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1. Introduction

Many of the most important problems in computational permutation group theory 
can be phrased as search problems, where we typically search for the intersection of 
subsets of a symmetric group. Standard problems that match this description are the 
computation of point stabilisers or set stabilisers, of transporter sets, or of normalisers 
or centralisers of subgroups. Searching for automorphisms and isomorphisms of a wide 
range of combinatorial structures can be done in this way as well as deciding whether or 
not combinatorial objects are in the same orbit under some group action, as is the case 
for element and subgroup conjugacy.

For many of these problems, the best known way to solve them is based on Leon’s 
partition backtrack algorithm (see [12]), which often performs excellently, but has ex-
ponential worst-case complexity. Leon’s algorithm conducts a backtrack search through 
the elements of the symmetric group, which it organises around a collection of ordered 
partitions (see [9] for more details). By encoding information about the given problem 
into those partitions, it is possible to cleverly prune (i.e., omit superfluous parts of) the 
search space. There have already been some extensions and improvements, inspired by 
graph-based ideas of McKay (see for example [14] and [8]). This leads us to believe that 
more powerful pruning, and ultimately better performance, could be obtained by using 
graphs directly, at the expense of the increased computation required at each node of 
the remaining search. In the present paper, we therefore place labelled directed graphs 
at the heart of backtrack search algorithms.

The basic idea is parallel to that described above for Leon’s algorithm: When we search 
for an intersection of subsets of the symmetric group, we find suitable labelled digraph 
stacks such that the intersection can be viewed as the set of isomorphisms (induced from 
the symmetric group) from the first labelled digraph stack to the second (see Section 3). 
We encode information about the subsets into the labelled digraph stacks with refiners 
(see Section 4), and we just remark here that this generalises partition backtrack, because 
partition backtrack can be viewed as using vertex-labelled digraphs without arcs, where 
the vertex labels are in one-to-one correspondence with the cells of the ordered partitions. 
Approximators capture the fact that we typically overestimate the set of isomorphisms 
rather than calculate it exactly (see Section 5). The last ingredient comes into play 
when our approximation indicates that the refiners have encoded as much information as 
possible in a given moment and cannot restrict the search space further. Then we divide 
the search into smaller areas by defining new labelled digraph stacks, which is known as 
splitting (see Section 6). We discuss algorithms based on the method just described and 
prove their correctness in Sections 7 and 8, and in Section 9 we give details of various 
experiments that compare our algorithms with the current state-of-the-art techniques. 
We conclude, in Section 10, with brief comments on the results of this paper and the 
directions that they suggest for further investigation.

Finally, we would like to mention that we expect the reader to be familiar with basic 
concepts of permutation group theory and graph theory and that we only briefly explain 



C. Jefferson et al. / Journal of Algebra 585 (2021) 723–758 725
our notation before moving to the main content. There is an extended version of this 
article [9], where we give proofs that are omitted here, along with much more detail and 
background information. We also include additional examples there and new material 
that is currently in preparation for a separate publication.
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2. Preliminaries

Throughout this paper, Ω denotes some finite totally-ordered set on which we define 
all of our groups, digraphs, and related objects. For example, every group in this paper 
is a finite permutation group on Ω, i.e., a subgroup of Sym(Ω), the symmetric group on 
Ω. We follow the standard group-theoretic notation and terminology from the literature, 
such as that used in [2], and write · for the composition of maps in Sym(Ω), or we 
omit a symbol for this binary operation altogether. We write N for the set {1, 2, 3, . . .}
of all natural numbers, and N0 := N ∪ {0}. If n ∈ N, then Sn := Sym({1, . . . , n}). 
For many types of objects that we define on Ω, for example lists, sets, or graphs, we 
give a way of applying elements of Sym(Ω) to them (denoted by exponentiation) in a 
structure-preserving way.

Let Γ and Δ be digraphs (which is short for directed graphs) with vertex set Ω. Then 
we say that a permutation g ∈ Sym(Ω) induces an isomorphism from Γ to Δ if and only 
if it defines a structure-preserving map from Γ to Δ, in which case we write Γg = Δ.

We use the notation Iso(Γ,Δ) for the set of isomorphisms from Γ to Δ that are induced 
by elements of Sym(Ω). If Iso(Γ,Δ) is non-empty, then we call Γ and Δ isomorphic. 
Similarly, we write Aut(Γ) := Iso(Γ,Γ) for the subgroup of Sym(Ω) consisting of all 
elements that induce automorphisms of Γ.

2.1. Labelled digraphs

Our techniques for searching in Sym(Ω) are built around digraphs in which each vertex 
and arc (i.e. directed edge) is given a label from a set of labels L. We define a vertex-
and arc-labelled digraph, or labelled digraph for short, to be a triple (Ω, A, Label), where 
(Ω, A) is a digraph and Label is a function from Ω ∪ A to L. More precisely, for any 
δ ∈ Ω and (α, β) ∈ A, the label of the vertex δ is Label(δ) ∈ L, and the label of the 
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arc (α, β) is Label(α, β) ∈ L. We call such a function a labelling function. We point out 
that our notion of digraphs is very general and that loops are allowed. (For more details 
and some examples see [9].)

We fix L as some non-empty set that contains every label that we require and serves 
as the codomain of every labelling function. For the equitable vertex labelling algorithm 
discussed in Section 5.2, we require some arbitrary but fixed total ordering on L.

The symmetric group on Ω acts on the sets of graphs and digraphs with vertex set Ω, 
respectively, and on their labelled variants, in a natural way. We give more details about 
this for labelled digraphs; the forthcoming notions are defined analogously for the other 
kinds of graphs and digraphs that we have mentioned. Let LabelledDigraphs(Ω,L)
denote the class of labelled digraphs on Ω with labels in L, and let Γ = (Ω, A, Label) ∈
LabelledDigraphs(Ω,L) and g ∈ Sym(Ω). Then we define Γg = (Ω, Ag, Label

g) ∈
LabelledDigraphs(Ω,L), where:

(i) Ag := {(αg, βg) : (α, β) ∈ A},
(ii) Label

g(δ) := Label(δg−1) for all δ ∈ Ω, and
(iii) Label

g(α, β) := Label(αg−1
, βg−1) for all (α, β) ∈ Ag.

In other words, the arcs are mapped according to g, and the label of a vertex or arc 
in Γg is the label of its preimage in Γ. This gives rise to a group action of Sym(Ω) on 
LabelledDigraphs(Ω,L).

3. Stacks of labelled digraphs

In this section we introduce labelled digraph stacks, with the rough idea in mind 
that we use them to approximate the set of permutations we search for. More precisely, 
we attempt to choose suitable labelled digraph stacks in such a way that the set of 
isomorphisms from one to the other approximates the set we search for as closely as 
possible.

A labelled digraph stack on Ω is a finite (possibly empty) list of labelled digraphs on 
Ω. We denote the collection of all labelled digraph stacks on Ω by DigraphStacks(Ω). 
The length of a labelled digraph stack S, written as |S|, is the number of entries that 
it contains. A labelled digraph stack of length 0 is called empty, and is denoted by 
EmptyStack(Ω). We use notation typical for lists, whereby if i ∈ {1, . . . , |S|}, then S[i]
denotes the ith labelled digraph in the stack S.

We allow any labelled digraph stack on Ω to be appended onto the end of another. If 
S, T ∈ DigraphStacks(Ω) have lengths k and l, respectively, then we define S‖T to be 
the labelled digraph stack [S[1], . . . , S[k], T [1], . . . , T [l]] of length k + l.

We define an action of Sym(Ω) on DigraphStacks(Ω) via the action of Sym(Ω) on 
the set of all labelled digraphs on Ω. More specifically, for all S ∈ DigraphStacks(Ω)
and g ∈ Sym(Ω), we define Sg to be the labelled digraph stack of length |S| with 
Sg[i] = S[i]g for all i ∈ {1, . . . , |S|}. An isomorphism from S to another labelled digraph 
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stack T (induced by Sym(Ω)) is therefore a permutation g ∈ Sym(Ω) such that Sg = T . 
In particular, only digraph stacks of equal lengths can be isomorphic. We note that every 
permutation in Sym(Ω) induces an automorphism of EmptyStack(Ω). As we do with 
digraphs, we use the notation Iso(S, T ) for the set of isomorphisms from the stack S to 
the stack T induced by elements of Sym(Ω), and Aut(S) for the group of automorphisms 
of S induced by elements of Sym(Ω).

Remark 3.1. Let S, T, U, V ∈ DigraphStacks(Ω). It follows from the definitions that

Iso(S, T ) =
{
∅ if |S| �= |T |,⋂|S|

i=1 Iso(S[i], T [i]) if |S| = |T |,
and that Aut(S) =

|S|⋂
i=1

Aut(S[i]) .

In addition Aut(S ‖U) ≤ Aut(S), and if |S| = |T |, then Iso(S ‖U, T ‖V ) ⊆ Iso(S, T ). 
Roughly speaking, the automorphism group of a labelled digraph stack, and the set of 
isomorphisms from one labelled digraph stack to another one of equal length, become 
potentially smaller as new entries are added to the stacks.

We illustrate some of the foregoing concepts in Example 3.3. Since we use an orbital 
graph, we briefly recall (see for example [2, Section 3.2]):

Definition 3.2 (Orbital graph). Let G ≤ Sym(Ω), and let α, β ∈ Ω be such that α �= β. 
Then the orbital graph of G with base-pair (α, β) is the digraph (Ω, {(αg, βg) : g ∈ G}).

Example 3.3. Let Ω = {1, . . . , 6}. Here we define a labelled digraph stack S on Ω that 
has length 3, by describing each of its members.

We define the first entry of S via the orbital graph of K := 〈(1 2)(3 4)(5 6), (2 4 6)〉
with base-pair (1, 3). The automorphism group of this orbital graph (as always, induced 
by Sym(Ω)) is K itself; in other words, this orbital graph perfectly represents K via its 
automorphism group. In order to define S[1], we convert this orbital graph into a labelled 
digraph by assigning the label white to each vertex and assigning the label solid to each 
arc. This does not change the automorphism group of the digraph.

We define the second entry of S to be the labelled digraph on Ω without arcs, whose 
vertices 1 and 2 are labelled black, and whose remaining vertices are labelled white. The 
automorphism group of this labelled digraph is the setwise stabiliser of {1, 2} in Sym(Ω).

We define the third entry of S to be the labelled digraph S[3] shown in Fig. 3.4, with 
arcs and labels chosen from the set {black, white, solid, dashed } as depicted there; its 
automorphism group is 〈(1 2), (3 4)(5 6)〉.

Given the automorphism groups of the individual entries of S, as described above, it 
follows that the automorphism group of S consists of precisely those elements of K that 
stabilise the set {1, 2}, and that are automorphisms of the labelled digraph S[3]. Hence 
this group is 〈(1 2)(3 4)(5 6)〉. Since (1 2) is an automorphism of S[2] and S[3], but not 
of S[1], it follows that S(1 2) = [S[1](1 2)

, S[2], S[3]] �= S. We also note that Iso
(
S, S(1 2))

is the right coset Aut(S) · (1 2) = {(1 2), (3 4)(5 6)} of Aut(S) in Sym(Ω).
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Fig. 3.4. Diagrams of the labelled digraphs in the labelled digraph stack S from Example 3.3. The vertices 
and arcs of these labelled digraphs are styled according to their labels, which are chosen from the set 
{black, white, solid, dashed }.

3.1. The squashed labelled digraph of a stack

For our exposition in Section 5, it is convenient to have a labelled digraph whose 
automorphism group is equal to that of a given labelled digraph stack. This is analogous 
to the final entry of an ordered partition stack [12, Section 4]. This special labelled 
digraph is a new object defined from the stack, but it is not part of the stack itself.

For this we fix a symbol # that is never to be used as the label of a vertex or an arc 
in any labelled digraph.

Definition 3.5. Let S be a labelled digraph stack on Ω, with S[i] := (Ω, Ai, Labeli) being 
some labelled digraph on Ω for each i ∈ {1, . . . , |S|}. Then the squashed labelled digraph
of S, denoted by Squash(S), is the labelled digraph (Ω, A, Label), where

• A =
⋃|S|

i=1 Ai,
• Label(δ) = [Label1(δ), . . . , Label|S|(δ)] for all δ ∈ Ω, and
• Label(α, β) is the list of length |S| for all (α, β) ∈

⋃|S|
i=1 Ai, where

Label(α, β)[i] =
{

Labeli(α, β) if (α, β) ∈ Ai,

# if (α, β) /∈ Ai,
for all i ∈ {1, . . . , |S|}.

Note that the labelling function of the squashed labelled digraph of a stack can be used 
to reconstruct all information about the stack from which it was created. We also point 
out that Squash(S)g = Squash(Sg) for all S ∈ DigraphStacks(Ω) and g ∈ Sym(Ω). 
Therefore the following lemma holds.

Lemma 3.6. Let S, T ∈ DigraphStacks(Ω). Then

Iso(S, T ) = Iso(Squash(S),Squash(T )) .

Example 3.7. Let S be the labelled digraph stack from Example 3.3. Since |S| = 3, the 
labels in Squash(S) are lists of length 3. The vertex labels in Squash(S) are:
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Fig. 3.8. A depiction of the squashed labelled digraph Squash(S) from Example 3.7, which is constructed 
from the labelled digraph stack S from Example 3.3.

• Label(1) = Label(2) = [white, black, white], shown as black in Fig. 3.8,
• Label(3) = Label(4) = [white, white, white], shown as white in Fig. 3.8, and
• Label(5) = Label(6) = [white, white, black], shown as grey in Fig. 3.8.

There are ten arcs in Squash(S), which in total have five different labels:

• Label(1, 3) = Label(2, 4) = [solid, #, #], shown as thin in Fig. 3.8,
• Label(3, 4) = Label(4, 3) = [#, #, solid], shown as dotted in Fig. 3.8,
• Label(5, 2) = Label(6, 1) = [#, #, dashed], shown as dashed in Fig. 3.8,
• Label(3, 5) = Label(4, 6) = [solid, #, solid], shown as thick in Fig. 3.8, and
• Label(5, 1) = Label(6, 2) = [solid, #, dashed], shown as wavy in Fig. 3.8.

Since automorphisms of labelled digraphs preserve the sets of vertices with any par-
ticular label, it is clear that Aut(Squash(S)) ≤ 〈(1 2), (3 4), (5 6)〉. This containment is 
proper, since Aut(Squash(S)) = Aut(S) by Lemma 3.6, and Aut(S) = 〈(1 2)(3 4)(5 6)〉, 
as discussed in Example 3.3. Indeed, inspection of the arc labels in Squash(S) shows 
that any automorphism that interchanges the pair of points in any of {1, 2}, {3, 4}, or 
{5, 6} also interchanges the other pairs.

4. Adding information to stacks with refiners

In this section we introduce and discuss refiners for labelled digraph stacks. We use 
refiners to encode information about a search problem into the stacks around which the 
search is organised, in order to prune the search space.

Definition 4.1. A refiner for a set of permutations U ⊆ Sym(Ω) is a pair (fL, fR)
of functions from DigraphStacks(Ω) to itself such that for all isomorphic S, T ∈
DigraphStacks(Ω):

U ∩ Iso(S, T ) ⊆ U ∩ Iso(fL(S), fR(T )) .

Leon introduces the concept of refiners in [12]. Although the word “refiner” might 
seem counter-intuitive from the definition, Remark 3.1 makes it clear that the stacks 
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S‖fL(S) and T‖fR(T ) do indeed give rise to a closer (or “finer”) approximation of the 
set we search for.

While a refiner depends on a subset of Sym(Ω), we do not include this in our notation 
in order to make it less complicated. As a trivial example, every pair of functions from 
DigraphStacks(Ω) to itself is a refiner for the empty set, and it is in fact relevant for 
practical applications to be able to search for the empty set.

In the following lemma, we formulate additional equivalent definitions of refiners.

Lemma 4.2. Let (fL, fR) be a pair of functions from DigraphStacks(Ω) to itself and 
let U ⊆ Sym(Ω). Then the following are equivalent:

(i) (fL, fR) is a refiner for U .
(ii) For all isomorphic S, T ∈ DigraphStacks(Ω):

U ∩ Iso(S, T ) = U ∩ Iso(S ‖ fL(S), T ‖ fR(T )) .

(iii) For S, T ∈ DigraphStacks(Ω) and g ∈ U :

if Sg = T, then fL(S)g = fR(T ).

Proof. (i) ⇒ (ii). Let S, T ∈ DigraphStacks(Ω) be isomorphic. Then U ∩ Iso(S, T ) ⊆
U ∩ Iso(fL(S), fR(T )) by assumption, and since S and T have equal lengths, then

Iso(S, T ) ∩ Iso(fL(S), fR(T )) = Iso(S ‖ fL(S), T ‖ fR(T ))

by Remark 3.1. Hence

U ∩ Iso(S, T ) = U ∩ Iso(S, T ) ∩
(
U ∩ Iso(fL(S), fR(T ))

)
= U ∩

(
Iso(S, T ) ∩ Iso(fL(S), fR(T ))

)
= U ∩ Iso(S ‖ fL(S), T ‖ fR(T )) .

(ii) ⇒ (iii). Let S, T ∈ DigraphStacks(Ω) and let g ∈ U . If Sg = T , then g ∈
Iso(S, T ) by definition, and so g ∈ Iso(S ‖ fL(S), T ‖ fR(T )) by assumption. Since S and 
T have equal lengths, and S ‖ fL(S) and T ‖ fR(T ) have equal lengths, it follows that so 
too do fL(S) and fR(T ). Then fL(S)g = fR(T ), since for each i ∈ {1, . . . , |fL(S)|},

fL(S)[i]g = (S ‖ fL(S))[|S| + i]g = (T ‖ fR(T ))[|T | + i] = fR(T )[i].

(iii) ⇒ (i). This implication is immediate. �
Perhaps Lemma 4.2(ii) most clearly indicates the relevance of refiners to search.
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Suppose we wish to search for the intersection U1∩· · ·∩Un of some subsets of Sym(Ω). 
Let i ∈ {1, . . . , n}, let (fL, fR) be a refiner for Ui, and let S and T be isomorphic labelled 
digraph stacks on Ω, such that Iso(S, T ) overestimates (i.e., contains) U1 ∩ · · · ∩ Un.

We may use the refiner (fL, fR) to refine the pair of stacks (S, T ): we apply the 
functions fL and fR, respectively, to the stacks S and T and obtain an extended pair of 
stacks (S ‖ fL(S), T ‖ fR(T )). We call this process refinement. Note that a refiner for Ui

need not consider the other sets in the intersection.
By Lemma 4.2(ii), the set of induced isomorphisms Iso(S ‖ fL(S), T ‖ fR(T )) contains 

the elements of Ui that belonged to Iso(S, T ). Since Ui contains U1 ∩ · · · ∩Un, it follows 
that Iso(S ‖ fL(S), T‖fR(T )) is a (possibly smaller) new overestimate for U1 ∩ · · · ∩ Un

which is contained in the previous overestimate by Remark 3.1.
The following straightforward example illustrates how the condition in Lemma 4.2(iii)

is useful for showing that a pair of functions is a refiner for some set.

Example 4.3 (Labelled digraph automorphism and isomorphism). Let Γ and Δ be labelled 
digraphs on Ω, and define constant functions fΓ and fΔ on DigraphStacks(Ω), whose 
images are the length-one digraph stacks [Γ] and [Δ], respectively.

Since the permutations of Ω that induce isomorphisms from [Γ] to [Δ] are exactly 
those that induce isomorphisms from Γ to Δ, it follows by Lemma 4.2(iii) that (fΓ, fΔ)
is a refiner for Iso(Γ,Δ). In particular, (fΓ, fΓ) is a refiner for Aut(Γ).

Example 4.3 illustrates the principle that the functions of the refiner are equal if it 
is a refiner for a subgroup. The next lemma states a slightly stronger observation. We 
omit the proofs of the next few results and refer to [9].

Lemma 4.4 (cf. [11, Prop 2], [12, Lemma 6]). Let (fL, fR) be a refiner for a subset U ⊆
Sym(Ω) that contains the identity map, idΩ. Then fL = fR.

Lemma 4.2(iii) implies:

Lemma 4.5. Let f be a function from DigraphStacks(Ω) to itself, and let U be a subset 
of Sym(Ω) containing idΩ. Then (f, f) is a refiner for U if and only if f(Sg) = f(S)g

for all g ∈ U and S ∈ DigraphStacks(Ω).

Next, we see that any refiner for a non-empty set can be derived from a function that 
satisfies the condition in Lemma 4.5.

Lemma 4.6. Let U be a non-empty subset of Sym(Ω), fix x ∈ U , and let fL and fR be 
functions from DigraphStacks(Ω) to itself. Then the following are equivalent:

• (fL, fR) is a refiner for U .
• (fL, fL) is a refiner for Ux−1 and fR(S) = fL(Sx−1)x for all S ∈ DigraphStacks(Ω).
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Fig. 4.9. The labelled digraph Γg for g = (1 2)(3 6 5), from Example 4.8.

In particular, if U is a right coset of a subgroup G ≤ Sym(Ω), then (fL, fR) is a refiner 
for the coset U = Gx if and only if (fL, fL) is a refiner for the group G, and fR(S) =
fL(Sx−1)x for all S ∈ DigraphStacks(Ω).

For some pairs of functions, such as those in the upcoming Example 4.12, one may 
use the following results to show that a pair of functions gives a refiner.

Lemma 4.7. Let U ⊆ Sym(Ω), and let fL, fR be functions from DigraphStacks(Ω) to 
itself such that U ⊆ Iso(fL(S), fR(T )) for all isomorphic S, T ∈ DigraphStacks(Ω). 
Then (fL, fR) is a refiner for U .

4.1. Examples of refiners

Here we give several further examples of refiners for subgroups and their cosets, for 
typical group theoretic problems. We use refiners from Example 4.10 in our experiments 
of Section 9.1. The refiners given in Examples 4.8 and 4.10 have in common that they 
perfectly capture all the information about the set that we search for. This is also the 
case for the refiners given in Example 4.12 for sets of pairwise disjoint subsets of Ω, and 
for sets of subsets of Ω with pairwise distinct sizes.

As we saw in Lemmas 4.5 and 4.6, the crucial step when creating a refiner for a sub-
group G ≤ Sym(Ω) or one of its cosets is to define a function f from DigraphStacks(Ω)
to itself such that f(Sg) = f(S)g for all S ∈ DigraphStacks(Ω) and g ∈ G.

Example 4.8 (Permutation centraliser and conjugacy). For every g ∈ Sym(Ω), let Γg be 
the labelled digraph on Ω whose set of arcs is {(α, β) ∈ Ω ×Ω : αg = β}, and in which all 
labels are defined to be 0. For every S ∈ DigraphStacks(Ω), define fg(S) = [Γg]. Let 
g, h ∈ Sym(Ω) be arbitrary. Then (fg, fg) is a refiner for the centraliser of g in Sym(Ω), 
and (fg, fh) is a refiner for the set of conjugating elements {x ∈ Sym(Ω) : gx = h}.

We illustrate one instance of this refiner. Let g = (1 2)(3 6 5) ∈ S6 and let K denote 
the centraliser of g in S6. A diagram of Γg is shown in Fig. 4.9. Note that there is a 
unique loop, namely at vertex 4, because 4 is the unique fixed point of g on {1, . . . , 6}.
Since (fg, fg) is a refiner for K, Lemma 4.5 implies that K ≤ Aut([Γg]). We prove that 
in fact Aut([Γg]) = K, and first note that Aut([Γg]) = Aut(Γg). Every automorphism 
of Γg stabilises the connected components (because they have different sizes) and so it 
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Fig. 4.11. The labelled digraph ΓV , for V := [{1, 3, 6}, {3, 5}, {2, 4}, {2, 3, 4}], from Example 4.10.

induces automorphisms on them. Hence Aut(Γg) ≤ 〈(1 2), (3 5), (3 6)〉. But none of the 
transpositions in 〈(3 5), (3 6)〉 is an automorphism of Γg, because the arcs between 3, 5, 
and 6 only go in one direction. Therefore Aut(Γg) = 〈(1 2), (3 6 5)〉 = K, as stated.

Example 4.10 (List of subsets stabiliser and transporter). Whenever k ∈ N0 and Vi ⊆ Ω
for each i ∈ {1, . . . , k} and V := [V1, . . . , Vk], we let ΓV be the labelled digraph on Ω
without arcs, where the label of each vertex α ∈ Ω is {i ∈ {1, . . . , k} : α ∈ Vi}. For every 
S ∈ DigraphStacks(Ω), define fV(S) to be the length-one stack [ΓV ]. If g ∈ Sym(Ω), 
then Vg := [V g

1 , . . . , V
g
k ].

Let V and W be arbitrary lists of subsets of Ω with notation as explained above. Then 
(fV , fW) is a refiner for the set {g ∈ Sym(Ω) : Vg = W}, and (fV , fV) is a refiner for 
the group {g ∈ Sym(Ω) : Vg = V}.

To demonstrate this, let V = [{1, 3, 6}, {3, 5}, {2, 4}, {2, 3, 4}] be a list of subsets of 
{1, . . . , 6}. See Fig. 4.11. Since (fV , fV) is a refiner for A := {g ∈ S6 : Vg = V}, it follows 
that Aut([ΓV ]) (i.e., Aut(ΓV)) contains A; indeed, A = 〈(1 6), (2 4)〉 = Aut(ΓV).

Example 4.10 in particular gives refiners for the stabilisers and transporter sets of 
ordered partitions. If we encode a list [x1, . . . , xm] in Ω as [{x1}, . . . , {xm}], and a subset 
{y1, . . . , yn} ⊆ Ω as [{y1, . . . , yn}], then we see that Example 4.10 can be used to create 
refiners for the stabilisers and transporters of lists in Ω or subsets of Ω.

For unordered partitions, the following example is applicable.

Example 4.12 (Refiner for set of subsets stabiliser and transporter). Let V be an arbitrary 
set of subsets of Ω. Let k ∈ N0 and Vi ⊆ Ω for all i ∈ {1, . . . k} be such that V =
{V1, . . . , Vk}. We define ΓV to be the labelled digraph on Ω whose set of arcs is

{(α, β) ∈ Ω × Ω : α �= β and {α, β} ⊆ Vi for some i};

where the label of a vertex α is a list of length max{|Vi| : i ∈ {1, . . . , k}} with ith entry

Label(α)[i] := (|{j ∈ {1, . . . , k} : α ∈ Vj and |Vj | = i}|, k),

and the label of each arc (α, β) in ΓV is a list of the same length, with ith entry
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Fig. 4.13. Illustration of the labelled digraphs ΓV and ΓW from Example 4.12, for the sets of subsets V :=
{{1}, {1, 2, 3}, {2, 4}} and W := {{5}, {2, 3, 4}, {3, 4}} of {1, . . . , 5}.

Label(α, β)[i] := (|{j ∈ {1, . . . , k} : α, β ∈ Vj and |Vj | = i}|, k).

The connected components of ΓV with at least two vertices are the sets in V that are not 
singletons. The label of a vertex (or arc) encodes, for each size of subset, the number of 
subsets in V that have that size and contain that vertex (or arc).

For every S ∈ DigraphStacks(Ω), we define fV(S) to be the length-one stack [ΓV ]. 
In addition, for all g ∈ Sym(Ω), we define Vg = {V g

1 , . . . , V
g
k }.

Let V and W be arbitrary sets of subsets of Ω. Since the labelled digraphs ΓV and ΓW
were defined so that {g ∈ Sym(Ω) : Vg = W} ⊆ Iso(ΓV ,ΓW), it follows by Lemma 4.7
that (fV , fW) is a refiner for the set {g ∈ Sym(Ω) : Vg = W}; in particular, (fV , fV) is 
a refiner for the stabiliser group {g ∈ Sym(Ω) : Vg = V}.

As a specific example, we consider the sets V := {{1}, {1, 2, 3}, {2, 4}} and W :=
{{5}, {2, 3, 4}, {3, 4}}. Both V and W contain three subsets, which have sizes 1, 2 and 3, 
so it seems superficially plausible that there exist elements of S5 that map V to W.

In order to search for the set {g ∈ S5 : Vg = W}, then (with all the following notation 
as defined above) we can use the refiner (fV , fW) to produce stacks [ΓV ] and [ΓW ] such 
that Iso([ΓV ], [ΓW ]) = Iso(ΓV ,ΓW) contains this transporter set. The labelled digraphs 
ΓV and ΓW are depicted in Fig. 4.13; although we do not give the correspondence explic-
itly, two vertices or two arcs have the same visual style if and only if they have the same 
label. There are many ways to show that ΓV and ΓW are non-isomorphic: for example, 
they have different numbers of arcs. Hence no element of S5 maps V to W.

5. Approximating isomorphisms and fixed points of stacks

When searching with labelled digraphs stacks, it might be too expensive to compute 
the set of isomorphisms exactly, which is why we choose to only approximate this set 
instead. Our methods always lead to an overestimation of the set, and worse approxi-
mations typically lead to larger searches. As a consequence, there is a compromise to 
be made between the accuracy of such overestimates, and the amount of effort spent in 
computing them.

In Definition 5.1, we introduce the concept of an isomorphism approximator for pairs 
of labelled digraphs stacks, which is a vital component of the algorithms in Section 7. 
Later, we define the approximators that we use in our experiments.
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Definition 5.1. An isomorphism approximator for labelled digraph stacks is a function 
Approx that maps a pair of labelled digraph stacks on Ω to either the empty set ∅, or 
a right coset of a subgroup of Sym(Ω), such that the following statements hold for all 
S, T ∈ DigraphStacks(Ω) (we usually abbreviate Approx(S, S) as Approx(S)):

(i) Iso(S, T ) ⊆ Approx(S, T ).
(ii) If |S| �= |T |, then Approx(S, T ) = ∅.
(iii) If Approx(S, T ) �= ∅, then Approx(S, T ) = Approx(S) ·h for some h ∈ Sym(Ω).

Let Approx be an isomorphism approximator and let S, T ∈ DigraphStacks(Ω). 
The set Iso(S, T ) of isomorphisms induced by Sym(Ω) is either empty, or it is a right 
coset of the induced automorphism group Aut(S). Since idΩ ∈ Iso(S, S) = Aut(S), it 
follows by definition that Approx(S) is a subgroup of Sym(Ω) that contains Aut(S).

The value of Approx(S, T ) should be interpreted as follows. By Definition 5.1(i), 
Approx(S, T ) gives a true overestimate for Iso(S, T ). Hence if Approx(S, T ) = ∅, then 
the approximator has correctly determined that S and T are non-isomorphic. By Defini-
tion 5.1(ii), an isomorphism approximator correctly determines that stacks of different 
lengths are non-isomorphic. Otherwise, the approximator returns a right coset in Sym(Ω)
of its overestimate for Aut(S).

In Section 8.1, we need the ability to compute fixed points of the automorphism group 
(induced by Sym(Ω)) of any labelled digraph stack. A point ω ∈ Ω is a fixed point of 
a subgroup G ≤ Sym(Ω) if and only if ωg = ω for all g ∈ G. Computing fixed points 
is particularly useful when it comes to using orbits and orbital graphs in our search 
techniques. However, it can be computationally expensive to compute the fixed points 
exactly, and so we introduce the following definition.

Definition 5.2. A fixed-point approximator for labelled digraph stacks is a function Fixed

that maps each labelled digraph stack on Ω to a finite list in Ω, such that for each 
S ∈ DigraphStacks(Ω):

(i) Each entry in Fixed(S) is a fixed point of Aut(S), and
(ii) Fixed(S)g = Fixed(Sg) for all g ∈ Sym(Ω).

5.1. Computing automorphisms and isomorphisms exactly

One way to approximate isomorphisms and fixed points of labelled digraph stacks is 
simply to compute them exactly. For example, we can convert labelled digraph stacks 
into their squashed labelled digraphs in order to take advantage of existing tools for 
computing with digraphs.

To describe this formally, we require the concept of a canoniser of labelled digraphs.
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Definition 5.3. A canoniser of labelled digraphs is a function Canon from the set of 
labelled digraphs on Ω to Sym(Ω) such that, for all labelled digraphs Γ and Δ on Ω, 
ΓCanon(Γ) = ΔCanon(Δ) if and only if Γ and Δ are isomorphic.

We can use the software bliss [10] or nauty [13] to canonise labelled digraphs, after 
converting them into vertex-labelled digraphs in a way that preserves isomorphisms.

Definition 5.4 (Canonising and computing automorphisms exactly). Let Canon be a 
canoniser of labelled digraphs. We define functions FixedC and ApproxC: for all S, T ∈
DigraphStacks(Ω), let g = Canon(Squash(S)) and h = Canon(Squash(T )), let L
be the list [i ∈ Ω : i is fixed by Aut(Squash(S)g)], ordered as in Ω, and define

FixedC(S) = Lg−1
, and

ApproxC(S, T ) =
{

Aut(Squash(S)) · gh−1 if Squash(S)g = Squash(T )h,
∅ otherwise.

Lemma 5.5. Let the functions ApproxC and FixedC be given as in Definition 5.4. Then 
ApproxC is an isomorphism approximator, and FixedC is a fixed-point approximator. 
Furthermore, for all S, T ∈ DigraphStacks(Ω), ApproxC(S, T ) = Iso(S, T ).

Proof. Throughout the proof, we repeatedly use Lemma 3.6 and Definition 5.3. As in 
Definition 5.4, let g = Canon(Squash(S)) and h = Canon(Squash(T )).

First, we show that ApproxC(S, T ) = Iso(S, T ), which implies that Definition 5.1(i)
and (ii) hold. If S and T are non-isomorphic, then Squash(S)g �= Squash(T )h, and 
so ApproxC(S, T ) = Iso(S, T ) = ∅. Otherwise gh−1 ∈ Iso(Squash(S),Squash(T )) =
Iso(S, T ). Therefore

ApproxC(S, T ) = Aut(Squash(S)) · gh−1 = Aut(S) · gh−1 = Iso(S, T ) .

Definition 5.1(iii) clearly holds. Therefore ApproxC is an isomorphism approximator.
Define L = [i ∈ Ω : i is fixed by Aut(Squash(S)g)], ordered as usual in Ω. Since 

Aut(S)g = Aut(Squash(S))g = Aut(Squash(S)g), it follows that L consists of fixed 
points of Aut(S)g, and so FixedC(S) (which equals Lg−1) consists of fixed points of 
Aut(S). Therefore Definition 5.2(i) holds. To show that Definition 5.2(ii) holds, let 
x ∈ Sym(Ω) be arbitrary and define r = Canon(Squash(Sx)). Since Squash(S) and 
Squash(Sx) are isomorphic, it follows that Squash(S)g = Squash(Sx)r. In particular, 
g−1xr is an automorphism of Squash(S)g, and so g−1xr fixes L. Thus

FixedC(S)x = Lg−1x = L(g−1xr)r−1
= Lr−1

= FixedC(Sx). �
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5.2. Approximations via equitable labelled digraphs

We can use vertex labels to overestimate the set of isomorphisms from one labelled 
digraph to another, because these isomorphisms map the set of vertices with any par-
ticular label onto a set of vertices with the same label. In this section we use the term 
vertex labelling as an abbreviation for the restriction of a digraph labelling function to 
the set of vertices.

In order to present the following approximator functions, we require the notion of an 
equitable labelled digraph.

5.2.1. Equitable labelled digraphs

Definition 5.6. A labelled digraph (Ω, A, Label) is equitable if and only if, for all vertices 
α, β ∈ Ω with Label(α) = Label(β), and for all labels y and z:

|{(α, δ) ∈ A : Label(δ) = y and Label(α, δ) = z}| =

|{(β, δ) ∈ A : Label(δ) = y and Label(β, δ) = z}|, and

|{(δ, α) ∈ A : Label(δ) = y and Label(δ, α) = z}| =

|{(δ, β) ∈ A : Label(δ) = y and Label(δ, β) = z}|.

In other words, the labelled digraph is equitable if and only if, for all labels x, y, and z, 
every vertex with label x has some common number of out-neighbours with label y via 
arcs with label z, and similarly, every vertex with label x has some common number of 
in-neighbours with label y via arcs with label z.

Definition 5.6 extends the well-known concepts of equitable colourings [13, Section 3.1]
and partitions [8, Definition 29] of vertex-labelled graphs and digraphs. The traditional 
notion requires that for all labels y and z, there are constants for the number of arcs 
from each vertex with label y to vertices with label z, and for the number of arcs in the 
other direction. Definition 5.6 additionally takes arc labels into account.

It is possible to define a procedure that takes a labelled digraph Γ := (Ω, A, Label)
and ‘refines’ the vertex labelling to obtain a labelled digraph Γ′ := (Ω, A, Label

′), which 
uses the fewest possible labels such that: arc labels are unchanged, vertices with the 
same label in Γ′ have the same label in Γ, and Γ′ is equitable. Moreover, this can be 
done consistently between labelled digraphs Γ and Δ, such that the overestimate of 
Iso(Γ,Δ) that can be obtained from the equitable labelled digraphs is contained in the 
overestimate from the original vertex labels. We present an example of such a procedure, 
phrased as an algorithm, as Algorithm 4.8 in [9]. Here we just describe the idea of such 
an “equitable vertex labelling algorithm” and abbreviate it as EVLA.

Given a labelled digraph, EVLA repeatedly tests whether each set of vertices with the 
same label satisfies the condition in Definition 5.6. For each such set, either the condition 
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is satisfied, and a new label for this set is devised that encodes information about how 
the condition was satisfied, or the condition is not satisfied, and the vertices are given 
new labels accordingly, which encode information about why they were created.

We define Equitable to be a function defined by EVLA that maps each labelled 
digraph to a list of pairs of the form (x, W ), for some label x ∈ L and non-empty 
W ⊆ Ω, sorted by first component (recall that L is totally ordered). This list encodes 
that the vertices in W are those with label x in the equitable digraph given by EVLA.

In the following lemma, we present some properties of Equitable. For a more detailed 
discussion we refer to [9], and we omit the proof of the lemma because it is mathematically 
straightforward.

Lemma 5.7. Let Γ and Δ be labelled digraphs on Ω, and define k, l ∈ N0, labels 
x1, . . . , xk, y1, . . . , yl, and partitions {V1, . . . , Vk} and {W1, . . . , Wl} of Ω such that

Equitable(Γ) = [(x1, V1), . . . , (xk, Vk)] and Equitable(Δ) = [(y1,W1), . . . , (yl,Wl)].

Then the following hold:

(i) Equitable(Γg) = [(x1, V
g
1 ), . . . , (xk, V

g
k )] for all g ∈ Sym(Ω).

(ii) Iso(Γ,Δ)
{

= ∅, if k �= l, or k = l and xi �= yi for some i,

⊆ {g ∈ Sym(Ω) : [V g
1 , . . . , V

g
k ] = [W1, . . . ,Wk]}, otherwise.

By choosing meaningful new vertex labels as described, we can distinguish more pairs 
of labelled digraphs as non-isomorphic via Lemma 5.7(ii) than we can by defining new 
labels arbitrarily. The next example illustrates this principle.

Example 5.8. Let Γ be the labelled digraph on Ω with all possible arcs, and let Δ be the 
labelled digraph on Ω without arcs, where every vertex and arc in Γ and Δ has the label 
x, for some arbitrary but fixed label x ∈ L.

Then we may use EVLA to deduce that Γ and Δ are non-isomorphic, even though both 
are regular (i.e. every vertex has a common number of in-neighbours, and a common 
number of out-neighbours). The new labels encode that each vertex in Γ and Δ has 
|Ω| in- and out-neighbours, or zero in- or out-neighbours, respectively. Therefore, the 
labels given by Equitable(Γ) and Equitable(Δ) are different, and so Γ and Δ are 
non-isomorphic by Lemma 5.7(ii).

A note of warning: the choice of new labels plays a role! If new labels were instead, 
say, chosen to be incrementally increasing integers starting at 1, then we would have 
Equitable(Γ) = Equitable(Δ), and the above deduction would not be possible.

In the previous example it is obvious to us that the digraphs are non-isomorphic, 
but for many more complicated examples, Lemma 5.7(ii) can still be used to detect less 
obvious non-isomorphism.
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5.2.2. Strong and weak approximations via equitable labelled digraphs
We describe two strategies for using EVLA (which operates on labelled digraphs) 

to approximate isomorphisms and fixed points of stacks of labelled digraphs. In the 
first approach, we first combine the entries of a stack into a single digraph, namely 
the squashed labelled digraph of the stack, and then apply EVLA; in the other, we first 
apply EVLA to each of the entries in the stack, and then combine the information that we 
obtain. We call these approaches strong and weak equitable approximation, respectively, 
and we give an example of their use in Section 5.3.

Definition 5.9 (Strong equitable approximation). We define functions ApproxS and 
FixedS as follows. Let S, T ∈ DigraphStacks(Ω). Then there exist k, l ∈ N0, labels 
x1, . . . , xk, y1, . . . , yl, and partitions {V1, . . . , Vk} and {W1, . . . , Wl} of Ω such that

Equitable(Squash(S)) = [(x1, V1), . . . , (xk, Vk)], and

Equitable(Squash(T )) = [(y1,W1), . . . , (yl,Wl)].

Let G denote the stabiliser of the list [V1, . . . , Vk] in Sym(Ω), and define

ApproxS(S, T ) =
{
G · h if |S| = |T |, k = l, and for all i, xi = yi and |Vi| = |Wi|;
∅ otherwise,

where h ∈ Sym(Ω) is any permutation such that V h
i = Wi for all i ∈ {1, . . . , k}. This is 

well-defined because, for all g, h ∈ Sym(Ω), we have that V g
i = V h

i for all i if and only 
if g and h represent the same right coset of G in Sym(Ω). Finally, we define

FixedS(S) = [vi1 , . . . , vim ],

where i1 < · · · < im and the sets Vij = {vij} for each j ∈ {1, . . . , m} are exactly the 
singletons amongst V1, . . . , Vk.

Definition 5.10 (Weak equitable approximation). We define functions ApproxW and 
FixedW as follows. Let S, T ∈ DigraphStacks(Ω). For each i ∈ {1, . . . , |S|}, j ∈
{1, . . . , |T |}, there exist ki, lj ∈ N0, labels xi,1, . . . , xi,ki

, yj,1, . . . , yj,lj , and partitions 
{Vi,1, . . . , Vi,ki

} and {Wj,1, . . . , Wj,lj} of Ω such that

Equitable(S[i]) = [(xi,1, Vi,1), . . . , (xi,ki
, Vi,ki

)], and

Equitable(T [j]) = [(yj,1,Wj,1), . . . , (yj,lj ,Wj,lj )].

If |S| �= |T |, or else if ki �= li for some i ∈ {1, . . . , |S|}, or else if xi,j �= yi,j for some 
i ∈ {1, . . . , |S|} and j ∈ {1, . . . , ki}, then we define ApproxW(S, T ) = ∅.

Suppose otherwise. We define functions f and g that map vertices to lists of length 
|S| with entries in N. For each α ∈ Ω, the list entry f(α)[i] is the unique j ∈ {1, . . . , ki}
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such that α ∈ Vi,j , and g(α)[i] is the unique j ∈ {1, . . . , ki} such that α ∈ Wi,j . Thus 
f and g encode the ‘equitable’ label of a vertex in each entry of S and T , respectively. 
Then we partition Ω into subsets A1, . . . , Am according to, and ordered lexicographically 
by, f -value, and similarly we partition Ω into subsets B1, . . . , Bn via g.

Given all of this, we let G denote the stabiliser of [A1, . . . , Am] in Sym(Ω) and define

ApproxW(S, T ) =

⎧⎪⎪⎨
⎪⎪⎩
G · h if |S| = |T |, m = n, and for all i,

|Ai| = |Bi| and f(min(Ai)) = g(min(Bi)),
∅ otherwise,

where h ∈ Sym(Ω) is any permutation such that Ah
i = Bi for all i ∈ {1, . . . , m}, and 

min(Ai) is the minimum vertex in Ai with respect to the ordering of Ω. We also define

FixedW(S) = [ai1 , . . . , ait ],

where i1 < · · · < it and the sets Aij = {aij} for each j ∈ {1, . . . , t} are exactly the 
singletons amongst A1, . . . , Am.

The following lemma holds by Lemma 5.7.

Lemma 5.11. The functions from Definitions 5.9 and 5.10, ApproxS and ApproxW, 
and FixedS and FixedW, are isomorphism and fixed-point approximators, respectively.

5.3. Comparing approximators

In this section, we give a simple example to compare the isomorphism approximators 
from Sections 5.1 and 5.2. We present the example in more detail in [9].

Weak equitable approximations should be the least accurate but cheapest to compute, 
whereas computing isomorphisms exactly should be the most expensive. Weak equitable 
approximation distinguishes vertices by distinguishing them in the individual entries 
of the stacks. Strong equitable approximation sometimes gives better results than this, 
because it considers the entire stacks simultaneously.

Example 5.12. Let Γ1, Γ2, Δ1, and Δ2 be labelled digraphs on {1, . . . , 6} whose arcs 
and arc labels are defined as in Fig. 5.13, and where each vertex is labelled white. We 
approximate the isomorphisms from the stack S := [Γ1, Γ2] to the stack T := [Δ1, Δ2].

Weak equitable approximation. The labelled digraphs Γ1, Γ2, Δ1, and Δ2 are equitable, 
and their vertices are all white. Therefore EVLA makes no progress, and so weak equitable 
approximation gives the worst possible result ApproxW(S, T ) = S6.
Strong equitable approximation. To see that the labelled digraphs Squash(S) and 
Squash(T ) are not equitable, note for example that there are vertices in each of these 
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Fig. 5.13. Pictures of the labelled digraphs on {1, . . . , 6} from Example 5.12. Each arc in Γ1, Γ2, Δ1, and Δ2
is labelled solid or dashed according to its depiction. Every vertex in Squash([Γ1,Γ2]) and Squash([Δ1,Δ2])
has the same label [white, white]; arcs with label [solid, #] are shown as solid, arcs with label [#, dashed]
are shown as dashed, and arcs with label [solid, dashed] are shown as dotted.

digraphs with different numbers of out-neighbours, yet all vertices have the same label. 
There exist labels x and y such that the EVLA assigns x to {3, 6} and y to {1, 2, 4, 5} in 
Squash(S), and it assigns x to {1, 5} and y to {2, 3, 4, 6} in Squash(T ).

Let G be the stabiliser of [{3, 6}, {1, 2, 4, 5}] in S6, and let g ∈ S6 be any permutation 
that maps {3, 6} to {1, 5} and {1, 2, 4, 5} to {2, 3, 4, 6}. Then strong equitable approxi-
mation gives ApproxS(S, T ) = G · h. Note that |ApproxS(S, T )| = |G| = 2! · 4! = 48.
Canonising and computing exactly. We compute with Bliss [10] via the GAP [3] pack-
age Digraphs [1] that Aut(Squash(S)) = 〈(1 2)(3 6)(4 5), (1 4)(2 5)(3 6)〉 =: G and 
that Squash(S)(1 2 3 5 6) = Squash(T ). Thus Iso(S, T ) = G · (1 2 3 5 6). In particular, 
| Iso(S, T ) | = |G| = 4, which reveals the inaccuracy of the other approximators.

6. Distributing stack isomorphisms across new stacks

In a backtrack search, when it is not clear how to further prune a search space, we 
divide the search across a number of smaller areas that can be searched more easily. 
We call this process splitting, and in this section we define the notion of a splitter for 
labelled digraph stacks. A splitter takes a pair of stacks that represents a (potentially 
large) search space, and defines new stacks that divide the space in a sensible way.

Definition 6.1. A splitter for an isomorphism approximator Approx is a function Split

that maps a pair of labelled digraph stacks on Ω to a finite list of stacks, where for all 
S, T ∈ DigraphStacks(Ω) with |Approx(S, T )| ≥ 2,

Split(S, T ) = [S1, T1, T2, . . . , Tm]
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for some m ∈ N0 and S1, T1, . . . , Tm ∈ DigraphStacks(Ω), such that:

(i) Iso(S, T ) = Iso(S ‖S1, T ‖T1)∪ · · · ∪ Iso(S ‖S1, T ‖Tm).
(ii) |Approx(S ‖S1, T ‖Ti)| < |Approx(S, T )| for all i ∈ {1, . . . , m}.
(iii) For all U ∈ DigraphStacks(Ω) with |Approx(S,U)| ≥ 2, the first entry of 

Split(S,U) is S1.

For this paragraph and the following remark, we keep the notation from Defini-
tion 6.1, with |Approx(S, T )| ≥ 2. The search space corresponding to the pair (S, T ) is 
Approx(S, T ). By Definition 6.1(i), if |Approx(S, T )| ≥ 2, then the splitter produces 
the search spaces Approx(S ‖S1, T ‖Ti) for each i ∈ {1, . . . , m}; note that the left-hand 
stack S ‖S1 does not vary here. Each one of these new search spaces is smaller than 
Approx(S, T ), by Definition 6.1(ii). This is required to show that our algorithms termi-
nate. Definition 6.1(iii) means that the first stack given by a splitter is independent of 
the given right-hand stack. This is required by the technique in Section 8.

Remark 6.2. If S = T , then it follows by Definition 6.1(i) that S1 = Ti for some i. Thus 
we may assume without loss of generality that S1 = T1 in this case.

The following lemma shows a way of giving a splitter by specifying its behaviour on 
the left stack that it is given. The proof is straightforward and therefore omitted; see [9].

Lemma 6.3. Let Approx be an isomorphism approximator, and let f be any function 
from DigraphStacks(Ω) to itself such that, for all S ∈ DigraphStacks(Ω):

if |Approx(S)| ≥ 2, then |Approx(S ‖ f(S))| < |Approx(S)|.

Let S, T ∈ DigraphStacks(Ω), and fix an ordering T1, . . . , Tm, for some m ∈ N0, of 
the set {f(S)g : g ∈ Approx(S, T )}. Finally, let Splitf (S, T ) = [f(S), T1, . . . , Tm]. 
Then Split is a splitter for Approx.

Let the notation of Lemma 6.3 hold. Splitting by appending the stack f(S) to the 
stack S corresponds to stabilising f(S) in the current approximation of Aut(S); the 
stacks of the form Ti give the images of the stack f(S) under Approx(S, T ).

Note that the set {f(S)g : g ∈ Approx(S, T )} can be computed via the orbit of 
f(S) under Approx(S). Indeed, if h ∈ Approx(S, T ), then since Approx(S, T ) =
Approx(S) · h by Definition 5.1(iii), we have

{f(S)g : g ∈ Approx(S, T )} = {f(S)g : g ∈ Approx(S) · h}

= {f(S)x : x ∈ Approx(S)}h =
(
f(S)Approx(S)

)h

.

In the following definition, we present a splitter that can be obtained with Lemma 6.3. 
We use a version of this splitter for our experiments in Section 9.
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Definition 6.4 (Fixed point splitter). For all α ∈ Ω, let Γα = (Ω, ∅, Label) be the labelled 
digraph on Ω where Label(α) = 1 and Label(β) = 0 for all β ∈ Ω \ {α}. Note that 
Γg
α = Γαg for all g ∈ Sym(Ω). Let Approx be any isomorphism approximator such 

that Approx(U ‖[Γα]) ≤ Approx(U) ∩ {g ∈ Sym(Ω) : αg = α} for all α ∈ Ω and 
U ∈ DigraphStacks(Ω). We define a function σ from DigraphStacks(Ω) to itself by

σ(S) =

⎧⎪⎪⎨
⎪⎪⎩

EmptyStack(Ω) if |Approx(S)| ≤ 1,
[Γα] otherwise, where α := min{min(O) : O is an orbit of

Approx(S) of minimal size, subject to |O| ≥ 2},

for all S ∈ DigraphStacks(Ω). Finally, define Splitσ as in Lemma 6.3, for the isomor-
phism approximator Approx and the function σ.

The following corollary holds by Lemma 6.3, bearing in mind that the function σ has 
the required property by our choice of isomorphism approximator in Definition 6.4.

Corollary 6.5. The function Splitσ from Definition 6.4 is a splitter for any isomorphism 
approximator that satisfies the condition in Definition 6.4.

7. The search algorithm

Let U1, . . . , Uk ⊆ Sym(Ω). In this section, we present our main algorithms, which 
combine the tools of Sections 3–6 to compute the intersection U1∩· · ·∩Uk. In Section 7.1, 
we show how to perform a backtrack search for one or all of the elements of U1∩· · ·∩Uk. 
In Section 7.2, when the result is known to form a group, we show how to search for a 
base and strong generating set instead (see [2, p. 101] for a definition). We explain these 
algorithms in further detail in [9]. A version of our algorithms is implemented in the
GraphBacktracking package [6] for GAP [3].

7.1. The basic method

We begin with a high-level description of Algorithm 7.1, which comprises the Search

and Refine procedures. We say that an algorithm backtracks when it finishes executing 
a recursive call to a procedure, and continues executing from where the call was initiated.

The algorithm begins with a call to the Search procedure on line 21. This procedure, 
when given labelled digraph stacks S and T , finds those elements of U1 ∩ · · · ∩ Uk that 
induce isomorphisms from S to T (Lemma 7.4). It does so by searching in Approx(S, T )
rather than in Iso(S, T ), because we do not necessarily wish to compute Iso(S, T ) exactly.

The Search procedure first calls Refine. This applies the refiners in turn, aiming 
to prune the search space (Lemma 7.3). Then, if the remaining search space contains 
at most one element, the Search procedure backtracks, having potentially returned an 
element, if appropriate. Otherwise, it divides the search with a splitter, and recurses.
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Algorithm 7.1 A recursive algorithm using labelled digraph stacks to search in Sym(Ω).
Input: a sequence of subsets U1, . . . , Uk ⊆ Sym(Ω);

a sequence (fL,1, fR,1), . . . , (fL,m, fR,m), where each pair is a refiner for some Uj ;
an isomorphism approximator Approx and a splitter Split for Approx.

Output: all elements of the intersection U1 ∩ · · · ∩ Uk, which we refer to as solutions.

1: procedure Search(S, T ) � The main recursive search procedure (Lemma 7.4).
2: (S, T ) ← Refine(S, T ) � Refine the given stacks.
3: case Approx(S, T ) = ∅: � Nothing found in the present branch: backtrack.
4: return ∅

5: case Approx(S, T ) = {h} for some h: � h is the sole potential solution here.
6: if Sh = T and h ∈ U1 ∩ · · · ∩ Uk then
7: return {h} � h is the unique solution in Iso(S, T ): backtrack.
8: else
9: return ∅ � h is not a solution in Iso(S, T ): backtrack.

10: case |Approx(S, T )| ≥ 2: � Multiple potential solutions.
11: [S1, T1, . . . , Tt] ← Split(S, T ) � Split the search space.
12: return

⋃
i∈{1,...,t}

Search(S ‖S1, T ‖Ti) � Search recursively.

13: procedure Refine(S, T ) � Attempt to prune the search space (Lemma 7.3).
14: while Approx(S, T ) 	= ∅ do � Proceed while there are potential solutions.
15: (S′, T ′) ← (S, T ) � Save the stacks before the next round of refining.
16: for i ∈ {1, . . . , m} and while |S| = |T | do
17: (S, T ) ← (S ‖ fL,i(S), T ‖ fR,i(T )) � Apply each refiner in turn.
18: if |Approx(S, T )| ≮ |Approx(S′, T ′)| then
19: return (S′, T ′) � Stop: the last refinements seemingly made no progress.
20: return (S, T ) � Stop: Approx(S, T ) = ∅: no solutions in this branch.

21: return Search(EmptyStack(Ω) , EmptyStack(Ω))

We assume the given approximator, splitter, and refiners are possible to compute.
We thus claim that, given the specified inputs, and after a finite number of steps, 

Algorithm 7.1 returns the intersection U1 ∩ · · · ∩ Uk.

Theorem 7.2. Algorithm 7.1 is correct.

The proof of Theorem 7.2 relies on the following lemmas. In particular, it follows from 
Lemma 7.4 by setting S = T = EmptyStack(Ω).

Lemma 7.3. Let the notation of Algorithm 7.1 hold. Then the Refine procedure termi-
nates after a finite number of steps, with

(i) |Approx(Refine(S, T ))| ≤ |Approx(S, T )|, and
(ii) (U1 ∩ · · · ∩ Uk) ∩ Iso(S, T ) = (U1 ∩ · · · ∩ Uk) ∩ Iso(Refine(S, T )).

Proof. The Refine procedure performs finitely many iterations of its while loop, and 
so terminates, since a new iteration occurs only if the prior one yields a smaller search 
space. It is evident in the definition of Refine that (i) holds. To prove (ii), note that 
Refine(S, T ) is obtained from (S, T ) by the repeated application of refiners to stacks 
of equal length (line 17). Thus it suffices to show that if i ∈ {1, . . . , m} and |S| = |T |, 
then
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(U1 ∩ · · · ∩ Uk) ∩ Iso(S, T ) = (U1 ∩ · · · ∩ Uk) ∩ Iso(S ‖ fL,i(S), T ‖ fR,i(T )) .

If Iso(S, T ) = ∅, then also Iso(S ‖ fL,i(S), T ‖ fR,i(T )) = ∅ by Remark 3.1, thereby 
satisfying the equation. Otherwise, the equation holds by Lemma 4.2(ii). �
Lemma 7.4. Let the notation of Algorithm 7.1 hold. Then the Search procedure termi-
nates with Search(S, T ) = (U1 ∩ · · · ∩ Uk) ∩ Iso(S, T ).

Proof. We proceed by induction on |Approx(Refine(S, T ))|, bearing in mind Defini-
tion 5.1(i) and Lemma 7.3(ii). If |Approx(Refine(S, T ))| ∈ {0, 1}, then it is straight-
forward to verify that the Search procedure terminates with the correct value.

Let n ∈ N with n ≥ 2, and assume the statement holds for all stacks S and T
with |Approx(Refine(S, T ))| < n. If |Approx(Refine(S, T ))| = n, then on line 11, 
the splitter gives a finite list of stacks, giving a finite number of calls to Search. By 
Definition 6.1(i) and (ii), by Lemma 7.3(i), and by assumption, these recursive calls 
terminate with values whose union is (U1 ∩ · · · ∩ Uk) ∩ Iso(Refine(S, T )). The result 
follows by Lemma 7.3(ii), and by induction. �
Remark 7.5. Algorithm 7.1 finds all elements of U1 ∩ · · · ∩ Uk. To search for a single
element, if one exists, one can modify the Search procedure to return a result on line 7, 
as soon as the first solution is found. We name this modified procedure SearchSingle. 
Thus SearchSingle(S, T ) gives a single element of Iso(S, T ) ∩ (U1 ∩ · · · ∩ Uk), if one 
exists, else ∅. This is especially useful when one wishes to find an isomorphism from one 
combinatorial structure to another, or to prove that they are non-isomorphic.

Algorithm 7.6 Search for a base and strong generating set of a subgroup of Sym(Ω).
Input: as in Algorithm 7.1, plus the assumption that U1 ∩ · · · ∩ Uk is a subgroup.
Output: a base and strong generating set of the subgroup U1 ∩ · · · ∩ Uk.

1: procedure SearchBSGS(S) � See Lemma 7.9.
2: (S, S) ← Refine(S, S) � Refine the given stacks.
3: case Approx(S, S) = {idΩ}:
4: return (EmptyBase, {idΩ}) � A BSGS for the trivial group.
5: case |Approx(S, S)| ≥ 2:
6: [S1, S1, . . . , St] ← Split(S, S) � See Remark 6.2.
7: (Base, X) ← SearchBSGS(S ‖S1) � Find BSGS for the stabiliser of S1.
8: Base ← [S1] ‖Base � Prepend S1 to the base for the stabiliser of S1.
9: for i ∈ {2, . . . , t} do

10: if Si /∈ S
〈X〉
j for any j ∈ {1, . . . , i − 1} then � Pruning.

11: X ← X ∪ SearchSingle(S ‖S1, S ‖Si) � Search for a coset rep.
12: return (Base, X)
13: procedure Refine(S, T ) � The Refine procedure from Algorithm 7.1.
14: procedure SearchSingle(S, T ) � The procedure from Remark 7.5.
15: return SearchBSGS(EmptyStack(Ω))
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7.2. Searching for a generating set of a subgroup

It is usually most efficient to compute with a permutation group via a base and strong 
generating set (BSGS). In the standard definition (see [2, p. 101]), a base for a subgroup 
G of Sym(Ω) is a list of points in Ω whose stabiliser in G is trivial. Here, we use a broader 
definition, where the list may contain any objects on which G acts.

In this section we present Algorithm 7.6, which, given subsets U1, . . . , Uk ⊆ Sym(Ω)
whose intersection is a subgroup, returns a base and strong generating set for U1∩· · ·∩Uk. 
The base is given as a list of labelled digraph stacks. This algorithm is derived from 
Algorithm 7.1: the first two cases simplify since Approx(S, S) is a subgroup, and the 
recursive case turns into a search for a stabiliser and coset representatives. Note that 
Algorithm 7.6 uses the partially-constructed generating set to prune the search on line 10. 
It thus usually performs a smaller search than does Algorithm 7.1 with the same input.

Remark 7.7. To obtain a base consisting of points in Ω, one can use the splitter from 
Definition 6.4: using its notation, Algorithm 7.6 returns a base [[Γα1 ], . . . , [Γαr

]]. For each 
α ∈ Ω, a permutation fixes [Γα] if and only if it fixes α, so a generating set is strong 
with respect to [[Γα1 ], . . . , [Γαr

]] if and only if it is strong with respect to [α1, . . . , αr].

Remark 7.8. Algorithm 7.6 is useful when searching for an intersection of cosets. Let the 
notation of Algorithm 7.6 hold, and suppose that each set Ui is a coset of a subgroup 
of Sym(Ω). We can use the SearchSingle procedure to find some g ∈ U1 ∩ · · · ∩ Uk, 
or to prove that no such element exists. In the former case, then for all i ∈ {1, . . . , k}, 
(fL,i, fL,i) is a refiner for the group Uig

−1 by Lemma 4.6. Therefore we may use Algo-
rithm 7.6 to search for a base and strong generating set of U1g

−1 ∩ · · · ∩ Ukg
−1, which 

in combination with g compactly describes U1 ∩ · · · ∩ Uk.

Lemma 7.9. Let the notation of Algorithm 7.6 hold. Then the SearchBSGS procedure, 
given S, terminates with a base and strong generating set of Aut(S) ∩ (U1 ∩ · · · ∩ Uk).

Proof. The SearchBSGS procedure first calls the Refine procedure to prune the 
search (see Lemma 7.3). This returns a pair of equal stacks, since it is given equal 
stacks, and each refiner is a pair of equal functions (see Lemma 4.4). That one of the 
conditions on either line 3 or line 5 is satisfied follows by Lemma 5.1(i). The procedure 
accordingly returns a trivial solution, or searches recursively.

The SearchBSGS procedure only differs significantly from the Search procedure 
of Algorithm 7.1 in its recursive step. Let Split(S, S) = [S1, S1, S2, . . . , St] as on line 6. 
Then Aut(S ‖S1) is the stabiliser of S1 in Aut(S) by Remark 3.1, and by Definition 6.1
and Remark 6.2, its right cosets in Aut(S) are the non-empty sets Iso(S ‖S1, S ‖Si) for 
i ∈ {2, . . . , t}. Analogous statements hold for the stabiliser Aut(S ‖S1)∩ (U1 ∩ · · · ∩Uk)
of S1 in Aut(S)∩ (U1 ∩ · · · ∩Uk), and for the sets Iso(S ‖S1, S ‖Si) ∩ (U1 ∩ · · · ∩Uk). It 
is thus possible to build a BSGS of Aut(S)∩ (U1 ∩ · · · ∩Uk) recursively from a BSGS of 
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the stabiliser of S1 in Aut(S)∩ (U1 ∩ · · · ∩Uk), along with representatives of a sufficient 
selection of the right cosets of the stabiliser, as is done in lines 7–11.

The validity of the recursion in the SearchBSGS procedure can be shown by induc-
tion on |Approx(Refine(S, S))|, as in the proof of Lemma 7.4. It follows by Remark 7.5
that, on line 11, the SearchSingle procedure returns the desired representatives of the 
sets Iso(S ‖S1, S ‖Si) ∩ (U1 ∩ · · · ∩ Uk). �

Theorem 7.10. Algorithm 7.6 is correct.

Proof. Set S = T = EmptyStack(Ω) in Lemma 7.9. �

8. Searching with a fixed sequence of left-hand stacks

In this section, we discuss a consequence of our definitions and the setup of our 
algorithms, which enables a significant performance optimisation, and which allows us 
to use a special kind of refiner. This idea was inspired by, and is closely related to, the 
R-base technique of Jeffrey Leon [12, Section 6] for partition backtrack search, although 
we present the idea quite differently.

Recall that Algorithms 7.1 and 7.6 are organised around a pair of labelled digraph 
stacks (the stacks are equal in the SearchBSGS procedure), with both stacks initially 
equal to EmptyStack(Ω). We observe that when each of these algorithms is executed 
with a particular input, then in each branch of the search, the left-hand stack is modified 
by appending the same sequence of stacks to it, up to the end of branch. (Note that 
different branches can have different lengths.)

This is because the stacks in Algorithms 7.1 and 7.6 are only modified by appending 
stacks produced by refiners and splitters, and because decisions about the progression of 
the algorithm are made according to the size of the value of the isomorphism approxima-
tor. By the definition of a refiner as a pair of functions of one variable (Definition 4.1), 
the left-hand stack returned by a refiner depends only on the left-hand stack it is given; 
by Definition 6.1(iii), the left-hand stack defined by a splitter depends only on the given 
left-hand stack; and by Definition 5.1(iii), the size of the value of an isomorphism approx-
imator is either zero, in which case the current branch immediately ends, or it depends 
only on the left-hand stack that is given.

Therefore we can store the new stacks that are appended to the left-hand stack as 
they are constructed, and simply recall them as they are needed later. This means that, 
on most occasions, when applying a refiner, we recall the value for the left stack, and 
compute only the value for the right-hand stack. This optimisation significantly improves 
the performance of the Refine procedure.
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8.1. Constructing and applying refiners via the fixed sequence of left-hand stacks

We saw in Lemmas 4.5 and 4.6 that any refiner for a non-empty set is derived from a 
function f from DigraphStacks(Ω) to itself satisfying f(Sg) = f(S)g for certain g ∈
Sym(Ω). In this section, we give an example that demonstrates a difficulty in satisfying 
this condition, and a general method for giving refiners that overcome this difficulty. We 
use such refiners for groups and cosets in our experiments.

Example 8.1. Let Ω = {1, . . . , 6} and G = 〈(1 2), (3 4), (5 6), (1 3 5)(2 4 6)〉, and let Γ be 
the labelled digraph on Ω without arcs where Label(1) = black, Label(2) = grey, and 
the remaining vertices have label white. Finally, define S = [Γ] and T = [Γ(1 3 5)(2 4 6)].

Suppose that we are searching for an intersection D of subsets of Sym(Ω), one of which 
is G, and suppose that Iso(S, T ) overestimates the solution. We wish to give a refiner 
(f, f) for G, where the function f takes into account that the elements of D respect the 
orbit structure of G.

Since D ⊆ Iso(S, T ), elements of D induce isomorphisms from S to T . In particular, 
if Fixed is a fixed-point approximator (see Definition 5.2), then each element of D maps 
the list Fixed(S) to the list Fixed(T ). For illustration, assume that Fixed(S) = [1, 2]
and Fixed(T ) = [3, 4], and let G[1,2] = 〈(3 4)(5 6)〉 and G[3,4] = 〈(1 2)(5 6)〉 denote the 
stabilisers of [1, 2] and [3, 4] in G, respectively. Therefore, since each element x ∈ D

maps [1, 2] to [3, 4] and is contained in G, it follows that x ∈ G[1,2] · h, where h is any 
permutation in G that maps [1, 2] to [3, 4], for instance h := (1 3 5)(2 4 6) ∈ G. This 
means that we can define f(S) and f(T ) in terms of the orbits of G[1,2] and G[3,4].

One option is to define f(S) = [ΓU ] as in Example 4.12, for the set of orbits U :=
{{1}, {2}, {3, 4}, {5, 6}} of G[1,2] on Ω, and to define f(T ) = [ΓV ] similarly for the set 
V := {{1, 2}, {3}, {4}, {5, 6}} of orbits of G[3,4] on Ω. This is valid, but not ideal, since a 
permutation could map [ΓU ] to [ΓV ] while mapping an orbit in U to any orbit of the same 
size in V. However, every element of G[1,2] · h maps the orbit O ∈ U to Oh. Therefore, 
this refiner does not eliminate some elements that, to us, are obviously not in D.

This is unsatisfactory, and so we would like to define f(S) = fU (S) as in Example 4.10
for some ordered list U of the orbits of G[1,2]. But then how should we order the orbits of 
G[3,4] in the corresponding way, to obtain a stack f(T ) such that D ⊆ Iso(f(S), f(T ))?

To address the problem discussed in Example 8.1, we use a technique similar to that 
of Leon [12]. In essence, we specify a refiner iteratively during search, when applying it 
to a new version of the left-hand stack. We can make choices as we do so (about the 
ordering of orbits, for example). Then, for all right-hand stacks that we encounter, we 
consult the choice made for the current left-hand stack, and remain consistent with that.

In more detail, we create such a refiner (f, f) for a subgroup G of Sym(Ω) as follows. 
Let Fixed be a fixed point approximator, and initially let Vi and Fi be empty lists for 
all i ∈ N0. We describe how to apply (f, f) to stacks (S, T ) of length i := |S| = |T |.
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If Vi is still empty, then we redefine Fi to be Fixed(S) and Vi to be a non-empty 
labelled digraph stack on Ω whose automorphism group contains GFi

, the stabiliser of 
Fi in G. For example, Vi could be a list of orbital graphs of GFi

on Ω, represented as 
labelled digraphs, or it could be the length-one stack [ΓU ] from Example 4.10, for some 
arbitrarily-ordered list U of the orbits of GFi

on Ω.
If Vi is no longer empty, then we have already applied the refiner to stacks of length i. 

Since a search has at most one left-hand stack of any particular length, this means that 
we have already seen the left-hand stack S, and defined Fi and Vi in terms of it.

The refiner gives f(S) = Vi and either f(T ) = V a
i (if Fixed(S)a = Fixed(T ), for 

some a ∈ G) or f(T ) = EmptyStack(Ω). Note that, by Definition 5.2(ii), if no such 
element a exists, then S and T are not isomorphic via G, and so there are no solutions 
in the current branch. Therefore the algorithm should backtrack.

The mathematical foundation of this kind of refiner is given in Lemma 8.2. The 
notation in this lemma corresponds to the notation of the preceding paragraphs.

We may use this lemma with Lemma 4.6 to give refiners for cosets of subgroups.

Lemma 8.2. Let G ≤ Sym(Ω) and let Fixed be a fixed-point approximator. For all i ∈ N0, 
let Vi ∈ DigraphStacks(Ω) be a labelled digraph stack on Ω, and let Fi be a list of points 
in Ω whose stabiliser in G is a subgroup of Aut(Vi).

We define a function f from DigraphStacks(Ω) to itself as follows. For each S ∈
DigraphStacks(Ω), let

f(S) =
{

(V|S|)a if F|S|
a = Fixed(S) for some a ∈ G,

EmptyStack(Ω) if no such element a ∈ G exists.

Then (f, f) is a refiner for G.

Proof. Note that f is well-defined: if S ∈ DigraphStacks(Ω) and a, b ∈ G both map 
F|S| to Fixed(S), then ab−1 stabilises F|S|, and so ab−1 ∈ Aut

(
V|S|

)
by assumption; 

therefore (V|S|)a = (V|S|)b.
Let S ∈ DigraphStacks(Ω) and g ∈ G. By Lemma 4.5, it suffices to show that 

f(Sg) = f(S)g. There exists an element a ∈ G mapping F|S| to Fixed(S) if and only 
if there exists an element of b ∈ G mapping F|Sg| = F|S| to Fixed(S), since g maps 
Fixed(S) to Fixed(Sg) by Definition 5.2(ii). In that case that no such a and b exist, then 
f(Sg) = EmptyStack(Ω) = f(S)g. Otherwise f(S) = (V|S|)a and f(Sg) = (V|S|)b. In 
this case, agb−1 fixed F|S| pointwise, and so agb−1 ∈ Aut

(
V|S|

)
by assumption. Therefore

f(S)g = (V|S|)ag = (V|S|)b = (V|Sg|)b = f(Sg). �
9. Experiments

In this section, we provide experimental data comparing the behaviour of our algo-
rithms against partition backtrack, in order to highlight the potential of our techniques. 
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We repeat the experiments of [8, Section 6], which demonstrated improvements from 
using orbital graphs, and we also investigate some additional challenging problems. In 
many cases we observe a significant advancement with our new techniques. We decided 
not to investigate classes of problems where partition backtrack already performs very 
well, or problems where we would expect all techniques (including ours) to perform badly. 
Instead we have chosen problems that are interesting and important in their own right, 
including ones that we expect to be hard for many search techniques.

At the time of writing, we have focused on the mathematical theory of our algorithms, 
but not on the speed of our implementations. Therefore, we only analyse the size of the 
search required by an algorithm to solve a problem, and not the time required. We define 
a search node of a search to be an instance of the main searching procedure being called 
recursively during its execution; the size of a search is then its number of search nodes. 
If an algorithm requires zero search nodes to solve a problem, then it solves the problem 
without entering recursion, which in our situation implies that the problem has either 
no solutions, or exactly one.

The size of a search should depend only on the mathematical foundation of the algo-
rithm, rather than on the proficiency of the programmer who implements it, and so it 
allows a fair basis for comparisons. That said, we expect that where our algorithms re-
quire significantly smaller searches, then with an optimised implementation, the increased 
time spent at each node will be out-weighed by the smaller number of nodes in total, 
giving faster searches than partition backtrack. This is because, in general, a backtrack 
search algorithm spends time at each search node to prune the search tree and organise 
the search. The computations at each node of our algorithms are largely digraph-based, 
and the very high performance of digraph-based computer programs such as bliss [10]
and nauty [13] suggests that, in practice, these kinds of computations should be cheap.

For the problems that we investigate in Sections 9.1–9.3, we compare the following 
techniques:

(i) Leon: Standard partition backtrack search, as described by Jeffrey Leon [11,12].
(ii) Orbital: Partition backtrack search with orbital graph refiners, as in [8].
(iii) Strong: Backtrack search with labelled digraphs, using the isomorphism and fixed-

point approximators from Definition 5.9 and the splitter from Definition 6.4.
(iv) Full: Backtrack search with labelled digraphs, using the isomorphism and fixed-

point approximators from Definition 5.4 and the splitter from Definition 6.4.

The Leon technique is roughly the same as backtrack search with labelled digraphs, 
where the digraphs are not allowed to have arcs. The Orbital technique is roughly the 
same as backtrack search with labelled digraphs using the ‘weak equitable approximation’ 
isomorphism and fixed-point approximators from Definition 5.10.

The Strong technique considers all labelled digraphs in the stack simultaneously to 
make its approximations, while the Full technique computes isomorphisms and fixed 
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points exactly, rather than approximating them, and so in principle it is the most ex-
pensive of the four methods.

We require refiners for groups given by generators, for cosets of such groups, for set 
stabilisers, and for unordered partition stabilisers. We describe the refiners for set and 
unordered partition stabilisers in Section 9.1. For Leon we use the group and coset 
refiner described in [11]. For Orbital we use the DeepOrbital group and coset refiner 
from [8], although we get similar results for all the refiners described in that paper. For 
the Strong and Full techniques, we use refiners of the kind described in Section 8.1
for groups and cosets, using orbits and orbital graphs. These algorithms are similar to
DeepOrbital, except they return the created digraphs instead of filtering them internally. 
For Strong and Full, we use the splitter given in Definition 6.4.

We performed our experiments using the GraphBacktracking [6] and Back-

trackKit [7] packages for GAP [3]. BacktrackKit provides a simple implementation 
of the algorithms in [8,11,12], and provides a base for GraphBacktracking. We note 
that where we reproduce experiments from [8], we produce the same sized searches.

9.1. Set stabilisers and partition stabilisers in grid groups

We first explore the behaviour of the four techniques on stabiliser problems in grid 
groups. This setting was previously considered in [8, Section 6.1], and as mentioned there, 
these kinds of problems arise in numerous real-world situations.

Definition 9.1 (Grid group [8, Definition 36]). Let n ∈ N and Ω = {1, . . . , n}. The direct 
product Sym(Ω)×Sym(Ω) acts faithfully on the Cartesian product Ω ×Ω via (α, β)(g,h) =
(αg, βh) for all α, β ∈ Ω and g, h ∈ Sym(Ω). The n × n grid group is the image of the 
embedding of Sym(Ω) × Sym(Ω) into Sym(Ω × Ω) defined by this action.

Let n ∈ N and Ω = {1, . . . , n}, and let G ≤ Sym(Ω × Ω) be the n × n grid group. If 
we consider Ω × Ω to be an n × n grid, where the sets of the form {(α, β) : β ∈ Ω} and 
{(β, α) : β ∈ Ω} for each α ∈ Ω are the rows and columns of the grid, respectively, then 
G is the subgroup of Sym(Ω × Ω) that preserves the set of rows and the set of columns.

We repeat the experiments in [8], and add an unordered partition stabiliser problem:

(i) Compute the stabiliser in G of a subset of Ω × Ω of size n2/2�.
(ii) Compute the stabiliser in G of a subset of Ω ×Ω with n/2� entries in each grid-row.
(iii) If 2 |n, then compute the stabiliser in G of an unordered partition of Ω × Ω that 

has two cells, each of size n2/2.

As in [8, Section 6.1], we compute with the n ×n grid group as a subgroup of Sn2 , and 
the algorithms have no prior knowledge of the grid structure that the group preserves.

For Leon and Orbital, we refine for a set stabiliser as in [11]. For Strong and
Full, our refiner for set stabiliser is the one from Example 4.10. The stabiliser in Sn2
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Table 9.2
Search sizes for 50 instances of Problems (i) and (ii) in the n × n grid group.

n Leon Orbital,
Strong, Full

Leon Orbital,
Strong, Full

Median Median Zero% Median Median Zero%
3 4 2 22 7 2 0
4 8 0 50 8 2 0
5 16 2 44 13 2 0
6 23 0 68 34 2 20
7 34 0 74 41 0 54
8 46 0 90 92 0 68
9 58 0 92 108 0 54
10 75 0 88 290 0 86
11 107 0 94 262 0 90
12 124 0 100 1085 0 92
13 155 0 100 788 0 98
14 185 0 96 21774 0 96
15 216 0 98 2471 0 100

Problem (i) Problem (ii)

Table 9.3
Search sizes for 50 instances of Problem (iii) in the n × n grid group.

n Leon Orbital Strong, Full

Median Median Median Zero%
4 16 16 5 24
6 44 36 0 66
8 82 64 0 82
10 129 100 0 88
12 206 144 0 96
14 317 196 0 100
16 504 256 0 100
18 664 324 0 98

of an unordered partition with two parts of size n2/2 is a subgroup isomorphic to the 
wreath product Sn2/2 � S2. For each technique, for an unordered partition stabiliser, we 
directly use the group refiner for this subgroup.

Tables 9.2 and 9.3 show the results concerning the search size required to solve 50 
random problems each of types (i), (ii), and (iii). An entry in the ‘Zero%’ column shows 
the percentage of problems that an algorithm solved with a search of size zero. These 
columns are omitted when they are all-zero.

In [8, Section 6.1], the Orbital algorithm was much faster than the classical Leon

algorithm at solving problems of types (i) and (ii). In Table 9.2, we see why: Orbital

typically requires no search for these problems. Leon used a total of 65,834 nodes to 
solve all problems in Problem (i), and 37,882,616 nodes for Problem (ii), while Orbital

required 567 for Problem (i) and 1073 for Problem (ii). The same numbers of nodes were 
also required for both Strong and Full, since there is no possible improvement.

In Table 9.3 for Problem (iii), however, we clearly see the benefits of our new tech-
niques. Partition backtrack – Leon and Orbital – takes an increasing number of search 
nodes, with 140,177 nodes required for Leon and 57,120 nodes for Orbital to solve all 
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Fig. 9.4. Cumulative nodes required to intersect primitive (but not 2-transitive) groups with wreath products 
of symmetric groups, for all problems with n ∈ {6, . . . , k}.

instances. But Strong is powerful enough in almost all cases to solve these same prob-
lems without search, requiring only 450 nodes to solve all problem instances.

9.2. Intersections of primitive groups with symmetric wreath products

Next, as in [8, Section 6.2], we consider intersections of primitive groups with wreath 
products of symmetric groups. To construct these problems, we use the primitive groups 
library, which is included in the PrimGrp [5] package for GAP.

For a given composite n ∈ {6, . . . , 80}, we create the following problems: for each 
primitive subgroup G ≤ Sn that is neither Sn nor the natural alternating subgroup of 
Sn, and for each proper divisor d of n, we construct the wreath product Sn/d � Sd as a 
subgroup of Sn, which we then conjugate by a randomly chosen element of Sn. Finally, 
we use each algorithm in turn to compute the intersection of G with the conjugated 
wreath product. We create 50 such intersection problems for each n, G, and d.

For each k ∈ {6, . . . , 80}, we record the cumulative number of search nodes that each 
technique needs to solve all of the intersection problems for all composite n ∈ {6, . . . , k}. 
We show these cumulative totals in Figs. 9.4 and 9.5, separating the groups that are 2-
transitive from those that are primitive but not 2-transitive, as in [8, Section 6.2]. Note 
that the number of problems increases with the numbers of divisors of n and primitive 
groups of degree n; this explains the step-like structure in these figures.

For the primitive but not 2-transitive groups, the total number of search nodes re-
quired by the Leon algorithm is 3,239,403. The Orbital algorithm reduces this total 
search size to 2,079,356, and the cumulative search sizes for Strong (with 3,248 nodes) 
and Full (with 2,140 nodes) are even smaller.
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Fig. 9.5. Cumulative nodes required to intersect 2-transitive groups with wreath products of symmetric 
groups, for all problems with n ∈ {6, . . . , k}. The line for Full is omitted, since at this scale, it is indistin-
guishable from the line for Strong.

This huge reduction happens because the Strong and Full algorithms solve almost 
every problem without search. Out of 40,150 experiments, the Strong algorithm re-
quired search for only 703, and the Full algorithm required search for just 654. On the 
other hand, the Leon and Orbital algorithms required search for every problem.

For the intersection problems involving groups that are at least 2-transitive, the im-
provement of the new techniques over the partition backtrack algorithms is much smaller, 
and all of the algorithms required a non-zero search size to solve every problem. This 
was to be expected: a 2-transitive group has a unique orbital graph, which is a complete 
digraph.

9.3. Intersections of cosets of intransitive groups

In this section, we go beyond the experiments of [8, Section 6], with a problem that we 
expect to be difficult for all search techniques: intersecting cosets of intransitive groups 
that have identical orbits, and where all orbits have the same size.

More precisely, we intersect right cosets of subdirect products of transitive groups of 
equal degree. Given k, n ∈ N, we randomly choose k transitive subgroups of Sn from 
the transitive groups library TransGrp [4], each of which we conjugate by a random 
element of Sn, and we create their direct product, G, which we regard as a subgroup 
of Skn. Then, we randomly sample elements of G until the subgroup that they generate 
is a subdirect product of G. If this subdirect product is equal to G, then we abandon 
the process and start again. Otherwise, the result is a generating set for what we call a 
proper (k, n)-subdirect product.
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Table 9.6
Search sizes for (k, n)-subdirect product coset intersection problems, where for each n, we ran 50 experiments 
for each k ∈ {2, . . . , 10}.
n Leon Orbital Strong

Mean Median Mean Median Zero% Mean Median Zero%
2 3 2 2 2 14 2 2 14
3 1418 7 19 0 58 19 0 59
4 1250 12 71 0 69 62 0 70
5 37924 30 15576 10 14 8803 0 54
6 584 12 254 6 36 139 0 86
7 53612 28 43555 14 0 8982 0 70
8 1142 8 997 8 15 4 0 98
9 6547 9 5562 9 2 7 0 95
10 8350 10 6959 10 1 7 0 97

Table 9.7
Search sizes for 50 (k, n)-subdirect product coset intersection problems.

k n Leon Orbital Strong

Mean Median Mean Median Zero% Mean Median Zero%
4 5 13683 30 6356 11 8 6176 5 40
4 6 376 18 335 6 8 87 0 76
4 7 8612 49 7065 43 0 6494 0 54
4 8 1133 8 365 8 14 0 0 100
4 9 1947 9 621 9 0 0 0 96
4 10 458 10 410 10 2 0 0 98

8 5 119561 130 42885 30 17 36888 0 58
8 6 70 12 25 0 56 67 0 98
8 7 19731 49 11154 43 0 167 0 86
8 8 209 8 58 8 12 0 0 100
8 9 152 9 144 9 2 0 0 100
8 10 138 10 64 10 2 0 0 100

In our experiments, for various k, n ∈ N, we explore the search space required to 
determine whether or not the intersections of pairs of right cosets of different (k, n)-
subdirect products are empty. To make the problems as hard as possible, we choose 
coset representatives that preserve the orbit structure of the (k, n)-subdirect product.

We performed 50 random instances for each pair (k, n), for all k, n ∈ {2, . . . , 10}, and 
we show a representative sample of this data in Tables 9.6 and 9.7 and Fig. 9.8. Table 9.6
shows results for each n for all k combined, and Table 9.7 gives a more in-depth view 
for two values of k. The tables omit data for the Full algorithm, because it was mostly 
identical to the data for the Strong algorithm.

The Strong algorithm solved a large proportion of problems with zero search. As n
and k increase, we find that Strong is also able to solve almost all problems without 
search, and the remaining problems with very little search. The only problems where
Strong does not perform significantly better are those involving orbits of size 2 (n = 2). 
This is not surprising as there are very few possible orbital graphs for such groups. We 
note that the problems with n = 5 and 7 seem particularly difficult. This is because 
transitive groups of prime degree are primitive, and sometimes even 2-transitive, in 
which case they do not have useful orbital graphs.
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Fig. 9.8. Search sizes for 50 (7,7)-subdirect product coset intersection problem instances. The data for Full

is almost identical to the data for Strong, and is omitted.

On the other hand, Orbital solved a lot fewer problems without search, and Leon

solved none in this way. Although the relatively low medians show that all of the algo-
rithms performed quite small searches for many of the problems, we see a much starker 
difference in the mean search sizes. These means are typically dominated by a few prob-
lems; see Fig. 9.8.

To give a more complete picture of how the algorithms perform, Fig. 9.8 shows the 
search sizes for all 50 intersections problem that we considered for n = k = 7, sorted by 
difficulty. The data that we collected in this case was fairly typical. Fig. 9.8 shows that
Strong solves almost all problems with very little or no search, and it only requires 
more than 50 search nodes for the three hardest problems. On the other hand, Leon and
Orbital need more than 50 nodes for the 18 hardest problems. All algorithms found 
around 30% of the (randomly generated) problems easy to solve.

10. Conclusions and directions for further work

We have discussed a new search technique for a large range of group and coset problems 
in Sym(Ω), building on the partition backtrack framework of Leon [11,12], but using 
stacks of labelled digraphs instead of ordered partitions.

Our new algorithms often reduce problems that previously involved searches of hun-
dreds of thousands of nodes into problems that require no search, and can instead be 
solved by applying strong equitable approximation to a pair of stacks. There already 
exists a significant body of work on efficiently implementing equitable partitioning and 
automorphism finding on digraphs [10,13], which we believe can be generalised to work 
incrementally with labelled digraph stacks that grow in length. We did not yet concern 
ourselves with the time complexity or speed of our algorithms in this paper, nor did we 



C. Jefferson et al. / Journal of Algebra 585 (2021) 723–758 757
discuss their implementation details. However, we do intend for our algorithms to be 
practical, and we expect that with sufficient further development into their implemen-
tations, our algorithms should perform competitively against, and even beat, partition 
backtrack for many classes of problems. This requires optimising the implementation 
of the algorithms that we have presented here. In future work, we plan to show how 
the algorithms described in this paper can be implemented efficiently, and compare the 
speed of various methods for hard search problems. In particular, we aim for a better 
understanding of when partition backtrack is already the best method available, and 
when it is worth using our methods. Further, earlier work which used orbital graphs [8]
showed that there are often significant practical benefits to using only some of the pos-
sible orbital graphs in a problem, rather than all of them. We will investigate whether a 
similar effect occurs in our methods.

Another direction of research is the development and analysis of new types of refiners, 
along with an extension of our methods. For example, we have seen some refiners in our 
examples that perfectly capture all the information about the set that we search for, and 
it is worth investigating this more. See [9, Section 5.1] for first steps in this direction. We 
could also allow more substantial changes to the digraphs, such as adding new vertices 
outside of Ω. One obvious major area not addressed in this paper is normaliser and group 
conjugacy problems. These problems, as well as a concept for the quality of refiners are 
addressed in ongoing work that builds on the present paper.

While the step from ordered partitions to labelled digraphs already adds some diffi-
culty, we still think that it is worth considering even more intricate structures. Why not 
generalise our ideas to stacks of more general combinatorial structures defined on a set 
Ω? The definitions of a splitter, of an isomorphism approximator, and of a refiner were 
essentially independent of the notion of a labelled digraph, and so they – and therefore 
the algorithms – could work for more general objects around which a search method 
could be organised.
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