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Abstract
Let G be a permutation group, acting on a set Ω of size n. A subset B of Ω is a base
for G if the pointwise stabilizer G(B) is trivial. Let b(G) be the minimal size of a base
for G. A subgroup G of Sym(n) is large base if there exist integers m and r ≥ 1 such
that Alt(m)r � G ≤ Sym(m) � Sym(r), where the action of Sym(m) is on k-element
subsets of {1, . . . ,m} and the wreath product acts with product action. In this paper
we prove that if G is primitive and not large base, then either G is the Mathieu group
M24 in its natural action on 24 points, or b(G) ≤ �log n� + 1. Furthermore, we show
that there are infinitely many primitive groups G that are not large base for which
b(G) > log n + 1, so our bound is optimal.

Keywords Primitive groups · Base size · Classical groups · Simple groups

Mathematics Subject Classification 20B15 · 20B10

1 Introduction

Let the permutation group G act on a set Ω of size n. A subset B of Ω is a base for G
if the pointwise stabilizer G(B) is trivial. Let b(G,Ω), or just b(G) when the meaning
is clear, be the minimal size of a base for G.

In the 19th century, a problem that attracted a lot of attention was that of bounding
the order of a finite primitive permutation group. It is easy to show that |G| ≤ nb(G),
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so one can find an upper bound on the order of a permutation group by bounding the
minimal base size. One of the earliest results in this direction is a theorem of Bochert
[2] from 1889, which states that if G is a primitive permutation group of degree n not
containing the alternating group Alt(n), then b(G) ≤ n/2.

Bases also arise naturally in other contexts, which also benefit from good upper
bounds onbase size. For example, they have beenused extensively in the computational
study of finite permutation groups, where the problem of calculating base sizes has
important practical applications. The knowledge of how an element g of G acts on
a base B completely determine the action of g on Ω , so once a base and a related
data-structure called a strong generating set are known for G, we may store elements
of G as |B|-tuples, rather than as permutations, of Ω .

A permutation group G is large base if there exist integers m and r ≥ 1 such that

Alt(m)r � G ≤ Sym(m) � Sym(r),

where the action of Sym(m) is on k-element subsets of {1, . . . ,m} for some k, and if
r > 1 then G has product action. Note that this includes the natural actions of Alt(n)

and Sym(n).
Using the Classification of Finite Simple Groups (CFSG), and building on earlier

work by Cameron [12], in 1984 Liebeck [20] proved the remarkable result that if G is
a primitive group of degree n that is not large base, then b(G) ≤ 9 log n. (In this paper,
all logarithms are to base 2, unless otherwise indicated.)Muchmore recently, Liebeck,
Halasi and Maróti showed in [18] that for most non-large-base primitive groups G,
the base size b(G) ≤ 2�log n� + 26; the second author and Siccha then noted in [22]
that this bound applies to all primitive groups that are not large base.

The main result of this paper is as follows.

Theorem 1 Let G be a primitive permutation group of degree n. If G is not large base,
then either G is the Mathieu group M24 in its 5-transitive action of degree 24, or
b(G) ≤ �log n� + 1. Furthermore, there are infinitely many such groups G for which
b(G) > log n + 1.

If G is M24 in its 5-transitive action of degree 24 then b(G) = 7. In Theorem 5 we
shall completely classify the non-large-base primitive groups G for which the base
size b(G) > log n + 1: there is one infinite family, and three Mathieu groups.

Our notation for groups is generally standard: for the orthogonal groups, byGOε
d(q)

we denote the full isometry group of our standard quadratic form of type ε, as given
in Definition 4.

Definition 1 Let G be almost simple with socle G0, a classical group with natural
module V over a field of characteristic p. A subgroup H of G not containing G0 is a
subspace subgroup if for each maximal subgroup M of G0 containing H ∩G0 one of
the following holds.

1. M = GU for some proper nonzero subspace U of V , where U is either totally
singular, or non-degenerate, or, if G is orthogonal and p = 2, a nonsingular 1-
space. If G0 = PSLd(q) then we shall consider all subspaces of V to be totally
singular.
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2. G0 = Spd(2
f ) and M ∩ G0 = GO±

d (2 f ).

A transitive action of G is a subspace action if the point stabiliser is a subspace
subgroup of G.

Definition 2 Let G be almost simple with socle G0. A transitive action of G on Ω

is standard if, up to equivalence of actions, one of the following holds, and is non-
standard otherwise.

1. G0 = Alt(�) and Ω is an orbit of subsets or partitions of {1, . . . , �};
2. G is a classical group in a subspace action.

Cameron and Kantor conjectured in [12,13] that there exists an absolute constant c
such that if G is almost simple with a faithful primitive non-standard action on a finite
setΩ then b(G) ≤ c. In [9, Theorem 1.3], Liebeck and Shalev proved this conjecture,
but without specifying the constant c. Later, in a series of papers [5,7,10], Burness and
others proved that b(G) ≤ 7, with equality if and only if G is M24 in its 5-transitive
action of degree 24; that is, the Cameron-Kantor conjecture is true with the constant
c = 7.

In stark contrast with the non-standard case, the base size of a group with a standard
action can be arbitrarily large. The bulk of this article therefore concerns such actions.
Formany of the standard actions we shall use results due toHalasi, Liebeck andMaróti
[18], however we sometimes require more precise bounds.

Notation 3 LetG be a classical group, with natural module V . We shall write S(G, k)
for a G-orbit of totally singular subspaces of V of dimension k, and N (G, k) for a
G-orbit of non-degenerate or non-singular subspaces of V of dimension k. For the
orthogonal groups, let W be a space in the orbit if dk is even, and the orthogonal
complement of such a space if dk is odd. Then we write N ε(G, k), with ε ∈ {+,−},
to indicate that the restriction of the form toW is of type ε: if d is odd then the symbol
N (G, k) is not used, since k or d − k is even.

The next result is a key tool in the proof of Theorem 1, but may be of independent
interest. It will follow immediately from the results in Sect. 2: bounds for smaller
dimensions may be found there.

Theorem 2 Let G be one of PGLd(q), PGUd(q), PSpd(q), or PGOε
d(q). Let k ∈

{1, 2}, and let Ω be S(G, k) or N ε(G, k), with ε either +, −, or blank.

1. Assume that d ≥ 5, that G is PGLd(q), and that k = 2. Then b(G) ≤ �d/2� + 2.
2. Assume that d ≥ 3, that G isPGUd(q) orPSpd(q), and that k = 1. Then b(G) ≤ d.
3. Assume that d ≥ 6, that G is PGOε

d(q), and that k = 1. Then b(G) = d − 1.
4. Assume that d ≥ 7, that G is not PGLd(q), and that k = 2. Then b(G) ≤ �d/2�.
Additionally, if q is even, d ≥ 6, and Ω is the right coset space of GO±

d (q) in
G = Spd(q), then b(G) = d.

We shall prove this result by giving explicit bases of the stated size. These bounds
are very similar to those proved by Burness, Guralnick and Saxl in [8] for algebraic
groups, although we consider the full projective isometry group. Unfortunately we
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were not able to directly transfer many of their proofs over to the finite case, but we
have taken some inspiration from their arguments.

We notice in passing that the value of b(G,Ω) for Ω the right coset space of
GO±

d (q) in G = Spd(q) is only one less than the value of the largest irredundant
base size for this action, as proved in [16]: in general these two quantities can be very
different.

2 Explicit bases for some subspace actions

Let G be a finite almost simple classical group with natural module V . In this section
we present explicit bases for the action of G on a G-orbit of totally singular, non-
degenerate, or non-singular one- or two-dimensional subspaces of V , and for the
action of Spd(q) on the right cosets of GO±

d (q), with q even.

Definition 4 Let F = Fq2 in the unitary case, and F = Fq otherwise, and let σ be the
automorphism of F mapping x �→ xq . Write F

∗ for the non-zero elements of F.
We fix our standard classical forms and bases on V = F

d . Our standard basis for
GLd(q)will be (v1, . . . , vd). If d = 2a then our standard unitary and symplectic forms
B have basis (e1, . . . , ea, f1, . . . , fa), whilst our standard unitary form for d = 2a+1
has basis (e1, . . . , ea, f1, . . . , fa, x). In both cases, for all i and j we set B(ei , e j ) =
B( fi , f j ) = 0, B(ei , f j ) = δi, j (the Kronecker δ), B(ei , x) = B( fi , x) = 0, and
B(x, x) = 1.

Our standard quadratic form Q, with symmetric bilinear form B, has basis

⎧
⎪⎨

⎪⎩

(e1, . . . , ea, f1, . . . , fa) if d = 2a and Q is of + type,

(e1, . . . , ea, f1, . . . , fa, x, y) if d = 2a + 2 and Q is of − type,

(e1, . . . , ea, f1, . . . , fa, x) if d = 2a + 1,

where for all i and j we set Q(ei ) = Q( fi ) = 0, B(ei , f j ) = δi, j , B(ei , x) =
B( fi , x) = B(ei , y) = B( fi , y) = 0, Q(x) = B(x, y) = 1 and Q(y) = ζ , where
X2 + X + ζ ∈ F[X ] is irreducible. We will work, at times, with orthogonal groups of
odd dimension in characteristic two, and this is our standard form in this case as well:
see, for example, [23, p139] for more information.

A pair (u, v) of vectors in V is a hyperbolic pair if B(u, u) = B(v, v) = 0,
B(u, v) = 1, and (in the orthogonal case) Q(u) = Q(v) = 0.

We now collect a pair of elementary lemmas. The first two parts of the following
are well known, and the third is easy. By the support of a vector v, denoted Supp(v),
we mean the set of basis vectors for which the coefficient is nonzero.

Lemma 1 Let W = F
d
q with basis w1, . . . , wd , let H = GLd(q), and let the set

A = {〈w1〉, . . . , 〈wd〉}.
1. H(A) is a group of diagonal matrices, and is trivial when q = 2.
2. For all μ := (μ1, . . . , μd) ∈ (F∗

q)
d , let A(μ) = A ∪ {〈μ1w1 + · · · + μdwd〉}.

Then H(A(μ)) = Z(GLd(q)).
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3. Let T = 〈u, v〉 ≤ W, and let g ∈ H be such that T g = T . If there exists
an s ∈ Supp(v) such that for all t ∈ Supp(u), the vector s /∈ Supp(tg), then
〈u〉g = 〈u〉.
In the presence of a non-degenerate form, we can make stronger statements.

Lemma 2 Let B be a non-degenerate sesquilinear form on V = F
d , with d > 2. Let

u, v ∈ V be such that 〈u, v〉 is non-degenerate, and let g be an isometry of V such
that ug = αu for some α ∈ F

∗.

1. Assume that vg = βv, for some β ∈ F
∗. If (u, v, w) are such that 0 �= w ∈ 〈u, v〉⊥,

and g stabilises 〈γ1u+γ2v+γ3w〉 for some γi ∈ Fwith γ1γ3 �= 0, thenwg = αw.
Furthermore, if γ2 �= 0 then β = α, and if, in addition, B(u, v) �= 0 then α = α−q .

2. Assume instead that B is symmetric, and that (u, v) are a hyperbolic pair. If the
vector vg ∈ 〈u, v〉, then vg = α−1v.

Proof (1). Since 〈u, v〉 is non-degenerate, the matrix g preserves the decomposition
V = 〈u, v〉 ⊕ 〈u, v〉⊥. Fix a basis {w = w3, w4, . . . , wd} of 〈u, v〉⊥. Then there exist
λ3, . . . , λd such that wg = ∑d

i=3 λiwi . Furthermore, there exists μ ∈ Fq such that

μ (γ1u + γ2v + γ3w) = (γ1u + γ2v + γ3w) g = γ1αu + γ2βv + γ3

(
d∑

i=3

λiwi

)

.

Hence μ = α = λ3 and λi = 0 for 4 ≤ i ≤ d. Furthermore, if γ2 �= 0 then β = α.
The final claim is clear.
(2). Let vg = βu + γ v. From 1 = B(u, v) = B(ug, vg) = αγ , we deduce that
γ = α−1 �= 0. Then

0 = Q(v) = Q(vg) = Q(βu + γ v) = βγ

implies that β = 0. ��

2.1 Totally singular subspaces

In this subsection we consider the unitary, symplectic and orthogonal groups acting
on S(G, k) for k ∈ {1, 2}, where S(G, k) is as in Notation 3. We shall use without
further comment the fact that the trace map from Fq2 to Fq , given by tr(α) = α + αq ,
is surjective.

Lemma 3 Let G be PGUd(q), PSpd(q), PGOε
d(q), with d ≥ 5 if G is orthogonal, and

d ≥ 3 otherwise, and let Ω = S(G, 1). Then the set B in Table 1 is a base for the
action of G on Ω . In particular, b(G) ≤ d and if G is orthogonal then b(G) ≤ d − 1.

Proof Let H = GUd(q), Spd(q), or GOε
d(q). First let B be one of the sets listed in

Table 1. A straightforward calculation shows that each subspace in B is singular, so
B ⊆ Ω . Let g ∈ H(B). We shall show that g is scalar, from which the result will
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Table 1 Bases for S(G, 1)

Let Vi = 〈e1 + ei 〉, Wi = 〈e1 + fi 〉, and T = 〈−e1 + f1 + x〉
G B Comments

PGU2a+1(q) {〈e1〉, 〈 f1〉, Vi ,Wi , 〈e1 + μ f1 + x〉 |
2 ≤ i ≤ a}

tr(μ) = −1

PGU2a(q), PSp2a(q) {〈e1〉, 〈 f1〉, Vi ,Wi | 2 ≤ i ≤ a}
PGO+

2a(q) {〈e1〉, 〈 f1〉, Vi ,Wj | 2 ≤ i ≤ a,

2 ≤ j ≤ a − 1}
PGO2a+1(q) {〈e1〉, 〈 f1〉, Vi ,Wj , T | 2 ≤ i ≤ a,

2 ≤ j ≤ a − 1}
PGO−

2a+2(q)
{〈e1〉,〈f1〉, Vi ,Wj , 〈−ζe1 + f1 + y〉
T | 2 ≤ i ≤ a, 2 ≤ j ≤ a − 1

}
ζ from Definition 4

follow. To do so, we shall repeatedly apply Lemma 2(1), with (u, v, w) set to be equal
to various triples of vectors.

For PGU3(q) it suffices to apply Lemma 2(1) to (e1, f1, x). So we can assume that
d ≥ 4. Apply Lemma 2(1), first to (e1, f1, ei ) and then to (e1, f1, f j ) to see that there
exists α ∈ F such that

ei g = αei , f j g = α f j , for 1 ≤ i ≤ a and

{
2 ≤ j ≤ a if H is GUd (q) or Spd (q),

2 ≤ j ≤ a − 1 if H is orthogonal.
(1)

Now, B(e1g, f1g) = 1 yields

f1g = α−q f1. (2)

For PGU2a+1(q) the result follows by applying Lemma 2(1) to (e1, f1, x). For
PGU2a(q), PSp2a(q) and PGO+

2a(q), we deduce from B(e2g, f2g) = 1 that α = α−q ,

hence if G is not orthogonal then g is scalar.
For PGO2a+1(q), applying Lemma 2(1) to (e1, f1, x) shows that xg = αx = ±x .

Similarly, for PGO−
2a+2(q), applying Lemma 2(1) to both (e1, f1, x) and (e1, f1, y)

yields xg = αx = ±x and yg = αy. Combining these with (1) and (2), we deduce
that if H is orthogonal then g stabilizes 〈ea, fa〉⊥, and so stabilizes 〈ea, fa〉. Then
Lemma 2(2) shows that fag = α fa , so g is scalar. ��
Lemma 4 Let G = PGLd(q) and letΩ = S(G, 2). Then the set B in Table 2 is a base
for the action of G on Ω . In particular b(G) ≤ � d

2 � + 2 when d ≥ 5, and b(G) ≤ 5
when d = 4.

Proof Let g ∈ GLd(q)(B): we shall show that g is scalar. The arguments for d = 4 are
similar to, but easier than, those that follow, so let d ≥ 5, and let X = X1⊕· · ·⊕Xa−1.
Then g stabilises Y1 ∩ X = 〈v2 + v4 + · · · + v2a−2〉. Hence there exists α ∈ Fq such
that

v2 j g = αv2 j , for 1 ≤ j ≤ a − 1.
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Furthermore, g stabilises X1 ∩ Y2 = 〈v1〉, and hence v1g = βv1 for some β ∈ F .

Now, this and the fact that g stabilizes X2 ⊕ · · · ⊕ Xa = 〈v3, v4, . . . , v2a−1, v2a〉
means that we may apply Lemma 1(3), with the vectors u = v1 + v3 + · · · + v2a−1,
v = v2 + v4 + · · · + v2a−2, and s = v2 to deduce that

v2i−1g = βv2i−1, for 1 ≤ i ≤ a.

Now, vdg ∈ 〈vd−1, vd〉 if d = 2a is even (and vdg = βvd otherwise), so once again
applying Lemma 1(3), this time with T = Y2, u = v3 + v2a−2 + vd and s = v1 yields
〈u〉g = 〈u〉, so α = β and g is scalar. ��

Lemma 5 Let G ∈ {PGUd(q),PSpd(q),PGOε
d(q)} with d ≥ 4, and d ≥ 7 if G is

orthogonal, let Ω = S(G, 2) and let b = b(G). Then the set B in Table 2 is a base
for the action of G on Ω . In particular, if d ≥ 7 then b ≤ � d

2 �, if G = PGU4(q) then
b ≤ 5, whilst otherwise, if d ≤ 6 then b ≤ 4.

Proof The arguments for d ≤ 6 are similar to, but more straightforward than, those
that follow, so we shall assume that d ≥ 7, so that a = �d/2� ≥ 4.

Let H be GUd(q), Spd(q) or GOε
d(q), and let g ∈ H(B). It is straightforward to

verify that B ⊆ Ω . Since V g
i = Vi for i ∈ {1, 2}, there exist αi , βi , γi , δi ∈ F such

that

e1g = α1e1 + α2e2, e2g = β1e1 + β2e2
f1g = γ1 f1 + γ2 f2, f2g = δ1 f1 + δ2 f2.

(3)

Let A be as in Table 2, and let X = 〈A〉. We shall first show that

ei g = α1ei and fi g = β2 fi for i = {1, 3, 4, . . . , a − 1}, e2g = β2e2, f2g = α1 f2. (4)

Let U = V1 ⊕ V2, and let W = U⊥, so that Wg = W . For 3 ≤ i ≤ a − 1, the
element g stabilises Ui := 〈V1, V2,Wi 〉, and so stabilises Ui ∩ W = 〈ei , fi 〉. Then
Lemma 1(3), with u = e1 + ei , v = e2 − f1 + fi , and s = f1 shows that there exists
η ∈ F such that (e1 + ei )g = η(e1 + ei ) = α1e1 +α2e2 + ei g, where the last equality
holds by (3). Hence (4) holds for ei for i �= 2. Similarly, for 3 ≤ i ≤ a − 1, there
exist η, ρ ∈ F such that

(e2 − f1 + fi ) g = η (e1 + ei ) + ρ (e2 − f1 + fi )
= β1e1 + β2e2 − γ1 f1 − γ2 f2 + fi g.

Equating coefficients, we deduce from fi g ∈ 〈ei , fi 〉 that γ2 = 0 and β2 = γ1, so
that f1g = β2 f1, and also deduce that fi g = β1ei + β2 fi for 3 ≤ i ≤ a − 1. For
i ∈ {1, 2}, let Ai = 〈ei , fi 〉. Then Ag

1 = A1, so g stabilises A⊥
1 ∩ U = A2, and

consequently stabilizes V1 ∩ A2 = 〈e2〉 and V2 ∩ A2 = 〈 f2〉, and so β1 = δ1 = 0.
Finally, B(e1g, f1g) = B(e2g, f2g) = 1 yields

α1 = β
−q
2 , and β2 = δ

−q
2 ,
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hence α1 = δ2, and so (4) follows.
We now complete the proof that g = α1 Id , so B is a base for G. If d = 2a − 1

then (4) yields (X⊥)g = 〈x〉g = 〈x〉. Let u = −e1 + f1 + x if G is orthogonal and
u = −e1 + λ f1 + x otherwise. Then Lemma 1(3), with v = e3 + f2 and s = f2,
shows that 〈u〉g = 〈u〉, and so g = α1 Id , as required.

If H = GO−
2a(q) then (X⊥)g = 〈x, y〉g = 〈x, y〉. We deduce from (4) and

Lemma 1(3), with T = V6, u = −e1 + e2 + f1 + x and s = f2, that 〈u〉g = 〈u〉, and
so α1 = β2 and xg = α1x . Now considering u = −ζe1 + f1 + ζ f2 + y and s = e2
shows that g is scalar.

Finally, consider PGU2a(q),PSp2a(q) and PGO+
2a(q). From (4) we see that

〈ea, fa〉g = 〈ea, fa〉. Then, by Lemma 1(3), with T = V3, u = e1 + ea , and s = e2,
we deduce that eag = α1ea . Finally, if we instead let u = e2 − ea − f1 + f2 + fa,
v = e1 + ea , and s = e1, then we see that 〈u〉g = 〈u〉, and so g = α1 I2a, as required.
��

2.2 Non-degenerate subspaces

In this subsection we consider N ε(G, k), where k ≤ 2 and N ε(G, k) is as in Nota-
tion 3.

Lemma 6 Let d ≥ 3, let G = PGUd(q), and let Ω = N (G, 1). Then the set B in
Table 3 is a base for the action of G on Ω , so b(G) ≤ d.

Proof First assume that either d is odd or q > 2. Let α be a primitive element of F
∗.

Then for at least one value ofμ in {α, α−1, α2} the vector v(μ) = v1+· · ·+vd−1+μvd
is non-degenerate, so B ⊆ Ω . Let g ∈ GUd(q)(B) and U = 〈v1, . . . , vd−1〉. Since U
is non-degenerate, (U⊥)g = 〈vd〉g = 〈vd〉, and hence g is diagonal by Lemma 1(1).
Then g also stabilises 〈v(μ)〉, and so is scalar, by Lemma 1(2).

Forq = 2 andd even, g stabilises 〈v1, v2〉⊥ = 〈v3, . . . , vd〉.ThereforeLemma2(1),
applied to (v1, v2, vi ), for 3 ≤ i ≤ d, shows that GUd(q)(B) is scalar. ��

When q is odd, PGOε
d(q) has two orbits of non-degenerate 1-spaces. If d is even

then the orbits can be distinguished by considering the discriminant of the restriction
of the quadratic form to the subspace, and the actions on the two orbits are equivalent,
so it is enough to consider one of them. If d is odd then the orbits can be distinguished
by the sign of the restriction of the form to the orthogonal complement.

Lemma 7 Let d ≥ 4, let G = PGOε
d(q) with ε = − if d = 4, and let Ω be a G-orbit

of non-degenerate or non-singular 1-spaces. Then, up to equivalence, the set B in
Table 3 is a base for the action of G on Ω . In particular, if d ≥ 6 then b(G) ≤ d − 1,
b(PGO−

4 (q)) ≤ 3 if q �= 3, and b(PGO5(q)) ≤ 5. In addition, b(PGO−
4 (3)) = 4.

Proof The result for PGO−
4 (3) is an easy calculation. Let H = GOε

d(q). We start with
d ≤ 5, and show first that B is contained in a single G-orbit of the appropriate type.
For GO−

4 (q), all 1-spaces in 〈x, y〉 are non-degenerate. For q odd, they are partitioned
into (q + 1)/2 spaces 〈v〉 such that Q(v) is square, and (q + 1)/2 with Q(v) non-
square. Thus for q �= 3, we may find v1, v2 ∈ 〈x, y〉 that are linearly independent, not
multiples of x , and such that Q(vi ) is square, so that B is a subset of a G-orbit.
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For (d, ε) = (5,+), notice that 〈e1 + x〉⊥ = 〈e1, x − 2 f1, e2, f2〉 is of plus type,
and similarly for the rest of B, so B ⊆ Ω .

For (d, ε) = (5,−), notice that 〈w1(α)〉⊥ = 〈e1−α f1〉⊥ = 〈e1+α f1, x〉⊕〈e2, f2〉,
and the determinant of the restriction of the bilinear form B to 〈e1 + α f1, x〉 is 4α,
which is square if and only if α is square. Since −α is non-square, α is a square if and
only if q ≡ 3 mod 4, so 〈w1(α)〉 ∈ Ω by [19, Prop 2.5.10]. Similarly, the restriction of
B to 〈w1(α)+e2〉⊥ = 〈e1 −α f1 +e2〉⊥ = 〈e1 +α f1, x, f1 − f2, e2〉 has determinant
−4α, which is always non-square, so 〈w1(α) + e2〉 ∈ Ω . Notice also that

〈w2(1 + α) + f1 + x〉⊥ = 〈e2 − (1 + α) f2 + f1 + x〉⊥
= 〈e2 + (1 + α) f2, x − 2e1, f1, x − 2 f2〉,

so a short calculation shows that this 1-space is also in Ω . The argument for the
remaining 1-spaces is similar, so B ⊆ Ω .

We show next that B is a base, so let g ∈ H(B). If d = 4 then the assumption that v2
is not a multiple of either x or v1 combines with Lemma 2(1) applied to (x, v1, e1) to
show that g|〈x,y,e1〉 = ±I3. Since g stabilises 〈x, y〉⊥ = 〈e1, f1〉, Lemma 2(2) shows
that g = ±I4. For d = 5 and ε = −, it is straightforward to see that B forms a base
for G. For d = 5 and ε = +, notice that g stabilises both 〈x〉⊥ and 〈x, e1 + x, f1 + x〉,
so stabilises 〈ei , fi 〉 for i = 1, 2. It is then easy to see that g|〈x,e1,e2, f1〉 = ±I4, from
which Lemma 2(2) shows that g = ±I5.

For the rest of the proof, assume that d ≥ 6. In cases (ε, ε) = (+, ◦) and ε = −
with q �= 3, the arguments that B is contained in a single G-orbit of the appropriate
type, and that B is a base for H = GOε

d(q), are identical to those for d ≤ 5, so we
will omit them. In the other cases, let g ∈ H(B). We shall show that B is contained in
a single G-orbit and that g is scalar.

First consider ε = +. Then Q(z) = 1 for all 〈z〉 ∈ B, so B is contained in a single
G-orbit. Let μ ∈ Fq be such that (w1(−1))g = (e1 + f1)g = μ(e1 + f1). Then
μ ∈ {±1}. For 2 ≤ i ≤ a, there exists νi ∈ Fq such that

(w1(−1) + ei ) g = νi (w1(−1) + ei ) = μ (w1(−1)) + ei g.

Hence

ei g = (νi − μ)(w1(−1)) + νi ei ,

and Q(ei g) = 0 yields νi = μ, so ei g = μei for i ≥ 2. Similarly, fi g = μ fi for
2 ≤ i ≤ a − 1, and Lemma 2(2) then yields fag = μ fa . Since 〈(w2(−1)) + e1〉 ∈ B,
we deduce in the same way that e1g = μe1, and then (w1(−1))g = μe1 + f1g shows
that f1g = μ f1, as required.

Next consider ε = − and q = 3. Then Q(y) = 2, so it follows that
Q(y + w1(1)) = Q(y + e1 − f1) = 1. It is clear that Q(z) = 1 for all other 〈z〉
in B, so B is contained in a single G-orbit. Notice that g stabilises

W1 := 〈x, e1 + x, f1 + x〉 = 〈x, e1, f1〉
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and also stabilises

W2 := 〈W1, w1(1) + y〉 = 〈e1, f1, x, y〉.

Hence g stabilises W⊥
1 ∩ W2 = 〈x + y〉, and so stabilises U := 〈x, y〉 and U⊥. Then

g stabilises 〈w1(1) + y〉 and w1(1)g ∈ U⊥, so g stabilizes 〈y〉. Lemma 2(1), applied
to both (x, y, ei ) and (x, y, f j ), yields ei g = μei and f j g = μ f j for 1 ≤ i ≤ a and
1 ≤ j ≤ a − 1. The result follows from Lemma 2(1) applied to (y, x, w1(1)) and
Lemma 2(2) applied to (ea, fa).

Finally, consider (ε, ε) = (−, ◦). First notice that g stabilises

V2 := 〈w1(α)〉⊥ = 〈e1 + α f1, x, e2, . . . , ea, f2, . . . , fa〉.

In particular ei g = ui for some ui ∈ V2 for 2 ≤ i ≤ a. Hence there exist μ ∈ {±1}
and νi ∈ F

∗
q such that

(w1(α) + ei ) g = νi (w1(α) + ei ) = μ (w1(α)) + ui ,

and so ui = ei g = μei for 2 ≤ i ≤ a. Similarly, f j g = μ f j for 2 ≤ j ≤ a − 1.
Then applying Lemma 2(1) to (e2, f2, e1 + w2(α)) shows that e1g = μe1 and then
f1g = μ f1, by Lemma 2(2). We now deduce that xg ∈ 〈ea, fa, x〉, and so from
〈w2(1+α)+ f1 + x〉 ∈ B we see that xg = μx . The result follows from Lemma 2(2).

��
We now prove that the bound for even-dimensional orthogonal groups in Lemmas 3

and 7 is tight.

Lemma 8 Let d ≥ 6 be even, and let G = PGO±
d (q). Let A = {〈v1〉, . . . , 〈vd−2〉}

be a set of d − 2 one-dimensional subspaces of the natural module V for G. Then
G(A) is nontrivial. In particular, if Ω is a G-orbit of 1-dimensional subspaces, then
b(G,Ω) = d − 1.

Proof Let H = GO±
d (q), letW be any (d−2)-space containing 〈A〉, and let K denote

the subgroup of H that acts as scalars onW .We shall show that there exists a nonscalar
element of K , from which the result will follow.

If W is non-degenerate, then K contains a subgroup which acts as GO(W⊥) �= 1
on W⊥, so the result is immediate. Thus we may assume that W is degenerate, so
U := Rad(W ) = W ∩ W⊥ is a non-zero subspace of W , of dimension 1 or 2.

First assume that there exists a u ∈ U such that Q(u) �= 0. This implies that q is
even, so H has a single orbit on non-singular 1-spaces, and without loss of generality
we can assume that u = e1 + f1. This implies that e1, f1 /∈ W . We define g ∈ GL(V )

by

e1g = f1, f1g = e1, zg = z for all z ∈ 〈e1, f1〉⊥.

Let v ∈ V . Then v = αe1 + β f1 + z, for some α, β ∈ Fq and z ∈ 〈e1, f1〉⊥, and
it is easy to verify that Q(vg) = Q(v), and so g ∈ H . Furthermore, if w ∈ W then
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B(w, e1 + f1) = 0, so w = γ e1 +γ f1 + z, for some γ ∈ Fq (recalling that q is even)
and z ∈ 〈e1, f1〉⊥. Hence wg = w, so g ∈ K , as required.

Assume instead that Q(u) = 0 for all u ∈ U , and consider first dim(U ) = 1. Then
we can write W = 〈u〉 ⊥ W ′, with Rad(W ′) = 0. If q is even this contradicts
the fact that dimW = d − 2 is even, so q is odd. There exists a u′ ∈ V \ W
such that B(u, u′) �= 0, and we let W1 = 〈W , u′〉. Then W1 is non-degenerate,
and dim(W1) = d − 1, so dim(W⊥

1 ) = 1. Let 〈z〉 = W⊥
1 , and define g ∈ GL(V ) by

zg = −z, wg = w for all w ∈ W1.

Let v ∈ V . Then v = w + αz, for some w ∈ W1 and α ∈ Fq , so

Q(vg) = Q(w − αz) = Q(w) + (−α)2Q(z) = Q(v),

so g ∈ K , as required.
Finally consider the case dim(U ) = 2. We fix u1 ∈ U \ {0}. There exists a vector

t1 ∈ V \ W such that (u1, t1) is a hyperbolic pair. Furthermore, 〈u1, t1〉⊥ ∩ U is 1-
dimensional, with basis u2, say, and there exists t2 ∈ 〈u1, t1〉⊥ \ W such that (u2, t2)
is a hyperbolic pair. Since t1, t2 /∈ W , we may define an element g ∈ GL(V ) by

t1g = t1 + u2, t2g = t2 − u1, wg = w for all w ∈ W .

Let v ∈ V . Then v = αt1 + βt2 + w for some α, β ∈ Fq and w ∈ W , and so

Q(vg) = Q(α(t1 + u2) + β(t2 − u1)) + Q(w) + B(α(t1 + u2) + β(t2 − u1), w)

= −αβ + αβ + Q(w) + B(αt1 + βt2, w) = Q(v),

so g ∈ K , as required. ��

Lemma 9 Let G ∈ {PGUd(q),PSpd(q),PGOε
d(q)} with d ≥ 5, and d ≥ 7 if G is

orthogonal, let Ω = N+(G, 2) when G is orthogonal and Ω = N (G, 2) otherwise,
and let b = b(G,Ω). Then the set B in Table 4 is a base for the action of G on Ω . In
particular, if d �= 6 then b ≤ � d

2 �, and if d = 6 then b ≤ 4.

Proof It is straightforward to verify that the given basis of each space in B is a hyper-
bolic pair, so B ⊆ Ω in each case. The arguments for d ≤ 6 are similar to, but
more straightforward than, those that follow, so we shall assume that d ≥ 7, so that
a = �d/2� ≥ 4. Let H be GUd(q), Spd(q) or GOε

d(q) and let g ∈ H(B).

From V g
2 = V2, it follows that ( f1 + f2)g = β( f1 + f2) + γ e2 = f1g + f2g for

some β, γ ∈ F . Then f1g ∈ V1 and f2g ∈ V⊥
1 , so equating coefficients yields

f1g = β f1 and f2g = β f2 + γ e2.

Next, notice that g stabilises V⊥
1 ∩ V2 = 〈e2〉, so e2g = αe2, where β = α−q since

B(e2g, f2g) = 1.
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Table 5 Bases forN−(G, 2)

Let V1 = 〈e1 + f1, e2 + f1 + ζ f2〉.
If ζ �= 1 then let V2 = 〈e2 + f1 + f2, e1 + ζ f1〉, otherwise let V2 = 〈e1 + f1 + f2, e2 + f2〉.
Let Wi = 〈e1 + ei + f1, e2 + ζei + fi 〉 andA = {V1, V2,Wi : 3 ≤ i ≤ a − 1}

G B

PGO2a−1(q) A ∪ {V3 = 〈e2 + f1 + x, e1 + e3 + ζ f3〉}
PGO+

2a(q) A ∪ {V4 = 〈e1 + e2 + f2 + fa , e3 + f1 + ζ f3〉}
PGO−

2a(q) A ∪ {V5 = 〈e1 − e3 + x, f1 + f3 + y〉}

We shall show next that

ei g = αei and fi g = α−q fi for 1 ≤ i ≤ a − 1. (5)

For 3 ≤ i ≤ a − 1, the element g stabilises 〈V1, V2,Wi 〉 ∩ 〈V1, V2〉⊥ = 〈ei , fi 〉.
Then Lemma 1(3), applied to T = Wi , first with u = e1 + ei and s = f2, since
f2g ∈ 〈e2, f2〉, and then with u = f2 + fi and s = e1, since e1g ∈ V1, shows that
there exist νi , ηi , η, δ ∈ F such that

(e1 + ei ) g = νi (e1 + ei ) = (ηe1 + δ f1) + ei g
( f2 + fi ) g = ηi ( f2 + fi ) = (

α−q f2 + γ e2
) + fi g.

By equating coefficients, we deduce that e1g = ηe1, ei g = ηei , f2g = α−q f2, and
fi g = α−q fi . Finally, B(e1g, f1g) = 1 yields η = α, and so (5) follows.
Finally, we apply Lemma 1(3) to the final subspace, T = 〈a, b〉 say, in Table 4.

When d is odd, setting u = a and s = e2 shows that 〈a〉g = 〈a〉, so α = α−q and
xg = αx . If d is even, we deduce both that 〈a〉g = 〈a〉 and 〈b〉g = 〈b〉, and hence
g = α Id . ��

A pair (u, v) of vectors is an elliptic pair if Q(u) = 1, Q(v) = ζ , for some ζ ∈ F

such that X2+ X +ζ is irreducible, and B(u, v) = 1. Any elliptic pair spans a 2-space
of minus type.

Lemma 10 Let G = PGOε
d(q), with ε ∈ {◦,+,−} and d ≥ 7, and letΩ = N−(G, 2).

Then the set B in Table 5 is a base for the action of G on Ω , and consequently,
b(G,Ω) ≤ � d

2 �.

Proof Fix ζ such that X2 + X + ζ is irreducible, with ζ = Q(y) if ε = −. Let
a = �d/2� ≥ 4. One may check that the given ordered basis vectors for each 2-
space in B form an elliptic pair, and so B ⊆ Ω . For example, Q(e1 + f1) = 1,
Q(e2+ f1+ζ f2) = B(e2, ζ f2) = ζ , and B(e1+ f1, e2+ f1+ζ f2) = B(e1, f1) = 1.
Let H = GOε

d(q), and let g ∈ H(B). To show that B is a base for G, it suffices to show
that g is scalar.

We shall show first that there exists α = ±1 such that

(e1 + f1) g = α (e1 + f1) , ei g = αei for 2 ≤ i ≤ a − 1, fi g = α fi for 3 ≤ i ≤ a − 1. (6)
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LetU = 〈V1, V2〉 = 〈e1, e2, f1, f2〉. Then g stabilises the subspaceUi := 〈U ,Wi 〉
for 3 ≤ i ≤ a − 1, and so stabilisesUi ∩U⊥ = 〈ei , fi 〉. Since g stabilisesWi and V1,
there exist μi , νi , α, ν ∈ F such that

(e1 + ei + f1) g = μi (e1 + ei + f1) + νi (e2 + ζei + fi ) ∈ Wi

= (e1 + f1) g + ei g = α (e1 + f1) + ν (e2 + f1 + ζ f2) + ei g.

Since ei g ∈ 〈ei , fi 〉, looking at f2, we see that ν = 0. Hence νi = 0, and we deduce
that (e1 + f1)g = α(e1 + f1) and ei g = αei for 3 ≤ i ≤ a − 1. We now apply
Lemma 2(2) to (ei , fi ) to see that fi g = α−1 fi for 3 ≤ i ≤ a − 1.

To prove (6), it remains to prove that e2g = αe2 = ±e2. Considering W3 shows
that

(e2 + ζe3 + f3) g = e2g + ζe3g + f3g = e2g + ζαe3 + α−1 f3
= λ (e2 + ζe3 + f3) + μ (e1 + e3 + f1) ,

for some λ,μ ∈ F. Then e2g ∈ U , so considering f3 gives λ = α−1. Then considering
e3 yields μ = ζ(α − α−1), and so e2g = α−1e2 + ζ(α − α−1)(e1 + f1). Finally,
Q(e2g) = 0 shows that α = α−1 = ±1 and so (6) is verified.

LetA ⊆ B be as in Table 5, and let X = 〈A〉. Then g stabilises X⊥. If we can show
that either of e1g = αe1 or f1g = α f1, then it follows from (6) that the same is true for
the other. In particular, thiswill imply that 〈e1, f1〉g = 〈e1, f1〉. It will then follow from
Ug = U that 〈e2, f2〉g = 〈e2, f2〉. Hence, it will follow from Lemma 2(2) applied to
(e2, f2) that f2g = α−1 f2 = α f2. Hence, to show that g is scalar it suffices to show
that vg = αv for either v = e1 or v = f1, and for whichever of v ∈ {ea, fa, x, y} is
defined. We shall use (6) implicitly.

If d is odd, then Lemma 1(3) with T = V3 and initially with u = e1 + e3 + ζ f3
and s = x , gives ug = αu, and so e1g = αe1 and hence f1g = α f1. Now, setting
u = e2 + f1 + x and s = e1 shows that ug = αu. Hence xg = αx , and so g is scalar.

If ε = + then Lemma 1(3) applied to T = V4, u = e3+ f1+ζ f3 and s = fa ∈ X⊥
shows that ug = αu.Hence f1g = α f1 and so e1g = αe1. Next, letting s = f1 shows
that fag = α fa . Finally, Lemma 2(2) applied to fa, ea ∈ X⊥ proves that g is scalar.

Finally, if ε = − then X⊥ = 〈x, y〉. Lemma 1(2), applied to T = V5, initially with
s = f3, shows that (e1 − e3 + x)g = α(e1 − e3 + x). Applying the lemma again, this
time with s = e3 gives ( f1 + f3 + y)g = α( f1 + f3 + y). Hence g = α Id . ��

2.3 Symplectic groups on the cosets of orthogonal groups

We consider Spd(q), acting on the cosets of GO±
d (q), with q even.

Proposition 1 Let G = Sp2m(q) with 2m ≥ 6 and q even, and let M = GO±
2m(q).

Then b(G, M \ G) = 2m.

Proof Weshall use the isomorphismSp2m(q) ∼= GO2m+1(q) to consider the equivalent
actions of H = GO2m+1(q) on N±(H , 2m), where the natural module for H is
V = F

2m+1
q with quadratic form Q as in Definition 4. That is, we shall consider the
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actions of H on non-degenerate 2m-dimensional subspaces of + and − type, since
the point stabiliser of H in these actions is GO±

2m(q).
We shall first show that the set B in Table 6 is a base for H , and then show that B

is of minimal size. First notice that (ei , fi ), (ei , ei + fi + x), and (ei + fi + x, fi ) are
hyperbolic pairs, therefore Ai , 〈ei , fi + x〉 and 〈ei + x, fi 〉 are 2-spaces of + type.
The basis of Bi is an elliptic pair, so in each case B ⊆ Ω .

Let g ∈ H(B). Thenwe shall show that g = 1. From Q(x) = 1 and 〈x〉 = Rad(V ) =
V ∩ V⊥, we deduce that xg = x . We first consider N−(H , 2m). For 2 ≤ i ≤ m, the
element g stabilises

T ∩Ui = B1 ⊕ A2 ⊕ · · · ⊕ Ai−1 ⊕ 〈ei 〉 ⊕ Ai+1 ⊕ · · · ⊕ Am,

and so stabilises Rad(T ∩Ui ) = 〈ei 〉. Hence there exists αi ∈ Fq such that ei g = αi ei ,
for 2 ≤ i ≤ m. Similarly, Rad(T ∩ Vi )g = Rad(T ∩ Vi ) so fi g = α−1

i fi , for
2 ≤ i ≤ m − 1. Since m ≥ 3, the space S := 〈A2, . . . , Am−1〉 is non-degenerate and
stabilised by g, so g also stabilises

S⊥ ∩ W1 = 〈A1, Am, x〉 ∩ W1 = 〈A1, Am〉.

Hence g stabilises 〈A1, Am〉 ∩ W2 = 〈e1, Am〉, and so fixes the radical of this space,
which is 〈e1〉. Moreover, g stabilises 〈e1, Am〉 ∩ T = Am = 〈em, fm〉. Hence, since
emg = αmem , Lemma 2(2) shows that fmg = α−1

m fm . In addition, the element g
stabilises A⊥

m ∩ 〈A1, Am〉 = A1, and Lemma 2(2) now yields f1g = α−1
1 f1. Next, for

2 ≤ i ≤ m we deduce from

( fi + x) g = α−1
i fi + x ∈ Ui

that αi = 1, and the same follows for α1 from ( f1 + x)g ∈ W2.
The arguments forN+(H , 2m) are very similar but easier. Consideration of T ∩Ui

shows that for all i there exists an αi ∈ Fq such that ei g = αi ei . Then an identical
argument applied to T ∩ Vj shows that fi g = α−1

i fi for i ≤ m − 1. Therefore, g
stabilises

〈A1, . . . , Am−1〉⊥ ∩ T = 〈em, fm〉,

and so fmg = α−1
m fm , also. Finally, notice that

( fi + x) g = α−1
i fi + x ∈ Ui

for all i , and hence αi = 1, as required.
It remains only to show that these bases are of minimal size. Let the set

A = {T , S1, . . . , S2m−1} consist of 2m − 1 non-degenerate 2m-spaces of V of
sign ε (either + or −). We shall show that H(A) �= 1. The stabiliser in H of T is
HT = GOε

2m(q), which acts naturally on T as GOε
2m(q). It suffices to show that the

stabiliser in HT of all of the spaces T ∩ Si for 1 ≤ i ≤ 2m − 2 is nontrivial.
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Since dim(T ∩ Si ) = 2m − 1, the restriction of B to T ∩ Si is degenerate, and
so T ∩ Si has a one-dimensional radical 〈vi 〉. Hence the 2-point stabiliser HT ,Si
stabilises the subspace 〈vi 〉 of T . Furthermore, since T is non-degenerate, it follows
that dim(v⊥

i ∩T ) = 2m−1, and so T ∩ Si = T ∩v⊥
i . Hence HT ,Si is equal to HT ,〈vi 〉

and so H(B) = ∩2m−2
i=1 HT ,Si contains (HT )〈v1〉,...,〈v2m−2〉. This group is nontrivial by

Lemma 8. ��

3 Proof of Theorem 1 for almost simple groups

In this section, we shall prove the following theorem, which in particular implies
Theorem 1 for almost simple groups.

Theorem 3 Let G ≤ Sym(Ω) be a primitive almost simple group of degree n that
is not large base. If b(G) is greater than �log n� + 1, then G = M24, n = 24 and
b(G) = 7.

Furthermore, if b(G) ≥ log n+1 then (G, n, b(G)) ∈ {(M12, 12, 5), (M23, 23, 6),
(M24, 24, 7)} or G = PSp2m(2) with m ≥ 3, n = 22m − 2m−1 and
b(G) = 2m = �log n� + 1.

We shall first consider the standard actions of Alt(�) and Sym(�) on partitions, then
the actions of the classical groups on totally singular and non-degenerate k-spaces,
and (for the orthogonal groups in even characteristic) non-singular 1-spaces. Then we
shall look at the action of groups with socle PSpd(2

f ) on the cosets of the normaliser
of GO±

d (2 f ), before considering the remaining subspace actions. Finally, we will deal
with the non-standard actions, and hence prove Theorem 3.

3.1 Action on partitions

We first consider the non-large-base standard actions of Alt(�) and Sym(�).

Theorem 4 Let s ≥ 2 and t ≥ 2, with � := st ≥ 5, and let G be Sym(�). Let Ω be
the set of partitions of {1, 2, . . . , �} into s subsets of size t , and let n = |Ω|. Then
b := b(G,Ω) < log n + 1.

Proof The degree n is �!/(t !)ss!. If t = 2, then s ≥ 3 and n ≥ 6!
23·3! = 15. However,

b = 3 by [7, Remark 1.6(ii)], so b < log n. If s ≥ t ≥ 3, then n ≥ 9!
(3!)33! = 280,

whilst b ≤ 6 by [1, Theorem 4(i)], so again b < log n.
For the remaining cases, by [1, Theorem 4(ii)]

b ≤ �logs t� + 3 ≤ logs t + 4 = logs(�/s) + 4 = logs � + 3. (7)

Next consider s = 2, so that t ≥ 3. We check inMagma [3] that if t = 3, 4, 5 then
b is at most 4, 5, and 5, respectively, whilst n = 10, 35, 126, and so b < log n + 1 in
each case. Assume therefore that � ≥ 12. Then

n = �!
2((�/2)!)2 = �(� − 1) . . . (� − �/2 + 1)

2(�/2)! = �(� − 1) . . . (�/2 + 2)(�/2 + 1)

(�/2)(�/2 − 1) . . . 2 · 2 > 2�/2.
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In particular, since � ≥ 12, we deduce from (7) that

b ≤ log � + 3 <
�

2
+ 1 ≤ log n + 1.

Next, let s = 3. We may assume that t > s, so � ≥ 12. Then, reasoning as for
s = 2, we deduce that n ≥ 2�/3 · 3�/3 > 22�/3. Hence log n > 2�/3, so (7) yields

b ≤ log � + 3 <
2�

3
+ 1 < log n + 1.

We are therefore left with 4 ≤ s < t , so that � ≥ 20. For all �, the groups Alt(�)
and Sym(�) have no core-free subgroups of index less than �, so � < n. From (7) we
deduce that

b ≤ logs � + 3 = log �

log s
+ 3 ≤ log �

2
+ 3 ≤ log � + 1 < log n + 1.

��

3.2 Subspace actions

We now prove Theorem 3 for the subspace actions of almost simple groups. First we
record two lemmas concerning base size and automorphism groups.

Lemma 11 LetG beafinite almost simple primitive permutationgrouponΩ with socle
G0 a non-abelian simple classical group, and let G0 �G1 �G ≤ Sym(Ω). If G/G1
has a subnormal series of length s with all quotients cyclic, then b(G) ≤ b(G1) + s.

Proof If (G0,Ω) is not isomorphic to (Alt(�), {1, . . . , �}) with � ∈ {5, 6, 8}, then by
[17, Theorem 1.2] each element of G has a regular cycle. It follows that stabilising
one point for each cyclic quotient suffices to extend a base for G1 to one for G.

Let (G0,Ω) be (Alt(�), {1, . . . , �}) for some � ∈ {5, 6, 8}. Then G ≤ Sym(�),
since the other automorphisms of Alt(6) do not act on 6 points, and so the result
follows from b(Sym(�),Ω) = b(Alt(�),Ω) + 1. ��

Recall the meaning of S(G, k) and N ε(G, k) from Notation 3. The following
bounds are established in [18, Proof of Theorem 3.3].

Lemma 12 Let G0 be a simple classical group.

(i) If (G0, k) �= (P�+
2m(q),m) then b(G0,S(G, k)) ≤ d/k + 10.

(ii) b(G0,N (G, k)) ≤ d/k + 11.
(iii) If G0 = PSLd(q) then b(G0,S(G, k)) ≤ d/k + 5.

Lemma 13 Let G be almost simple with socle G0 one of P�−
4 (q), P�5(q) or P�±

6 (q).
Assume that G0 �= P�−

4 (q) for q ≤ 3. Let Ω = N ε(G, 1), with ε = +,− or blank,
and let n = |Ω|. Then b := b(G) < log n + 1.
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Proof First let d = 4, so that q ≥ 4. Then Aut(G0)/PGO
−
4 (q) has a normal series of

length at most two with all quotients cyclic, so Lemmas 7 and 11 imply that b ≤ 5.
From [6, Table 4.1.2] we see that

n = q
(
q2 + 1

)

(q − 1, 2)
> 26,

so the result follows.
Next let d = 5, so that q is odd. Then Aut(G0)/PGO5(q) is cyclic, so Lemmas 7

and 11 yield b ≤ 6, whilst from [6, Table 4.1.2] we see that

n = q2
(
q4 − 1

)

2
(
q2 ∓ 1

) ≥ 36 > 25,

so the result follows.
Finally, let d = 6. From Lemmas 7 and 11 we deduce that b ≤ 5 if q = 2, and

b ≤ 7 otherwise. Moreover, by [6, Table 4.1.2],

n ≥ q2(q3 + 1)

(q − 1, 2)
>

{
25 if q = 2
26 if q ≥ 3

as required. ��

Proposition 2 Let d ≥ 8 be even, and let G be almost simple with socle G0 = P�ε
d(q).

Let Ω be S(G, k) orN ε(G, k), where ε = +, − or blank, and let n = |Ω|. If G acts
primitively on Ω then b := b(G) < log n + 1.

Proof We shall use throughout the proof the fact that if G0 �= P�+
8 (q), or if Ω �=

S(G, 2) (see, for example, [4, Table 8.50]), then G/G0 has a normal series with
all quotients cyclic of length at most three, and less if q = 2 or q is prime, so
that b(G) ≤ b(G0) + 3, by Lemma 11. Furthermore, under the same conditions,
b(G) ≤ b(PGOε

d(q)) + 2, by the same lemma. If G0 = P�+
8 (p f ) and p is odd then

Out(G0) ∼= Sym(4) × C f , whilst if p = 2 then Out(G0) ∼= Sym(3) × C f .
First consider Ω = S(G, k). By [19, Tables 3.5E and F] we may assume that

1 ≤ k ≤ d/2, and k ≤ d/2 − 1 if ε = −. If k ≤ d/2 − 1 then by [6, Table 4.1.2,
Cases VI and VII]

n =
(
q

d
2 ∓ 1

) (
q

d
2 −k ± 1

) ∏ d
2 −1

i= d
2 −k+1

(
q2i − 1

)

∏k
i=1

(
qi − 1

) (8)

≥
(
q

d
2 ∓ 1

) (
q

d
2 −1 ± 1

)

q − 1

k∏

i=2

(
qi + 1

)
> qd−k−1

k∏

i=2

qi ≥ qd−2+ k(k−1)
2 . (9)
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If k = 1 then Lemma 3 shows that b ≤ d + 1, with tighter bounds when q ≤ 3, whilst
(9) gives n > qd−2, so

log n + 1 > (d − 2) log q + 1 ≥ b.

Similarly, if k = 2 then we deduce from Lemma 5 that b ≤ d/2 + 3 if q is even or
prime, and b ≤ d/2+5 in general. From (9), we see that log n+1 > (d−1) log q+1,
so the result follows.

Next we consider the case 3 ≤ k ≤ d/2 − 1, so that b(G0,Ω) ≤ d/k + 10 by
Lemma 12(i). First assume that q ≤ 3 and k = 3. We calculate in Magma that if
(d, q) = (8, 2) then b ≤ 4. For (d, q) = (8, 3) we use the exact value of n and the
fact that b(G) ≤ b(G0) + 2 to see that log n + 1 > 15 ≥ b. For d ≥ 10 we see from
(8) that

n ≥
(
q

d
2 ∓ 1

) (
q

d
2 −3 ± 1

)

q − 1

(
q4 + 1

) (
q2 + 1

) (
q3 + 1

)
> qd−4q4+3+2 ≥ qd+5.

Hence if q = 2 then

log n + 1 ≥ d + 6 ≥ d

3
+ 11 ≥ b,

and if q = 3 then

log n + 1 ≥ 3

2
(d + 5) + 1 ≥ d

3
+ 13 ≥ b.

In the remaining cases k ≥ 4 or q ≥ 4, so the result follows by a routine calculation
from (9).

Finally consider k = d/2, so that ε = +. From [6, Table 4.1.2],

n =
d
2∏

i=1

(
qi + 1

)
≥

d
2∏

i=1

qi = q
d(d+2)

8 ≥ q10.

It is shown in [18] that b(G0) ≤ 9, so b ≤ 10 when q = 2, and b ≤ 12 otherwise, and
the result follows.

We now consider Ω = N ε(G, k), with ε ∈ {+,−} or blank. The stabiliser of
an element of Ω also stabilises a non-degenerate d − k space, of the opposite sign if
ε = − and k is even, and of the same sign otherwise. Thus by considering the stabiliser
of spaces of type +, − and ◦, we may assume that k ≤ d/2.

First assume that k is even, so that 2 ≤ k ≤ d/2, and if k = d/2 then ε = −, by
our assumption that G acts primitively. Then we deduce from [6, Table 4.1.2, Cases
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X, XI, XIII] (by replacing d by d − k if ε = + and ε = −) that

n =
q

k(d−k)
2

(
q

d
2 − ε

) ∏ d
2 −1

i= d−k
2

(
q2i − 1

)

2
(
q

k
2 − ε

) (
q

d−k
2 − εε

) ∏ k
2−1
i=1 (q2i − 1)

=
q

k(d−k)
2

(
q

d
2 − ε

) (
qd−2 − 1

)

2
(
q

k
2 − ε

) (
q

d−k
2 − εε

)

k
2−1
∏

i=1

qd−k−2+2i − 1

q2i − 1
. (10)

If k = 2 then it follows that n > q2d−6 ≥ qd+2, whilst from Lemmas 9 and 10 we
see that b ≤ d/2 + 2 < log n + 1. For k ≥ 4, notice that

n >
q

k(d−k)
2

(
q

d
2 − ε

) (
qd−2 − 1

)

4
(
q

d
2 − 1

)

k
2−1
∏

i=1

qd−k−2

≥ 1

4
q

k(d−k)
2 +d−3+(d−k−2)( k2−1) = 1

4
qkd−k2−1.

The quadratic kd − k2 − 1 attains its minimum for 4 ≤ k ≤ d/2 at k = 4, so

log n + 1 > (4d − 17) log q − 1 ≥ 4d − 18.

Then by Lemma 12(ii), b ≤ d
4 + 14. If d ≥ 10, then

log n + 1 ≥ 4d − 18 ≥ d

4
+ 14,

so it only remains to consider (d, k, ε) = (8, 4,−). In this case, (4d−17) log q−1 ≥
15 log q + 1 and the result follows easily for q ≥ 3. If q = 2 then Out(G0) is cyclic,
hence by Lemmas 11 and 12(ii), b ≤ 14 and the result follows.

Now let k be odd, so without loss of generality 1 ≤ k < d/2. By [6, Table 4.1.2,
Cases IX, XII, XIV]

n =
q

(kd−k2−1)
2

(
q

d
2 − ε

) ∏ d
2 −1

i= d−k+1
2

(
q2i − 1

)

(2, q − 1)
∏ k−1

2
i=1

(
q2i − 1

) .

If k = 1 then n >
qd−2

(2,q−1) , whilst Lemma 7 shows that b ≤ d + 1, with tighter bounds
when q ≤ 3, so the result follows easily. If k ≥ 3 then q is odd, with b ≤ d/3 + 14
by Lemma 12(ii). Now

n = 1

2
q

(kd−k2−1)
2

(
q

d
2 − ε

)
k−1
2∏

i=1

qd−k−1+2i − 1

q2i − 1
,
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n >
1

2
q

(kd−k2−1)
2 + d

2 −1

k−1
2∏

i=1

qd−k−1 = 1

2
q

kd−k2−d−3
2 + k−1

2 (d−k−1)

= 1

2
qkd−k2−1 ≥ 1

2
q3d−9−1,

where the last inequality follows as in the case k even, so the proof is complete. ��
Proposition 3 Let d ≥ 7 and let G be almost simple with socle G0 = P�◦

d(q).
Let Ω be S(G, k) or N±(G, k), and let n = |Ω|. If G acts primitively on Ω then
b := b(G) < log n + 1.

Proof We shall use throughout the proof the fact that Out(G0) has a normal series with
at most two cyclic quotients, and Aut(G0)/PGOd(q) is cyclic, so b ≤ b(G0,Ω) + 2
and b ≤ b(PGOd(q),Ω) + 1, by Lemma 11.

First let Ω = S(G, k). Then 1 ≤ k ≤ (d − 1)/2 and by [6, Table 4.1.2, Case VII]

n =
∏ d−1

2

i= d−2k+1
2

(
q2i − 1

)

∏k
i=1

(
qi − 1

) . (11)

If k ≤ (d − 3)/2, then

n ≥
(
qd−1 − 1

)

(q − 1)
·
(
q2k − 1

)
. . .

(
q4 − 1

)

(
qk − 1

)
. . .

(
q2 − 1

) ≥ qd−2q
∑k

i=2 i = qd−3+ k(k+1)
2 .

If k = 1 then n > qd−2 ≥ 3d−2, and from Lemma 3 we deduce that b ≤ d + 1, as
required. If k = 2 then n ≥ qd , whilst Lemma 5 gives b ≤ �d/2� + 1. If instead
3 ≤ k ≤ (d − 3)/2 then d ≥ 9 and n ≥ qd+3. Hence

log n + 1 ≥ (d + 3) log q + 1 ≥ 3d/2 + 11/2 ≥ d/3 + 12 ≥ b,

by Lemma 12(i).
Finally, assume that k = (d − 1)/2, so that (11) simplifies to

n =
d−1
2∏

i=1

(
qi + 1

)
≥ q

d−1
4

(
d+1
2

)

= q
(
d2−1

)
/8.

For (d, q) ∈ {(7, 3), (7, 5)} the result follows from aMagma calculation. Otherwise,
by Lemma 12(i),

b ≤ d

(d − 1)/2
+ 10 + 2 < 3 + 12 = 15,

so we are done.
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Now let Ω = N±(G, k), so that without loss of generality k is even. Then by [6,
Table 4.1.2, Cases XV and XVI]

n =
q

k(d−k)
2

∏ d−1
2

i= d−k+1
2

(
q2i − 1

)

2
(
q

k
2 ∓ 1

) ∏ k
2−1
i=1

(
q2i − 1

) = q
k(d−k)

2
(
qd−1 − 1

)

2
(
q

k
2 ∓ 1

)

k
2−1
∏

i=1

qd−k−1+2i − 1

q2i − 1

≥ 1

4
q

k(d−k)
2 +

(
d−1− k

2

)
+(d−k−1)

(
k
2−1

)

= 1

4
qkd−k2

If k = d−1 then n ≥ 1
4q

d−1 ≥ 1
43

d−1, whilst b = b(G,N±(G, 1)) ≤ d < log n+1,
by Lemma 7. Similarly, if k = 2 then n ≥ 1

4q
2d−4 > qd , whilst b ≤ �d/2� + 1 <

log n + 1 by Lemmas 9 and 10. For 4 ≤ k ≤ d − 3, the quadratic −k2 + kd attains its
minimum at k = d − 3, so log n + 1 ≥ (3d − 9) log q − 1. Now, Lemma 12(ii) yields
b ≤ d/4 + 13, which is less than

(3d + 13)/2 ≤ d log q + (2d − 9) log q − 1 = log n + 1,

so the proof is complete. ��

Proposition 4 Let d ≥ 4, and let G be almost simple with socle G0 = PSpd(q), with
(d, q) �= (4, 2). Let Ω be S(G, k) orN (G, k), and let n = |Ω|. If G acts primitively
on Ω , then b := b(G) < log n + 1.

Proof We shall use throughout the proof the fact that Out(G0) has a normal series
with at most two cyclic quotients, so b(G,Ω) ≤ b(G0,Ω) + 2, with b(G,Ω) ≤
b(G0,Ω) + 1 if q > 2 is even or prime, by Lemma 11.

First let Ω = S(G, k). Then 1 ≤ k ≤ d/2, and by [6, Table 4.1.2]

n =
∏ d

2

i= d
2 −k+1

(
q2i − 1

)

∏k
i=1

(
qi − 1

) =
k∏

i=1

qd−2k+2i − 1

qi − 1
. (12)

If k = 1 then n = (qd − 1)/(q − 1) > qd−1. By Lemma 3, b ≤ d + 2, with b ≤ d
if q = 2 and b ≤ d + 1 if q = 3. The result now follows from a straightforward
calculation, since d ≥ 4.

If k = 2 and d ≥ 6 then b ≤ d, by Lemma 5, whilst log n+ 1 > (2d − 5)+ 1 ≥ b.
If k = 2 and d = 4 then Lemma 5 implies that b(G0,Ω) ≤ 4 and a routine calculation
shows that b < log n + 1.

If k ≥ 3 then Lemma 12(i) yields b ≤ d
k + 12, with b ≤ d

k + 11 when q ≤ 8. First
suppose that d − 2k ≥ 2, so that d ≥ 8. If (d, q) = (8, 2) then we verify the result
in Magma. Otherwise, we notice that n > |S(PGO±

d (q), k)|, and our upper bounds
on b are less than the corresponding bounds for the orthogonal groups, so the result
follows by the same calculations as in the proof of Proposition 2. We may therefore
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assume that k = d
2 , so that b ≤ 14 in general, and b ≤ 13 if q ≤ 8. In this case

n =
d
2∏

i=1

(qi + 1) ≥ q
d(d+2)

8 ,

so if d ≥ 10 then the result is immediate. For d = 6 and q ≤ 4, aMagma calculation
establishes the result, whilst if q ≥ 5 then log n + 1 > 14 ≥ b. For d = 8, if q = 2
then log n + 1 > 12 ≥ b, whilst for q ≥ 3 we deduce that log n + 1 > 16 > b.

Next let Ω = N (G, k). Then k is even and without loss of generality k ≤ d/2− 1.
By [6, Table 4.1.2]

n =
q

k(d−k)
2

∏ d
2

i= d−k+2
2

(q2i − 1)

∏ k
2
i=1(q

2i − 1)
.

If k = 2 then d ≥ 6 so

log n + 1 ≥ ((d − 2) + (d − 2)) log q + 1 > d ≥ b,

by Lemma 9. If k ≥ 4 then from d ≥ 2k + 2 we deduce that

q
k(d−k)

2 ≥ q
k(k+2)

2 ≥ q12 and
(
qd−k+2 − 1

)
> q2

(
q2 − 1

) (
qk − 1

)
,

so

d
2∏

i= d−k+2
2

(
q2i − 1

)
≥

(
qd − 1

)
q2

k
2∏

i=1

(
q2i − 1

)
.

Putting these together shows that n ≥ q12(qd − 1)q2 > qd+13, so the result follows
from Lemma 12(ii). ��
Proposition 5 Let d ≥ 3, let G be almost simple with socle G0 = PSUd(q), let Ω be
S(G, k) or N (G, k), and let n = |Ω|. Then b := b(G) < log n + 1.

Proof We shall use throughout the proof the facts that Aut(G0)/PGUd(q) is cyclic,
whilst Out(G0) has a normal series with two cyclic quotients, so it follows from
Lemma 11 that b(G,Ω) ≤ b(PGUd(q),Ω) + 1 and b(G,Ω) ≤ b(G0,Ω) + 2.

First let Ω = S(G, k). Then by [6, Table 4.1.2]

n =
∏d

i=d−2k+1

(
qi − (−1)i

)

∏k
i=1

(
q2i − 1

) =
k∏

i=1

(
qd−2k+2i−1 − (−1)d−1

) (
qd−2k+2i − (−1)d

)

q2i − 1
,
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so n > qd if k = 1, n > q2d−4 if k = 2, and

n ≥
k∏

i=1

(
qd−2k+2i−1 + 1

)
≥ q(d−1)+(d−3)+(d−5) = q3d−9 if k ≥ 3. (13)

If k = 1 then b ≤ d + 1 ≤ log n + 1 by Lemma 3, so let k = 2. If (d, q) = (4, 2)
then a Magma calculation shows the result, and otherwise if d = 4 then
b ≤ 6 ≤ 4 log q + 1 < log n + 1, by Lemma 5, as required. If d ≥ 5 then we
deduce from Lemma 5 that b ≤ d ≤ log n + 1.

Finally, let k ≥ 3, so that d ≥ 6. For (d, q) ∈ {(6, 2), (6, 3), (7, 2), (7, 3)}weverify
the result computationally. Otherwise, b ≤ d

k + 12 ≤ d/3 + 12 by Lemma 12(i). If
d ≥ 8 then (13) gives

log n + 1 ≥ 3d − 8 ≥ d

3
+ 12 ≥ b,

as required. Similarly, if q ≥ 4 then log n + 1 ≥ 2(3d − 9) + 1 ≥ d/3 + 12 ≥ b,
which covers all the remaining cases.

Now let Ω = N (G, k). Then by [6, Table 4.1.2]

n = qk(d−k) ∏d
i=d−k+1

(
qi − (−1)i

)

∏k
i=1

(
qi − (−1)i

) .

If k ≤ 2 then n > qd , and the result follows easily from Lemma 6 and Lemma 9. For
k ≥ 3, we get

d∏

i=d−k+1

(
qi − (−1)i

)
≥

(
qd − (−1)d

) k∏

i=1

(
qi − (−1)i

)
,

because d ≥ 2k + 1 ≥ 7. Hence n ≥ qk
2+k(qd − (−1)d) ≥ qd+11, and the result

follows from Lemma 12(ii). ��
Proposition 6 Let d ≥ 2 and when d = 2, let q ≥ 7. Let G be almost simple with
socle G0 = PSLd(q), letΩ = S(G, k), and let n = |Ω|. Then b := b(G) < log n+1.

Proof The group Out(G0) has a normal series with all quotients cyclic of length at
most three, and G/G0 has such a series with length at most two if k �= d/2, or if
d = 2, or if q is prime; and is cyclic if more than one of these conditions hold. Hence
by Lemma 11, b ≤ b(G0,Ω) + �, where � = 3 in general, but with smaller values of
� for the special cases above.

First let k = 1, so that n = (qd −1)/(q−1) > qd−1, whilst b ≤ d+2 by Lemma 1,
with smaller bounds if q ≤ 3. The result follows from a lengthy but straightforward
calculation, using n = q + 1 ≥ 8 when d = 2.
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If k = 2 then n > q2d−4. If d = 4 and q ≤ 3 then a Magma calculation shows
that b ≤ 5 < log n, and if d = 4 and q > 3 then b ≤ 5 + 2 < log n, by Lemma 4. If
d > 4 then b ≤ �d/2� + 3 < log n + 1 by Lemma 4.

Assume finally that d/2 ≥ k ≥ 3, so that d ≥ 6, and

n = qd − 1

q − 1
· q

d−1 − 1

q2 − 1
· q

d−2 − 1

q3 − 1

k−3∏

i=1

(
qd−k+i − 1

)

(
qi+3 − 1

) > q(d−1)+3+1 = qd+3.

Then from Lemma 12(iii), we deduce that b ≤ d/3 + 8 ≤ d + 4 ≤ log n + 1. ��
We now meet the unique infinite family of examples that attains the upper bound

in Theorem 1.

Proposition 7 Let q = 2 f , let d = 2m ≥ 4, and let G be almost simple with socle
G0 = Spd(q). Assume that (d, q) �= (4, 2). Let M = NG(GOε

d(q)), let Ω = M \ G,

let n = |Ω|, and let b = b(G).
If ε = − and q = 2 then log n + 1 < b = �log n� + 1. Otherwise, b < log n + 1.

Proof We calculate that n = |Spd(q) : GOε
d(q)| = qm(qm + ε)/2. If q = 2 then

b = 2m by Proposition 1. If ε = + then n > 22m−1, hence log n + 1 > b. If ε = −
then �log n� + 1 = 2m = b.

It is proved in [18] that b(G0,Ω) ≤ 2m + 1, so b ≤ 2m + 2 by Lemma 11 since
Out(G0) is cyclic. Therefore if q ≥ 4 then

log n + 1 > log(q2m−1/2) + 1 = (2m − 1) log q ≥ 4m − 2 ≥ b,

and the proof is complete. ��
Our final result in this subsection deals with all of the remaining subspace actions.

Proposition 8 Let G be an almost simple classical group, with a primitive subspace
action on a set Ω of size n, with point stabiliser H. Assume that Ω is not a G-orbit
of totally singular, non-degenerate, or non-singular subspaces, and that if the group
G0 = soc(G) = Sp2m(2 f ) then (G0∩H) �= GO±

2m(2 f ). Then b := b(G) < log n+1.

Proof Definition 1 implies that G is not simple, and H is a novelty maximal subgroup
of G. Consulting [19] and [4], we see that one of the following holds:

(i) G0 = PSLd(q), d ≥ 3 and G � P�Ld(q);
(ii) G0 = PSp4(q), q even and G � PC�Sp4(q);
(iii) G0 = P�+

8 (q) and G � PCO+
8 (q) (in the notation of [4, Table 1.2]).

In particular, from [4], in each case there exists a group G1 such that G0 � G1 � G,
the quotient G/G1 has a normal series of length at most two with all quotients cyclic,
and H ∩ G1 is a subgroup of the stabilizer H1 in G1 of a totally singular k-space,
of index greater than four. Let Ω1 denote the right coset space of H1 in G1 and let
b1 = b(G1,Ω1). Then there exist x1, . . . , xb1 ∈ G1 such that Hx1

1 ∩ · · · ∩ H
xb1
1 is

trivial, so Hx1 ∩ · · · ∩ Hxb1 ∩ G1 is also trivial. By Lemma 11, b ≤ b1 + 2 .
Finally, notice that n ≥ 4|Ω1| by the Orbit-Stabiliser Theorem, so if

b1 < log |Ω1| + 1 = log 2|Ω1| ≤ log n − 1, then b < log n + 1. The result is
now immediate from Propositions 6, 4 and 2. ��
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3.3 Proof of Theorem 3

Proof Let G0 = soc(G). The only non-large-base almost simple primitive groups of
degree n ≤ 8 are the actions of Alt(5) and Sym(5) on 6 points, of PSL3(2) on 7 points,
and of PSL2(7) and PGL2(7) on 8 points, all of which have base size 3, which is less
than log n + 1. Hence the result holds for n ≤ 8, and therefore for b(G) ≤ 4.

Since the groups PSL2(q) are isomorphic to many other simple groups, we shall
consider them next. If G0 ∼= PSL2(5) then all actions either have degree at most 6 or
are large base, so let G0 be PSL2(q) for q ≥ 7, and let H = Gω, for some ω ∈ Ω.

We work through the choices for H , as described in [4, Table 8.1]. The result for
H ∈ C1 follows from Proposition 6. Burness shows in [5, Table 3] that b(G) ≤ 3 for
the majority of the remaining choices of H . More precisely, he shows that b(G) ≤ 3
if H ∈ C2 ∪ C3, or if H ∈ C5 and q = qr0 with r �= 2, or if H ∈ C6 and q > 7; or if
H ∈ C9 and q �= 9. We therefore need consider only the exceptions with q ≥ 7. If
H ∈ C5 and q = q20 , then q0 ≥ 3 and the action of G0 on Ω is equivalent to that of
P�−

4 (q0) on non-degenerate 1-spaces. If q0 = 3 then G0 ∼= Alt(6), and the action is
equivalent to the (large base) action on 2-sets. Hence we can assume that q0 ≥ 4, and
the result follows from Lemma 13. If either H ∈ C6 and q = 7, or H ∈ C9 and q = 9,
then n ≤ 7, so the result follows. Thus for the remainder of the proof we shall assume
that G0 � PSL2(q).

Next, assume that the action ofG is not standard. Burness, Guralnick and Saxl show
in [7] that if G0 ∼= Alt(n) then b(G) ≤ 3. For classical groups G, Burness shows in
[5, Theorem 1.1] that either n = 1408 and b(G) = 5 or b(G) ≤ 4. For the exceptional
groups G, it is shown by Burness, Liebeck and Shalev in [9] that b(G) ≤ 6; since
the smallest degree of a faithful primitive representation of an exceptional group is 65
(see, for example, [14, Table B.2]), the result follows. Finally, Burness, O’Brien and
Wilson show in [10] that if G is sporadic, then either b(G) ≤ 5, or G is M23, M24,

Co3, Co2, or Fi22.2, with a specified action. If log n + 1 ≤ 5, then n ≤ 16, and the
only sporadic group with a faithful primitive action on at most 16 points, other than
M12 as given in the statement, is M11 on 11 or 12 points, with base size 4. The actions
of M23 and M24 are given in the theorem statement, whilst the remaining actions have
base size 6 and very large degree.

It remains to consider the standard actions that are not large base. If G0 = Alt(�),
then Ω is an orbit of partitions of {1, . . . , �}, so b(G) ≤ log n + 1 by Theorem 4.
Hence we may assume that G is a classical group in a subspace action.

If G0 = PSLd(q) then the result follows from Propositions 6 and 8. If instead
G0 = PSUd(q) then we may assume that d ≥ 3, and the result follows from Propo-
sitions 5 and 8.

If G0 = PSpd(q) then we may assume that d ≥ 4, and (d, q) �= (4, 2), since
PSp4(2)

′ ∼= PSL2(9). If the action is on k-spaces then the result follows from Proposi-
tion 4; ifq is even and the point stabiliser isGO±

d (q), then it follows fromProposition 7;
and otherwise it follows from Proposition 8.

If G0 = P�ε
d(q) then our assumption that G0 � PSL2(q) implies that d ≥ 5, so

assume first that d ∈ {5, 6}, and let H0 be whichever of PSp4(q), PSL4(q) or PSU4(q)

is isomorphic to G0. If the action is on totally singular subspaces, then the action of
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G0 is equivalent to that of H0 on totally singular subspaces. If the action is on non-
degenerate 2-spaces, then the action of G0 is equivalent to that of H0 on the maximal
subgroups in Class C2 or C3, and b(G) ≤ 3 by [5, Table 3]. If the action is on an orbit
of non-degenerate 1-spaces, then the result follows from Lemma 13, and otherwise it
follows from Proposition 8. Hence we may assume that d ≥ 7, and the result follows
from Propositions 2, 3 and 8. ��

4 Proof of Theorem 1

In this section, we prove Theorem 1.

Proposition 9 Let G ≤ Sym(Ω) be a primitive group of diagonal type and degree n.
Then b := b(G) ≤ max{4, log log n}. In particular, b < log n.

Proof Let soc(G) = T k , where T is a non-abelian simple group and k ≥ 2. Then
n = |T |k−1 and we may assume thatG = T k .(Out(T )×Sym(k)). For the final claim,
notice that n ≥ 60, so log n > 4, and so it suffices to prove the first claim.

If k = 2 then b ≤ 4, as proved by Fawcett in [15]. It is also proved in [15] that if
k ≥ 3 then

b ≤
⌈

log k

log |T |
⌉

+ 2. (14)

If 3 ≤ k ≤ |T | then b ≤ 3 and the result follows, so assume that k > 60. Then
n ≥ 6060, so log log n > 8, and hence

b ≤ log k

log 60
+ 3 ≤ log log n

5
+ 3 ≤ log log n.

��
We now consider product action type groups.

Proposition 10 Let G ≤ Sym(Ω) be a primitive group of product action type and
degree n. If G is not large base then b := b(G) < log n + 1.

Proof Without loss of generality, we may assume that G = H � Sym(k), where
H ≤ Sym(Γ ) is primitive, and either H is almost simple and not large base or H is of
diagonal type. Let |Γ | = m, so n = mk . Let {γ1, . . . , γc} ⊆ Γ be a base of minimal
size for the action of H on Γ , and let α′

i := (γi , . . . , γi ) ∈ Γ k = Ω for 1 ≤ i ≤ c. It is
shown in the proof of [11, Proposition 3.2] that there exists a set of �log k� 2-partitions
of {1, . . . , k} such that the intersection in Sym(k) of the stabilizers of these partitions
is trivial. Let a = ⌈

log k
⌉
and r = ⌊

logm
⌋
. Then, as in the proof of [11, Lemma 3.8],

there exists a subset {α1, . . . , α�a/r�} of Ω with the property that an element g ∈ G
which factorizes as g = (1, . . . , 1)σ, where 1 ∈ H and σ ∈ Sym(k), fixes each αi if
and only if σ = 1. Hence, as noted in [11, Equation (13)], the set

B := {
α1, . . . , α�a/r�

} ∪ {
α′
1, . . . , α

′
c

}
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is a base for G. In particular, we deduce that

b ≤
⌈ ⌈

log k
⌉

⌊
logm

⌋

⌉

+ b(H , Γ ). (15)

From Theorem 3 and Proposition 9, we see that either
b(H , Γ ) ≤ �logm� + 1 ≤ logm + 2, or (H ,m, b(H , Γ )) = (M24, 24, 7). In this
latter case

b ≤
⌈ �log k�

⌊
logm

⌋

⌉

+ b(H , Γ ) ≤
(
1 + log k

4
+ 1

)

+ 7 < k log(24) + 1 ≤ log n + 1.

For the general case, assume first that k ≤ 4, so that in particular �log k� ≤ �logm�.
Then by (15)

b ≤ 1 + b(H , Γ ) ≤ logm + 3 < 2 logm + 1 ≤ k logm + 1 = log n + 1.

If instead k ≥ 5, then

b ≤
⌈ �log k�

�logm�
⌉

+ logm + 2 ≤ 1 + log k

�logm� + logm + 3 ≤
(
1 + log k

2
+ 2

)

+ logm + 1

< (k − 1) + logm + 1 < k logm + 1 = log n + 1

as required. ��
Finally, we state and prove a slightly more detailed version of Theorem 1.

Theorem 5 Let G be a primitive subgroup of Sym(Ω) with |Ω| = n. Assume that G
is not large base. Then b := b(G) ≥ log n + 1 if and only if G is one of the following.

(i) A subgroup of AGLd(2), with b = d + 1 = log n + 1.
(ii) The group Spd(2), acting on the cosets of GO−

d (2) with d ≥ 4, in which case
log n + 1 < b = �log n� + 1.

(iii) A Mathieu group Mn in its natural permutation representation with n in the set
{12, 23, 24}. If n = 12 or 23 then b = �log n� + 1, while if n = 24 then b = 7 >

�log n� + 1.

Proof We work through the cases of the O’Nan-Scott Theorem.
If G is of affine type, then without loss of generality G = AGLd(p) with n = pd ,

and the point stabiliser of G is GLd(p), acting naturally on the setΩ = F
d
p. Let B be a

base ofminimal size for GLd(p) onΩ . ThenB is a basis forF
d
q , so b = |B|+1 = d+1

as required.
If G is of twisted wreath product type, then by [21, Section 3.6] the group G is a

subgroup of a primitive product action group H � P ≤ Sym(Ω), with H of diagonal
type. Hence the result follows from Proposition 10.

If G is almost simple, or of diagonal type, or of product action type, then the result
follows from Theorem 3, Proposition 9 or Proposition 10, respectively. ��
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We conclude with a question.

Question 1 Which primitive groups G ≤ Sym(n) satisfy b(G) = log n + 1?

Notice that such a G must be a subgroup of AGLd(2) for some d, and that if d is
even then groups such as 2d : Sp(d, 2) have this property.
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