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Abstract

Let G be a permutation group, acting on a set §2 of size n. A subset B of §2 is a base
for G if the pointwise stabilizer G ) is trivial. Let b(G) be the minimal size of a base
for G. A subgroup G of Sym(n) is large base if there exist integers m and r > 1 such
that Alt(m)” < G < Sym(m) : Sym(r), where the action of Sym(m) is on k-element
subsets of {1, ..., m} and the wreath product acts with product action. In this paper
we prove that if G is primitive and not large base, then either G is the Mathieu group
Mp4 in its natural action on 24 points, or b(G) < [logn] + 1. Furthermore, we show
that there are infinitely many primitive groups G that are not large base for which
b(G) > logn + 1, so our bound is optimal.

Keywords Primitive groups - Base size - Classical groups - Simple groups

Mathematics Subject Classification 20B15 - 20B10

1 Introduction

Let the permutation group G act on a set 2 of size n. A subset B of £2 is a base for G
if the pointwise stabilizer G, is trivial. Let b(G, §2), or just b(G) when the meaning
is clear, be the minimal size of a base for G.

In the 19th century, a problem that attracted a lot of attention was that of bounding
the order of a finite primitive permutation group. It is easy to show that |G| < n?(©@),
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so one can find an upper bound on the order of a permutation group by bounding the
minimal base size. One of the earliest results in this direction is a theorem of Bochert
[2] from 1889, which states that if G is a primitive permutation group of degree n not
containing the alternating group Alt(n), then b(G) < n/2.

Bases also arise naturally in other contexts, which also benefit from good upper
bounds on base size. For example, they have been used extensively in the computational
study of finite permutation groups, where the problem of calculating base sizes has
important practical applications. The knowledge of how an element g of G acts on
a base B completely determine the action of g on 2, so once a base and a related
data-structure called a strong generating set are known for G, we may store elements
of G as |B|-tuples, rather than as permutations, of £2.

A permutation group G is large base if there exist integers m and » > 1 such that

Alt(m)" < G < Sym(m) : Sym(r),

where the action of Sym(m) is on k-element subsets of {1, ..., m} for some k, and if
r > 1 then G has product action. Note that this includes the natural actions of Alt(n)
and Sym(n).

Using the Classification of Finite Simple Groups (CFSG), and building on earlier
work by Cameron [12], in 1984 Liebeck [20] proved the remarkable result that if G is
a primitive group of degree »n that is not large base, then b(G) < 9log n. (In this paper,
all logarithms are to base 2, unless otherwise indicated.) Much more recently, Liebeck,
Halasi and Mar6ti showed in [18] that for most non-large-base primitive groups G,
the base size b(G) < 2|logn] + 26; the second author and Siccha then noted in [22]
that this bound applies to all primitive groups that are not large base.

The main result of this paper is as follows.

Theorem 1 Let G be a primitive permutation group of degree n. If G is not large base,
then either G is the Mathieu group Myy in its S-transitive action of degree 24, or
b(G) < [logn] + 1. Furthermore, there are infinitely many such groups G for which
b(G) > logn + 1.

If G is My in its S-transitive action of degree 24 then b(G) = 7. In Theorem 5 we
shall completely classify the non-large-base primitive groups G for which the base
size b(G) > logn + 1: there is one infinite family, and three Mathieu groups.

Our notation for groups is generally standard: for the orthogonal groups, by GO (¢)
we denote the full isometry group of our standard quadratic form of type ¢, as given
in Definition 4.

Definition 1 Let G be almost simple with socle G, a classical group with natural
module V over a field of characteristic p. A subgroup H of G not containing Gy is a
subspace subgroup if for each maximal subgroup M of G containing H N G one of
the following holds.

1. M = Gy for some proper nonzero subspace U of V, where U is either totally
singular, or non-degenerate, or, if G is orthogonal and p = 2, a nonsingular 1-
space. If Go = PSL;(g) then we shall consider all subspaces of V to be totally
singular.
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Base sizes of primitive permutation groups

2. Go = Sp,(27) and M N Gy = GOT(2/).

A transitive action of G is a subspace action if the point stabiliser is a subspace
subgroup of G.

Definition 2 Let G be almost simple with socle Gy. A transitive action of G on £2
is standard if, up to equivalence of actions, one of the following holds, and is non-
standard otherwise.

1. Go = Alt(¢) and £2 is an orbit of subsets or partitions of {1, ..., £};
2. G is a classical group in a subspace action.

Cameron and Kantor conjectured in [12,13] that there exists an absolute constant ¢
such that if G is almost simple with a faithful primitive non-standard action on a finite
set £2 then b(G) < c.In [9, Theorem 1.3], Liebeck and Shalev proved this conjecture,
but without specifying the constant c. Later, in a series of papers [5,7,10], Burness and
others proved that b(G) < 7, with equality if and only if G is My in its 5-transitive
action of degree 24; that is, the Cameron-Kantor conjecture is true with the constant
c="1.

In stark contrast with the non-standard case, the base size of a group with a standard
action can be arbitrarily large. The bulk of this article therefore concerns such actions.
For many of the standard actions we shall use results due to Halasi, Liebeck and Maréti
[18], however we sometimes require more precise bounds.

Notation 3 Let G be a classical group, with natural module V. We shall write S(G, k)
for a G-orbit of totally singular subspaces of V of dimension k, and N (G, k) for a
G-orbit of non-degenerate or non-singular subspaces of V of dimension k. For the
orthogonal groups, let W be a space in the orbit if dk is even, and the orthogonal
complement of such a space if dk is odd. Then we write N (G, k), with € € {+, —},
to indicate that the restriction of the form to W is of type €: if d is odd then the symbol
N (G, k) is not used, since k or d — k is even.

The next result is a key tool in the proof of Theorem 1, but may be of independent
interest. It will follow immediately from the results in Sect. 2: bounds for smaller
dimensions may be found there.

Theorem 2 Let G be one of PGL4(g), PGUy4(g), PSp,(g), or PGOZ(q). Let k €
(1,2}, and let 2 be S(G, k) or N¢(G, k), with € either +, —, or blank.

1. Assume that d > 5, that G is PGL4(q), and that k = 2. Then b(G) < [d/2] + 2.
2. Assumethatd > 3, that G isPGU4(q) orPSp,(q), andthatk = 1. Then b(G) < d.
3. Assume that d > 6, that G is PGO;(q), and thatk = 1. Then b(G) =d — 1.

4. Assume that d > 7, that G is not PGL4(q), and that k = 2. Then b(G) < [d/2].

Additionally, if q is even, d > 6, and 2 is the right coset space of GOj(q) in
G = Sp,(q), then b(G) = d.

We shall prove this result by giving explicit bases of the stated size. These bounds
are very similar to those proved by Burness, Guralnick and Saxl in [8] for algebraic
groups, although we consider the full projective isometry group. Unfortunately we
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were not able to directly transfer many of their proofs over to the finite case, but we
have taken some inspiration from their arguments.

We notice in passing that the value of b(G, §2) for £2 the right coset space of
GOj (g) in G = Sp,(g) is only one less than the value of the largest irredundant
base size for this action, as proved in [16]: in general these two quantities can be very
different.

2 Explicit bases for some subspace actions

Let G be a finite almost simple classical group with natural module V. In this section
we present explicit bases for the action of G on a G-orbit of totally singular, non-
degenerate, or non-singular one- or two-dimensional subspaces of V, and for the
action of Sp,(g) on the right cosets of GOjE (g), with g even.

Definition4 LetF = qu in the unitary case, and F = [F, otherwise, and let o be the
automorphism of I mapping x +> x9. Write F* for the non-zero elements of TF.
We fix our standard classical forms and bases on V = F“. Our standard basis for

GL,4(q) willbe (vy, ..., vg).Ifd = 2a then our standard unitary and symplectic forms
B have basis (e, ..., €4, f1, - - ., fa), Whilst our standard unitary form ford = 2a+1
has basis (e1, ..., eq, f1,..., fa, x). Inboth cases, for all i and j we set B(e;, ;) =

B(fi, fj) = 0, B(e;, fj) = 6;,j (the Kronecker 8), B(e;, x) = B(fi,x) = 0, and
B(x,x)=1.
Our standard quadratic form Q, with symmetric bilinear form B, has basis

(e1y.--veas f1o vy fa) ifd = 2aand Q is of + type,
(ety.--veas f1s--vys far,x,y) ifd =2a+2and Qis of — type,
(e1y.-eveas fisonvs farX) ifd =2a+1,

where for all i and j we set Q(e;) = Q(fi) = 0, B(e;, fj) = 8i,j, Bei,x) =
B(fi,x) = B(ei,y) = B(fi,y) =0, Q(x) = B(x,y) = 1 and Q(y) = ¢, where
X2 + X + ¢ e F[X] is irreducible. We will work, at times, with orthogonal groups of
odd dimension in characteristic two, and this is our standard form in this case as well:
see, for example, [23, p139] for more information.

A pair (u,v) of vectors in V is a hyperbolic pair it B(u,u) = B(v,v) = 0,
B(u,v) =1, and (in the orthogonal case) Q(u) = Q(v) = 0.

We now collect a pair of elementary lemmas. The first two parts of the following
are well known, and the third is easy. By the support of a vector v, denoted Supp(v),
we mean the set of basis vectors for which the coefficient is nonzero.

Lemma1l Let W = IE‘Z with basis wi, ..., wq, let H = GL4(q), and let the set
A= {{wy), ..., (wa)}

1. Hyy is a group of diagonal matrices, and is trivial when g = 2.

2. Forall p = ((1,..., ld) € (Fj)d, let A(w) = AU {{miwy + -+ + pawa)}.
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3. Let T = (u,v) < W, and let g € H be such that T® = T. If there exists
an s € Supp(v) such that for all t € Supp(u), the vector s ¢ Supp(tg), then

() = (u).
In the presence of a non-degenerate form, we can make stronger statements.

Lemma2 Let B be a non-degenerate sesquilinear form on V.= F?, withd > 2. Let
u,v € V be such that (u, v) is non-degenerate, and let g be an isometry of V such
that ug = au for some a € F*.

1. Assume thatvg = v, for some B € F*. If (u, v, w) are such that0 # w € (u, v)*,
and g stabilises (y1u+y2v+ y3w) for some y; € Fwithy1y3 # 0, then wg = aqw.
Furthermore, if y» # Othen 8 = o, and if, in addition, B(u, v) # Othena = a™9.

2. Assume instead that B is symmetric, and that (u, v) are a hyperbolic pair. If the
vector vg € (u, v), then vg = a~ .

Proof (1). Since (u, v) is non-degenerate, the matrix g preserves the decomposition

V = (u, v) ® (u, v)*. Fix a basis {w = w3, wy, ..., wg} of (u, v). Then there exist

A3, ..., Ag such that wg = Z;i=3 Ajw;. Furthermore, there exists u € [F; such that

d
w4 y2v + y3w) = (Yiu + y2v + y3w) g = yrau + y26v + y3 (Z Mwi) .
i=3

Hence u = o = Az and A; = 0 for 4 < i < d. Furthermore, if y» # 0 then 8 = «.
The final claim is clear.

(2). Let vg = Bu + yv. From 1 = B(u,v) = B(ug,vg) = ay, we deduce that
y =a~ ! #0. Then

0=0(W) =0(vg) = 0(Bu+yv) =By

implies that 8 = 0. O

2.1 Totally singular subspaces

In this subsection we consider the unitary, symplectic and orthogonal groups acting
on S(G, k) for k € {1, 2}, where S(G, k) is as in Notation 3. We shall use without
further comment the fact that the trace map from F > to Fy, given by tr(a) = o + 7,
is surjective.

Lemma3 Let G be PGU,(q), PSp,(q), PGOZ (q), withd > 5if G is orthogonal, and
d > 3 otherwise, and let 2 = S(G, 1). Then the set B in Table 1 is a base for the
action of G on §2. In particular, b(G) < d and if G is orthogonal then b(G) < d — 1.

Proof Let H = GU,(q), Sp,(q), or GO%(q). First let 13 be one of the sets listed in
Table 1. A straightforward calculation shows that each subspace in B is singular, so
B C £2. Let g € H). We shall show that g is scalar, from which the result will
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Table 1 Bases for S(G, 1)

Let Vi = {ej +¢;), Wi = (e1 + fi), and T = (—ej + f1 +x)

G B Comments
PGU2q+1(q) {{er), (f1). Vi, Wi, {e1 + nf1 +x) | tr(p) = —1
2<i<a}
PGU2,4(q), PSpa, () {len), (f1). Vi, Wi |12 <i <a}
PGO3, (9) {ter), (f1), Vi W; | 2 < i < a,
2<j=<a-1}
PGO24+1(q) {ler), (f1), Vi, W;, T 12 <i < a,
2<j<a-1j}
PGO,, 1, (9) {{en).{f1). Vi, Wj. (=Cer + f1 + y) ¢ from Definition 4

T|2<i<a2=<j<a-1}

follow. To do so, we shall repeatedly apply Lemma 2(1), with (u, v, w) set to be equal
to various triples of vectors.

For PGU3(g) it suffices to apply Lemma 2(1) to (e, f1, x). So we can assume that
d > 4. Apply Lemma 2(1), first to (e1, f1, ¢;) and then to (e1, f1, f;) to see that there
exists & € [F such that

2<j<a if H is GUy4(g) or Sp,(q),
2 < j <a—1if H is orthogonal.

ey

eig=ae, fig=af;, forl <i <aand
Now, B(e1g, f1g) = 1 yields

fig=a /1. 2

For PGUj,11(g) the result follows by applying Lemma 2(1) to (eg, f1, x). For
PGU».(g),PSp,,(g) and PGO;‘a (g9), we deduce from B(ezg, fg) = 1 thatae = a9,
hence if G is not orthogonal then g is scalar.

For PGO»,+1(q), applying Lemma 2(1) to (e, fi, x) shows that xg = ax = +x.
Similarly, for PGOz_ﬁz(q), applying Lemma 2(1) to both (e1, f1,x) and (e1, f1,y)
yields xg = ax = £x and yg = oy. Combining these with (1) and (2), we deduce
that if H is orthogonal then g stabilizes (e,, f,)*, and so stabilizes (e,, f,). Then
Lemma 2(2) shows that f,g = « f,, so g is scalar. O

Lemma4 Let G = PGL;(q) and let 2 = S(G, 2). Then the set BB in Table 2 is a base
for the action of G on S2. In particular b(G) < f%] +2whend > 5, and b(G) <5
when d = 4.

Proof Let g € GL4(g)(B): we shall show that g is scalar. The arguments for d = 4 are
similar to, but easier than, those that follow, soletd > 5,andlet X = X1 ®---®X,_1.

Then g stabilises Y1 N X = (v +v4 + - - - + v2,—2). Hence there exists o« € [, such
that

njg=av;, forl<j<a-1
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Furthermore, g stabilises X1 N Y, = (v1), and hence vig = Bv; for some B € .
Now, this and the fact that g stabilizes X, & --- & X, = (v3, V4, ..., V2g—1, V24)
means that we may apply Lemma 1(3), with the vectors u = vy +v3 + - -+ 4+ vag—1,
V=114 v4+ -+ V2, and s = vy to deduce that

;18 = B, forl <i <a.

Now, vgg € (vg—1, vgq) if d = 2a is even (and vyg = Bv, otherwise), so once again
applying Lemma 1(3), this time with 7' = Y5, u = v3 4+ va,—2 + vg and s = v yields
(u)® = (u), soa = B and g is scalar. O

Lemma5 Let G € {PGUy4(q), PSp,(q), PGO}(q)} withd > 4, andd > 7 if G is
orthogonal, let 2 = S(G,2) and let b = b(G). Then the set B in Table 2 is a base
for the action of G on §2. In particular, if d > 7 then b < f%], if G = PGUy(q) then
b <5, whilst otherwise, ifd < 6 then b < 4.

Proof The arguments for d < 6 are similar to, but more straightforward than, those
that follow, so we shall assume that d > 7, so thata = [d/2] > 4.

Let H be GUy(q), Spy(q) or GO(g), and let g € Hp). It is straightforward to
verify that B C £2. Since Vl.g = V; fori € {l, 2}, there exist «;, Bi, yi, i € F such
that

e1g = aje; +azer, exg = Preg + Poren 3)
fig=nifi+yrafe, Le=8f1+8f.

Let A be as in Table 2, and let X = (A). We shall first show that
eig=are; and fig=pofi fori={1,3,4,....,a—1}, exg=prer, frg=a1f2. (4)

LetU = Vi @ Vs, and let W = UL, so that W& = W.For3 <i < a — 1, the
element g stabilises U; := (Vi, Vo, W;), and so stabilises U; N W = (e;, fi). Then
Lemma 1(3), withu = e1 +¢;, v = ex — f1 + fi, and s = f] shows that there exists
n € Fsuch that (e1 +e;)g = n(e; +e;) = ajer + azer + e; g, where the last equality
holds by (3). Hence (4) holds for ¢; for i # 2. Similarly, for 3 < i < a — 1, there
exist 17, p € F such that

(e2—fi+ fidg=nler+e)+plea— fi+ fi)
= prer + ez —vif1 — 2 fo+ fig.

Equating coefficients, we deduce from f;g € (e;, f;) that y» = 0 and B> = y1, so
that f1g = B> f1, and also deduce that fjg = Bie; + Bofi for3 <i < a — 1. For
i € {1,2}, let A; = (e;, f;). Then A{ = Ay, so g stabilises A{ N U = Ay, and
consequently stabilizes Vi N Ay = (e2) and V, N Ay = (f>), and so B = §1 = 0.
Finally, B(e1g, f1g) = B(exg, fog) = 1 yields

ar=pB,7, and B =6,7,

@ Springer



M. Moscatiello, C. M. Roney-Dougal
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hence «; = §;, and so (4) follows.

We now complete the proof that g = a1y, so B is a base for G. If d = 2a — 1
then (4) yields (X1)8 = (x)¢ = (x). Letu = —ej + fi + x if G is orthogonal and
u = —ej + Af1 + x otherwise. Then Lemma 1(3), with v = e3 + f> and s = f3,
shows that ()8 = (u), and so g = a1y, as required.

If H = GO,,(g) then (X1H)E = (x,y)¢ = (x,y). We deduce from (4) and
Lemma 1(3), with T = Vg, u = —e; + €2+ f1 +x and s = f7, that (u)® = (u), and
so @] = B and xg = a1x. Now consideringu = —¢e; + fi +¢fo +yands = e
shows that g is scalar.

Finally, consider PGU»,(g), PSp,,(¢) and PGOII (q). From (4) we see that
(ea, fu)8 = (eq, fa)- Then, by Lemma 1(3), with T = V3, u = e + ¢4, and s = e2,
we deduce that e, ¢ = «je,. Finally, if we instead let u = ep — e, — f1 + f2 + fa,
v =e] + e, and s = eq, then we see that (1) = (u), and so g = a4, as required.
O

2.2 Non-degenerate subspaces

In this subsection we consider N¢(G, k), where k < 2 and N¢(G, k) is as in Nota-
tion 3.

Lemma6 Letd > 3, let G = PGUy(q), and let 2 = N (G, 1). Then the set B in
Table 3 is a base for the action of G on 2, so b(G) < d.

Proof First assume that either d is odd or ¢ > 2. Let & be a primitive element of F*.
Then for at least one value of 1 in {er, @~ !, &2} the vector v(i) = vi+- - -+Vg—_1+/14vg
is non-degenerate, so B C £2. Let g € GUy(q) 3y and U = (vy, ..., vg—1). Since U
is non-degenerate, (U8 = (vg)® = (vg), and hence g is diagonal by Lemma 1(1).
Then g also stabilises (v(w)), and so is scalar, by Lemma 1(2).

Forg = 2andd even, g stabilises (vq, v2)* = (v3, ..., vg). Therefore Lemma2(1),
applied to (v1, vz, v;), for 3 <i < d, shows that GU,;(g)p) is scalar. O

When ¢ is odd, PGO{;(¢) has two orbits of non-degenerate 1-spaces. If d is even
then the orbits can be distinguished by considering the discriminant of the restriction
of the quadratic form to the subspace, and the actions on the two orbits are equivalent,
so it is enough to consider one of them. If d is odd then the orbits can be distinguished
by the sign of the restriction of the form to the orthogonal complement.

Lemma7 Letd > 4, let G = PGOZ(q) with e = — ifd = 4, and let §2 be a G-orbit
of non-degenerate or non-singular 1-spaces. Then, up to equivalence, the set B in
Table 3 is a base for the action of G on 2. In particular, ifd > 6 then b(G) < d — 1,
b(PGO, (q)) <3 ifq # 3, and b(PGOs(q)) < 5. In addition, b(PGO, (3)) = 4.

Proof The result for PGO, (3) is an easy calculation. Let H = GO;;(q). We start with
d <5, and show first that B is contained in a single G-orbit of the appropriate type.
For GO, (¢), all 1-spaces in (x, y) are non-degenerate. For g odd, they are partitioned
into (g + 1)/2 spaces (v) such that Q(v) is square, and (¢ + 1)/2 with Q(v) non-
square. Thus for ¢ # 3, we may find v{, v2 € (x, y) that are linearly independent, not
multiples of x, and such that Q(v;) is square, so that B is a subset of a G-orbit.
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Base sizes of primitive permutation groups

For (d, €) = (5, +), notice that (e} + x)l = (e1,x — 211, ez, f2) is of plus type,
and similarly for the rest of B, so B C 2.

For (d, €) = (5, —), notice that (w1 (@) = (ej —a f1)" = (e1+a f1, x)B(e2, ),
and the determinant of the restriction of the bilinear form B to (e; + « f1, x) is 4«,
which is square if and only if « is square. Since —« is non-square, « is a square if and
onlyifg = 3 mod 4,s0 (w;(@)) € §2 by [19, Prop 2.5.10]. Similarly, the restriction of
B to (wl(oz)—i—ez)l =(e1—afi —l—ez)L = (e1 +a f1, x, f1 — f2, e2) has determinant
—4a, which is always non-square, so (w1 («) + e2) € §2. Notice also that

(wo(l+a)+ fi+x)"=(ea—(1+a) o+ fi +x)*
=(e2+ A+ ) f2,x —2e1, f1,x =2/f2),

so a short calculation shows that this 1-space is also in £2. The argument for the
remaining 1-spaces is similar, so B C 2.

We show next that B is a base, solet g € H(p).If d = 4 then the assumption that v,
is not a multiple of either x or v; combines with Lemma 2(1) applied to (x, vy, e1) to
show that g|(x,y,¢;) = %13. Since g stabilises (x, y)+ = (e1, f1), Lemma 2(2) shows
that g = +14. Ford = 5 and € = —, it is straightforward to see that B forms a base
for G. Ford = 5 and € = +, notice that g stabilises both ()c)L and (x, e1 +x, f1+x),
so stabilises (e;, f;) for i = 1, 2. It is then easy to see that g|(x ¢, ¢,, ;) = £14, from
which Lemma 2(2) shows that g = £15s.

For the rest of the proof, assume that d > 6. In cases (¢,¢) = (+,0) and ¢ = —
with ¢ # 3, the arguments that B is contained in a single G-orbit of the appropriate
type, and that BB is a base for H = Goz(q), are identical to those for d < 5, so we
will omit them. In the other cases, let ¢ € H ). We shall show that /3 is contained in
a single G-orbit and that g is scalar.

First consider ¢ = +. Then Q(z) = 1 for all (z) € B, so B is contained in a single
G-orbit. Let u € F, be such that (wi(—=1))g = (e1 + f1)g = uler + f1). Then
€ {£1}. For 2 <i < a, there exists v; € [F; such that

(wi(=1) +e)g=vi (wi(=1) +e)=pnw(=1)+eg.
Hence
eig = (vi — W (wi(=1) +vje;,
and Q(e;jg) = O yields v; = u, so ejg = pe; fori > 2. Similarly, fig = uf; for
2 <i <a—1,and Lemma 2(2) then yields f,g = u f,. Since ((w2(—1)) +e€1) € B,
we deduce in the same way that e;g = ey, and then (w(—1))g = pe; + f1g shows
that f1g = u f1, as required.
Next consider ¢ = — and ¢ = 3. Then Q(y) = 2, so it follows that

Oy +wi(1)) = Q(y +e1 — f1) = 1. Itis clear that Q(z) = 1 for all other (z)
in B, so B is contained in a single G-orbit. Notice that g stabilises

Wii=(x,e1+x, fi+x)=(x,er, f1)
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and also stabilises
Wo = (Wi, wi (1) +y) = {e1, f1,x, ).

Hence g stabilises WlL N W, = (x + y), and so stabilises U := (x, y) and U~+. Then
g stabilises (w1 (1) + y) and wi(1)g € UL, so g stabilizes (y). Lemma 2(1), applied
to both (x, y, ¢;) and (x, y, f;), yields ¢;g = ue; and f;jg = ufjfor1 <i < aand
1 < j < a — 1. The result follows from Lemma 2(1) applied to (y, x, wi(1)) and
Lemma 2(2) applied to (ey, fa)-

Finally, consider (¢, &) = (—, o). First notice that g stabilises

Vo = (wi (@)t = (e1 +afi,x,er, ..., eq fo, .., fa).

In particular e;g = u; for some u; € V, for 2 < i < a. Hence there exist u € {41}
and v; € IF:; such that

(wi(a) +¢;) g = v (wi(@) +¢) = pu (wi(a)) +u;,

and so u; = e;g = ue; for2 < i < a. Similarly, fjg = ufjfor2 < j <a— 1.
Then applying Lemma 2(1) to (ez, f2, e1 + wa(«)) shows that ejg = pej and then
fig = wnfi1, by Lemma 2(2). We now deduce that xg € (es, f4, x), and so from
(wa(14+a)+ f1 +x) € Bwesee that xg = ux. The result follows from Lemma 2(2).

O

We now prove that the bound for even-dimensional orthogonal groups in Lemmas 3
and 7 is tight.

Lemma8 Let d > 6 be even, and let G = PGO;t(q). Let A = {{v1), ..., (vg—2)}
be a set of d — 2 one-dimensional subspaces of the natural module V for G. Then
G () is nontrivial. In particular, if §2 is a G-orbit of 1-dimensional subspaces, then
b(G,2)=d—1.

Proof Let H = GOdi(q), let W be any (d —2)-space containing {.A), and let K denote
the subgroup of H that acts as scalars on W. We shall show that there exists a nonscalar
element of K, from which the result will follow.

If W is non-degenerate, then K contains a subgroup which acts as GO(W') # 1
on W, so the result is immediate. Thus we may assume that W is degenerate, so
U := Rad(W) = W N W+ is a non-zero subspace of W, of dimension 1 or 2.

First assume that there exists a u € U such that Q(u) # 0. This implies that g is
even, so H has a single orbit on non-singular 1-spaces, and without loss of generality
we can assume that u = e + f1. This implies that ey, f1 ¢ W. We define g € GL(V)
by

eig=fi, fig=-el, zg=czforallze (e, fi)".

Letv € V. Then v = aey + B f1 + z, for some o, B € F and z € (ey, f1)*, and
it is easy to verify that Q(vg) = Q(v), and so g € H. Furthermore, if w € W then
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B(w, e1+ f1) =0,s0 w = yey +y f1 +z, forsome y € I, (recalling that g is even)
and z € (e, f1)*. Hence wg = w, so g € K, as required.

Assume instead that Q (1) = 0 for all u € U, and consider first dim(U) = 1. Then
we can write W = (u) L W/, with Rad(W’) = 0. If g is even this contradicts
the fact that dim W = d — 2 is even, so q is odd. There exists a u’ € V \ W
such that B(u,u’) # 0, and we let W = (W, u’). Then W is non-degenerate,
and dim(W;) = d — 1, so dim(Wjt) = 1. Let (z) = W', and define g € GL(V) by

728 = —z, wg=w forallw e Wy.

Letv € V. Then v = w + az, for some w € Wy and a € Fy, so

Q(vg) = Q(w — az) = Q(w) + (—)*Q(z) = Q(v),

so g € K, as required.

Finally consider the case dim(U) = 2. We fix u; € U \ {0}. There exists a vector
t; € V \ W such that (u1, t1) is a hyperbolic pair. Furthermore, (u1, tl)L NUis 1-
dimensional, with basis u», say, and there exists t» € (u1, tl)L \ W such that (u3, 7)
is a hyperbolic pair. Since ¢1, t» ¢ W, we may define an element g € GL(V) by

ng=tH+tu, thg=t—u, wg=wforallweWw.
Letv € V. Then v = at; + Bt + w for some o, B € F, and w € W, and so

0g) = O(a(ty +uz) + B(ta —uy)) + Q(w) + B(a(ty +uz) + Btz — uy), w)
=—af +af + O(w) + B(at; + Btr, w) = Q(v),

so g € K, as required. O

Lemma9 Let G € {PGUy(q), PSp,(q), PGO}(q)} withd > 5, andd > 7 if G is
orthogonal, let 2 = N (G, 2) when G is orthogonal and 2 = N (G, 2) otherwise,
and let b = b(G, §2). Then the set B in Table 4 is a base for the action of G on §2. In
particular, if d # 6 then b < {%], and ifd = 6 then b < 4.

Proof 1t is straightforward to verify that the given basis of each space in B is a hyper-
bolic pair, so B € £2 in each case. The arguments for d < 6 are similar to, but
more straightforward than, those that follow, so we shall assume that d > 7, so that
a =[d/2] = 4. Let H be GU4(q), Sp,(q) or GO%(g) and let g € H ).

From V5 = V», it follows that (fi + f2)g = B(fi + f2) + ye2 = fig + fog for
some B,y € F. Then fig € Vy and fog € Vi1, so equating coefficients yields

fig=Bfiand frg =Bfr+yer.

Next, notice that g stabilises VIJ- N Vo = (e2), s0 epg = aer, where B = a4 since
B(€2g, fZg) =1.
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Base sizes of primitive permutation groups

Table 5 Bases for N~ (G, 2)

Let Vi ={e1 + fi,e2+ f1 + ¢ f2).
If ¢ # 1thenlet Vo = (ex + f1 + f2,e1 + ¢ f1), otherwise let Vo = (e] + f1 + f2,e2 + f2).
LetW; = (e1 +¢; + fl,ex2+Cej + fi)and A= {V|, Vo, W; : 3<i<a-—1}

G B

PGO2,—1(q) AU{V3 = (e2 + f1 +x,e1 +e3 + ¢ f3))
PGO3, (¢) AU{Vy = (e1 +er+ o+ fases+ f1 + L 3)
PGO,,, (9) AU{Vs = (e] —e3+x, fi + f3+ )}

We shall show next that
eig=ae;and fig=a 1f; forl <i<a-1. 5)

For 3 < i < a — 1, the element g stabilises (Vi, Vo, W;) N (Vq, Vz)l = (e, fi).
Then Lemma 1(3), applied to T = W;, first with u = e; + ¢; and s = f5, since
frg € (e2, f2), and then with u = f; 4+ f; and s = eq, since e; g € Vi, shows that
there exist v;, n;, n, § € IF such that

(e1 +ei)g =vi(e1 +e) = e +5f1) +eig
(ot fdg=ni(fa+ fi)=(a"9fr+ye)+ fig.

By equating coefficients, we deduce that e; g = ney, e;g = ne;, frg = a~?f,, and
fig = a9 f;. Finally, B(e1g, f1g) = 1 yields n = «, and so (5) follows.

Finally, we apply Lemma 1(3) to the final subspace, T = (a, b) say, in Table 4.
When d is odd, setting u = a and s = ¢, shows that () = (a), so @ = «~? and
xg = ax. If d is even, we deduce both that (a)® = (a) and (b)8 = (b), and hence
g=uly. O

A pair (u, v) of vectors is an elliptic pair if Q(u) =1, Q(v) = ¢, for some ¢ € F
such that X2+ X +¢ is irreducible, and B (u, v) = 1. Any elliptic pair spans a 2-space
of minus type.

Lemma 10 LetG = PGOZ(q), withe € {o, +, —}andd > 7, andlet 2 = N (G, 2).
Then the set B in Table 5 is a base for the action of G on 2, and consequently,
b(G, 2) < [41.

Proof Fix ¢ such that X> + X + ¢ is irreducible, with ¢ = Q(y) if ¢ = —. Let
a = [d/2] > 4. One may check that the given ordered basis vectors for each 2-
space in B form an elliptic pair, and so B C £2. For example, Q(e; + f1) = 1,
Qex+ f1+¢ f2) = B(ea, £ f2) = ¢, and B(ey + f1, e+ f1+¢ f2) = Bley, f1) = 1.
Let H = GO’(g), and let g € H 3. To show that B is a base for G, it suffices to show
that g is scalar.

We shall show first that there exists « = &1 such that

1+ fg=ale+ f1), ejg=ae;for2<i<a—1, fig=afi for3<i<a—1. (6)
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LetU = (Vi, Vo) = (e1, ea, f1, f2)- Then g stabilises the subspace U; := (U, W;)
for3 <i <a—1, and so stabilises U; N Ut = (ei, fi). Since g stabilises W; and V1,
there exist i, v;, @, v € F such that

(e1+e+fyg=nile1+e + fi)y +vilea+¢ei+ fi)eW;
=(e1+ fi)gteg=aler+ fi)+viea+ fi+fo)+eg.

Since e; g € (e;, fi), looking at f>, we see that v = 0. Hence v; = 0, and we deduce
that (e; + f1)g = a(e;1 + f1) and e;g = ae; for 3 < i < a — 1. We now apply
Lemma 2(2) to (¢;, f;) tosee that fig =a~ ! f; for3<i <a — 1.

To prove (6), it remains to prove that epg = aey = Fey. Considering W3 shows
that

(e2+¢es+ f3)g = erg +iesg+ f3g = e2g + Caes +a ' f3
=A(ex+Ces+ f3)+pler +e3+ f1),

forsome A, 1 € F. Theneyg € U, so considering f3 gives A = a~!. Then considering
ez yields u = (@ —a™"), and so exg = a~les + (@ — a1V (e; + f1). Finally,
Q(e2g) = 0 shows that ¢ = a~! = 41 and so (6) is verified.

Let A C Bbeasin Table 5, and let X = (A). Then g stabilises X . If we can show
that either of e; ¢ = aej or f1g = « f1, then it follows from (6) that the same is true for
the other. In particular, this will imply that (e1, f1)8 = (e1, f1). It will then follow from
U$ = U that (es, f2)8 = (en, f>). Hence, it will follow from Lemma 2(2) applied to
(e2, f>) that frg = ™! f» = a f>. Hence, to show that g is scalar it suffices to show
that vg = awv for either v = ey or v = f1, and for whichever of v € {e,, f4, x, y} is
defined. We shall use (6) implicitly.

If d is odd, then Lemma 1(3) with 7 = V3 and initially with u = e1 + e3 + ¢ f3
and s = x, gives ug = au, and so e;g = ae; and hence f1g = « f1. Now, setting
u =ey+ f1 +xands = ey shows that ug = ou. Hence xg = ax, and so g is scalar.

If ¢ = + then Lemma 1(3) appliedto T = V4, u = e3+ fi+¢ fzands = f, € X+
shows that ug = au. Hence f1g = o f] and so e;g = ae;. Next, letting s = f] shows
that f,¢ = o f,. Finally, Lemma 2(2) applied to f,, e, € X proves that g is scalar.

Finally, if ¢ = — then X = (x, y). Lemma 1(2), applied to T = Vs, initially with
s = f3, shows that (e; — e3 +x)g = a(e1 — e3 + x). Applying the lemma again, this
time with s = e3 gives (f1 + f3 +y)g = a(f1 + f3 + y). Hence g = a1,. m]

2.3 Symplectic groups on the cosets of orthogonal groups

We consider Sp,(g), acting on the cosets of GOj (g), with g even.

Proposition 1 Let G = Sp,,,(q) with 2m > 6 and q even, and let M = GOzim (q)-
Then b(G, M \ G) = 2m.

Proof We shall use the isomorphism Sp,,,, (¢) = GO2,,+1(q) to consider the equivalent
actions of H = GOy;,4+1(g) on N=E(H, 2m), where the natural module for H is
V= ]Ff/"“ with quadratic form Q as in Definition 4. That is, we shall consider the
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actions of H on non-degenerate 2m-dimensional subspaces of 4+ and — type, since
the point stabiliser of H in these actions is GOZim ().

We shall first show that the set 3 in Table 6 is a base for H, and then show that B
is of minimal size. First notice that (e;, f;), (ei, e; + fi +x), and (e; + f; +x, f;) are
hyperbolic pairs, therefore A;, (¢;, fi + x) and (e; + x, f;) are 2-spaces of + type.
The basis of B; is an elliptic pair, so in each case B C 2.

Letg € H(p). Then we shall show that g = 1.From Q(x) = 1and (x) = Rad(V) =
V N V4, we deduce that xg = x. We first consider N~ (H, 2m).For2 < i < m, the
element g stabilises

TNU;=B1®AD - QA1 D)) DA1 DD Ap,

and so stabilises Rad(T NU;) = {e;). Hence there exists o; € [, suchthate; g = o e,
for 2 < i < m. Similarly, Rad(T N V;)§ = Rad(T NV;) so fig = ai_lf,', for
2 <i <m—1.Since m > 3, the space S := (A, ..., A;;—1) is non-degenerate and
stabilised by g, so g also stabilises

SEOWL = (A1, Ay, x) N W1 = (A1, Ap).

Hence g stabilises (A1, A;,) N Wa = (e1, Ay), and so fixes the radical of this space,
which is (e1). Moreover, g stabilises (e1, A;,) N T = Ay, = (em, fm). Hence, since
emg = Open,, Lemma 2(2) shows that f,g = o, 1 fm- In addition, the element g
stabilises A,ﬁ N (A1, Ap) = Ap, and Lemma 2(2) now yields fig = al_lfl. Next, for
2 <i < m we deduce from

(fi+x)g:ai_1f,~+er,~

that «; = 1, and the same follows for o1 from (f; + x)g € Wa.

The arguments for N (H, 2m) are very similar but easier. Consideration of T N U;
shows that for all i there exists an «; € [, such that ;g = «;e;. Then an identical
argument applied to 7 N V; shows that fig = «; ! fi fori < m — 1. Therefore, g
stabilises

(A, ..., Am—l)L NT = {em, fm)

and so f,,g = a,,! f, also. Finally, notice that
(fi+x)g=a 'fi+tx el

for all i, and hence o; = 1, as required.

It remains only to show that these bases are of minimal size. Let the set
A = (T, Sy, ..., Syu—1} consist of 2m — 1 non-degenerate 2m-spaces of V of
sign ¢ (either + or —). We shall show that H 4y # 1. The stabiliser in H of T is
Hy = GOj,, (), which acts naturally on T as GO3,, (). It suffices to show that the
stabiliser in Hr of all of the spaces T N §; for 1 <i < 2m — 2 is nontrivial.

@ Springer



Base sizes of primitive permutation groups

Since dim(7 N S;) = 2m — 1, the restriction of B to T N S; is degenerate, and
so T N S; has a one-dimensional radical (v;). Hence the 2-point stabiliser Hr g,
stabilises the subspace (v;) of T. Furthermore, since T is non-degenerate, it follows
that dim(vil NT)=2m—1,andsoTNS; =TN viJ-. Hence Hr s, is equal to Hr ;)
and so Hig) = ﬂizl']_zHT,Si contains (H7),),...,(vam_p)- This group is nontrivial by
Lemma 8. O

3 Proof of Theorem 1 for almost simple groups

In this section, we shall prove the following theorem, which in particular implies
Theorem 1 for almost simple groups.

Theorem3 Let G < Sym(82) be a primitive almost simple group of degree n that
is not large base. If b(G) is greater than [logn| + 1, then G = Ma4, n = 24 and
b(G) =1.

Furthermore, if b(G) > logn+1then (G, n, b(G)) € {My2, 12,5), Ma23, 23, 6),
(M24,24,7)} or G = PSp,,(2) with m > 3, n = 2% — 2" and
b(G) =2m = [logn] + 1.

We shall first consider the standard actions of Alt(£) and Sym(£) on partitions, then
the actions of the classical groups on totally singular and non-degenerate k-spaces,
and (for the orthogonal groups in even characteristic) non-singular 1-spaces. Then we
shall look at the action of groups with socle PSp, (27 on the cosets of the normaliser
of GO;IE (27, before considering the remaining subspace actions. Finally, we will deal
with the non-standard actions, and hence prove Theorem 3.

3.1 Action on partitions

We first consider the non-large-base standard actions of Alt(€) and Sym(¥).

Theorem4 Lets > 2 andt > 2, with £ := st > 5, and let G be Sym({). Let §2 be
the set of partitions of {1, 2, ..., L} into s subsets of size t, and let n = |§2|. Then
b:=b(G, $2) <logn+ 1.

Proof The degree n is £!/(t!)’s!. If t = 2, then s > 3 and n > 236—'3, = 15. However,
b = 3 by [7, Remark 1.6(i1)], so b < logn. If s > ¢t > 3, thenn > % = 280,
whilst b < 6 by [1, Theorem 4(i)], so again b < logn.
For the remaining cases, by [1, Theorem 4(ii)]
b <Tlog,t]1+3 <log,t+4 =log,(¢/s)+4 =log, £+ 3. 7

Next consider s = 2, so that r > 3. We check in MAGMA [3] thatif t = 3, 4, 5 then
b is at most 4, 5, and 5, respectively, whilst n = 10, 35, 126, and so b < logn + 1 in
each case. Assume therefore that £ > 12. Then

Lot =D 24D =D 2424 e
T2/ 2(¢/2)! T Ww/)2-1)...2-2 '
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In particular, since £ > 12, we deduce from (7) that
Y4
b<logl+3< §+1§10gn+1.

Next, let s = 3. We may assume that r > s, so £ > 12. Then, reasoning as for
s = 2, we deduce that n > 2¢/3 . 3¢/3 5 220/3 Hence logn > 2£/3, so (7) yields

2¢
b510g€+3<?+1<10gn+1.

We are therefore left with 4 < s < ¢, so that £ > 20. For all ¢, the groups Alt(¢)
and Sym(¢) have no core-free subgroups of index less than ¢, so £ < n. From (7) we
deduce that

log ¢ 13 < log ¢

b<log, t+3= <
log s

+3 <logl+1 <logn+ 1.

3.2 Subspace actions

We now prove Theorem 3 for the subspace actions of almost simple groups. First we
record two lemmas concerning base size and automorphism groups.

Lemma 11 Let G be a finite almost simple primitive permutation group on §2 with socle
G a non-abelian simple classical group, and let Go I G1 I G < Sym(82). If G/ G
has a subnormal series of length s with all quotients cyclic, then b(G) < b(Gy) + s.

Proof If (G, §2) is not isomorphic to (Alt(£), {1, ..., £}) with £ € {5, 6, 8}, then by
[17, Theorem 1.2] each element of G has a regular cycle. It follows that stabilising
one point for each cyclic quotient suffices to extend a base for G to one for G.

Let (Go, £2) be (Alt(€), {1, ...,£}) for some £ € {5,6,8}. Then G < Sym(¥),
since the other automorphisms of Alt(6) do not act on 6 points, and so the result
follows from b(Sym(¥), £2) = b(Alt(£), £2) + 1. O

Recall the meaning of S(G, k) and N¢(G, k) from Notation 3. The following
bounds are established in [18, Proof of Theorem 3.3].

Lemma 12 Let G be a simple classical group.
(i) If (Go. k) # (PQ3,(q). m) then b(Go. S(G. k) < d/k + 10,

(ii) b(Go, N(G,k)) <d/k+11.
(iii) If Go = PSL4(q) then b(Go, S(G,k)) <d/k + 5.

Lemma 13 Let G be almost simple with socle Go one of P2 (q), PQ25(q) or PQ6i (q).

Assume that Go # PQ, (q) for q < 3. Let 2 = N*(G, 1), with € = +, — or blank,
and letn = |§2|. Then b := b(G) < logn + 1.
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Proof Firstletd = 4, so that g > 4. Then Aut(Go)/ PGOj (¢) has a normal series of
length at most two with all quotients cyclic, so Lemmas 7 and 11 imply that b < 5.
From [6, Table 4.1.2] we see that

2
+ 1
gt e
(g—1,2)
so the result follows.
Next let d = 5, so that g is odd. Then Aut(Gg)/PGOs(q) is cyclic, so Lemmas 7
and 11 yield b < 6, whilst from [6, Table 4.1.2] we see that

2( 4
2(q2:F1)

so the result follows.
Finally, let d = 6. From Lemmas 7 and 11 we deduce that b < 5 if ¢ = 2, and
b < 7 otherwise. Moreover, by [6, Table 4.1.2],

@+ [25ifg=2
>———">1 .
(¢—-12) 2> ifg =3

as required. O

Proposition 2 Letd > 8 be even, and let G be almost simple with socle Gy = PQ{/(q).
Let 2 be S(G, k) or N¢(G, k), where € = +, — or blank, and let n = |$2|. If G acts
primitively on §2 then b := b(G) < logn + 1.

Proof We shall use throughout the proof the fact that if Gy # PQéF (q), or if 2 #
S(G, 2) (see, for example, [4, Table 8.50]), then G/Gq has a normal series with
all quotients cyclic of length at most three, and less if ¢ = 2 or ¢ is prime, so
that b(G) < b(Go) + 3, by Lemma 11. Furthermore, under the same conditions,
b(G) < b(PGOY(q)) + 2, by the same lemma. If Go = PQ{ (p/) and p is odd then
Out(Go) = Sym(4) x Cy, whilst if p = 2 then Out(Go) = Sym(3) x Cy.

First consider £2 = S(G, k). By [19, Tables 3.5E and F] we may assume that
1 <k<d/2,andk <d/2—1ife = —. If k < d/2 — 1 then by [6, Table 4.1.2,
Cases VI and VII]

(SIS

(qz i 1) (qz + 1) Hz’ 4 _k+1 (q =1

" 8)
Hi‘(:l (' —1)

n—=

d
(qj + 1) (‘]7_1 + 1) k . L k(k—1)
> oy ]_[(q’ -+ 1) ¢ ]d z¢ 7.
2 i=2
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If k = 1 then Lemma 3 shows that b < d + 1, with tighter bounds when g < 3, whilst
(9) gives n > ¢?72, so

logn+1>(d—2)logg+1=>b.

Similarly, if K = 2 then we deduce from Lemma 5 that b < d/2 + 3 if g is even or
prime, and b < d /245 in general. From (9), we see thatlogn+1 > (d —1)logg +1,
so the result follows.

Next we consider the case 3 < k < d/2 — 1, so that b(Go, §£2) < d/k + 10 by
Lemma 12(i). First assume that ¢ < 3 and k£ = 3. We calculate in MAGMA that if
(d,q) = (8,2) then b < 4. For (d, q) = (8,3) we use the exact value of n and the
fact that b(G) < b(Gy) + 2 to see that logn + 1 > 15 > b. For d > 10 we see from
(8) that

d
(¢ 51) (a7 1)
n=> 7—1 <q4 + 1) (qz + 1) (q3 + 1) > qd74q4+3+2 > qd+5

Hence if ¢ = 2 then
d
logn + 1 zd+62§+11 > b,
and if g = 3 then
3 d
logn+1z§(d+5)+lz§+13zb.

In the remaining cases k > 4 or g > 4, so the result follows by a routine calculation
from (9).
Finally consider k = d/2, so that ¢ = +. From [6, Table 4.1.2],

(q +1)z

1 i

d
2

d(d+2)
ql — T > qIO

:Nm

i 1

Itis shown in [18] that b(Gg) < 9,s0b < 10 when g = 2, and b < 12 otherwise, and
the result follows.

We now consider 2 = N¢(G, k), with € € {+, —} or blank. The stabiliser of
an element of £2 also stabilises a non-degenerate d — k space, of the opposite sign if

& = — and k is even, and of the same sign otherwise. Thus by considering the stabiliser
of spaces of type 4+, — and o, we may assume that k < d/2.
First assume that k is even, so that 2 < k < d/2, and if k = d/2 then ¢ = —, by

our assumption that G acts primitively. Then we deduce from [6, Table 4.1.2, Cases
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X, XI, XIII] (by replacing d by d — k if e = + and ¢ = —) that

k(d—k)

d_ .
q 2 (q% —8> M2 (% —1)

i=45

2(61% —e) (q% —86) 1_[%: (g% - 1)

1
k(d—k)
g2 (q%—s (972 -1) 51 dk2+21_1

— 2(q§_€> (q%_ge) 1:[ ) (10

If kK = 2 then it follows that n > q2d —6 > qd+2, whilst from Lemmas 9 and 10 we
see that b <d/2 + 2 < logn + 1. For k > 4, notice that

P48 (g8~ o) @2 - 1) A

T

o L et va-sra—k-nd-n _ 1 ra-ie

4 4

q
n>
4
The quadratic kd — k% — 1 attains its minimum for 4 < k < d /2 atk =4, so

logn+1> (4d —17)logqg — 1 > 4d — 18.

Then by Lemma 12(ii), b < 4 + 14. If d > 10, then

d
logn+124d—1821+14,

so it only remains to consider (d, k, €) = (8, 4, —). In this case, (4d — 17)logg — 1 >
15log g + 1 and the result follows easily for ¢ > 3. If ¢ = 2 then Out(Gy) is cyclic,
hence by Lemmas 11 and 12(ii), b < 14 and the result follows.

Now let k be odd, so without loss of generality 1 < k < d/2. By [6, Table 4.1.2,
Cases IX, XII, XIV]

(kd—k2—1) d d_q .
q 2 (q2 - 5) Hf:d#zcﬂ (512’ - 1)

[
q—DILZ (g% —1)

n =

Ifk =1thenn > (zd—) whilst Lemma 7 shows that b < d + 1, with tighter bounds
when g < 3, so the result follows easily. If £ > 3 then ¢ is odd, with b < d/3 4 14
by Lemma 12(ii). Now

k=1
d—k=1+2i _

=3 ) T

=1
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e s I
. lq(kd 2o d g d—k—1 _ lqkd Rod=3 4 k(g gt

2 } 2

1
1 2 1

_ 1 kd—k*-1 o 1

21 =2

where the last inequality follows as in the case k even, so the proof is complete. O

Proposition3 Let d > 7 and let G be almost simple with socle Gy = PQ5(q).
Let 2 be S(G, k) or N¥(G, k), and let n = |2|. If G acts primitively on §2 then
b:=b(G) <logn + 1.

Proof We shall use throughout the proof the fact that Out(Gg) has a normal series with
at most two cyclic quotients, and Aut(Go)/ PGO,;(q) is cyclic, so b < b(Gy, §2) + 2
and b < b(PGOy(g), §2) + 1, by Lemma 11.

First let 2 = S(G, k). Then 1 <k < (d — 1)/2 and by [6, Table 4.1.2, Case VII]

d—1

Hizzdfzszrl (‘12i - 1)

"= , . (11)
[T (@' — 1)

Ifk < (d—3)/2, then

(@' =1) (¢%*-1)...(¢*-1) =2, Y01

n > . >q d_3+@_
NCED DN

=49

Ifk =1thenn > ¢g?% > 3972 and from Lemma 3 we deduce that b < d + 1, as
required. If k = 2 then n > ¢?, whilst Lemma 5 gives b < [d/2] + 1. If instead
3<k<(d—3)/2thend >9andn > ¢q?*+3. Hence

logn+1> (d+3)logg+1>3d/2+11/2>d/3+ 12 > b,

by Lemma 12(i).
Finally, assume that k = (d — 1)/2, so that (11) simplifies to

Y

—1

E(%) = q(dz_l)/S_

—1

(q"+1)zq

n —=
1

For (d, q) € {(7, 3), (7, 5)} the result follows from a MAGMA calculation. Otherwise,
by Lemma 12(i),

d
b<——+104+2<3+12=15,
_(d—l)/2+ +2<3+

so we are done.
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Now let 2 = N i(G, k), so that without loss of generality k is even. Then by [6,
Table 4.1.2, Cases XV and XVI]

kd—k)  d=1

2 2i - A
-1 k(d—k) _ L 140
n=q 7 ni:d_§+l(q )=q T (g9 = 1) 3 gik 1
k_ ] k 2i _
2(95431)1—1[2:11 (q21_]) 2<q2 ?1) i=1 ¢ =1
- lq%;]‘)+<dflf§)+(d7k71)(%*l) _ lqkdsz

4 4

Ifk =d—1thenn > 1q9~1 > 13471 whilsth = b(G, N*(G, 1)) <d < logn+1,
by Lemma 7. Similarly, if k = 2 then n > %qz‘i—‘* > qd, whilst b < [d/2]1+ 1 <
logn + 1 by Lemmas 9 and 10. For 4 < k < d — 3, the quadratic —k2 + kd attains its
minimum atk =d —3,sologn+ 1> (3d —9)logg — 1. Now, Lemma 12(ii) yields
b < d/4 + 13, which is less than

(3d+13)/2 <dlogg + (2d —9)logg — 1 =logn + 1,

so the proof is complete. O

Proposition4 Let d > 4, and let G be almost simple with socle Gy = PSp,(q), with
(d,q) # (4,2). Let 2 be S(G, k) or N (G, k), and let n = |2|. If G acts primitively
on §2, then b :== b(G) < logn + 1.

Proof We shall use throughout the proof the fact that Out(Gp) has a normal series
with at most two cyclic quotients, so b(G, §2) < b(Gy, £2) + 2, with b(G, 2) <
b(Go, §2) + 1 if ¢ > 2 is even or prime, by Lemma 11.

First let 2 = S(G, k). Then 1 < k < d/2, and by [6, Table 4.1.2]

Hi:g_kH (¢* = 1) d-2k42i _ |

n= - =l_[q

[Ty (@' —1) i 4l

12)

Ifk=1thenn = (qg? —1)/(g —1) > g9 '". By Lemma 3,b < d + 2, withb < d
ifg =2and b < d+ 1if ¢ = 3. The result now follows from a straightforward
calculation, since d > 4.

Ifk=2andd > 6thenb < d,by Lemma5, whilstlogn+1 > 2d —5)+1 > b.
Ifk = 2and d = 4 then Lemma 5 implies that (G, §2) < 4 and a routine calculation
shows that b < logn + 1.

If k£ > 3 then Lemma 12(i) yields b < % + 12, withb < % + 11 when g < 8. First
suppose that d — 2k > 2, so thatd > 8. If (d, q) = (8, 2) then we verify the result
in MAGMA. Otherwise, we notice that n > |S (PGOdi (g), k)|, and our upper bounds
on b are less than the corresponding bounds for the orthogonal groups, so the result
follows by the same calculations as in the proof of Proposition 2. We may therefore
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assume that k = %, so that b < 14 in general, and b < 13 if ¢ < 8. In this case

d(d+2)

d
2
n=[JG"+D=q"5",
i=1

soif d > 10 then the result is immediate. Ford = 6 and g < 4, a MAGMA calculation
establishes the result, whilst if ¢ > 5 thenlogn +1 > 14 > b. Ford = 8§,if g = 2
then logn + 1 > 12 > b, whilst for ¢ > 3 we deduce that logn + 1 > 16 > b.

Next let 2 = N (G, k). Then k is even and without loss of generality k < d/2 — 1.
By [6, Table 4.1.2]

k(d—k)

q Hi=d7§+2(42i_1)

[N

n= T
i2=1(q2’ -1

If k =2thend > 6 so
logn+1>({d—-2)+(d—2)logg+1>d=>b,
by Lemma 9. If k > 4 then from d > 2k + 2 we deduce that
qk(dz;k) > qw > ¢'? and (qd’kJr2 — 1) > ¢? (qz— l) (qk - l),
)

<q2f - 1).

1

ﬁ (qu — 1) > (qd — 1)612

d—k+2 i

k
2
=% =

Putting these together shows that n > ¢'2(¢? — 1)¢? > ¢?*13, so the result follows

from Lemma 12(ii). O

Proposition5 Let d > 3, let G be almost simple with socle Gy = PSU4(q), let §2 be
S(G,k) or N(G, k), and let n = |$2|. Then b := b(G) < logn + 1.

Proof We shall use throughout the proof the facts that Aut(Gg)/ PGU,(q) is cyclic,

whilst Out(Go) has a normal series with two cyclic quotients, so it follows from

Lemma 11 that b(G, £2) < b(PGU;(q), §2) + 1 and b(G, 2) < b(Go, £2) + 2.
First let 2 = S(G, k). Then by [6, Table 4.1.2]

n

_ l_[zd:d—Zk—H (qt _ (_1)1) _ k (qd—2k+2i—l _ (_l)d—l) (qd—2k+2i _ (_1)d)
1_[5'(:1 (qu - 1) i=1 qu -1 ’
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son>qglifk=1,n>q¢**ifk =2, and
k
H( d=2k+2i~1 1) > g@=DHE=3)+Wd=5) _ 39 i) > 3, (13)

Ifk=1thenb <d+ 1 <logn+ 1byLemma3,soletk =2.1f (d,q) = (4,2)
then a MAGMA calculation shows the result, and otherwise if d = 4 then
b <6 <4logg + 1 < logn + 1, by Lemma 5, as required. If d > 5 then we
deduce from Lemma 5 that b < d <logn + 1.

Finally, letk > 3,sothatd > 6.For (d, q) € {(6, 2), (6, 3), (7,2), (7, 3)} we verify
the result computationally. Otherwise, b < % + 12 < d/3 + 12 by Lemma 12(i). If
d > 8 then (13) gives

d
logn+123d—82§+122b,

as required. Similarly, if ¢ > 4 thenlogn +1 > 2(3d —9) +1 > d/3 4+ 12 > b,
which covers all the remaining cases.
Now let 2 = N (G, k). Then by [6, Table 4.1.2]

GOy (@' — (- 1))
1_[1 l(q_( 1))

Ifk <2thenn > qd , and the result follows easily from Lemma 6 and Lemma 9. For
k > 3, we get

d

[T (4= 0)= (¢ =) i (¢ - 1),

i=d—k+1 i=1

because d > 2k + 1 > 7. Hence n > ¢F+*(g¢ — (=1)%) > ¢4+, and the result
follows from Lemma 12(ii). O

Proposition6 Let d > 2 and when d = 2, let ¢ > 1. Let G be almost simple with
socle Gy = PSL4(q), let 2 = S(G, k), and letn = |2|. Then b := b(G) < logn+1.

Proof The group Out(Gy) has a normal series with all quotients cyclic of length at
most three, and G /Gy has such a series with length at most two if k # d/2, or if
d =2, orif g is prime; and is cyclic if more than one of these conditions hold. Hence
by Lemma 11, b < b(Gy, §2) + £, where £ = 3 in general, but with smaller values of
£ for the special cases above.

Firstletk = 1, sothatn = (qd —-D/(g-1) > qd",whilstb < d+2byLemmal,
with smaller bounds if ¢ < 3. The result follows from a lengthy but straightforward
calculation, usingn =g + 1 > 8§ whend = 2.
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Ifk =2thenn > ¢g??~*.Ifd = 4 and g < 3 then a MAGMA calculation shows
thatb <5 < logn,andifd =4 andgq > 3thenb <5+ 2 < logn, by Lemma 4. If
d>4thenb < [d/2] +3 < logn + 1 by Lemma 4.

Assume finally that d/2 > k > 3, so thatd > 6, and

d=2 _ k=3 ( d—k+i _ 1)

q q
q—l. 6]2—1 ’ q3_1 1_! (qi+3_1)

1=

(d=D+3+1 _ qd+3

>4

Then from Lemma 12(iii), we deduce thatb <d/3+8 <d +4 <logn + 1. O

We now meet the unique infinite family of examples that attains the upper bound
in Theorem 1.

Proposition7 Let g = 2f letd = 2m > 4, and let G be almost simple with socle
Go = Sp,(q). Assume that (d, q) # (4,2). Let M = Ng(GO$(q)), let 2 = M \ G,
letn = |82|, and let b = b(G).

Ife =—and g =2thenlogn + 1 < b = [logn]| + 1. Otherwise, b < logn + 1.

Proof We calculate that n = |Sp,(q) : GO5(q)| = ¢ (q™ + €)/2. 1f ¢ = 2 then
b = 2m by Proposition 1. If € = + then n > 2?”"~! hence logn + 1 > b. If e = —
then [logn] + 1 =2m = b.

It is proved in [18] that b(Gy, £2) < 2m + 1,s0 b < 2m + 2 by Lemma 11 since
Out(Gy) is cyclic. Therefore if g > 4 then

logn +1>1log(¢g> '/2) + 1= Q2m —1)logqg > 4m — 2 > b,

and the proof is complete. O
Our final result in this subsection deals with all of the remaining subspace actions.

Proposition 8 Let G be an almost simple classical group, with a primitive subspace
action on a set 2 of size n, with point stabiliser H. Assume that S2 is not a G-orbit
of totally singular, non-degenerate, or non-singular subspaces, and that if the group
Go = 50c(G) = Sps,, (27) then (GoNH) # GO5,, (27). Thenb := b(G) < logn+1.

Proof Definition 1 implies that G is not simple, and H is a novelty maximal subgroup
of G. Consulting [19] and [4], we see that one of the following holds:
(i) Go =PSL4(¢q),d >3 and G £ PI'L4(q);

(ii) Go =PSp4(q), g evenand G £ PCI'Sp,(q);

(iii) Go = PRy (¢) and G % PCOq (¢) (in the notation of [4, Table 1.2]).

In particular, from [4], in each case there exists a group G such that Go < G < G,
the quotient G/G1 has a normal series of length at most two with all quotients cyclic,
and H N G is a subgroup of the stabilizer H; in G of a totally singular k-space,
of index greater than four. Let £2; denote the right coset space of H; in G and let
by = b(Gy, $21). Then there exist xi, ..., x5, € Gy such that H;' N--- N Hlxb1 is
trivial, so H*! N --- N H*1 N G| is also trivial. By Lemma 11,5 < by + 2.

Finally, notice that n > 4|§| by the Orbit-Stabiliser Theorem, so if

by < log|21] + 1 = log2|$2;| < logn — 1, then b < logn + 1. The result is
now immediate from Propositions 6, 4 and 2. O
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3.3 Proof of Theorem 3

Proof Let Gy = soc(G). The only non-large-base almost simple primitive groups of
degree n < 8 are the actions of Alt(5) and Sym(5) on 6 points, of PSL3(2) on 7 points,
and of PSL;(7) and PGL;(7) on 8 points, all of which have base size 3, which is less
than logn + 1. Hence the result holds for n < 8, and therefore for b(G) < 4.

Since the groups PSL>(g) are isomorphic to many other simple groups, we shall
consider them next. If Go = PSLy(5) then all actions either have degree at most 6 or
are large base, so let Gg be PSLy(g) for g > 7, and let H = G,,, for some w € 2.
We work through the choices for H, as described in [4, Table 8.1]. The result for
H € C, follows from Proposition 6. Burness shows in [5, Table 3] that 5(G) < 3 for
the majority of the remaining choices of H. More precisely, he shows that b(G) < 3
it He CoUC;, orif H € Cs and g = g withr # 2, orif H € Cg and ¢ > 7; or if
H € Cg and ¢ # 9. We therefore need consider only the exceptions with g > 7. If
H € (Csand g = qg, then gop > 3 and the action of G on £2 is equivalent to that of
P2, (go) on non-degenerate 1-spaces. If go = 3 then Gy = Alt(6), and the action is
equivalent to the (large base) action on 2-sets. Hence we can assume that gg > 4, and
the result follows from Lemma 13. If either H € Cgandg = 7,or H € C9 and g = 9,
then n < 7, so the result follows. Thus for the remainder of the proof we shall assume
that Go 2 PSL3(q).

Next, assume that the action of G is not standard. Burness, Guralnick and Saxl show
in [7] that if Gog = Alt(n) then b(G) < 3. For classical groups G, Burness shows in
[5, Theorem 1.1] that either n = 1408 and b(G) = 5 or b(G) < 4. For the exceptional
groups G, it is shown by Burness, Liebeck and Shalev in [9] that b(G) < 6; since
the smallest degree of a faithful primitive representation of an exceptional group is 65
(see, for example, [14, Table B.2]), the result follows. Finally, Burness, O’Brien and
Wilson show in [10] that if G is sporadic, then either b(G) < 5, or G is M3, Moy,
Cogz, Coo, or Fip,.2, with a specified action. If logn + 1 < 5, then n < 16, and the
only sporadic group with a faithful primitive action on at most 16 points, other than
Mj; as given in the statement, is M1 on 11 or 12 points, with base size 4. The actions
of M3 and My4 are given in the theorem statement, whilst the remaining actions have
base size 6 and very large degree.

It remains to consider the standard actions that are not large base. If Gog = Alt(¢),
then £2 is an orbit of partitions of {1, ..., ¢}, so b(G) < logn + 1 by Theorem 4.
Hence we may assume that G is a classical group in a subspace action.

If Go = PSL4(g) then the result follows from Propositions 6 and 8. If instead
Go = PSU,4(¢q) then we may assume that d > 3, and the result follows from Propo-
sitions 5 and 8.

If Go = PSp,(g) then we may assume that d > 4, and (d, q) # (4, 2), since
PSp,(2)" = PSL;(9). If the action is on k-spaces then the result follows from Proposi-
tion 4; if ¢ is even and the point stabiliser is GOZIt (g), then it follows from Proposition 7;
and otherwise it follows from Proposition 8.

If Go = P (q) then our assumption that Gy % PSL2(g) implies that d > 5, so
assume first that d € {5, 6}, and let Hy be whichever of PSp,(¢g), PSL4(g) or PSU4(q)
is isomorphic to Gy. If the action is on totally singular subspaces, then the action of
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Gy is equivalent to that of Hp on totally singular subspaces. If the action is on non-
degenerate 2-spaces, then the action of Gy is equivalent to that of Hy on the maximal
subgroups in Class C; or C3, and b(G) < 3 by [5, Table 3]. If the action is on an orbit
of non-degenerate 1-spaces, then the result follows from Lemma 13, and otherwise it
follows from Proposition 8. Hence we may assume that d > 7, and the result follows
from Propositions 2, 3 and 8. O

4 Proof of Theorem 1

In this section, we prove Theorem 1.

Proposition 9 Let G < Sym($2) be a primitive group of diagonal type and degree n.
Then b := b(G) < max{4, loglogn}. In particular, b < logn.

Proof Let soc(G) = T*, where T is a non-abelian simple group and k > 2. Then
n = |T|* " and we may assume that G = Tk.(Out(T) x Sym(k)). For the final claim,
notice that n > 60, so logn > 4, and so it suffices to prove the first claim.

If k = 2 then b < 4, as proved by Fawcett in [15]. It is also proved in [15] that if

k > 3 then
logk
b<| 2% | 1o (14)
log |T|

If 3 < k < |T| then b < 3 and the result follows, so assume that k& > 60. Then
n > 60 so loglogn > 8, and hence

- logk 3 < loglogn
~ log 60 - 5

+ 3 <loglogn.

We now consider product action type groups.

Proposition 10 Let G < Sym(82) be a primitive group of product action type and
degree n. If G is not large base then b := b(G) < logn + 1.

Proof Without loss of generality, we may assume that G = H : Sym(k), where
H < Sym(I") is primitive, and either H is almost simple and not large base or H is of
diagonal type. Let |I"| = m, son = m*. Let {y1, ..., y.} € I' be a base of minimal
size for the action of H on F,andletozlf = Yi,..., Vi) € rk=gQforl <i <ec.lItis
shown in the proof of [11, Proposition 3.2] that there exists a set of [log k] 2-partitions
of {1, ..., k} such that the intersection in Sym(k) of the stabilizers of these partitions
is trivial. Leta = [logk ] and r = |logm |. Then, as in the proof of [11, Lemma 3.8],
there exists a subset {a, ..., aq/} of £2 with the property that an element g € G
which factorizes as g = (1, ..., 1)o, where 1 € H and o0 € Sym(k), fixes each ¢; if
and only if o = 1. Hence, as noted in [11, Equation (13)], the set

B:= {al,...,a[a/ﬂ}U{Oti,...,oté}
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is a base for G. In particular, we deduce that

log k
b < leggmﬂ +b(H, T). (15)

From  Theorem 3 and Proposition 9, we see that either
b(H,I') < [logm] +1 <logm+2,0r (H,m,b(H, ")) = (Ma4,24,7). In this
latter case

[log k]
b= ’7 Llog mJ

1 4 logk
+b(H, ") < T+1 +7 < klog(24) + 1 <logn + 1.

For the general case, assume first that k < 4, so that in particular [logk] < [logm].
Then by (15)

b<14+b(H, ') <logm+3<2logm+1<klogm+1=1logn+ 1.

If instead k > 5, then

logk 1 +logk 1 +logk
b < [logk] +logm +2 < +log +logm +3 < +log +2)+logm+1
[logm] [logm ] 2
<(k—1)+4logm+1<klogm+1=1logn+1
as required. O

Finally, we state and prove a slightly more detailed version of Theorem 1.

Theorem 5 Let G be a primitive subgroup of Sym(£2) with |§2| = n. Assume that G
is not large base. Then b := b(G) > logn + 1 if and only if G is one of the following.

(i) A subgroup of AGL4(2), withb =d + 1 =logn + 1.
(ii) The group Sp,(2), acting on the cosets of GO, (2) with d > 4, in which case
logn+1<b=Tlogn]+ 1.
(iii) A Mathieu group M,, in its natural permutation representation with n in the set
{12,23,24}. If n = 12 or 23 then b = [logn] + 1, while ifn = 24 then b =7 >
[logn] + 1.

Proof We work through the cases of the O’Nan-Scott Theorem.

If G is of affine type, then without loss of generality G = AGLy4(p) with n = p<,
and the point stabiliser of G is GL;(p), acting naturally on the set 2 = F?]. LetBbea
base of minimal size for GL;(p) on §2. Then B is a basis for Fe sob = IB|+1 =d+1
as required.

If G is of twisted wreath product type, then by [21, Section 3.6] the group G is a
subgroup of a primitive product action group H : P < Sym($2), with H of diagonal
type. Hence the result follows from Proposition 10.

If G is almost simple, or of diagonal type, or of product action type, then the result
follows from Theorem 3, Proposition 9 or Proposition 10, respectively. O
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We conclude with a question.
Question T Which primitive groups G < Sym(n) satisfy b(G) = logn + 1?

Notice that such a G must be a subgroup of AGL;(2) for some d, and that if d is
even then groups such as 2¢ : Sp(d, 2) have this property.
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