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Multi-UAV Convoy Protection:
An Optimal Approach to Path Planning and Coordination

X. C. Ding, A. Rahmani and M. Egerstedt

Abstract—In this paper we study the problem of controlling
a group of Unmanned Aerial Vehicles (UAVs) to provide convoy
protection to a group of ground vehicles. The UAVs are modeled
as Dubins vehicles flying at a constant altitude with bounded
turning radius. We first present time-optimal paths for providing
convoy protection to stationary ground vehicles. Then we propose
a control strategy to provide convoy protection to ground vehicles
moving on straight lines. The minimum number of UAVs required
to provide perpetual convoy protection in both cases are derived.

I. INTRODUCTION

CONTROL and coordination of heterogeneous unmanned
vehicles is one of the canonical problems and the key to

success for many proposed unmanned missions. We explore
this coordination in the framework of providing ground convoy
protection for a group of UGVs (Unmanned Ground Vehicles),
using a group of dynamically more capable UAVs (Unmanned
Aerial Vehicles). From the early days, airplanes have been used
to provide close air support or large-scale area surveillance
for ground convoys in unknown and potentially dangerous
environments. Wide spread use of UGVs to conduct tasks
in these environments has necessitated the design of practi-
cal approaches to effectively control and coordinate multiple
UAVs to provide coverage, surveillance, tracking and convoy
protection for the UGVs (see, for example, [2], [6], [11], [12],
[16], [24]).

These UAVs often use on-board cameras to conduct the
aforementioned tasks. In many surveillance applications with
small UAVs (for example [18], [19]), the motion of the camera
is decoupled from that of the UAV using a gyro stabilized
camera platform that keeps the camera pointing in the same
direction regardless of the motion of the UAV. This approach
provides the UAV with crisp images even with high frequency
oscillations of the UAV itself. Hence, in this paper we make
the assumption that the on-board camera always points down
and as such, the UAV monitors a circular disk on the ground.

In this paper, we adopt an optimal approach for path
planning and coordination of multiple UAVs to provide convoy
protection to ground vehicles. We model the UAVs as Dubins
vehicles flying at constant altitude. Limited ranges of sensors
on board the UAVs, together with their kinematic constraints,
might make it impossible to provide coverage to the ground
vehicles with a single UAV. In this case, we are interested
in finding the best path for individual UAVs so that they can
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monitor the ground vehicles for the longest time, and then
coordinate the UAVs in such a way that the ground vehicles
are visible to at least one UAV at any given time. Figure 1
visualizes this concept.
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Fig. 1. UAVs providing convoy protection to UGVs. The UAVs are assumed
to be kinematically restricted by their minimum turning radius R. The sensors
on board the UAVs also have limited range and are assumed to be able to
observe a disk of radius r on the ground.

A Dubins vehicle is a planar vehicle with bounded turning
radius and constant forward speed. L.E. Dubins was the first
to give a characterization of time-optimal trajectories for such
a vehicle using geometric methods [8]. Shortest-path problems
for Dubins vehicles have been since studied extensively (see
[1], [4], [9] for example). A Dubins vehicle that can move
backwards was studied by Reeds and Shepp [20], and the
shortest-path problem for a Reeds-Shepp vehicle was further
studied and classified by Souères and Laumond [23]. Walsh
et al. [25] found optimal paths using quadratic cost functions
for a Dubins airplane in SE(2), SO(3) and SE(3). McGee
et al. [17] obtained time-optimal paths for Dubins vehicles
in constant wind. Dubins vehicles have moreover been used
as a simplified model to describe planar motions of UAVs in
[21]. Chitsaz et al. [5] extend the Dubins’ model from SE(2)
to SE(2) × R to account for altitude changes and gave a
characterization of the time-optimal trajectories for this model
based on the final altitude.

Optimal trajectories of a Dubins vehicle are often con-
structed using motion primitives (see [3], [10], [13] for ex-
ample). For point-to-point minimum-time transfer problems, it
has been shown that the optimal solutions are curves consisting
of only three motion primitives: line-segments and circular
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arcs turning maximally to the left and to the right (see [8],
[15], [22]). The optimal paths for the point-to-point minimum-
time transfer problem are characterized by sequences of these
three motion primitives. This paper shows that in the case of
stationary convoy protection, time-optimal paths are character-
ized by sequence of only two motion primitives (maximally
turning left and turning right) and do not include any line-
segments.

This paper expands upon the results in [7], in which only
the stationary convoy case was discussed. In this paper we
address the problem of coordinated convoy protection using
kinematically constrained UAVs for both stationary UGVs
and UGVs moving on a straight line. We first consider the
convoys as stationary and find the global optimal path for a
single UAV to maximize the coverage time. Similar to many
previous time-optimal path-planning work (e.g [4], [5], [17],
[23], [22]), we use Pontryagin’s Minimal Principle to derive
optimal trajectories. We then show how to coordinate a group
of UAVs to provide continuous coverage of the convoys and
the minimum number of UAVs required to achieve continuous
convoy protection for all time.

Next, we address ground convoys moving in a straight line
and propose a control strategy for the UAVs so that their
paths consists of alternating circular arcs. This control strategy
guarantees periodical meet-up with the convoy, and it allows us
to obtain a bound on the speed of the convoy so that continuous
convoy protection can be provided by only one UAV for all
time. If the speed of convoys is outside of this bound, we
provide the minimum number of UAVs required to supply
continuous convoy protection using this control strategy.

The rest of the paper is organized as follows: Section II
formulates the problem. Section III address the problem in
the case of stationary convoys. Section IV address the problem
when the convoys are moving on a straight line, and Section
V concludes the paper.

II. PROBLEM FORMULATION

The UAVs are modeled as Dubins vehicles flying at constant
altitude with unit speed1 and minimum turn radius of R.
Therefore, we can write the kinematics of the UAVs as

ẋ = cos(θ)
ẏ = sin(θ)

θ̇ = ω,
(1)

where x and y are the position of the UAV in the x-y
plane at the altitude the UAV is flying, and ω is the angular
velocity of the vehicle. The angular velocity is bounded by
the inverse of the minimum turn radius R of the vehicle, i.e.,
ω ∈ [− 1

R ,
1
R ]. We let the state of the system be given by

q(t) = [x(t), y(t), θ(t)]T .
In this paper, we assume that the cameras on board the

UAVs can monitor a disk of radius r on the ground (see
Figure 1 for an illustration of this scenario). That is, we
assume that the on-board camera is attached to a gyro and
is always looking down, regardless of the bank angle of

1The unit speed assumption is justified since the results presented in this
paper describe paths, and these are invariant under different forward speed.

the UAV. A gimballed camera system is commonly used in
UAV surveillance applications (see for example [18], [19]). In
addition, to simplify the problem, we consider ground convoys
to be a point located at the centroid of the convoys in the x-y
plane. Hence, we define successful convoy protection as being
achieved when the centroid of the UGVs is visible to at least
one of the UAVs at any time. Hence, convoy protection is
provided by the UAV if the distance between the UAV and
the centroid of the UGVs are less than or equal to r.

The disk of observation and its radius r certainly depend on
the altitude of the UAV, but to ensure quality of observation
and successful protection, cameras or sensors on board the
UAV have narrower field of view than the UAV’s turning radius
in many cases, especially for cameras and sensors that carry
out tasks using computer vision algorithms, which require
certain level of image resolution. In these cases, R > r, and if
the UGVs are stationary, then a single UAV is not capable of
providing convoy protection to the ground vehicles indefinitely
and a control strategy is needed to optimize the time in which
convoy protection is achieved. This can be seen by drawing a
circle of radius r using the position of the centroid of UGVs
as the center. If there is only one UAV, then due to the fact
that R > r, the UAV will eventually fly out of this circle no
matter where it starts.

Note that in case of static convoys, if R ≤ r, then the
convoy protection problem is trivial since it can be solved by
using a single UAV flying on a circular path of radius R with
the center being the centroid of the ground vehicles. In this
case, convoy protection is provided for all time using only one
UAV.

In this paper we consider the problem of controlling and
coordinating the UAVs to provide convoy protection for both
stationary UGVs and UGVs moving on a straight line. In both
cases we assume that R > r. We denote the convoy circle
as a disk of radius r centered at the centroid of the UGVs.
Using the convoy circle, it can be seen that convoy protection
is achieved if at least one UAV is present inside the convoy
circle at any time. Because of the kinematic constraint (turning
radius R of the UAV), the UAVs are required to be coordinated
so that they collectively provide continuous convoy protection
while individual UAVs enter and leave the convoy circle.

III. OPTIMAL CONVOY PROTECTION FOR STATIONARY
CONVOYS

A. Single UAV Time-Optimal Paths

First we consider the problem of using one UAV to provide
convoy protection to some stationary UGVs for maximum
amount of time, which is equivalent of finding the longest
feasible path inside the convoy circle. We will determine both
the optimal path for a single UAV starting at a fixed initial
condition, and the optimal path if the UAV is allowed to pick
the initial condition (position and heading) when entering the
convoy circle.

Fix the origin of the x-y plane at the centroid of the UGVs.
We then obtain a maximum-time optimal control problem with
state constraint x2 + y2 − r2 ≤ 0 and input constraint |w| ≤
1
R . Furthermore, it can be assumed that the UAV starts at a
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point on the state constraint boundary (convoy circle). This
assumption does not limit generality of the result since if the
UAV starts inside the convoy circle, we can use Bellman’s
Principle to obtain the optimal path for the UAV by integrating
backwards in time.

To facilitate the analysis, it is useful to impose an extra ter-
minal manifold constraint. Since the optimal solution always
has the terminal state (henceforth denoted as the exit state) be
on the boundary of the state constraint set (exiting the convoy
circle), the terminal constraint of being on the convoy circle
when exiting is enforced. To simplify the notation, we denote
qT := q(T ) and [xT , yT , θT ] := [x(T ), y(T ), θ(T )]. Using
these notations, the terminal manifold can be defined as the
set of states that satisfy:

M(qT ) = x2T + y2T − r2 = 0. (2)

The optimal control problem can then be defined as:

Problem 3.1:

min
ω(t)

J =

∫ T

0

−1dt, (3)

subject to the dynamics of (1) with a given initial condition
q(0), the input constraint

− 1

R
≤ ω(t) ≤ 1

R
, (4)

the state constraint

x(t)2 + y(t)2 − r2 ≤ 0 (5)
x(0)2 + y(0)2 − r2 = 0 (6)

and the terminal manifold constraint

M(q(T )) = x(T )2 + y(T )2 − r2 = 0. (7)

We henceforth denote this problem as Πq(0).
We exclude initial conditions that generate no paths enter-

ing the convoy circle. This occurs when the initial heading
θ(0) points away from the convoy circle. The set of initial
conditions Λ that are considered for the optimization problem
are thus given by:

Λ = {q = [x, y, θ]T : x2 + y2 = r2, and

−π
2
< θ − atan2(y, x) <

π

2
}. (8)

We call set Λ the feasible entry set. For simplicity of notation,
we assume that all angles are taken modulo 2π.
Πq(0) is an optimal control problem with both input and

state inequality constraints. Optimal control problem with state
inequality constraints are usually hard or impossible to solve
explicitly. Fortunately, in this problem, due to the special
structure of the state inequality constraint (5), there are only
2 points on the state trajectory where the constraint is active.
These two states correspond to when the UAV is entering and
exiting the convoy circle. Due to this special structure, we
use an auxiliary state to handle the state constraint. Define
ξ(x2 + y2 − r2) as an inverted Heaviside function:

ξ(x2 + y2 − r2) =

{
0 : x2 + y2 − r2 ≤ 0
1 : otherwise. (9)

Define a new state τ as:

τ̇(t) = (x2 + y2 − r2)2 ξ(x2 + y2 − r2), (10)

The state of the UAV is then augmented as q̄(t) =
[q(t), τ(t)]T . Let us assume that τ(0) = 0 and impose
the terminal constraint that τ(T ) = 0. By imposing this
constraint, and since τ̇(t) ≥ 0,∀t ∈ [0, T ], we have that
τ̇(t) = 0,∀t ∈ [0, T ]. Hence,

τ(t) = 0,∀t ∈ [0, T ]. (11)

Note that the terminal constraint τ(T ) = 0 enforces the
state inequality constraint (5). Using this auxiliary state τ ,
we are able to transform the state inequality constraint into an
equivalent terminal constraint. When there is no ambiguity, we
assume that the state constraint (5) is satisfied and we still call
q(t) the state trajectory.

The Hamiltonian for this optimal control problem is:

H = −1 + λ1 cos θ + λ2 sin θ + λ3ω +

λ4(x
2 + y2 − r2)2ξ(x2 + y2 − r2), (12)

where λ = [λ1, · · · , λ4]T are the costates. The costates satisfy
the following differential equations in the time interval [0, T ]:

λ̇1 = −∂H
∂x

= −2xλ4(x
2 + y2 − r2)ξ(x2 + y2 − r2),

λ̇2 = −∂H
∂y

= −2yλ4(x
2 + y2 − r2)ξ(x2 + y2 − r2),

λ̇3 = −∂H
∂θ

= λ1 sin θ − λ2 cos θ

λ̇4 = −∂H
∂τ

= 0.

When the state constraint (5) is satisfied, the last term in
the Hamiltonian (12) does not contribute since λ4(x2 + y2 −
r2)2ξ(x2+y2−r2) = 0,∀t ∈ [0, T ], and thus the Hamiltonian
becomes:

H = −1 + λ1 cos θ + λ2 sin θ + λ3ω. (13)

The necessary optimality condition from the Pontryagin’s
Minimum Principle states that

H(q̄⋆(t), λ⋆(t), ω⋆(t), t) ≤ H(q̄⋆(t), λ⋆(t), ω(t), t),

∀ω(t) ∈
[
− 1

R
,
1

R

]
, t ∈ [0, T ], (14)

where q̄⋆(t) denotes the optimal augmented state trajectory,
λ⋆(t) denotes the optimal costate trajectory corresponding to
q̄⋆(t), and ω⋆(t) is the optimal control.

Using the necessary optimality condition (14) on the Hamil-
tonian equation (13), one can see that the optimal control ω⋆(t)
is a function of the costate λ⋆3(t):

ω⋆(t) =

 − 1
R , if λ⋆3(t) > 0

1
R , if λ⋆3(t) < 0
undetermined, if λ⋆3(t) = 0

(15)

Thus, it can be seen that when λ⋆3(t) > 0, the optimal control
is maximum turning right, and when λ⋆3(t) < 0, the optimal
control is maximum turning left. When λ⋆3(t) = 0 for a finite
time interval, then any control ω(t) ∈ [− 1

R ,
1
R ] satisfies the
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Minimum Principle, and the finite time interval when this case
arises is called a singular interval (for discussions on singular
intervals for optimal control problems, see any standard text
on optimal control, such as [14]). Hence, the optimal control
is in the form of bang-bang (if there is no singular interval)
or bang-off-bang (if there are singular intervals).

If there is a singular interval for Πq(0), then it is necessary
that there exists a time interval [t1, t2] such that, λ3(t) = 0
and λ̇3(t) = 0 for all t ∈ [t1, t2]. For Dubins vehicles with
dynamics specified in equation (1), singular intervals result
in line segments as part of the optimal path. Line segments
are usually part of the optimal paths for shortest-path (or
minimum-time) Dubins vehicle problems. However, later in
this section, we will show that line segments can not be part of
the optimal path for Πq(0), and as a result the optimal control
always switches between ω⋆(t) = − 1

R and ω⋆(t) = 1
R .

Definition 3.1: For a state trajectory q(t), t ∈ [0, T ] satis-
fying the state constraint (5), if the costate trajectory λ3(t)
and corresponding input ω(t) satisfies the control strategy
(15), then q(t) is referred to as a Candidate Optimal
Trajectory (COT).

Pontryagin’s Minimum Principle states that being a COT is a
necessary condition for being an optimal solution.

Assuming that a trajectory q(t) is a COT but only its
terminal state qT is given, we will show that the entire trajec-
tory q(t), its corresponding costate trajectory λ(t) satisfying
the necessary optimality condition (14) and the control ω(t)
satisfying the optimal control strategy (15) can all be uniquely
determined from the terminal state qT .

First, we note that, when the state constraint (5) is satisfied,
i.e. the UAV is on or inside the convoy circle, the first three
costate equations are independent from the augmented state,
and they can be rewritten as

λ̇1 = 0

λ̇2 = 0

λ̇3 = λ1 sin(θ)− λ2 cos(θ), (16)

with the terminal condition:

λ1(T ) =
∂M

∂x
(xT ) = 2xTα

λ2(T ) =
∂M

∂y
(yT ) = 2yTα

λ3(T ) =
∂M

∂θ
(θT ) = 0,

where α is a constant Lagrange multiplier for the terminal
manifold constraint (7).

Furthermore, being a minimum/maximum-time optimal
control problem, the transversality condition gives that

H|t=T = −1 + λ1(T ) cos(θT ) + λ2(T ) sin(θT )

+λ3(T )ω(T ) = 0,

which implies that:

α =
1

2(xT cos(θT ) + yT sin(θT ))
.

Thus, costate λ1 and λ2 are constant, and they can be given
by

λ1(t) =
xT

xT cos(θT ) + yT sin(θT )
,∀t ∈ [0, T ] (17)

λ2(t) =
yT

xT cos(θT ) + yT sin(θT )
,∀t ∈ [0, T ]. (18)

Plugging (17) and (18) into (16), costate λ3 is then given by
the following differential equation:

λ̇3 =
xT sin(θ)− yT cos(θ)

xT cos(θT ) + yT sin(θT )
, (19)

with the initial condition λ3(T ) = 0.
Now, define the angle ψT = atan2(yT , xT ). Note that since

qT is an exit state, then |θT − ψT | < π
2 . If not, then qT can

not be an exit state since it points towards the convoy circle.
This fact is illustrated in Figure 2.

−π

2
< θT − ψT < 0

|θT − ψT | >
π

2

ψT convoy circle

r

exit point

0 < θT − ψT < π

2

Fig. 2. Two possible and one invalid exit angles are shown on the same exit
point. We can see that, in order for an exit angle to be valid, |θT −ψT | < π

2
and the exit angle points away from the convoy circle.

Now, note that (19) can be simplified as the quotient of two
inner-products, using ψT and the fact that x2T + y2T = r2.

λ̇3(t) =
xT sin(θ(t))− yT cos(θ(t))

xT cos(θT ) + yT sin(θT )

=

⟨[
xT
yT

]
,

[
sin(θ(t))

− cos(θ(t))

]⟩
⟨[

xT
yT

]
,

[
cos(θT )
sin(θT )

]⟩
=

r sin(θ(t)− ψT )

r cos(θT − ψT )
=

sin(θ(t)− ψT )

cos(θT − ψT )
. (20)

From (20), we see that

λ̇3(T ) =
sin(θT − ψT )

cos(θT − ψT )
= tan(θT − ψT ). (21)

Since |θT −ψT | < π
2 , λ̇3(T ) can be determined completely

by the exit state qT = [xT , yT , θT ]
T in the following way:

λ̇3(T )

 > 0, if θT > ψT
< 0, if θT < ψT
= 0, if θT = ψT .

(22)

If q(t) is a COT, then the corresponding control ω(t)
satisfies the optimal control strategy (15). If θT = ψT , we will
show that the corresponding COT must be a line through the
origin (in this case, λ3(t) = 0,∀t ∈ [0, T ]). For the moment,
let us assume that θT ̸= ψT , and thus λ̇3(T ) ̸= 0. In this case,
since λ3(T ) = 0, λ3(t) must be non-zero and have the same
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sign for a finite time interval (s, T ), s < T . Using the optimal
control strategy (15), we have that:

ω(t) = − 1
R , θ(t) = θT + 1

R (T − t),∀t ∈ (s, T )
if λ3(t) > 0,∀t ∈ (s, T )
ω(t) = 1

R , θ(t) = θT − 1
R (T − t),∀t ∈ (s, T )

if λ3(t) < 0,∀t ∈ (s, T ).

Hence, we can obtain the analytical expression for λ3(t) in
the interval (s, T ) by integrating backwards.

λ3(t)

= λ3(T )−
∫ T

t

λ̇3(ξ)dξ = 0−
∫ T
t
sin(θ(ξ)− ψT )dξ

cos(θT − ψT )

=

{
R((cos(θT−ψT )−cos(θ(t)−ψT )))

cos(θT−ψT ) if ω = 1
R

−R((cos(θT−ψT )−cos(θ(t)−ψT )))
cos(θT−ψT ) if ω = − 1

R

=

 R
(
1− cos(θ(t)−ψT )

cos(θT−ψT )

)
if ω = 1

R

−R
(
1− cos(θ(t)−ψT )

cos(θT−ψT )

)
if ω = − 1

R

,

t ∈ (s, T ), if θT ̸= ψT . (23)

If θT ̸= ψT , it is possible to determine the length of time
interval (s, T ), in which the costate λ3(t) contains the same
sign. Then, the above process can be repeated until the entire
trajectory of λ3(t) is obtained. This technique leads to the
following lemma.

Lemma 3.1: For any terminal state qT , a unique COT
q(t) and its corresponding input and costate history can
be reconstructed. Furthermore, if θT ̸= ψT , then q(t) is
composed of maximally turning right or left curves, or
combination of both at some switching times. If θT = ψT ,
then q(t) is a line that goes through the origin.

Proof: At a terminal state qT , if θT > ψT , then λ̇3(T ) >
0. Hence, λ3(t) < 0 for a time interval (s, T ), s < T . Since
q(t) is a COT and thus follows the optimal control strategy
(15), then ω(t) = 1

R and λ3(t) = R
(
1− cos(θ(t)−ψT )

cos(θT−ψT )

)
on

the time interval (s, T ). Let us denote (ts, T ) as the longest
time interval such that λ3(t) is negative. Note that λ3(t) on
the interval (ts, T ) is a convex function.

There are two possibilities. One is that ts = 0, in this case
the optimal control does not change and λ3(t) < 0,∀t ∈
(0, T ). The second possibility is that ts > 0, and λ3(ts) = 0.
In this case, tracing the costate λ3(t) backwards, it remains
negative until when cos(θ(t) − ψT ) = cos(θT − ψT ). Since
0 < θT − ψT < π

2 , this condition only occurs when
θ(t)− ψT = −(θT − ψT ). Therefore, we have

θ(ts) = −(θT − ψT ) + ψT . (24)

Furthermore, ts can be obtained explicitly as:

ts = T − 2R|θT − ψT |. (25)

Since λ3(ts) = 0 and λ̇3(ts) =
sin(θ(ts)−ψT )
cos(θT−ψT ) = − tan(θT −

ψT ) < 0, we can conclude that λ3(t) > 0 for a time interval
(s, ts), s < ts. Therefore, the optimal control based on (15)
must switch at time ts from ω = − 1

R to ω = 1
R .

Now we repeat this process and continue backwards in time
until the system hits the state constraint boundary (the convoy
circle). The system may undergo many switches until hitting
the convoy circle. Note that throughout this process, there is
never a time t such that λ3(t) = 0 and λ̇3(t) = 0. Hence
there is no singular interval. The COT is unique since there is
only one possible control decision at any instant of time that
satisfies the optimal control law (15) (except at points in time
when λ3(t) = 0, but this is not a problem since λ3(t) = 0
always takes place in a time interval of zero length).

If θT < ψT then the same analysis can be applied. In this
case the control must switch at time ts (which follows the
same formula as equation (25)) from ω = 1

R to ω = − 1
R .

If θT = ψT , then the necessary condition for a singular
interval is satisfied at the terminal time. if λ3(s) = 0 for a
time interval s ∈ [t, T ], then λ̇3(s) = 0, which implies that
θ(s) = θT , s ∈ [t, T ] and ω(s) = 0. Hence, the last segment of
the COT is a line. Furthermore, there is no COT that connects
a circular arc with a line, since if there is, then there is a
non-singular interval [t1, t2) connected with a singular interval
[t2, T ], t2 < T . If the circular arc in the interval [t1, t2) is
maximally turning left, then ω = 1

R . However, in this case,

λ3(t) = R

(
1− cos(θ(t)− ψT )

cos(θT − ψT )

)
= R (1− cos(θ(t)− ψT )) > 0, t ∈ [t1, t2).

Hence the optimal switching law (15) is violated. Similarly if
the circular arc in the interval [t1, t2) is maximally turning
right, then λ3(t) < 0 and ω = − 1

R . Both cases violate
the necessary optimality condition, therefore a circular arc
followed by a line can not be a COT. This implies that in
the case when θT = ψT , θ(t) = ψT , ω(t) = 0,∀t ∈ [0, T ].
Therefore, the COT is a line through the origin, and in this
case, λ3(t) = 0,∀t ∈ [0, T ].

A direct consequence of Lemma 3.1 is that an optimal
trajectory can not contain both a circular arc and a line
segment. In addition, the COT can be either a line through
the origin, or a curve consisting of circular arcs of radius
R. Hence, if the optimal control is not constant, then it can
only change between ω = − 1

R and ω = 1
R , since there is

no singular interval in that case. Henceforth in this paper, we
use the term switching for the time instant when the control
law switches between ω = − 1

R and ω = 1
R . Furthermore,

a switching point in a state trajectory is defined as the state
when the controller switches.

For a number of terminal conditions qT , the corresponding
COTs are shown in Figure 3. For all of these terminal
conditions, we fix the x-y coordinates of the terminal state
at [r, 0]T (hence ψT = 0), but allow the exit angle θT to vary.
The path in the x-y plane [x(t), y(t)], costate λ3(t) and angle
θ(t) are plotted from left to right.

To ease analysis of the optimal trajectories, it is useful to
rotate the exit state qT . It should be noted that, in this paper,
we define rotation of the exit state of the UAV qT by an
angle β not as a rotation of [xT , yT , θT ]

T in R3, but rather
as a rotation of [xT , yT ]T by angle β in R2 with the addition
that the heading θT is increased by β. Note that the costate
equation λ3(t) is invariant under this rotation since it is a
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Fig. 3. A number of COTs are plotted for different exit angles θT resulting
in different number of switchings. The left plots are the COTs in x-y plane,
the middle plots are the costates λ3 and the right plots are the angles θ(t).
The first, second and third row correspond to the cases when this is 0, 1 and
2 switchings, respectively.

function of relative angle differences. Therefore, after the exit
state is rotated by β, the corresponding x-y coordinates of the
new COT is simply the rotation of the original COT by β in
R2.

Following this definition of rotation of the state of the UAV,
let us rotate the exit state qT by −ψT to q̃T , so that after
rotation x̃T = r, ỹT = 0, θ̃T = θT − ψT . Thus, after this
rotation, ψ̃T = 0 and θ̃T ∈ (−π

2 ,
π
2 ) and q̃T = [r, 0, θ̃T ]

T .
Next, tracing backwards in time and starting at T , we denote
the i-th switching time as tis. Furthermore, T is denoted as the
0-th switching time (T = t0s). Therefore, the switching time
closest to T is denoted as the first switching time t1s, et cetera.
Under this switching time notation, tis < ti−1

s .
Using the analysis in the proof of Lemma 3.1, the switching

angle θ̃(tis) can be characterized as:

T − tis = 2R|θ̃T |i

θ̃(tis) =

{
−θ̃T , i odd
θ̃T , i even.

(26)

Using equations (26), the following lemma can be shown.
This lemma is useful to obtain a simple and geometric law to
determine optimal switching points.

Lemma 3.2: For any initial condition q(0), all switching
points of the optimal trajectory lie on the line passing
through the origin and the exit point.
Furthermore, using the rotated coordinates (exit point ro-
tated to [r, 0, θ̃T ]

T ), the x-y coordinates of the switching
points can be determined by the following equation:

x̃(tis) = r − 2R sin(θ̃T )i

ỹ(tis) = 0. (27)

Proof: Rotate the optimal exit state to [r, 0, θ̃T ]
T . If the

COT switches for i number of times (i > 0), then it is not a
line and it must not contain a singular interval, hence θ̃T ̸= 0.
One can calculate the switching points by plugging in the end
points and solve the state equations. If tis refers to the i-th
switching time, then the state q̃(t) is in the following form in
the time interval [tis, t

i−1
s ]:

If turning left i.e.: ω(t) =
1

R
:

x̃(t) = x̃(tis) +R
(
sin(θ̃(t)− sin(θ̃(tis))

)
ỹ(t) = ỹ(tis)−R

(
cos(θ̃(t)− cos(θ̃(tis))

)
θ̃(t) = θ̃(tis) +

1

R
(t− tis), t ∈ [tis, t

i−1
s ]

If turning right i.e.: ω(t) = − 1

R
:

x̃(t) = x̃(tis)−R
(
sin(θ̃(t)− sin(θ̃(tis))

)
ỹ(t) = ỹ(tis) +R

(
cos(θ̃(t)− cos(θ̃(tis))

)
θ̃(t) = θ̃(tis)−

1

R
(t− tis), t ∈ [tis, t

i−1
s ] (28)

Plug t = ti−1
s into the set of equations in (28) and solve

recursively for all i, with the initial condition for i = 0 that
x̃(t0s) = x̃T = r, ỹ(t0s) = ỹT = 0, θ̃(t0s) = θ̃T . The following
switching-point expressions can be obtained for all i:

x̃(tis) = r − 2R sin(θ̃T )i

ỹ(tis) = 0. (29)

Since ỹT = 0, therefore the exit point, switching points and
the origin are on the same line for all COTs. Since COT is
a necessary condition for an optimal trajectory, therefore this
property holds for all optimal trajectories as well.

Again, using the rotated coordinates, equation (27) can be
used to compute the required exit angle in order to produce a
COT with i number of switchings. From (27), if a COT has i
switchings, since x̃(tis) > −r, then R sin(θ̃T )i < r. Hence in
order to have at least i number of switchings, the following
condition must hold for the exit angle:

θ̃T < arcsin
r

iR
. (30)

If a COT has no switching, then θ̃T ≥ arcsin r
R .

Lemma 3.2 and equation (30) help to establish an important
characterization of optimal trajectories as described in the next
theorem.

Theorem 3.3: For any initial condition q(0), the optimal
trajectory of the UAV does not switch more than once.

Proof: We will prove by contradiction. We assume an op-
timal trajectory exists and it contains two or more switchings,
and show by way of contradiction that it violates Bellman’s
Principle of Optimality.

Assume that q(t) is the optimal trajectory. Therefore
by Bellman’s Principle of Optimality, all trajectory from
[t, T ], t ≥ 0 must be optimal as well. Without loss of
generality, we assume that qT = [r, 0, θT ]. If this is not true,
we can always rotate q(t) so that it is true.
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First assume that θT > 0. If q(t) has at least 2 switchings,
then θT < arcsin r

2R . Now consider the first switching point,
at t1s, x(t1s) > r− 2R sin(arcsin r

2R ) = 0. Therefore, the state
at this switching time is q(t1s) = [r − 2R sin(θT ), 0,−θT ]T ,
where r − 2R sin(θT ) > 0.

t
1

s

q(t)

q
′(t)

t
2

s

θm

θT

Fig. 4. Graph of example trajectory q(t) and q′(t). q(t) is assumed to be an
optimal trajectory that contains 2 switchings. q′(t) is the same as q(t) from
time t ∈ [0, t1s]. However, it does not switch at time t1s , hence contains only
1 switching. We show that in this case, q(t) is shorter in length than q′(t),
so q(t) can not be the optimal trajectory.

Consider that instead of switching at time t1s to the left,
the trajectory continues on arching towards the right (hence
no switch). This new trajectory is denoted as q′(t) and is
only different from q(t) after time t1s. An example of the
trajectories q(t) and q′(t) can be seen from Figure 4. Denote
the angle between the tangent line at t1s and the line connecting
[x(t1s), x

′
T ]
T with [y(t1s), y

′
T ]
T as θm. The length of the line

connecting [x(t1s), x
′
T ]
T and [y(t1s), y

′
T ]
T is 2R sin(θm). Using

the cosine law, we have:

r2 = (r − 2R sin(θT ))
2 + (2R sin(θm))2

+2(r − 2R sin(θT ))(2R sin(θm))cos(θT + θm)

Solving the above equation for sin(θm) gives:

sin(θm) = f(sin(θT )),

where the function f(a) is defined as:

f(a) =
1

2

√
h(a) + 2g(a)(r − 2Ra)

6Rra− 8R2a2 − r2 −R2
,

(31)

and h(a) and g(a) are defined as:

h(a) = 16a4R2 + 6a2r2 − 4R2a2 − 20a3Rr

+4Rra− 2r2

g(a) =
√
(a2 − 1)(4Ra2 − r − 3ra)(4Ra2 + r − 3ra).

(32)

Note that f(0) = 0 and f( r
2R ) =

r
2R . Furthermore, after some

careful algebra, one can see that d2f
da2 < 0 for a = sin(θT ) ∈

(0, r
2R ). Therefore f(a) − a is a strictly concave function in

this interval; and since f( r
2R ) −

r
2R = 0, f(0) = 0, one can

conclude that f(a)− a > 0, if a ∈ (0, r
2R ). Hence sin(θm) >

sin(θT ), and since θT ∈ (0, π2 ), we can finally conclude that
θm > θT . Thus the right turning arc having length 2Rθm is
longer than the left turning arc which has length of 2RθT .
This implies that q′(t) has a longer length inside the circle
than q(t). However this contradicts with Bellman’s Principle
of Optimality and therefore, q(t) is not optimal.

The proof for θT < 0 is exactly the same as above, except
the curve is symmetric with q(t) described above about the
x-axis. If θT = 0, then the unique corresponding COT is a
line (as shown in Lemma 3.1) through the origin and there is
no switching and it does not affect the theorem.

Since the optimal trajectory can only switch at most once,
the number of COT that can be optimal is drastically reduced.
It is then possible to construct optimal paths for any initial
condition in the feasible set Λ. Similar to many other Dubins
car path planning approaches (see [5], [13], [15], [23] for
example), we can define motion primitives and use them to
construct optimal paths. In Dubins car results for shortest
path problem (see discussions about Dubins curves in [15] or
[22]), the optimal paths consist of three motion primitives:
maximum turning left, maximum turning right and going
straight. However, now we show that a straight line segment
is never part of an optimal trajectory for the static optimal
convoy protection problem.

Corollary 3.4: Straight line segments can not be part of
the optimal paths for Problem 3.1.

Proof: Lemma 3.1 states that the only case when straight
line is part of a COT is when θ(t) = ψT ,∀t ∈ [0, T ]. Hence
the COTs in this case are lines through the origin. However,
a line through the origin is not an optimal path since there
are 2 other COTs which are longer in length. One is initially
turning left then switches to turning right at the point which
is on the same line as the exit point and the origin. The other
COT is exactly the same in length and it is turning right then
left.

From Corollary 3.4, we can see that unlike the Dubins
vehicle shortest-path problem, the optimal paths for Problem
3.1 do not contain line segments, and thus the motion primitive
set does not contain the motion of going straight. Therefore,
we define 2 motion primitives {L,R}, where L and R motion
primitives turn the vehicle maximally to the left and right,
respectively. Furthermore, since the optimal trajectory only
switch once, there are only 4 possible sequences of the {L,R}
motion primitives, namely

{L,R,LR,RL}, (33)

where LR stands for turning left then right and RL for turning
right then left. There are two equivalent ways to determine the
optimal switching point. The first one is geometric. As Lemma
3.2 states, the switching point must be on the same line as the
origin and point of exit (this exit point can be determined by
projecting the state either turning left or right until exiting the
convoy circle). The second way is to check for the heading
θ(t), which is required to satisfy equation (24) at the point of
switching. Therefore, equation (24) provides a state-feedback
optimal switching law for the control signal ω⋆(t).
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Fig. 5. A number of optimal state trajectories with initial heading π
2

. The
optimal switching points are plotted together to form the optimal switching
surface. In this case, R = 1.5r. The dashed paths corresponds to optimal
paths. If x(0) ∈ (− r2

R
, 0], then LR is optimal. If x(0) ∈ [0, r

2

R
), then RL is

optimal. If x(0) ∈ [ r
2

R
, r), then L is optimal. Otherwise, R is optimal. The

optimal switching points are plotted together to form the optimal switching
surface. The solid path corresponds to the initial condition that x(0) = − r2

R
.

This path and the path where x(0) = r2

R
are equal in length and longer than

all other optimal paths with the same initial heading.

Since there are only 4 possibilities for the motion sequences
in an optimal trajectory, it is easy to determine the global
optimal path for any initial condition. A set of optimal paths
for initial conditions with heading θ(0) = π

2 are shown in
Figure 5. Figure 5 also shows the optimal switching surface on
which switchings are optimal. Observe that, for all cases when
a switching is needed for the optimal trajectory, the switching
point, the origin and the exit point are on the same line as
described in Lemma 3.1.

By rotating the initial state until the initial heading is π
2 , the

switching surface in Figure 5 provides a control law which
produces the optimal trajectory for any given initial condition.
Now, we extend this result to address a perhaps more important
problem: finding the optimal path inside the convoy circle with
initial condition free to choose. Hence the problem of:

Problem 3.2:
min
q(0)

J⋆(q(0)), (34)

where J⋆(q(0)) is the solution of Problem 3.1 (Πq(0)), with
the initial state q(0).

Let the optimal initial condition be denoted by q⋆(0), hence:

q⋆(0) = argmin
q(0)

J⋆(q(0)). (35)

The optimal path with this initial condition will be referred
to as a globally2 optimal path. q⋆(0) will be called an optimal

2To clarify, the word globally is used here not within the context of local
or global optimality. The solutions we obtained for Problem 3.1 are global
optimal trajectories each corresponds to a fixed initial condition. A globally
optimal path in this paper is defined as the longest path over all feasible initial
conditions.

entry state. It is apparent that any rotation of this state around
the origin is also an optimal entry state. Hence the globally
optimal paths and optimal entry states are not unique. The
set of optimal entry states, denoted by Q⋆, can be exactly
determined by the following theorem.

Theorem 3.5: An optimal entry state q⋆(0) satisfies the
equation:

(θ⋆(0)− ψ⋆T ) = −(θ⋆T − ψ⋆T ). (36)

To describe an optimal entry state geometrically, the opti-
mal entry state, its corresponding exit state and the origin
are always on the same line.

Proof: For any initial condition q(0), assume that the exit
state for its corresponding optimal trajectory q(t) is at q⋆T and
the exit state is rotated to [r, 0, θT ]

T . First, we have that θT ∈
(−π

2 ,
π
2 ). We focus on the case when θT ≥ 0, since COT with

exit angle θT and COT with exit angle −θT are symmetric
with respect to the x-axis. Furthermore, θT ̸= 0 since if it is
true, then q(t) is not an optimal trajectory. Thus, θT ∈ (0, π2 ).

Note the curve q⋆(t) in Figure 6. This curve corresponds to
the smallest positive θT (θT = arcsin( rR )) without switching.
It has the length of 2R arcsin( rR ). We will show that this curve
is an optimal (longest) path in the convoy circle for any exit
angle θT . By symmetry, if this is true, the curve with angle
θT = − arcsin( rR ) is also the longest path in the convoy circle.

q
?(t)

q2(t)

q1(t)

q3(t)

[r, 0, θT ]T

θM

Fig. 6. Illustration of several COTs corresponding to different θT .

If |θT | < arcsin( r
2R ), then the corresponding COT contains

at least two switchings. Refer to q3(t) in Figure 6 for an
example. Based on Theorem 3.3, this is not an optimal
trajectory, and thus q⋆T can not be an optimal exit point.

If |θT | > arcsin( rR ), then the corresponding COT contains
0 switching (refer to q1(t) in Figure 6 for an example).
Draw a line between q1(0) and q1(T ) and denote the angle
between this line and the tangent line at q1(T ) to be θM .
This line is shorter than the diameter since the diameter is
the longest line inside a circle. Consequently, since this line
has the length 2R sin(θM ), we have 2R sin(θM ) < 2r, hence
θM < arcsin( rR ), and the curve q⋆(t) having the arc length
2R arcsin( rR ) is longer than q1(t) with the arc length 2RθM .
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Similarly, if |θT | ∈ [arcsin( r
2R ), arcsin(

r
R )) (refer to q2(t) in

Figure 6), q2(t) is always shorter than q⋆(t).
Since we have accounted for all possibilities of q⋆T which

are the terminal conditions for the optimal trajectories starting
from any arbitrary initial conditions. We can conclude that
q⋆(0) = [−r, 0,± arcsin( rR )]

T corresponding to terminal con-
ditions [r, 0,∓ arcsin( rR )]

T are the optimal initial conditions
which result in the longest state trajectories over the set of
all initial conditions. Also since θ(0) = −θT , rotate the entry
state back obtains equation (36).

From the proof of Theorem 3.5 we saw that all opti-
mal entry states are rotations of the two states: q(0) =
[−r, 0, arcsin( rR )]

T and q(0) = [−r, 0,− arcsin( rR )]
T . By

rotating these two states around the origin, the optimal entry
state set Q⋆ can be obtained in the following form:

Q⋆ = {q = [−r cos(θ),−r sin(θ), arcsin( r
R
) + θ]T }∪

{q = [−r cos(θ),−r sin(θ),− arcsin(
r

R
) + θ]T }.

(37)

An easy way to recognize a globally optimal path is to
observe the fact that the entry state of a globally optimal path
is always on the same line as the origin and the exit state.

B. Multi-UAV Convoy Protection

Due to kinematic constraint of the UAVs (r < R), it is
impossible for one UAV to provide complete convoy protection
for a group of UGVs. In this situation, multi-UAV coordination
is required in order to successful carry out convoy protection.
The previous section laid out the groundwork to achieve
optimal convoy protection by a group of UAVs. Theorem 3.5
characterized a set of optimal initial conditions that produces
a set of globally time-optimal trajectory. It can be shown that
these optimal trajectories not only specify a path inside the
convoy circle, but also a path for a single UAV to come back
to the convoy circle without changing direction. As shown in
Figure 7, this path constitutes a circle of radius R and part of
the path is a globally optimal path inside the convoy circle.

Definition 3.2: The circular paths of radius R entering and
exiting the convoy circle at states satisfying equation (36)
are referred to as the optimal convoy protection paths.

Figure 7 has shown three examples of optimal convoy protec-
tion paths. In the next lemma, we show that these paths each
maximizes the ratio of time inside the convoy circle over the
total travel time of the path.

Theorem 3.6: Over all simple closed paths of a single
UAV, the optimal convoy protection paths each maximizes
the ratio of the length inside the convoy circle over its total
length.

Proof: Define the set of all simple closed path of the UAV
as P . It is clear that the shortest paths over P is the set of
all circular paths of radius R. Hence, if we define PR ⊂ P as
the set of all circular path of radius R, and L(q), q ∈ P as a

function that returns the total length of a path q, we have that
L(p) ≤ L(q),∀p ∈ PR and ∀q ∈ P . Since L(p) ≥ 0,∀p ∈ P ,
we have that:

1

L(p)
≥ 1

L(q)
,∀p ∈ PR and ∀q ∈ P. (38)

Now, let us define Li(p), p ∈ P as a function that returns
the length of the path p inside the convoy circle, and P ⋆ to
be the subset of PR where the entry state and exit state on the
convoy circle satisfy equation (36). Due to Theorem 3.5, we
have that if p ∈ P ⋆, the segment of path p inside the convoy
circle is the maximum possible path inside the convoy circle.
Hence, we have that

Li(p) ≥ Li(q),∀p ∈ P ⋆ and ∀q ∈ P. (39)

Since P ⋆ ⊂ PR,, and using (38), we have that:

Li(p)

L(p)
≥ Li(q)

L(q)
,∀p ∈ P ⋆ and ∀q ∈ P. (40)

This completes the proof.
Intuitively, an optimal convoy protection path maximizes the

coverage ratio because it is the quickest path to come back to
the convoy circle, always reenters optimally and repeats as a
limit-cycle.

Fig. 7. Three optimal convoy protection paths are shown. They maximize the
time spent inside the convoy circle over the time outside of the convoy circle.
The smaller dashed circle is the convoy circle, and the larger dotted circles
are optimal convoy protection paths. The solid curve is the past trajectories
of the UAV. We can see that the key to coordinate the UAVs for optimal
continuous convoy protection is to fly individual UAVs on optimal convoy
protection paths, and space them out so that there is at least one UAV inside
the convoy circle for all time.

To ensure that all the UAVs maximize their time providing
convoy protection, their paths should be set to the optimal
convoy protection paths such as the ones shown in Figure 7.
In order to achieve successful convoy protection, it is required
that the UGVs are visible to at least one UAV at all time.
Thus, we can establish a lower bound on the number of UAV
required to provide successful convoy protection for all time
based on the length of the optimal convoy protection paths.
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Corollary 3.7: Given the convoy circle of radius r for
the UGVs and minimum turning radius R for the UAVs,
the minimum number of UAVs needed to provide convoy
protection for all time is:

N =

⌈
π

arcsin( rR )

⌉
, (41)

where ⌈·⌉ denotes the ceiling function.

Proof: Since the length of any optimal convoy protection
path inside of the convoy circle is 2R arcsin( rR ), and the entire
length of any optimal convoy protection path is always 2πR,
therefore it requires at least

⌈
π

arcsin( r
R )

⌉
to cover the UGVs at

all time.
Assume that there is N UAVs and they can start at an

optimal initial condition q⋆(0) ∈ Q⋆, the UAVs need to space
themselves evenly in terms of the time entering the convoy
circle. This can be achieved by slowing down and speeding
up with respect to the other UAVs so that the i-th UAV enters
the convoy circle at time 2πR

N i. This strategy is possible since
the optimal paths derived for this problem remain the same
for UAVs of any speed (instead of unit speed).

IV. MOVING CONVOY PROTECTION

In this section we focus on a convoy protection strategy
for moving UGVs. Again, we assume that the location of the
UGVs are represented by their centroid as a point. Instead
of being static, here we consider the case where this point is
moving in a constant direction with a constant and bounded
speed. Denote the speed of the UGVs as VG. The UGVs are
assumed to be moving in a constant heading of angle ϕ.

For the UAVs, we again normalize their speed to 1. Hence
the UAVs follow the dynamics in equation (1) and their states
are denoted by [x, y, θ]T . The UAVs are assumed to be capable
of flying with faster speed than the UGVs (this agrees with
current state of technologies in terms of speed of ground robots
versus UAVs). Hence, we assume that VG ≤ 1.

Now, we propose a control strategy with a corresponding
lower bound V ⋆G so that if the speed of the UGVs is in this
bound (VG ∈ [V ⋆G, 1]), then one UAV is guaranteed to provide
convoy protection for all time.

Inspired by the motion primitives defined in the static
convoy protection problem, we fix the motion of the UAV
to a sequence of maximally left and right turns, i.e., M =
{L, R, L, R, · · · } or M = {R,L, R, L, · · · }. We assume
that the UAV and UGVs are initially on top of each other;
i.e., the initial x-y coordinates of the UGVs is [x(0), y(0)]T .
Now, we define the angle between the heading of the UGVs
and initial heading of the UAV as β. Hence, β = ϕ − θ(0).
Again, to simplify notations, we assume that all angles are
taken modulus 2π.

We switch the motion primitive between L and R every
time the paths of UAV and UGVs intersect. With this control
strategy, the path of the UAV and the UGVs intersect every
time the UAV flies for a circular arc of angle 2β. An example
of the trajectory of the UAV and the UGVs are shown in
Figure 8. The initial motion primitive of the motion sequence
M depends on β. If β ∈ [0, π), then the path of the UGVs

is to the left of the initial heading of the UAV and the first
motion primitive is L, otherwise, the first motion primitive is
R.

Fig. 8. Example trajectory of a UAV providing convoy protection for the
UGVs with the proposed control strategy. The solid curve is the path of the
UAV. The dashed line is the path of the UGVs. The dashed circle is the convoy
circle. The angle of the circular arc for each motion primitive is 2β. In this
case, β ∈ [0, π

2
].

In the following discussion, we focus on the case that β ∈
[0, π) and the motion sequence is M = {L, R, L, R, · · · },
because if β ∈ (−π, 0], then the path of the UAV is symmetric
to the path corresponding to the angle of −β.

It is desirable to control the UAV to meet the UGVs
periodically. This goal can be achieved by carefully choosing
the initial heading of the UAV based on the speed of the UGVs.
The following lemma relates the speed of the UGVs with the
desired initial heading of the UAV.

Lemma 4.1: Assume that the UGVs move with constant
speed VG and heading ϕ, and the UAV starts at the
same position as the UGVs with the initial heading θ(0).
β = ϕ − θ(0). Assume that β ∈ [0, π) and hence
M = {L, R, L, R, · · · }. Then if the UAV executes the
proposed control strategy, and VG = sin(β)

β , then the UAV
and the UGVs meet at the end of each motion primitive.

Proof: If the UAV executes the proposed control strategy,
then it flies for a circular arc of angle 2β for each motion
primitive in M. Assume that the UAV meet with the UGVs at
the end of each motion primitive. For each motion primitive,
the UAV travels for a distance of 2Rβ and the UGVs travel
for a distance of 2R sin(β). Since the UAV is unit speed, we
have VG2Rβ = 2R sin(β), and therefore VG = sin(β)

β .

Note that, if the UGVs travel with the same speed as the
UAV, i.e. VG = 1, then from Lemma 4.1, we have β = 0. In
this case, the UAV will fly exactly on top of the UGVs.

Using Lemma 4.1, we can obtain the lower bound for the
speed of UGVs to achieve perpetual convoy protection with
the proposed strategy.
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Theorem 4.2: Using the proposed control strategy, one
UAV is sufficient to provide continuous convoy protection
for all time, if VG is bounded below by V ⋆G, where

V ⋆G =

√
2rR− r2

R arccos(1− r
R )
. (42)

Proof: Without loss of generality, we assume that the
UAV and UGVs start at the origin and the heading of the
UGVs is ϕ = 0. If ϕ ̸= 0, We can always rotate the path of
the UGVs so that ϕ = 0. We first focus on the first motion
primitive. Let us look at the positions of the UGVs and UAV
after flying a circular arc of angle 2γ where γ ∈ [0, β]. Denote
the x-y coordinates of the UGVs and the UAV as pc and pa,
respectively. Note that pc and pa are both functions of γ, and
they can be obtained after some algebra and trigonometry as

pa(γ) =

[
2R sin(γ) cos(β − γ)
−2R sin(γ) sin(β − γ)

]
, (43)

and

pc(γ) =

[
2R γ

β sin(β)

0

]
. (44)

We denote the distance between the UAV and the UGVs as
d(γ), hence

d(γ) = ∥pa(γ)− pc(γ)∥2. (45)

Note that d(0) = d(β) = 0, and d(γ) is strictly concave
in the interval [0, β]. Furthermore, d(γ) is at the maximum
exactly when γ = β

2 . Thus, the distance between the UAV and
the UGVs is at the maximum at the midpoint of the motion
primitive.

The maximum distance between UAV and the UGVs can be
computed as d(β2 ) = R(1− cos(β)). If the UAV is sufficient
to provide continuous convoy protection for the entire motion
primitive, then we require that d(γ) ≤ r,∀γ ∈ [0, β]. This is
true if R(1− cos(β)) ≤ r. Since β ∈ [0, π), we can obtain a
bound on β:

β ≤ arccos(1− r

R
). (46)

Note that VG = sin(β)
β , and the sinc function is strictly

decreasing in [0, π). Therefore, we have that VG ≥ V ⋆G, where

V ⋆G =
sin(arccos(1− r

R ))

arccos(1− r
R )

=

√
2rR− r2

R arccos(1− r
R )
. (47)

This analysis can be applied to every motion primitive in
the motion sequence M. Thus, if VG ≥ V ⋆G, then one UAV
is sufficient to provide continuous convoy protection for all
time.

When VG < V ⋆G, convoy protection cannot be provided
with a single UAV and we need to coordinate multiple UAVs
to provide perpetual convoy protection. We use a similar
approach as the static convoys case to determine the minimum
number of UAVs required. In this case, on the path of each
execution of one motion primitive, there are two segments of
the path when the distance between the UAV and the UGVs is
less than or equal to r. Hence, convoy protection is provided by
one UAV for two circular arcs of angle γ⋆ for each execution

Fig. 9. For each execution of one motion primitive, there are two segments
of the path corresponding to two circular arcs of angle γ⋆, so that the distance
between the UAV and the UGVs is less or equal to r when the UAV is on these
segments. In this figure, the dashed curve is the path of the UAV, the solid
curves are the segments of the path in which convoy protection is provided.
The UAV and the convoys are drawn at the times when the UAV enters and
exits these segments.

of one motion primitive, where d(γ
⋆

2 ) = r and d is defined in
equation (45). Refer to Figure 9 for an example.

Similar to the multi-UAV coordination approach in the
previous section, we can use a timing strategy to schedule
the UAVs such that, at any time, one of the UAVs is inside
the convoy circle. First, note that the minimum number of
UAVs required to provide continuous convoy protection can
be obtained by the following corollary:

Corollary 4.3: Using the proposed control strategy, if
VG < V ⋆G, then the minimum number of UAVs needed
to provide continuous convoy protection for all time is
N = ⌈ βγ⋆ ⌉, where ⌈·⌉ denotes the ceiling function. γ⋆ can
be obtained by solving a non-linear equation d(γ

⋆

2 ) = r,
using β obtained from VG (VG = sin(β)

β ).

Proof: Directly follows from the fact that, for each motion
primitive, the length of the path in which one UAV stays inside
the convoy circle is 2Rγ⋆, while the length of the entire path
for the motion primitive is 2Rβ.

Figure 10 shows how one can schedule the UAVs to provide
continuous convoy protection for all time. The key is to
synchronize the position of the UGVs with individual UAVs at
different times, so that when one UAV exits the convoy circle,
there is at least one UAV inside the convoy circle and it is on
the segment of its path in which the distance to the UGVs is
less or equal to r.

V. CONCLUDING REMARKS

This paper studies the problem of providing convoy pro-
tection to a group of UGVs using UAVs. We assume that
the cameras on board the UAVs are attached to gyros so that
they always point down and project circles on the ground.
The UAVs are kinematically restricted by their minimum
turning radius and the sensors to provide convoy protection
have limited range. In the case of stationary UGVs, this
paper obtains optimal paths for one UAV to provide convoy
protection for maximum amount of time. We also propose a
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Fig. 10. Example of using two UAVs to provide continuous convoy protection
using the proposed strategy. In this figure, the dashed curves are the paths of
the UAVs, the solid curves are the segments of the paths in which convoy
protection is provided. In this case, every time one UAV exits the convoy
circle, the other UAV is inside the convoy circle. This is always true if N =
⌈ β
γ⋆ ⌉ = 2 and the times when the UAVs synchronize with the UGVs are

spaced out.

coordination strategy as well as optimal paths for multiple
UAVs to provide continuous convoy protection for all time.
The minimum number of UAVs required to achieve this task
is derived. For the case of UGVs moving on straight lines with
constant speed, we provide a control strategy that guarantees
periodical meet-up with the UGVs, as well as a corresponding
bound on the speed of the UGVs, so that if this bound
is satisfied, then one UAV is capable of providing convoy
protection for all time. If the speed of the UGVs is outside this
bound, we propose a coordination scheme to be used with the
proposed control strategy and obtain the minimum number of
UAVs required to achieve continuous convoy protection with
this strategy.

One possible extension of this work is to obtain the optimal
paths of the UAVs if the UGVs obey Dubins or Reeds-
Shepp car dynamics and are free to choose their path. Another
possible direction is to find the optimal motion control of the
cameras on board the UAVs, assuming that they can be actively
controlled.

VI. ACKNOWLEDGEMENTS

This work was sponsored by a grant from Rockwell Collins
Advanced Technology Center.

REFERENCES

[1] P. Agarwal, T. Biedl, S. Lazard, S. Robbins, S. Suri, and S. Whitesides.
Curvature-constrained shortest paths in a convex polygon. Proc. ACM
Symposium on Computational Geometry, pp. 392-401, 1998

[2] R. Beard, T. McLain, D. Nelson, and D. Kingston. Decentralized
Cooperative Aerial Surveillance using Fixed-Wing Miniature UAVs,
IEEE Proceedings: Special Issue on Multi-Robot Systems, 94(7), pp.
1306-1324, July 2006.

[3] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J.
Pappas. Symbolic planning and control of robot motion: State of the art
and grand challenges. IEEE Robotics and Automation Magazine, Vol.
14, No. 1, pp. 61-70, 2007.
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