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O
ne challenge facing coordination and deploy-
ment of unmanned aerial vehicles (UAVs)
today is the amount of human involvement
needed to carry out a successful mission.
Currently, control and coordination of

UAVs typically involves multiple operators to con-
trol a single agent. The aim of this article is to invert
this relationship, enabling a single pilot to control
and coordinate a group of UAVs. Furthermore,
decision support is provided to the pilot to facili-
tate effective control of the UAV team. In the
scenario envisioned in this article, the human
operator (the pilot) is operating along-side a
team of UAVs. The pilot communicates with
the UAV team remotely and controls the UAV
team to execute a surveillance mission.

An important aspect of this is the question of
how much the pilot should interact with the
UAV team and how much aid should be provided
to the pilot without overloading the pilot with data
and support. We address this issue by allowing two
major modes of operations, namely autonomous
mode and pilot-controlled mode. In both of these
modes, the UAV team is controlled in a leader–follower
manner, and the leader UAV is assigned by the pilot, where
the followers are positioning themselves with respect to the
other UAVs in the network. In the autonomous mode, the
leader UAVexecutes the mission without intervention of the pilot.
At any time, the pilot is allowed to take over and directly control the
leader vehicle. Hence, the pilot can interrupt the mission to investigate
an area or avoid certain threats. The pilot can also release control of the UAV,
and the UAV team automatically resumes the execution of the given mission.

The problem of controlling multiple agents in a coordinated fashion to
achieve a set of goals, such as maintaining desired formations, ensuring coverage
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of an area, or selection of the best leader for a group of agents,
has received considerable attention during the last decade. In
particular, multiple approaches have been developed to allow the
inclusion of a human operator. In [1] and [2], the human opera-
tor provides commands to all the agents in the network either by
total control of the robot or supervisory control, which modifies
the behaviors of the robots. In either case, the same commands
are provided to all the agents in the network simultaneously.
Another work [3] developed a central interface to display the
information of a swarm of mobile robots. In [4], the effect of
information and decision aids provided to a human operator is
examined in an abstract setting to address the question of how
much interaction with the human should be provided.

The main novelty of the work in this article lies in the deci-
sion support aid provided to the pilot in the form of leader
selection mechanisms. During operation of the system, the
pilot can reconfigure the UAV network topology by assigning
a different leader vehicle. When the system is in autonomous
mode of operation, a desired leader selection is provided to the
pilot. This selection is computed by a receding horizon, real-

time optimal control algorithm that evaluates relative merits of
different leader selections toward execution of the mission. It
should be noted that we always insist on including the human
operator in the loop for making high-level control decisions.
Although this article focuses on a single-leader, multiple-
followers scenario, the system introduced here can be general-
ized to a system with multiple leaders and groups.

System Architecture
The support system developed here is designed with the philos-
ophy in mind that the aid and support are provided but not
forced. The mission implemented to demonstrate the pilot
decision-support system is a surveillance mission, and an a priori
mission plan is generated at configuration time using pilot input.
Once the mission is planned, it is executed autonomously. The
pilot can take control at any time, during which the mission is
paused. This is expected since the pilot may choose to investi-
gate an area of interest or avoid certain threats. The overview of
the pilot decision-support system is shown in Figure 1. The
arrows represent information and interactions between different
components of the framework.

Information and support is designed to be delivered to the
pilot in a way so that data can be understood and acted upon
quickly. Hence, the central component of the system is a
graphical user interface (GUI). An example of the GUI during
operation of a mission is shown in Figure 2. All data and infor-
mation are congregated and exchanged at the GUI, including
local information about the individual UAVagents and decision
support computed by the optimal control module. This inter-
face also provides the mean of interaction between the pilot
and UAVagents. The pilot selects and controls the leader vehi-
cle by interacting with the GUI. In addition, the GUI displays
data (location, altitude, etc.) of the network graphically so that
the information can be easily absorbed by the pilot. The back-
ground map shown on the GUI corresponds to the environ-
ment of the UAVs, which is a virtual three-dimensional (3-D)
world constructed in a Player/Gazebo simulation environment
[5], as shown in Figure 3. This simulation environment is
described more in detail in the next section.

The system supports autonomous mode and pilot-control
mode of operation. The pilot can switch the system between
these two modes at any time. For the majority of time in
autonomous mode, the autonomous controller is designed to
execute the surveillance mission. This mode of autonomous
operation is referred to as the mission-execution mode. There
may be situations when an imminent threat is detected by local
sensors on the UAVs, in which case the system switches to the
threat-avoidance mode, in which threat avoidance is carried
out in higher priority. Furthermore, the optimal timing con-
trol module is designed to provide decision aid based on state
information when the system is in mission-execution mode.
Every time the system switches to the mission-execution
mode, the decision aid is recomputed in a real-time fashion.

Autonomous Mode
One important goal of the proposed system is to provide auton-
omous operation of the UAV team for a given mission. In

Data

Commands

Pilot Interface

Leader
Selection
Control Input

Decision
Aid

Leader
Selection

Information

Pilot Control
Mode

Optimal
Timing
Control

τ̄ (t ) t +Tst

x(t ) x(s)˜x
x0 Ts

Information

Autonomous Mode

Mission
Execution

Threat
Avoidance

Information

Pilot
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autonomous operation, it is vital to choose a proper forma-
tion and topology for the multiagent network in response to
changes in the environment or human intervention. For
example, [6] suggests using a spread-out formation in an open
space and a closely grouped formation in a tight area. In the
proposed framework, the UAV team is designed to be con-
trolled in a leader–follower fashion. This has been an increas-
ingly important approach to control multiagent network
systems, and it is proven to be successful for many tasks (see
[7] and [8], for example). Using the leader–follower control
approach, the topologies of the network depends on the
identity of the leader agent. After the pilot releases control, it
may be necessary to reevaluate the network topology so that
a better candidate vehicle may be chosen as the leader. To this
end, it is natural to characterize the network as a hybrid sys-
tem that switches among a number of topologies (see [9] for a
similar idea).

For the clarity of presentation, we consider a UAV team
consisting of three individual UAVs. One of the UAVs is desig-
nated as the leader vehicle, and the remaining UAVs act as fol-
lowers. Each follower maintains a proper distance with respect
to the leader and the other follower. Thus, in this UAV net-
work, it is possible for the pilot to switch between three dis-
tinct subsystems, each defined by designating a different agent
as the leader. At the planning level, the state of the system is
defined as x ¼ ½xT

1 , xT
2 , xT

3 �
T, where xi 2 R3 is the position of

the ith robot in the network. Since the mission will be speci-
fied as evolving on the plane, it is useful to defined the operator
Pxi ¼ ½xi1, xi2�T.

The mission of the UAV network is defined as a surveil-
lance task, and the goal of the mission is to provide coverage
for an area. One way to achieve this task is to create a plan at
configuration time using either a path planner or input from
the pilot. The controller of the UAV network is designed to
navigate through this path. This path is denoted as p(t) 2 R2.
We let this path be generated by first laying down a set of
way-points on the map of the area, then computing a
smoothing spline curve based on the way-points. The

Figure 2. GUI of the pilot decision-support framework.

Figure 3. UAVs in Player/Gazebo 3-D simulation environment.

IEEE Robotics & Automation MagazineJUNE 2009 75

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 16, 2009 at 10:22 from IEEE Xplore.  Restrictions apply.



smoothing spline guarantees the continuity of p(t), while bal-
ancing the curvature of the path and the distance from the
path to the given way-points.

Let the identity of the leader be l, where l 2 f1, 2, 3g. At
a high level of abstraction, we let the dynamics of the net-
worked system in autonomous and mission-execution mode
be given by

_xl(t) ¼
p(t)� Pxl(t)

0

" #
,

_xi(t) ¼ a
X
j 6¼i

(kxi(t)� xj(t)k � k)(xj(t)� xi(t)),

i ¼ f1, 2, 3gnflg:

The leader controller is thus a simple proportional compen-
sator that drives the leader agent to the desired path. This way,
at least one UAV in the network is regularly covering the area
over the given path. The followers execute a weighted
consensus dynamics. This controller is designed to maintain a
fixed distance k from the follower to the other two UAVs,
driving the UAV network to a triangular formation. The
vertical component is moreover kept constant to be used only
when directly controlled by the pilot or when avoiding
threats. An example of the UAV network information with
the leader tracking a path is shown in Figure 2. In the autono-
mous mode, the leader vehicle is colored red, and the fol-
lowers are colored green.

In addition to mission execution, the proposed frame-
work also provides threat-detection capabilities. When an
external threat is perceived by sensors, the UAVs must work
to avoid the threat while navigating nominally along the
defined path. This mode of operation within autonomous
mode is referred to as the threat-avoidance mode. Within
this mode, the dynamics of the agents are determined by the
behavior arbitrator of each agent. The behavior arbitrator
generates the appropriate behavior so that each agent moves
away from the threat while performing its individual role in
a weighted fashion. Once the threat is perceived to be out of
range, then the system returns to the mission-execution
mode. This switching behavior is illustrated in the autono-
mous-mode module in Figure 1.

Optimal Timing Control
The objective of the optimal control module is to compute
optimal switching times that minimize a cost function,

which is formulated as a measure of the progress of the
surveillance task. As a result, this decision aid is only pro-
vided when the pilot decision-support system is in autono-
mous and mission-execution mode. The switching times
information is then fed-back to the pilot, and it is up to the
discretion of the pilot whether or not to switch according to
the decision aid. For the pilot decision-support framework,
the network is reconfigured constantly during system
run-time, and the switching times need to be constantly
recomputed online and updated. Furthermore, since the
final mission time can be long and optimal control requires
simulation of the state trajectory, a receding horizon
approach is used. In this approach, a look-ahead window is
selected, and the merits of switching to different leaders are
evaluated over this time horizon.

We first attack this problem in a rather general setting by
considering an autonomous switched dynamical system in the
form of

_x ¼ fi(x), t 2 ½si�1, si), i ¼ 1, . . . , N þ 1, (1)

with a given time horizon length Ts and initial condition x0.
The index i denotes the mode of the hybrid system and si

denotes the switching time instant between mode i and mode
(iþ 1), assuming that s0 is the initial time and sNþ1 ¼ s0 þ Ts

is the final time. The vector �s ¼ ½s1, s2, . . . , sN �T is called the
switching time vector, and the optimization task is to minimize
a cost function as a function of �s. As this is normally a hard
problem, what we aim for is a real-time algorithm that
improves the switching time vector at each time step.

Since we define the surveillance task in terms of tracking a
given path, the instantaneous measure of task progress can be
formulated as the average distance of the UAV network to the
path. This average distance is the distance between the centroid
of the network to the path, and we use centroid(x(t)) to denote
the centroid of the network. Hence, the real time optimal con-
trol problem is that of minimizing the centroid of the UAV team
to the given path over the sliding window. This is a cost-to-go
functional since it depends on the true time t, and is evaluated
over a state trajectory over the time interval ½t, t þ Ts�. This state
trajectory has to be simulated since it happens in the future. This
future trajectory is denoted by ~x(s), where s 2 ½t, t þ Ts� denotes
the simulated time. The dynamics of the simulated trajectory is
identical to the system equation given in (1), with the initial
condition ~x(t) ¼ x(t).

As such, the cost-to-go functional is given by

J(t, x(t), �s(t)) ¼
Z tþTs

t
L(kcentroid(~x(s))� p(s)k2

2)ds: (2)

This performance measure ensures that we select the UAV
that minimizes the average distance between the UAV network
to the given path.

The goal of the real-time optimal control module is to
update the switching time vector at each time-step, in such a
way that it gets incrementally closer to the optimal solution.
The iterative process used for this is a Newton-Raphson-based

The behavior arbitrator generates

the appropriate behavior so that

each agent moves away from the

threat while performing its

individual task.
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real-time algorithm. This algorithm was first derived and
proposed in [10], and a convergence analysis for a similar
Newton-Raphson-based real-time algorithm was presented in
[11], which showed that the convergence rate is quadratic.
Quadratic convergence rate of this class of algorithms ensures
the optimal switching times can be quickly obtained.

Pilot-Control Mode
As previously mentioned, at any time during the mission,
the pilot may take control of the leader vehicle. In this
mode of operation, the dynamics _x ¼ fl(x) of the subsystem
corresponding to l-th UAV being the leader of the UAV
network becomes

_xl(t) ¼ u(t),

where uðtÞ is the control input (direction and speed) supplied
by the pilot. The followers in this mode use the exact same
dynamics as the mission-execution mode (maintaining a dis-
tance k from each other), but the leader is controlled directly
by the pilot.

The pilot enters the mode by clicking on the pilot virtual
joystick as shown in the lower-right corner in Figure 4.

The mouse click is used to generate the direction, and the
speed of the vehicle can be adjusted by the virtual dial on
the joystick panel. When the pilot is in control of a UAV,
the vehicle is colored blue. If the pilot wishes to release con-
trol to autonomous mode, the pilot needs to click on the
clear button.

System Logic
Since all the components of the system architecture are
described, we are ready to explain the logic flow of the pilot
decision-support system for a surveillance mission. At every
cycle (time step), the system goes through a decision tree as

The mission of the UAV network is

defined as a surveillance task, and

the goal of the mission is to provide

coverage for an area.

Figure 4. GUI when in pilot-control mode of operation.
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shown in Figure 5 and switches to a different mode if neces-
sary. The human pilot always has total control in decision
making, including leader selection and movement of the UAV
team. Furthermore, in the autonomous mode, threat avoid-
ance has higher priority than mission execution. Therefore,
the system switches to mission execution only when there is
no threat perceived. It is moreover only during mission exe-
cution that the decision support will be computed and deliver
to the pilot. This ensures that computational resources are not
wasted. When the decision support is provided, it is up to the
discretion of the pilot on whether or not to abide by the com-
puted suggestion.

Implementation
The pilot decision-support system is implemented in a
modular and extendible way. A third-party open-source
(Player/Gazebo) simulation environment is used to generate
a 3-D environment where physical interactions can be
simulated realistically. Furthermore, this simulation envi-
ronment allows for a seamless transition from simulation to
robotic hardware so that the system may be implemented on
real UAVs in the future.

Agent Implementation
The UAV agents are implemented using a modular, behav-
ior-based design. Primitive and integrated perceptual

information from a variety of sources are directed through a
set of behaviors that calculate output preferences for con-
trol set points in three dimensions: translational curvature
within the x–y plane (k), translational velocity within the
x–y plane (v), and altitude (z). The output from the individ-
ual behaviors is combined in a behavioral arbitration layer,
resulting in final k, v, and z set points for the vehicle’s low-
level controllers.

Perceptual Sources

Each robot in the simulation is implemented as an independent
agent, acting either as a leader robot or a follower robot, accord-
ing to input from the pilot. The robots act on information from
several sources. The following are the sources included.

1) A priori plan: as described in the ‘‘Autonomous Mode’’
section, a plan is generated at configuration time for
the UAVs to follow, which leads them through the
simulated environment. The plan is represented by a
time-parameterized smoothing spline curve based on a
set of way-points provided by the pilot.

2) External perception: via an interface with the simulation,
the robots are able to observe their own relative and
global positions. Additionally, they are aware of fea-
tures within the environment, including external
threats, which must be avoided.

3) Inter-robot communication: the robots are able to commu-
nicate their internal states, including whether they are
currently acting as a leader or follower robot, with each
other. The robots are also able to communicate their
global positions to aid in the formation maintenance.

4) Pilot input: the human pilot may communicate to
the robots, choosing one to act as leader within
the group, and, optionally, taking remote control
of the leader.

Behavioral Control

The UAVs navigate using a behavior-based control system
based on the distributed architecture for mobile navigation
(DAMN) (see [12] and [13], for an extended version). In this
architecture, each behavior represents a particular interest of
the agent (e.g., avoid threats, follow the plan, and follow the
pilot’s input). The behaviors’ output is expressed as preferences
or votes, across a set of discrete options for the next control set
point. Arbitration between these behaviors is performed by
finding the option with the highest preference from a weighted
sum of all behaviors.

In addition to expressing preferences across a set of possible
k values, each behavior may set a maximum allowable v and a
minimum allowable z, given each k value. Once a k value is
chosen by the arbiter, the minimum of the maximum allow-
able v’s associated with the chosen k is set as the translational
velocity set point. Likewise, the maximum of the minimum
allowable z’s associated with the chosen k is set as the altitude
set point. The k, v, and z set points are passed on to low-level
controllers, which control the actuation of the vehicle to
achieve the commanded set points. The set of available behav-
iors are as follows:

At any time, the pilot is allowed to

take over and directly control the

leader vehicle.

Pilot Control
Mode Pilot Take
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No
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Pilot Decision
Support System

Mission
Execution

Threat
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ẋ = f (x)

Figure 5. Logic of the pilot decision-support system at
each cycle.
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1) Leader behavior: At any given time, only one robot may
act as a leader. The leader’s task is to follow the a pri-
ori plan using a simple proportional compensator, as
described in the ‘‘Autonomous Mode’’ section.

2) Follower behavior: The follower robots act to maintain
an appropriate distance from the leader and from each
other by weighted consensus, as described in the
‘‘Autonomous Mode’’ section.

3) Threat-avoidance behavior: All robots work individually to
avoid detected external threats. Threat detection is imple-
mented using a local sensor model. The threat-avoidance
behavior only expresses a preference if an external threat
is detected by the local sensor model.

4) Pilot-guidance behavior: The pilot may choose to take
remote control of the leader robot. This behavior fol-
lows the input given by the pilot, as described in the
‘‘Autonomous Mode’’ section.

Pilot Interface
The GUI (Figure 2) is implemented separately from the simula-
tion environment, and it communicates with each agent via
TCP/IP. It also communicates with the optimal control mod-
ule to send state information and receive decision support. The
GUI retains a copy of the mission (seen as the black curve in
Figure 2) and initial way points set by the pilot to generate the
mission plan (yellow dots in Figure 2). The roles of the UAV
agents are distinguished by color. In autonomous mode, the
leader UAV is red. In pilot-control mode, it is blue. Followers
are always green, unless one is suggested as leader, in which case
it becomes black.

Results
Demonstrations of the above-described system are organized
to highlight three features: 1) leader selection, 2) decision sup-
port, and 3) pilot control. Background images are removed to
show the results more clearly. For clarification, the roles of
UAVs are marked on the figures.

Figures 6 demonstrates the pilot’s ability to designate a
leader UAV from the team of UAVs. Figure 6(a) depicts the
pilot interface showing a team of three UAVs navigating along
a predefined route. The designated leader is in front (marked
and colored red), whereas the other two UAVs follow behind
(marked and colored green). In Figure 6(b), the pilot selects
one of the two follower UAVs to become the new leader.
Immediately, the selected UAV moves to take its place at the
front of the formation, whereas the former leader moves to
take its new place as a follower in the formation. In Figure
6(c), the new steady-state behavior with the newly designated
leader in the front of the formation is shown.

Figure 7 shows the pilot decision-support system in
action. In Figure 7(a), the UAVs are in formation but offset
from their commanded route. In this state, the UAV lowest in
the screen would make the best leader, as evaluated by the
pilot decision-support system. This is communicated by col-
oring the center of the UAV in question black. In Figure
7(b), the state of the UAVs immediately after the pilot has
selected the suggested UAV to be the new leader. The new

The optimal timing control

module is designed to provide

decision aid for the pilot.
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by the Pilot
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Figure 6. Demonstration of the pilot designating a new leader
for the formation of UAVs. (a) The formation of UAVs follow
the planned path. (b) The pilot chooses a new leader. (c) The
new leader takes its position at the front of the formation.
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leader moves to lead the other UAVs toward commanded
route. Finally, in Figure 7(c) shows the UAVs in steady-state
formation shortly thereafter.

The affordance for the pilot to manually navigate the leader
UAV is demonstrated by Figure 8: Figure 8(a) shows the

(a)

(b)

(c)

0

253.50000000000003 m

Area of Interest

Follower UAVs

Leader UAV

Virtual Joystick

0

150.0 m

0

150.0 m

Figure 8. Demonstration of the pilot exploring an area of interest
by remote controlling the leader UAV. (a) The UAVs move along the
planned path. An area of interest to the pilot lies to the northwest
of the formation. (b) The pilot remote controls the leader to the
area of interest. (c) The pilot returns the leader to autonomous
control. The formation moves back to the planned path.
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Leader UAV
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Figure 7. Demonstration of the decision-support system aiding
the pilot by suggesting a new leader. (a) The formation of
UAVs is off the planned path. The pilot decision-support
system suggests a new leader to get back to the path faster.
(b) The pilot takes the suggestion of the decision-support
system, selecting the suggested UAV to be the new leader.
(c) The formation moves back to the planned path.
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formation of UAVs following their commanded route. An area
of interest to the pilot (marked by the red polygon) is to the
northwest of the formation. To explore the area of interest, the
pilot uses the virtual joystick (shown in the bottom right cor-
ner of the interface) to pilot the leader UAV, as shown in Figure
8(b). The UAV under the pilot’s control is colored blue. The
other two UAVs continue to operate autonomously, albeit as
followers. In this manner, the pilot is essentially in remote con-
trol of the entire formation. Once the pilot is satisfied with the
exploration achieved, the leader UAV is returned to autono-
mous operation. Figure 8(c) shows the fully autonomous
formation returning to it mission.
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