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A Systematic Approach to Predict Performance
of Human–Automation Systems

Ayanna M. Howard, Senior Member, IEEE

Abstract—This paper discusses an approach for predicting sys-
tem performance resulting from humans and robots performing
repetitive tasks in a collaborative manner. The methodology uses a
systematic approach that incorporates the various effects of work-
load on human performance, and estimates resulting performance
attributes derived between teleoperated and autonomous control
of robotic systems. Performance is determined by incorporating
capabilities of the human and robotic agent based on accomplish-
ment of functional operations and effect of cognitive stress due to
continuous operation by the human agent. This paper provides an
overview of the prediction system and discusses its implementation
on a simulated rendezvous/docking task.

Index Terms—Human–robot interaction, performance predic-
tion, task allocation.

I. INTRODUCTION

ONE OF THE key issues in human–robot interaction sce-
narios is determining which tasks are best done with hu-

mans, or robotic systems, or a combination of each. As human–
robotic systems are increasingly deployed in various applica-
tions such as telesurgery, military applications, and personal
care robots, there is a corresponding need to develop methods
that optimally partition the task space to ensure mission success.
Typically, the process of selecting an appropriate technique for
evaluation of human and automated systems requires knowledge
of the objectives of a task and a realistic environment in which to
assess performance. In addition, assessment of systems having
both human and robotic agents must focus on the capability of
both agents. If the human operator is overloaded, but the hu-
man agent is still required to perform during a crisis, the system
should be capable of estimating performance, accordingly and
allow the redistribution of tasks such that the human can deal
with the high-threat task, while the automated system tries to
manage the more repetitive workload. Therefore, the first step in
estimating system performance consists of two primary factors:
1) approximating the relative decline in performance associated
with the constant mental/resource load required to complete a
task and 2) quantifying how well an agent (whether human or
automated) achieves a task.

Although research in human–robot performance assessment
is expanding, an approach that integrates the contributions of
both human and robot agents to estimate future performance
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has been addressed only to a limited extent. As such, a method
is presented to enable systematic estimation of system perfor-
mance for human–robot scenarios.

II. BACKGROUND

Typically, research that focuses on performance assessment
of systems having both human and robotic agents tends to disre-
gard the capability of one of the agents. In [1], a human-centered
approach is used to understand the role of human–robotic team-
work in future human space exploration missions. In this work,
a framework is developed in which robots become functional
tools that assist the human rather than replace the human opera-
tor. In this regard, the autonomy levels of the agents are adjusted
to maintain system performance, which is associated with the
requirement that agents always operate within established con-
straints, and are always responsive to human control. In [2]
and [3], the focus is to optimize the overall performance by
designing systems that use adjustable autonomy to dynamically
change the autonomy of an intelligent agent. Different criteria
are used to determine how the autonomy level, and thus, the
performance of the system is adjusted, and ranges from using
analysis based on human physiological responses [2] to deter-
mining autonomy level based on reasoning about the costs of
decisions [3].

Currently, there is limited research that focuses on predicting
system performance by considering both the human and robot
as integral contributors to performance. For example, automated
systems tend to not perform well in unexpected, high-crisis sit-
uations. In such cases, if the human operator is overloaded,
the human agent is still required to perform in order to en-
sure mission success. Ideally, in such cases, there should be a
redistribution of tasks such that the human can deal with the
high-threat task, while the robotic system tries to manage the
more repetitive workload. Performance should be measured as
an aspect of both human and robotic system performance, i.e.,
the capability of the robotic system to implement tasks should
be understood, as well as the human’s ability to perform. Re-
cent work [4] has focused on evaluating human and robot teams
through an analytical framework that decomposes tasks into
independent functional primitives. Currently, the performance
analysis proposed is in a generalized form that presents a con-
cept of how to perform performance evaluation, but does not
provide validated experimental results nor does it discuss the
type of metrics needed for evaluation. In [5] and [6], comple-
mentary research is presented that introduces taxonomies and
metrics useful for human–robot performance evaluation. Fong
et al. [6] attempt to address the wide dispersion found in this area
and develop common metrics for task-oriented human–robot
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interaction in terms of five task categories dependent on the
level of human interaction.

Although research in human–robot performance assessment
is expanding, an approach that integrates the contributions of
both human and robot agents to estimate performance has been
only limitedly addressed. This work attempts to address these
limitations by developing a systematic approach that incorpo-
rates the various effects of workload on human performance, and
predicts system performance derived from allocation of tasks
between human-controlled and autonomous robotic systems.

III. METHODOLOGY FOR HUMAN–AUTOMATION

SYSTEM PERFORMANCE (HUMANS)

This section presents a methodology for human–automation
system performance (HumAnS) that evaluates the various ef-
fects of workload on human performance, and estimates perfor-
mance derived from task allocation between human-controlled
and automated systems [4], [7]. HumAnS consists of four pri-
mary steps: 1) decompose scenario into set of major functional
task primitives and define performance metrics for each prim-
itive; 2) estimate the performance of all agents (human, robot)
in performing each task primitive; 3) calculate a performance
score based on satisfaction of task primitives and effect on agents
(i.e., is human agent stressed?); and 4) compute a composite task
score to enable tradeoff studies to be made for allocation of tasks
between humans and robots.

A. Scenario Decomposition

Perhaps the greatest contributor to human error in many sys-
tems is the extensive workload placed upon the human opera-
tor [8]. Workload studies are used to characterize human perfor-
mance in terms of total mental demand placed on a person imple-
menting a task. Developing a methodology to assess workload
using actual human subjects is a time consuming process, which
must adequately deal with the inherent discrepancies found in
the different subjects. To address this limitation, research ef-
forts have focused on developing workload assessment models
without the use of human subjects [9]. These efforts focus on
decomposing tasks into a series of subtasks [10], and assign-
ing workload values by pairwise comparing the level of effort
required to implement each subtask. Following this approach,
human–robot scenarios are first decomposed into a set of func-
tional task primitives, i.e., activities that need to be implemented
by the human or the robotic system for goal achievement. Dif-
ferent criteria can be used to determine how a human–robot
scenario is decomposed, including analyzing task parallelism,
temporal sequences, or spatial resolution [11]. For this work,
the focus is on decomposing scenarios into nonconcurrent tasks
that can be executed sequentially.

The method used for scenario decomposition is based on the
task diagram interview sequence developed as part of the applied
cognitive task analysis (ACTA) technique [12]. ACTA provides
practical methods to identify mental demands placed on a human
operator while performing tasks within a given scenario. This
work, which is based on the task diagram interview technique
in which a broad overview of a scenario is constructed by inter-

TABLE I
ELEMENTARY FUNCTIONAL PRIMITIVES AND ACTIVITY TYPE

viewing subject matter experts, follows the same concept to de-
compose human–robot scenarios using the following processes.

1) Break the scenarios into three to six functional primitives
based on commonalities found in robotic systems operat-
ing in the real world.1

2) Determine cognitive skills/mental demand derived from
functional primitive.

3) Create task diagram to give broad overview of mental
demand derived from scenario.

In other works [4], [7], [13], an inclusive set of functional
primitives in various robotic scenarios was constructed for
assessing system performance. Using this as a basis, an
elementary set of functional primitives is constructed, and the
cognitive skills associated with each are identified. To identify
cognitive skills, the cognitive architecture construct [14]
is used to break human information processing into three
macrolevel mechanisms: perception, cognition, and motor
activities. Primitives are then selected to be as independent from
each other as possible, and to emphasize different aspects of
cognitive, motor, and sensory (i.e., perception) skills associated
with mental demand (Table I).

Table I depicts the elementary functional primitives that clas-
sify various robotic scenarios. To shift this representation into
the space of human–robot scenarios, the primitive set is ex-
panded into more specific human–robot applicable operations,
and those with similar characteristics are grouped into one prim-
itive representation (Fig. 1). To determine similarity in charac-
teristics, general low-level control steps are instantiated based
on work in [15] and [16]. As an example, “mate with stationary
object” (a primitive expansion of the mate/unmate functional
primitive) involves the general control steps: 1) align with the
object and 2) push toward the object. On the other hand, “grasp
stationary object” involves the general control steps: 1) align
with the object and 2) grip the object. Although these steps
implement different control algorithms, the similarities in op-
erations (that of two relevant motor activities) place these two
expanded primitives into the same class. This expansion and
regrouping exercise is implemented for the class of elementary
functional primitives depicted in Table I. Fig. 1 shows a subset of
the expansion/regrouping stage for extracting human–robot re-
lated functional primitives. The resulting functional primitives

1Scenario decomposition is kept to between three and six primitives to match
with the task diagram technique [12] in which tasks are limited to between three
and six steps in order to ensure that time is not wasted digging into small details.
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Fig. 1. Shifting robotic functional primitives into the space of human–robot
scenarios.

TABLE II
MOTOR ACTIVITY

TABLE III
COGNITIVE ACTIVITY

TABLE IV
SENSORY ACTIVITY

based on activity type are then classified into three tables of
relevance to human–robot scenarios (Tables II–IV).

By utilizing this redefined set of functional primitives,
task scenarios can be defined by linking the primitives into a
primitive hierarchy (or tree), which provides the necessary task
diagram information for human–robot scenarios. This process

Fig. 2. Primitive hierarchy for map-building scenario.

Fig. 3. Primitive hierarchy for rendezvous/docking scenario.

provides a broad understanding of the cognitive skills/mental
demands required for each scenario. As an example, two
primary scenarios of relevance to automation are shown in
Figs. 2 and 3. Each scenario is decomposed into its lowest level,
such that the last node (or leaves) of the primitive hierarchy
consists solely of the functional primitives identified in the
activity type tables listed above.

B. Calculating Performance Metrics for
Human–Robot Scenarios

To determine the overall mental effort required to complete a
task scenario, workload values must be calculated for each func-
tional primitive that exists in the scenario decomposition. For
this work, there is also an interest in the performance of both
human and robot agents in implementing each identified task
primitive. Performance metrics are therefore defined as consist-
ing of both workload values and execution time components.
Workload values are used to determine the relative decline in
performance associated with the constant mental/resource load
required to complete the task, while execution times quantify
how well the agent achieves the primitive operation. Perfor-
mance metrics are calculated for each elementary functional
primitive, and use relative ranking measures for human and
robotic agents based on a pairwise comparison method. To cal-
culate human performance metrics, values are extracted by pair-
wise comparing the level of effort required to implement each
subtask based on the calculated performance values. Execution
ranking times for robotic systems are determined from evalua-
tion of current robotic systems implemented in real time.

ACT-R [17] is a framework that models how human cogni-
tion works in various task scenarios based on assumptions de-
rived from psychology experiments. Various researchers have
utilized the ACT-R infrastructure to predict performance of
human participants performing particular tasks in complex en-
vironments. The ACT-R model has been successfully used and
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TABLE V
HUMAN PERFORMANCE DATA ASSOCIATED WITH FUNCTIONAL PRIMITIVES

compared with traditional measures of cognitive psychology,
such as the time required to perform a task, accuracy in a task,
and neurological performance data. Based on an analysis of
ACT-R performance data derived from various task scenarios,
execution times are extracted for the functional primitives de-
fined for each activity type previously discussed. Table V de-
picts ACT-R primitives associated with human activities, and
links them with functional primitives defined for the scenario
decompositions. Associated with each primitive are the approx-
imate time values of human performance based on published
research results. In some cases, execution times depend on the
environmental complexity in which the task is performed. The
table reflects this dependence in columns 4 and 5.

Given these approximate values of human performance, a
comparison rating is constructed to derive performance metrics
using relative values in the [0.0, 10.0] range, where 0.0 rep-
resents the minimum ranking value and 10.0 is the maximum
ranking value (Table VI). To compute the ranking for execu-
tion time, the performance data (Table V) is first segmented into
three zones of operation [40 ms, 250 ms], [251 ms, 800 ms], and
[801 ms, 5500 ms]. This segmentation naturally corresponds to
the execution time granularity inherent in the performance data
set (Fig. 4). As execution times are used to establish a metric
to compare both human and robot agents, it is assumed that
1) the robot agent performs no better than the human agent
(given the human’s greater capability to deal with anomalies
within the environment); 2) ranking times for the robotic sys-
tem can be derived from comparing current robotic systems
implemented in real time [7], [13] to human performance; 3) a
ranking time of 4.0 is the minimum ranking value (i.e., slowest
execution time) associated with a human agent; and 4) “no [mo-
tor/cognitive/visual] activity” is associated with the maximum
ranking time of 10.0, as it requires the least time for execution
(i.e., idle activity time is estimated at 40 ms). Based on these
assumptions, the boundary conditions for the execution times
are then established such that 40 ms corresponds to a ranking
time of 10.0, and 5.5 s corresponds to a ranking time of 4.0. For

TABLE VI
ASSOCIATING PERFORMANCE METRICS WITH FUNCTIONAL PRIMITIVES

Fig. 4. (a) Zone of operations for performance data. (b) Graph depicting
execution ranking times computed from performance data.

each zone of operation, a logarithmic function representative of
the performance data granularity is also computed, such that

Z0 : ExecutionRank = Rm − log(T ) + ε0 (1)

Z1 : ExecutionRank = Rm − log(T ) + ε1 (2)

Z2 : ExecutionRank = Rm − ln(T ) + ε2 (3)

where Zn represents one of the three zones of operation, Ex-
ecutionRank is the execution ranking time, Rm represents the
maximum ranking time of 10.0, T represents the minimum time
values associated with each functional primitive (from Table V),
and εn is determined based on the boundary conditions, such
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that

Rm − ln(40) + ε0 = 10.0 ⇒ ε0 = 1.6 (4)

Rm − ln(5500) + ε2 = 4.0 ⇒ ε2 = 2.6 (5)

‖Z0‖
‖Z1‖

ε0 = ε1 ⇒ ε1 = 0.6 (6)

where Z0 and Z1 represent the difference between the starting
and ending time values associated with the respective zone of
operation. Fig. 4 depicts the ranking values calculated from the
performance data that is represented in Table VI.

Workload represents the cognitive load placed on the human
operator while performing a task. It is designed to increase with
regard to the amount of time a human requires to implement a
task. The workload ranking value is thus determined based on
the execution time and the decrease in performance associated
with environmental complexity, such that

Z0,Z1 :

If (E
h
− El = 0), Workload = log(T − T0)

Else Workload = log((T − T0) + (Eh − El)) (7)

Z2 :

If (E
h
− El = 0), Workload = ln(T − T0)

Else Workload = ln((T − T0) + (Eh − El)) (8)

where Zn represents one of the three zones of operation, Work-
load is the workload ranking value, T represents the minimum
time values associated with each functional primitive, T0 is the
idle activity time, El and Eh are the execution times associated
with low and high environmental complexity, respectively. It
is assumed that for execution times dependent on distance and
direction, the operator will be required to move to a position
at least ten times the minimum. Table VI depicts the workload
ranking values calculated from this assessment.

C. Performance Evaluation for Human–Robot Scenarios

In multi-agent coordination, dynamic task allocation involves
determining which agent should execute which task at which
time in order to achieve a global goal. The optimal assignment
problem [26] addresses this problem by estimating how well
each robot agent can be expected to perform each task given a
system of n robots and m prioritized single-robot tasks. Markov
decision processes (MDP) allow each agent to choose individual
actions based on maximizing an optimization function for the
entire system [27]. This concept of an optimization function is
utilized to calculate a composite task score using the detailed
functional decomposition of a task scenario. The optimization
function incorporates both attributes of workload ranking val-
ues and execution ranking times. To determine the effect of
workload on performance, the work of Dinges and Mallis [28]
was examined. In [28], studies were performed to examine the
capability of various techniques for determining the relation-
ship between various validation criteria (such as percentage of
eye closure, brain wave activity, head positioning, etc.), and
the performance of a human operator executing complex tasks

Fig. 5. Mapping human workload effect using a logarithmic function.

over time. To evaluate each algorithm, experimental data were
extracted to monitor the performance of human operators per-
forming tasks every 2 h over a 42-h time cycle. In order to deter-
mine the relative effect of workload on performance, a logarith-
mic function was roughly mapped to obtain a time-dependent
performance trend associated with human task implementation
(Fig. 5). This trend reflects the effect of workload in the op-
timization function. For each task scenario, a composite task
score can thus be constructed to estimate overall system perfor-
mance while incorporating the decreases in performance asso-
ciated with consistent work operation, such that ∀ primitive =
1: n

r = Execution Rank(agent)agent = {human, robot}

w = {
{

s ln(s × workload)
workload agent = human

0, agent = robot

Composite Task Score(s) =
n∑

i=1

(ρi − ωi)

where s designates the repetitive number of scenario runs that
have occurred, Workload is the workload ranking value asso-
ciated with primitive i, and ExecutionRank is the execution
ranking time associated with primitive i. The composite task
score is summed over all functional primitives for the task sce-
nario, and can be calculated for each repeated scenario run. A
final composite task score provides an overall evaluation of the
relative performance for the scenario.

IV. RESULTS FOR EVALUATION OF HUMAN–ROBOT SCENARIOS

A. Test Environment for Human–Robot Scenarios

The first rendition of the test environment (Fig. 6) consists
of a graphical user control panel that enables the human op-
erator to control a robot operating in the real world. For this
work, the Sony ERS-210 robot is utilized for task implementa-
tion. The control panel allows the human operator to view the
world through the robot’s eyes, as well as command the robot
to move forward, backward, and turn either left or right. The
human operator can also toggle between teleoperated control
and autonomous behavior of the robot.
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Fig. 6. Virtual environment consisting of human operator unit and 3-D World
Environment.

Fig. 7. Primitive hierarchy for simplified rendezvous/docking scenario.

TABLE VII
PERFORMANCE METRICS ASSOCIATED WITH

SIMPLIFIED TASK DECOMPOSITION

B. Performance Evaluation of Human–Robot Scenarios

To validate the HumAnS prediction system, the methodology
is applied to estimate the performance of human and robotic
agents performing a simulated rendezvous/docking task. The
first step in the HumAnS process is to decompose the task
into functional operations, and associate relative performance
scores and workload values to each operation. As the focus is
on documenting the applicability of HumAnS to a representative
task scenario, branches of the rendezvous/docking scenario are
pruned in Fig. 3 to involve two primary operations: locating a
target base unit in an obstacle-free environment, and navigating
to a position for subsequent transportation of the base units into
a desired configuration. Fig. 7 displays the primitive hierarchy
associated with this simplified task, and the corresponding per-
formance metrics for the functional primitives in this task are
depicted in Table VII.

In the current analysis, the performance of human agents is
directly compared to the performance of robot agents in the ren-
dezvous/docking scenario (Fig. 8). The two setups constructed
for assessment are 1) direct teleoperated control of the robot by
a human operator (via the graphical user interface) and 2) fully
autonomous control of the robot, without direct human inter-
vention. The autonomous behavior programmed onto the robot

Fig. 8. Initial and final robot configuration for rendezvous/docking scenario.

Fig. 9. Composite task scores calculated by HumAnS.

allows the robot to search for and locate the target base unit
within the environment, and navigate toward the correspond-
ing goal position for subsequent transportation of the base unit.
This involves implementing a vision-based algorithm to locate
the base unit via color information and extracting object size and
location from the image data [29]. This information is then fed
into a stored table that associates the two extracted image pa-
rameters with 3-D world position to which the robot is directed.

Fig. 9 documents the composite task score calculated by
HumAnS for each setup based on the performance metrics and
workload values extracted from Table VII.

To compare the prediction results with real-world implemen-
tation, the testing process consists of running through each sce-
nario ten times (with the target base unit located at different
sites) for six to ten continuous runs (i.e., time steps) for each
scenario, and documenting the execution time. Fig. 10 shows
the resulting outcome from two of the sample runs.

To map execution time to composite task score, the elapsed
time steps are correlated and scaled to execution ranking times
that match with the composite task score calculated for the robot
agent. The time steps are selected to begin after the learning
cycle for each scenario run (typically, the first two to four time
steps). This process is acceptable because the prediction sys-
tem is interested in understanding the relative performance of
humans versus robots, and in capturing the corresponding de-
cline in human performance associated with workload during
real-time implementation. Implementing this normalization pro-
cess results in the outcome depicted in Fig. 11.
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Fig. 10. Sample runs depicting execution times for direct teleoperated control
and fully autonomous control.

Fig. 11. Comparison of HumAnS prediction system versus real-world imple-
mentation data.

As shown in Fig. 11, the relative trend displayed by the Hu-
mAnS prediction system compares favorably to the actual per-
formance data collected during real-time implementation. As
time elapses, the time for task completion by the human agent
increases in the real-world implementation, and the task score
decreases in the HumAnS prediction system. In essence, Hu-
mAnS is capable of incorporating aspects of both human and
robotic system performance and comparing the capability of
both agents in a realistic scenario.

V. CONCLUSION AND FUTURE WORK

In this paper, a prediction methodology HumAnS that eval-
uates the various effects of workload on human performance
and estimates performance derived from task allocation between
human-controlled and autonomous robotic systems is presented.
HumAnS utilizes a two-tier process involving performance met-
rics and performance evaluation that can be applied to a wide
range of human–robotic activities performed in complex envi-
ronments. The HumAnS prediction system has been discussed
in detail and its implementation compared on a representative
scenario. The experimental setup was designed in order to pro-
vide measures for validating the theory for performance pre-
diction. The implementation of the method is shown to provide
a correlated comparison that reflects the actual performance of
huma–robotic systems operating in the real world.

The ultimate objective of HumAnS is to predict the perfor-
mance and various effects of workload on human and machine
performance. The current version of the performance prediction
system uses the pairwise comparison method to rank execution
times and workload values. This assumes ideal operating con-
ditions, and limits the ability of the system to handle unplanned
discrepancies, such as extreme environmental complexity in the
task space or untrained human operators. Future work for the
prediction system will thus involve learning from the actual
implementation data, and allowing refinement of the execution
ranking times and workload ranking values in real time. In ad-
dition, performance is calculated based on execution times. To
allow full evaluation, other attributes, such as accuracy and re-
peatability will be incorporated into the composite task score
calculation. Lastly, the system assumes that the human agent is
an expert in implementation of the task operations, and does not
incorporate the learning cycle required for a human operator
to first become efficient in a new task. Future work will thus
involve incorporating a parameter to acknowledge the learning
lag necessary to correlate with real-world performance.
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