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Abstract — In this paper, we present a methodology to
assess system performance of human-robotic systems in
achievement of collective tasks such as habitat construction,
geological sampling, and space exploration. The methodology
uses a systematic approach that assesses performance by
incorporating capabilities of both human and robotic agents
based on accomplishment of functional operations and effect
of cognitive stress due to continuous operation by the human
agent. In this paper, we provide an overview of the assessment
system and discuss its implementation on a representative
habitat construction task.
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1. INTRODUCTION

Typically, research that focuses on performance assessment of
systems having both human and robotic agents tends to
disregard the capability of one of the agents. In [1], a human-
centered approach is used to understand the role of human-
robotic teamwork in future human space exploration missions.
In this work, a framework is developed in which robots
become functional tools that assist the human rather than
replace the human operator. In [2], the focus is to optimize
overall performance by designing systems that use adjustable
autonomy to dynamically change the autonomy of an
intelligent agent. Different criteria are used to determine how
the autonomy level, and thus the performance of the system, is
adjusted based on reasoning about the costs of decisions.
Recent work [3] has focused on evaluating human and robot
teams through an analytical framework that decomposes tasks
into independent functional primitives. Currently, the
performance analysis proposed is in a generalized form that
presents a concept of how to perform performance evaluation,
but does not provide validated experimental results nor does it
discuss the type of metrics needed for evaluation. In [4],
complementary research is presented that introduces
taxonomies and metrics useful for human-robot performance
evaluation. In [5], Fong attempts to address the wide
dispersion found in this area and develop common metrics for
task-oriented human-robot interaction in terms of five task
categories dependent on the level of human interaction.

Although research in human-robot performance assessment is
expanding, approaches that integrate the contributions of both
human and robot agents have been minimally addressed. We
attempt to address these limitations by developing a
systematic approach to assess system performance of human-
robotic systems in achievement of collective tasks. The overall
objective is to use performance characteristics to determine an
optimal allocation of tasks to be divided between human and
robotic system to minimize human mental workload while
maximizing system performance, as necessary for such
activities as habitat construction, geological sampling, and
space exploration.

2. PERFORMANCE ASSESSMENT OF HUMAN-ROBOTIC SYSTEMS

In this section, we present a noninvasive method for
performance assessment of human-robotic systems that
evaluates the various effects of workloads on human
performance and determines the performance tradeoffs
derived from task allocation between humans and robotic
systems. The approach is motivated by [6] and, as such,
consists of four primary steps: 1) decompose scenario into a
set of major functional task primitives and define performance
metrics for each primitive, 2) evaluate the performance of all
agents (human, robot) in performing each task primitive, 3)
calculate a performance score based on satisfaction of task
primitives and effect on agents, and 4) compute a composite
task score to evaluate system performance during task
achievement.

a. Performance Metrics

Workload studies are used to characterize human performance
in terms of total demand placed on a person implementing a
task. Developing a methodology to assess workload, or
cognitive stress, using actual human subjects is a time
consuming process, which must adequately deal with the
inherent discrepancies found in the different subjects. To
address this limitation, research efforts have focused on
developing workload assessment models without the use of
human subjects [7]. These efforts focus on decomposing tasks
into a series of subtasks and assigning workload values by
pairwise comparing the level of effort required to implement
each subtask. Following this approach, we first decompose
human-robot scenarios into a set of functional task primitives,



i.e. activities that need to be implemented by the human or the
robotic system for goal achievement. In other work [3, 6, 8],
an inclusive set of functional primitives in various space-
related scenarios was constructed for assessing system
performance. Using this as a basis, we constructed an
elementary set of functional primitives, and identified the
cognitive skills associated with each. To identify cognitive
skills, we used the cognitive architecture construct [9] that
breaks human information processing into 3 macro-level
mechanisms: perception, cognition, and motor activities.
Primitives were then selected to be as independent from each
other as possible and to emphasize different aspects of
perception, cognitive, and motor skills associated with mental
demand (Table I).

TABLE I: Elementary functional primitives and
associated activity type

Primary Activity Type
Primitives Perception | Cognition | Motor
Grasp/Release X
Identify X
Lift/Unload X
Locate/Localize X
Mate/Unmate X
Model/Represent X
Plan X
Track X
Traverse X

By utilizing this elementary set of functional primitives,
various scenarios can be defined by linking these primitives
into a primitive hierarchy (or tree), which provides a broad
understanding of the cognitive skills/mental demands required
for each scenario. Each scenario is decomposed into its lowest
level, such that the last node (or leaves) of the primitive
hierarchy consists solely of the functional primitives identified
above. As an example, Figure 1 depicts a branch of a primitive
hierarchy for a habitat construction task (useful for Mars
human-robot missions).

TABLE II. Associating performance metrics with functional
task primitives for visual identification

Workload Performance Task Primitive
Value (0-10) Score (0-10)
Human Human Robot

0.0 10.0 10.0 | No Visual
Activity

1.0 10.0 8.5 | Identify/Locate
specific target

5.0 10.0 6.0 Localize with
respect to target

54 7.0 5.0 | Visually Track /
Follow Target
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Figure 1. Primitive hierarchy for habitat construction task
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Performance metrics are associated with the functional
primitives located at the lowest node of the primitive
hierarchy. Performance metrics consist of both workload
value and performance scores, and use relative measures for
human and robotic agents. Workload values are used to
determine the relative decline in performance associated with
the constant mental/resource load required to complete the
task while performance scores quantify how well the agent
achieves the task. Performance metrics are calculated for each
elementary functional primitive and use relative measures in
the [0,10] range for human and robotic agents based on a
pairwise comparison method. To calculate human
performance metrics, values are extracted by pairwise
comparing the level of effort required to implement each
subtask based on the calculated performance values.
Performance scores for robotic systems are determined from
evaluation of current robotic systems implemented in real-time
[8]. As an example, the visual identification primitive in
Figure 1 can be decomposed into the functional primitives and
associated performance metrics as depicted in Table II. In this
example, the performance score is ranked based on the
minimum time necessary to complete a task, where 4.0 is
baselined as the minimum performance value associated with
a human agent. In our example application presented in
Section 3, the performance scores are determined and
compared to human and robot agents performing actions in the
real world.

b. Performance Evaluation

We utilize the concept of an optimization function for
dynamic task allocation [10] to calculate a composite task
score using the detailed functional decomposition of a task
scenario. The optimization function is dynamic in that it



incorporates both attributes of workload values and
performance scores, which depends on the amount of time
elapsed during real-world implementation. To determine the
effect workload has on performance, we examined the work of
Dinges and Mallis [11] in which studies were performed to
determine the relationship between physical activity and
performance of a human operator executing complex tasks
over time. Using the resulting data from these studies, we
mapped a logarithmic function to obtain a time-dependant
performance trend associated with human task
implementation. This trend reflects the effect of workload in
our optimization function. For each task scenario, a composite
task score can thus be constructed to determine overall system
performance while incorporating the decreases in performance
associated with consistent work operation, such that:

Vprimitive € [1, n]

p = PerformanceScore(agent) agent = {human, robot}
s*In(s*workload)/workload, agent = human
@= 1o, agent = robot

n

Composite Task Score (s) = Z (p; - wy)
i=1

where s designates the repetitive number of scenario runs that
have occurred, workload is the workload value associated with
primitive i, and PerformanceScore is the performance score
associated with primitive i. The composite task score is
summed over all functional primitives for the task scenario
and can be calculated for each repeated scenario run. A final
composite task score provides an overall evaluation of relative
performance for the scenario.

3. IMPLEMENTATION AND ANALYSIS

It is envisioned that future planetary exploration missions will
involve humans and robots working in collaboration to
accomplish both scientific and exploration goals [12]. To
enable a long-term human presence in space, supporting
technology, needed for tasks such as the capability for habitat
construction, in-space assembly, and geological sampling,
must be developed to enable the goals of these missions. One
of the first steps in this process is to determine how to
synergistically use humans and robots together in a systematic
fashion. To validate the performance assessment
methodology, we use our approach to assess the performance
of human and robotic systems performing a simulated habitat
construction task.

Our test environment (Figure 2) consists of a graphical user
control panel that enables the human operator to control a
robot operating in the real world. For this environment, we
utilize the Sony ERS-210 robot for task implementation. The

control panel allows the human operator to view the world
through the robot’s eyes, as well as command the robot to
move forward, backward, and turn either left or right. The
human operator can also toggle between tele-operated control
or autonomous behavior of the robot.
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Figure 2. Test environment consisting of human operator unit
and two Sony Aibo robots

The first step in the performance assessment process is to
decompose the habitat construction task into functional
primitives, and associate relative performance scores and
workload values to each primitive. As our focus is on
documenting the applicability of the assessment process to a
representative task scenario, we use a simplified
decomposition consisting of one branch, and two primary
operations: locating the platform base unit in an obstacle-free
environment and navigating to a position for subsequent
transportation of the base units into a desired configuration
(Figure 3). Figure 4 displays the output of the functional
decomposition process, and provides the associated metrics
used in the evaluation. For our current analysis, we wish to
directly compare the performance of human tele-operator
versus robot agents in the habitat construction scenario. The
two set-ups we constructed for assessment were A) direct tele-
operated control of the robot by a human operator (via the
graphical user interface) and B) fully autonomous control of
the robot, without direct human intervention. The autonomous
behavior [13] programmed onto the robot allows the robot to
search for and locate the platform base unit within the
environment, and navigate toward the corresponding goal
position for subsequent transportation of the base unit.
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Workload Performance Task Operation
Value Score
Human Human | Robot
0.0 10.0 10.0 | No Activity
5.0 6.0 7.5 Traverse toward
landmark
3.0 8.0 6.0 Localize with
respect to landmark
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Workload Performance Task Operation
Value Score
Human Human | Robot
0.0 10.0 10.0 | No Activity
1.0 10.0 8.5 Identify/Locate
landmark

Figure 4. Decomposing the habitat construction task for extraction of metrics

Figure 3. Initial and final robot configuration for habitat

construction scenario

This involves implementing a vision-based algorithm to locate
the base unit via color information, and extracting size and
pixel location information from the image data. This
information is then fed into a stored table that associates the
two extracted image parameters with 3-D world position to
which the robot is directed.

Figure 5 documents the composite task score calculated for
each set-up based on the performance metrics and workload
values shown in Figure 4.
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Figure 5. Calculated composite task scores

To compare our evaluation results with real world

implementation, we ran through each scenario 10 times (with
the habitat base unit located at different sites) for 6-10




continuous scenario runs and documented the execution time.
To map execution time to composite task score, we correlated
the elapsed time steps and scaled the execution times to match
with the composite task score calculated for the robot agent.
The time steps were selected to begin after the learning cycle
for each scenario run (typically the first 2-4 runs). This
process is acceptable because we are interested in
understanding the relative performance of humans versus
robots, and in capturing the corresponding decline in human
performance associated with workload during real-time
implementation. Implementing this normalization process
gave us the outcome depicted in Figure 6 from a sample run of
median error.
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Figure 6. Comparison of performance assessment system
versus real-world implementation data

As shown in Figure 6, the relative trend displayed by the
performance assessment system compares favorably to the
actual performance data collected during real-time
implementation. As time elapses, the time for task completion
by the human agent increases in the real-world
implementation, while the task score calculated by the
performance assessment system decreases. What we are
interested in noting is that the performance assessment system
is able to reflect the decline in performance during the real-
time implementation process, and show the relative benefits of
tele-operated and fully autonomous control. In essence,
systems that evaluate human-robot interaction systems must
incorporate aspects of both human and robotic system
performance, i.e. the capability of the robotic system to
implement tasks should be understood, as well as the human’s
ability to perform.

4. LIMITATIONS

The current version of the performance assessment system
uses the pairwise comparison method to determine
performance scores and workload values. This assumes ideal
operating conditions and limits the ability of the system to
handle wunplanned discrepancies, such as extreme
environmental complexity in the task space or untrained
human operators. Future work for the assessment system will
thus involve learning from the actual implementation data and

allowing refinement of the performance scores and workload
values in real time. In addition, the performance scores and
workload values incorporate crisp value definitions, and do
not use relative ranges or allow for overlapping ranges in
performance or workload. To allow full evaluation, this
limitation can be resolved by incorporating a linguistic, or
crisp intervals, for determining the composite task score.
Lastly, the system assumes that the human agent is an expert
in implementation of the task operations and does not
incorporate the learning cycle required for a human operator to
first become efficient in a new task. Future work will thus
involve incorporating a parameter to acknowledge the learning
lag necessary to correlate with real-world performance.

5. CONCLUSIONS

This paper presents a methodology to assess system
performance of human-robotic systems in achievement of
collective tasks. The methodology uses a two-tier process
involving performance metrics and performance evaluation,
which can be applied to a wide range of human-robotic
activities performed in complex environments. The overall
objective of the system is to use performance characteristics to
determine an optimal allocation of tasks to be divided between
human and robotic system to minimize mental workload while
maximizing system performance. We have discussed the
performance assessment methodology in detail and compared
its implementation on a representative habitat construction
task. The implementation of the method is shown to provide a
correlated comparison that reflects the actual performance of
human-robotic systems operating in the real world.
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