(
ls

0(t)
e

)αj]

=Et∼T
[∑
e∈E

∑
i:e∈s0i (ti)

∑
j∈[q]

ξe,j

(
ls

0(t)
e

)αj−1]
≤Et∼T

[∑
e∈E

∑
i:e∈s0i (ti)

∑
j∈[q]

ξe,j ·Nαj−1
]

≤Nαmax−1Et∼T
[∑
e∈E

∑
i:e∈s0i (ti)

∑
j∈[q]

ξe,j

]
=Nαmax−1Et∼T

[ ∑
i∈[N ]

∑
e∈s0i (ti)

∑
j∈[q]

ξe,j

]
≤ %Nαmax−1 · Et∼T

[
OPT(t)

]
.

The assertion follows.

Lemma 5.5. For any round r < R such that the ABRD does not converge at
round r+1, as long as the player selected for strategy update satisfies Eq. (4),
we have Φ(sr)− Φ(sr+1) > 0.

Proof. Since the ABRD does not converge at round r, there exists a player
ir who is selected to update her strategy. By the definition of the potential
function,

Φ(sr)− Φ(sr+1) = Cir(s
r)− Cir(ŝ rir , sr−ir)

≥ 1

η
Ĉir(s

r)− ηĈir(ŝ rir , sr−ir)

>
1

η
(ηη)Ĉir(ŝ

r
ir , s

r
−ir)− ηĈir(ŝri r , sr−ir)

= 0 .

The second formula follows from the definition of the ε-individual cost. The
third one follows from Eq. (4).
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Theorem 5.6. Let Q =
2(ηη)N

1−%(ηη)2µ . If R = dQ · ln (KNαmax−1)e, then the

output sout of Bayes-ABRD satisfies

C(sout) ≤
2K%(ηη)2λ

1− %(ηη)2µ
· Et∼T

[
OPT(t)

]
.

Proof. Lemma 5.3 ensures that the assertion holds if the ABRD simulated
in Bayes-ABRD converges in any round r ≤ R, so it is left to analyze the
case where the ABRD does not converge. We say a profile sr involved in the
ABRD is bad if

C(sr) >
2%(ηη)2λ

1− %(ηη)2µ
· Et∼T

[
OPT(t)

]
.

Claim 5.7. For any r < R, if sr is bad, then Φ(sr+1) < (1− 1/Q) · Φ(sr).

Proof. Fix

dr = η
[ ∑
i∈[N ]

Ĉi(s
r)− (ηη)

∑
i∈[N ]

Ĉi(ŝ
r
i , s

r
−i)
]
. (5)

This means that

C(sr) =
∑
i∈[N ]

Ci(s
r) ≤ η

∑
i∈[N ]

Ĉi(s
r)

= η(ηη)
∑
i∈[N ]

Ĉi(ŝ
r
i , s

r
−i) + dr

≤ %(ηη)2
∑
i∈[N ]

Ci(s
′
i, s

r
−i) + dr

≤ %(ηη)2
(
λ · Et∼T

[
OPT(t)

]
+ µC(sr)

)
+ dr .

Therefore, dr ≥
[
1− %(ηη)2µ

]
C(sr)− %(ηη)2λ · Et∼T

[
OPT(t)

]
, hence, if sr is

bad, then dr satisfies

dr >
[
1− %(ηη)2µ

]
C(sr)−

1− %(ηη)2µ

2
C(sr) =

1− %(ηη)2µ

2
C(sr) . (6)

Since the ABRD does not converge at round r, there exists a player ir

being selected to update her strategy. Recalling that the ABR of player i to
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sr is denoted by ŝ ri , we observe that

Φ(sr)− Φ(sr+1) = Cir(s
r)− Cir(ŝ rir , sr−ir)

≥ 1

η
Ĉir(s

r)− η · Ĉir(ŝ rir , sr−ir)

=
1

η

[
Ĉir(s

r)− (ηη)Ĉir(ŝ
r
ir , s

r
−ir)
]

≥ 1

η
· 1

N

∑
i∈[N ]

[
Ĉi(s

r)− (ηη)Ĉi(ŝ
r
i , s

r
−i)
]

=
1

ηη
· d

r

N

>
1

ηη
· 1

2N

[
1− %(ηη)2µ

]
C(sr)

≥ 1

ηη
· 1

2N

[
1− %(ηη)2µ

]
Φ(sr) ,

where the fourth transition follows from Eq. (4), the fifth and sixth transitions
follow from Eq. (5) and Eq. (6), respectively, and the last transition holds
because the potential function is assumed to be K-bounded. Therefore,

Φ(sr+1) < Φ(sr)

(
1−

1− %(ηη)2µ

2(ηη)N

)
= (1− 1/Q) · Φ(sr)

as promised. � (Claim 5.7)

Claim 5.8. Assuming that all the R + 1 strategy profiles in the ABRD are

bad, we have C(sR) < % · Et∼T
[
OPT(t)

]
.

Proof. Claim 5.7 implies that if all the R+ 1 profiles involved in the ABRD
are bad, then

Φ(sR) <

(
1− 1

Q

)R
Φ(s0)

=

(
1− 1

Q

)⌈
Q·ln
(
KNαmax−1

)⌉
Φ(s0)

≤ 1

KNαmax−1
Φ(s0) .
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By the definition of the bounded potential function and by Lemma 5.4, we
have

C(sR) ≤ K · Φ(sR) <
KΦ(s0)

KNαmax−1
≤ C(s0)

Nαmax−1
≤

%Nαmax−1Et∼T
[
OPT(t)

]
Nαmax−1

,

which completes the proof. � (Claim 5.8)

Claim 5.9. % <
2%(ηη)2λ

1−%(ηη)2µ .

Proof. It can be inferred from [27] that the parameters (λ, µ) should satisfy
λ

1−µ ≥ 1 if the game is (λ, µ)-smooth. Therefore,
2%(ηη)2λ

1−%(ηη)2µ > 2%λ
1−µ > %.

� (Claim 5.9)

By Claim 5.9 and the definition of bad strategy profiles, C(sR) < % ·
Et∼T

[
OPT(t)

]
implies that sR is not bad, which conflicts with the assumption

of Claim 5.8 that all the R + 1 strategy profiles are bad. This means that
there exists at least one round r∗ whose corresponding strategy profile sr

∗
is

not bad. Therefore,

C(sR) ≤ K · Φ(sR) ≤ K · Φ(sr
∗
)

≤ K · C(sr
∗
)

≤ K ·
2%(ηη)2λ

1− %(ηη)2µ
· Et∼T

[
OPT(t)

]
.

The first transition and the third one holds because the potential function
is K-bounded. The second transition follows from Lemma 5.5. The last
transition holds because sr

∗
is not bad. This completes the proof.

6. Smoothness Parameters

In this section, we consider the case where the parameters %, η and η are
fixed, and focus on finding proper parameters (λ, µ) such that the BGND
game is (λ, µ)-smooth, and µ < 1/[%(ηη)2].

Lemma 6.1. For any pair of parameters λ′ > 0 and 0 < µ′ < 1
/[

%
(
ηη
)2]

,

if
y · (x+ y)αj−1 ≤ λ′ · yαj + µ′ · xαj (7)
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holds for any x, y ∈ R≥0 and every j ∈ [q], then the BGND game is (λ′, µ′)-
smooth.

Proof. This proposition can be proved in a similar way as [27]. For any
resource e and any type t, we say e ∈ σ∗(t) if there exists some player i such
that e ∈ σ∗i (t). For any type profiles t, t′, every action profile a ∈ At′ , and
every resource e ∈ σ∗(t),∑

i∈[N ]

fi,e(ti; (σ∗i (t), a−i)) =
∑

i∈[N ]:e∈σ∗i (t)

∑
j∈[q]

ξe,j

(
l
(σ∗i (t),a−i)
e

)αj−1
≤ |lσ∗(t)e |

∑
j∈[q]

ξe,j

(
lσ
∗(t)
e + lae

)αj−1
≤
∑
j∈[q]

ξe,j

[
λ′ ·
(
lσ
∗(t)
e

)αj
+ µ′ ·

(
lae

)αj]
,

where the third transition follows from Eq. (7). Then∑
i∈[N ]

Ci(ti; (σ∗i (t), a−i)) =
∑
i∈[N ]

∑
e∈E

fi,e(ti; (σ∗i (t), a−i))

=
∑

e∈σ∗(t)

∑
i∈[N ]

fi,e(ti; (σ∗i (t), a−i))

≤ λ′ ·
∑

e∈σ∗(t)

∑
j∈[q]

ξe,j

(
lσ
∗(t)
e

)αj
+ µ′ ·

∑
e∈σ∗(t)

∑
j∈[q]

ξe,j

(
lae

)αj
≤ λ′ · OPT(t) + µ′ ·

∑
i∈[N ]

Ci(t
′
i, a) .

The second transition above holds because for any e /∈ σ∗(t),
fi,e(ti; (σ∗i (t), a−i)) = 0 for every player i. The last transition holds be-

cause lae = 0 for any e /∈ a, which implies that
∑

e∈σ∗(t)
∑

j∈[q] ξe,j

(
lae

)αj
=∑

e∈σ∗(t)∩a
∑

j∈[q] ξe,j

(
lae

)αj
.

Lemma 6.2 ([36]). For any µ′ ∈ (0, 1
%(ηη)2

), setting λ′ = maxx∈R>0(x +

1)αmax−1 − µ′ · xαmax satisfies Eq. (7).

For any µ′ ∈ (0, 1
%(ηη)2

), define gµ′(x) = (x + 1)αmax−1 − µ′ · xαmax and

h(x) =
[
(αmax − 1)(x+ 1)αmax−2

]/[
αmax · xαmax−1

]
. Then:
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Lemma 6.3 ([36]). For any µ′ ∈ (0, 1
%(ηη)2

), there exists a unique real positive

number xµ′ that maximizes gµ′(x) over x ∈ (0,+∞), and this number satisfies
hαmax(xµ′) = µ′.

Remark 6.4. Note that in [36], the propositions corresponding to Lemma
6.2 and Lemma 6.3 are proved for the case αmax ∈ Z≥2, but their proofs
directly hold for the case where αmax ∈ R≥1.

It can be inferred from the derivative that (x + 1)αmax−1 = xαmax has a
unique positive root, which is denoted by γαmax . In [36], it is proved that if

αmax ≥ 3, γαmax is bounded by O
(

αmax−1
ln(αmax−1)

)
. Furthermore, it can be verified

that γαmax < 2 when αmax ∈ (1, 2), and γαmax < 3 when αmax ∈ [2, 3).

Let µα = h
(
%(ηη)2 · γαmax

)
, and λα = gµα

(
%(ηη)2 · γαmax

)
. Then we have:

Theorem 6.5. The BGND game is (λα, µα)-smooth, and %(ηη)2µα < 1 −
1/αmax.

Proof.

h
(
%(ηη)2 · γαmax

)
=

(αmax − 1) ·
(
%(ηη)2 · γαmax + 1

)αmax−2

αmax ·
(
%(ηη)2 · γαmax

)αmax−1

=
(αmax − 1) ·

(
%(ηη)2 · γαmax + 1

)αmax−1(
%(ηη)2 · γαmax

)
αmax ·

(
%(ηη)2 · γαmax

)αmax
(
%(ηη)2 · γαmax + 1

)
=

(αmax − 1)
(
%(ηη)2 · γαmax + 1

)αmax−1(
%(ηη)2 · γαmax

)
αmax%(ηη)2

[
%(ηη)2 ·

(
γαmax + 1

)]αmax−1(
%(ηη)2 · γαmax + 1

)
<

(αmax − 1)

αmax%(ηη)2
,

which implies that %(ηη)2 ·µα < (αmax− 1)/αmax. The third transition holds
because γαmax is the positive root of (x + 1)αmax−1 − xαmax = 0. The fourth
transition holds because %(ηη)2 ≥ 1, γαmax > 0 and αmax − 1 > 0.

Since µα < αmax−1
αmax

· 1
%(ηη)2

< 1
%(ηη)2

, it can be inferred from Lemma 6.3

that gµα

(
% · (ηη)2 · γαmax

)
= maxx>0(x+ 1)αmax−1−µα ·xαmax . It implies that

λα satisfies the condition given in Lemma 6.2. By Lemma 6.1, this theorem
holds.

27



7. Bounded Potential Function

In this section, it is proved that the BGND game admits a potential
function that is K-bounded with K = dαmaxe.

Lemma 7.1 ([1]). If for every type profile t, there exists a function Φt :
A 7→ R≥0 such that for every action profile a ∈ At, every i ∈ [N ] and every
a′i ∈ A

ti
i ,

Φt(a)− Φt(a
′
i, a−i) = Ci(ti; a)− Ci(ti; (a′i, a−i)) , (8)

then Φ(s) =
∑

t∈T p(t)Φt(s(t)) is a potential function of the BGND game.

Theorem 7.2. For the BGND game, there exists a potential function Φ(s)
that is dαmaxe-bounded.

Proof. For every type profile t and every action profile a ∈ At, define the
function

Φt(a) =
∑
e∈E

lae∑
l=1

∑
j∈[q]

ξe,j · lαj−1 .

In [37], it is proved that such a function satisfies Eq. (8), which implies
that the BGND game admits a potential function Φ(s) =

∑
t∈T p(t)Φt(s(t)).

Furthermore, for every e ∈ E and every j ∈ [q],
∑lae

l=1 l
αj−1 ≤ (lae)

αj trivially
holds, and

lae∑
l=1

lαj−1 ≥ 1

(lae)
dαje−αj

lae∑
l=1

ldαje−1 ≥ 1

(lae)
dαje−αj

· 1

dαje
(lae)

dαje =
1

dαje
(lae)

αj ,

where the second transition follows from [38]. Therefore, it can be obtained
that Φt(a) ≤

∑
e∈E Fe(l

a
e) ≤ dαmaxeΦt(a). By the linearity of expectation,

Φ(s) is dαmaxe-bounded.

8. Efficient Estimation of the Cost Share

This section focuses on the (η, η)-estimation of the expected cost shares.

For any z ∈ (0, 1) and z′ ≥ 1, define bz =
(

(β◦)2 + 1
)(

1 − 1
β◦

)−z
with β◦ being the unique root of 2β3 − (z + 2)β2 − 2 = 0 in the inter-
val (1,+∞), Bz′ to be the fractional Bell number with the parameter z′

[3, 4], and γz′ to be the unique positive root of (x + 1)z
′−1 = xz

′
[36].
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For any i ∈ [N ], e ∈ E and any s−i, it is shown that there exists a

(max{1,maxαj∈(1,2) bαj−1}, max{maxαj≥2Bαj−1, 1})-estimation f̂i,e(+; s−i) of
fi,e(+; s−i) that can be obtained in poly(q,N, {|Ti|}i∈[N ])-time. Particularly,
consider the special case of the BGND game where q = 1 and α1 = 2, which
means that the cost function associated with each resource e ∈ E can be
written as

Fe(l) = ξe · l2 . (9)

The BGND game is proved to be tractable with such a quadratic function.

Lemma 8.1 ([33]). Let {X1, X2, · · · , Xk, · · · } be a finite set of mutually
independent random variables following the Bernoulli distribution supported
on {0, 1}. Then for any z ≥ 1,

E
[(∑

k

Xk

)z] ≤ Bz ·max
{
E
[∑

k

Xk

]
,
(
E
[∑

k

Xk

])z}
.

Lemma 8.2. Let {X1, X2, · · · , Xk, · · · } be a finite set of Bernoulli random
variables that are mutually independent. For any z′ ∈ (0, 1) and β > 1:

1

β2 + 1

(
1− 1

β

)z′(
E
[
1+
∑
k

Xk

])z′
≤ E

[(
1+
∑
k

Xk

)z′]
≤
(
E
[
1+
∑
k

Xk

])z′
.

Proof. The expression E
[(

1 +
∑

kXk

)z′]
≤
(
E
[
1 +

∑
kXk

])z′
follows from

Jensen’s inequality [32], since the function ϕ(x) = xz
′

is concave when z′ ∈

(0, 1). Now consider the lower bound on E
[(

1 +
∑

kXk

)z′]
. Let Var

[
1 +∑

kXk

]
be the variance of the random variable 1 +

∑
kXk. Then we have

Var
[
1 +

∑
k

Xk

]
= E

[(
1 +

∑
k

Xk

)2]
−
(
E
[
1 +

∑
k

Xk

])2
≤ B2 ·max

{
E
[
1 +

∑
k

Xk

]
,
(
E
[
1 +

∑
k

Xk

])2}
−
(
E
[
1 +

∑
k

Xk

])2
= 2 ·

(
E
[
1 +

∑
k

Xk

])2
−
(
E
[
1 +

∑
k

Xk

])2
=
(
E
[
1 +

∑
k

Xk

])2
.
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The second transition above follows from Lemma 8.1, because {Xk} are mu-
tually independent Bernoulli random variables, and the constant 1 can also
be viewed as a Bernoulli random variable which equals to 1 with probability
1. The third transition holds because 1 +

∑
kXk ≥ 1. By using Cantelli’s

inequality [34], it can be obtained that for any β > 1,

Pr

[(
1 +

∑
k

Xk

)
<
(

1− 1

β

)
E
[
1 +

∑
k

Xk

]]
≤ 1

1 +

(
E
[
1+

∑
kXk

])2

β2·Var
[
1+

∑
kXk

]
=

β2

β2 + 1
,

where Pr[·] denotes the probability of random events. Therefore,

E
[(

1 +
∑
k

Xk

)z′]
≥ Pr

[(
1 +

∑
k

Xk

)
≥
(

1− 1

β

)
E
[
1 +

∑
k

Xk

]]
·
[(

1− 1

β

)
E
[
1 +

∑
k

Xk

]]z′
≥
(

1− β2

β2 + 1

)(
1− 1

β

)z′(
E
[
1 +

∑
k

Xk

])z′
.

Recalling that bz′ =
(

(β◦)2 + 1
)(

1 − 1
β◦

)−z′
with β◦ being the unique

root of 2β3− (z+ 2)β2−2 = 0 in the interval (1,+∞), we have the following
lemma.

Lemma 8.3. For any z′ ∈ (0, 1), bz′ = minβ>1(β
2 + 1)

(
1− 1

β

)−z′
.

Proof. Let ϕ(β) = (β2+1)
(

1− 1
β

)−z′
. Fix z′, the derivative of ϕ with respect

to β is
dϕ

dβ
=
(

1− 1

β

)−z′−1 1

β2

(
2β3 − (2 + z′)β2 − 2

)
.

It can be further derived from the derivative that 2β3 − (2 + z′)β2 − 2 is
monotonically increasing in the interval (2+z

′

3
,∞). Since 2+z′

3
< 1, 2β3− (2+
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z′)β2 − 2 < 0 for β = 1, and 2β3 − (2 + z′)β2 − 2 > 0 for β = 2, there exists
a unique β◦ ∈ (1,+∞) such that 2β3− (2 + z′)β2− 2 = 0, and β◦ minimizes

(β2 + 1)
(

1− 1
β

)−z′
because

(
1− 1

β

)−z′−1
1
β2 > 0 for any β > 1.

For each action ai of player i and each resource e, denote the indicator of
whether e is contained in ai by δ(ai, e). Formally,

δ(ai, e) =

{
0 if e /∈ ai
1 otherwise

Theorem 8.4. For any player i, any edge e, any action ai, and any strategies
s−i, let

f̂i,e(+; s−i) =
∑
j∈[q]

ξe,j

[
1 +

∑
i′ 6=i

∑
ti′∈Ti′

pi′(ti′)δ
(
si′(ti′), e

)]αj−1
, (10)

then

f̂i,e(+; s−i)

max
{

1, maxj:αj∈(1,2) bαj−1

} ≤ fi,e(+; s−i) ≤ f̂i,e(+; s−i)·
{

1, max
j:αj≥2

Bαj−1

}
.

(11)
In particular, if for every resource e, Fe(l) is a quadratic function given in

Eq. (9), then f̂i,e(+; s−i) = fi,e(+; s−i).

Proof. Let ai be an action in Ai satisfying e ∈ ai. By definition, we have

fi,e(+; s−i) = Et−i∼p−i [fi,e(ai, s−i(t−i))]

=
∑
j∈[N ]

ξe,j · Et−i∼p−i
[(
lai,s−i(t−i)e

)αj−1]

=
∑
j∈[N ]

ξe,j · Et−i∼p−i

1 +
∑

i′∈[N ]:i′ 6=i

δ(si′(t−i(i
′)), e)

αj−1
=
∑
j∈[N ]

ξe,jE{ti′∼pi′}i′ 6=i

(1 +
∑
i′ 6=i

δ(si′(ti′), e)

)αj−1
 .

The last transition holds because the prior distribution p is assumed to be a
product distribution.
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Now define a finite set of mutually independent Bernoulli random vari-
ables {Xi′,e(s)}i′ 6=i such that each Xi′,e(s) takes the value 1 with probability∑

ti′ :e∈si′ (ti′ )
pi′(ti′). Fixing a player i′′ 6= i, we have

E{ti′∼pi′}i′ 6=i

(1 +
∑
i′ 6=i

δ(si′(ti′), e)

)αj−1


=
∑

ti′′∈Ti′′

pi′′(ti′′)E{ti′∼pi′}i′ 6=i∧i′ 6=i′′

(1 + δ(si′′(ti′′), e) +
∑

i′ 6=i∧i′ 6=i′′
δ(si′(ti′), e)

)αj−1


=
∑

ti′′ :e∈si′′ (ti′′ )

pi′′(ti′′)E{ti′∼pi′}i′ 6=i∧i′ 6=i′′

(1 + 1 +
∑

i′ 6=i∧i′ 6=i′′
δ(si′(ti′), e)

)αj−1


+
∑

ti′′ :e/∈si′′ (ti′′ )

pi′′(ti′′)E{ti′∼pi′}i′ 6=i∧i′ 6=i′′

(1 +
∑

i′ 6=i∧i′ 6=i′′
δ(si′(ti′), e)

)αj−1


= EXi′′,e(s)

E{ti′∼pi′}i′ 6=i∧i′ 6=i′′
(1 +Xi′′,e(s) +

∑
i′ 6=i∧i′ 6=i′′

δ(si′(ti′), e)

)αj−1
 .

Therefore, it can be inductively proved that

E{ti′∼pi′}i′ 6=i

(1 +
∑
i′ 6=i

δ(si′(ti′), e)

)αj−1
 = E

(1 +
∑
i′ 6=i

Xi′,e(s)

)αj−1
 .

Recall that the constant 1 in the last expression above can also be viewed
as a Bernoulli random variable which equals to 1 with probability 1. For
every αj ≥ 2, Lemma 8.1 can be applied to obtain the following expression.

E

(1 +
∑
i′ 6=i

Xi′,e(s)

)αj−1


≤ Bαj−1 ·max

{
E

[
1 +

∑
i′ 6=i

Xi′,e(s)

]
,

(
E

[
1 +

∑
i′ 6=i

Xi′,e(s)

])αj−1
}

= Bαj−1 ·

(
E

[
1 +

∑
i′ 6=i

Xi′,e(s)

])αj−1

.
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The second line holds because E
[
1 +

∑
i′ 6=iXi′,e(s)

]
> 1. Similarly, it can be

derived from Lemma 8.2 that for every αj ∈ (1, 2),

E
[(

1 +
∑
i′ 6=i

Xi′,e(s)
)αj−1]

≤
(
E
[
1 +

∑
i′ 6=i

Xi′,e(s)
])αj−1

,

which also trivially holds for αj = 1. So, E
[(

1 +
∑

i′ 6=iXi′,e(s)
)αj−1]

≤

max
{

1, maxj:αj≥2Bαj−1

}(
E
[
1 +

∑
i′ 6=iXi′,e(s)

])αj−1
, and in

a similar way, it also be inferred from Lemma 8.1 and

Lemma 8.2 that E
[(

1 +
∑

i′ 6=iXi′,e(s)
)αj−1]

≥
(
E
[
1 +

∑
i′ 6=iXi′,e(s)

])αj−1/
max

{
1,maxj:αj<2 bαj−1

}
. Since E

[
1 +∑

i′ 6=iXi′,e(s)
]

= 1 +
∑

i′ 6=i
∑

ti′
pi′(ti′)δ

(
si′(ti′), e

)
, Eq. (11) holds. For the

special case where every Fe is a quadratic function, by the linearity of the
expectation, we have

E{ti′∼pi′}i′ 6=i

[(
1 +

∑
i′ 6=i

δ(si′(ti′), e)
)2−1]

= 1 +
∑
i′ 6=i

Eti′∼pi′
[
δ(si′(ti′), e)

]
,

which completes the proof.

Corollary 8.5. By computing Eq. (10), the desired estimation of each ex-
pected cost share is obtained in O(q ·

∑
i∈[N ] |Ti|)-time.

Plugging Theorem 6.5, Theorem 7.2, Theorem 8.4, and Corollary 8.5 into
Theorem 5.6 proves our main result, Theorem 1.2.
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