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Recent developments on the power graph of finite groups – a survey
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ABSTRACT
Algebraic graph theory is the study of the interplay between algebraic structures (both abstract as
well as linear structures) and graph theory. Many concepts of abstract algebra have facilitated
through the construction of graphs which are used as tools in computer science. Conversely,
graph theory has also helped to characterize certain algebraic properties of abstract algebraic
structures. In this survey, we highlight the rich interplay between the two topics viz groups and
power graphs from groups. In the last decade, extensive contribution has been made towards the
investigation of power graphs. Our main motive is to provide a complete survey on the connect-
edness of power graphs and proper power graphs, the Laplacian and adjacency spectrum of
power graph, isomorphism, and automorphism of power graphs, characterization of power graphs
in terms of groups. Apart from the survey of results, this paper also contains some new material
such as the contents of Section 2 (which describes the interesting case of the power graph of the
Mathieu group M11) and Section 6.1 (where conditions are discussed for the reduced power
graph to be not connected). We conclude this paper by presenting a set of open problems and
conjectures on power graphs.
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1. Introduction

The study of graphical representation of an algebraic struc-
ture, especially a semigroup or a group become an energiz-
ing research topic over the recent couple of decades,
prompting many intriguing outcomes and questions. In this
context, the most well-known class of graphs is the Cayley
graph. Cayley graphs were firstly presented in 1878, very
much considered, and has numerous applications and well-
studied. In particular, Cayley graphs of finite groups are
used as routing network in parallel computing due to the
basic properties that Cayley graph are regular and vertex-
transitive. The notion of the power graph of a group is a
very recent development in the domain of graphs from
groups. The concept of directed power graph ~PðGÞ of
a group G, introduced by Kelarev and Quinn [51], is a
digraph with vertex set G and for any a, b 2 G, there is a
directed edge from a to b in ~PðGÞ if and only if ak ¼ b,
where k 2 N: For a semi-group, it was first considered in
[53] and further studied in [52]. All of these papers used the
brief term ‘power graph’ to refer to the directed power
graph, with the understanding that the undirected power
graph is the underlying undirected graph of the directed
power graph. Motivated by this, Chakrabarty et al. [20]
introduced the concept of an undirected power graph PðGÞ
of a group G, which was defined as follows: Given a group

G, the power graph PðGÞ of G is the simple undirected graph
with vertex set G and two vertices a, b 2 G are adjacent in
PðGÞ if and only if b 6¼ a and bk ¼ a or ak ¼ b, k 2 N: After
that the undirected power graph became the main focus of
study by several authors in [2, 13, 15, 31, 60, 61].

As a simple example, we show the power graph of the
group shown in Figure 1.

Q8 ¼ ha, b j a4 ¼ 1, b2 ¼ a2, b�1ab ¼ a�1i:
Many researchers have contributed towards the under-

standing of power graphs of groups, especially after 2010. In
2013, Abawajy et al. [2], made a survey about the power
graphs in which they provided results about Eulerian,
Hamiltonian, and complete characterizations of power
graphs. Also, they collected and provided information about
the number of edges, chromatic number, clique number,
planarity, and isomorphism of power graphs. However, the
authors did not explore properties like the spectrum, con-
nectivity, automorphisms of power graphs. Motivated by
this, we review both the classical as well as recent results on
the power graphs from finite groups. We cover almost every
known result about power graphs published after 2013 and
also those results which are not available in the previous
survey paper [2].
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2. A case study: M11

We begin by considering an example in some detail, the
Mathieu group M11, a simple group of order 7920 ¼
24:32:5:11; this group is small enough to be manageable but
large enough to illustrate some interesting phenomena.
Information about M11 can be found in the Atlas of Finite
Groups [30] or discovered using the computer algebra sys-
tem GAP [43]. We will obtain information about the power
graph, and also a construction of an interesting bipartite
graph of large girth.

For this section, we only need the definition of the power
graph given in the preceding section: the vertex set is the
group G; two vertices a and b are joined if one is a power
of the other. Let C ¼ PðM11Þ:

The identity is joined to all other vertices in C (this is
true in any finite group). This also means that the identity
is an isolated vertex in the complement of C. To analyse
further, we remove the identity, giving the so-called reduced
power graph P0ðM11Þ:

Of the remaining vertices, elements of order 11 and 5 are
joined only to their powers; these form 144 complete graphs
of size 10 and 396 complete graphs of size 4. (Now we
observe that the non-identity elements form a single con-
nected component in the complement of the power graph,
since for any two such elements x and y, there is an element
z of order 11 such that x, y 62 hziÞ.

We remove the vertices of orders 5 and 11, and consider
the remaining 4895 vertices, corresponding to elements
whose orders are divisible by the primes 2 or 3 only. In
detail, there are 165 of order 2, 440 of order 3, 990 of order
4, 1320 of order 6 and 1980 of order 8. Next we notice that
vertices which generate the same cyclic subgroup have the
same closed neighbourhood in the graph. (We will define
x � y to mean that x and y generate the same cyclic group.)
Computation shows that the converse is false; the rela-
tion� has 2035 equivalence classes, while the relation “same
closed neighbourhood” has 1540. If we collapse each equiva-
lence class of the second relation to a single vertex, we
obtain a graph with 1540 vertices. This graph contains pairs
of vertices with the same open neighbourhoods; collapsing
such pairs yields a graph with 1210 vertices, in which no
further such reduction is possible. These two reductions pre-
serve connectedness and some other graph-theor-
etic properties.

We find that the automorphism group of this 1210-vertex
graph is the Mathieu group M11, acting with four orbits, of
sizes 165 (twice), 220 and 660. Numbering these orbits
O1, :::,O4, let mij be the number of edges from a fixed

vertex of Oi to a vertex of Oj; the resulting matrix M ¼
ðmijÞ is given by

M ¼
0 1 0 0
1 0 0 4
0 0 0 3
0 1 1 0

0BB@
1CCA:

The matrix shows that the graph is bipartite, the bipartite
blocks being O1 [ O4 and O2 [ O3: Its diameter and girth
are both 20. The edges between O1 and O2 form a matching.
We obtain an interesting graph with vertex set O2 [ O3 in
which two vertices adjacent if they lie in different orbits but
have a common neighbour in O4. The graph is bipartite;
vertices in O2 have valency 4 while those in O3 have
valency 3. The diameter and girth are both equal to 10, and
the automorphism group is again M11.

3. Outline of the survey

This article has been carefully divided into 14 sections. In
Section 4, we present the required definitions and notations.
Section 5 investigates connectedness of power graphs,
including minimal separating sets, disconnecting sets, and
results on the vertex connectivity, the edge connectivity
along with the relationship between the vertex connectivity
and edge connectivity of the power graph of various groups.
Section 6 elaborates the results on the connectivity of proper
power graphs in which the number of components and the
diameter of proper power graphs are also considered.
Sections 7 and 8 deal with independence number and per-
fectness of power graphs, respectively. Section 9 has been
devoted to the spectrum of power graphs, which includes
the Laplacian spectrum and the adjacency spectrum of
power graphs of certain finite groups. The relationship
between the vertex connectivity and algebraic connectivity
of the power graphs of some finite groups are also presented
in this section. Section 10 presents results related to the iso-
morphism of power graphs, which includes power graphs of
infinite groups also. Section 11 contains results on the auto-
morphism of power graphs of finite groups. Followed by
this, in Section 12, we present those results which provide
the direct connection between the power graphs and their
corresponding groups. Section 13 contains other properties
of power graphs that cannot be classified into various sec-
tions mentioned above. Apart from survey of results, this
paper also contains some new material such as Sections 2
and 6.1. We conclude this paper by giving certain open
problems and conjectures in Section 14.

4. Definitions and notations

In this section, we present some definitions and notations
from group theory and number theory as well as graph the-
ory in order to make this paper self-contained. We use
standard definitions and results from [38, 42, 76] for group
theory and [8–10, 34] for graph theory which we restate
here along with our notations. N denotes the set of all nat-
ural numbers. For a positive integer n, Euler’s phi function

Figure 1. The power graph of Q8.
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/ðnÞ, denotes the number of non-negative integers less than
n that are relatively prime to n. When we consider the
prime factorization of a positive integer n ¼ pa11 p

a2
2 � � � pamm , it

is assumed that m � 2, p1 < p2 < � � � < pm are primes and
ai 2 N for all i with 1 � i � m:

4.1. Group theory

Throughout this paper, G denotes a group that may be of
finite or infinite order, with identity e. Let Z(G) denote the
center of the group G. For a group G, let peðGÞ ¼ foðaÞ :
a 2 Gg, where o(a) is the order of the element a. The expo-
nent of a finite group G, denoted by exp ðGÞ, is the least
common multiple of orders of all its elements. Let pðGÞ be
the set of all prime numbers p dividing the order of G,
equivalently primes p such that G has an element of order
p. A group G is called torsion-free if oðaÞ ¼ 1 for all a 2
G n feg: A group G is said to be of bounded exponent, if
there exists n 2 N such that an ¼ e for all a 2 G: A group G
is said to be an EPO-group if every non-identity element of
G is of prime order. A finite Abelian group G with identity e
is called CP group if the order of every non-identity element is
a power of a prime number. A group G is locally finite if every
finitely generated subgroup H ¼ ha1, a2, :::, aki of G, is of
finite order. Further, G is called locally center-by-finite, if every
finitely generated subgroup H of G has centre of finite index
in H. We use hSi for the subgroup of G generated by the sub-
set S. Let rðGÞ be the number of cyclic subgroups and sðGÞ
denote the order of the smallest cyclic subgroup of G.

Define a relation� on G by a � b if hai ¼ hbi, where hai
is the cyclic subgroup of G generated by a 2 G: It can be
seen that� is an equivalence relation on G. We denote the
equivalence class containing a 2 G under� by ½a�: We note
here that if a � b, then a and b are joined in the power
graph of G, and they have the same neighbours (except for
one another).

Zn ¼ f0, 1, :::, n� 1g denotes the finite cyclic group of
order n. The notation Zn

m means that the direct product of
n copies of Zm: SðZnÞ denotes the set of all generators
together with the identity element of the group Zn: That is,
SðZnÞ ¼ fa : 1 � a < n, gcdða, nÞ ¼ 1g [ f0g: We use
the following:

� D2n ¼ ha, b j an ¼ b2 ¼ e, ab ¼ ba�1i denotes the dihe-
dral group of order 2n;

� Q4n ¼ ha, b j a2n ¼ e, an ¼ b2, ab ¼ ba�1i denotes the
dicyclic group of order 4n. If n is a power of 2, this group
is the generalized quaternion group.

� Sn and An denote the symmetric group and the alternat-
ing group on the set of n symbols, respectively.

For r 2 An, the support of r is denoted by SuppðrÞ and
is defined by SuppðrÞ ¼ fi : rðiÞ 6¼ ig:

We recall here a theorem of Burnside (see [44,
Theorem 12.5.2]):

Theorem 4.1. [44, Theorem 12.5.2] Let G be a finite group
whose order is a power of a prime p. Suppose that G has a
unique subgroup of order p. Then either

i. G is cyclic; or
ii. p¼ 2 and G is a generalized quaternion group.

4.2. Graph theory

Throughout this paper C ¼ ðV, EÞ denotes a graph with ver-
tex set V and edge set E. dðCÞ denotes the minimum among
degrees of vertices in C. For a subset A 	 V of vertices in a
graph C ¼ ðV, EÞ, the induced subgraph hAi is the subgraph
of C with vertices in A and edges with both ends in A. A
set of vertices T of a graph C is said to be a separating set
or cut-set, if its removal increases the number of connected
components of C. T is called a minimal separating set or
minimal cut-set if none of its non-empty proper subset is a
separating set. If T is of least cardinality, then it is called a
minimum separating set or minimum cut-set of C. The car-
dinality of a minimum separating set is called the vertex
connectivity of C and it is denoted by jðCÞ:

A subgraph of C ¼ ðV, EÞ is one of the form ðV 0,E0Þ,
where V 0 	 V and E0 	 E such that the vertices on each
edge of E0 lie in V 0: If all edges of V with both vertices in
V 0 belong to E0, it is an induced subgraph; if V 0 ¼ V , it is a
spanning subgraph. A graph D is a forbidden subgraph for C
if no induced subgraph of C is isomorphic to D. A discon-
necting set of C is a set of edges whose removal increases
the number of connected components of C. A disconnecting
set is said to be minimal if none of its proper subsets dis-
connects C. A minimum disconnecting set of C is a discon-
necting set of C with least cardinality. If A,B 	 VðCÞ, then
the set of all edges having one end in A and the other in B
is denoted by E½A,B�: If A ¼ fvg, we write E½v,B� instead of
E½A,B�: The diameter, diamðCÞ, of a graph C is the max-
imum distance between two vertices of C. If C is not con-
nected, the diameter is defined to be 1: The girth of C,
denoted by gðCÞ, is the length of a shortest cycle in C: A
subset X 
 V of C ¼ ðV,EÞ is called an independent set, if
there does not exist any edge in C whose both end vertices
are in X. The cardinality of a largest independent set,
denoted by bðCÞ is called independence number of C. A
complete subgraph of C is called a clique, and the supre-
mum of size of cliques in C, denoted by xðCÞ is called the
clique number of C. A subset S 
 V of C is called a domi-
nating set, if for any v 2 V, either v 2 S or there exists a
vertex w 2 S such that v is adjacent to w. The cardinality of
a minimum dominating set is denoted by cðCÞ and is called
the dominating number of C.

For C ¼ ðV,EÞ and a 2 V, the neighbourhood of a is
denoted by N(a) and its defined as NðaÞ ¼ fb 2
V j b is adjacent to ag: We sometimes call this the open
neighbourhood of a, as opposed to the closed neighbourhood
NðaÞ [ fag: The chromatic number of C is denoted by vðCÞ
is the smallest number of colors needed to color the vertices
of C so that no two adjacent vertices receive the same color.

A graph C is called perfect if the chromatic number of
any finite induced subgraph of C is equal to its clique num-
ber. We recall the Strong Perfect Graph Theorem of
Chudnovsky et al. [29], which characterizes perfect graphs
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by forbidden subgraphs and is given in Theorem 8.1(ii) of
this survey.

Other interesting classes of graphs such as cographs,
chordal graphs, split graphs, and threshold graphs, and the
concepts of open and closed twins and twin reduction, will
be introduced later.

5. Connectivity of power graphs

This section is divided into six subsections, which are
devoted to the results based on vertex connectivity of power
graphs, edge connectivity of power graphs and equality of
these two parameters. Recall that for a given group G, the
power graph PðGÞ of G is the simple undirected graph with
vertex set G and two vertices a, b 2 G are adjacent in PðGÞ
if and only if b 6¼ a and bk ¼ a or ak ¼ b, for some k 2 N:
The power graph of any finite group is connected with
diameter at most 2, since there is an edge from any non-
identity group element to the identity. In other words, {e} is
a dominating set in PðGÞ:

5.1. Vertex connectivity of power graphs of finite
cyclic groups

The finite cyclic group Zn, the dihedral group D2n, and the
dicyclic group Q4n play an important role in the deeper
parts of finite group theory, and invariably they appear as
subgroups of a given group. The connectivity of the power
graph of certain finite cyclic groups of particular order and
their generalization was dealt in [21, 22, 26]. In continuation
of these results, Panda and Krishna [70] focused on the
power graph of finite cyclic groups in general and obtained
minimal separating sets of the power graph PðZnÞ, which
in turn gives the vertex connectivity of the power graph
PðZnÞ: For a given X 
 Zn,Xc ¼ Zn nX and hXci is the
induced subgraph of PðZnÞ induced by Xc.

Recall that SðZnÞ denotes the set of all generators
together with the identity of the group Zn: For an arbitrary
element a 2 Zn, a is some power of each of the generators
of Zn and some power of a is the identity. Due to this, every
element in SðZnÞ is adjacent to every other element in
PðZnÞ: Hence the induced subgraph hSðZnÞci plays some
vital role in the connectivity of PðZnÞ: For a subset A 

Zn, A� ¼ A n feg:

Chattopadhyay and Panigrahi [21, 22], determined the
tight lower bound for the vertex connectivity of power
graphs corresponding to cyclic groups Zn and gave exact
value of jðPðZnÞÞ when n is a power of some prime num-
ber. After that, many researchers extended these results and
gave an upper bound of jðPðZnÞÞ for different values of n.
Also, the vertex connectivity of the dihedral group D2n,
dicyclic group Q4n, non-cyclic finite nilpotent group and
non-cyclic abelian group of finite order were computed. The
results in this regard are given below:

Theorem 5.1. [21, Theorem 3]. The vertex connectivity
jðPðZnÞÞ of the power graph of the finite cyclic group Zn,
can be computed as follows:

i. jðPðZnÞÞ ¼ n� 1 when n ¼ 1 or pa, where p is a
prime number and a is an non negative integer;

ii. jðPðZnÞÞÞ � /ðnÞ þ 1, when n 6¼ pa: Further equality
holds when n ¼ p1p2 for distinct primes p1 and p2.

In 2015, Chattopadhyay and Panigrahi [22], obtained another
lower bound for the vertex connectivity of power graphs of certain
finite cyclic groups and the same is given below.

Theorem 5.2. [22, Theorem 2.7] Let n ¼ pa11 p
a2
2 , where

a1, a2 2 N and p1, p2 are distinct primes. Then the vertex
connectivity jðPðZnÞÞ of PðZnÞ satisfies the inequal-
ity jðPðZnÞÞ � /ðnÞ þ pa1�1

1 pa2�1
2 :

Theorem 5.3. [22, Theorem 2.9] For n ¼ p1p2p3, where p1 <
p2 < p3 are primes, the vertex connectivity jðPðZnÞÞ of PðZnÞ
satisfies the inequality jðPðZnÞÞ � /ðnÞ þ p1 þp2 � 1:

A natural question that arises is whether the converse of
Theorem 5.1 is true. Since no information was provided by
the authors in [21], Panda and Krishna [70], gave the
answer for the above question in affirmative.

Lemma 5.4. [70, Lemma 2.4] Let n> 1 be an integer which
is not a prime number. Then the following statements hold:

i. If n is not prime power then every separating set of
PðZnÞ contains SðZnÞ:

ii. jðPðZnÞÞ ¼ 1þ /ðnÞ þ jhSðZnÞci:
iii. If p1 < p2 < � � � < pm are factors of n, then

Zc
n ¼ [n

i¼1hpi�i:

Proposition 5.5. [70, Proposition 2.5] For n 2 N, the follow-
ing statements are equivalent:

i. n ¼ p1p2, where p1 6¼ p2 are primes;
ii. SðZnÞ is a separating set of PðZnÞ;
iii. jðPðZnÞÞ ¼ /ðnÞ þ 1:

In [70], Panda and Krishna improved Theorems 5.2 and 5.3
by giving exact expression of jðPðZnÞÞ where n is the product
of powers of two distinct primes and the same is given below.

Proposition 5.6. [70, Theorem 2.38] Assume that
n ¼ pa11 p

a2
2 , where p1, p2 are distinct primes and a1, a2 2 N:

Then jðPðZnÞÞ ¼ /ðnÞ þ pa1�1
1 pa2�1

2 . In fact, for n 6¼
p1p2, hp1p2�i is a minimum separating set of hSðZnÞci:

Corollary 5.7. [70, Theorem 2.39] If n ¼ 2apb, a, b 2 N and
p is an odd prime, then jðPðZnÞÞ ¼ n

2 :

In the following theorem, we see the exact expression for
jðPðZnÞÞ where n is the product of three distinct primes.

Theorem 5.8. [70, Theorem 2.40] If n ¼ p1p2p3, where p1
< p2 < p3 are primes, then ½p1p3 � [ ½p2p3 � is a minimum
separating set of hSðZnÞci and consequently, jðP
ðZnÞÞ ¼ /ðnÞ þ p1 þ p2 � 1:

In article [70], the authors provided certain sharp upper
bounds for jðPðZnÞÞ and proved that equality holds if n ¼
pa11 p

a2
2 or n ¼ p1p2p3:
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Theorem 5.9. [70, Theorem 2.23] Suppose n ¼ pa11 p
a2
2 � � � pamm .

Then

jðPðZnÞÞ � h1ðnÞ :¼ /ðnÞ þ n
pm

� pam�1
m /

n
pamm

� �
:

Theorem 5.10. [70, Theorem 2.35] Suppose n is not of the
form p1p2 and n ¼ pa11 � � � pamm : Then

jðPðZnÞÞ � h2ðnÞ :¼ /ðnÞ þ n
pamm

þ /
n
pamm

� �
ðpam�1

m � 2Þ:

In the following theorem, the authors compared these upper
bounds h1ðnÞ and h2ðnÞ obtained in Theorems 5.9 and 5.10.

Theorem 5.11. [70, Theorem 2.36] Suppose n is not a prod-
uct of two primes and having factorization n ¼ pa11 p

a2
2

� � � pamm . Then

i. h1ðnÞ ¼ h2ðnÞ if and only if am ¼ 1, or m ¼ 2
and p1 ¼ 2;

ii. h1ðnÞ > h2ðnÞ if and only if am � 2
and

Qm�1
i¼1 1� 1

pi

� �
< 1

2;

iii. h1ðnÞ < h2ðnÞ if and only if am � 2

and
Qm�1

i¼1 1� 1
pi

� �
> 1

2 :

Chattopadhyay et al. [26] independently obtained both
the upper bounds h1ðnÞ and h2ðnÞ given in Theorems 5.9
and 5.10. Moreover, they proved that if 2/ðp1 � � � pm�1Þ >
p1 � � � pm�1, then the bound h1ðnÞ is sharp. i.e., jðPðZnÞÞ ¼
h1ðnÞ (see (i) and (iii) of Theorem 5.12). As a consequence,
if p1 � m, then jðPðZnÞÞ ¼ h1ðnÞ (see Corollary 5.13). It
was shown in Theorem 5.14 that the bound h2ðnÞ is sharp.
i.e., jðPðZnÞÞ ¼ h2ðnÞ for integers n ¼ pa11 p

a2
2 p

a3
3 , with

2/ðp1p2Þ < p1p2 so necessarily p1 ¼ 2: However, in view of
Example 3.4 [26], equality may not hold in Theorem 5.10 in
general if 2/ðp1p2 � � � pm�1Þ < p1p2 � � � pm�1:

Theorem 5.12. [26, Theorem 1.3] Let n ¼ pa11 p
a2
2 � � � pamm .

Then the following hold:

i. If 2/ðp1p2 � � � pm�1Þ > p1p2 � � � pm�1, then jðPðZnÞÞ ¼
/ðnÞþpa1�1

1 pa2�1
2 ���pam�1

m p1p2���pm�1�/ðp1p2���pm�1Þ
� �

:

Further, there exists only one subset X of Zn with jXj¼
jðPðZnÞÞ such that the induced subgraph hXci of
PðZnÞ is disconnected.

ii. If 2/ðp1p2 � � � pm�1Þ < p1p2 � � � pm�1, then jðPðZnÞÞ �
/ðnÞ þ pa1�1

1 pa2�1
2 � � � pam�1�1

m�1 p1p2 � � � pm�1 þ /ðp1p2 � � �
�

pm�1Þ ðpam�1
m � 2Þ�:

iii. If 2/ðp1p2 � � � pm�1Þ ¼ p1p2 � � � pm�1, then m¼2,p1 ¼
2ðso that n¼2a1pa22 Þ and jðPðZnÞÞ¼/ðnÞþ2a1�1 pa2�1

2 :

Moreover, there are exactly a2 subsets X of Zn with
jX j ¼ jðPðZnÞÞ such that induced subgraph hXci of
PðZnÞ is disconnected.

The following result is a consequence of Theorem 5.12 (i)
and (ii), when the total number of distinct prime divisors of
n less than or equal to the smallest prime divisor of n.

Corollary 5.13. [26, Corollary 1.4] If p1 � m, then

jðPðZnÞÞ ¼ /ðnÞ þ pa1�1
1 pa2�1

2 � � � pam�1
m ½p1p2 � � � pm�1

� /ðp1p2 � � � pm�1Þ�:

By proving the following theorem, the authors exhibited
that the bound is sharp for many values of n.

Theorem 5.14. [26, Theorem 1.5] Let n ¼ pa11 p
a2
2 p

a3
3 , where

ai 2 N, for each 1 � i � 3 and p1 < p2 < p3 are primes. If
2/ðp1p2Þ < p1p2, then

p1 ¼ 2 and

jðPðZnÞÞ ¼ /ðnÞ þ 2a1�1pa2�1
2 ðp2 � 1Þpa3�1

3 þ 2
� �

:

Further, there is only one subset X of Zn with jX j ¼
jðPðZnÞÞ such that the induced subgraph hXci of PðZnÞ is
disconnected.

In view of the fact proved in Theorem 5.14, the vertex
connectivity of PðZnÞ is completely determined for m � 3:
A natural question arises: can we find vertex connectivity of
PðZnÞ when n has more than three prime factors? that is
m> 3. Chattopadhyay et al. [27] gave partial affirmative
answer to this question. Let

h3ðnÞ ¼ /ðnÞ þ n
p1p2 � � � pm /ðp1p2 � � � pm�1Þ

�
þ/ðp1p2 � � � pm�2pmÞ þ p1p2 � � � pm�2 � /ðp1p2 � � � pm�2Þ�:
In the following theorem, it is observed that h3ðnÞ is an

upper bound for the vertex connectivity of the power graph
in certain cases of n.

Theorem 5.15. [27, Theorem 1.1] Let n ¼ pa11 p
a2
2 � � � pamm ,m �

3, p1 < p2 < � � � < pm are primes and ai 2 N for 1 � i � m.
Then jðPðZnÞÞ � h3ðnÞ:

Theorem 5.16. [27, Theorem 1.2] Let n ¼ pa11 p
a2
2 � � � pamm ,m �

3, p1 < p2 < � � � < pm are primes and ai 2 N for 1 � i � m.
If am � 2, then jðPðZnÞÞ ¼ minfh1ðnÞ, hjðnÞ : 1 � j �
m, aj � 2g, where
hjðnÞ ¼ /ðnÞ þ n

p1p2 � � � pm
� 1

p
aj�1
j

p1p2 � � � pm
pj

þ /
p1p2 � � � pm

pj

� �
ðpaj�1

j � 2Þ
� 	

:

Theorem 5.17. [27, Theorem 1.3] Let n ¼ p1p2 � � � pm,
m � 3, where p1 < p2 < � � � < pm are primes. Then
jðPðZnÞÞ ¼ minfh3ðnÞ, h1ðnÞg:

5.2. Vertex connectivity in power graphs of
other groups

In this subsection, we are concerned with the vertex con-
nectivity of power graphs of other groups such as the dihe-
dral and dicyclic groups. Chattopadhyay et al. [21] obtained
results on the vertex connectivity of these groups:
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Theorem 5.18. [21, Theorem 5] The identity element e of
D2n is a cut vertex of the dihedral group PðD2nÞ and so
jðPðD2nÞÞ ¼ 1 for all n � 2:

Theorem 5.19. [21, Theorem 7] For all n � 2, the vertex
connectivity of the dicyclic group Q4n is given
by jðPðQ4nÞÞ ¼ 2:

Proposition 5.20. [70, Corollary 3.4] If G is a non-cyclic
abelian group of order n ¼ pa, where p is a prime number
and a 2 N, then jðPðGÞÞ ¼ 1:

In [28], the authors computed the vertex connectivity
of power graphs of some special classes of groups which
includes finite non-cyclic nilpotent groups, finite non-
cyclic abelian groups and non-cyclic groups of
finite orders.

In this and following results, we denote by MðGÞ the col-
lection of all maximal cyclic subgroups of G. If H is a cyclic
subgroup of G, then eH denotes the set of non-generators
in H.

Theorem 5.21. [28, Theorem 1.2] Let G be a finite non-cyc-
lic nilpotent group of order n ¼ pa11 p

a2
2 � � � pamm ,m � 2. Let Pi

be the Sylow pi-subgroup of G, for each 1 � i � m and
assume that each of them is cyclic except Pr for some r 2
f1, 2, :::,mg and that Pr is not a generalized quaternion group
if r¼ 1 and p1 ¼ 2. Set Q ¼ P1 � � � Pr�1Prþ1 � � � Pm. If pr �
mþ 1 or if 2/ðp1 � � � pm�1Þ > p1 � � � pm�1, then Q is the only
minimal separating set of PðGÞ and so jðPðGÞÞ ¼ n

parr
:

Theorem 5.22. [28, Theorem 1.3] Let G be a non-cyclic abel-
ian group of order pa11 p

a2
2 and P1, P2 denote its Sylow pi-sub-

groups for i¼ 1, 2. Then following statements hold good.

i. Suppose that one of the Sylow subgroups is non-cyclic. If
Pi is non-cyclic, then Pj is a minimum separating set of
PðGÞ and so jðPðGÞÞ ¼ Pj



 

 ¼ p
aj
j , where

fi, jg ¼ f1, 2g. In fact, if p1 � 3, or p1 ¼ 2 and P2 is
non-cyclic, then there exists only one minimum separat-
ing set of PðGÞ:

ii. Suppose both Sylow subgroups are non-cyclic. If p1 � 3
and G has a maximal cyclic subgroup M of order p1p2,
then jðPðGÞÞ ¼ min P1j j,/ð jM j Þg:�

iii. Suppose both P1 and P2 are non-cyclic and P1 is elemen-
tary abelian. Then jððPðGÞÞÞ ¼ min P1j j,/ð jM j Þg�

,
where M is maximal cyclic subgroup of G of least pos-
sible order.

Remark 5.23. If p1 ¼ 2 and exactly one of the Sylow sub-
groups G is non-cyclic in Theorem 5.22(i), then we can
have more than one minimum separating set of PðGÞ (see
[28, Example 4.3]).

Theorem 5.24. [28, Theorem 1.4] Let G be a non-cyclic
abelian group of order pa11 p

a2
2 p

a3
3 and Pi be a Sylow pi-sub-

group of G for i 2 f1, 2, 3g. Suppose that exactly two Sylow
subgroups of G are cyclic. Then the following state-
ments hold.

i. If p1 ¼ 2 and P1 is non-cyclic, then jðPðGÞÞ
¼ min P1P2j j, jðPðMÞÞg�

, where M is a maximal cyclic
subgroup of G of least possible order. More precisely, if
jM j ¼ 2apa11 p

a2
2 for some a 2 N, then

jðPðGÞÞ ¼ P2P3j j if a > 1;
jðPðMÞÞ if a ¼ 1:

�
ii. If p1 ¼ 2 and Pk is non-cyclic, then P1Pj is the only

minimum separating set of PðGÞ and so
jðPðGÞÞ ¼ P1Pj



 

 ¼ pa11 p
aj
j , where fj, kg ¼ f2, 3g:

iii. If p1 � 3 and Pk is non-cyclic, then PiPj is the only min-
imum separating set of PðGÞ and so
jðPðGÞÞ ¼ PiPj



 

 ¼ paii p
aj
j , where fi, j, kg ¼ f1, 2, 3g:

Remark 5.25. [28] One can see that jðPðGÞÞ in Theorem
5.24(i) can also be obtained using the expression in
Theorem 5.14.

5.3. Separating sets of power graphs

Recall that� on G is defined by a � b if hai ¼ hbi, where
hai is the cyclic subgroup of G generated by a 2 G: It can
be seen that� is an equivalence relation on G. We denote
the equivalence class of containing a 2 G under� by ½a�:
The quotient graph of PðGÞ is called the quotient power
graph of G and is denoted by ePðGÞ:
Theorem 5.26. [70, Theorem 2.16] Let G be a finite group.
If T is a minimal separating set of PðGÞ, then T is a
union of� classes.

Theorem 5.27. [70, Theorem 2.17] For T 
 G, T is a min-
imal separating set of PðGÞ if and only if ½T� is a minimal
separating set of ePðGÞ and T is a union of� classes.

Theorem 5.28. [70, Theorem 2.18] Let T be a separating set
of PðGÞ. Then T is a minimal separating set of PðGÞ if and
only if ½T� is a minimal separating set of the quotient power
graph ePðGÞ:

Lemma 5.29. [70, Lemma 2.16] Let G be a finite group and
a 2 G. Then the following are equivalent:

i. N(a) is a separating set of PðGÞ:
ii. Nð½a�Þ is a separating set of ePðGÞ:
iii. There exists some b 2 G such that a is not adjacent

to b.

Lemma 5.30. [70, Lemma 2.29] Let G be finite group and
a 2 G with oðaÞ � 3. Then N(a) is not a minimal separating
set of PðGÞ:

Theorem 5.31. [70, Theorem 2.21] If n 2 N is not of the
form p1p2 and n ¼ pa11 p

a2
2 � � � pamm , then, for any 1 � j � m,

[m
i¼1, i 6¼jhpipj�i is a minimal separating set of the induced sub-

graph hSðZnÞci:
Now a natural question arises: what will happen with

power graphs of non-cyclic finite groups? Motivated by this,
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Chattopadhyay et al. [28], proved some results on power
graphs by considering some special classes of groups includ-
ing non-cyclic finite nilpotent groups and non-cyclic
Abelian groups of finite order which are corresponding to
their maximal cyclic subgroups. First, let us see the case of a
non-cyclic group.

Proposition 5.32. [28, Proposition 2.2] Suppose G is a non-
cyclic group and let M 2 MðGÞ. If A ¼ G nM and
B ¼ M n eM, then (A, B) forms a separation of PðG n eMÞ. In
particular, eM is a separating set of PðGÞ:

Proposition 5.33. [28, Proposition 2.6] Suppose G is a non-
cyclic group and T is a minimal separating set of PðGÞ. Then
the following are equivalent:

i. If T has no element which will generate a member of
MðGÞ, then PðM nTÞ is connected for every M 2
M ðGÞ:

ii. If T is a minimal cut-set of PðGÞ and PðM nTÞ is con-
nected for every M 2 MðGÞ, then T has no element
which will generate a member of MðGÞ:

Proposition 5.34. [28, Proposition 2.16] If G has at least
two non-cyclic Sylow subgroups, then, for any M 2
MðGÞ,T ¼ M is a minimal separating set of PðGÞ:

Proposition 5.35. [28, Proposition 2.17] Let G be a nilpotent
group of order n ¼ pa11 � � � pamm ,m � 2 and Pr is neither cyclic
nor a generalized quaternion group for some r 2 f1, 2, :::,mg.
Then Q ¼ P1P2 � � � Pr�1Prþ1 � � � Pm is a minimal separating
set of PðGÞ:

5.4. Disconnecting Sets in power graphs

In [71], Panda and Krishna determined minimum discon-
necting sets of power graphs of finite cyclic groups, dihedral
groups, dicyclic groups and abelian p-groups of finite order.

Corollary 5.36. [71, Corollary 4.8] Let n 2 N and p1 < p2 <
p3 < p4 be prime numbers.

i. If n ¼ pa11 p
a2
2 , a1, a2 2 N, then for any a 2

½pa22 �,E a, hpa22 i [ [a2�1
i¼0 pi2

h i
� a

h i
is a minimum discon-

necting set of PðZnÞ;
ii. If n ¼ p1p2p3, then for any a 2 ½p3 �,E a, hp3i [ ½1� � a

� �
is a minimum disconnecting set of PðZnÞ;

iii. Let n ¼ p1p2p3p4:

If n is odd or p4 � p3 þ 2ðp3�1Þ
p2�1 , then for any a 2

½p4 �, E a, hp4i [ ½1� � a
� �

is a minimum disconnecting set
of PðZnÞ:
Otherwise, for any b 2 p3p4½ �,E b, hp3p4i [ ½p3 � [ ½p4 �

�
[½1� � b� is a minimum disconnecting set of PðZnÞ:

Theorem 5.37. [71, Theorem 5.2] Let G be a finite abelian
p-group for some prime p and w : G ! Zpa1 � Zpa2 � � � � �
Zpam be an isomorphism with sðGÞ ¼ pat . If g 2 G is such

that all components of wðgÞ are 0 except tth, say a, satisfying
gcdða, pÞ ¼ 1, then E g,w�1ð< wðgÞ >Þ � g

� �
is a minimum

disconnecting set of PðGÞ:

Theorem 5.38. [71, Theorem 5.3] For n � 3, dðPðD2nÞÞ ¼ 1.
Moreover, for any 0 � i < n, edge between e and aib is a cut-
edge of PðD2nÞ:
Theorem 5.39. [71, Theorem 5.4] For n � 2, dðPðQ4nÞÞ ¼ 3.
Moreover, for any 0 � i � n� 1, E aib, fe, an, anþibg� �

and
E anþib, fe, an, aibg� �

are minimum disconnecting sets
of PðQ4nÞ:

5.5. Equality of vertex and edge connectivity of
power graphs

Now, we can ask the question: is there any relationship between
graph invariants like vertex degree and diameter of power
graph and its vertex connectivity and edge connectivity? The
answer to this question is affirmative; this was proved in [71].
In fact, it was proved that j0ðPðGÞÞ ¼ dðPðGÞÞ, since
diamðPðGÞÞ ¼ 2: But, this result is not true for jðPðGÞÞ in
general. However, the authors of [71] examine the relationship
between vertex connectivity and the minimum degree of power
graphs of finite groups. They first explain some necessary con-
ditions under which the vertex connectivity and the minimum
degree of power graphs of finite groups coincide and computed
the minimum degree when the equality holds for cyclic groups.
Also, they gave a necessary and sufficient condition
for jðPðZnÞÞ ¼ dðPðZnÞÞ:
Theorem 5.40. [71, Theorem 6.2] Let G be a group of finite order
at least 2 and jðPðGÞÞ ¼ dðPðGÞÞ. If G 6¼ Zpa , for some prime p
is prime, a 2 N and dðPðGÞÞ ¼ degðaÞ, then following hold:
i. N(a) is a minimum separating set of PðGÞ;
ii. a is an element of order 2 in G. Consequently, G is a

group of even order.

Theorem 5.41. [71, Theorem 6.4] If n 6¼ pm,m 2 N and
jðPðZnÞÞ ¼ dðPðZnÞÞ ¼ kðsayÞ, then k ¼ deg n

2

� �
¼ n� n

2a,
where a is the largest integer such that 2a divides n.

Corollary 5.42. [71, Corollary 6.5] If n 6¼ pm,m 2 N and
jðPðZnÞÞ ¼ dðPðZnÞÞ, then f0g [ [a j n2, a6¼n

2
½a�, say A, is a

minimum separating set and E n
2,A
h i

is a minimum discon-

necting set of PðZnÞ:
Theorem 5.43. [71, Theorem 6.7] For n 2 N, jðPðZnÞÞ ¼
dðPðZnÞÞ if and only if n ¼ pa11 for some prime p1 and a1 2
N or n ¼ 2pa22 for some prime p2 > 2 and a2 2 N:

Theorem 5.44. [71, Theorem 6.8] If G is a finite abelian p-
group, then jðPðGÞÞ ¼ dðPðGÞÞ if and only if rðGÞ ¼ 1
or sðGÞ ¼ 2:

Theorem 5.45. [71, Theorem 6.9] For n 2 N, the following hold:

i. For n � 3,jðPðD2nÞÞ ¼ dðPðD2nÞÞ;
ii. For n � 2,jðPðQ4nÞÞ 6¼ dðPðQ4nÞÞ:
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In 2018, Panda and Krishna [71], calculated the min-
imum degree of power graphs of finite cyclic groups Zn, for
some particular values of n. Also, they gave sharp upper
bound for dðPðZnÞÞ for any n 2 N: Following this, Panda
et al. [72], generalized these results for several other values
of n.

Lemma 5.46. [71, Lemma 4.3] For a finite group G,
dðPðGÞÞ ¼ jG j � 1 if and only if G ¼ feg or Zpa for some
prime number p and a 2 N:

Theorem 5.47. [71, Theorem 4.4] Let n> 1 be an integer.

i. If n is not a power of a prime number, then
dðPðZnÞÞ ¼ /ðnÞ þ 1þ dðhSðZnÞciÞ.
Consequently, dðPðZnÞÞ � /ðnÞ þ 1:

ii. dðPðZnÞÞ ¼ /ðnÞ þ 1 if and only if n ¼ 2p for some
prime p � 3:

Theorem 5.48. [71, Theorem 4.6] Let n 2 N and p1 < p2 <
p3 < p4 be prime numbers.

i. If n ¼ pa11 p
a2
2 , a1, a2 2 N, then dðPðZnÞÞ ¼ ðpa22 �

1Þ/ðpa11 Þ þ pa11 � 1 and it is attained by the elem-

ent pa22 :
ii. If n ¼ p1p2p3, then dðPðZnÞÞ ¼ /ðnÞ þ p1p2 � 1 and it

is attained by the element p3 :
iii. Let n ¼ p1p2p3p4. If n is odd or p4 � p3 þ 2ðp3�1Þ

p2�1 , then
dðPðZnÞÞ ¼ /ðnÞ þ p1p2p3 � 1 and it is attained by the
element p4 . Otherwise, dðPðZnÞÞ ¼ ðp2 � 1Þðp3p4 þ
1Þ þ 1 and it is attained by the element p3p4 :

Corollary 5.49. [71, Corollary 4.7] Let n ¼ pa11 p
a2
2 � � � pamm ,

g1ðnÞ ¼
n
pamm

þ ðpamm � 1Þ/ n
pamm

� �
� 1

and

g2ðnÞ ¼
n

pm�1pm
þ /ðnÞ þ /

n
pm

� �
þ /

n
pm�1

� �
� 1:

Then g1ðnÞ, g2ðnÞ are sharp upper bounds of dðPðZnÞÞ:
The following is a generalization of Theorem 5.48 to sev-

eral other values of n.

Theorem 5.50. [72, Theorem 1.2] Let n ¼ p1p2 � � � pm,m � 3
and p1, p2, :::, pm are prime numbers with p1 < p2
< � � � < pm. Then dðPðZnÞÞ ¼ minfdegðpm�1pmÞ, degðpmÞg.
Further,

dðPðZnÞÞ ¼ degðpmÞ if and only if /ðpmÞ

� p1p2 � � � pm�2

/ðp1p2 � � � pm�2Þ � 1
� �

/ðpm�1Þ:

In particular, if /ðpmÞ � ðm� 2Þ/ðpm�1Þ, then dðPðZnÞÞ
¼ degðpmÞ:

For an arbitrary integer n, under certain conditions
involving its prime divisors, the following theorem is proved
on the minimum degree of PðZnÞ:

Theorem 5.51. [72, Theorem 1.3] Let n ¼ pa11 p
a2
2 � � � pamm ,m �

2, p1 < p2 < � � � < pm are primes and ai 2 N for 1 � i � m.
Suppose that any of the following two conditions holds:

i. 2/ðp1p2 � � � pmÞ � p1p2 � � � pm,
ii. /ðpiþ1Þ � m/ðpiÞ for each i 2 f1, 2, 3, :::,m� 1g:

If t 2 f2, 3, :::,mg is the largest integer such that at � aj
for 2 � j � m, then dðPðZnÞÞ ¼ minfdegðpass Þ : t � s � mg:

Using the above Theorem 5.51, the authors proved the
following Corollary by which minimum degree of the power
graph of a finite cyclic group can be calculated.

Corollary 5.52. [72, Corollary 1.4] Let n ¼ pa11 p
a2
2

� � � pamm ,m � 2, p1 < p2 < � � � < pm are primes and ai 2 N for
1 � i � m. Suppose that any of the following two condi-
tions holds:

i. p1 � mþ 1 and pm > mpm�1,
ii. piþ1 > mpi for each i 2 f1, 2, :::,m� 1g:

Then dðPðZnÞÞ ¼ degðpamm Þ:

Remark 5.53. Theorem 5.48 can be obtained from
Theorems 5.50 and 5.51 and it was proved in [72].

If n has exactly three prime divisors, then following the-
orem shows that the minimum degree of the power graph
of Zn can be calculated without any condition as stipulated
in Theorem 5.51.

Theorem 5.54. [72, Theorem 1.5] Let n ¼ pa11 p
a2
2 p

a3
3 where

p1 < p2 < p3 are primes and ai 2 N for 1 � i � 3. Then,

dðPðZnÞÞ ¼ minfdegðpa22 Þ, degðpa33 Þg:

It is already known that any abelian group of finite order
is isomorphic to an unique product of cyclic groups of
prime power order [15].

Theorem 5.55. [71, Theorem 5.1] Let G be an abelian group
of order pa, where p is prime and a 2 N. Then dðPðGÞÞ ¼
sðGÞ �1:

5.6. The complement of the power graph

The complement of the power graph of a finite group is
always connected, apart from isolated vertices. (The isolated
vertices are just the sets described in Theorem 6.1.)

Theorem 5.56. [14, Theorem 9.9] Let G be a finite group.
Then the complement of the power graph of G consists of a
set of isolated vertices together with (if G is not cyclic of
prime power order) a single connected component with diam-
eter at most 2.

If the group G has an element x of order greater than 2,
then x is joined to x2 in P0ðGÞ, so the complement of the
power graph is not complete. Thus, in the above theorem,
the diameter is 2 except in the case when G is an elementary
abelian 2-group.
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Other connectivity questions relating to the complement
of the power graph have not been studied yet.

6. Connectivity in proper power graphs

It is known that PðGÞ is connected for any group G, since
{e} is a dominating set. A natural question is: what will be
the effect on connectivity properties of PðGÞ if we remove
the identity element from the vertex set of PðGÞ? This sec-
tion is dedicated to all results based on the connectivity of
proper power graph P0ðGÞ (power graph without identity
element) of a group G.

Before beginning, we should address the question
whether there may be vertices other than identity which are
joined to all other vertices in the group. In other words,
which elements a 2 G have the property that, for all b 2 G,
either a is a power of b or b is a power of a?

Theorem 6.1. [13, Proposition 4]; [17, Theorem 4] Let G be
a finite group. The set of vertices which are joined to all other
vertices in PðGÞ is

i. G, if G is cyclic of prime power order;
ii. the set of generators of G together with the identity, if G

is cyclic but not of prime power order;
iii. Z(G), if G is a generalized quaternion group;
iv. {e}, in any other case.

To investigate connectivity, it makes sense to delete all
such vertices; but, in all cases except cyclic and generalized
quaternion groups, this just requires us to delete the iden-
tity, giving P0ðGÞ: The remaining cases can be dealt
with separately.

6.1. Conditions for non-connectedness

We begin with a general condition for the reduced power
graph not to be connected.

Theorem 6.2. Let G be a finite group which is not of prime
power order. Let p be a prime dividing jG j . Suppose that,
for all primes q 6¼ p, there is no element of order pq in G.
Then P0ðGÞ is not connected.

The hypothesis implies that there is no edge of the power
graph between an element whose order is a power of p and
one whose order is not a power of p. We saw an example of
this in our discussion of the Mathieu group M11, where the
primes 5 and 11 have this property, and elements of orders
5 and 11 form complete graphs not connected to anything
else in the reduced power graph. The property of the the-
orem is not uncommon: many (but not all) finite simple
groups have such a prime. See Conjecture 6.7 below.

A finite group is called a CP-group or EPPO group if
every non-trivial element of the group has prime power
order. For example, a p-group is also a CP-group. Following
a lot of earlier research, the CP-groups have been deter-
mined in [19, Theorem 1.7]. It follows from the preceding
theorem that, in a CP-group G, the set of elements of p-
power order is a union of connected components of P0ðGÞ:

A more general condition uses the Gruenberg–Kegel
graph. The Gruenberg–Kegel graph, or prime graph, of a
finite group G is the graph whose vertex set is the set of
prime divisors of jG j , with an edge joining primes p and q
whenever G contains an element of order pq. This graph has
been the subject of a lot of research: see [19] for
a summary.

Theorem 6.3. Let G be a finite group whose
Gruenberg–Kegel graph is disconnected. Then P0ðGÞ is
disconnected.

For suppose that p is a connected component of the
Gruenberg–Kegel graph. Then there can be no edge in
P0ðGÞ joining an element whose order is a p-number to
one whose order is not a p-number. For suppose that there
were such an edge {a, b}. Then b is not a power of a, so a is
a power of b. But then the order of b is divisible by both a
prime p 2 p and a prime q 62 p; so some power of a has
order pq, a contradiction.

We note that these graphs were introduced by Gruenberg
and Kegel to study the integral group ring of G, in particular
the decomposability of its augmentation ideal, in an unpub-
lished manuscript in the 1970s. One of their main results
was a structure theorem for groups with disconnected
Gruenberg–Kegel graph; this was published by Williams
(a student of Gruenberg) in 1981 [80]:

Theorem 6.4. Let G be a finite group whose
Gruenberg–Kegel graph is disconnected. Then one of the fol-
lowing holds:

i. G is a Frobenius or 2-Frobenius group;
ii. G is an extension of a nilpotent p-group by a simple

group by a p-group, where p is the set of primes in the
connected component containing 2.

Here, a 2-Frobenius group is a group G with normal sub-
groups H and K with H � K such that

� K is a Frobenius group with Frobenius kernel H;
� G/H is a Frobenius group with Frobenius kernel K/H.

A typical example is the group G ¼ S4, with K ¼ A4, H ¼
V4 (the Klein group), and G=K ffi S3:

The simple groups in Case (ii) have been determined in
several papers by Williams, Kondrat’ev and Mazurov.

6.2. Components in proper power graph

In 2014, Moghaddamfar et al. [65], computed some proper-
ties of proper power graphs P0ðGÞ, which are summarized
below. Here, for any group G, pðGÞ denotes the set of all
prime divisors of jG j :
Theorem 6.5. [65, Lemma 4.1, Corollary 4.1, Lemma 4.3,
Lemma 4.4] Let G be a finite group. Then the following hold:

i. If oðGÞ ¼ pa, for some prime p and positive integer a,
then P0ðGÞ is connected if and only if G has a unique
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minimal subgroup. and only if G is either a cyclic group
or a generalized quaternion group.

ii. If pðZðGÞÞ � 2, then P0ðGÞ is connected.
iii. If pðGÞ � 2 and center of G is a p-group for some p 2

pðGÞ, then the proper power graph P0ðGÞ is connected
if and only if every non-central element a of order p
there exists a non p-element b such that a � b
in P0ðGÞ:

In connection with the first part, Theorem 4.1 shows that
these groups are cyclic or generalized quaternion.

In 2015, Pourgholi et al. [74], proved that the number of
edges in the power graphs of a simple group of order n is at
most the number of edges in the power graph of the cyclic
group of order n. They also proposed the following question on
non-Abelian simple groups with 2-connected power graphs.

Question 6.6 [74, Question 2.1] Determine all non-Abelian
simple groups with 2-connected power graphs.

Following this, Bubboloni et al. [11] and Doostabadi and
Farrokhi [37], independently presented negative examples
for this question. (If the reduced power graph is not con-
nected, then the power graph cannot be 2-connected. We
gave examples at the start of this section.) In [3], Narges
Akbari et al. modified the above question and proposed the
following conjecture.

Conjecture 6.7 [3, Conjecture] The power graph of a non-
Abelian simple group G is 2-connected if and only if G is iso-
morphic to the alternating group An where n¼ 3 or n 62
P [ ðP þ 1Þ [ ðP þ 2Þ [ ð2PÞ [ ð2P þ 1Þ and P is the set of
all prime numbers.

Having proposed the above conjecture, Narges Akbari
et al. [3] proved that this conjecture true for some classes of
finite simple groups. The relevant result is given below.

Theorem 6.8. [3, Main Theorem] Let p be a power of a prime
number. The proper power graphs of the sporadic groups, Ree
groups 2F4ðpÞ and 2G2ðpÞ, the Chevalley group A1ðpÞ,A2ðpÞ,
B2ðpÞ,C3ðpÞ and F4ðpÞ, the projective unitary group U3ðpÞ and
the projective symplectic group S4ðpÞ are disconnected.

It seems that the following result is the best for connect-
ivity of power graphs without identity of periodic groups.

Lemma 6.9. [49, Lemma 2.1] Let G be a periodic group.
Then P0ðGÞ is connected if and only if for any two elements
a, b of prime orders with a � b, there exist elements a ¼
a0, :::, am ¼ b such that oða2iÞ is prime, oða2iþ1Þ ¼
oða2iÞoða2iþ2Þ for i 2 f0, 1, 2, :::,m=2g and ai is adjacent to
aiþ1 for i 2 f0, 1, :::,m� 1g:

In [37], the authors calculated the number of connected
components of the power graph of a special class of finite
groups including nilpotent groups, Hughes-Thompson
group, Suzuki group SzðmÞ, symmetric group Sn and alter-
nating group An on n symbols. The results in this regard
have been clubbed and presented below:

Corollary 6.10. [37, Corollary 2.2] If G is a finite group with
exactly one element of order 2, then P0ðGÞ is connected.

Theorem 6.11. [37, Theorem 2.5] Let G be a finite p-group.
Then there exists a one-to-one correspondence between the
connected components of P0ðGÞ and the minimal cyclic sub-
groups of G.

Theorem 6.12. [37, Theorem 2.6(i)] Let G be a finite p-
group. Then the number of connected components of P0ðGÞ
is same as the number of subgroups of G of order p. In par-
ticular P0ðGÞ is connected if and only if G is a cyclic p-group
or a generalized quaternion 2-group.

For a group G and a prime number p, the Hughes sub-
group HpðGÞ of G is defined as the subgroup generated by
all elements of G whose orders are different from p. A finite
group G is called a Hughes-Thompson group if G is not a
p-group and HpðGÞ 
 G for some prime divisor p of jG j :
Recall that cðCÞ denotes the number of connected compo-
nents of a graph C:

Theorem 6.13. [37, Theorem 3.2] Let G be a Hughes-
Thompson group and p be a prime such that HpðGÞ 6¼ G.
Then the number of connected components of P0ðGÞ is equal
to 1þ oðGÞ

p if HpðGÞ is not a p-group, and it is equal to
cðP0ðHpðGÞÞÞ þ oðGÞ

p , otherwise.

Theorem 6.14. [37, Theorem 3.4] Let G be a Frobenius
group with kernel K and complement H. Then P0ðHÞ is con-
nected and the number of connected components of P0ðGÞ is
oðKÞ þ 1 if K is not a p-group and it is oðKÞ þ cðP0ðKÞÞ if
K is a p-group.

Theorem 6.15. [37, Theorem 3.5] If G ¼ PGLð2, pnÞ (p is
odd), then the number of connected components of P0ðGÞ is
equal to p2nþ1�1

p�1 :

Theorem 6.16. [37, Theorem 3.6] If G ¼ PSLð2, pnÞ, then
the number of connected components of P0ðGÞ is equal
to p2nþ1�1

p�1 :

Theorem 6.17. [37, Theorem 3.7] If G ¼ SzðmÞ (Suzuki
group), then the number of connected components of P0ðGÞ
is equal to 1

2m
3ðmþ 1Þ2 �m2 þm� 1, where m ¼ 22nþ1:

Theorem 6.18. [37, Theorem 4.2] Let G ¼ Sn be the sym-
metric group ðn � 2Þ:

i. If n ¼ p � 11, then number of connected components of
P0ðGÞ is equal to ðp� 2Þ!þ 1:

ii. If n ¼ pþ 1 � 12, then number of connected compo-
nents of P0ðGÞ is equal to ðpþ 1Þðp� 2Þ!þ 1:

iii. If n ¼ 2, 3, 4, 5, 6, 7, 8, then number of connected compo-
nents of P0ðGÞ is equal to 1, 4, 13, 31, 83, 128 and 961,
respectively.

Theorem 6.19. [37, Theorem 4.7] Let G ¼ An be the alter-
nating group ðn � 3Þ:

i. If n ¼ p � 11, then the number of connected compo-
nents of P0ðGÞ is equal to ðp� 2Þ!þ pðp�1Þðp�4Þ!

2 þ 1 if
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p – 2 is prime, it is equal to 4pðp�2Þðp�4Þ!
ðp�1Þ þ 1, if p�1

2 is
prime, and it is equal to ðp� 2Þ!þ 1 if neither ðp� 2Þ
nor ðp�1Þ

2 is a prime.
ii. If n ¼ pþ 1 � 12, then the number of connected com-

ponent of P0ðGÞ is equal to ðpþ 1Þðp� 2Þ!þ 4pðp�2Þ!
pþ1 þ

1 if pþ1
2 is prime, it is equal to ðpþ 1Þðp� 2Þ!þ 1

þ 4pðpþ1Þðp�2Þðp�4!Þ
ðp�1Þ if p�1

2 is prime, and it is equal to

ðpþ 1Þðp� 2Þ!þ 1 if neither ðpþ1Þ
2 nor ðp�1Þ

2 is a prime.
iii. If n ¼ pþ 2 � 13, then the number of connected com-

ponents of P0ðGÞ is equal to p!þ 1
2 ½ðpþ 2Þðpþ 1Þðp�

2Þ!� þ 1 if p þ 2 and ðpþ1Þ
2 are primes, it is equal to

p!þ 1
2 ½ðpþ 1Þðpþ 2Þðp� 2Þ!� þ 1 if p þ 2 is prime but

ðpþ1Þ
2 is not prime, it is equal to 1

2 ½ðpþ 2Þðpþ 1Þðp�
2Þ!� þ 4pðpþ2Þðp�2Þ!

pðpþ1Þ þ 1 if pþ1
2 is prime but p þ 2 is not

prime, and it is equal to p!þ 1, if neither p þ 2 nor
pþ1
2 is prime.

iv. If n ¼ 2p � 14, then the number of connected compo-

nents of P0ðGÞ is equal to 2pð2p� 3Þ!þ ð2p�1Þ!
pðp�1Þ þ 1 if

2p� 1 is prime, and it is equal to ð2p�1Þ!
pðp�1Þ þ 1 if 2p� 1

is not prime.
v. If n ¼ 2pþ 1 � 11, then number of connected compo-

nents of P0ðGÞ is equal to ð2p� 1Þ!þ 1þ ð2pþ1Þð2p�1Þ!
pðp�1Þ

if 2pþ 1 is prime, it is equal to ð2pþ1Þð2p�1Þ!
pðp�1Þ þ pð2pþ

1Þð2p� 3Þ!þ 1 if 2p� 1 is prime,and it is equal to
ð2pþ1Þð2p�1Þ!

pðp�1Þ þ 1 otherwise.

vi. If n ¼ 2pþ 2 � 12, then P0ðGÞ is connected when
2pþ 1 is not prime, and it is disconnected with 2ðpþ
1Þð2p� 1Þ!þ 1 connected components if 2pþ 1
is prime.

vii. If n ¼ 3, 4, 5, 6, 7, 8, 9, 10, then the number of connected
components of P0ðGÞ is equal to 1, 7, 31, 121, 421,
962, 5442, and 29345 respectively.

Now, we present some results on the connectivity of the
proper graph of a finite p-group proved by Panda et al. [70].

Proposition 6.20. [70, Proposition 3.1] Let G be a finite p-
group and a 2 G� is of order p. Then a is adjacent to every
other vertices of the component of the proper power graph
P0ðGÞ that contains a.

Proposition 6.21. [70, Proposition 3.2] If G is a finite p-
group, then each component of P0ðGÞ has exactly p – 1 ele-
ments of order p.

Theorem 6.22. [70, Theorem 3.3] Let G be an finite abelian
p-group isomorphic to the direct product of m cyclic groups.
Then the number of components of P0ðGÞ
is pm�1 þ pm�2 þ � � � þ 1:

It follows from Theorem 3.3 [70] that the proper power
graph of a non-cyclic abelian p-group has more than one
component. This leads to the fact stated in Corollary 5.20.
Cameron et. al [17], considered the question of connectivity
of the proper power graph of infinite groups.

Lemma 6.23. [17, Lemma 1] If P0ðGÞ is connected, then G
is a torsion-free or a periodic group.

Theorem 6.24. [17, Theorem 7] Let G be a locally center-by-
finite group which is torsion free. Then P0ðGÞ is connected if
and only if G is isomorphic to a subgroup of Q:

If G is a finite p-group, then P0ðGÞ is connected if and
only if G is a cyclic group or a generalized quaternion group
Q2n : For infinite case, we have the following result.

Theorem 6.25. [17, Theorem 9] Let G be infinite locally
finite p-group. Then P0ðGÞ is connected if and only if G ffi
Cp1 for some prime number p, or G ffi Q21 :

6.3. Distance in proper power graphs

Recall that the diameter of a graph C is the maximum dis-
tance between pairs of vertices in C. Thus the diameter of a
complete graph is precisely 1. It can be seen that not every
proper power graph is connected. For example, the proper
power graph of any dihedral group is disconnected since the
involutions are isolated vertices. In [32], Curtin et al.
focused on the groups with low diameter proper power
graphs and proved the following results.

Lemma 6.26. [32, Lemma 12] For a finite group G, suppose
that P0ðGÞ has a diameter at most 3. Then any Sylow sub-
group of G either a cyclic group or a generalized quaternion
2-group.

We remark that groups satisfying the conclusion of those
lemma can be determined by using group-theoretic charac-
terization theorems including Glauberman’s Z�-Theorem
and the Gorenstein –Walter Theorem.

Theorem 6.27. [32, Theorem 14] For a finite group G, the
proper power graph P0ðGÞ has diameter at most 2 if and
only if G is nilpotent and all of its Sylow subgroups are cyclic
groups or generalized quaternion 2-groups. Moreover, if both
these conditions hold, then the power graph PðGÞ and proper
power graph P0ðGÞ have the same diameter.

Corollary 6.28. [32, Corollary 15] Let G be a finite group. If
P0ðGÞ has diameter 3, then G is not nilpotent.

Lemma 6.29. [32, Lemma 16] Let G be a finite group. If
P0ðGÞ has diameter at most 3, then elements of G with prime
order commute.

Corollary 6.30. [32, Corollary 19] If G is a non-Abelian sim-
ple group, then P0ðGÞ has diameter at least 4.

In 2015, Alireza et al. [37], proved some results on the
proper power graph of finite groups and among other
results, they proved that the connected proper power graph
P0ðGÞ has diameter at most 4, 26, or 22 when G is a nilpo-
tent group, symmetric group, or alternating group, respect-
ively. These results lead to a conjecture which claims that
connected proper power graphs of finite groups must have
bounded diameter.
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Theorem 6.31. [37, Theorem 2.4] Let G be a finite group
such that Z(G) is not a p-group. Then P0ðGÞ is connected.
Moreover, diamðP0ðGÞÞ � 6 and the bound is sharp.

Theorem 6.32. [37, Theorem 2.6] Let G be finite nilpo-
tent group.

i. If G is a p-group, then the number of connected components
of P0ðGÞ is the same as the number of subgroups of G of
order p. In particular,P0ðGÞ is connected if and only if G is
a cyclic p-group or a generalized quaternion 2-group.

ii. If G is not a p-group and each of the Sylow p-subgroup
of G is a cyclic p-group or a generalized quaternion 2-
group, then P0ðGÞ is connected and diamðP0ðGÞÞ ¼ 2:

iii. If G is not a p-group and G has a Sylow p-subgroup,
which neither a cyclic p�group nor a generalized qua-
ternion 2-group, then P0ðGÞ is connected
and diamðP0ðGÞÞ ¼ 4:

Utilizing the above theorem, one can classify all finite
groups for which the proper power graph is of diameter at
most three. The characterization in this regard is
given below.

Theorem 6.33. [37, Theorem 2.8] Let G be a finite group.

i. diamðP0ðGÞÞ ¼ 1 if and only if G is a cyclic p-group.
ii. diamðP0ðGÞÞ ¼ 2 if and only if G is nilpotent which is not

a cyclic p-cyclic and the Sylow p-subgroups of G are either a
cyclic p-group or a generalized quaternion 2-group.

iii. diamðP0ðGÞÞ ¼ 3 if and only if G is not nilpotent and
G has exactly one subgroup of order p for all p 2 pðGÞ:

Lemma 6.34. [37, Lemma 3.3] Let G be a group of fixed-
point-free automorphisms of some finite group. Then P0ðGÞ
is connected. If G is solvable, then diamðP0ðGÞÞ � 6. If G is
not solvable, then diamðP0ðGÞ � 12 and the equality holds
only if G has a maximal subgroup M of index 2 such that
M ¼ L� SLð2, pÞ for some solvable group L and prime p. In
both cases, if ZðGÞ 6¼ 1, then diamðP0ðGÞÞ � 4:

Theorem 6.35. [37, Theorem 4.2(i)] If n � 9 and neither n
nor n – 1 is a prime, then P0ðSnÞ is connected
and diamðP0ðSnÞÞ � 26:

Theorem 6.36. [37, Theorem 4.7(i)] Let n � 3. If n, n�
1, n� 2, n2 ,

ðn�1Þ
2 , ðn�2Þ

2 are not primes, then P0ðAnÞ is con-
nected and diamðP0ðAnÞÞ � 22:

Recently, in [73], the authors have improved the upper
bound of diameter of proper power graphs of alternating
groups to 11, for n > 51.

7. Independence Number of power graphs

In [79], Tamizh Chelvam et al. proved some results on the
power graph of a finite abelian group in which they provided a
lower bound for the independence number of the power graph
of a finite group, computed the independence number of an

elementary abelian p-group and characterized all finite abelian
groups whose power graph has independence number 2.

Theorem 7.1. [79, Theorem 7] Let G be a finite group of
order n ¼ pa11 p

a2
2 � � � pamm , where pi are distinct primes and

ai � 1 are integers. Then independence num-
ber bðPðGÞÞ � m:

Theorem 7.2. [79, Theorem 8] Let G be an elementary abel-
ian group of order pn for some prime number p and positive
integer n and ‘ ¼ pn�1

p�1 : Then PðGÞ ffi K1 þ [‘
i¼1Kp�1

and bðPðGÞÞ ¼ ‘:

Theorem 7.3. [79, Theorem 10] Let G be a finite abelian
group. Then bðPðGÞÞ ¼ 2 if and only if G is a cyclic group
of order pa1p2, where p1 and p2 are distinct primes and a is a
positive integer.

In 2018, Ma and Lu [59] provided sharp lower and upper
bounds for the independence number of PðGÞ and character-
ized the groups achieving the bounds. Also, they determined
the independence number PðGÞ of certain finite groups.
Finally, they classified all finite groups G, whose power graphs
have independence number 3 or oðGÞ � 2: For a group G, we
have XP ¼ fP 	 S : P is a subgroup of G of prime orderg:
A maximal cyclic subgroup of G is a cyclic subgroup, which is
not a proper subgroup of some proper cyclic subgroup of G.
Denote by MG the set of all maximal cyclic subgroups of G.

Theorem 7.4. [59, Theorem 2.1] For any finite group G,

XPj j � bðPðGÞÞ �
X

M2MðGÞ
bðPðMÞÞ:

Next, we state a characterization of the groups satisfying
the lower bound given in Theorem 7.4.

Theorem 7.5. [59, Theorem 2.3] bðPðGÞÞ ¼ XGj j if and
only if the following two conditions occur:

i. For each M 2 MðGÞ, jM j ¼ pa1, p
a
1p2 or p1p2p3, where

p1, p2, p3 are distinct primes and a 2 N:
ii. If Pð[‘

j¼1M
j
0Þ is connected, where ‘ � 2 is positive inte-

ger and Mj 2 MðGÞ for each 1 � j � ‘,

then bðPð[‘
j¼1M

j
0ÞÞ ¼ [‘

j¼1XMj




 


:
Corollary 7.6. [59, Corollary 2.4] bðPðD2nÞÞ ¼ XD2nj j if and
only if n ¼ pa1, p

a
1p2 or p1p2p3, where p1, p2, p3 are distinct

primes and a is a positive integer.

Recall that a finite group is called a CP-group or EPPO
group if every non-trivial element of the group has prime
power order.

Corollary 7.7. [59, Corollary 2.5] Let G be a finite CP group.
Then bðPðGÞÞ ¼ XGj j if and only if either G ¼ Zpa or G is a
non-cyclic group such that every two maximal cyclic sub-
groups have trivial intersection.

Proposition 7.8. [59, Proposition 2.8] Let G be a finite
group with
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bðPðGÞÞ ¼
X

m2MðGÞ
bðPðMÞÞ:

If G has two distinct maximal cyclic subgroups M1 and
M2, then

bðPðM1 [M2ÞÞ ¼ bðPðM1ÞÞ þ bðPðM2ÞÞ:

Theorem 7.9. [59, Theorem 2.9] Let G be a group with
MðGÞ ¼ fM1,M2, :::,Mtg. Then the following are equivalent:

i. bðPðGÞÞ ¼PM2MðGÞ bðPðMÞÞ;
ii. For each 1 � i � t, there exists an independent set Di of

Mi such that Dij j ¼ bðPðMiÞÞ and for distinct indices i, j,
Di \ Dj ¼ ;, and Di [ Dj is an independent set of PðGÞ;

iii. Let Pð[‘
j¼1M

j
0Þ be a connected component of P0ðGÞ for

some ‘ � t: Then

bðPð[‘
j¼1M

j
0ÞÞ ¼

Xt
j¼1

bðPðMj
0ÞÞ:

Corollary 7.10. [59, Corollary 2.10] If every two distinct
maximal cyclic subgroup of G have trivial intersection,
then bðPðGÞÞ ¼PM2MðGÞ bðPðMÞÞ:

Corollary 7.11. [59, Corollary 2.11] If G is p-group,
then bðPðGÞÞ ¼PM2MG

bðPðMÞÞ ¼ MðGÞj j:

Corollary 7.12. [59, Corollary 2.16] For a finite CP group G,
following are equivalent

i. bðPðGÞÞ ¼ XGj j;
ii. MðGÞj j ¼ XGj j;
iii. Either G ffi Zpb or G is non-cyclic group such that every

two maximal cyclic subgroup have trivial intersection.

Theorem 7.13. [59, Theorem 4.1] Let G be a group. Then
bðPðGÞÞ ¼ 3 if and only if G is one of the following groups:

i. Q8;
ii. Z2 � Z2;
iii. Zp1p2p3 , where p1, p2, p3 are distinct primes;
iv. Zp21p

b
2
, where b � 2 is a positive integer.

Theorem 7.14. [59, Theorem 4.2] Let G be a finite group of
order n. Then bðPðGÞÞ ¼ n� 2 if and only if G ffi Z3 or D3.

In the next few theorems, we present results on the inde-
pendence number of the power graph of an infinite group G.

Theorem 7.15. [1, Theorem 1]. Let G be a group and
bðPðGÞÞ < 1. Then G : ZðGÞ½ � < 1 and G is locally finite.

Theorem 7.16. [1, Theorem 3] Let G be an abelian group
such that bðPðGÞÞ < 1. Then either G is finite or
G ffi Cp1 � H, where H is a finite group and p-oðHÞ:

Theorem 7.17. [1, Theorem 4] Let p be a prime number
and G be a p-group such that bðPðGÞÞ < 1. Then either G
is finite or G ffi Cp1 :

In the following theorem, the authors exploit Theorem
7.17 and extend in Theorem 7.16 to nilpotent groups.

Theorem 7.18. [1, Theorem 6] Let G be an infinite nilpotent
group. Then bðPðGÞÞ < 1 if and only if G ffi Cp1 �H, for
some prime number p, where H is a finite group
and p-oðHÞ:

In the same article, the authors posed the question, does
above theorem hold without assuming nilpotence? Cameron
et al. [17] gave an affirmative answer to this question.

Theorem 7.19. [17, Theorem 3] Let G be a group satisfying
bðPðGÞÞ < 1. Then either G is finite, or G ffi Cp1 � H,
where H is a finite group and p-oðHÞ:

As a corollary of this result, Cameron et al. [17] proved
the following corollary.

Corollary 7.20. [17, Corollary 1] Let G be a group whose power
graph PðGÞ has finite independence number. Then the independ-
ence number and clique cover number ofPðGÞ are equal.

8. Perfectness of the power graph

Recall that a finite graph is perfect if every induced subgraph
has clique number equal to chromatic number. In the next
theorem, we recall several facts about perfect graphs. The
comparability graph WðPÞ of a partially ordered set ðP, �Þ is
the simple graph with the vertex set P and two distinct ver-
tices x and y adjacent if and only if either x � y or y � x:

Theorem 8.1.
i. If a graph is perfect, then its complement is perfect (The

Weak Perfect Graph Theorem, Lov�asz [56]).
ii. A graph is perfect if and only if it contains no odd cycle

or complement of an odd cycle of length at least 5 as an
induced subgraph (The Strong Perfect Graph Theorem,
Chudnovsky et al. [29]).

iii. The comparability graph of a partial order, and its com-
plement, are perfect (Dilworth’s Theorem, [35]).

Theorem 8.2. [1,4,40] The power graph of a finite group is
the comparability graph of a partial order, and hence is a
perfect graph. In particular, its clique number and chromatic
number are equal, and the clique number and chromatic
number of the complement are also equal.

For consider the directed power graph ~PðGÞ, with a
loop at each vertex. This is a partial preorder, a reflexive
and symmetric relation. Writing x � y if each of x and y
precedes the other in the partial preorder (that is, if each is
a power of the other); this is an equivalence relation, and
the equivalence classes are partially ordered. Refining this
relation by a total order on each equivalence class, we obtain
a partial order whose comparability graph is PðGÞ:

8.1. Induced subgraphs

Any induced subgraph of the comparability graph of a par-
tial order is itself a comparability graph. Subject to this,
power graphs are universal:
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Theorem 8.3. [14, Theorem 5.4] For any finite graph C
which is the comparability graph of a partial order, there exists
a finite group G such that C is an induced subgraph of PðGÞ:

However, groups of prime power order are
more restricted.

Theorem 8.4. [18, Lemma 3.1] Let G be a finite group of
prime power order. Then

i. if (x, y, z) is a 3-vertex induced path in the power graph
of G, then x ! y and z ! y in the directed power graph;

ii. PðGÞ does not contain a path or cycle on 4 vertices as
an induced subgraph.

Apart from perfect graphs, there are various other inter-
esting classes of graphs which are defined by forbidden
induced subgraphs. Let Pn, Cn and Kn denote the path, cycle
and complete graph with n vertices, and 2K2 the graph con-
sisting of two disjoint edges. Some other graph classes con-
sidered are

i. cographs, with no induced P4;
ii. chordal graphs, with no induced Cn for n> 3;
iii. split graphs, with no induced P4, C5 or 2K2 [46];
iv. threshold graphs, with no induced P4, K4 or 2K2:

We refer to [18] for further discussion of these
graph classes.

Theorem 8.5. [18, Theorems 3.2, 4.3 and 5.1]

i. Let G be a finite nilpotent group. Then PðGÞ is a
cograph if and only if either G has prime power order,
or G is cyclic with order the product of two dis-
tinct primes.

ii. Let G be a finite nilpotent group. Then PðGÞ is a chordal
graph if and only if either G has prime power order, or
G has just two prime divisors p and q, the Sylow p-sub-
group is cyclic, and the Sylow q-subgroup has exponent q.

iii. Let G be an arbitrary finite group. Then the following
are equivalent:
a. PðGÞ is a split graph;
b. PðGÞ is a threshold graph;
c. G is cyclic of prime power order, or an elementary

abelian or dihedral 2-group, or cyclic of order 2p,
or dihedral of order 2pn or 4p, where p is an
odd prime.

A preliminary result towards the characterisation of finite
groups whose power graph is split was given in [57].

One of the most important questions about power graphs
of finite groups is:
Problem 8.6. For which finite groups G is PðGÞ a cograph?

We will see another reason for examining this question
in Section 11.

Theorem 8.5(i) gives useful information, since it shows
that, if PðGÞ is a cograph, then any nilpotent subgroup of G
is either of prime power order or a cyclic group whose order
is the product of two distinct primes. This greatly restricts
the possible groups: here is a sample result.

Theorem 8.7. [14, Proposition 8.7] Suppose that q is a prime
power. If q is a power of 2, then let l ¼ q� 1 and m ¼ qþ 1; if
q is odd, let l ¼ ðq� 1Þ=2 and m ¼ ðqþ 1Þ=2. Let
G ¼ PSLð2, qÞ. Then PðGÞ is a cograph if and only if each of
l and m is either a power of a prime number or the product
of two distinct primes.

Finding all groups PSLð2, qÞ whose power graph is a
cograph is thus a number-theoretic problem. As noted in
[14], the values of d up to 200 for which q ¼ 2d satisfies the
conditions of the theorem are 1, 2, 3, 4, 5, 7, 11, 13, 17, 19,
23, 31, 61, 101, 127, 167, and 199.

Problem 8.8. Are there infinitely many prime powers q for
which the number-theoretic conditions of Theorem 8.7
are satisfied?

We note that the smallest non-Abelian simple group
whose power graph is not a cograph is the alternating group
A7 [14, Table 1].

8.2 Further results

In 2015, Alireza et al. [4] proved the following results on
the clique number and the chromatic number of power
graphs. The chromatic number was calculated earlier by
Mirzagar et al. [64, Theorem 2]. We have reformulated their
results somewhat. First we deal with cyclic groups.

Theorem 8.9. [4, Theorem 7] Let f(n) be the clique number
of the power graph of the cyclic group Zn of order n.

i. The function f is given by the recurrence

f ð1Þ ¼ 1, f ðnÞ ¼ /ðnÞ þ f ðn=pÞ for n > 1,

where / is Euler’s totient function and p is the smallest
prime divisor of n.

ii. Let n ¼ pa11 p
a2
2 � � � pamm such that p1 < p2 < � � � < pm.

Then xðPðZnÞÞ¼/ðnÞþ/ n
p1

� �
þ���þ/ n

pm

� �
þ/ n

pa11

� �
þ/ n

pa11 p2

� �
þ���þ / n

pa11 pa22

� �
þ���þ / n

pa11 pa22 ���pr
� �

þ ��� þ
/ n

pa11 pa22 ���pai�1
i�1

� �þ/ð1Þ:
iii. The chromatic number of PðZnÞ is equal to the cli-

que number.

For the first part, we notice that the /ðnÞ generators of Zn are
dominating vertices, and so lie in every maximal clique; it can be
shown that the remainder of a clique must lie in a proper sub-
group, and the best we can do is to take the largest such subgroup.
The second part follows by expanding the recurrence, and the
third holds because the power graph is perfect.

From this result it is possible to obtain an estimate for
the clique number:

Theorem 8.10.

/ðnÞ � xðPðZnÞÞ � 3/ðnÞ:
In fact, it can be shown that

lim sup xðPðZnÞÞ=/ðnÞ ¼ 2:6481017597:::

14 A. KUMAR ET AL.



where the constant on the right has the analytic expressionX
k�0

Yk
i¼1

1
pi � 1

:

From these results we can give a formula, found by
Mirzagar et al. and Alireza et al. [4, 57] for xðPðGÞÞ for
any group G. Recall that peðGÞ denotes the set of all orders
of elements of G.

Theorem 8.11. Let G be a finite group. Then the clique num-
ber and chromatic number of PðGÞ are both equal to

maxff ðmÞ : m 2 peðGÞg,
where f is the function defined in Theorem 8.9.

This holds because any edge (and hence any clique) in
the power graph of a group G is contained in a cyclic sub-
group of G. Note that k jm implies f ðkÞ � f ðmÞ, so we can
restrict the maximization to the set of elements of peðGÞ
which are maximal with respect to divisibility.

The function f is not monotonic, so the value given by
Theorem 8.11 is not equal to f(m) where m ¼ maxpeðGÞ in
general. Consider, for example, the group G ¼ PGLð2, 11Þ:
The maximal (under divisibility) elements of peðGÞ are 10,
11 and 12; and we have f ð10Þ ¼ f ð12Þ ¼ 9 but f ð11Þ ¼ 11:
So the clique number and chromatic number of G are equal
to 11.

However, in an abelian group G, the maximal element of
peðGÞ is the exponent of G, and all elements of peðGÞ are
divisors of the exponent; so the equation xðPðGÞÞ ¼
f ðmax peðGÞÞ does hold.

Note also that, since a cyclic subgroup is a clique in the
enhanced power graph, we have xðPeðGÞÞ ¼ max peðGÞ:

In the following theorem, the authors characterized all
power graphs which are uniquely colorable.

Theorem 8.12. [57, Theorem 2.8] Let G be a finite group.
Then PðGÞ is uniquely colorable if and only if G is an elem-
entary abelian 2-group or a cyclic group of prime
power order.

Aalipour et al. [1] proved that that the chromatic number
of the power graph of G is finite if and only if the clique
number of the power graph of G is finite and this statement
is also equivalent to the finiteness of exponents of G. They
also proved that the clique number of the power graph of G
is at most countable. The fact that the chromatic number is
also at most countable was subsequently proved in [78]. If
there exists an integer n such that for all g 2 G, gn ¼ e, then
G is said to be of bounded exponent.

Lemma 8.13. [1, Lemma 7] Let G be a group. If xðPðGÞÞ is
finite, then G is of bounded exponent.

Theorem 8.14. [1, Theorem 10] The clique number of the
power graph of any group is at most countably infinite.

Utilizing Lemma 8.13 to colour the power graph with a
finite set of colours, we require the group to be of a
bounded exponent. It was proved that, for such groups, the
resulting power graph is always perfect and can be finitely

coloured. To prove this result, Aalipour et al. [1] use the
concept of comparability graph. Let � be a binary relation
on the elements of a set P. If � is reflexive and transitive,
then ðP, �Þ is called a pre-ordered set. All partially ordered
sets are pre-ordered. The comparability graph WðPÞ of a
pre-ordered set ðP, �Þ is the simple graph with the vertex
set P and two distinct vertices x and y are adjacent if and
only if either x � y or y � x (or both).

This is relevant to the power graph since the directed
power graph of a group is a pre-ordered set and the power
graph is its comparability graph.

Aalipour et al. [1] proved the following with regard to
chromatic and clique numbers of power graphs of groups.

Corollary 8.15. [1, Corollary 13] For every group G, the fol-
lowing statements are equivalent:

i. vðPðGÞÞ < 1;
ii. xðPðGÞÞ < 1;
iii. G is of finite exponent.

Moreover, the clique number of PðGÞ does not exceed
the exponent of G. We give an improved version of
Aalipour et al. [1, Corollary 14]. Again the function f is as
in Theorem 8.9. If G has finite exponent, then peðGÞ is a
finite set (all its elements are divisors of the exponent of G).

Corollary 8.16. Let G be a group of finite exponent n. Then

vðPðGÞÞ ¼ xðPðGÞÞ ¼ maxff ðnÞ : n 2 peðGÞg:
If G is abelian with exponent e, then vðPðGÞÞ ¼

xðPðGÞÞ ¼ f ðeÞ:
Remark 8.17. Theorem 7.19 can be deduced using the

fact that the power graph of the group of finite exponent is
perfect, together with the weak Perfect Graph Theorem of
Lov�asz [56], asserting that the complement of a finite perfect
graph is perfect. This argument also requires a compactness
argument to show that the clique cover number of PðGÞ is
equal to the maximum clique cover number of its finite sub-
groups. However in [17], Cameron et al. gave more elemen-
tary argument which gives us a formula for the
independence number of PðCp1 � HÞ, where p-oðHÞ:
Corollary 8.18. [1, Corollary 15] Let H be a subgroup of G
and G : Hj j < 1. Then

xðPðHÞÞ < 1 if and only if xðPðGÞÞ < 1:

The following example shows that a similar assertion does
not hold for the independence number.

Example 8.19. [1, Example 16] Let G ¼ C2 � C21 and H ¼
f0g � C21 : Thus G : Hj j ¼ 2: Since PðHÞ is a complete
graph, bðHÞ ¼ 1: Clearly, the set f1g � C21 is an independ-
ent set and so bðPðGÞÞ ¼ 1:

9. Spectrum of power graphs

9.1. Adjacency spectrum of power graphs

For any simple graph C with vertex set fv1, v2 � � � , vng, the
adjacency matrix AðCÞ ¼ ðxijÞ is defined as the n� n matrix,
where xij ¼ 1 if vi is adjacent to vj, and 0 otherwise. The
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adjacency characteristic polynomial of a graph C is given by
UðC, aÞ ¼ detðaI � AðCÞÞ: The eigenvalues of AðCÞ are called
eigenvalues of the graph C and denoted by liðCÞ, i ¼
1, 2, 3 � � � , n: Clearly, AðCÞ is a real symmetric matrix and so
all its eigenvalues are real. Thus, they can be arranged in a
non-decreasing order as l1 � l2 � � � � ln: The multiset of all
eigenvalues of C is called the spectrum of C denoted by rðCÞ
and the largest eigenvalue l1 is called the spectral radius of C.

Mehranian et al. [63] computed the spectrum of the
power graph of cyclic groups, dihedral groups, elementary
abelian groups of prime power order. In the following the-
orem, the authors calculated the characteristic polynomial of
PðZnÞ and P0ðZnÞ:
Theorem 9.1. [63, Theorem 2.4] Suppose di, 1 � i � t, are
all non-trivial divisors of n. Define

T¼

/ðnÞ /ðd1Þ /ðd2Þ ��� /ðdtÞ
/ðnÞþ1 /ðd1Þ�1 ad1d2 ��� ad1dt
/ðnÞþ1 ad2d1 /ðd2Þ�1 ��� ad2dt

..

. ..
. ..

. ..
.

/ðnÞþ1 adtd1 adtd2 ��� /ðdtÞ�1

0BBBBB@

1CCCCCA
and adidj ¼ /ðdjÞ if di jdj or dj jdi,

0 otherwise:
:

�
Then the characteristic polynomial of the power graph PðZnÞ

and the proper power graph P0ðZnÞ can be computed
as follows:

i. UðPðZnÞ, xÞ ¼ UðT, xÞðxþ 1Þn�t�1;
ii. UðP0ðZnÞ, sÞ ¼ UðT0, xÞðxþ 1Þn�t�2, where the entries

of T0 equal to those of T in all columns but the first and
each entry of the first column of T0 is one less the corre-
sponding entry of T.

The following theorem gives us the characteristic polyno-
mial of the power graph PðD2nÞ and the proper power
graph P0ðD2nÞ of the dihedral group D2n:

Theorem 9.2. [63, Theorem 2.5] Suppose n is a prime power.
Then the characteristic polynomial of the power graph
PðD2nÞ and proper power graph P0ðD2nÞ of the dihedral
group D2n can be computed as:

i. UðPðD2nÞ,xÞ¼ an�1ðxþ1Þn�2ðx3�ðn�2Þx2�ð2n�1Þx
þ n2�2nÞ,

ii. UðP0ðD2nÞ, xÞ ¼ xnðxþ 1Þn�2ðx� ðn� 2ÞÞ:
In the following theorem, the authors obtained the char-

acteristic polynomial and also computed the eigenvalues of
the power graph of an elementary abelian group EðpnÞ,
where p is a prime number.

Theorem 9.3. [63, Theorem 2.7] For a prime number p, let
‘ ¼ pn�1

p�1 . Then

UðPðEðpnÞÞ, xÞ ¼ ðx� ðp� 2Þ‘�1Þðxþ 1Þðp�2Þ‘ðx2 � ðp� 2Þx
� ðpn � 1ÞÞ:

In particular, the eigenvalues of PðEðPnÞÞ are –1 with
multiplicity ðp� 2Þ‘, p� 2 with multiplicity ‘� 1 and two

simple eigenvalues x1, 2 ¼ p�26
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp�2Þ2þ4ðpn�1Þ

p
2 :

Hamzeh et al. [47] generalized some results proved in
[63] through some more results on power graphs and they
are presented below.

Theorem 9.4. [47, Theorem 3.9] The characteristic polyno-
mial of PðD2nÞ can be computed as follows:

UðPðD2nÞ,xÞ¼xn�1ðxþ1Þn�t�2 xðxþ1ÞUðT,xÞ�nUðT0,xÞ� �
:

where di,1� i� t, are all non-trivial divisors of n,

T¼

/ðnÞ /ðd1Þ /ðd2Þ ��� /ðdtÞ
/ðnÞþ1 /ðd1Þ�1 ad1d2 ��� ad1dt

/ðnÞþ1 ad2d1 /ðd2Þ�1 ��� ad2dt

..

. ..
. ..

. ..
.

/ðnÞþ1 adtd1 adtd2 ��� /ðdtÞ�1

0BBBBBBBBB@

1CCCCCCCCCA

T0 ¼

/ðnÞ�1 /ðd1Þ /ðd2Þ ��� /ðdtÞ
/ðnÞ /ðd1Þ�1 ad1d2 ��� ad1dt
/ðnÞ ad2d1 /ðd2Þ�1 ��� ad2dt
..
. ..

. ..
. ..

.

/ðnÞ adtd1 adtd2 /ðdtÞ�1

0BBBBB@

1CCCCCA:

and adidj ¼ /ðdjÞ; if di jdj or dj jdi
0 otherwise:

:

�
Theorem 9.5. [47, Theorem 3.11] The characteristic polyno-
mial of P0ðQ4nÞ can be computed as follows:

UðP0ðQ4nÞ, xÞ ¼ ðxþ 1Þ3n�t�2 UðT, xÞðx� 1Þn�
þ UðT00, xÞUðT0, xÞ � xðx� 1ÞnUðT00, xÞ�,

where di, 1 � i � t, are all non-trivial divisors of 2n.

T ¼

/ð2nÞ � 1 /ðd1Þ /ðd2Þ � � � /ðdtÞ
/ð2nÞ /ðd1Þ � 1 ad1d2 � � � ad1dt

/ð2nÞ ad2d1 /ðd2Þ � 1 � � � ad2dt

..

. ..
. ..

. ..
.

/ð2nÞ adtd1 adtd2 /ðdtÞ � 1

0BBBBBBBBB@

1CCCCCCCCCA
,

T0 ¼

0 2 2 � � � 2
1 1 0 � � � 0
1 0 1 � � � 0
..
. ..

. ..
. ..

.

1 0 0 � � � 1

0BBBBB@

1CCCCCA,

T00 ¼

/ð2nÞ � 2 /ðd1Þ /ðd2Þ � � � /ðdtÞ
/ð2nÞ � 1 /ðd1Þ � 1 ad1d2 � � � ad1dt
/ð2nÞ � 1 ad2d1 /ðd2Þ � 1 � � � ad2dt

..

. ..
. ..

. ..
.

/ð2nÞ � 1 adtd1 adtd2 /ðdtÞ � 1

0BBBBB@

1CCCCCA:

and adidj ¼ /ðdjÞ if di j dj or dj j di
0 otherwise:

:

�
Chattopadhyay et al. [25] obtained both upper and lower

bounds for the spectral radius of the power graph of Zn and
characterized the graphs for which these bounds are
extremal. Further, they computed spectra of power graphs of
the dihedral group D2n and dicyclic group Q4n partially and
gave bounds for the spectral radii of these graphs.

In Theorem 9.1, the characteristic polynomial of PðZnÞ has
been obtained in terms of the characteristic polynomial of the quo-
tient matrix T whose entries are some functions of the divisors of n.
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Also, note that the spectral radius of PðZnÞ is the same as that
of the matrix T. Since the increase in the number of factors
of n leads to a rapid increase of the degree of the polynomial
of T, it is sometimes too complicated to find the exact value of
the spectral radius of PðZnÞ: Therefore, one can use some
graph invariants like vertex degrees and diameter to approxi-
mate the spectral radius. The following theorem gives both
upper and lower bounds for the spectral radius of PðZnÞ in
terms of the maximum and minimum degrees of the non-
identity non-generator elements of Zn:

Theorem 9.6. [25, Theorem 2.1] If n � 3 is natural number,
then the spectral radius l1ðPðZnÞÞ of PðZnÞ satisfies

l1ðPðZnÞÞ�1
2

ðdmin�1Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘�1�dminÞ2þ4‘ðn�‘Þ

q� 	
and

l1ðPðZnÞÞ�1
2

ðdmax�1Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘�1�dmaxÞ2þ4‘ðn�‘Þ

q� 	
where ‘¼/ðnÞþ1,dmax and dmin are the maximum and min-
imum degrees of the non-identity non-generator elements of
Zn respectively. Furthermore, equality holds in both the
bounds if and only if n¼pa, for any prime number p and
any positive integer a.

The next result provides the characteristic polynomial of
PðD2nÞ in terms of characteristic polynomials of PðZnÞ
and P0ðZnÞ:
Theorem 9.7. [25, Theorem 2.2] For any integer n � 3, the
characteristic polynomial of PðD2nÞ is given by

uðPðD2nÞ, xÞ ¼ xn�1 xUðPðZnÞ, xÞ � nUðP0ðZnÞ, xÞ½ �:

Remark 9.8. In the above theorem, the characteristic poly-
nomial of PðD2nÞ has been obtained for any natural number
n � 3 whereas in Theorem 9.2, the characteristic polynomial
of PðD2nÞ is given only when n is a prime power.

Theorems 9.9 and 9.10 provide upper and lower bounds on
l1ðPðD2nÞÞ and l1ðPðQ4nÞÞ respectively in terms
of l1ðPðZnÞÞ:

Theorem 9.9. [25, Theorem 2.3]. For any integer n � 3, the
spectral radius l1ðPðD2nÞÞ of PðD2nÞ satisfies

l1ðPðZnÞÞ < l1ðPðD2nÞÞ � l1ðPðZnÞÞ þ
ffiffiffi
n

p
:

Theorem 9.10. [25, Theorem 2.4] For any integer n � 2, the
spectral radius l1ðPðQ4nÞÞ of PðQ4nÞ satisfies

l1ðPðZ2nÞÞ < l1ðPðQ4nÞÞ � l1ðPðZ2nÞÞ þ 2
ffiffiffi
n

p
:

In the following theorem, full spectrum of the power
graph of the generalized quaternion group Q4n is computed.

Theorem 9.11. [25, Theorem 2.5] For any integer n of the
form n ¼ 2a, a 2 N, the characteristic polynomial of PðQ4nÞ
is given by

UðPðQ4nÞ,xÞ
¼ðx�1Þnðxþ1Þ3n�2 ðx2�4n�1Þðx�2nþ3Þ

x�1
�2ðaþ1Þ

� 	
:

9.2. Laplacian Spectrum of power graphs

For any finite simple undirected graph C, the Laplacian
matrix LðCÞ is given by LðCÞ ¼ DðCÞ � AðCÞ, where AðCÞ
is the adjacency matrix of C and DðCÞ is the diagonal
matrix of vertex degrees. Clearly LðCÞ is a real symmetric
matrix and so all its eigenvalues are real. For a graph C on
n vertices, we denote the Laplacian eigenvalues of C by
k1ðCÞ � k2ðCÞ � � � � � knðCÞ always arranged in non-
increasing order and repeated according to their multiplicity.
Since LðCÞ is symmetric, positive semi-definite and singular,
and all its eigenvalues are non-negative and knðCÞ ¼ 0: To
know, more interesting facts about Laplacian eigenvalues of
a graph, we refer the survey paper [66]. Let k1, :::, km be the
distinct Laplacian eigenvalues with corresponding multiplic-
ities t1, :::, tm: Then the Laplacian spectrum is denoted by

k1 ::: km
t1 ::: tm

� �
:

It is known that [33], the Laplacian eigenvalue with
multiplicity 0 of a graph C is equal to the number of con-
nected components of C. Thus, one gets that the second
smallest Laplacian eigenvalue kn�1ðCÞ > 0 if and only if C is
connected. Fiedler [41], called kn�1ðCÞ as the algebraic con-
nectivity of C, viewing it as a measure of connectivity of C.
The largest Laplacian eigenvalue k1ðCÞ is called the
Laplacian spectral radius of C. A graph is called Laplacian
integral if all its Laplacian eigenvalues are integers. In [41],
Fiedler proved that the algebraic connectivity kn�1ðCÞ of a
noncomplete graph C does not exceed its vertex connectivity
jðCÞ:

The Laplacian spectrum of a graph has a number of
applications, including random walks, expansion properties,
and statistical efficiency and optimality properties. See [8]
for some of these.

We write the characteristic polynomial detðxI � LðCÞÞ of
LðCÞ by HðC, xÞ instead of HðLðCÞ, xÞ and called HðC, aÞ
the Laplacian characteristic polynomial of C.

Let C be a graph with vertex set VðCÞ ¼ fv1, v2, :::, vng:
Then, for the vertices v1, v2, :::vi in C, Lv1, v2, :::, viðCÞ is
defined as the principal submatrix of LðCÞ formed by delet-
ing rows and columns corresponding to the vertices
v1, v2, :::, vi: In particular, if i¼ n, then for convention it is
taken as HðLv1, v2, :::, vnðC, xÞÞ ¼ 1:

Chattopadhyay [22] obtained the Laplacian spectrum of
PðZnÞ and PðD2nÞ for particular values of n. In fact, the
relationship between the spectrum of these two power
graphs are discussed. Also, they gave sharp lower and upper
bounds for algebraic connectivity of PðZnÞ:

Panda [68] considered various aspects of Laplacian spec-
tra of power graphs of finite cyclic groups, dicyclic groups,
and finite p-groups. More specifically, Panda [68] deter-
mined completely the Laplacian spectral radius of power
graphs of all of these groups apart from the algebraic
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connectivity and its multiplicity. Then, the equality of the
vertex connectivity and the algebraic connectivity is charac-
terized for power graphs of all of the above classes of
groups. Orders of dicyclic groups with Laplacian integral
power graphs are determined. Moreover, it is proved that
the notion of equality of the vertex connectivity and the
algebraic connectivity and the notion of Laplacian integral
are equivalent for power graphs of dicyclic groups. All pos-
sible values of Laplacian eigenvalues are obtained for power
graphs of finite p-groups and hence it is proved that power
graphs of finite p-groups are Laplacian integral.

In the following theorem, the authors gave an expression
for Laplacian characteristic polynomial of PðZnÞ in terms of
the characteristic polynomial of L0, g1 , g2 ���, g/ðnÞ ðPðZnÞÞ, where
g iði ¼ 1, 2, :::,/ðnÞÞ are the generators of Zn:

Theorem 9.12. [22, Theorem 2.2] For each positive integer
n � 2, let g iði ¼ 1, 2, :::,/ðnÞÞ be the generators of Zn. Then

HðPðZnÞ, xÞ ¼ xðx� nÞ/ðnÞþ1

ðx� /ðnÞ � 1ÞHðL0, g 1, g 2, :::, g/ðnÞ ðPðZnÞ, xÞ:

Corollary 9.13. [22, Corollary 2.3] If n is a prime, then the
Laplacian spectrum of PðZnÞ is given by

0 n
1 n� 1

� �
:

Corollary 9.14. [22, Corollary 2.4] For each non-prime posi-
tive integer n> 3, the multiplicity of n as a Laplacian eigen-
values of PðZnÞ is at least /ðnÞ þ 1:

Theorem 9.15. [22, Theorem 2.5] For n ¼ p1p2, where p1 and
p2 are distinct primes, the Laplacian spectrum of PðZnÞ is

0 /ðnÞ þ 1 n� p1 þ 1 n� p2 þ 1 n
1 1 p2 � 2 p1 � 2 /ðnÞ þ 1

� �
:

Corollary 9.16. [22, Corollary 2.6] For any two distinct
primes p1 and p2, the algebraic connectivity of PðZp1p2Þ
is /ðp1p2Þ þ 1:

The following result is a consequence of Theorem 5.2 in
which a sharp upper bound of the algebraic connectivity
is given.

Corollary 9.17. [22, Corollary 2.8] For n ¼ pa11 p
a2
2 , where p1

and p2 are distinct primes and a1, a2 2 N, the algebraic con-
nectivity kn�1ðPðZnÞÞ � /ðnÞ þ pa1�1

1 pa2�1
2 , equality holds

if a1 ¼ 1 ¼ a2:

Corollary 9.18. [22, Corollary 2.10] For n ¼ p1p2p3, where
p1, p2 and p3 are distinct primes with p1 < p2 < p3, the alge-
braic connectivity kn�1ðPðZnÞÞ � /ðnÞ þ p1 þ p2 � 1:

In the following theorem, the authors gave a lower bound
for the algebraic connectivity of PðZnÞ, for arbitrary posi-
tive integer n � 2:

Theorem 9.19. [22, Theorem 2.12] For each positive integer
n � 2, the algebraic connectivity of PðZnÞ kn�1ðPðZnÞÞ

satisfies the inequality kn�1ðPðZnÞÞ � /ðnÞ þ 1. Equality
holds if n is either a prime or a product of two dis-
tinct primes.

In the following theorem Panda [68] obtained the multi-
plicity of n as a Laplacian eigenvalue of PðZnÞ for
all n 2 N:

Theorem 9.20. [68, Theorem 10] For an integer n> 1,
multiplicity of the Laplacian eigenvalue n

of PðZnÞ ¼ n� 1 if n is a prime power;
/ðnÞ þ 1 otherwise:

�
Recall that SðZnÞ denotes the set of all generators

together with the identity of the group Zn and hSðZnÞci is
the induced subgraph of the power graph of Zn: Observe
that HðhSðZnÞci, x� /ðnÞ � 1Þ equals with the characteristic
polynomial of the submatrix of LðPðZnÞÞ obtained by delet-
ing rows and columns corresponding to the elements of
SðZnÞc: Thus, using Theorem 9.12, the authors proved the
following lemma.

Lemma 9.21. [68, Lemma 7] If the integer n> 1 is not a
prime number, then

kiðPðZnÞÞ ¼
n if 1 � i � /ðnÞ þ 1;
ki�/ðnÞ�1ðhSðZnÞciÞ þ /ðnÞ þ 1 if /ðnÞ þ 2 � i � n� 1;
0 for i ¼ n:

(

Hamzeh et al. [47] denoted the set of all cyclic subgroups
of finite group G by CðGÞ ¼ fC1,C2, :::Ckg be and
DG(renamed for the sake of convenience) be the simple
undirected graph with vertex set CðGÞ in which two cyclic
subgroups are adjacent if one is contained in other. Let Kai

be the complete graph of order ai ¼ /ð Cij jÞ: If KG ¼
fKai j ai ¼ /ð Cij jÞ,Ci 2 CðGÞg, then the power graph PðGÞ
is isomorphic to DG-join of Ka1 ,Ka2 , :::,Kak , see [39]
for details.

Theorem 9.22. [47, Theorem 3.17] The Laplacian spectrum
of PðGÞ ¼ DG½Ka1 , :::,Kak � can be calculated as follows:

rLðPðGÞÞ ¼ [k
j¼1

ðNj þ aiÞaj�1
� �

[ rðCÞ,

where Nj ¼
X

Ci2NDGðCiÞ

ai if NDGðCiÞ 6¼ ;

0 otherwise:

8<:
q‘, q ¼ qq, ‘ ¼

ffiffiffiffiffiffiffiffiffi
a‘aq

p
if c‘ 	 cq or cq 	 c‘

0 otherwise:

�

and C ¼

N1 �q‘, 2 � � � �q‘, k
�q2, 1 N2 � � � �q2, k

..

. ..
. ..

. ..
.

�q‘, k �q2, k � � � Nk

0BBBB@
1CCCCA:

In Theorem 9.12, the Laplacian polynomial of PðZnÞ was
obtained. Hamzeh et al. [47] applied the Theorem 9.22 and
provided a complete description of the Laplacian spectrum
of PðZnÞ in [47, Corollary 3.18]. Also in [47], the authors
determined the Laplacian spectrum of PðZnÞ when n is a
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prime power and a product of two distinct primes using
Theorem 9.22.

In the following theorem, Laplacian characteristic polyno-
mial of PðD2nÞ is calculated in terms of Laplacian character-
istic polynomial of PðZnÞ:
Theorem 9.23. [22, Theorem 3.1] For any integer n � 3,

HðPðD2nÞ, xÞ ¼ ðx� 1Þnðx� 2nÞ
x� n

HðPðZnÞ, xÞ:

Theorem 9.24. [22, Theorem 3.2] For each non-prime posi-
tive integer n> 3, Laplacian eigenvalues of PðD2nÞ in terms
of that of PðZnÞ, are given by

kiðPðD2nÞÞ ¼

2n for i ¼ 1
kiðPðZnÞÞ ¼ n for 2 � i � /ðnÞ þ 1
kiðPðZnÞÞ for /ðnÞ þ 2 � i � n� 1
1 for n � i � 2n� 1
0 for i ¼ 2n:

8>>>><>>>>:
In [22], Laplacian spectrum of PðD2nÞ were also calcu-

lated and the authors proved that the Laplacian spectrum of
PðD2nÞ is the union of that of PðZnÞ and f2n, 1g:
Corollary 9.25. [22, Corollary 3.3] If n is a prime power,
then the Laplacian eigenvalues of PðZnÞ are 0 and n with
multiplicities 1 and n – 1, respectively, and the spectrum of
PðD2nÞ is given by

PðD2nÞ ¼ 0 1 n 2n
1 n n� 2 1

� �
:

Corollary 9.26. [22, Corollary 3.4] For each positive integer
n � 3, the algebraic connectivity of PðD2nÞ, namely,
k2n�1ðPðD2nÞÞ is equal to 1.

If n is a product of two distinct primes, then by applying
Theorems 9.15 and 9.24, we have the following result.

Corollary 9.27. [22, Corollary 3.5] If n ¼ p1p2, where p1 and
p2 are distinct primes, then the Laplacian spectrum of
PðD2nÞ is given by

PðD2nÞ ¼ 0 1 /ðnÞ þ 1 n� p1 þ 1 n� p2 þ 1 n 2n
1 n 1 p2 � 2 p1 � 2 /ðnÞ 1

� �
:

In the following lemma, the authors gave bounds for the alge-
braic connectivity of power graphPðQ4nÞ of the group Q4n:

Lemma 9.28. [68, Lemma 9] For any integer n � 2, the alge-
braic connectivity of PðQ4nÞ satisfies 1 < k4n�1ððQ4nÞÞ � 2:

The following theorem, provides the multiplicity of the
Laplacian spectral radius of PðQ4nÞ:
Theorem 9.29. [68, Theorem 12] For any integer n � 2, the
Laplacian eigenvalue 4n of PðQ4nÞ has multiplicity two if
Q4n is a generalized quaternion and one otherwise.

The following result determines when exactly a dicyclic
group is a generalized quaternion in terms of its
power graph.

Proposition 9.30. [68, Proposition 1] For any integer n � 2,
an is adjacent to all other vertices of PðQ4nÞ if and only if
Q4n is generalized quaternion.

Lemma 9.31. [68, Lemma 6] Let G be a finite group of order
n � 3. Then the algebraic connectivity of PðGÞ is 1 if and
only if its vertex connectivity is 1.

Let G be a group. For a 2 G, UðaÞ ¼ fh 2 G : a 2 hhig
and ÛðaÞ ¼ UðaÞ n ½a�: Let CðaÞ be the subgraph of PðGÞ
induced by U(a). We denote the component of P0ðGÞ con-
taining a by C(a). For the above subsets and subgraphs, the
underlying group will always be clear from context.

Remark 9.32. [68, Remark 1] For any group G and a 2 G,
the multiplicity of the Laplacian eigenvalue 0 of CðaÞ is one.

Lemma 9.33. [68, Lemma 11] Let G be a finite p-group of
order n and a 2 G be an element of order p.
Then CðaÞ ¼ CðaÞ:

For g, h 2 G, we say that ½h� is a primitive class of g if
½g� ¼ ½hp� and h 6¼ e: We denote the number of primitive
classes of any g 2 G by pðgÞ: It should be noted that if G is
finite p-group, then for any a 2 G, we cannot have pðaÞ ¼ 0
and o(a) ¼ 1 simultaneously.

Lemma 9.34. [68, Lemma 12] If G is a finite p-group and
a 2 G with pðaÞ ¼ 0, then CðaÞ ¼ Pð½a�Þ ffi K/ðoðaÞÞ.
Consequently, HðCðaÞ, xÞ ¼ xðx� /ðoðaÞÞÞ/ðoðaÞÞ�1:

The following proposition iteratively describes the struc-
ture of the power graph of a finite p-group.

Proposition 9.35. [68, Proposition 2] Let G be a finite p-
group and a 2 G. If pðaÞ > 0 and the distinct primitive
classes of a be ½h1�, ½h2�, :::, ½h/ðaÞ�, then

CðaÞ ffi K/ðoðaÞÞ � Cðh1Þ þ Cðh2Þ þ � � � þ CðhpðaÞÞ
� �

:

In particular, for a¼ e, PðGÞ ffi K1 � Cðh1Þ
� þCðh2Þ þ

� � � þCðhpðeÞÞg:

Proposition 9.36. [68, Proposition 3] Let G be a finite p-
group and a 2 G. If pðaÞ > 0 and the distinct primitive
classes of a be ½h1�, ½h2�, :::, ½h/ðaÞ�, then

HðCðaÞ, xÞ ¼ xðx� UðaÞj jÞ/ðoðaÞÞ
x� /ðoðaÞÞ

YpðaÞ
i¼1

HðCðhiÞ, x� /ðoðaÞÞ:

In particular, for a¼ e, HðPðGÞ, xÞ ¼ xðx� jG j Þ
x�1

QpðeÞ
i¼1

HðCðhiÞ, x� 1Þ:

Proposition 9.37. [68, Proposition 6] If G is a group of
order p2, then the Laplacian spectrum of PðGÞ is either

0 p2

1 p2 � 1

� �
or

0 1 p p2

1 p ðpþ 1Þðp� 2Þ 1

� �
:

Theorem 9.38. [68, Theorem 14] Let G be a finite p group
of order n � 3. Then the following statements
are equivalent.
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i. The algebraic connectivity of PðGÞ is 1.
ii. The multiplicity of the Laplacian eigenvalue n of PðGÞ

is one.
iii. G is neither cyclic nor generalized quaternion.

9.3. Equality of algebraic and vertex connectivity of
power graphs

The following lemma proved by Kirkland [54] is useful for
the characterization of graphs with equal vertex connectivity
and algebraic connectivity.

Theorem 9.39. [54, Theorem 2.1] Let C be a non-complete
and connected graph on n vertices. Then jðCÞ ¼ kn�1ðCÞ if
and only if it can be written as C1 �C2, where C1 is discon-
nected graph on n� jðCÞ vertices and C2 is a graph on jðCÞ
vertices with kn�1ðC2Þ � 2jðCÞ � n:

In the following theorem, the authors determined all n
for which vertex and algebraic connectivity of PðZnÞ
are equal.

Theorem 9.40. [68, Theorem 11] For any integer n >
1,jðPðZnÞÞ ¼ kn�1ðPðZnÞÞ if and only if n is a product of
two distinct primes.

In the next theorem, the authors proved the equivalence
of various properties of Laplacian spectra for power graphs
of dicyclic groups.

Theorem 9.41. [68, Theorem 13] For any integer n � 2, the
following statements are equivalent:

i. The vertex connectivity and algebraic connectivity of
PðQ4nÞ are equal;

ii. The algebraic connectivity of PðQ4nÞ is 2;
iii. The algebraic connectivity of PðQ4nÞ is an integer;
iv. PðQ4nÞ is Laplacian integral;
v. Q4n is generalized quaternion.

Next theorem shows that the vertex connectivity and the
algebraic connectivity of power graphs of finite p-groups are
equal exactly when it is not cyclic.

Theorem 9.42. [68, Theorem 15] Let G be a finite p-group
of order n. Then jðPðGÞÞ ¼ kn�1ðPðGÞÞ if and only if G is
not cyclic.

Ankir Raj et al. [75] obtained results on the Laplacian
spectrum of PðZn

pmÞ:

10. Isomorphism of power graphs

In 2010, Cameron [13], proved that if undirected power
graphs of two finite groups are isomorphic, then their
directed power graphs are also isomorphic. However, it is
not true that any from one power graph to another pre-
serves the orientation of edges, and the mentioned result
fails for an infinite group. For a counter example one can
see [15,16]. In 2019, Cameron et al. [16], considered power
graphs of torsion-free groups and proved the follow-
ing theorems.

Theorem 10.1. [16, Theorem 1.2] Let H be a group with
PðHÞ isomorphic to PðZÞ. Then H is isomorphic to Z and
only isomorphism from PðZÞ to PðHÞ induces an isomorph-
ism from ~PðZÞ to ~PðHÞ:
Theorem 10.2. [16, Theorem 1.3] Let G and H be nilpotency
class 2 torsion-free groups. Then PðGÞ ffi PðHÞ implies
~PðGÞ ffi ~PðHÞ:

In [16], some examples were provided to exhibit that
even under the hypotheses of Theorems 10.1 and 10.2,
PðGÞ ffi PðHÞ need not imply G ffi H: Further examples
were also provided to show that some more hypothesis on
G is needed for the above property.

Theorem 10.3. [16, Theorem 5.4] Let G be a countable tor-
sion-free group which is not cyclic, but in which each non-
identity element lies in a unique maximal cyclic subgroup.
Let H be a group with PðHÞ ffi PðGÞ. Then
i. Each non-identity element of H lies in a unique max-

imal cyclic subgroup;
ii. ~PðHÞ ffi ~PðGÞ;
iii. Any isomorphism from PðGÞ to PðHÞ induces an iso-

morphism from ~PðGÞ to ~PðHÞ:
Moreover, all groups G satisfying the hypothesis have iso-

morphic power graphs.

Theorem 10.4. [16, Theorem 1.5] Let Q be the additive
group of rational numbers, and G ¼ Qn. Then, for a group
H, if PðGÞ ffi PðHÞ, then ~PðHÞ ffi ~PðGÞ. Moreover, if n¼ 1,
then any isomorphism from PðGÞ to PðHÞ either preserves
or reverses the orientation of edges.

In the same article [16], the authors posed the following
open problem.

Problem 10.5. [16, Problem Section 8]] If G is a torsion free
nilpotent group of class 2, and H a group with PðGÞ ffi
PðHÞ, is it true that ~PðHÞ ffi ~PðGÞ?

Zahirovi�c [81] gave an affirmative answer to this problem:

Theorem 10.6 (Theorem 21, [81]). Let G be a torsion-free
group of nilpotency class 2. Let H be a group such that
PðGÞ ffi PðHÞ. Then ~PðHÞ ffi ~PðGÞ:

Subsequently, Zahirovi�c proved a stronger result, applying
to all groups, and showing clearly the special role played by
the Pr€ufer groups Cp1:

Theorem 10.7. [82, Theorem 3.18] Let G be a group with
the following property: G has no subgroup H isomorphic to
Cp1 which has trivial intersection with any subgroup K not
contained in H. If G1 is a group with PðGÞ ffi PðG1Þ,
then ~PðGÞ ffi ~PðG1Þ:
Corollary 10.8. [82, Corollary 3.19] Any two torsion-free
groups having isomorphic power graphs have isomorphic
directed power graphs.

11. Automorphism groups of power graphs

The set of all automorphisms of a graph C forms a permuta-
tion group AutðCÞ, acting on the object set VðCÞ, called
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the automorphism group of C. One can refer to [12] for the
terminology and main results of permutation group theory.

Let A and B be permutation groups acting on object sets
X and Y respectively. Define

B o A ¼ fða, f Þ j a 2 A, f : X ! Bg, ða, f Þðx, yÞ ¼ ðax, bxyÞ
where f ðxÞ ¼ bx: B o A is the wreath product of B and A, in
its usual imprimitive action.

11.1. General remarks

The first thing one notices about automorphism groups of
power graphs is that they are extremely large, so that naive
analysis with computer algebra software runs into difficulties.
For example, the automorphism group of PðA5Þ has order

668594111536199848062615552000000:

We begin this section by exploring the reason for
this phenomenon.

There is one general fact about automorphism groups of
power graphs:

Theorem 11.1. [14, Section 10] Let G be a non-trivial group.
Then AutðPðGÞÞ has a non-trivial normal subgroup which is
a direct product of symmetric groups.

We saw this in our exploration of the Mathieu group
M11 earlier. Let N(x) be the set of neighbours of x in a
graph C. We say that two vertices x, y of C are open twins if
NðxÞ ¼ NðyÞ; closed twins if fxg [ NðxÞ ¼ fyg [ NðyÞ; and
twins if they are either open or closed twins. Then

� if x and y are twins, then the transposition (x, y), fixing
all other vertices of C, is an automorphism;

� the relation of being twins is an equivalence relation.

Hence the direct product of symmetric groups on the
twin classes is a normal subgroup of AutðCÞ:

Now the theorem above follows from the observation
that, in any non-trivial finite group G, the twin relation in
the power graph is not the relation of equality. Indeed, recall
the relation� defined by x � y if hxi ¼ hyi, see Section 5.3.
If x � y, then x and y are closed twins; so the set of genera-
tors of each cyclic subgroup is contained in a twin class,
necessarily non-trivial if the order of the elements is greater
than 2. This covers all cases except that when G is an elem-
entary abelian 2-group. But in this case, the power graph is
a star K1, 2d�1, where jG j ¼ 2d, and clearly all non-identity
elements are open twins.

In order to describe further the automorphism group of
PðGÞ, we need to be able to describe the quotient group
AutðPðGÞÞ=N, where N is the direct product of symmetric
groups on the closed twin classes in G. This problem was
addressed by Feng et al. [40]; we will state their result later
in this section. They describe the quotient as a permutation
group on the set of cyclic subgroups of G which preserves
order, inclusion and non-inclusion.

Continuing our analysis of PðA5Þ : the group A5 has 15
cyclic subgroups of order 2, 10 of order 3 and 6 of order 5.

So the subgroup N is S102 � S64, and the quotient is S15 �
S10 � S6; the product of the orders of these groups is the
number quoted earlier.

As we saw in our discussion of the Mathieu group M11,
the closed twin relation does not necessarily coincide with
the relation �, although it contains this relation. We can
analyse further. If we collapse each twin class of C to a sin-
gle vertex, we obtain a new graph D; and, if N is the direct
product of symmetric groups on the twin classes, then
AutðCÞ=N is a subgroup of AutðDÞ:

It may be that D also has twins, in which case the reduc-
tion can be repeated until no twins remain. It is easy to
show that the final result is independent of the order in
which the twin reduction is done. Of course, the final result
may be a graph with a single vertex, but it is known when
this happens:

Theorem 11.2. [14, Propositions 7.2 and 10.1]

i. A finite graph is a cograph if and only if the process of
iterated twin reduction terminates with the one-ver-
tex graph.

ii. The automorphism group of a cograph can be built from
the trivial group by the operations “direct product” and
“wreath product with a symmetric group”.

It is observed in [14] that the power graph of every finite
simple group of order less than 2500 is a cograph. But we
saw earlier that the power graph of M11 is not a cograph.

The above results give added importance to Problem 8.6:
for which finite groups G is PðGÞ a cograph?

11.2. Specific results

The first result about automorphism groups of power graphs
was obtained by Cameron and Ghosh [15], where they
proved that the only finite group whose automorphism
group is the same as that of its power graph is the Klein
four-group. Alireza et al. [4], obtained the following fact
about the automorphism group of the power graph of the
cyclic group Zn: This result can be interpreted in the light
of Theorem 11.1, since elements of the same order in a cyc-
lic group are twins (and the identity lies in the twin class of
the generators).

Theorem 11.3. [4, Theorem 8] AutðPðZnÞÞ has a subgroup
isomorphic to

S/ðnÞþ1 �
Y

d j n, d 6¼1, n
S/ðdÞ:

Corollary 11.4. [4, Corollary 4] Let n be a natural number
such that for every a 6¼ b 2 Zn, degðaÞ 6¼ degðbÞ whenever
oðaÞ 6¼ oðbÞ. Then

AutðPðZnÞÞ ffi S/ðnÞþ1 �
Y

d j n, d 6¼1, n
S/ðdÞ:

In the same article, the authors stated the follow-
ing conjecture.
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Conjecture 11.5. [4, Conjecture 1] For every natural num-
ber n,

AutðPðZnÞÞ ffi S/ðnÞþ1 �
Y

d j n, d 6¼1, n
S/ðdÞ:

Mehranian et al. [62] settled this conjecture in 2016 and
proved the following result.

Theorem 11.6. [62, Theorem 2.3] For any natural
number n,

AutðPðZnÞÞ¼
Sn if n is aprime power;
S/ðnÞþ1�

Y
d jn,d 6¼1,n

S/ðdÞ otherwise:

8<:
Corollary 11.7. [62, Corollary 2.4] The automorphism group
of the power graph PðD2nÞ is given below:

AutðPðD2nÞÞ ¼
Sn�1 � Sn if n is a prime power;
Sn �

Y
d j n

S/ðdÞ otherwise:

8<:
In [40], same result is proved independently and they

also asserted the following result on the automorphism
group of the directed power graph ~PðD2nÞ: For n � 3,

Autð~PðD2nÞÞ ffi
Y
d j n

S/ðdÞ � Sn:

Moreover, in [62], the automorphism group of
PðZp1p2Þ,PðZp1p2p3Þ and PðZp21p

2
2
Þ are computed as follows.

i. AutðPðZp1p2ÞÞ ffi S/ðp1p2Þþ1 � Sp1�1 � Sp2�1:
ii. AutðPðZp1p2p3ÞÞ ffi S/ðp1p2p3Þ � Sp1�1 � Sp2�1 � Sp3�1 �

S/ðp1p2Þ � S/ðp1p3Þ � S/ðp2p3Þ:
iii. AutðPðZp21p

2
2
ÞÞ ffi S/ðp21p22Þþ1 � Sp1�1 � S/ðp21Þ � Sp2�1�

S/ðp22Þ � S/ðp1p2Þ � S/ðp1p22Þ � S/ðp21p2Þ:

Finally, Z. Mehranian [62] posed the following
open problem.

Problem 11.8. [62, Question 3.1]What is the automorphism
group of PðGÞ, where G is a sporadic group?

Subsequently A.R. Ashrafi et al. [6] computed the auto-
morphism group of certain finite groups listed below along
with their generating relations.

Q4n ¼ ha, b j a2n ¼ e, an ¼ b2, ab ¼ ba�1i;
SD8n ¼ ha, b j a4n ¼ b2 ¼ e, bab ¼ a2n�1i;
V8n ¼ ha, b j a2n ¼ b4 ¼ e, aba ¼ b�1, ab�1a ¼ bi:

Note that the paper also describes a group U6n of order
6n which, like V8n of order 8n, taken from an exercise on
page 178 of the book [50]. However, the relations for U6n

are stated incorrectly in [6]. The correct presentation is

U6n ¼ ha, b j a2n ¼ b3 ¼ e, a�1ba ¼ b�1i:
It seems likely that this is just a transcription error, and

that the correct group is analysed in the paper; but since
detailed proof is not included, we have not been able to
check this.

The results concerning the automorphism group of above
finite groups are listed below:

Theorem 11.9. [6, Theorem 1.1]

i. For n � 3,

AutðPðQ4nÞÞ¼
S2n�2�S2�ðS2 oSnÞ if n is a power of 2;Y
d j2n

S/ðdÞ�ðS2 oSnÞ otherwise:

(
ii. For n � 2,

AutðPðSD8nÞÞ¼
S4n�2�S2n�ðS2 oSnÞ if n is a power of 2;Y
dj4n

S/ðdÞ�S2n�ðS2oSnÞotherwise:
(

is an integer such that 3-t. Then

iii. For n ¼ 2kt, with a nonnegative integer k and some
positive odd integer t,

AutðPðV8nÞÞ

¼

S2n � S2 o Sn �
Y

d j 2n, d-n
S/ðdÞ o S2 �

Y
d j 2n

S/ðdÞ k ¼ 0;

S2nþ1 � S2 o Sn �
Yk�1

‘¼0

S22‘ � S2k o S2 t ¼ 1, k � 1;

S2n � S2 o Sn �
Y
d j t

S4/ðdÞ �
Yk
s¼2

Y
d j 2st, d-2s�1t

S2/ðdÞ�Y
d j 2kþ1t, d-2kt

S/ðdÞ o S2, t > 1, k � 1:

8>>>>>>>>>><>>>>>>>>>>:
Ashrafi et al. [6] also compute the automorphism groups of
the power graphs of the sporadic simple groups M11 and J1.
However, we warn readers that their results are not correct.
We have given a correct analysis for M11 in Section 2 of the
present paper. Theorem 11.9(i) was also proved by M. Feng
et al. [40]. Also they asserted that the following result for
the automorphism group of directed power graph ~PðQ4nÞ:

For n � 3,

Autð~PðQ4nÞÞ ffi
Y
d j 2n

S/ðdÞ � S2 o Sn:

We now turn to the general analysis of the automor-
phism group of the power graph by Feng et al. [40].

As mentioned earlier, let CðGÞ ¼ fC1, :::,Ckg be the set
of all cyclic subgroups of a group G. For C 2 CðGÞ, let S(C)
be the set of all generators of C and SðCiÞ ¼
fSðCiÞ1, SðCiÞ2, :::,SðCiÞkg:

Define I(G) as the set of permutations r on CðGÞ pre-
serving order, inclusion and non-inclusion, i:e:, Cr

i



 

 ¼ Cij j
for each i 2 f1, :::, kg and Ci 
 Cj if and only if Cr

i 
 Cr
j :

Note that I(G) is a permutation group on CðGÞ: This group
induces the faithful action on the set G:

G� IðGÞ ! G, ðSðCiÞj, rÞ ! ðSðCiÞrÞj: (1)

We remark that it suffices to consider the action of I(G) on
the set of maximal cyclic subgroups of G, since a cyclic group
contains at most one cyclic subgroup of each possible order.

For X 	 G, let SX denote the symmetric group on X:
Since G is the disjoint union of SðC1Þ, :::, SðCkÞ, we get the
faithful group action on G:
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G�
Yk
i¼1

SSðCiÞ ! G, ðSðCiÞj, ðn1, :::, nkÞ ! ðSðCiÞjÞni :

(2)

With the above notations, we have the following theorem
proved by M. Feng et al. [40].

Theorem 11.10. [40, Theorem 2.1] Let G be a finite group.
Then

Autð~PðGÞÞ ¼
Yk
i¼1

SSðCiÞ

 !
3 IðGÞ,

where I(G) and
Qk

i¼1 SSðCiÞ act on G as in (1) and (2),
respectively.

In the power graph PðGÞ, for a, b 2 G, define a � b if
N½a� ¼ N½b�: Observe that � is an equivalence relation. Let
cl(a) denote the equivalence class containing a. Write
!ðGÞ ¼ fclðaÞ j a 2 Gg ¼ fclðu1Þ, :::, clðu‘Þg: Since G is the
disjoint union of clðu1Þ, :::, clðu‘Þ, the following is a faithful
group action on the set G:

G�
Y‘
i¼1

Sclðu1Þ!G,ða,ðs1,s2,:::,s‘ÞÞ!asi , where a2clðuiÞ:

(3)

Similar to the last theorem, we have the following for the
automorphism group of undirected power graph.

Theorem 11.11. [40, Theorem 2.2] Let G be a finite group.
Then

AutðPðGÞÞ ¼
Y‘
i¼1

Sui

 !
3 IðGÞ,

where I(G) and
Q‘

i¼1 SclðuiÞ act on G as in (1) and (3)
respectively.

Our observation that it suffices to consider the action of
I(G) on maximal cyclic subgroups now shows that Theorem
11.6 can be derived from this result. For, if G is cyclic, then
it has onlly one maximal cyclic subgroup, and so I(G) is the
trivial group; thus, AutðGÞ is just the direct product of cyclic
groups on the closed twin equivalence classes.

12. Characterization of finite groups through
power graphs

In this section, we present those results by which, one can
characterize finite groups in terms of their power graphs
and vice versa. Tamizh Chelvam et al. [79] proved the fol-
lowing characterizations for the power graph of an arbitrary
finite group.

Theorem 12.1. [79, Theorem 4] Let G be a finite group with
n elements. Then the following are equivalent:

i. PðGÞ ¼ K1, n�1;
ii. PðGÞ is a tree;
iii. Every element of G is its own inverse.

Theorem 12.2. [79, Theorem 5] Let G be a finite group of
order p1p2, where p1 < p2 are primes. Then

i. G is cyclic if and only if PðGÞ ¼ ðKp1�1 [
Kp2�1Þ þK/ðp1p2Þþ1;

ii. G is non-cyclic if and only if PðGÞ ¼ K1

þðp2Kp1�1 [Kp2�1Þ:
A. Doostabadi et al. [36] characterized all finite groups G

whose power graphs are claw-free, K1, 4 free or C4 free and
they are given below.

Theorem 12.3. [36, Theorem 2.2] If G is a finite group, then
PðGÞ is claw free if and only if G is a cyclic group of order
pa11 p

a2
2 where fa1, a2g \ f0, 1g 6¼ ;:

Theorem 12.4. [36, Theorem 2.6] If G is a finite group, then
PðGÞ is K1, 4-free if and only if G is isomorphic to one of the
groups Q8,Z2 � Z2,Zpk ,Zp1p2p3 or Zpa11 pa22

, where fa1, a2g \
f0, 1, 2g 6¼ ; and p1, p2, p3 are distinct primes.

Lemma 12.5. [36, Lemma 3.1] Let G be a finite group. Then
PðGÞ has a induced 4-cycle if and only if there exist non-triv-
ial elements a, b in G such that hai�hbi, hbi�hai and hai \
hbi is not a prime power group.

Corollary 12.6. [36, Corollary 3.2] Let G be a finite group
whose non-trivial elements have prime power orders. Then
PðGÞ is C4-free.

Theorem 12.7. [36, Theorem 3.5] Let G be a finite nilpotent
group. Then PðGÞ is C4-free if and only if G is isomorphic
either of the following:

i. Zp1p2p3 ;
ii. P�Q, Hp1ðPÞ is cyclic and exp ðQÞ ¼ p2, in which P is

a p1 group and Q is a p2 group;
iii. p1 group,

where p1, p2, p3 are distinct primes.

In the same paper, the authors proved further results for
groups G where the center Z(G) is divisible by at least
two primes.

Theorem 12.8. [36, Theorem 3.6] Let G be a group with C4-
free power graph. If Z(G) is not a p-group, then

i. G ffi Zp1p2p3 ;
ii. G ¼ P � Q or G ¼ ðP � QÞ3Zp2 , where P is cyclic,

exp ðQÞ ¼ p2 and CGðPÞ ¼ P � Q;
iii. G ¼ D2n 3Q, where exp ðQÞ ¼ p2;
iv. G ¼ Zpn1 3Q, where exp ðQÞ ¼ p2;
v. G ¼ Zp1p2 � ðZp3 3 Zp1Þ, where CGðSp3ðGÞÞ ffi Zp1p2p3 ;
vi. G ¼ Zp1p2 � ðZp3 3 Zp1p2Þ, where CGðSp3ðGÞÞ ffi Zp1p2p3 :

Theorem 12.9. [36, Theorem 3.7] Let G be a finite group
with C4-free power graph, which is not prime power group. If
Z(G) is a p-group which is not an elementary abelian

AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS 23



p-group, then Z(G) is cyclic and exp ðSp2ðGÞÞ ¼ p2 for every
p1 6¼ p2. Also, for every p2-element a,

i. pðCGðaÞÞ ¼ fp1, p2g;
ii. Sp1ðCGðaÞÞ is a normal cyclic subgroup of CGðaÞ;
iii. CGðaÞ ¼ hai � Sp2ðCGðaÞÞ, or CGðaÞ ¼ ðhbi � Sp2ðCCGðaÞ

ðbÞÞÞ3 Zp2 if p1 is odd prime, where hbi ¼ Sp1ðCGðaÞÞ
and pðGÞ is the set of all prime divisors of o(G).

Theorem 12.10. [36, Theorem 3.8] Let G be a finite group
with C4-free power graph, which is not prime power group. If
Z(G) is an elementary abelian p1-group of order > p1 then
for every p2-element bðp1 6¼ p2Þ, we have pðCGðxÞÞ ¼ fp1, p2g
and if oðaÞ > p2, then

i. exp ðSp1ðCGðaÞÞÞ ¼ p1 and Sp2ðCGðaÞÞ is a normal cyclic
subgroup of CGðaÞ;

ii. CGðaÞ ¼ Sp1ðCGðaÞÞ � Sp2ðCGðaÞÞ or ðSp1ðCCGðaÞðbÞÞ
�Sp2ðCGðaÞÞÞ 3 Zp1 ,

iii. where hbi ¼ sp2ðCGðaÞÞ:
In the following, we present some graph theoretical char-

acterizations of the power graph.

Lemma 12.11. [74, Lemmas 1.1–1.3]

i. PðGÞ is Eulerian if and only if o(G) is odd;
ii. PðGÞ for a finite group G is tree if and only if G is an

elementary abelian 2-group;
iii. gðPðGÞÞ ¼ 3 if and only if G is not an elementary abel-

ian 2-group. Moreover, if PðGÞ is 2-connected
then gðP0ðGÞÞ ¼ 3:

Mirzargar et al. [64] conjectured that the power graph
PðZnÞ has the maximum number of edges among all power
graphs of finite groups of order n. In the following, Pourgholi
et al. [74] proved this conjecture for finite simple groups.

Theorem 12.12. [74, Theorem 2.3] If G is a finite simple
group of order n, then EðPðGÞÞj j � EðPðZnÞÞj j:

Amiri et al. [5, Theorem 2] proved that among all finite
groups of any given order, the cyclic group of that order has
the maximum number of edges in its power graph.

Now, we present a characterization of finite groups whose
power graph is a union of complete subgraphs which share
the identity element of G.

Theorem 12.13. [74, Theorem 2.4] Let G be a finite group
with oðGÞ ¼ pa. Then PðGÞ is a union of complete subgraphs
which share the identity element of G if and only if G is iso-
morphic to a cyclic group, p-group of exponent p or a dihe-
dral group.

Theorem 12.14. [69, Theorem 1.1] A finite group G is non-
cyclic group of prime exponent if and only if PðGÞ is non-
complete and minimally edge-connected.

Theorem 12.15. [69, Theorem 1.2] A finite group is an
elementary abelian 2-group of rank at least 2 if and only if
PðGÞ is non-complete and minimally vertex connected.

13. Properties of power graphs

In this section, we collect all the miscellaneous properties of
power graphs.

13.1. Relationship between power graph and
Cayley graph

In 2015, Chattopadhyay [23], obtained some relationship
between the power graph and the Cayley graph of a finite
cyclic group motivated by an open problem given in survey
[2]. For a group G and a subset S of G not containing the
identity element e and satisfying S�1 ¼ fa�1 : a 2 Sg ¼ S,
the Cayley graph of G with edge set S, Cay(G, S) is an
undirected graph with vertex set G and two vertices a, b 2 G
are adjacent in Cay(G, S) if and only if ab�1 2 S: Let Un ¼
fa 2 Zn : gcdða, nÞ ¼ 1g: In this subsection, we denote the
vertex deleted subgraph PðZnÞ n SðZnÞ of PðZnÞ by PSðZnÞ
and similarly CaySðZn,UnÞ ¼ CayðZn,UnÞ n SðZnÞ: Also, for
any graph C, C is the complement of C.

Theorem 13.1. [23, Theorem 2.1] If n ¼ pa11 p
a2
2 , where p1, p2

are distinct primes and a1, a2 are positive integer, then

PSðZnÞ is a spanning graph of CaySðZn,UnÞ. These two
graphs are equal if and only if a1 ¼ 1 ¼ a2:

As mentioned in [48], Zn ffi
Qm

i¼1 Zp
ai
i

as group (under
addition) through the isomorphism g : Zn !

Qm
i¼1 Zp

ai
i

defined by gð½a�nÞ ¼ ð½a�pa11 , :::, ½a�pamm Þ: Note that the map-
ping g ¼ f�1 :

Qm
i¼1 Zp

ai
i
! Zn is also a group isomorphism.

Theorem 13.2. [23, Theorem 2.2] Let n ¼ pa11 � � � pamm , Ti ¼
Zp

ai
i
n f0g, i ¼ 1, 2, :::,m and T be the image of

Qm
i¼1 Ti under

the group isomorphism f :
Qm

i¼1 Zp
ai
i
! Zn. Then CayðZn,TÞ

is isomorphic to PðZpa11
Þ �PðZpa22

Þ � � � � �PðZpamm Þ:
In the rest of the theorems of this section, the edge set

appear in CayðZn,TÞ will be that the subset of Zn as proved
in Theorem 13.2.
Theorem 13.3. [23, Theorem 3.1] For the power graph
PðZp1p2Þ, where p1, p2 are distinct primes, we have
the following.
i. l2ðPðZp1p2ÞÞ � p1þp2

2 � 2 and ljðPðZp1p2ÞÞ ¼ �1, j ¼
3, 4, :::, p1p2 � 1;

ii. � p1þp2
2 � 2 � lp1p2ðPðZp1p2ÞÞ � �1;

iii. ENðPðZp1p2ÞÞ � 2p1p2 þ p1 þ p2 � 6 where ENðPðGÞÞ
denotes the energy of the power graph PðGÞ:

It is known [55] that, for any two graphs C1 and
C2,ENðC1 � C2Þ ¼ ENðC1ÞENðC2Þ: From ENðPðZp

ai
i
ÞÞ ¼

2ðpaii � 1Þ, 1 � i � m, one can apply Theorem 13.2, to find
the energy of CayðZn,TÞ:
Theorem 13.4. [23, Theorem 3.2] Let n ¼ pa11 � � � pamm be the
prime factorization of natural number n> 1. Then

ENðCayðZn,TÞÞ ¼ ENðPðZp
a1
1
ÞÞENðPðZp

a2
2
ÞÞ � � �ENðPðZpamm ÞÞ

¼ 2m
Ym
i¼1

ðpaii � 1Þ:

In the following few results, the authors of same article
compared the energy of the power graph and the
Cayley graph.
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Corollary 13.5. [23, Corollaries 3.1 and 3.2]

i. For n ¼ p1p2, where p1, p2 are distinct odd primes,
ENðPðZnÞÞ � ENðCayðZn,TÞÞ;

ii. For n ¼ 2p, where p is an odd prime,
ENðPðZnÞÞ > ENðCayðZn,TÞÞ:

Theorem 13.6. [23, Theorem 3.3] For any natural number
n> 1,

ENðCayðZnÞ,TÞ � ENðCayðZn,UnÞÞ:

Corollary 13.7. [23, Corollary 3.3] For n ¼ 2p, where p is
an odd prime,

ENðPðZnÞÞ > ENðCayðZn,UnÞÞ:

13.2. Rainbow connection number of the power graph

A path P in a graph C is called rainbow, if any two edges in P are
of different colors. If C has a rainbow path from a to b for each
pair of vertices a and b, then C is called a rainbow connected
under the coloring f, and f is called a rainbow k-coloring of C.

Ma et al. [58] studied the rainbow connection number of
the power graph PðGÞ of a finite group G. In fact, they deter-
mined the rainbow connection number of PðGÞ if G has max-
imal involutions or G is nilpotent, and proved that the rainbow
connection number of PðGÞ is at most three if G has no max-
imal involutions. The rainbow connection numbers of power
graphs of some non-nilpotent groups are also determined. The
results in this connection are given below.

Theorem 13.8. [58, Theorem 2.1] Let G be a finite group
with oðGÞ � 3. Then

rcðPðGÞÞ ¼ 3, if 1 � MGj j � 2;
MGj j, if MGj j � 3:

�
where MG is the set of all maximal involutions of G.

Theorem 13.9. [58, Theorem 3.1] Let G be a finite group
with no maximal involutions.

i. If G is cylic, then rcðPðGÞÞ ¼ 1, if jG j is a prime power;
2, otherwise:

n
ii. If G is non-cyclic, then rcðPðGÞÞ ¼ 2 or 3.

Proposition 13.10. [58, Proposition 3.2] If G is a finite
group of order pa1p2, where p1 < p2 are primes such that the
following conditions hold:

i. Each Sylow p1-subgroup is cyclic and the Sylow p2-sub-
group is unique;

ii. The intersection of all Sylow p1-subgroups is of
order pa�1

1 ;
iii. pa�1

1 � p2:

Then rcðPðGÞÞ ¼ 2:

Proposition 13.11. [58, Proposition 3.3] Let G be a non-cyc-
lic finite group with no maximal involutions. If G possess

more than one subgroup of order p, where p is a prime div-
isor of o(G), then rcðPðGÞÞ ¼ 3:

Corollary 13.12. [58, Corollary 3.4] If G is a non-cyclic nil-
potent group with no maximal involutions. Then

rcðPðGÞÞ ¼ 2, if G ffi Q8 � Zn for some odd n;
3, otherwise:

�

13.3. Vertex degrees of power graphs

In 2015, Alireza et al. [4] computed the degree of all vertices
in PðZnÞ and the same is given below.

Theorem 13.13. [4, Theorem 9] The degree of an arbitrary
vertex a in PðZnÞ is
degðaÞ¼d�1þ

X
rdjn,r�2

/ðrdÞ,whered is the order of a in Zn:

Sehgal and Singh [77] gave a precise formula to count
the degree of a vertex in the directed power graphs of finite
abelian groups of prime power order. We shall write
dþG ðaÞ, d�G ðaÞ and d6G ðaÞ respectively to denote out-degree of
a, in-degree of a and the number of bidirectional edges on a
in the digraph ~PðGÞ:

By the definition of directed power graph ~PðGÞ, it is
very easy to check that dþG ðgÞ ¼ j hgi j � 1 ¼ oðgÞ � 1 and
d6G ðgÞ ¼ /ðoðgÞÞ � 1: We thus precisely obtain dGðgÞ ¼
oðgÞ � /ðoðgÞÞ þ d�G ðgÞ: To determine the degree dGðgÞ of a
non-identity group element g, it is therefore sufficient to
count the in-degree d�G ðgÞ: However, it is easy see that
d�G ðgÞ ¼ j fh 2 G : g 6¼ h and g 2 hhig j : We start our
investigation on the in-degree d�G ðgÞ of a non-identity group
element g of G.

Theorem 13.14. [77, Theorem 3.2] Let G ¼ ha1i �
ha2i � � � � hani be an abelian p-group where arj j ¼ pmr and
1 � m1 � m2 � � � � mn. If a ¼Qn

a¼1 a
ia
a is a nonidentity

element of G and oðaiaa Þ ¼ pta , then

d�G ðaÞ ¼ �1þ /ðoðaÞÞ
Yminfmkþ1�tkþ1, :::,mn�tng

b¼0

p

Pn
j¼1

minfmj , bg
� �

:

In the following, the authors gave a new proof to show
that the power graph of a cyclic group of prime-power order
is complete, using degree formula.

Corollary 13.15. [77, Corollary 3.3] If G is a cyclic p-group,
then the power graph PðGÞ is complete.

If G is the internal direct product of its normal sub-
groups with the condition that their orders are mutually
relatively prime, then we have the following theorem.

Theorem 13.16. [77, Theorem 3.5] Let G be a finite group
and let H1,H2, :::,Hn be normal subgroups of G such that
ðoðHiÞ, oðHjÞÞ ¼ 1 for i 6¼ j. If G is internal direct product of
subgroups H1,H2, :::,Hn, then, for an element a ¼ a1a2 � � � an
of the group G, with ai 2 Hi we have the following:
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i. dþG ðaÞ ¼ ðQn
i¼1ðdþHi

ðaiÞ þ 1ÞÞ � 1;

ii. d�G ðaÞ ¼ ðQn
i¼1ðd�Hi

ðaiÞ þ 1ÞÞ � 1;

iii. d6G ðaÞ ¼ ðQn
i¼1ðd6Hi

ðaiÞ þ 1ÞÞ � 1:

Using Theorem 13.16, the authors determined the degree
of a vertex in the power graph of a finite abelian group.

Theorem 13.17. [77, Theorem 3.6] Let G ¼ Gðp1Þ � � � � �
GðpmÞ be an abelian group of order n ¼ pa11 p

a2
2 � � � pamm , where

each GðpiÞ is a normal subgroup of G of order pai Then, for a
non-identity element a ¼ a1a2 � � � am of the abelian group G
with ai 2 GðpiÞ, we have the following:

1. dþG ðaÞ ¼ ðQm
i¼1ðdþGðpiÞðaiÞ þ 1ÞÞ � 1;

2. d�G ðaÞ ¼ ðQm
i¼1ðd�GðpiÞðaiÞ þ 1ÞÞ � 1;

3. d6G ðaÞ ¼ ðQm
i¼1ðd6GðpiÞðaiÞ þ 1ÞÞ � 1:

13.4. Cycles in power graphs

In 2009, Chakrabarty et al. [20], studied about the
Hamiltonian nature of the power graph. In fact they proved
that, for any positive integer n � 3,PðZnÞ is Hamiltonian
and raised the following conjecture.

Conjecture 13.18. [20, Conjecture, Section 4] The power
graph PðUnÞ is Hamiltonian except for the values n ¼
2ap1p2 � � � pm, n � 3, where p1, p2, :::, pm are Fermat primes
and a,m are non-negative integers, a � 2 for m¼ 0, 1 and
m � 2 for a ¼ 0, 1

Following Chakrabarty et al., Pourgholi et al. [74] pro-
vided counter examples and disproved the above conjecture.

Example 13.19. [74, Counterexamples 2.1–2.3]

i. If n ¼ 2a � 32, a � 3, then PðUnÞ does not have a
Hamiltonian cycle;

ii. If n ¼ 2a � 7, a � 2, then PðUnÞ does not have a
Hamiltonian cycle;

iii. If n ¼ 22 � 32 � p, where p is a Fermat prime, then
PðUnÞ does not have a Hamiltonian cycle.

Corollary 13.20. [74, Corollary 2.1] Suppose G is a finite p-
group. Then PðGÞ has a Hamiltonian cycle if and only if
oðGÞ 6¼ 2 and G is cyclic.

Corollary 13.21. [74, Corollary 2.2] If p is an odd prime,
then the power graph of a p-group is 2-connected if and only
if it is Hamiltonian.

Mukherjee [67], described a new structural description of
power graphs through vertex weighted directed graphs.
Actually Mukherjee [67] developed the theory of weighted
Hamiltonian paths in a weighted graph and solved the
Hamiltonian question completely for the power graphs of a
class of finite abelian groups, namely Zn

p1 � Zm
p2 :

Theorem 13.22. [67, Theorem 4.12] The power graph
PðZn

p1 � Zm
p2Þ, where p1, p2 are distinct primes, is

Hamiltonian if and only if mðp2 � 1Þ � n� 1 and nðp1 �
1Þ � m� 1 and mðp2 � 1Þ þ nðp1 � 1Þ � mn� 1:

In [57], the authors classified finite groups whose power
graphs are unicyclic.

Proposition 13.23. [57, Proposition 4.1] Let G be a finite
group. Then PðGÞ has no cycles if and only if G is an elem-
entary abelian 2-group.

Lemma 13.24. [57, Lemma 4.3] There exist no EPO-groups
G of order 2a3 for some positive integer a � 3 such that
PðGÞ is unicyclic.

Theorem 13.25. [57, Theorem 4.4] If G is a finite group,
then PðGÞ is unicyclic if and only if G ffi S3 or Z3:

13.5. Product of power graphs

In this subsection, we consider products of power graphs.
Let Ci ¼ ðVi,EiÞ for i¼ 1, 2 be two graphs. Then the product
graph is defined as the graph C1 £ C2 ¼ ðV1 � V2, EÞ,
where ðða1, b1Þ, ða2, b2ÞÞ 2 E if one of the following three
conditions is true:

� a1 ¼ a2 and ðb1, b2Þ 2 E2;
� ða1, a2Þ 2 E1 and b1 ¼ b2;
� ða1, a2Þ 2 E1 and ðb1, b2Þ 2 E2:

This graph is referred to in the literature as the strong
product. There are many types of products of graphs that
are defined between any two graphs. In particular, we will
refer the following two products in this paper. See [45, pp.
37, 74, and 49] for further details.

Let C1 and C2 be two graphs.

i. The direct product C1 � C2 (also called the categorical
product) of C1 and C2 is the simple graph with vertex
set VðC1 � C2Þ ¼ VðC1Þ � VðC2Þ, in which ða1, b1Þ is
adjacent to ða2, b2Þ if and only if a1 is adjacent to a2 in
C1 and b1 is adjacent to b2 in C2:

ii. The Cartesian product C1 wC2 of C1 and C2 is the sim-
ple graph whose vertex set is VðC1 wC2Þ ¼ VðC1Þ �
VðC2Þ, in which ða1, b1Þ is adjacent to ða2, b2Þ if and
only if a1 ¼ a2 and b1 is adjacent to b2 or a1 is adjacent
to a2 and b1 ¼ b2:

The notation for each of these three products is supposed
to suggest the corresponding product of two copies of K2;
see Figure 2.

Mukherjee [67] defined the abstract power graph and
product of abstract power graphs and called them “strong
product”. A graph C ¼ ðV, EÞ along with a map f : E !

Figure 2. Products of graphs and groups.
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PðNÞ, where PðNÞ is the power set of N, is called an
abstract power graph if there exists a group H such that C ¼
PðHÞ and f ðg, hÞ ¼ fk 2 N : gk ¼ hg: Let C1 and C2 be two
abstract power graphs with corresponding edge functions f1
and f2: Then the strong product C1 � C2 ¼ ðC1 � C2, E1 �
E2Þ where ðða1, b1Þ, ða2, b2ÞÞ is an edge in E1 � E2
if f1ða1, b1Þ \ f2ða2, b2Þ 6¼ ;:

We note the risk of terminological confusion here:
Mukherjee’s strong product is defined in a different cat-
egory, namely graphs with edges labelled by sets of natural
numbers. We use the symbol � for this product.

Theorem 13.26. [67, Theorem 2.13] For any finite groups
G1, G2, PðG1 � G2Þ ¼ PðG1Þ �PðG2Þ:
Theorem 13.27. [67, Theorem 2.14] Let G1, G2 be two
groups of co-prime orders. Then PðG1Þ � PðG2Þ ¼
PðG1Þ £ PðG2Þ:

Bhuniya et al. [7] proved that the power graph of the dir-
ect product of two groups is not in general isomorphic to
the direct, Cartesian or strong product of the power graphs
of the factors. Also, they introduced a new product of
graphs which they called the generalized product; they
proved that power graph of the direct product of groups is
isomorphic to the generalized product of their
power graphs.

Proposition 13.28. [7, Proposition 2.2] Let G1 and G2 be
two non-trivial finite groups. Then PðG1 � G2Þ is not iso-
morphic to PðG1Þ w PðG2Þ:

In the following example, Bhuniya et al. [7], proved that
PðG1 � G2Þ is neither isomorphic to the direct product nor
to the strong product of PðG1Þ and PðG2Þ:
Example 13.29. Consider G1 ¼ G2 ¼ Z2: Then PðZ2 � Z2Þ
has precisely three edges, each edge emanating from the
identity of Z2 � Z2, whereas PðZ2Þ £ PðZ2Þ is the com-
plete graph K4 and PðZ2Þ �PðZ2Þ is a graph with precisely
two edges. In Figure 2, we show this: note that PðZ2Þ is the
edge K2, while Z2 � Z2 is the Klein group V4.

13.6. Some more properties of power graphs

In this section, we collect some more important properties
of power graphs.

Theorem 13.30. [1, Theorem 17] IfPðGÞ is a triangle-free graph,
then G is an elementary abelian 2-group, andPðGÞ is a star.
Theorem 13.31. [1, Theorem 18] Let G be a group. Then
following are equivalent.

i. PðGÞ is connected;
ii. G is periodic;
iii. cðPðGÞÞ ¼ 1;
iv. diamðPðGÞÞ � 2:

Theorem 13.32. [1, Theorem 19] If degðaÞ < 1 for every
a 2 G, then G is a finite group.

The next theorem is the analogue for infinite groups of
Theorem 6.1.

Theorem 13.33. [17, Theorem 10] Let G be an infinite
group. Suppose that x 2 G has the property that for all
y 2 G, either x is a power of y or vice versa. Assume that
x 6¼ e. Then the following hold:

i. If G is not a torsion group, then G is infinite cyclic and
x is a generator;

ii. If G is locally finite, then either G ¼ Cp1 for some prime
p, and x is arbitrary; or G ¼ Q21 and x has order 2.

Theorem 13.34. [75, Theorem 3.9] Let a ¼ ða1, :::, ar, arþ1,
:::, asÞ be a vertex in the graph PðZr

2 � Zs
4Þ such that o(a) ¼ 2.

i. If ai 6¼ 0 for some ið1 � i � rÞ, then degðaÞ ¼ 1;
ii. If ai ¼ 0 for all ið1 � i � rÞ, then degðaÞ ¼ 2rþs þ 1:

Proposition 13.35. [75, Proposition 3.10] The total number
of elements of order two in the group Zr

2 � Zs
4 having degree 1

and degree 2rþsþ1 in PðZr
2 � Zs

4Þ are 2sð2r � 1Þ and ð2s � 1Þ,
respectively.

As a direct consequence of Theorem 13.34 and
Proposition 13.35, we have the following immediate theorem
that describes the power graph PðZr

2 � Zs
4Þ:

Theorem 13.36. [75, Theorem 3.11] PðZr
2 �

Zs
4 Þ ffi K1 þ ð2sð2r � 1ÞK1 [ ð2s � 1ÞðK1 þ 2rþs�1K2ÞÞ:

Theorem 13.37. [4, Theorem 4] Let G be a finite group. The
proper power graph P0ðGÞ is regular if and only if G is iso-
morphic to the cyclic p-group or exp ðGÞ ¼ p, where p
is prime.

Theorem 13.38. [65, Theorem 4.2] Let G be a non-trivial
finite group. Then P0ðGÞ is strongly regular if and only if G
is a p-group of order pa for which exp ðGÞ ¼ p or pa for
some prime p and natural number a:

In 2013, Tamizh Chelvam et al. [79] proved some results
on the power graphs and they are listed below.

Theorem 13.39. [79, Propositions 1 and 2, Theorems 3, 6 & 11]

i. Let G be a group with at least one non-self-inverse elem-
ent. Then grðPðGÞÞ ¼ 3;

ii. Let G be a finite group with n elements and Z(G) be its
center. If degðaÞ ¼ n� 1 in PðGÞ, then a 2 ZðGÞ;

iii. Let G be a finite group with n elements. Then PðGÞ is a
graph with 1

2

P
a 6¼e oðaÞ edges if and only if every elem-

ent other than identity of G is of prime order;
iv. Let G be a finite group. Then PðGÞ is Eulerian if and

only if G is a group of odd order;
v. Let G be a finite abelian group. Then PðGÞ is a uni-cyc-

lic graph if and only if G ffi Z3:

Theorem 13.40. [65, Theorems 4.3 and 4.4] Let G be a non-
trivial finite group. Then

i. P0ðGÞ is bipartite if and only if peðGÞ 	 f1, 2, 3g;
ii. P0ðGÞ is planar if and only if peðGÞ 	 f1, 2, :::, 6g:
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Theorem 13.41. [32, Theorem 24] P0ðGÞ is Eulerian if and
only if G is a cyclic 2-group or a generalized quaternion
2-group.

Theorem 13.42. [4, Theorem 1] Let G be an infinite group.
Then PðGÞ is complete if and only if G ffi Zp1 for some
prime p.

Theorem 13.43. [4, Theorem 2] Let G be a group. Then
PðGÞ is planar if and only if G is a torsion group and
peðGÞ 	 f1, 2, 3, 4g, where peðGÞ ¼ foðaÞ : a 2 Gg:

Corollary 13.44. [4, Corollary 1] If G is a group with planar
power graph, then vðPðGÞÞ ¼ maxfoðaÞ : a 2 Gg:

Pourgholi et al. [74] proved some results on 2-connected
power graphs which are summarized below.

Theorem 13.45. [74, Theorems 2.1 and 2.2, Lemmas 2.1
and 2.2]

i. Suppose G is a p-group. The power graph PðGÞ is 2
-connected if and only if G is a cyclic or generalized
quaternion group.

ii. Let G be a finite nilpotent group. If G is not a p-group,
then the power graph PðGÞ is 2-connected.

iii. Let G and H are groups of finite order such that
ðoðGÞ, oðHÞÞ ¼ 1. If G is cyclic of prime order, then
PðG�HÞ is 2-connected.

iv. Let G be a finite group with oðGÞ 6¼ p, where p is a
prime number. If maxfoðaÞ : a 2 Gg ¼ p, then PðGÞ is
not 2-connected.

14. Conclusion and avenues for future research

Algebraic graph theory was initially developed as an inter-
section of algebra (both abstract and linear) and graph the-
ory. Many concepts of abstract algebra have facilitated the
study of graphs from algebraic structures with applications
in computer science. On the other hand, graph theory has
also helped to characterize certain properties of algebraic
structures. We reviewed both the classical as well as the
recent results and presentation is centered around a single
yet rich structure, namely the power graphs of groups. The
literature on the topic of this paper is vast, and we gave
almost all the significant results published on power graphs.
We hope to have delivered a survey as seen from the per-
spective of algebraic graph theory, that brought the reader
from the basics to the research frontier in power graphs of
groups. We want to conclude by listing a few fundamental
open problems.

Some unsolved problems in this area, have already been
presented within the sections, and we also redirect the inter-
ested reader to the survey article [2] for open questions that
are still unsolved. Further, we compile and list some of the
interesting problems. The list is by no means complete and
is colored by our own interests and experiences.

Problem 14.1. Determine the exact expression for jðPðZnÞÞ
and dðPðZnÞÞ, for n ¼ pa11 p

a2
2 � � � pamm , where m � 2, p1 <

p2 < � � � < pm are primes ai 2 N for all 1 � i � m:

Problem 14.2. [1] Characterize all groups G having the prop-
erty that the power graph PðGÞ is connected even when the
set of vertices in a dominating set is removed from PðGÞ:

Ashrafi et al. [6] made the following conjecture.
Conjecture 14.3. The automorphism group of the power
graph of each group is a member of F, where F denotes the
set of all groups that can be constructed from symmetric
groups by direct or wreath product.

However, this conjecture is not correct. The computa-
tions reported in Section 2 show that the automorphism
group of PðM11Þ has the group M11 as a homomorphic
image. However, there are many groups G for which PðGÞ
is a cograph; and we observed in Theorem 11.2 that the
automorphism group of a cograph belongs to the class F: So
we regard Problem 8.6 as an important topic for research,
and as a substitute for the conjecture of Ashrafi et al.

Conjecture 14.4. [37] There exists a real number k such
that diamðP0ðGÞÞ � k for all finite groups G with connected
proper power graph.

Conjecture 14.5. [68] For n � 2, the following
are equivalent.

i. The algebraic connectivity of PðZnÞ is an integer;
ii. PðZnÞ is Laplacian integral;
iii. n is a prime power or product of two primes.
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