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Containment Control in Mobile Networks

M. Ji, G. Ferrari-Trecate, M. Egerstedt, and A. Buffa

Abstract—In this paper, the problem of driving a collection of mobile
robots to a given target destination is studied. In particular, we are inter-
ested in achieving this transfer in an orderly manner so as to ensure that the
agents remain in the convex polytope spanned by the leader-agents, while
the remaining agents, only employ local interaction rules. To this aim we
exploit the theory of partial difference equations and propose hybrid con-
trol schemes based on stop-go rules for the leader-agents. Non-Zenoness,
liveness and convergence of the resulting system are also analyzed.

Index Terms—Containment problems, decentralized control, graph
theory, leader-following, multi-agent systems, partial difference equations.

I. INTRODUCTION

This paper investigates a particular subarea of multi-agent control,
namely the so-called containment problem where a collection of au-
tonomous, mobile agents are to be driven to a given target location
while guaranteeing that their motion satisfies certain geometric con-
straints. These constraints are there to ensure that the agents are con-
tained in a particular area during their transportation. Such issues arise
for example when a collection of autonomous robots are to secure and
then remove hazardous materials. This removal must be secure in the
sense that the robots should not venture into populated areas or in other
ways contaminate their surroundings.

We approach this problem from a leader-follower point-of-view
[1]–[3]. In particular, we will let the agents move autonomously based
on local, consensus-like interaction rules, commonly found in the liter-
ature under the banner of algebraic graph theory [4]–[6]. However, we
will augment this control structure with the addition of leader-agents
or anchor nodes [7]. These leaders are to define vertices in a convex
polytope (the leader-polytope) and they are to move in such a way that
the target area is reached while ensuring that the follower-agents stay
in the convex polytope spanned by the leaders, up to a given tolerance.
As such, the followers movements are calculated in a decentralized
manner according to a fixed interaction topology, while the leaders
are assumed to be able to detect if any of the followers violate the
containment property.

For the leaders, we will use a hybrid Stop-Go policy [8], [9], in
which the leaders move according to a decentralized formation control
strategy until the containment property is about to be violated. At this
point, they stop and let the followers settle back into the leader-polytope
before they start moving again. For such a strategy to be successful,
a number of results are needed, including a guarantee that the Lapla-
cian-based follower-control will in fact drive the followers back into
the leader-polytope. Moreover, we must also ensure that such a control
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strategy is feasible in the sense of non-Zeno, live in the sense of not
staying in the Stop mode indefinitely, and convergent in the sense that
the target area is in fact reached. This approach can also be generalized
to hierarchial networks, as was illustrated by our preliminary work in
[10].

II. BACKGROUND AND MATHEMATICAL PRELIMINARIES

In this section we will present the basic mathematical framework and
some enabling results in multi-agent control.

We start with basic notions of graph theory. For more details we refer
the reader to [11]. An undirected graph G is defined by a set NG =
f1; . . .Ng of nodes and a set EG � NG �NG of edges. We will also
use jNGj for denoting the cardinality of NG. Two nodes x and y are
neighbors if (x; y) 2 EG. The neighboring relation is indicated with
x � y and P(x) = fy 2 NG : y � xg collects all neighbors to
the node x. A path x0x1 . . . xL is a finite sequence of nodes such that
xi�1 � xi, i = 1; . . . ; L. A graph G is connected if there is a path
connecting every pair of distinct nodes.

Definition 1: Let S = (NS ; ES) be an undirected host graph
and NS � NS . The subgraph S0 associated with NS is the pair
(NS ; ES ) where ES = f(x; y) 2 ES : x 2 NS ; y 2 NS g

Definition 1 allows basic operations in set theory to be extended to
graphs. For instance, if S1 and S2 are two subgraphs of the graph S,
thenS1[S2,S1\S2,S1nS2 are the graphs associated withNS [NS ,
NS \ NS , and NS nNS , respectively. For our purposes, we will
often use graphs with a boundary.

Definition 2: Let S be a subgraph of G. The boundary of S is the
subgraph @S � G associated with N@S

:
= fy 2 NG n NS : 9x 2

NS : x � yg. The closure of S is �S = @S [ S.
Note that the definition of the boundary of a graph depends upon the

host graphG. This implies that if one considers three graphs S0 � S �
G, the boundaries of S0 in S and in G may differ.

In the context of multi-agent systems, the nodes of the host graph G
represent agents and the edges are communication links. In particular,
an agent x has access to the states of all its neighbors and can use this
piece of information to compute its control law. Although a complete
graph is not necessary for a distributed control algorithm, we always
assume that the host graph is connected.

In order to model the collective behavior of the agents we will use
functions f : NG 7! d defined over a graph G[12]. The partial
derivative of f is defined as @yf(x)

:
= f(y)� f(x) and the Laplacian

of f is given by

�f(x)
:
= �

y2N ;y�x

@
2

yf(x) = +
y2N ;y�x

@yf(x); (1)

where the last identity follows from the fact that @2yf(x) = �@yf(x).
The integral and the average of f are defined, respectively, as

G

fdx
:
=

x2N

f(x); hfi
:
=

1

jNGj G

fdx: (2)

Let L2(Gj d) be the Hilbert space composed by all functions f :
NG 7! d endowed with the norm kfk2L =

G
kfk2. We will use the

shorthand notation L2 when there is no ambiguity on the underlying
domain and range of the functions.

Let S be a subgraph of G and @S be its boundary in G. We as-
sume that S [ @S = G. As in [12], we also consider the Hilbert space
H1

0 (S) = f 2 L2(G) : fj@S = 0 (see [12] for the definition of a
suitable norm on H1

0 (S)). Note that a function f 2 H1

0 (S) is defined
on �S and possibly non null only on S.
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The next theorem, proved in [12], characterizes the eigenstructure of
the Laplacian operator defined on H1

0 (S).
Theorem 1: Let G be a connected graph and S a proper subgraph

of G. Then, the operator � : H1

0 (Sj
d) 7! L2( �Sj d) has jNS jd

strictly negative eigenvalues. Moreover, the corresponding eigenfunc-
tions form a basis for H1

0 (Sj
d).

III. MULTIPLE STATIONARY LEADERS

In this section, we use PdEs for modelling and analyzing a group
of agents with multiple leaders. A leader is just an agent that moves
toward a predefined goal, and whose control policy is independent of
the motion of all the followers. However, followers that are neighbors
to the leader can use the leader state in order to compute their control
inputs.

Let r(x; t) be the position of the agent x at time t � 0, where1r 2
L2. The communication network is represented by the undirected and
connected graph G. For distinguishing between leaders and followers,
we consider two subgraphs SF and SL of G and assume that SL =
@SF and SF [ SL = G, where the subscripts denote ”Leaders” and
”Followers” respectively. Note that we assume that all agents are either
designated as leaders or followers.

As already mentioned in the introduction, we will assume that the
followers obey the simple dynamics _r(x; t) = u(x; t), where

u(x; t)
:
= �r(x; t) (3)

is the Laplacian control law. Let r̂(x; t), x 2 NS be the trajectory of
the leaders. Then, the collective dynamics is represented by the model

_r(x; t) =�r(x; t) x 2 NS (4a)

r(x; t) = r̂(x; t) x 2 NS (4b)

endowed with the initial conditions r(�; 0) = ~r 2 L2(SF ).
Model (4) is an example of a continuous-time Partial difference

Equation (PdE) with non-homogeneous Dirichlet boundary conditions.
We refer the reader to [12]–[14] for an introduction to PdEs.

The main results on Laplacian control available in the literature and
specialized to model (4) are:

• in the leaderless case (i.e., SL = ;), the Laplacian control solves
the rendezvous problem, i.e., r(x; t) ! r� 2 d; 8 x 2 NG as
t ! +1. Moreover, the agents converge exponentially to r� =
h~ri thus achieving average consensus. These results have been
established in [15], [16] through the joint use of tools in control
theory and algebraic graph theory. A formal analysis of the PdE
(4a) has been conducted in [13], [14], [17] showing a complete
accordance with results available within the theory of the heat
equation [18];

• in the case of a single leader (i.e., NS = fxLg) with fixed posi-
tion (i.e., r̂(xL; t) = �r 2 d), Laplacian control solves the ren-
dezvous problem with r� = �r [15]. This property has also been
shown in [13], [14] within the PdE framework, thus highlighting
the profound links between model (4) and the heat equation with
Dirichlet boundary conditions [18].

The first attempt of this paper is to characterize the asymptotic be-
havior of the followers in the presence of multiple leaders with fixed
positions. To this end, for the remainder of this section, we will assume
that r̂(x; t) = �r(x) 2 L2(SL). The equilibria of (4) are then given by
the solutions to the PdE

�h(x) = 0 x 2 NS (5a)

h(x) = �r(x) x 2 NS (5b)

1For sake of conciseness, for a function ( ) : we
will often write instead of ( ) .

and they have been studied in [12]. In particular, [12, Theorem 3.5]
shows that if G is connected and NS 6= ; then, the PdE (5) has a
unique solution2h(x). By analogy with the jargon of Partial Differen-
tial Equations, h is termed the harmonic extension of the boundary con-
ditions �r.

Our next aim is to verify that r ! h as t ! +1. Let us consider
the decomposition

r(x; t) = r0(x; t) + h(x); r0 2 H
1

0 (SF ): (6)

Since h does not depend upon time and �h = 0, 8 x 2 NS , the PdE
(4) is equivalent to the following one

_r0(x; t) =�r0(x; t) x 2 NS (7a)

r0(x; t) = 0 x 2 NS : (7b)

From (6), it is apparent that the problem of checking if r ! h as
t! +1 can be recast into the problem of studying the convergence to
zero of the solutions to the PdE (7). The fact that r0 ! 0 as t! +1
follows from Theorem 1 and it can be shown by proceeding exactly as
in the proof of [17, Theorem 5]3.

The next Theorem, proved in [19], highlights a key geometrical fea-
ture of h(x). For a setX of points in d,Co(X)will denote its convex
hull. Moreover, the set 
L is the convex hull of leaders positions, i.e.,

L

:
= Co(f�r(y); y 2 NS g).

Theorem 2: Let S1 be a nonempty connected subgraph of SF and
@S1 be its boundary in G. Then, 8 x 2 NS it holds

h(x) 2 Co(fh(y); y 2 N@S g): (8)

Moreover, one has that h(x) 2 
L, i.e., that the position of each fol-
lower lies in the convex hull of the leaders positions. Finally, if 
L is
full-dimensional4, then h(x) 2 
Ln@
L, 8 x 2 NS .

Another geometrical feature which we need is the following:
Theorem 3: Suppose that 
L is full-dimensional and that r(x; t) is

evolving according to (4). Suppose that, at a given time t = t, there
is an agent x 2 NS such that r(x; t) 2 @
L and r(y; t) 2 
L,
8 y 2 P(x). Then, two situations may occur:

1) there exists an (affine) hyperplane � such that

r(x; t) 2 � \ @
L; and r(y; t) 2 � \ @
L 8 y 2 P(x):

Then

9� > 0 : r(x; t) + � _r(x; t) 2 � \ @
L (9)

2) otherwise

9� > 0 : r(x; t) + � _r(x; t) 2 
L n @
L: (10)

Note that (9) means that the velocity of x will be along the hyperplane
� (in other words, the agent may slide on the boundary @
L), whereas
(10) means that the velocity of x is pointing inside the polytope 
L.
While Theorem 2 and the fact that r ! h as t ! +1 guarantee
that followers asymptotically enter 
L, Theorem 3 ensures that once
all followers are in 
L they cannot exit from this set and therefore
containment will be never violated.

2[12, Theorem 3.5] assumes that the subgraph is induced (see [12] for the
definition of induced subgraphs). However, a careful examination of the proof,
reveals that this assumption is unnecessary.

3Actually, [17, Theorem 5] proves a stronger property, namely that the origin
of (7) is “exponentially stable on the space ( )”. The definition of stability
of equilibria on subspaces is provided in [17].

4The set 
 is full-dimensional if the dimension of the affine hull
generated by 
 is (see [20]).
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Proof: (Theorem 3): Since r(x; t) obeys to (4), by rearranging
terms we obtain

_r(x; t) = �jP(x)jr(x; t) +
y2P(x)

r(y; t):

Then, setting � = jP(x)j�1, it holds

r(x; t) + � _r(x; t) = jP(x)j�1

y2P(x)

r(y; t);

i.e., r(x; t) + � _r(x; t) is the barycenter b(Yx) of the polytope Yx
:
=

Co(fr(y; t); y 2 P(x)g). Note that, if r(y; �t) 2 
L, 8 y 2 P(x)
one has Yx 2 
L. Moreover, thanks to convexity, the barycenter of
Yx lies in the relative interior of Yx. Thus, if all y 2 P(x) verify that
r(y; t) 2 � \ @
L then Yx � � \ @
L and so does b(Yx), i.e.,
b(Yx) 2 � \ @
L; otherwise b(Yx) 2 
L n @
L.

IV. LEADER-FOLLOWER CONTAINMENT CONTROL

Containment of all the followers is achieved in the case of static
leaders in the last section. However, if the leaders are moving, this prop-
erty might be violated. In order to prevent the followers from leaving
the polytope spanned by the leaders, appropriate control strategies need
to be designed for the leaders to guarantee the containment. In what fol-
lows, we propose a hybrid strategy for this purpose and analyze liveness
and reachability of the resluting closed-loop system.

A. Hybrid Control Strategy

For the sake of containment, we define two distinctly different con-
trol modes for the evolution of the leaders. The first of the two control
modes is the STOP mode that corresponds to the leaders halting their
movements altogether in order to prohibit a break in the containment:

STOP : (4a); (4b) and _̂r(x; t) = 0; x 2 NS : (11)

It is clear that in order to execute this mode, no information is needed
for the leaders whatsoever.

The second control mode under consideration is the GO mode, in
which the leaders move toward a given target formation. A number
of different control laws can be defined for this, but, for the sake of
conceptual unification, we let the GO mode be given by a Laplacian-
based control strategy as well.

GO : (4a); (4b) and _̂r(x; t) = �S (r̂(x; t)� rT (x));

x 2 NS (12)

where rT (x); x 2 NS denotes the desired target position of leader x
and �S denotes the Laplacian operator defined solely over the sub-
graph SL, i.e.,

�S f(x)
:
= �

y�x; y2N

@
2
yf(x):

Under the assumption that SL is connected, and by exactly the same
reasoning as for the standard rendezvous problem, under the influ-
ence of the GO mode alone the leaders will converge exponentially
to rL(x) = hr̂(�; 0)� rT (�)i + rT (x), i.e., 9k > 0; � > 0 such that
kr̂(�; t) � rL(x)kL � ke��tkr̂(�; 0) � rL(x)kL . In other words,
no convergence to a predefined point is achieved. Rather, this control
law ensures that the leaders arrive at a translationally invariant target
formation.

Note that the details of the leaders’ motion is not crucial and this par-
ticular choice is but one of many possibilities. However, this choice is
appealing in that it makes the information flow explicit, and the leaders

only need access to the positions (and target locations) of their neigh-
boring leaders in order to compute their motion. As such the decentral-
ized character of the algorithm is maintained.

In order to fully specify the hybrid Stop-Go leader policy transition
rules are needed as well. As before, let 
L denote the leader-polytope
and let d(�;
L) denote the signed distance

d(�;
L)
:
= �
 (�) min

x2@

k�� xk2; (13)

where k � k2 denotes the Euclidean 2-norm, and where �
 (�) = �1
if � 2 
L and +1 otherwise. Using this distance measure we let the
two guards, i.e., transition conditions, be given by

GO2STOP : 9y 2 NS j d(r(y; t);
L) � 0? (14a)

STOP2GO : d(r(y; t);
L) < �� 8 y 2 NS ?

(14b)

where a transition from GO to STOP triggers when the conditions in
GO2STOP are met, and similarly for STOPT2GO , and where � > 0 is
a threshold.

Note that the guard STOP2GO is crossed only if the following as-
sumptions are verified:

Assumption 1: Let ĥ(�; t) be the solution to (5) for �r(�) = r̂(�; t),
8 t � 0 and consider the set 
�

L(t) = fy 2 
L(t) : d(y; @
L(t)) <
��g. Then

1) 
�
L(t) is nonempty, 8 t � 0;

2) Co(fĥ(x; t); x 2 NS g) � 
�
L(t).

Note that, for a given time t � 0, the uniqueness of ĥ(�; t) follows from
the uniqueness of the solution to (5). In particular, Assumption 1 im-
plies that
L must be full-dimensional at all times and “sufficiently fat”
along every direction (see condition 1). Conditions relating property 2
of Assumption 1 to the graph topology are currently under investiga-
tion. A few comments must be made about the computation and com-
munication requirements that these guards give rise to. If two leaders
are located at the end-points of the same face of 
L, then they must be
able to determine if any of the followers are in fact on this face. This can
be achieved through a number of range sensing devices, such as ultra-
sonic, infra-red, or laser-based range-sensors. Moreover, in order for all
leaders to transition between modes in unison, they must communicate
between them, which means that either SL is a complete graph, or that
multi-hop strategies are needed. In either way, a minimal requirement
for these mode transitions to be able to occur synchronously, without
having to rely on information flow across follower-agents, is that SL
must be connected.

The hysteresis threshold � > 0 in the STOP2GO guard and the next
assumption are needed in order to avoid Zeno behaviors. Let �
 de-
note the supremum of the diameter of 
L during an execution.

Assumption 2: 9M < 1 such that �
 � M .
It is easy to check that Assumption 2 is verified when Laplacian con-

trol governs the leaders’ motion in the GO mode as in (12). Indeed, the
exponential convergence of r̂(x; t) to rL(x) = hr̂(�; 0)� rT (�)i +
rT (x) implies that r̂(x; t) is bounded at all times. However, Laplacian
control is but one of many possible control strategies and can be re-
placed by other control schemes (e.g., plan-based leader control laws)
without generating Zeno executions as long as Assumption 2 is verified.

Theorem 4: Under Assumptions 2 and 1, the hybrid automaton de-
fined by (11), (12) and (14) is non-Zeno.

Proof: Let the system be in the STOP mode. Under Assumption
2 we have

k _r(x; t)k = k�r(x; t)k �
y�x

k@yr(x)k

�
y�x

�
 � N�
 ; 8 x 2 NS : (15)
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From Assumption 1, in order for the system to leave the STOP mode, at
least one follower agent must have travelled at least a distance �, which
in turn implies that the system will always stay for a time greater than or
equal to �=N�
 in the STOP mode. In order for the system to exhibit
Zeno executions, a necessary condition is that the difference between
the transition times must approach zero [21]. Since this is not the case
here, the non-Zeno property is established.

B. Liveness and Reachability

As already mentioned, the proposed solution is non-Zeno. However,
as it is currently defined, the Stop-Go policy may be blocking in the
sense that the system never leaves the STOP mode. One remedy to this
problem is to allow the containment to be slightly less tight. In other
words, we can select different guards, e.g.,

GO2STOP : 9y 2 NS jd(r(t; y);
L) > 2�? (16a)

STOP2GO : d(r(t; y);
L) � � 8 y 2 NS ? (16b)

where � > 0. What this means is that we do not enter the STOP mode
until a follower is 2� outside 
L. Let us define


L;�
:
= fy 2 d : d(y;
L) � �g:

Note that, one has 
L � 
L;� . The next Theorem summarizes the
main properties of the resulting hybrid automaton. A remarkable fea-
ture of the guards (16) is that Assumption 1 is no longer needed in order
to guarantee liveness.

Theorem 5: Under Assumption 2, the hybrid automaton by (11),
(12) and (16) is non-Zeno, live, in the sense of always leaving the
STOP mode eventually, and convergent in the sense that r̂(x; t) !
hr̂(�; 0)� rT (�)i + rT (x).

Proof: We first prove liveness. Assume that the system is in the
STOP mode. From Theorem 2 we have that h 2 
L. Since 8 x 2 SF ,
r(x; t) ! h, and 
L � 
L;� , every follower will eventually get back
in 
L;� in finite time (recall that the leaders are stationary in the STOP
mode) hence triggering a transition to the GO mode.

Under Assumption 2, it holds k _r(x; t)k � N(�
 + 2�) and we
can repeat the non-Zeno argument in the proof of Theorem 4 in order
to see that the system always stays in the GO mode for a time greater
than or equal to �=(N(�
 + 2�)).

As a result, in a non-blocking system the leaders will be given infin-
itely many opportunities to move during a finite (bounded away from
zero) time horizon, which implies convergence to the target location as
long as the leaders would in fact end up at the target location under the
influence of the GO mode alone.

V. CONCLUSIONS

In this paper, we presented a hybrid Stop-Go control policy for the
leaders in a multi-agent containment scenario. In particular, the control
strategy allows us to transport a collection of follower-agents to a target
area while ensuring that they stay in the convex polytope spanned by
the leaders. The enabling results needed in order to achieve this is that,
for stationary leaders, the followers in a connected interaction graph
will always converge to locations in the leader-polytope. Extensions
to the proposed control strategy are moreover given in order to ensure
certain liveness properties.
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