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INTRODUCTION 

The work under this grant on plasma presheaths, which form a transition region be-

tween the collisionless electrode sheaths and the plasma, is directed toward the problems 

of the Thermionic Energy Convertor (TEC). Figure 1 shows a schematic of a TEC in a 

reactor core for space power applications and the basic physics. Cesium is put the gap 

between the emitter and collector for two purposes: first, to ionize and neutralize the 

space charge so that a useful electron current density can pass (10 - 100 amps/square 

cm), and second to reduce the electrode work functions by adsorption of cesium. Of the 

plasma physics of the the cesium filled gap of the TEC, the plasma-electrode interactions 

are the most significant part because these regions form boundary conditions which con-

trol the plasma density and temperatures of the entire gap. Thus the research under this 

grant has been directed toward the study of collisional presheaths which form the layer 

adjacent to an electrode on the order of one ion mean free path thick. However, the re-

search pursued under this grant is not limited in applicabilty to TECs but is of interest 

to plasma-surface interactions in general. Other applications include electric propulsion 

where electrode erosion is a problem and not fully understood and more generally any 

plasma-surface interaction. 

This report includes the asymptotic presheath theory developed, and is preceded by the 

basic theory of the Thermionic Energy Convertor (TEC) and is followed by the application 

of the theory to a time dependent model of the TEC in the program called TEC. As shown 

in the TEC results, the agreement with experiment is good except in the low current regime 

of the TEC where an unexplained disagreement remains. This is still a puzzle. 

3 



BASIC TEC THEORY 

The basic theory of the TEC is set forth in the following paper published under this 

grant. 
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Effects of Emitter Sheath Ion Reflection and Trapped 
Ions on Thermionic Converter Performance Using an 

Isothermal Electron Model 
GEOFFREY L. MAIN AND S. H. LAM 

Abstract—This paper couples exact collisionless sheath calculations 
So an isothermal electron model of a thermionic converter. The emitter 
sheath structure takes into account reflected ions, trapped ions, and 
surface emission ions. It is shown that lessening the net loss of ions at 
the emitter in the ignited mode by these phenomena degrades perfor-
mance. In addition, it is shown that when the emitter returns too many 
of the ions, the arc is extinguished because there is insufficient resistive 
beating to maintain the necessary plasma electron temperature for ion-
ization. These results suggest that the ignited mode cannot be improved 
much. However, nonignited modes in which the electron temperature 
remains low, such as the pulsed mode, do not suffer from this adverse 
behavior. 

I. INTRODUCTION 

EMITTER sheath phenomena are important in ther- 
mionic energy converters because the emitter sheath 

forms the emitter boundary condition for the plasma in 
the gap by controlling both the ion loss rate and the loss 
rate of hot (3000 K) plasma electrons to the emitter. This 
paper examines two expected emitter sheath phenomena 
and their effects on converter performance: reflection of 
ions coming from the plasma by a double emitter sheath, 
and ions trapped in the double emitter sheath. The authors 
have previously suggested that ion reflection might im-
prove thermionic energy converter performance [1] and 
have subsequently shown that ion reflection at the emitter 
is likely to degrade the performance in the ignited mode 
and, in addition, that trapped ions in a double emitter 
sheath are also likely to degrade performance in the ig-
nited mode [2]. Lundgren [3], [4] has also shown this with 
simplified ion and electron dynamics. In the present paper 
the effects of emitter ion reflection and ion trapping in the 
ignited mode are calculated using exact electron and ion 
dynamics in the collisionless (except for ion trapping) 
sheaths. The electrons entering the sheaths from the 
plasma are assumed to have a Maxwellian distribution, 
but no assumptions are made about the returning elec-
trons, and the electron density in the sheath is calculated 
exactly. The ions entering the sheaths from the plasma are 

Manuscript received October 8. 1986; revised December 11. 1986. This 
work was supported by the Air Force Office of Scientific Research. 

G. L. Main is with the School of Mechanical Engineering, Georgia In-
stitute of Technology, Atlanta, GA 30332. 

S. H. Lam is with the Mechanical and Aerospace Engineering Depart-
ment, Princeton University. Princeton, NI 08544. 

IEEE Log Number 8613329.  

not assumed cold, but are given the correct ion tempera-
ture and shifted in velocity according to a generalization 
of the Bohm criterion [5], [6]. 

Both ion reflection and trapped ions in the emitter sheath 
reduce the normalized (by plasma density) net ion loss 
rate to the emitter. Also, both of these phenomena raise 
the normalized plasma density adjacent to the emitter. The 
higher plasma density at the emitter causes a greater in-
crease in the loss of hot plasma electron energy to the 
emitter than the corresponding decrease in the loss of ion-
ization energy (carried by the ions) to the emitter. There-
fore, these emitter sheath phenomena increase arc-drop. 
Within the limitations of the present isothermal thcr-
mionic converter formulation, all three of these phenom-
ena (which become significant at low currents) steepen the 
current-voltage characteristic. At low current densities, 
the present theory shows that the collector sheath height 
decreases, resulting in a larger electron diffusion velocity 
than can be justified for the continuum model used in the 
plasma region. The result of lower performance at lower 
current is in agreement with experimental studies. At some 
current density which depends strongly on the emitter 
sheath conditions, the ignited mode is no longer self-sus-
taining and the arc is extinguished. 

Fig. 1 is a schematic diagram of the cesium diode con-
verter. The emitter is heated externally to temperature Tf  
which is typically 1750 K or higher, and the collector is 
cooled to temperature Tc  which is typically 900-1100 K. 
The gap space d, or converter length, which is typically 
0.25 mm, separates the emitter from the collector. The 
cesium reservoir, which is sometimes imbedded in the 
collector, is kept at temperature TR to maintain the desired 
cesium pressure (typically 1 to 2 toff) in the gap. The 
electrical load is connected across the emitter and collec-
tor to produce power. 

II. THE ISOTHERMAL ELECTRON FORMULATION 

In this section the isothermal thermionic converter for-
mulation is developed. The formulation is similar to that 
of Lam [7] but is generalized to eliminate the assumption 
of high sheaths which has previously been used to sim-
plify the electron dynamics. Since both low-emitter and 
low-collector sheath heights are encountered as a conse-
quence of ion reflection and trapped ions, the assumption 

0093-3813/87/0600-0309501.00 © 1987 IEEE 
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Fig. I. The cesium diock convener. 

of Boltzmann plasma electron distributions at the plasma-
sheath interface must be abandoned. At both the emitter 
and collector, the low sheaths return few plasma elec-
trons, leaving the distributions largely one sided. Fur-
thermore. at the emitter sheath emitted electrons must be 
taken into account. Thus the ratio of electrons moving 
toward the sheath to the total density of electrons at the 
sheath edge is not I /2, as in the Boltzmann assumption. 

In Fig. 2 we define the potentials in the converter. All 
of the potentials are nondimensionalized by emitter tem-
perature as follows: 

q— 
 kTE 

 q4 (1) 

where 

nondimensional potential. 
4) 
	

potential, 
electron charge. 

k Boltzmann constant, and 
emitter temperature. 

We also use the following terminology for various poten-
tials in the converter: 

emitter work function, 
back sheath height, 
reflective potential, 
emitter sheath height. 
plasma potential drop. 
arc-drop, 
collector sheath height, 
collector work function, and 
converter output voltage. 

Inspection of Fig. 2 immediately yields the following re-
Lit ions: 

v./ = 	— ( cl)k: — 4)(.) — 	 (2) 

Vd = ( Xc — XE) — AXp- 	 (3) 
The Richardson current density of electrons from the 

,;mitter is 

JR 
A

- 

= 120 T(K 2 ) exp(—+E ). 	(4 ) cm  

Fig. 2. The potential distribution in the convener. 

The emitted current density which crosses the emitter 
sheath potential peak into the converter plasma region is 

	

JE = JR exp ( —Ax), 	> 0 

E 	R, 	AIX < 0. 	 (5) 

We also define the net current density through the con-
verter J and the normalized current density 

= 	 (6) 

We have assumed for convenience that the ion contribu-
tion to net current is negligible because the cesium-ion-
to-electron-mass ratio is enormous. Ions will typically 
contribute no more than I percent of the net current. Elec-
tron temperature is nondimensionalized as 

	

= —re 	
( 7  ) 

where T e  is the plasma electron temperature which, in this 
section, is constant by the isothermal assumption. Fi-
nally, we have the thermal speeds: 

V8kT E  
aE  = 

Aln 

The isothermal formulation is developed from here in 
the same way as the general formulation except that we 
take full advantage of the isothermal assumption by look-
ing only at the global conservation equations instead of 
the local ones used in the general formulation. We then 
assume that the transport properties. collision frequen-
cies. and the ionization source coefficient are constant 
across the converter because of the isothermal assump-
tion. Also, we find only the steady-state solution. We 
carry out this development by deriving the global conser-
vation equations for the isothermal case (current, momen-
tum, and electron energy) and then reducing these to a set 
of three simultaneous equations in the variables r, x E , and 
xc-. In some cases the actual calculations are carried out 



This can be rewritten using (3) and (6) as 

where n( 0) is the total plasma density at the emitter 
sheath-plasma interface and a o  is the fraction of total 

plasma density at the interface moving toward the emitter. 

Continuity of electron current demands 

Jr. = Jac J 

which can be written as 

The quantity of, can be written as 

J 	
n(0)ao 

 ex 	
Xc 	Xt. 

J, = J 1 + 	 p 	
)). ( 

n(l)a 1 	( 	T 

J - 

au= r Q l 1  - 1) exp (Lt  
2 

(- ( 12) iBS = 	
2 	

exp 
n(0)at oto  

1 + 
n( 0)ao 	Va + AXp) 

exp 
n(l)a l  

	

T = I 	 iit 	( 22 ) 

Where j, = /JE . In the ignited mode r is generally 

about 2 (TF  = 1750 K and T, . = 3000 K ). consequently 

the arc-drop V, is negative. In other words, the high 

plasma electron temperature is generated by resistance 
heating. 

(13 ) 	Finally, we consider electron and ion momentum. From 
electron momentum conservation, we find the potential 

drop in the plasma region. By adding the electron and ion 
momentum equations as in the general case, we find our 

(14) diffusion equation and boundary conditions to which the 
sheaths contribute flux terms. When we introduce the ion-
ization source term into this, we have the complete for-
mulation. Electron momentum conservation is 

	

dp 	111,1, 	atmnue 	
(23 ) 0 = - 	- tin 

	

dx 	dx 	X, 

where X, is electron mean-free path. Using pr  = nkTi. and 
J = qnue , we can rearrange (23) into 

(16) 	
mat 
gXe 	

dx 
(kT 41! + 

nq 
 fA 
dx

) 	(24) 
=  

(15)  
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using different variables when x E  or Xc  are small or zero. 
In the case, for instance, of a single ion-repelling emitter 

sheath we use j because XE  is zero. These equations are 
nonlinear and solved numerically using a positive definite 

Newton's method. 
First, we consider conservation of current. The collec-

tor is assumed to emit nothing: therefore, at the plasma-

collector sheath interface we have 

a e a,n(1) 
e

_ uh, 
J -  	 (10) 

2 

where a l  is the fraction of the total plasma density at the 
collector sheath which is moving toward the collector and 
n( I) is the total plasma density at the plasma-collector 
sheath interface. Because we continue to assume that the 
part of the plasma electron distribution coming into the 
collector sheath is Maxwellian, we can write a l  as 

1 

2 r"
edu 1 4. — 

Jr 

which takes into account the plasma electrons reflected by 
the collector sheath. We still assume that the plasma elec-
tron distribution coming into the collector sheath is Max-

wellian and that it does not have any velocity shift be-
cause the sheath is expected to be electron repelling. In 
the limit of a high collector sheath, a l  = I /2 and we 
have a fully Boltzmann distribution of electrons at the col-
lector sheath edge. The situation at the emitter is more 
complex because the emitted electrons must be taken into 
account. We have the backscattered current density J Rs 
which is the plasma electron current density moving into 

the emitter: 

where 

000  
Q = 	 

In 

is the electron Mach number at the emitter. This is just 
an application of (13). 

Electron energy conservation is developed by consid-

ering energy exchange with the emitter and collector and 
energy lost to ionization. Power carried into the plasma 
by emitted electrons is 

kTt  

	

Pt:  = .4(2 + (1) t, + ax ) 	 (17 ) 
q 

Power returned to the emitter is 

Pas = (Jr: — J )(2r + 

Power flowing into the collector is 

Pc  = J(2r + 4e  + V, + 	) 
kTi 	

(19 ) 

Ionization power loss is 

Pion = 
	

(20 ) 

where Jim, is the total ion current into both the emitter and 
collector, and Vfi  is the first ionization energy. Conser-
vation of electron energy is 

	

Pt: = PHs + Pc + P 
	

(2 1 ) 

which can be reduced to 

a l  = (II ) 



Equation (32) is written as 

(1 2 n 	, 
+ Air) n = 0 

(4 -  

where 
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This can be further reduced by dividing by 4 and using where 
E = .r/ d where d is the converter gap thickness: 

1r X,. 	I 	du 	dx 
j — 	— — T — ?I — . 	(25) 

4 d 	 (4 	(4 

Integration of this equation from the emitter sheath inter-
face to the collector sheath interface yields 

= r In 
n( I )) 

+ JR 	(26) 

Ili ben: 

—d 	a,,m 	ai M 
ifto =  	 14 ;0  

kT, + kTf: 	u' 4-
) + 

ar m 	a i M 
131 =  	 11, 1 	(34) 

kT. + kTE  ( X,. 

(35) 

• I 
.17 	dE. 	(27) 

4 d 

w 	ID n(t ) 

The quantity R is the normalized plasma resistance. 
The ion and electron momentum equations can be writ-

ten 

kT„ 
dx =WI  dx 

(hi 	dtk 
	

mnue a,. 

(28h)
i,

_ 
do 	(Ilk 	Mnu,a, 

Iii T, 	= qn 
dr 	dr 	X, 

%when: X, is ion mean-free path and a, is ion thermal speed: 

Addition of (28a) and (28b) yields 

do 	a,. m 	M 
(kT,. + 	

dr 	A. 
= — 	

X 
+ —u, )n (29) 

which is ambipolar diffusion. Equation (29) is differen-
tiated to become 

	

11 211 	41,.nt d 
(kT,+kTf )---.+--(nu„) 

	

11.V - 	X. (IX 

U,M d 
+ — — (m(,) = 0. 	 (30) 

X, d.v 

We assume recombination is negligible and the ionization 
!4)urce term is 

- 

Ling (31) in 130) 

(1 2n 
, 
(4 -  

( t, n) = — (u,n) = 

yields 

di in 
Sd -  

Sn. 

n = 0. 

(31)  

(32)  
(11,m 

X , 	X, 

'Equation 129) taken at the boundaries of the plasma (at 
the emitter and collector sheath interfaces) forms the 
plasma boundary conditions 

( (PI ) = Otiao 
„ 

(du 
(4 , = gint 
	

(33)  

(36) 

01 = 	( 7 . Ia. .xc. Ax,)• 	 (38) 

When there is no reflection. 	and 0 1  are both large. i.e.: 

f30  = 0 (;4 ). 	= 0 (-K-d  ) J. 

Significant reflection on the emitter side reduces 0 0  and it 
may indeed attain negative values for sufficiently strong 
reflection. 

The density equation (35) with the boundary conditions 
and 0 1  is a linear eigenvalue problem: its solution yields 

A and C as functions of O il  and a l . The calculated results 
are shown in Fig. 3. Since A(r) is a function of r from 
the ionization kinetics, the value of r is thus determined 
by a function of '30  and 0 1 . The plasma resistance R also 
can be expressed in terms of functions of and 13 1  through 
A and C using (27): 

/ tan 	+ C)\ 
) 

(39) 

tan (—C ) 

	

The sheath results which provide j. Q. 	and 0,. com- 
plete the isothermal lommlation. The sheath theory used 
is an exact solution to the Poisson equation and collision-
less Boltzmann equation for warm plasma ion distribution 
with a 10 percent of Bohm speed cutoff velocity to ap-
proximate the effect of the collisional presheath 161. The 
results are summarized below. The quantities 0 0 . 0 1 . Q. 

(28a) 

where A( r) is the ionization coefficient and is found from 
consideration of ionization kinetics of the cesium accord-
ing to Lawless 181. Its solution for n is 

X,. 	 n(t) = B sin ("4 + C) 	 (37) 

where B and Care constants of integration and A = A( r). 
The quantities ,3„ and which are the boundary condi-
tions for (37). can be written as functions of r. x f: • x c • 
and Ax,: 

a, = 8kTE 
	 Qu = 130(T• 	N( • ax, 

AM 

R= 
sin C 
---- In 

7 



(sin (A + C)) 

sin (C) 

+r In — + In 
— an 	) 

xc  — Xe = r In 

(41) 
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TE  = 1750 K 

TG  = 750 K 

= 1 tort 

d = 10 mil 

= 2.12 eV 

OC = 1.60 eV 

in = 20 amp/cm 2  

= 1.80X10 -'5  amp/cm' 

TE  = 1750 K 

= 750 K 

Pc. = 1 tort 

d = 10 mil 

OE = 2.67 eV 

46e: = 1.60 eV 

Jn  = 7.57amp/cm 2  

= 2.10x10-3 

TABLE I 
ISOTHERMAL SOLUTION CONDITIONS 

CASE 1 	CASE 2 

Fig. 3. The eigenvalue problem. 

and j are found from the sheath calculations as functions 
of r. x f: , xc. and Ax s . i.e.: 

Qo = 130( 7 - Xf.• )(C. OX,) 

QI = 01(T. Xh.• XC• 

Q = 4(7. 	OX,) 

= i(r. Xr. xe. axs) • 

From the eigenvalue problem for the plasma density we 
then find 

A(7) = A( 1■30• 01) • 	 (40) 

From the continuity equation for current we find 

and from the electron momentum equation we find 

= In 

 

/sin (A + C) '  

sin (C) ) 

+R 
2(7 — 1) 	i 

j  (42) 

These three previous equations determine \ E. x c . and r 
when .1x, is given. This set of equations is valid for all 

-Ix,. Even in the case of .1x, 5. 0 when there is no reflec-

tion, the calculations differ from previous isothermal cal-
culations because the Boltzmann assumption on the elec-
tmns is not used as indicated by the presence of a o  and 
a . 

III. CALCULATED RESULTS FOR ION REFLECTION AND 
TRAPPED IONS 

In this section we develop isothermal solutions for the 
thermionic converter with the emitter sheath phenomena  

of ion reflection, trapped ions, and surface emission ions 
included. Emitter sheath effects on thermionic converter 
performance can be divided into two categories: 1) 
changes in net ion flux rate into the sheath which affect 
plasma density directly: and 2) changes in sheath poten-
tial distribution which affect the exchange of "hot" 
plasma electrons for "cold" emitter ions directly. A de-
creased influx of ions into the sheath. which occurs for all 
three emitter sheath phenomena. increases the plasma 
density at the neutral plasma emitter sheath interface. 
Theoretical intuition suggests that an increased plasma 
density at the emitter would benefit performance by re-
ducing resistance through the plasma and therefore reduc-
ing arc-drop. However, this is not the ease. While the 
plasma density at the emitter increases slightly, plasma 
density at the collector decreases. Consequently. total re-
sistance increases. 

All three of these phenomena increase in significance 
as net current density through the converter is reduced. 
Each of these reduces the net ion loss rate to the emitter 
and consequently increases arc-drop (therefore. degrading 
performance at low current densities). This increase in 
arc-drop is in agreement with the same tendency in the 
experimental results. However, the experimental results 
also show a plateau (of low arc-drop) at low current den-
sity. This plateau occurs at a current density correspond-
ing to significant surface ion emission and is therefore 
thought to occur as surface emission replaces volume ion-

ization as the dominant source of plasma ions. Unfortu-

nately. the theoretical calculations cannot be carried into 
this region because the collisionless collector sheath 
matching (to the neutral plasma) fails. 

To provide a realistic framework for presenting the re-
sults, we consider the converter conditions shown as case 
I in Table I. Case 2 is shown because it has the largest 
surface emission of any typical thermionic converter op-
erating condition (because the work function is high and 
the temperature is also high). Instead of presenting case 
2 separately, we demonstrate the effects of surface emis- 
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son in case 1 by increasing the surface emission by a 
factor of 100 thereby bringing it up to the level in case 2. 
The net current density at which surface emission be-
comes significant can be estimated by multiplying by by 
the square root of the ion to electron mass ratio (approx-
imately 500). In case I. this means that surface emission 
becomes significant at J = 0.01 A/cm 2  while in case 2 
significant surface emission begins at J = 1.0 A/cm2 . 

IV. EFFECTS OF ION REFLECTION 

In this section we discuss the isothermal results for case 
1 with ion reflection, but without trapped ions and with 
the small amount of surface emission ions of case I. Fig. 
4 is the CV diagram for this case. 

The dotted line extending upward from point A is the 
single electron-repelling emitter sheath solution. How-
ever, we have not taken recombination or the Schottky 
effect into account in this isothermal formulation which 
are expected to become important at current densities near 
JR. The interest of this paper begins at point A, where the 
single sheath doubles over. Between points A and B. 
where the back sheath height ax is less than the sheath 

height XE,  the emitter sheath is nonreflecting. In this re-
gion the sheath heights X E  and xc  remain constant while 
the plasma density is proportional to net current J (the 
normalized plasma density nc J is constant). Only the 
back sheath height Ax changes and the CV curve in this 
region is Boltzmann (the arc-drop is constant). Beginning 
at point B and continuing to point C, the duuble emitter 
sheath reflects plasma ions because the back sheath is 
larger than the front sheath; in other words, the reflective 
potential ax, = ax — XE is positive. The result is that 
net ion loss rate into the sheath a decreases and that arc-
drop increases. The quantity 5 is defined as the mean ion 
velocity into the sheath normalized by the Bohm speed , 

c717 7k. The dotted curve BD is the same double sheath 
except that it assumes no ions are reflected; therefore, 5 is 
constant and arc-drop is constant. The two curves BC and 
BD are almost indistinguishable because the increase in 
arc-drop is small until the net current density is extremely 
small. The reason for this is that the shift speed is ap-
proximately u s  = 2, and, therefore, a large increase in 
reflective potential is required to change 5 significantly 
the half-reflection point is Ax, = 4.0 or approximately 

.1 = JR exp ( —4 ) = 0.4 A/cm 2 ). The shift speed us  is 
defined as the velocity at the peak of the incoming ion 
distribution again normalized by the Bohm speed. 

The curve EF is the single electron-repelling emitter 
sheath case. It is the limiting case for large amounts of 
trapped ions in which the double sheath peak has been 
completely suppressed by the trapped ions. For this case, 
the emitter sheath solutions gives us  = 06 . This curve is 
not topologically connected to the curve ABC; it will be 
shown in Section V that trapped ions move ABC toward 
the single ion-repelling sheath case. The curve is much 
steeper (a faster increase in arc-drop) in this case because 

= 0 (the half-point in ion reflection is approximately ./ 

= 8 A/cm2 ). Curve EG is the single ion-repelling case 
assuming no reflection and is therefore a Boltzmann line 
with constant arc-drop. 

At points F and C the solutions fail at the collector. The 
explanation for this failure is best given by examining 
Figs. 5-8. 

Fig. 5 is the normalized plasma density through the 
converter gap. The highest curve with no reflection Ax, 
= 0 has the largest plasma density at the collector but the 
lowest plasma density at the emitter. Ion reflection, which 
decreases the ion loss rate to the emitter, raises the plasma 
density at the emitter but lowers the plasma density at the 
collector. The lower plasma density at the collector forces 
a smaller collector sheath height to pass the net current 
density. This can be seen from (10). Fig. 6 is the potential 
through the converter under the same reflection conditions 
as in Fig. 5. In Fig. 6 the first two spaces on the left make 
up the double emitter sheath, and the last space on the 
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toward negative infinity, and the ion loss rate to the col- 
lector uC  is driven to zero. The two preceding quantities 

and use  are defined at the collector sheath as a and 
were at the emitter sheath. Fig. 8 shows the changes in 
the emitter sheath height, ion shift speed and ion loss rate. 
When the collector sheath failure occurs, the ion loss rate 
to the collector is zero (Ti c  = 0) and the corresponding 
plasma ion distribution at the collector is bunched at zero 
velocity (u„ = — 00 ). While the mathematics hold self-
consistantly until Tic  = 0, the physics is clearly poor at 
this point because Tic  = 0 demands that the plasma ions at 
the collector have zero energy (zero temperature and zero 
mean velocity). An estimate of when the physics becomes 
poor is u5  0. At this point the net ion loss rate is close 
to the thermal speed. A second physical difficulty that oc-
curs with collector sheath failure is that the electron Mach 
number there Q. (from (10)) becomes 0.80- 

040- 

C 

2 00 	2 50 
AX s  

Fig. 7. Collector sheath failure. 

right is the collector sheath. The region between the two 
sheaths is the neutral plasma region. In the no-reflection 
case, it can be seen that the potential has a pronounced 
well in the middle. This is the result of the large plasma 
density in the middle. As reflection increases, this well 
disappears on the collector side of the plasma because re-
sistive drop there (due to low plasma density) increases 
to the degree that it is greater than the ambipolar rise (due 
to decreasing density toward the collector). Simulta-
neously with plasma potential gradient at the collector be-
coming negative, the collector sheath goes toward zero 
height. Fig. 7 shows the critical collector sheath quan-
tities as the collector sheath failure occurs. Collector 
sheath height x c  goes toward zero, the shift speed u, c. goes 

a = ; 
because the collector sheath height approaches zero (ac-
tually about 0.001). In the present continuum formulation 
of the plasma region, it was assumed in (13) that Q, is 
small so that the electron momentum term u,duddx can 
be neglected. 

One could take the solution below the collector sheath 
failure point if Tic  could attain negative values or if Q, 
could attain values larger than There is no physical 
basis for assuming that Ti e  can become negative since the 
collector emits nothing. However, there is a physical ba-
sis for allowing Q, to be larger than ViTsr (an electron 
distribution shift) as can be seen in Fig. 6: the potential 
drop nearing the collector becomes progressively more 
electron accelerating as the collector sheath fails, and, 
therefore, the electron distribution should be shifted as 
the ion distribution is in an electron-repelling sheath. 
However, this would clearly invalidate the assumption 
that the electron momentum term is negligible. Therefore, 
the momentum term must be added to explore further in 
this direction and this has not been done because of the 
resulting complexity in the equations. 
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Fig. 9. Ionization coefficient A and C. 

Comparison of Fig. 7 to Fig. 8 at the collector sheath 
failure point (&x, = 2.5, te e  = 0) shows that the ion loss 
rate to the emitter is positive. At this point the plasma is 
still ignited and generating ions as can be seen from Figs. 

and 10. The ionization coefficient A has dropped by 50 
; ,ercent, but the plasma electron temperature has dropped 
ty only 5 percent. Finally, we note in Fig. 11 that the 
normalized plasma resistance R has risen by almost 100 
pt!rcent. This is responsible for the increase in arc-drop 
;Ind the decrease in performance. Plasma resistance in-
c ceases in response to reflection because the loss of plasma 
electron energy to the emitter is more important than the 
loss of ionization energy to the emitter. Ion reflection at 
the emitter increases the normalized plasma density there, 
stand consequently increases the normalized loss of plasma 
electron energy there. The basis of this can be seen from 
vonservation of electron energy (22): 

r = I — 4 jVd  — j, 	 (43) 

The ion energy loss term is generally small compared to 
the electron energy loss term: 

Ifirift 	J. Vfl 
— = 0(0.02). 	(44) 

jVa  J Vd  

therefore, we take the electron energy equation as 

r = i —ijVd . (45) 

Since r is nearly constant (because of the ionization ki-
netics), the product jVd  is nearly constant. Ion reflection 
„tec:reases j (because the normalized plasma density in-
c reases) and therefore increases arc-drop Vd (makes Vd a 
more negative number). 

if the equations are reformulated in such a way as to be 
valid past the collector sheath failure point, then we can 
eventually expect to see a decrease in arc-drop and a low-
current plateau as the electron temperature approaches 1 
(the ignited plasma is extinguished and the ionization 
SOlurce is surface emission). This can be seen from (43). 
However, as we see, the collector failure occurs before r 
has dropped more than 5 percent. Consequently, we do  

not see any plateau or decrease in arc-drop as net current 
density is decreased in the present calculations. 

V. EFFECTS OF TRAPPED IONS 

Fig. 12 shows the effect of trapped ions on the CV char-
acteristics. In this section the trapped ion distribution is 
assumed to have the temperature of plasma ion distribu-
tion, and 100-percent trapped ions ( fir  = 1.0) is defined 
to complete the ion distribution at the double emitter 
sheath peak such that one has a Maxwellian distribution 
there. Based on physical reasoning about the trapping 
mechanism, one expects on the order of 10. Also, some 
trapping calculations have been done for approximate 
sheath formulations [9], [10] which support this. 

Curve AHIJ is the CV characteristic for fir  = 0.10. At 
point A there cannot be any trapped ions since the back 
sheath height 41x is zero. Therefore, the trapped CV 
merges into the nontrapped curve there. The actual amount 
of trapped ions on the fir  = 0.10 curve increases from zero 
at point A to the full 10 percent of a thermal distribution 
at point H where the back sheath height OX is equal to the 
sheath height xE. The shift speed increases on AH from 
1.95 to 3.00. This corresponds to what is seen in Fig. 12 
where /Ix < 
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Fig. 12. CV diagram with trapped ions and surface emission. 
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The rise in shift speed has been limited to 3.00. This 
limit is placed on the shift speed because a sheath with 
height of about 1.0 should not have a presheath region 
capable of shifting the entire distribution so far. In fact, 
limiting the shift speed is equivalent to increasing the cut-
off speed for the ion distribution function. 

The arc-drop decreases as a result of the increase in us  
and the consequent increase in the net ion loss rate to the 
emitter. A "hump" can be seen on AH where the shift 
speed hits 3.00. The arc-drop is lowest on this "hump" 
because the shift speed is at its maximum of 3.00. Be-
tween points Hand I the back sheath height remains equal 
to the sheath height. aX — XE = X S = 0. On this segment. 
u, decreases to 1.25, therefore increasing arc-drop. 

From point Ito point J, the shift speed remains constant 
at 1.25 and the ion loss rate decreases because of reflec-
tion. The other trapped cases f r  = 0.2, 0.3, and 0.4 have 
not been connected because they hit the 3.00 maximum 
shift speed much sooner than in the f„ = 0.1 case. 

Point J is the collector sheath failure point. Each of the 
j; = 0.2, 0.3, and 0.4 curves begins at Ax, = 0 and ends 
at the collector sheath failure point. It should be noted that 
each of the trapped ion curves fails at a higher current 
than the last because the shift speed is lower. 

VI. EFFECTS OF EMITTER SURFACE EMISSION 
Fig. 12 shows the effect of surface emission on the j,, 

= 0.10 curve: surface emission is added by multiplying 
the actual small amount of surface emission in case 1 by 
a factor of 100. This brings the surface emission up to the 
level in case 2, making it significant at J = 1.0 A/cm2 . 
It can be seen that surface emission increases arc-drop: it 
does so in exactly the same way as reflection or trapped 
ions do—it decreases the net loss rate of ions to the 
emitter. 

VII. COMPARISON WITH EXPERIMENTAL RESULTS AND 
CONCLUSIONS 

Fig. 13 superimposes the isothermal results of Fig. 12 
on the experimental results for a cesium reservoir tem-
perature of 551 K which produces a HOD' neutral cesium  
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Fig. 13. Isothermal and experimental CV diagram.. 

pressure. The experimental results are from [ I 1]. The 
point of this comparison is that the steepness of the CV 
characteristic in the experimental converters can be ex-
plained by a decreasing ion loss rate to the emitter. We 
have shown that all three of the expected emitter sheath 
phenomena decrease the ion loss rate to the emitter. We 
cannot calculate the amount of trapped ions in a collision-
less sheath without knowledge of the collisional pro-
cesses. However, the experimental CV suggests that if the 
amount of trapped ions ( fir ) increases from 0 percent at 
J = 14 A/cm =  (the double sheath formation point) to 10 
percent at J = 2 A/cm2 , then the steepness could result 
from trapped ions reducing the ion loss rate to the emitter. 
Since these percentages are based on a thermal distribu-
tion• of ions, they seem physically reasonable. Unfortu-
nately, the collector sheath failure prevents us from going 
to the point in the calculations where r drops enough to 
make surface emission the source of ions. 

The experimental curve is nearly a constant 0.05 V be-
low the isothermal result (f„ = 0.10) except at high cur-
rent densities and at the "hump." Comparison of the 
curves at high current density is not valid since neither 
the Schottky effect nor recombination has been included. 
The Schottky effect is important above 12 A/cm =  in this 
case because the emitter sheath is single electron repel-
ling (to the plasma) and therefore puts a strong electric 
field against the emitter with the appropriate sign. Recom-
bination is also potentially important because the plasma 
density scales with current density, and at high current 
densities the plasma density in the middle of the converter 
approaches the Saha density. The 0.05-V difference may 
or may not be explained by a discrepency in the assumed 
collector work function. At 750 K the collector emits es-
sentially nothing and therefore any change in the collector 
work function directly affects output voltage. If the col-
lector work function were in fact 1.65 instead of 1.60 V, 
then the isothermal result would lie nearly on top of the 
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experimental result. We have not adjusted the assumed 
collector work function so as to illustrate the importance 
of :t and therefore the importance of the surface physics 
of the adsorbed cesium layer. The "hump" should not be 
taken as an expected experimental result since it results 
from the interaction of the trapped ions with the plasma-
emitter sheath interface. Instead it should be taken as a 
second reason (in addition to the cutoff of the ion distri-
bution) for further study of the matching region between 
the collisionless sheath and the neutral plasma. 
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ASYMPTOTIC SHEATH THEORY 
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Few exact solutions for collisional presheaths exist because of the difficulty of simultaneously 
satisfying both the collisional Boltzmann equation and the Poisson equation. The exact 
solutions that do exist are for very specialized collision terms such as constant cross-section 
charge exchange with cold neutrals. The present paper presents an asymptotic method which is 
applicable to a variety of collision terms and is applied in particular to constant collision 
frequency charge exchange with noncold neutrals. Constant collision frequency and constant 
cross-section collision with cold neutral results are also presented. The first-order terms for the 
presheath potential rise and ion distribution functions are calculated and it is shown that 
second- and higher-order terms can be calculated using a multiexponential expansion for 
presheath potential rise. The first-order cold neutral constant cross-section results correspond 
well to the exact solution. The calculated presheath potential rises are of the order expected 
from the Bohm criterion, and in some of the specialized cold neutral cases, exactly kT,/2. The 
presheath potential rise is reduced by a neutral plasma potential gradient which accelerates 
ions toward the presheath. In all cases the collisional presheath is asymptotically matched to 
both the neutral plasma and the collisionless sheath. 

L INTRODUCTION 

The majority of plasma—surface interaction work 
matches a neutral plasma to a collisionless sheath without 
detailed consideration of a collisional presheath. However, 
the collisional presheath structure is of great interest. Sheath 
theory, beginning with Bohm,' tends to assume that the plas-
ma ion distribution is cold so that a minimum presheath 
potential rise may be calculated, which makes the collision-
less sheath self-consistent. Harrison and Thompson2  genera-
lize the Bohm criterion to noncold ion distributions; how-
ever, the result is sensitive to the density of the low energy 
tail of the ion distribution, which in turn is strongly affected 
by the collisional presheath. And, a second difficulty in the 
absence of a collisional presheath is that the collisionless 
sheath and the surface beyond it may return no ions or a 
nonthermal distribution of ions which the collisional pre-
sheath must match to the neutral plasma region. 

Some exact solutions exist for presheaths; notable is the 
work of Ecker and Kanne 3  and Riemann,' who derive exact 
solutions for collision terms based on charge exchange with 
cold neutrals and Emmert et al.,' who derive an exact colli-
sionless solution in which there is an ionization source. In 
the present paper an asymptotically correct collisional pre-
sheath theory is developed which can be applied to a less 
restrictive range of collision terms. Potential in the pre-
sheath is expanded as a multiexponential series and the dis-
tribution functions are expanded in terms of presheath po-
tential rise. First-order approximations are calculated for 
both constant collision frequency and constant cross-section 
charge exchange collisions. 

II. FIRST-ORDER ASYMPTOTIC POTENTIAL 
FORMULATION 

In this section it is assumed that the potential in the 
coiIisional presheath is of the form 

Uo + AU =ax+ e81 , 	( 1)  

where U0  = ax is the assumed linear potential in the neutral 
plasma and 0 U = ex is the additional potential rise in the 
collisional presheath, as shown in Fig. 1. In this paper the 
convention used is that U = 0, where q is the electron 
charge and ¢ is potential in electron volts so that U has units 
of energy. In addition, potential is defined in the reverse of 
the usual sign convention so that increasing potential repels 
electrons. With these conventions, the Boltzmann equation 
can be written as 

t(1 v  df ± 1) 
dx dU m v kat 

(2) 

In Eq. (2) and those following, the ± denotes the sign of 
the charged species in question; the upper sign refers to posi-
tively charged ions and the lower sign to electrons. The 
Boltzmann equation is expressed in terms of 0 U, which will 
be the expansion variable in the presheath: 

df 	1 uflAU— ±— m (13AU + a) al
v dt
= r) • 	(3 ) 

The distribution function is then expanded as 

f=./°(u) + uf,(v) + A212 (v) + • • • , 

so that the derivatives are 

df 
aou =h(v) + 2AUf2(v) + 3AU 2f3 (v) + ••• 

and 

g1= 1.°- (v) +DU 	
du 

(u) + AU 2 17f  (v) + • • • . 	(6) 
dv dv 	du

a  
Substitution of (5 ) and (6) into the Boltzmann equation (3 ) 
yields the terms 

(4)  

(5)  
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I: ±-cm au
•L --(Rd  (v) =[( 13-111 

dt ..1 ic1' 

	

	 (7a) 

fa 1 1 

	

AU: 
viln(v)  ± n i2c9v (v) ±2-m -Liadv (v)  =[6),Lut 	 (7b) 

ALP: 2vI3f2 (v) ± Li. 11- (v) ± m --lid  (v) .[( (.2-f, 
dt)cliu't 	

(7c) m av 	av 

AU": nn/.3f,,(v) ± 12- "f"a 	(u) ± 2- 8---fi (v) =[(a! )1 	• 

	

at c AU" 	
(7d) 

m au 	may 
The quantity/3, representing the presheath potential rise, is determined from the Poisson equation 

d'U .47q2(f f(v,AU)dv — f f e  (v,AU)dv), 	 (8) dx2 

where q is the electron charge. It is assumed that the ions are singly ionized for simplicity. The Poisson equation ( 8) is 
expanded as 

11 2AU= 4vq2 Ki f1 (v)dv — f f  ,(v)dv)Au +E. f,-2 (v)dv — f fe2 (v)dv)AU 2  + • • •], 	 (9) 
-  

where charge neutrality at AU. 0 has eliminated the terms containing f, and fo : 

no = f In(v)dv = f f,,,(v)dv. 

The quantity no  is the neutral plasma density of the asymptotic presheath, not of the neutral plasma. 

FIRST-ORDER SOLUTION WITH A CONSTANT COLLISION FREQUENCY CHARGE EXCHANGE COLLISION TERM 
The constant collision frequency charge exchange collision term is modeled as 

(/), .7+ (f„ (v) 	f(u)du — f(v) 	f„(u)du), 	 (10) .  

where/. ( u) is the neutral distribution and r is the collision time. Previous work has assumed cold neutrals and results in an in-
tegral equation which is solvable only for constant collision cross section.` 

A. Zero plasma potential gradient (a=0) 

In this case Eqs. (7) become 

I: ().--L(f„(v) 	fm(v)du —fm (v) 	f„(u)du), 
rn„ 	 — ft 

8.40 
AU: vi3f1(v) —

m 
fi 	

(v) = 	
( 

rn. f, (v) f
OD 
 .fii(v)du — (v) f f„(u)du), 

- 

AU": nvI3f.,(v) 	j;( ' -c9 	(v) =4,(v) 	.fh,(v)du — fi„(v) f f„(u)du). 
m av 	rn„ 

Under the assumption that the neutral distribution is Maxwellianf, (v) = n„Vm/217.kr exp( — mv 2/2kT), the solution to 
(11) is 

fA = Cf„(v), 

▪ (v) = (1/kT)A(v), 

L(v) = (vtanf o,_, ) (v). 
Thus 

f (v,AU)=C e"'" kry,,(v), 

which is the expected result. In this case the mean ion velocity is zero throughout the collisional presheath since charge 
exchange collisions conserve ions and the mean ion velocity in the neutral plasma is zero. Thus, if a = 0, constant collision 
frequency charge exchange collisions do not shift the ion distribution upward in velocity. This presheath can be matched to a 
collisionless sheath only if the collisionless sheath returns all the ions entering it from the collisional presheath. 

With electron density assumed to follow 
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'le (AU) = no e( - AU/kr.) 

the Poisson equation (9) yields, to first order, 

/3 2  = 47ren o (1/kT + 1/ kr,), 

which is the length scale of the Debye length. Thus for a = 0 the collisional presheath is not distinct from the collisionless 
sheath since there is no separate collisional presheath length scale. 

B. Nonzero plasma potential gradient (a00) 

Under this condition there is a net flux of ions from the plasma into the sheath, which allows the construction of a 
collisional presheath that accelerates the ions and depopulates the ion distribution of returning ions. Thus the collisional 
presheath may be correctly matched to the collisionless sheath which returns no ions. In this case (7a) and (7b) can be written 
as 

ci 	I  (v) - njo (v)i, 

df, 	1 nji(v)]. 

2 
mu 	mu ) du + 

mu 2  R 
(u)lclu + Cl, 

(14a) 

( 14b) 

(15 ) 

(16)  

(17) 

(18) 

as  m Dv 
vi5,

A(v) 

The solution 

fo (y) 

and 

f,(v) 

where 

no = 

and 

= 

= 	[f,,(v)n o  
rn„ 

13 dfo 
+ 	+ 

m dv 	m 

to Eqs. (14) are 

(v) = 	[f.(v)n 
dv 	rn„ 

my  = no  exp 
ar 

fi'my2 

ar 	2rkT 

mv )[f 

exp 	- 
- 	2kT 

mu exp (fi'mu2 + 

ar 

?Jim m 
= exp - 

2a 

I a 	fo (v)dv 

L. f,(v)dv. 

ar 	0 	2a 	ar 
exp 

ar 1 arkT 2kT 

The constant of integration in (15) has been set so that fo  goes to zero at - co ; fo  goes to zero at co regardless of the 
constant of integration. Equation (17) is immediately satisfied by (15). The constant of integration C in (16) must be set so 
that (18), which represents self-consistency, is satisfied. It can be seen from (16) that f, goes to zero at - co and co regardless 

of the I — f exp 

constant C. From (18), then 

C =11 1  
fi'mv 2 

 my exp 
f/mu2 

 + mu) m 1/7—n 	mu 2 
- __— 	— — — — exp - ) du dyl f 

 . 	2a ar 0 	2a ar ar 2rkT 	2kT 

x [ 2ra expt m )1 
-1  + [f-  exp( - //my' my\ r" 

) j 16- exp(flmu2  + —mu)lia  (u)du dyl 
m,6' 	l 2af3r2 	- 	 - 2a 	ar 0 a 	2a 	ar dv 

27071 
2ra exp(  

The exponential sheath rise ,6' is determined from the Poisson equation under the simplifying assumption that

r AU 
ne  = 	fe  (v)dv = n o  exp( - 

kr, 

One might expect that the approximation should be n e  = no  exp( - U / kT,); however, this cannot be true in the asymptotic 
presheath because n e  must approach n o  as Uapproaches negative infinity. With (20) the Poisson equation (9) to first order 
becomes 

13 2  = 4re (n, + no/kTe ). 	 (21) 

Since the ion density is only calculated to first order, the same will be done for the electron density in (20). 
To obtain a particular solution it is assumed here that the collisionless sheath to which the collisional presheath is joined 

at AU= AU• returns no ions. In particular, 

f f(v,AU *)dv = 0, 	 (22) 

(19) 

(20) 
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Or 

fo (v)dv + AU• 	fi (v)dv = 0 so . (23) 

(24) 

vf,(v)dv = O. 	 (25) 

and 

.1: of(v,AU • )dv = 0, .  

Or 

f uf°(v)civ  + AU  • 13 . 

(kT, — 

where 

mellyt
dU  —n— 

do 

ma r, 
r. 

(31) 

tconsionless sheath 

U=Llo • au 

moral plasma 

FIG. 1. Asymptotically correct potential in the collisional presheath. 

asymptotic 
presheath 
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2,1 

Because the approximation is only first order, it is not possible to impose the condition thatf(v) is uniformly zero for returning 
ions. Equations (23) and (25) represent zero returning ion density and zero returning ion flux. When higher-order terms are 
included, the conditions of zero returning ion momentum flux, zero returning ion energy flux, etc., can be applied in succes-
sion. Equations (21), (23), and (25) are solved for n , 13, and AU • , with all other quantities assumed constant. Equation (21) 
immediately satisfies the Bohm criterion at AU = AU • for the first-order approximation 

n, + no/kTe  > O. 	 (26) 

The Poisson equation (21) can be written as 

13 2  At, = 1+ kr e (n,/no ), 	 (27) 

where 

AD = 11kre /471/2/10 	 (28) 

is the Debye length. It is expected that the length scale of the presheath should be of the order $ = 1/A, where A, is the ion 
mean free path. In the circumstance that the Debye length is small compared to the ion mean free path, the product /3 2 2 t, is 
small and 

n, = — no/kTe . 	 (29) 

The neutral plasma region is matched to the collisional presheath also at AU= AU •, as shown in Fig. 1, to produce a 
three-scale uniform asymptotic solution. In particular, assuming constant collision frequencies, the momentum equations 
become 

m 	dU kr, — —712— dr  = n 

and 

(30) 
r 



F,(o.),A,B) - 	
f,(v) 

(no/kTe ) 

_ exp ( - Bcd 2  - 0.)/A  )  (f" exp(Bg.  + -gL){ - 
A 

exp( - 2  ) 
A  

n = no (1 - AU* /kT,), 

do 	AU* 
= - no 13  

dx 

and 
dU 
—
d

= a +AU*. 	 (34) 
x 

 

The quantity n is the plasma density at the matching point U* and r, and r, are, respectively, the ion and electron net fluxes. 
Nondimensionalization results in 

A= (ar/m)n. 	, 	 (35) 

B = 13kT /a, 	 (36) 

Be  = 71,/T, 	 (37) 

to Vm/2kT u, 	 (38) 

where A and B e  are the parameters and B is a function ofA and B 1 . The quantity A represents the nondimensional asymptotic 
presheath potential gradient, B represents the nondimensional exponential presheath rise, B, is the electron to neutral 
temperature ratio, and w is the nondimensional velocity. The distribution functions can then be written as 

	

fo (u) 	exp( _ 	Fow,A).  	 exp( - 2  + A dt 	 (39) 

	

noVm/2kT 	jr A J-  
and 

(32 ) 

(33) 

B [ I exp( - : 2 ) - 
A 2 

exp( 
A ) 

ft exp( - 77 2  + 
A

)d did + C), 

where 

exp( - Bo.)2  - 
A 

 ±-)) 
0 
 expQ34' 2 + 

A 
— 2)4-  dd k B  ri exp(

4BA
) 

- 

+ —
B, 	

exp(- Bo.) 2  — f°  eXp(134. 2  + —41 
A o 	A 

X [--1- exp( - 2  ) - 
A 2 

exp( -1 
A f 

) f exp( - 77 2  + 21-)thip 	
B 

t do, [1/1 exp(-
4BA 2
H1 -1 . 

Thus (23) and (25) become 

* Fo (0),A )dcd 
+ AU 
— f FI (0,01,B)dcd = 0 
kr,  

and 

co-F.0 (0)01)&4) 
+ AU 

* f caF,(0),A,B) do, = O. 
kr,  

Figure 2 presents the presheath potential rise A U* /kT, and the nondimensional exponential rise B as a function of the 
nondimensional asymptotic presheath potential gradient A for a range of electron to neutral temperature ratios B 1 . As would 
be intuitively expected, the presheath potential rise decreases with increasing A. Figure 3 presents the ion distribution 
functions at the neutral plasma-collisional presheath interface F 0 (0) ), the first-order correction to the distribution function 
F, (w), and the resulting distribution function at the collisional presheath-collisionless sheath interface Fo (o)) + U *F1 (cd). 
Although the resulting distribution is not uniformly zero for or <0, its net returning density and flux are zero by (42) and 
(43). It is expected that higher-order corrections to the distribution function and potential with the corresponding application 
of higher-order moment conditions of zero returning momentum, energy, etc., will converge the returning distribution 
function toward a uniform zero. 

In the limit of cold neutrals, the constant collision frequency charge exchange solution is considerably simplified. Equa-
tions (14a) and ( 14b) become 
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(40)  

(41) 

(42)  

(43 ) 

a s 



FIG. 2. Constant collision frequency 
presheath potential rise. 

a f — 
m av 

and 

Lefl (v) 

The solutions 

and 

= 
> 0, 

(44)  

(45) 

(46) 

(47) 

= 	[rt„6„(v)n o  - n„fo (v)] 
rn „ 

fl afo 	a af 	1 

fo ( v ) 	incl(miar)eIP( 

— — 	— -=J-(v) = 	[n.5,,(On - n„f;(v)]. 
m ay 	m au 	rn„ 

to (44) and (45) are 

	

mviar), 	v > 0, 

0, 	 L, <0, 

) 2  f 	i2L2 )dui, 
El [C 

exp( - 
2a 	a 

flmv2 	mv (C -  

-e-- a  no(  ar  exp(13"-
2a  o  

exp( - 
2a 	ar 

-0.80 
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, 
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FIG. 3. Constant collision frequency ion distri-
butions in the neutral plasma and at the pre-
sheath—sheath boundary. 
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such that 

C+ —C -  = (m/ar)[n1 — (fl/a)no]• (48) 

Equation (46) immediately satisfies n o  = Jm .fo (v)dv. No returning ions implies that 

C =0 

and 

(49) 

C 	= (m/ar)[n, — (Q/a)no] (50) 

since f, on v <0 is already zero. The final condition is then that n, = f c̀ ,11 ( v )du, or 

n = "  13mv 	mv nim 	fino m 	fino 
— — — + m " f iimu 2 

(51) exp( — — 

2a 	ar ar 	a ar 	a ar 	0 2a 
The application 

13T. 

of n,= — no/kT, yields 

ficr2 	2  d 1 {f exp( ) 1 — [ 1-2— 11 77 2)dn exp(k---- 	4 - (52) exp( — 	4- 	4- 
1 	0 	2m 	

) /3
2m  

	2  
0 	m a 0 

In this case, AU• is defined by 

f,,(0+ ) + A U•f, (0+  ) =0, 

which yields 

(53) 

AU•/kTe =1/(13kTe/a+ 1), 

as expected. In the limit of /3ar2/2m -.0 we have 

(54) 

13kTela = I 

and 

(55) 

A U• =kt/2, (56) 

which corresponds to the Bohm criterion. Figure 4 presents the variation of B .13kTi /a, with /3ar2/2m for the cold neutral 
case. A particular/3 for the parameters can be conveniently found by drawing a line from the origin, with slope 2m kr../T 2a2 , 
so that the intersection is the solution. Figure 5 presents an example cold neutral ion distribution. Examination of the ion 
distribution function at v = 0 shows that the slope is discontinuous. This is because the neutral source is a delta function at 
v = 0. It appears that the Bohm criterion cannot be satisfied at A U• because the integral f;[f(v)/v 2 ]du is singular; however, 
the use of this integral in the Bohm criterion assumes that the ions accelerated are not replaced. In this case the ions 
accelerated from u = 0 are replaced by ions from the cold neutral distribution which, of course, is a delta function at u = 0. 

IV. FIRST-ORDER SOLUTION WITH A OUASICONSTANT CROSS -SECTION COLLISION TERM 
First-order asymptotic solutions can also be developed for a quasiconstant cross-section collision term 

lar =< <
f„(v)f(u)tv — uldu — f f(v)f„(u)lu — uldu). (57) 

FIG. 4. Constant collision frequency presheath 
rise with cold neutrals. 
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FIG. 5. Constant collision frequency ion distri-
bution with cold neutrals. 

This collision term is not really constant cross section because it is a one-dimensional representation which does not take into 

account average velocities in the other two dimensions. However, this collision term corresponds to that commonly called 
constant cross section. The application of this term leads to a set of integro-differential equations which can be at least 
approximately solved, and in the cold neutral case it leads to readily soluble first-order differential equations. The cold neutral 
case presented here corresponds to that which can be solved exactly (Riemann 4 ). Unfortunately, though, the exact solution 
method is not extensible to noncold neutrals. The cold neutral collision term is 

dt),
. cm

"
O(v) 
	

f(u)(u(du — af(v)n„Ivl 
	

(58) 

and the zero-order Boltzmann equation term (7a) becomes 

a df 
m do 
---Q(v) = crn„5(v) f fo (u)luldu — crn„IvIfo (v), 	 (59) 

for which the solution is 

foov)  In011::r2 Ficrmn„ exp( _27.acrmn„ v2 	
> 0, 

), 

0, 	 v <0. 
The first-order Boltzmann term is 

a df, 
ufifi (v) +—

/3 
 --(v) +--

m 
 afo 	
—(v)= on,05(v) 	fi (u)luldu — an„ivif,(v), 

m av 	av 
for which the solution is 

 

e p  r  ilfim amn„\v2 li \r"Syamn„)
3 r ex ..1/3MV2  

I 

_ 
. 2 l a 	a 1 ltm 	a 	Pk 2a ) 

exp [ — -14/3-2-n- — ! 
a  M

I  )v2  (C 
2 a  

  

fi (o) = 
Cd, v>0, 

< 0. 

( 62) 

    

The jump condition at v = 0 must be satisfied in (61): 

C +  —C
-omn 	

f,(u)luldu -- /3 
a 	- 	 a a rr 

No returning ions, C = 0, and the application of ( 63) to (62) yields 

C = — no  (f /a ),,ITTir,jcmln„ /a. 	 (64) 

The collisional presheath-collisionless sheath boundary A U • is again 

(60)  

(61) 

amn„ 
( 63) 
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0 =f(0+ ) =f) (0+  ) + AU*f, (0'), 

which yields 

A U*/kTe  =a/13kTe . 
Equation (62) is integrated to 

n i = f f,(v)dv = n0?1cr  (1— 	1+ 
a 	 on 

and applied to the Poisson equation (8) to produce 

( 	y (41r
kT, 

 eno)2  ( 
an„
1 \ 2  r nnakT, 

kann .

1 
	

1+ — 
an „ / +1 1

.  
) 	a  

Under the assumption that the Debye length is short compared to the ion mean free path, 

(4rq 2no/kT,) 2 ( 1/an„) 2 ). 1, 

Eq. (68) results in 

13 /an" = a/n„akT, (2 + a/na akT,) 

and 

A U*/kTe  = 1/(2 + a/nn akTe ). 	 (70) 

The Bohm criterion is satisfied at AU• to the first order by virtue of (68). And interestingly, the presheath potential rise for 
a = 0 is exactly that required by the cold ion Bohm criterion. Figure 6 presents the results for cold neutrals with a/n„akT, 
= I. From the ion distribution at AU•, the mean ion velocity into the sheath can be determined to be v =1.0611kT,/m,, 
while the exact solution of Rieman gives15= 1.27 11kTe /m, ; thus the first-order asymptotic result appears close. 

V. CONCLUSIONS 

It has been shown that approximate collisional presheath solutions can be obtained for a variety of collision terms. In 
particular the constant collision frequency case has been solved approximately, whereas previous attempts at exact solutions 
have found this case intractable. In addition, it has been shown that higher-order corrections can be made a regular and 
tractable fashion. Also the return of ions from the collisionless sheath can be treated. 
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APPENDIX: MULTIEXPONENTIAL FORMULATION 

In the previous sections we have calculated only the first-order terms in the ion distribution and presheath potential rise. 
Also, we have implicitly made the same first-order approximation for electrons: 

(65)  

(66)  

(67) 

(68)  

(69)  
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ne  = no(1 — 	 /kTe ). 	 (Al) 

A complete multiexponential expansion can also be constructed that correctly calculates the second- and higher-order terms. 
Potential in the presheath is 

U= U0 -4- AU-4-a 2AU 2  a3AU 3  •-• 

where U0  = ax and A U = exp (fix). Thus 

= - - 13,1U + 213a 2,1U 2  -4- 3flailU 3 + --• 
dx 

and 

d(AU) 
	

13,1U 
dU 	a + 13,1U -4- 2fla2 A U 2  + 3/3a3AU 3  + • • - 

which transforms the Boltzmann equation 

du(v 	(to ata ± 21.(0) 
dxl 8,1U 8U m 8v 	8t), 

into 

vfWU  8f — (v) ±— 1  (a +/3AU+2i3o2AU 2 + •••)-
8f

(v) = 	, 
au 	m 	 av 	at 

or 

4 _17 8f\ 
±; Tv (v)  [(at 

AU: LIAM ±—
fl lso ( v ) 	—aft ( 
m 8v 	m 8v 

AU 2 : 2vflf2(v) t 
2Baz a'Av)t a-t (u) alY2-(0= 

at ic Jau ,'  m dv 	m 8v 	m 8v 

v)=[(11]. ,  

(A2)  

(A3) 

(A4) 

(A5) 

(A6)  

(A7a) 

(A7b) 

(A7c) 

(n — 'Wan  _  8f, (v) 	—af" (v) ± 1.34' 1— rf) 1  • nfla„ af 
V I — AU": mug, (v) ±— ) (v) ± 

m 8v 	m dv 	at c.1 AU" m 8v 	 dv 

The Poisson equation (8) becomes 

( A7 d) 

/3 2AU+ (2Q) 202AU 2  + (3T) 2030U 3  + • • • 
'D. Bohm, in Characteristics of Electrical Discharges in Magnetic Fields, 
edited by A. Guthrie and R. Wakering (McGraw-Hill, New York, 1949), 
p. 77. 

= 477q2 [A U fil  (v)dv — (u)dv) 2E. R. Harrison and W. B. Thompson, Proc. Phys. Soc. London 74, 145 
(1959). 

3G. Ecker and H. Kanne, Z. Naturforsch. Teil A 21, 2027 (1966). 
+ A U 2(f 	(v)dv fez (v)dv) + 'K. U. Riemann, Phys. Fluids 24, 2163 (1981). 

'G. A. Emmert, R. M. Wieland, A. T. Mense, and J. N. Davidson, Phys. 
(A8) Fluids 23, 803 (1980). 
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THE TEC PROGRAM RESULTS 

The TEC program results shown here incorporate the asymptotic presheath work and 

give good agreement except at low current density. This disagreement is still not under-

stood. 
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TEC INITIAL DATA SUMMARY 

PHYSICAL OPERATING CONDITIONS 

EMITTER TEMPERATURE 
COLLECTOR TEMPERATURE 
EMITTER WORK FUNCTION 

COLLECTOR WORK FUNCTION 
CONVERTOR PRESSURE 

GAP THICKNESS 
OPERATING CURRENT 

(TE)= 1700.0 KELVIN 

	

(TC)= 	773.0 KELVIN 

	

(EWF)= 	2.642 EV 

	

(CWF)= 	1.630 EV 

	

(PN)= 	1.541 TORR 

	

(D)= 	0.254 MM 

	

(J)= 	2.000 AMPS/CMA2 

TEC FUNCTION SETTINGS 

DIAGNOSTIC LEVEL (CHKDOT)= 1 

	

RESTART SEQUENCE 	(OFILE)= 0 

	

POINT DENSITY 	(N)= 11 

PHYSICAL PARAMETERS EVALUATED 

RICHARDSON CURRENT 
REFERENCE DENSITY 

CHARACTERISTIC TIME 
NONDIM CURRENT 
NONDIM EMISSION 
KNUDSEN NUMBER 

SQRT(MASS RATIO) 
MEAN FREE PATH RATIO 

(JRIC)= 0. 
(NR)= 0. 

(TCHAR) = 
(I)= 

(ENR) = 
(KN)= 

(SMR)= 
(LAMDAR)= 

51E+01 AMPS/CMA2 
10E+15 1/CMA3 
0.0208 SECS*E-06 
0.0196 

0.008 (NRIC/NR) 
0.0791 
0.0020 
0.3344 

.0 0 	titillittittiiiiiiiiiiiti 	1111111'111111 	iiii iiiii1 
0.00 	100.00 	200.00 	300.00 	400.00 	500.00 

T in Charcteristic Time 
I b er- 



TEC INITIAL DATA SUMMARY 

PHYSICAL OPERATING CONDITIONS 

EMITTER TEMPERATURE (TE)= 1700.0 KELVIN 
COLLECTOR TEMPERATURE (TC)= 773.0 KELVIN 
EMITTER WORK FUNCTION (EWF)= 2.642 EV 

COLLECTOR WORK FUNCTION (CWF)= 1.630 EV 
CONVERTOR PRESSURE (PN)= 1.541 TORR 

GAP THICKNESS (D)= 0.254 MM 
OPERATING CURRENT (J)= 2.000 AMPS/CMA2 

TEC FUNCTION SETTINGS 

DIAGNOSTIC LEVEL (CHKDOT)= 1 

	

RESTART SEQUENCE 	(OFILE)= 0 

	

POINT DENSITY 	(N)= 11 

PHYSICAL PARAMETERS EVALUATED 

RICHARDSON CURRENT 
REFERENCE DENSITY 

CHARACTERISTIC TIME 
NONDIM CURRENT 
NONDIM EMISSION 
KNUDSEN NUMBER 

SQRT(MASS RATIO) 
MEAN FREE PATH RATIO 

(JRIC)= 0.51E+01 AMPS/CMA2 
(NR)= 0.10E+15 1/CMA3 

	

(TCHAR)= 	0.0208 SECS*E-06 

	

(I)= 	0.0196 

	

(ENR) = 	0.008 (NRIC/NR) 

	

(KN)= 	0.0791 

	

(SMR)= 	0.0020 

	

(LAMDAR)= 	0.3344 

TIME SETTINGS 

   

   

NSTEPS= 1 
T2= 500.0 

DELTAT= 1.000 
DTP= 1.000 
LSF= 10 

  

RESULTS AT TIME = 
	

0.00 	OPERATING VOLTAGE= 1.074 

ENE = 
CNE = 
PHIB= 

0.027 
0.000 
0.000 

NDOT(#) 

ECHI= 	6.241 
CCHI= 	6.734 
VD 	= 	0.422 

NEB(#) 

EALPHA= 
CALPHA= 

TDOT(#) 

EMISS =.268E-01 

0.460 
0.482 

TAU(#) 

0 0.0015 -0.154 -0.0526 1.52 
1 -0.0151 0.298 -0.0537 1.52 
2 -0.0158 0.661 -0.0555 1.51 
3 -0.0141 0.943 -0.0569 1.51 
4 -0.0122 1.145 -0.0582 1.50 
5 -0.0104 1.267 -0.0594 1.50 
6 -0.0088 1.309 -0.0608 1.50 
7 -0.0072 1.271 -0.0623 1.49 
8 -0.0058 1.153 -0.0641 1.49 
9 -0.0050 0.953 -0.0665 1.48 

10 -0.0083 0.670 -0.0698 1.47 
11 -0.0340 0.270 -0.0768 1.45 



-.2 	-0.0704 	-0.551 	-0.0807 	1.43 

	

RESII,TS AT TIME = 	100.00 	OPERATING VOLTAGE= 0.982 

	

ENE = 	0.098 	ECHI= 	3.183 	EALPHA= 	0.617 

	

= 	0.000 	CCHI= 	3.069 	CALPHA= 	0.719 

	

IHIB= 	0.000 	VD = -0.203 	EMISS =.981E-01 

	

NDOT(#) 	NEB(#) 	TDOT(#) 	TAU(#) 

0 0.0003 -0.035 0.0001 	1.14 
.1 -0.0007 0.081 0.0001 	1.13 
2 -0.0018 0.200 0.0000 	1.11 
3 -0.0028 0.316 -0.0001 	1.10 
4 
c ..) 

-0.0037 
-0.0043 

0.419 
0.501 

	

-0.0001 	1.09 

	

-0.0002 	1.08 
6 -0.0047 0.552 -0.0003 	1.07 
7 -0.0046 0.562 -0.0003 	1.06 
8 -0.0043 0.524 -0.0004 	1.05 
9 -0.0035 0.431 -0.0005 	1.03 

:0 -0.0022 0.281 -0.0006 	1.01 
ai -0.0006 0.074 -0.0008 	0.97 
:2 0.0013 -0.170 -0.0009 	0.95 

RESULTS AT TIME = 200.00 OPERATING VOLTAGE= 0.946 

ENE = 
CNE = 
PHIB= 

0.232 
0.000 
0.000 

NDOT(#) 

ECHI= 
CCHI= 
VD 	= 

NEB(#) 

	

2.324 	EALPHA= 	0.587 

	

2.167 	CALPHA= 	0.750 

	

-0.448 	EMISS =.232E+00 

TDOT(#) 	TAU(#) 

0 0.0001 -0.014 0.0006 	1.19 
1 -0.0003 0.034 0.0008 	1.19 
2 -0.0007 0.084 0.0008 	1.17 
3 -0.0011 0.134 0.0008 	1.15 
4 -0.0015 0.179 0.0007 	1.13 
5 -0.0018 0.216 0.0006 	1.11 
6 -0.0020 0.240 0.0005 	1.09 
7 -0.0020 0.247 0.0005 	1.08 
8 -0.0019 0.232 0.0004 	1.06 
9 -0.0016 0.193 0.0002 	1.03 

ID -0.0010 0.127 0.0001 	1.00 
li -0.0003 0.033 -0.0002 	0.93 
12 0.0006 -0.081 -0.0003 	0.90 

tESU.TS AT TIME = 300.00 OPERATING VOLTAGE= 0.910 

	

EE = 	0.526 	ECHI= 	1.440 	EALPHA= 	0.551 

	

= 	0.000 	CCHI= 	1.374 	CALPHA= 	0.754 

	

PIB= 	0.000 	VD = -0.698 	EMISS =.526E+00 

	

NDOT (#) 	NEB ( # ) 	TDOT (#) 	TAU(#) 

0 0.0001 -0.006 -0.0001 1.23 
1 -0.0001 0.015 0.0007 1.27 
2 -0.0003 0.036 0.0012 1.27 



3 -0.0005 0.057 0.0013 	1.25 
4 -0.0007 0.077 0.0013 	1.22 
5 -0.0008 0.093 0.0012 	1.20 
6 -0.0009 0.104 0.0012 	1.17 
7 -0.0009 0.107 0.0011 	1.15 
8 -0.0009 0.101 0.0009 	1.11 
9 -0.0007 0.085 0.0008 	1.07 

10 -0.0005 0.056 0.0006 	1.02 
11 -0.0001 0.014 0.0003 	0.93 
12 0.0003 -0.038 0.0006 	0.90 

RESULTS AT TIME = 400.00 OPERATING VOLTAGE= 0.763 

ENE = 
CNE = 
PHIB= 

0.879 
0.000 
0.264 

NDOT(#) 

ECHI= 
CCHI= 
VD 	= 

NEB(#) 

	

1.392 	EALPHA= 	0.420 

	

0.914 	CALPHA= 	0.541 

	

-1.960 	EMISS =.114E+01 

TDOT(#) 	TAU(#) 

0 0.0000 -0.002 0.0037 	1.46 
1 0.0000 0.007 0.0061 	1.66 
2 -0.0001 0.015 0.0077 	1.76 
3 -0.0002 0.024 0.0081 	1.77 
4 -0.0003 0.032 0.0082 	1.75 
5 -0.0003 0.038 0.0082 	1.72 
6 -0.0004 0.042 0.0081 	1.68 
7 -0.0004 0.043 0.0079 	1.63 
8 -0.0004 0.041 0.0076 	1.58 
9 -0.0003 0.034 0.0072 	1.51 

10 -0.0002 0.022 0.0068 	1.42 
11 -0.0001 0.006 0.0066 	1.29 
12 0.0002 -0.015 0.0086 	1.35 

RESULTS AT TIME = 500.00 OPERATING VOLTAGE= 0.632 

ENE = 
CNE = 
PHIB= 

1.001 
0.000 
0.352 

NDOT(#) 

ECHI= 	1.516 
CCHI= 	0.348 
VD 	= 	-2.945 

NEB(#) 

EALPHA= 	0.371 
CALPHA= 	0.433 
EMISS =.142E+01 

TDOT(#) 	TAU(#) 

0 0.0000 -0.002 0.0001 1.59 
1 0.0000 0.006 0.0002 1.88 
2 0.0000 0.012 0.0003 2.04 
3 0.0000 0.019 0.0003 2.06 
4 0.0000 0.024 0.0003 2.05 
5 0.0000 0.029 0.0003 2.02 
6 0.0000 0.031 0.0003 1.98 
7 0.0000 0.030 0.0003 1.93 
8 0.0000 0.027 0.0003 1.87 
9 0.0000 0.021 0.0004 1.79 

10 0.0000 0.013 0.0004 1.69 
11 0.0000 0.003 0.0008 1.61 
12 0.0000 -0.007 0.0019 1.90 
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APPENDIX A - Fokker Planck Collisions Presheath 

This theory has been developed under this grant and is found to be applicable to fully 

ionized plasmas but was not incorporated into the Thermionic Convertor work due to its 

computational complexity. 
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NOMENCLATURE 

a - Inverse square of the particle thermal velocity 

al , a2 , • • • - Coefficients of the potential structure 

a, 6 - Integral limits 

A - First derived Fokker Planck collision function 

B - Second derived Fokker Planck collision function 

- An m x 1 matrix 

D(r) - An m x 1 solution matrix 

e - Electron charge 

E - Electric field strength 

f - Particle distribution function in velocity space 

F - Nondimensional particle distribution function in velocity space 

g - Collision function 

11- Grid spacing width 

k - Boltzmann's constant 

L - System dimension 

m - Number of points in velocity space 

m - Particle mass 

M - Reduced mass 

n - Plasma density 

nR - Reference density 

q - Elementary charge 

R - Radial velocity component 

t - Time 

Z - Ion temperature 

T. - Electron temperature 

T(T) - An Tra x Tra matrix 

U - Potential 

- Velocity vector 

vi 



vi(r) - An rn x 1 matrix 

V(r) - An m x 1 solution matrix 

z - Position vector 

z - Axial position component 

z - Axial velocity component 

Z - Ionization level 

Z - Nondimensional axial velocity component 

a - Potential gradient across the plasma 

/3 - Exponential coefficient of the presheath rise 

r - Fokker - Planck coefficient 

AU - Potential expansion parameter 

co  - Permitivity of free space 

c, q, e - Variables of integration 

8 - Velocity rotation angle in cylindrical coordinates 

AD - Debye length 

Ai - Mean free path 

A - Coulomb logarithm 

r - Nondimensional time 

41) - Electric potential 

so - Nondimensional coefficients of the potential structure 

Subscripts: 

c - Collision term 

e - Electron 

i - Ion 

n - Order of expansion 

Superscripts: 

s - Particle species with which collisions occur 

*- Nondimensional 
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SUMMARY 

The Maxwellian sources and charge exchange terms used to model particle inter-

actions in current presheath models do not represent the Coulomb collisions taking 

place in fully ionized plasmas. These models approximate the collisional effects in 

the presheaths of partially ionized plasmas but are used to implicitly extrapolate 

the interesting case of fully ionized plasmas. The present study uses a Fokker -

Planck collision term which models the limit of the small angle Coulomb collisions 

that occur in fully ionized plasmas. Normally these small angle collisions dominate 

the particle interactions of fully ionized plasmas. The Boltzmann equation coupled 

with the Fokker - Planck term, and the Poisson equation have been expanded using 

an exponential asymptotic technique. These equations have been solved numerically 

to determine the time dependent evolution of the presheath. The results presented 

show the presheath potential structure and particle distribution in velocity space. 

The model produces a self-consistent and accurate potential structure. The particle 

velocity distribution in the presheath has the correct acceleration of ions toward the 

wall but because the Fokker - Planck collision term only models the limit of small 

angle collisions it is unable to clear the particle distribution of returning ions. The 

collisional processes become dominated by the effects of the large angle collisions as 

the Debye sheath edge is approached. This study has found that a presheath model 

which describes the Coulomb collisions occurring in a fully ionized plasma must 

account for both the small angle and the large angle particle collisions to explain 

the clearing out of returning ions that must exist for the transition to an absorbing 

wall. 



CHAPTER I 

INTRODUCTION 

The interaction of man and plasma, in some form, exists at almost all levels 

of society. A plasma is an ionized gas that has a collective behavior in an electro-

magnetic field. Plasmas exist in everyday devices like flourescent lights, neon signs, 

and electric arc welders. An understanding of the basic behavior and interaction of 

plasmas is essential to the advancement of all current plasma applications and to 

the discovery of new applications. This thesis involves the study of how a plasma 

interacts with the walls and surfaces with which it comes in contact. 

Why is it important to understand plasma - wall interactions? Two basic reasons 

answer this question. First, a plasma has a strong effect on any surfaces it comes 

in contact with. The high temperature plasma can erode or destroy any surface 

quickly pitting and changing a wall which may need to maintain a particular profile 

or surface condition. Secondly, the wall affects the characteristics of the plasma. 

A surface can have a profound effect on the plasma depending on the amount and 

rate at which it can absorb energy. Examples of situations in which plasma - wall 

interactions are of importance include: 

• Diverter plates in magnetic confinement fusion reactors. 

• The rails in a plasma rail gun. 

• Any body (like the space shuttle ) upon reentry to the atmosphere. 

• Plasma switches. 

• Plasma etching. 

1 
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• Almost every other use or occurrence of plasmas. 

This study is primarily applicable to fully ionized plasmas. The hot tempera-

tures necessary to produce fully ionized plasmas occur only in situations like on the 

surfaces of diverter plates in Tokamak fusion reactors. 

The development of a mathematical model to represent the plasma - wall in-

teraction region, or sheath, and a numerical solution to this model is the focus of 

this thesis. An understanding of the interaction between the plasma and the wall 

is achieved with a time dependent solution to the sheath region. If the potential 

structure and the particle velocity distributions are known for every location in the 

sheath then the energy going into the surface can be determined. In this way the 

results of this study can be used as a boundary condition for problems involving 

plasma characteristics and for problems invloving the surface physics of plasma 

devices. 

WO. 4 lo 



CHAPTER II 

BACKGROUND 

A plasma will naturally maintain itself in a neutral and field free state. Ap-

plication of forces and processes that try to alter the equilibrium are resisted by 

the plasma. A surface within a plasma that is not at the same potential as the 

plasma will be shielded from the remainder of the plasma by a sheath. The outer 

edge of this sheath is nearly at the plasma potential. Bohmi'l first came up with a 

criterion to determine the extent of the sheath. Bohm modeled the sheath region 

as completely collisionless. He also considered that the transition region from this 

collisionless sheath to the plasma was too small to be important. 

More recent work has been done to describe this transition, or presheath, region. 

Se1f121 has an exact solution to the sheath equation and has shown that the collision-

less sheath makes a transition directly to the neutral plasma. in the limit as 0, 

where AD is the Debye length and L is the plasma dimension. Emmert et al.1 31 has 

determined a presheath structure based on the assumption of a Maxwellian source 

of ions to model the particle collisions. The solution to this model shows that the 

transition point from the sheath to the presheath has a finite electric field strength. 

Bissell and Johnson[41 have perfomed a similar solution using a Maxwellian source of 

ions. In contrast to Emmert et al., Bissell and Johnson have found that the electric 

field strength becomes infinite at the sheath edge. This solution agrees with the 

fluid and cold ion models. In a recent paper Bisse111 51 shows that Emmert obtained 

a finite electric field strength because the Maxwellian source term used produced 

no ions at the point of zero velocity. Bissell and Johnson used a more realistic 

• 
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Maxwellian source that produced ions at the zero point in velocity space for their 

solution. 

Another approach to the problem involves the use of a charge exchange term to 

model the particle collisions. Riemanniel has produced results using this technique. 

In a recent paper by Main[ 71 a charge exchange model is used to obtain a solution 

to the presheath potential structure and particle distribution. This model involves 

an asymptotic approximation of the plasma equations. The Boltzmann and Poisson 

equations are asymptotically expanded and then solved analytically when combined 

with a charge exchange model of the particle collisions. 

All of these sheath and presheath solutions have modeled particle collisions by 

large instantaneous changes in particle velocity. These models do not represent the 

Coulomb collisions occurring in the presheath of a fully ionized plasma. 

The current study extends the asymptotic solution presented by Main1 71 to in-

clude a Fokker - Planck collision term instead of the charge exchange term. Unlike 

the previous collision terms used, the Fokker - Planck term describes the Coulomb 

collisions that exist within a fully ionized plasma.. The addition of the Fokker -

Planck term necessitates the use of numerical techniques, rather than analytical 

techniques, to obtain a solution. In using the Fokker - Planck term the collision pro-

cesses are being modeled directly. The model developed obtains the time dependent 

evolution of the presheath for a fully ionized plasma. 
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CHAPTER III 

MODEL FORMULATION 

3.1 Concepts  

In order to have a complete understanding of the problem at hand certain 

concepts need to be presented which will help in understanding the overall structure 

of the model. 

1) Debye Length (AD ) - The shielding distance beyond which the particle charge 

effect is weak. This is the natural charge separation distance. Negatively charged 

particles become surrounded by positively charged particles and vice versa, thus, 

balancing the overall charge at any point ( see figure 3.1 ). There is a point beyond 

which a particle is not effected by the specific charge but responds to the influence 

of the entire plasma. The thermal effects in the plasma become dominant over the 

electric field strength. 

2) Mean Free Path (x,) - The average distance a particle travels before its 

trajectory has been altered by ninety degrees. The mean free path is a function of 

the density of the plasma. The denser the plasma the shorter the mean free path. 

For the plasma under consideration in this study >> AD. 

3) The coordinate system used to describe the plasma - The coordinate system 

used in the model is known phase space. In this system any point is described 

using three position coordinates and three velocity coordinates. Any orthogonal 

coordinate system, cartesian, cylindrical, spherical, can be used to describe both 

the position and the velocity components. 

• 
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4) Distributions and Distribution Functions - Plasmas are studied in a collective 

sense. The motion of the entire plasma and not individual particles is described 

by the model. Therefore, the velocity of the plasma at any given location must be 

described by a distribution. The distibution function describes the overall particle 

velocity distibution. 

5) Potential - In a plasma the wall potential is greater than the neutral plasma 

potential. The lighter, thus, faster electrons are absorbed by the wall faster than 

the heavier and slower ions. A net positive charge exists near the wall, increasing 

the potential ( see figure 3.2 ). The potential at the physical interface between 

the wall and the plasma is dependent on the rate at which ions are absorbed by 

the surface. In this study U = —e' where e is the electron charge and ' is electric 

potential in electron volts so that U has units of energy. The addition of the negative 

sign defines potential in the reverse of the usual sign convention so that increasing 

potential repels electrons. 

6) Collision Possibilities using the Fokker - Planck Collision term - To describe 

the overall sturcture of the sheath the various collision possibilities must be included 

in a comprehensive model. The Fokker - Planck term describes the four major 

collision possibilities. 

1) Ion - Ion 

2) Ion - Electron 

3) Electron - Ion 

4) Electron - Electron 

The collision model does not take into account three body collisions. Three 

body collisions are very rare, as such, the model is not hampered by the lack of 

50 
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terms to describe these collisions. 

3.2 Wall Region Model 

The model of the Plasma - Wall region can be broken into three areas. 

1) Neutral Plasma Region (0(L)) - The neutral plasma region represents the 

majority of the system and can be considered to have a physical width that is on 

the order of the overall dimension of the system, L. This region is considered to be 

fully collisional. The velocity distribution is near Maxwellian and as such can be 

modeled by fluid type equations ( see figure 3.3 ). 

2) Debye Sheath Region (0(AD )) - This region is a very thin area directly adjacent 

to the wall. Its width is considered to be on the order of a Debye length and since 

» AD no collisions are expected in this region. This collisionless sheath was 

first modeled by Langmuir ► 8 1 and Bohml'l and is considered very well known and 

understood. 

3) Collisional Presheath Region (0(A d) - This is a transition region between the 

collisional neutral plasma and the collisionless Debye sheath region. It is considered 

to have a physical width on the order of a mean free path. Therefore, collisions are 

expected but at the same time the region cannot be considered fully collisional. 

The potential must transition from a lower level in the neutral plasma to a 

higher level at the wall. The goal of this study has been to obtain a time dependent 

model of the evolution of the presheath region which asymptotically approaches the 

known potential in both the neutral plasma and in the Debye sheath region. 

In order to show the validity of the three region model an example of Debye 

sheath width in relation to the overall wall region is appropriate. For this example 
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average hydrogen fusion plasma characteristics have been assumed: 

Ti = 105 K 

no = 1020 m-3  

If the Debye length within this plasma is calculated an order of magnitude value 

for the Debye sheath width is determined. An appropriate equation for the Debye 

length in meters is:[ 91 

AD  = 69 ( i  \ I  
o) 

From this equation: 

AD = 2.18 x 10-6m 

The overall sheath width is on the order of a mean free path. An appropriate 

equation for the mean free path in meters is:1 1 °I 

Ai = 1.2 x 10- 
4 —1  (L1) 2 ( ni  ) -1  Z4  e 	102° 

For a singly ionized plasma Z = 1. Using this equation and the above example 

plasma characteristics the mean free path can be calculated. 

Ai = 1.14 x 10 -2 m 

This is an order of magnitude estimate value for the width of the entire sheath 

region. Since the Debye sheath width is on the order of a Debye length it can be 

seen that the collisionless sheath is very thin in comparison with the entire wall 

region. 

In order to obtain an idea of the importance of the electric field in the wall 

region an order of magnitude analysis is useful. The magnitude of the electric field 

is proportional to the thermal energy per length scale. 

E kT. 
,--, 

x 
(3.3) 

(3.1) 

(3.2) 



In the sheath region the length scale is the Debye length. 

E
kTi 

AD 

Therefore, in this region the electric field is very significant since AD is very small. 

The collisional effects are small in comparison, and can be neglected. 

In the presheath region the length scale is the mean free path. 

k 
4-d

T, 
 

Ai 
(3.5) 

Therefore, the electric field strength is on the order of the collisional effects making 

both important factors within this region. 

In the neutral plasma region the length scale is the overall system dimension. 

kTi 
L 

(3.6) 

Therefore, the electric field is very weak and can be neglected in comparison with 

the collisional effects. 

3.3 Presheath Model  

3.3.1. Equations Describing the Collective Behavior of a Plasma  

The primary equation used to describe the behavior of a plasma is the Boltz-

mann equation. The Boltzmann equation represents the collective motion of many 

charged particles moving in an electromagnetic fieldiul. 

of 	of i au af f af, 
-E " 	TT17975; 1 79ife (3.7) 

Where the + sign is for ion particles and the — sign is for electrons. In the Boltzmann 

equation f is the particle distribution function, and is defined such that n = f I dv. 

• 
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The quantity t is time, v is a velocity vector, x is a position vector, m is the particle 

mass, and U is the potential. The term on the right hand side represents particle 

collisions and can take on various forms depending on the model being used. 

Another important equation in describing the bahavior of a plasma is the Pois-

son equation. The Poisson equation is the elementary definition of potential as the 

collective effect of charged particles on a pointr 7l. 

d2 U 	[ fee  
dx2 	

00 

= 47rq2 	(v, AU) dv — J f e (v, AU) du] 

	

CO 	 CO 

(3.8) 

Where q is the elementary charge, the subscript i refers to ions and the subscript 

e refers to electrons. The term in brackets is the ion - electron density difference. 

The potential is the driving force in the Boltzmann equation. The Poisson equation 

relates the potential to the particle distribution. 

To complete the set of equations necessary for a full description of the presheath 

a collision term must be chosen to model the particle interactions. This study uses 

the Fokker - Planck collision term to model the particle collisions. The Fokker -

Planck term represents the right hand side of the Boltzmann equationiul. 

 a 	m a „2 	a2 	a2  f fl 	„r 	 g  1 
g
) + 2 ats, ( faviavdi 

Where, 

q2e2  In A 
47ream 2  

g(v) = f f (v s) v— I du i 

 m m mm' 
m + m' 

Where M is called the reduced mass. No superscript refers to the particle species 

undergoing the collisions and the superscript : refers to the particle species with 

which the collision occurs. 

(3.9) 

(3.10) 

(3.11) 

(3.12) 
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The Fokker - Planck equation describes the Coulomb collision between two 

charged particles. Certain restrictions and assumptions are made when using the 

Fokker - Planck collision term. First, it best describes fully ionized plasmas. The 

collision term models charged particle interaction and is most accurate for plasmas 

with few neutrals. This situation occurs only on the hottest of plasma surfaces like 

the diverter plates in Tokamak fusion reactors. 

The second restriction involves the type of collisions that the Fokker - Planck 

term models. The overwhelming majority of particle collisions lead to only small 

deflections in the particle trajectories. The Fokker - Planck term describes the limit 

of these small angle deflections. Finally, the model does not take into account three 

body, and higher order, collisions. 

3.3.2 Solution Conditions 

The three equations presented in the previous section in conjunction with the 

asymptotic forms of potential and velocity distribution provide the necessary infor-

mation to determine the presheath structure if two additional conditions are met. 

First, if the equations are written in cylindrical coordinates the particle velocity 

distribution is axially symmetric. There is no theta, 0, dependence of the velocity 

distribution. Cylindrical coordinates are used for both the velocity and the position. 

The 'z' direction is perpendicular to the wall (see Figure 3.4) with the positive 

direction being defined into the wall. The coordinates R, 0, z have been used in 

velocity space for convenience. 

The second condition for a solution to these equations involves an assumption 

of the particle velocity distribution parallel to the surface. For this model the 

radial velocity distribution has been assumed to take the form of a Maxwellian 

distribution. In addition, the temperature in the radial direction has been assumed 
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to be uniform and constant at all 'z' locations. Thus, the radial velocity distribution 

is constant for any position. Figure 3.5 is a schematic of these conditions. Note 

that at any 'z' location and rotation angle, 0, the radial velocity distribution is 

constant and follows a Maxwellian distribution. This represents the conditions of 

uniform temperature and axial symmetry, throughout the wall region. Figure 3.5 

also shows a representation of the point of no returning ions. This is the point 

where the presheath transitions to the collisionless sheath. 

The conditions of uniform temperature and radial Maxwellian distribution al-

though good approximations are not exact models of the real situation. 

The overall problem reduces to one dimension, the z direction, with the above 

conditions. The B dependence having been removed by the axial symmetry and the 

radial dependence having been removed by the Maxwellian assumption. This one 

dimensional problem can be solved by staight forward numerical techniques. 

3.3.3 Expansion of the Boltzmann Equation  

The presheath model involves the expansion of the potential and velocity into 

asymptotic approximations. The potential is assumed to follow an exponential 

asymptotic form. 

U = Uo  + a i AU + a2AU2  + • 	 (3.13) 

where 

Uo  = ax 	and 	AU = 	 (3.14) 

al , a2  • • are parameters which describe the potential structure. Alpha, a, is non-zero 

for a non-zero potential gradient in the neutral plasma. AU is called the potential 

expansion parameter. 

The particle distribution in velocity space is a function of potential and can be 

• 
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similarly expanded. 

f (v, AU) = fo(v) + AU f 1  (v) + AU2  h(v) + • • • 	 (3.15) 

The Boltzmann equation can be written as 

of 	of a(Au) lauaf f af l  
(3.16) 

at +v  a(Au) ax ± m ax av = 1  &lc 

where ± sign is respectively positive for ion particles and negative for electrons. 

The potential U has units of energy and is defined as shown in figure 3.3 such that 

U = —el> where 4> is electric potential. The Boltzmann equation can be expanded 

using equations 3.13 and 3.14. In addition since the solution is one dimensional in 

velocity space the velocity derivatives reflect only the 'z' direction. The following 

expansions are used. 

of afo 	oh 	2of2 
= at + Au  at + Au  at + • • • at 

o f 
a(Au) — 11 + 20Uf2 + 30u2f3  + ... 

a(DU)  
- VDU 

ax 
 

au 
-aT  = a+ /3a1AU+ 2/3a2AU2  + 3/3a3AU3  + • • • 

of  - aaf  z ° + -A u aaf  z 1 
-u2 

 a — 
_,.. A fz2 _,_. 

Using these expansions the Boltzmann equation can be broken down by order in 

AU assuming the collision term can be likewise broken down: 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

1: 

DU. 

AU2  : 

afo  _, a afo 	r, of , 
at ;797 = 11 7 9 7 , c.I i  
of, 	.. , , a afi 	ficilafo + pZji =-- 
at 	m az m az — 

of2
"I' 
,, , ..z i ,2  = _,_ a aft , fiai oh 	2fia2 a fo 

p --- = -- = -- 
at 	m az m az 	m az = 

n}
c
]
,,„ 

(3.22a) 

(3.22b) 

[{Vt-}c ] 

AU2 

	(3.22c) 

a  fn  

	

, 	a a fn , ficii afn-i 	2fla2 a fn_2  
GU" : 	+ nfizin= -- --  at 	m az 	az 	m az 

± (n  — i)fian_i  aft 4_ ro an  an a fo 	r, of 1 1 

	

m 	az - m az = it at I  ci Au„ 
(3.22d) 
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The above exponential expansion is the only known way to break apart the Boltz-

mann equation. To complete the expansion the Poisson and Fokker - Planck terms 

must be similarly broken down. 

At this point it is appropriate to nondimensionalize the expansion of the Boltz-

mann equation. The following nondimensional quantities have been used. 

Fs - 
nRa3/2 

nRr  
r =t 

a1 /2  

Z =1/Wz 

aa 
9-1 = mnRr 

90 = nRr 
fit/4a 

9s - mnRr 

for o< :< n 

for 1<i< n 

(3.23a) 

(3.23b) 

(3.23c) 

(3.23d) 

(3.23e) 

(3.23f) 

Where nR is a reference density, a and a' are the inverse square of the thermal 

velocities of the colliding particles, a = — and = 27; • The quantities 9_ 1  through 277  

(ion represent the potential structure of the presheath. F i  is nondimensionalized 

such that 1 = f coFdZ. Using these nondimensionalizations, the expansion of the 

Boltzmann equations becomes 

	

aF0 	aF 

	

1: 	aF0 	r  ri i 
ar  9-1  az Prr 

	

8F1 	8F1 	aF0 ±1:91 

	

DU: 	 8F, 01 r _aa 	Au2  +90ZF1±9- 1— 	
-Fr lei AU 

aF 

	

or 	az 

	

± 91  Tf 
2 	aF2 	8F1  Au 2  a,  + 2600zF2 ± 9- az ' ±9i Tf 	az 1. 1  

(3.24a) 

(3.24b) 

(3.24c) 

aFn 	aFn 	aFn-1 	aFn-2, AU" : — + nsoc•ZFn 42-1 ar 	 az ±9i az ''s°2—a' 
--•± (n - 1)9n-i- 

aF1 n_n acc, .[{ 81: }] Au.  

az (3.24d) 



3.3.4 Expansion of the Poisson Equation 
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(3.8) 

(3.25) 

(3.26) 

The Poisson equation, 

eu 
47rq2  = 

co 	 co 

[ f 	fi(v, AU) dv - f 	fe (v, AU) du] 
- co 	 -co 

technique as the Boltzmann equation. Since: 

+ 4p2a20u2 +9p2a 3 Au3 + 

fo(v) dv + AU
- 	

/1(0 dv + A U2 
- 

	

f2(v) dv + 
co 	 co 

dx2  
is broken down using the same 

82 u 
 = 8xp2a 1 0u 

f ao 	 f  

f (v DU) dv = 

Using these expansions the Poisson 

1 : 	0 = 47t-q2  [ f 
-00 

equation can be broken down by order in AU. 

0 	 00 

fio  du - f 	feo (v) du] 	 (3.27a) 
-00 

00 	 00 

AU : /32 ai = 4a92  [ f 	fii (v) dv - f 	f i (v) dv (3.27b) 
- 00 	 - 00 

00 	 00 

A U2  : 4p2 a2 	41.q2 [ f 	fi2(v) dv - f 	f ,2(v) dv] 	 (3.27c) 
- 00 	 - 00 

00 	 00 

AUn  : n2 /3 2 a ►  = 47rq 2  [ f 	fin (v) dv - f 	f n (v) dv] 	(3.27d) 
-00 	 -00 

The assumption of Boltzmann electrons is made to enable the numerical calcula-

tions to proceed with time steps on the order of an ion characteristic time. In the 

asymptotic presheath the Boltzmann electron assumption becomes 

ne  = noe-laicar+02.10+-••+0.Aulrfc 	 (3.28) 

where ne  is the electron density, T. is the electron temperature, and n o  is the electron 

density in the asymptotic presheath at AU = 0. Expansion of (3.28) in terms of AU 

yields 

ne  = [no] + DU [ _ ai 	 a2 	1 a? 
—
kTe

no + AU2  K kT, - 	
+ 2 (kTe) 2 ) 

no
(kTe) 2 ) 

Aua [(
a3 aia2 1 al 
kT, (kT e ) 2  6 (kTe)3) no] + • • • (3.29) 
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With the assumption that AD a Ai the Poisson equation reduces to equating electron 

and ion densities in order of U. The Poisson and Boltzmann electron equations are 

nondimensionalized in the same manner as the Boltzmann equation. The nondi-

mensionalized Poisson equation (3.27a-d) is combined with the Boltzmann electron 

equation (3.28) to become 

Fo  dZ = fie rs° 1-1---+P‘ 1 74-,(27-1-..) (3.30a) 

f ce Fl dZ =rie 1 P 1+-+w‘ 1 0 ( 327;`)[ - (271)1 (3.306) 
J-ce 

F2 dZ =riels°1+-+ "'" 1 *(327: )  

L 

[ - 

Soo \ 	j 

( 271 ) (271  (1°1) + ) 2 1 Co  
too k T, 	2 \ Po) T, 	J 

(3.30c) 

00 
F3 dZ = ne ft, i+•••+t, .1•747(;.-17-..)1 _603 (2T,) 	col Ea  (2z \ 2  

L too Te 	too too T, ) 
	-61  ( c:0001  ) 3  (11  ) 3  }3.30d) 00   

• • • 

where pi =and may be specified as a function of time. This equation can be used n.  

to solve for the potential structure at each time step. Ti is the ion temperature and 

7; is the electron temperature. 

3.3.5 Expansion of the Fokker - Planck Term 

The Fokker - Planck term must also be expanded in order of AU but first must 

be put into cylindrical coordinates. In addition, the assumption of axial symmetry 

must be accounted for in the term. This can be accomplished by expanding each 

term in the general Fokker - Planck term. 

f -811 = -- 8 2rL-8 21  82  (f 82g  )1 
t 8t 	8vi (f 
	v g) + 

	

2M avi 	2 8vi8vk avi8vk 

The first term can be rewritten: 

• 
 2M
fV(V 2 g)) 

02 	1 8 ( p 8g) 	1 82g 82 g 
g 	8R V' 8R) + R 2  802+  8z 2  

(3 .9) 

(3.31) 

(3.32) 
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Axial symmetry eliminates all 0 dependence, eliminating the middle term. In addi-

tion, with the assumption of a Maxwellian radial velocity distribution the problem 

has been reduced to one dimension. Thus, 

0(02 g) = 33g 
az3  

and the first term reduces to: 
a ( m 33 g ) f  
az 2M az3  

The second term in the Fokker - Planck equation, 

32 a 2 g  

2 atTar:k (f  

can be reduced directly to the one dimensional case. 

32 f  a2 g ) 
2 az2 az21 

Therefore, the Fokker - Planck term in one dimensional cylindrical coordinates is: 

liaf 	1 32 f a2g \ 	3 	m 33 g \ 
f t at je— _ i az2 az2 / — az V' 2M az 3 ) 

(3.36) 

In order to get a complete collision model the function g must also be converted to 

the appropriate coordinate system. 

g(v) = Jr: f (v') I v — I dv' 

This definition can be reduced for the one dimensional case. 

or, written another way 

g(z)= fe  f(n) lz—n I do  

g(z) = 	f (z + e) I e I de 

1 

(3.37) 

(3.38) 

(3.33) 

(3.34) 

(3.35) 
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With this definition the Fokker - Planck term becomes: 

1 {81} 	1 82 
= i 	

I  foo a2 
az2 	a (f(2+e)) IeI de) — 

a , m r00 a, 
crzs(f(z+e)) I e I de) (3.39) 

For brevity let i denote a derivative with respect to z. Using this notation the Fokker 

- Planck term becomes: 

1 82 f  ree 

	

{lf - } 	f J 	+ e)I e I de) – cfz(f 2M 	fiz +e) lel de) 	(3.40) 

The Fokker - Planck term is nondimensionalized using the same variables as the 

Boltzmann equation. 

fart _ 82 (F la 	r  „
1 (Z + c) c 1 ar J. — az2 	J_„ CZ + 	C dc) 	F 	 dc) (3.41) 

—00 	

( 
2M a _c„ 

Let: 

A(F) 	F"(Z + S) 
00 

B(F) =km  Tia 	r"(Z + I c I dc w   

The Fokker - Planck term can be written in a compact form using these defined 

functions. 

faF 	a2 	a .= a z2  (FA(F)) + cz (FB(F)) (3.44) 

The Fokker - Planck term can be expanded by order in AU using the same technique 

as the Boltzmann equation. 

laaFa r 	a (F0A(F0)) + — [az2 	az  (1113(m)] 
a2 	 a 	 \ + AU1

r 
 3-z- (FI A(F0)) + -57 (FI B(F0)) 

az2
(F0A(F0) + 717 lF° B(F1) )1 

+ - • • 

( 

+ AU"[ 	 + _a ,,B(F„,)))] az2 	 az (F m=0 

(3.42) 

(3.43) 

(3.45) 
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This expansion can be combined directly with the expansion of the Boltzmann 

equation. 

3.3.6 Solution Approach  

To obtain a time dependent solution to the Boltzmann equation with the Fokker 

- Planck collision term a numerical technique is necessary. The solution presented 

has been limited to ion - ion collisions because these collisions represent the majority 

of the collisional energy and momentum transfer within the presheath. The positive 

signs in the Boltzmann equation must be applied for ion - ion collisions. The ratio 

of particle mass to reduced mass, pi , must be equal to two for like particles. The 

ratio of the inverse squares of the particle thermal velocities, :7, must be one for 

like particle collisions. The nondimensional Boltzmann equation reduces to the 

following form. 

aFi 	32 	 a (FiA(F0)—(FiBm))+ cpoiZFi 	
aFi 

ar az2 	az 
a (Fi_m aFi_, 	(32 

=- E Prnm 	2-• 	fri_„,A(F„,)) + — 	13(Fm))) 
az 	 az 

m=1 	 m=1 

(3.46) 

where the summations are taken to be zero if i = 0. The functions A(F,„) and B(Fm ) 

can be written: 

A(F) = -

1 fa' Fu (Z + S) I C I dc 	 (3.47) 
2 , 

co 
B(F) = — f F'"(Z + S) I c I dc 	 (3.48) 

—co 

The 	equations in the expansion are solved to obtain the time dependent 

particle velocity distribution. The Poisson equation is employed at each time step 

to obtain the potential structure. The ratio of the higher order equations with 

respect to the first order equation eliminates the neb° 1+—+ "'‘ 1 7.1,7 ( 32+ )  term from the 

Poisson equation. Using this technique each successive component of the potential 

• 
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structure can be determined from the previous components. 

f  00 F1 dZ 	Cpl  

fleco  Fo  dZ 	( 271 ) 

fro, Fo dZ 	92  ( 221i  ) 
ff. F2 dZ = 

	

Te 

roo  F3 dZ 	GPs ( 2T; 1
fro, Fo  dz = soo 

2 (27;) 2  
▪ 2 .soo) 	Te ) 

+ SO1 92 ( 271) 2  _ 1001) 3 ( 271) 3 
 'Po/ 	6 0,0/ 

(3.49a) 

(3.496) 

(3.49c) 

• • 
• 

Using these equations the particle velocity distribution and the potential structure 

of the presheath are determined as a function of time. 

Of interest in this study is the point at which there are no returning ions. 

This is the presheath - sheath interface. This occurs when the net ion flux away 

from the wall is zero. To calculate this point in the presheath it is necessary to 

obtain a value for the potential expansion parameter AU such that when the overall 

particle distribution is reconstructed from the various terms in the expansion no 

returning ions are present. Thus, at the critical point of no returning ions the 

model determines the total particle velocity distribution, the potential structure, 

and a value for the potential expansion parameter. From the potential structure and 

the potential expansion parameter the presheath height at the point of no returning 

ions can be determined (see figure 3.5). 



CHAPTER IV 

NUMERICAL TECHNIQUE 

4.1 Problem Approach  

The solution of the Boltzmann equation, as written in equation 3.46, coupled 

with the Poisson equation (3.49) is the goal of the numerical procedure. 

The general approach is to solve the Boltzmann equation for the particle velocity 

distribution using a partially implicit, partially explicit scheme. Each step in time 

the Boltzmann equation is solved using some results from the previous time step. 

In equation 3.46 the left hand side is solved implicitly while the right hand side is 

solved explicitly. 

a2 	a 
ar — a z2 (Fi A(F0) ) — 	(FiB(F0)) + sooiz + • v- jaz 

(3.46) 
= a2 E vmm aznt + 	F A 	a ( i_m (F,„)) az 	az2 	 (Fs --13(z" ))) nt=1 	 nt=1 

The left hand side of this equation can be put in a matrix form. 

[ 	T(r) 	[Fi (r +Ai)] 
	

(4.1) 

In this form the matrix T(r) is an m x m matrix created from the left hand side of the 

Boltzmann equation. The quantity m is the number of divisions in the velocity space 

Z chosen for the numerical scheme. The matrix T(r) is computed from A(Fo (r)) and 

B(Fo (r)). The values of these derived functions are taken from the solution to the 

particle velocity distribution at the previous time step, r. Numerical derivatives are 

used to represent the partial derivatives in the equation. This procedure produces 

a diagonal matrix where all elements except those on an odd number of centered 

21 
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diagonals are zero. The number of diagonals reflects the order of accuracy in the 

solution. Diagonal matrices of this form are easily and quickly inverted. The 

(r +Ar) matrix is an m x 1 matrix of unknowns that represents the particle velocity 

distribution at the current time step. equations of this form can be written 

corresponding to the number of terms in the expansion. 

The right hand side of the Boltzmann equation can also be put in a matrix 

form. 

'Pi v: (r) + • + ion v11 (r)] + [di (r) 	 (4.2) 

The scalar ion  values are unknowns and represent the nondimensional coefficients in 

the asymptotic potential structure of the presheath. 

The v; (r) matrices are m x 1 matrices which are comprised of the partial deriva-

tives of the velocity distribution at the previous time step, r. They represent the 

first summation on the right hand side of the Boltzmann equation. 

az-no 
ns=1 

The di matrix is an m x 1 matrix comprised of the second summation on the right 

hand side of the Boltzmann equation. 

a  
E 	„,A(F„,))+ a 	„,B(F„,))) 

az2 	 az - 	- mi 

All values of the distribution and the functions A(F„,) and B(F„,) are taken at the 

previous time step, r. 

Putting together equations 4.1 and 4.2 a matrix form of the Boltzmann equation 

is created that can be solved for the particle velocity distribution. 

T(r) 	[Fi(r + Ar) = jo a  [q(r)1+.••+ ion  vli(r) + [ (r) 	(4.3) 

• 
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'i' equations of this form can be written corresponding to the number of terms in 

the asymptoic expansion being used. 

These equations are quickly inverted to obtain the particle velocity distribution 

at the current time step. 

F; ('r+ Or)1 = PI [KI M] + • • • + Pn 	(r) 	D i(r)] 	 (4.4) 

Where the Vn  and D matrices represent the m x 1 solution matrix to the inversion 

of the T(r) matrix with the corresponding vn  or d matrix. 

The particle velocity distribution is obtained from this equation using the so n 

 values from the previous time step. 

Equation 3.49 is employed to obtain the so n  values at the current time step. 

	

rev  dZ 	I271 

	

Fo dZ 	Po Te 

	

rce  F2  dZ 	(p2  271) _1.  1 (y01) 2 (271) 2  

	

f c„. FodZ 	po Te 	2 (i0o) Te 

	

ro,F3 dZ 	(p3 ( 271 )  pi 92 ( 2Tiy _ 1 ( 9°1 ) 3( 271 ) 3  

	

f 	c'c o Fo dZ 	PO Te 	Po Po Te 	6 Po 	Te 

(3.49a) 

(3.496) 

(3.49c) 

The new distributions are integrated numerically and the so'  through son  scalars 

are determined consecutively. The value of so o  is input and is a nondimensional 

representation of the coefficient # in the potential expansion parameter, U. 

For each time step, the overall particle velocity distribution can be determined 

at any location from the original expansion once it has been nondimensionalized. 

F(Z , AU') = Fo(Z) + AU' Fi(Z) + AUs2 F2(Z)+ 	 (4.5) 

since, 

AU* = e". 	 (4.6) 
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Where the • quantities are nondimensional. x has been nondimensionalized with 

respect to an ion mean free path. 

xs  = X 

nRr 

The potential structure of the presheath is detemined from the nondimensional 

form of the original expansion of potential. 

Us  = (7(; + soi&U" + co2aU s2  + ••• 	 (4.7) 

Using this procedure the time dependent evolution of the presheath is obtained. 

The point of no returning ions occurs where the integral of the left half plane 

of the total particle velocity distribution is zero. 

0 
 = f

F(Z)dZ 	 (4.8) 
—co 

This equation can be rewritten using the expansion of the particle distribution. 

0=  f
0 	 0 

Fo(Z)dZ + DU'Fi (Z)dZ + atI* 2 	F2(Z)dZ + • • 	(4.9) 
-00 	 J -00 	 J -00 

Equation 4.9 can be solved for au' Since the particle distributions are now known 

as a function of time and velocity. The entire solution at the point of no returning 

ions is known with this last piece of information. 

4.2 Numerical Integration, Differentiation, and Matrix Inversion  

In order to obtain a solution to the potential structure and particle distribution 

in the presheath it is necessary to develope the applicable mathematical tools. The 

primary techniques needed are integration, differentiation, and matrix inversion. 
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4.2.1 Numerical Integration 

Throughout the solution integration is computed using a Simpson's 1 rule 

technique1 121. 

h f Lb 
f (X)dX = 

3 
VI +4f2+ 2f3 + 4f4 + 2/5 + - - • +2/n—I + 4fn + fn+i) (4.10) 

Where h is the spacing between the points and fi  through fn+i  represent the function 

values at each point. This procedure has a global error of 0(h4 ). If the step size is 

chosen appropriately this procedure is very accurate. 

4.2.2 Numerical Differentiation  

The technique for determining numerical differentiation is a second order ac-

curate scheme. This reduces the number of computations while maintaining high 

accuracy. Second order accurate numerical differentiation requires that only three 

points be known. Thus, the 'T(r)' matrix contains only three diagonals. If third 

order accuracy was used the 'T(r)' matrix would require five diagonals to represent 

the five points needed for the differentiation. In addition, to maintain uniformity a 

central difference technique is desirable on as many points as possible. The greater 

the number of points needed for each derivative the more points that require forward 

or backward difference techniques ( rather than the central difference technique). 

Below is a list of the techniques used to obtain derivatives1 121. 

Central Difference 

aF _ F(x + 1) — F(x —1)  
ax 	2h 

32F - F(x +1) — 2F(x) + F(x — 1)  
ax2 	 h2 

33F _ F(x + 2) — 2F(x + 1) + 2F(x — 1) — F(x — 2) 
ax3 	 2h3  
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Forward Difference 

Backward Difference 

aF —F(z + 2) + 4F(z + 1) — 3F(x)  

ax 	 2it 

a2F F(z + 2) — 2F(x + 1) + F(x)  
axe 	 h2 

a3F F(z +3) — 3F(x + 2) +3F(x +1) — F(x)  
ax3 	 h3  

aF _3F(z)-4F(z-1)+3F(z— 2) 
ax — 	 2it 

a2F F(z)-2F(z-1)+ F(z — 2) 
axe 	 h2 
a3F F(z)-3F(z —1) + 3F(z — 2) — F(x — 3) 
az3 	 h3 

(4.12a) 

(4.126) 

(4.12c) 

(4.13a) 

(4.136) 

(4.13c) 

Where h is the grid spacing. The derivatives are being taken about point z. 

It is worth noting that the third derivative equations require up to five points. 

There is no second order accurate numerical third derivative representation. These 

equations are third order accurate. This does not effect the 'TN' matrix in that 

it contains no third derivatives. The solution procedure requires third derivatives 

only in the determination of the function B(Fi (r)). 

These equations are used throughout the solution for derivatives with respect 

to velocity, Z, and time, r. 

4.2.3 Matrix Inversion 

In order to obtain a solution a procedure for inverting a diagonal matrix is 

necessary. The procedure used will invert any centered diagonal matrix. For the 

second order accurate case the matrix in question is tridiagonal. The procedure 

uses Guassian elimination on all terms below the center diagonal and then through 

back substitution determines the solution vector. This technique can quickly invert 

a 200 x 200 tridiagonal matrix. 

7 0 
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4.3 Obtaining a Solution 

As in any numerical model certain restraints and conditions must be met to 

obtain an accurate solution. This model requires some form of input distribution 

function and in order to obtain higher order terms must also have a perturbation 

applied to the potential structure. In addition, certain numerical techniques have 

been used to remove instabilities in the model. 

4.3.1 Initial Distribution  

To model the presheath region an initial particle velocity distribution that con-

forms to a Maxwellian profile has been used. This profile represents the distribution 

that naturally occurs in the neutral plasma region. The idea is that the time de-

pendent evolution of the distribution will change from a Maxwellian at time zero to 

a shifted new form as the presheath is entered. The Maxwellian profile is initially 

given to the zero order term having set the initial conditions of all higher order 

terms to zero. 

If the potential structure of the presheath is not perturbed in some manner then 

the model represents the neutral plasma region and the particle velocity distribution 

remains Maxwellian ( as it should ). If, however, a small perturbation in the 

potential stucture is added (ie. a nonzero ai,a2.—) then the model readjusts to 

describe the presheath region. In this manner the model is used to give the time 

dependent evolution of the presheath. 

4.3.2 Instability Damping 

By the nature of the implicit - explicit technique being employed certain numer-

ical problems are expected to appear. This model is no exception. Two techniques 

have been used to remove these instabilities. 
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The most important thing to do to avoid numerical problems in a scheme of this 

nature is to ensure that as much as possible of the solution is computed implicitly. 

In addition, once some new data has been calculated it should be applied to any 

new calculations immediately. 

In this model each term in the expansion of the particle distribution function 

uses the new data already determined in calculating all of the lower order terms. 

Once F0 is determined that information is used in calculating F1 . This idea is 

repeated for the higher order terms. 

A second method applied to the model to eliminate oscilliatory instabilities that 

start on a very small scale and grow is the application of a very weak averaging 

scheme to the particle distribution functions. Each point in the distribution is 

weakly averaged with the points on either side. 

F(Z) = 0.025F(Z + 1) + F(Z) + 0.025F(Z - 1) 
1.05 

(4.14) 

This technique, although necessary, has the negative effect of falsely increasing the 

energy in the system by spreading the distribution slightly (see figure 5.1). The 

change is very small and can be considered insignificant with respect to the overall 

solution. 

4.4 Program Structure 

The entire program has been written in FORTRAN and can be run on either 

an IBM PC AT or on the CYBER mainframe. The code has been written in a seg-

mented manner that easily allows one section to be altered without having to alter 

other sections. The overall structure of the program consists of three initialization 

programs, three input data files, the main program, and three output data files. 

The main program contains a driver and seventeen subroutines. Several of the sub- 
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routines perform operations that are used throughout the main code. Figure 4.1 is a 

diagram of the structure of the program. The flexibility of the code is derived from 

the generalized subroutine structure and the ability to enter a variety of input vari-

ables. The driver keeps track of time and maintains the overall operating structure 

of the solution while the subroutines perform the necessary manipulations. Below 

is a list of the function of each program, data file and subroutine. 

AVE - Subroutine to smooth distributions by averaging. 

CONSERV - Subroutine to determine conservation of energy, momentum, and 

particles. 

CONSOUT - Conservation output data file. 

CRF - Particle distribution initialization program. 

CRPHI - Potential structure initialization program. 

DENSITY - Subroutine to solve for a new presheath structure. 

FDATA - Initial particle distribution data file. 

FD1 - Subroutine to find first derivatives. 

FD2 - Subroutine to find second derivatives. 

FD3 - Subroutine to find third derivatives. 

FINDA - Subroutine to determine 'A' function. 

FINDB - Subroutine to determine 'B' function. 

FPINIT - Primary initialization program. 

FPOUT - Output particle distribution data file. 

FPSHETH - Main program driver. 

GETAB - Subroutine to make A and B function vectors. 

INITDAT - Initialization data file. 

MAKED - Subroutine to make d matrix. 

• 
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MAKEF - Subroutine to read initial particle distribution. 

MAKEPHI - Subroutine to read initial potential structure. 

MAKET - Subroutine to make T matrix. 

MAKEV - Subroutine to make v matrix. 

MODIAG - Subroutine to invert diagonal matices. 

PHIDAT - Initial potential structure data file. 

PHID OUT - Output potential structure data file. 

SIMPS - Subroutine to perform Simpson's rule integration. 

TOT - Subroutine to obtain total distribution at point of no returning ions. 
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CHAPTER V 

RESULTS 

The ratio of ion temperature to electron temperature, T  , has been set to one 

half throughout these results. There is little effect on the particle distribution or 

potential structure if the temperature ratio is changed to other values. The electron 

temperature is expected to be higher than the ion temperature in the presheath since 

electrons absorb energy from electric and magnetic fields faster than ions and other 

large particles. 

Through repeated test runs of the model it was found that fifty-one points in 

velocity space were enough to provide high accuracy and produce good results. 

The range of points in velocity space has been truncated to ±5 nondimensional 

units. The results show that at ±5 the distribution is near zero, substantiating the 

truncation. 

A time step of 0.2 nondimensional times was found to keep the solution accurate. 

Three nondimensional units in time were sufficient to produce stable results. 

It was found that the magnitude of the higher order terms in the particle velocity 

distribution drop off very rapidly. Thus, the higher order terms have very little 

impact on the shape of the potential or of the particle distribution. 

To understand the effects of a quiescent plasma interacting with a surface the 

potential gradient in the neutral plasma has been set to zero. To accomplish this 

the a term in the expansion of potential has been set to zero. 
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where 

Uo = ax 	and 	DU = e9= 	 (3.14) 

A stable solution exists only for a specific critical value of the exponential coefi-

cient, /3, which represents the scale of the presheath. The quantitiy /3 is nondimen-

sionalized as coo  = where nR r is an ion mean free path. It is expected, as shown 

in section 3.2, that the critical value should be on the order of a mean free path. It 

was found that wfr. = 0.4 produces the most nearly stable results. The distributions 

become unstable for values greater or less than 0.4. The small remaining instability 

at --P— = 0.4 can be attributed to the inexact nature of the numerical solution. nft r 

The results presented here are first order and produce a complete picture of the 

structure of the presheath because the higher order terms collective contribution 

is more than an order of magnitude smaller. Figures 5.1 and 5.2 are plots of the 

zeroth and first order expansions of the particle distribution in velocity space. The 

zero order term remains Maxwellian because the potential gradient in the neutral 

plasma is zero. The first order term of the distribution obtains a profile that has 

roughly the shape ( but not magnitude ) of the negative first derivative of the zeroth 

order solution. The potential expansion parameter at the point of no returning ions 

is determined for each time step. Using the particle distribution functions and the 

known potential expansion parameter together produce the overall particle velocity 

distribution at the point of no returning ions, the presheath - sheath interface. 

Figure 5.3 shows this distribution. 

The positive shift in the total distribution is as expected for the presheath. The 

ions are being pulled into the wall. The particle distribution for velocities away from 

the wall is zero for the case of no returning ions. The point of no returning ions 

exists where the particle distribution for velocities away from the wall integrates 
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to zero. Figure 5.3 shows that the ion distribution becomes negative for velocities 

away from the wall. A negative particle distribution cannot exist physically. The 

addition of higher order terms does not correct the problem because the expansion 

drops off so quickly that any higher order terms have no impact on the shape of 

the distribution. The problem is fundamental to the type of collision term being 

applied in the model. The Fokker - Planck term only models the limit of small 

angle collisions. However, large angle collisions become important in the presheath. 

The first term of the nondimensionalized potential structure, so t , has been ini-

tially perturbed to 1.0 x 10-4  to obtain the results presented in figures 5.1, 5.2 and 

5.3. Perturbing the potential structure provides the model with the nonequilibrium 

condition necessary to initiate the time dependent development of the presheath. 

The strength of the initial perturbation is not significant to obtaining an accurate 

particle distribution and potential structure of the presheath. Figures 5.4, 5.5, and 

5.6 are the result of an initial perturbation of 1.0 x 10 -3  and figures 5.7, 5.8 and 5.9 

are the result of an initial perturbation of 1.0 x 10 -5 . Comparing these results show 

that the magnitude of the initial perturbation only affects the scale of the first order 

term and has no effect on the overall particle distribution in velocity space. 

Figure 5.10 is a plot of the position of the point of no returning ions, the 

presheath - sheath interface, as a function of time for the three solutions. Since no 

source of ions exists in the model the relative position of the plasma with respect 

to the surface changes as a function of time. The wall is moving into the plasma, 

or the plasma is moving into the wall, at the rate at which the wall is absorbing 

ions. The three solutions have different magnitudes but follow the same profile. 

The strength of the perturbation controls the relative position of the zero point. 

Figure 5.11 is a plot of the potential structu:-. of the presheath obtained from 
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the three solutions as a function of position. The data for the potential structure has 

been taken from the solution at a nondimensional time of two. Note that the affect 

of the different initial perturbation values is to cause a shift in the relative position 

of the potential but has no effect on the shape of the potential or on the strength of 

the potential at the point of no returning ions. Changing the perturbation strength 

alters the location of the zero point but not its shape. The stronger the perturbation 

the further the zero point is moved from the surface. The horizontal line in the plot 

depicts the presheath height at the point of no returning ions. The vertical lines 

show the position of the point of no returning ions. 

A time dependent plot of the presheath height at the point of no returning ions 

is presented in figure 5.12. This plot shows that the time evolution of the sheath 

height approaches smoothly to a nearly constant value of 0.16. All three solutions 

fall on the same curve. This shows that the strength of the perturbation does not 

affect the results obtained. 



CHAPTER VI 

CONCLUSIONS 

The solution obtained is an accurate representation of the time dependent de-

velopment of the Fokker - Planck presheath. The model produces a precise potential 

structure, however, the distribution of returning ions breaks down in the presheath. 

An oscillation developes in the negative tail of the distribution, as seen in figures 

5.3, 5.6, and 5.9. This oscillation cannot be removed by including additional terms 

to the expansion. In addition, the sheath height of 0.16 determined at the point of 

no returning ions is roughly an order of magnitude smaller than expected. Both of 

these conditions lead to the conclusion that the Fokker - Planck collision term does 

not represent the type of collisions that remove the returning ions in the presheath. 

This breakdown is do to the failure of the Fokker - Planck collision term to model 

the large angle collisions that take place within the presheath. The Fokker - Planck 

term is effective at modeling the collisions present in the center of the plasma but 

breaks down in the presheath. The primary mechanism behind clearing out the 

returning ions from within the presheath is not particle diffusion as represented by 

small angle deflections but rather the large velocity changes caused by large angle 

collisions. Since the Fokker - Planck term models particle collisions that represent 

the limit of small angle collisions it is inadequate at describing the mechanisms 

controlling the ion velocity distribution moving away from the wall. The solutions 

obtained using a Maxwellian distribution by Bissell and Johnson1 41 and Emmert et 

al.131 and those obtained using a charge exchange collision model by Riemann[ 6l and 

Male1 effectively include the large angle collisions since they model the collisions 
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by instantaneous changes in particle velocity and position. These collision models 

do not represent the Coulomb collisions taking place in a fully ionized plasma. They 

do not represent the collision processes but only approximate the collisional effects. 

This Fokker - Planck presheath model produces a self-consistent and precise 

potential structure. The particle velocity distribution in the presheath has the 

correct acceleration of ions toward the wall but because the Fokker - Planck collision 

term only models the limit of small angle collisions it is unable to clear the particle 

distribution of returning ions. The effect of not modeling the large angle collisions 

is that the particle distribution for returning ions is accurate only in the initial 

section of the presheath where the collisional processes are dominated by particle 

diffusion. The collisional processes become dominated by the effects of the large 

angle collisions as the interface between the presheath and the Debye sheath is 

approached. Only by including a collision term which accounts for these large 

angle collisions can a presheath model produce a particle velocity distribution that 

accurately models the condition of no returning ions. This study has found that a 

presheath model which describes the Coulomb collisions occurring in a fully ionized 

plasma must account for both the small angle collisions and the large angle collisions. 

g o 
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FIGURES 

Figure 3.1 Debye Shielding 
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Figure 3.2 Wall Potential 
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Figure 3.4 Coordinate System in Velocity Space 



41 

Maxwellian 

Radial Velocity Distribution 

T = Constant 

potential 

Neutral Plasma 	 Near Presheath 
	

Distribution at the Point 
Distribution 
	

Distribution 	 of no returning ions 

'Figure 3.5 Radial, Symmetric, and No Returning Ions Conditions 

2S" 



Figure 4.1 Program Diagram 
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APPENDIX: PROGRAM LISTING 

****************************************************************** 

• THIS PROGRAM WAS WRITTEN BY JEFFREY P. DANSEREAU 

• THIS VERSION WAS LAST UPDATED ON 7/17/87 
****************************************************************** 

C 

C THIS PROGRAM IS A TIME DEPENDENT MODEL OF THE SHEATH - 
C PRESHEATH OF A PLASMA. IT USES A FOKKER-PLANCK COLLISION 
C TERM WITH ONLY COULOMB COLLISIONS. BELOW IS A LIST OF 
C THE VARIABLES AND THEIR MEANING 
C 

C 	T - DIAGONAL REPRESENTATION OF T MATRIXAST IS DIAGONALS. 
C 	2ND IS M VEL POS. 
C 	V - 3-D MATRIX OF V COMPONENTS. 1ST POS. IS F'S, 2ND IS 
C 	N PHI POS., 3RD IS M VEL. POS. 
C 	VV - 3-D MATRIX OF V VALUES AFTER INVERSION WITH T MATRIX. 
C 	POS. ARE SAME AS V MATRIX WITH ADDITIONAL ROW FOR BC'S. 
C 	D - 2-D MATRIX OF D VALUES. 1ST POS. IS F'S, 2ND IS M VEL POS. 
C 	DD - 2-D MATRIX OF D VALUES AFTER INVERSION WITH T MATRIX 
C 	PHI- VECTOR OF PHI VALUES 
C 	F - 2-D MATRIX OF DENSITY FUNCTIONS, 1ST POS. IS THE n F'S 
C 	THAT ARE BEING USED. (n=N-1). F(1,X)= FO ECT... THE 
C 	2ND POS IS THE M VEL POS. 
C 	TSTEP - VALUE OF DELTA T AS TIME IS STEPPED THROUGH 
C 	VSTEP - VALUE OF DELTA V AS VEL. SPACE IS STEPPED THROUGH 
C 	RTIME - CURRENT VALUE OF NON-DIM. TIME 
C 	ETA - CURRENT VEL. 
C 	NETA - ETA PARAMETER IN POISSON EQN 
C 	TOTE - RATIO OF T TO Te(T OVER Te) 
C 	SM - SMALL M(m) IN F-P EQN 
C 	BM - BIG M(M) IN F-P EQN 
C 	AA - a IN F-P EQN 
C 	AP - a' IN F-P EQN 
C 	M - NUMBER OF DIV. IN VEL. SPACE 
C 	N - NUMBER OF PHI VALUES 
C 	ND - NUMBER OF DIAGONALS IN T MATRIX 
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C 	TIME - INTEGER VALUE IN TIME LOOP 

C 	TEND - RTIME TO FINISH SIMULATION 
C 	L - INTEGER TIME VALUE TO END SIMULATION 
C 	FLAG1 - FLAG TO PRINT OR NOT PRINT MATRICES (99 TO PRINT) 
C 	FLAG2 - FLAG TO PRINT OR NOT PRINT INTERMEDIATE MATRICES 
C 	 (99 TO PRINT) 
C 	TRBLE - FLAG TO PRINT TROUBLE STATEMENT IF MATRIX IS NOT 
C 	 INVERTABLE 
C 	B,SOLN - INTERMEDIATE VALUES OF VARIOUS FUNCTIONS 
C 	X,Y,Z - INTEGER COUNTERS 
C 

C THIS PROGRAM STEPS THROUGH TIME SOLVING THE BOLTZMANN EQN FOR 
C VALUES OF THE EXPANDED DENSITY FUNCTION 
C 

REAL T(6,8,202),V(6,6,202),B(202),SOLN(202),TEND 
REAL VV (6 ,6,202) ,D (6,202) ,DD (6,202) ,PHI(6) ,L 
REAL F(6,202),TSTEP,RTIME,SM,BM,AA,AP,VSTEP,ETA,NETA,TOTE 
REAL FTOTAL(202),SO,DU,DUPHI1 
INTEGER X,Y,Z,M,N,ND,TIME,TRBLE,FLAG1,FLAG2,FLAG3,P,PSTEP,SKIP 

C 

C READ IN PARAMETERS AND PRINT THEM 
C 

OPEN(UNIT=2,FILE='INITDAT.DAT',STATUS='OLD') 
READ(2,705) M,NETA,TOTE,AA,AP,SM,FLAG3,SKIP,S0 
READ (2,707) BM,VSTEP,N,ND,TEND,TSTEP,FLAG 1,FLAG2 
CLOSE(UNIT=2) 

705 FORMAT(I4,1X,F6.4,1X,F6.4,1X,F6.4,1X,F6.4,1X,F6.4,1X,I3,1X, 
I3,1X,F9.4,/) 

707 FORMAT(1X,F6.4,1X,F6.4,1X,I4,1X,I4,1X,F8.5,1X,F7.5,1X,I3,1X,I3) 

OPEN(UNIT=1,FILE='PHI.OUT',STATUS='UNKNOWN') 
OPEN(UNIT=3,FILE='FPSHETH.OUT',STATUS='UNKNOWN') 
WRITE(3,717) 2************************************************2 

t*********2 + 
717 FORMAT(A,A) 

WRITE(3,711) 'FOKKER - PLANCK SIMULATION OUTPUT' 
wRITE(3,717) 2*********************************************** * 2 

2*********2 ,  

WRITE(3,710) 'INPUT PARAMETERS' 
WRITE(3,715) 'NUMBER OF VEL. STEPS - M',M 
WRITE(3,715) 'NUMBER OF PHI VALUES - N',N 
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WRITE(3,715) 'NUMBER OF DIAGONALS IN T MATRIX - ND',ND 
WRITE(3,720) 'VALUE OF ETA IN POISSON EQN - NETA',NETA 
WRITE(3,720) 'VALUE OF T OVER TE - TOTE',TOTE 
WRITE(3,720) 'SIZE OF EACH VEL. STEP - VSTEP',VSTEP 
WRITE(3,720) 'SIZE OF EACH TIME STEP - TSTEP',TSTEP 
WRITE(3,720) 'VALUE OF ENDING TIME FOR SIMULATION',TEND 
WRITE(3,720) 'VALUE OF A PARAMETER IN F-P EQN - AA',AA 
WRITE(3,720) 'VALUE OF A PRIME PARAMETER IN F-P EQN - AP',AP 
WRITE(3,720) 'VALUE OF SMALL M IN F-P EQN - SM',SM 
WRITE(3,720) 'VALUE OF BIG M IN F-P EQN - BM',BM 
WRITE(3,716) 'FLAG TO PRINT PRIMARY MATRICES(99 TO PRINT)', 

' - FLAGI',FLAGI 
WRITE(3,716) 'FLAG MAKE FDATA AND PHIDAT NEW FINAL VALUES', 

'(99 = YES) - FLAG3',FLAG3 
WRITE(3,715) 'TIME SKIP FOR PRINT OF F FILE SKIP',SKIP 

716 FORMAT(5X,A,A,2X,I3) 
WRITE(3,710) " 

710 FORMAT(15X,A,//) 
711 FORMAT(8X,A,/) 
715 FORMAT(5X,A,2X,I3) 
720 FORMAT(5X,A,2X,F9.5) 
C 

C MAKE NON TIME DEPENDENT QUANTITIES AND INITIAL APPROXIMATIONS 
C TO F'S, PHI'S, AN THE BC 
C 

DU=0.0 
DUPHI1=0.0 
CALL MAKEF(M,F) 
CALL MAKEPHI(N,RTIME,PHI) 
CALL TOT(F,FTOTAL,PHI,N,M,VSTEP,DU,DUPHI1) 
TT=0.0 
CALL CONSERV(F,VSTEP,TT,M) 

C 
*************** ***** ****************** 

C 

C START MAIN TIME LOOP 
C 
C 	************************************** 

C 

C 
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C COMPUTE END LOOP TIME L 

C 

L=TEND/TSTEP 
PSTEP=O 

C 

DO 40 TIME=1,INT(L)+1 
C 	PRINT RESULTS OF CURRENT TIME STEP 

C 

PSTEP=PSTEP+1 
IF (TIME.LE.3) GOTO 1000 
IF (PSTEP.GE.SKIP) THEN 

PSTEP=0 
GOTO 1000 

ENDIF 
GOTO 1001 

1000 	WRITE(3,350) 'TIME = ',RTIME,'TSTEP = ',TIME-1 
DO 210 Z=1,N 

WRITE(3,250) 	 = ',PHI(Z) 

210 	CONTINUE 
WRITE(3,351) 'DU = ',DU,'DU*PHI(1) = ',DUPHIl 

WRITE(3,711) " 
WRITE(3,275) 'M','ETA','F0','F1','F2','F3','FTOTAL' 
ETA=-5.0 

DO 220 X=1,M 
WRITE(3,300) X,ETA,F(1,X),F(2,X),F(3,X),FTOTAL(X) 

ETA=ETA+VSTEP 
220 	CONTINUE 

1001 	WRITE(3,710) " 
WRITE(1,813) TIME,RTIME,PHI(1),PHI(2),2HI(3),DU,DUPHI1 

813 	FORMAT(I3,1X,F7.4,1X,E13.6,1X,E13.6,1X,E13.6,1X,E13.6, 
1X,E13.6) 

IF (TIME.GT.INT(L)) GOTO 40 
WRITE(*,946) 'CURRENTLY IN TIME STEP',TIME,'OF',INT(L) 

946 	FORMAT(5X,A,I4,2X,A,I4) 
C 

C 	MAKE TIME DEPENDENT QUANTITIES T MATRIX, V MATRIX, D MATRIX 

C 

DO 445 JJ=1,2 
CALL MAKET(ND,M,F,VSTEP,SM,BM,AA,AP,TSTEP,SO,PHI,N,T) 
CALL MAKEV(N,M,F,VSTEP,V) 



CALL MAKED(M,F,VSTEP,TSTEP,SM,BM,AA,AP,N,PHI,D) 

C 
C 	INVERT T MATRIX WITH V VECTORS, MAKING VV MATRLX 

C 
DO 50 X=1,N-1 

DO 60 Y=3,N 
DO 70 Z=1,M 

B(Z)=V(X,Y,Z) 
70 	 CONTINUE 

CALL MODIAG(M,ND,T,B,SOLN,TRBLE,X) 
IF (TRBLE.EQ.999) THEN 

WRITE(3,•) 'MATRIX HAS NO SOLUTION' 
TRBLE=0 

ENDIF 
DO 80 Z=1,M 

VV(X,Y,Z)=SOLN(Z) 
80 	 CONTINUE 
60 	CONTINUE 
50 	CONTINUE 
C 

C 	INVERT T MATRIX WITH D VECTORS, MAKING DD MATRIX 
C 

DO 90 X=1,N-1 
DO 100 Y=1,M 

B(Y)=D(X,Y) 
100 	CONTINUE 

CALL MODIAG(M,ND,T,B,SOLN,TRBLE,X) 
IF (TRBLE.EQ.999) THEN 

WRITE(3,*) 'MATRIX HAS NO SOLUTION' 
TRBLE=0 

ENDIF 
DO 110 Y=1,M 

DD(X,Y)=SOLN(Y) 
110 	CONTINUE 
90 	CONTINUE 
C 
C 	GET NEW F VALUES FROM NEW PHI VALUES 
C 

DO 160 X=1,N-1 
IF ((JJ.EQ.1).AND.(X.EQ.2)) GOTO 160 
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IF PIEQ.2).AND.(X.EQ.1)) GOTO 160 

DO 165 Z=1,M 
F(X,Z)=0.0 

165 	CONTINUE 
DO 170 Y=3,N 

DO 180 Z=1,M 
F(X,Z)=F(X,Z)+PHI(Y)*VV(X,Y,Z) 

180 	 CONTINUE 
170 	CONTINUE 

DO 190 Z=1,M 
F(X,Z)=F(X,Z)+DD(X,Z) 

190 	CONTINUE 

160 	CONTINUE 
CALL AVE(F,M,N,JJ) 

C 
445 	CONTINUE 

C 
C 	GET NEW PHI VALUES 
C 

CALL DENSITY(N,M,PHI,F,TOTE,VSTEP) 
C 
C 	MAKE TOTAL DENSITY 
C 

CALL TOT(F,FTOTAL,PHI,N,M,VSTEP,DU,DUPHI1) 
C 

TT=RTIME+TSTEP 
CALL CONSERV(F,VSTEP,TT,M) 

C 
C 	INCREASE REAL TIME TO NEXT POSITION 
C 

RTIME=RTIME+TSTEP 
C 
C 	CONTINUE TIME LOOP 
C 
40 CONTINUE 
C 	************************************* 

C 
C END TIME LOOP 

C 
C 	************************************* 
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C 

C FORMAT STATEMENTS FOR PRINTS 
C 

250 FORMAT(5X,A,I4,A4X,E13.6) 
275 FORMAT(2X,A,2X,A,9X,A,12X,A,12X,A,12X,A,10X,A) 
300 FORMAT(I3,1X,F5.2,1X,E13.6,1X,E13.6,1X,E13.6,1X,E13.6,1X,E12.5) 
350 FORMAT(5X,A,F7.4,10X,A,I5,/) 
351 FORMAT(5X,A,E13.6,5X,A,E13.6) 

CLOSE(UNIT=3) 
IF (FLAG3.EQ.99) THEN 

OPEN(UNIT=4,FILE=TDATA.DAT',STATUS= 1UNKNOWN') 
DO 265 X=1,M 

WRITE(4,266) F(1,X),F(2,X),F(3,X),F(4,X) 
266 	FORMAT(E13.6,1X,E13.6,1X,E13.6,1X,E13.6) • 
265 	CONTINUE 

CLOSE(UNIT=1) 
OPEN(UNIT=8,FILE='PHIDAT.DAT',STATUS='UNKNOWN') 
DO 267 X=1,N 

WRITE(8,268) RTIME 
WRITE(8,268) PHI(X) 

268 	FORMAT(E13.6) 
267 	CONTINUE 

ENDIF 
STOP 
END 

REAL F(6,202),ETA,VSTEP,NETA,TOTE,B,PI,C 
INTEGER X,M,Z 
OPEN(UNIT=3,FILE='FDATA.DAT',STATUS='UNKNOWN') 
ETA=-5.0 
PRINT*,'INPUT M,VSTEP' 
READ(•) M,VSTEP 
N=M-(M-1)/2 
DO 10 X=1,N 

F(1,X)=EXP(-(ETA"2)) 
F(2,X)=0.0 
F(3,X)=0.0 
F(4,X) =0.0 
ETA=ETA+VSTEP 
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10 CONTINUE 

Z=1 

DO 30 X=M,N+1,-1 

DO 40 Y=1,4 

F(i,X)=F(i,Z) 

40 	CONTINUE 

Z=Z+1 

30 CONTINUE 

DO 20 X=1,M 

WRITE(3,100) F(1,X),F(2,X),F(3,X),F(4,X) 

100 	FORMAT(E13.6,1X,E13.6,1X,E13.6,1X,E13.6) 

20 CONTINUE 

STOP 

END 

REAL PHI(6),RTIME 

INTEGER N,X 

N=5 

RTIME=0.0 

WRITE(*,*) 'INPUT PHI(-1)' 

READ(. ,200) PHI(1) 

WRITE(•,*) 'INPUT PHI(0)' 

READ(. ,200) PHI(2) 

200 FORMAT(F10.5) 

WRITE(*,*) 'INPUT PHI(1)' 

READ( . ,200) PHI(3) 
DO 10 X=4,N 

PHI(X)=0.0 

10 CONTINUE 

OPEN(UNIT=9,FILE='PHIDAT.DAT',STATUS='UNKNOWN') 
WRITE(9,120) RTIME 

DO 20 X=1,N 
WRITE(9,120) PHI(X) 

120 	FORMAT(E13.6) 

20 CONTINUE 

RETURN 

END 
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SUBROUTINE CONSERV(F,VSTEP,T,M) 
REAL F(6,202),F0(202),VSTEP,ZF(202),Z2F(202),ENER,MOM,DEN,T,ETA 

INTEGER X,M 
ETA=-5.0 
DO 10 X=1,M 

F0(X)=F(1,X) 
ZF(X)=F(1,X)*ETA 

Z2F(X)=ZF(X)*ETA 
ETA=ETA+VSTEP 

10 CONTINUE 
CALL SIMPS(FO,M,VSTEP,DEN) 
CALL SIMPS(ZF,M,VSTEP,MOM) 
CALL SIMPS(Z2F,M,VSTEP,ENER) 

OPEN(UNIT=9,FILE='CONSERV.OUT',STATUS='UNKNOWN') 
WRITE(9,100) T,DEN,MOM,ENER 

100 FORMAT(2X,F8.5,1X,E13.6,1X,E13.6,1X,E13.6) 
RETURN 

END 

SUBROUTINE DENSITY(N,M,PHI,F,TOTE,VSTEP) 
REAL F(6,202),PHI(6),TOTE,VSTEP,G(202),R(4),NO (6) 

INTEGER M,N,X,Y 
DO 10 X=1,N-1 

DO 20 Y=1,M 

G(Y)=F(X,Y) 
20 	CONTINUE 

CALL SIMPS(G,M,VSTEP,NO(X)) 
10 CONTINUE 

R(1)=NO(2)/NO(1) 

R(2)=NO(3)/NO(1) 
R(3)=NO(4)/NO(1) 
PHI(3)=-PHI(2)*R(1)/(2.0*TOTE) 
PHI(4)=PHI(2) * (MPHI(3)/PHI(2))**2)*((2.0*TOTE)**2)/2.0)-R(2)) 
+ 	/(2.0*TOTE) 

PHI(5)=PHI(2) * (a(2.0*TOTE)**2)*PHI(3)*PHI(4)/(PHI(2)**2)) 
+ -a(2.0 *TOTE) ** 3) * ((PHI(3)/PHI(2))**3)/6.0)-R(3))/(2.0*TOTE) 
RETURN 
END 
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SUBROUTINE MAKEF(M,F) 
REAL F(6,202) 
INTEGER X,M 
OPEN(UNIT=8,FILE='FDATA.DAT',STATUS='UNKNOWN') 
DO 10 X=1,M 

READ(8,100) F(1,X),F(2,X),F(3,X),F(4,X) 
100 	FORMAT(E13.6,1X,E13.6,1X,E13.6,1X,E13.6) 

10 CONTINUE 

RETURN 
END 

SUBROUTINE MAKEPHI(N,RTIME,PHI) 
REAL PHI(6),RTIME 
INTEGER N,X 

OPEN(UNIT=9,FILE='PHIDAT.DAT',STATUS&UNKNOWN') 
READ(9,120) RTIME 
DO 20 X=1,N 

READ(9,120) PHI(X) 
120 	FORMAT(E13.6) 
20 CONTINUE 

RETURN 
END 

SUBROUTINE MAKEV(N,M,F,VSTEP,V) 
REAL F(6,202),V(6,6,202),VSTEP,FD1(6),Z,ETA 
INTEGER N,M,X,Y,R,S 
ETA=-5.0 
DO 10 X=1,M 

CALL FD1(F,N,M,X,VSTEP,FD1) 

IF ((X.EQ.1).OR.(X.EQ.M)) THEN 
DO 15 Y=1,N-1 

DO 17 R=3,N 
V(Y,R,X)=0.0 

17 	 CONTINUE 

15 	CONTINUE 
ELSE 

DO 20 Y=1,N-1 
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Z=1.0 
S=1 
DO 30 R=3,N 

IF (S.GT.(Y-1)) THEN 
V(Y,R,X)=0.0 

ELSE 
V(Y,R,X)=-Z*FD1(Y-R+2) 

ENDIF 
S=S+1 
Z=Z+1.0 

30 	 CONTINUE 
20 	CONTINUE 

ENDIF 
ETA=ETA+VSTEP 

10 CONTINUE 
RETURN 
END 

SUBROUTINE MAKED(M,F,VSTEP,TSTEP,SM,BM,AA,AP,N,PHI,D) 
REAL VSTEP,TSTEP,SM,BM,AA,AP,F(6,202),D (8,202) ,A (6,202) , PHI (6) 
REAL FD1(6),FD2(6),AH(202),BH(202),B(6,202) 
REAL ETA,GD1,GD2 
INTEGER N,M,X,Y,Z 
DO 10 X=1,N-1 

CALL GETAB(F,VSTEP,M,SM,BM,AA,AP,AH,BH,X) 
DO 15 Y=1,M 

A(X,Y)=AH(Y) 
B(X,Y)=BH(Y) 

15 	CONTINUE 
10 CONTINUE 

DO 17 Y=1,N-1 
D(Y,M)=0.0 
D(Y,1)=0.0 

17 CONTINUE 
ETA=-5.0+VSTEP 
DO 20 X=2,M-1 

DO 30 Y=1,N-1 
D (Y,X) =0.0 
DO 40 Z=1,Y 
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IF (Z.LE.Y-1) THEN 
GD2=(A(Z+1,X+1)*F(Y-Z,X+1)-2.0* 

A(Z+1,X)*F(Y-Z,X)+A(Z+1,X-1)*F(Y-Z,X-1))/(VSTEP ** 2) 

GD1=(B(Z+1,X+1)*F(Y-Z,X+1)-B(Z+1 
,X-1)*F(Y-Z,X-1))/(2.0*VSTEP) 

D(Y,X)=D(Y,X)+GD2+GD1 
ENDIF 

40 	CONTINUE 
D(Y,X)=D(Y,X)+F(Y,X)/TSTEP 

30 	CONTINUE 
ETA=ETA+VSTEP 

20 	CONTINUE 
RETURN 
END 

SUBROUTINE FD1(F,N,M,X,VSTEP,FD1) 
REAL F(6,202),FD1(6),VSTEP 
INTEGER Y,X,N,M 
DO 10 Y=I,N-1 

IF (X.LE.2) THEN 
FD1(Y)=(-F(Y,X+2)+4.0*F(Y,X+1)-3.0*F(Y,X))/(2.0*VSTEP) 

ELSE IF (X.GE.M-1) THEN 
FD1(Y)=(3.0*F(Y,X)-4.0*F(Y,X-1)+F(Y,X-2))/(2.0*VSTEP) 

ELSE 
FD1(Y)=(F(Y,X+1)-F(Y,X-1))/(2.0*VSTEP) 

ENDIF 
10 CONTINUE 

RETURN 

END 

SUBROUTINE MAKET(ND,M,F,VSTEP,SM,BM,AA,AP,TSTEP,SO,PHI,N,T) 
REAL VSTEP,TSTEP,SM,BM,AA,AP,F(6,202),T(6,8,202),A(202) 
REAL ETA,B(202),PHI(6),P 
INTEGER ND,M,X,Y,N,Z 

CALL GETAB(F,VSTEP,M,SM,BM,AA,AP,A,B,1) 
P=0.0 
DO 5 Z=1,N-1 
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ETA=-5.0 
DO 10 X=1,M 

IF ((X.EQ.M).OR.(X.EQ.1)) THEN 
T(Z,2,X)=0.0 
T(Z,3,X)=1.0 
T(Z,4,X)=0.0 

ELSE 
T(Z,2,X)=(((-A(X-1)/VSTEP)+B(X-1)/2.0)/VSTEP) 
T(Z,2,X)=T(Z,2,X)-PHI(1)/(2.0*VSTEP) 
T(Z,3,X)=1.0/TSTEP+(2.0*A(X)/(VSTEP"2)) 
T(Z,3,X)=T(Z,3,X)+PHI(2)*P*ETA 
T(Z,4,X)=((-A(X+1)/VSTEP-B(X+1)/2.0)/VSTEP) 
T(Z,4,X)=T(Z,4,X)+PHI(1)/(2.0*VSTEP) 

ENDIF 
ETA=ETA+VSTEP 

10 CONTINUE 
P=P+1.0 

5 CONTINUE 
RETURN 
END 

SUBROUTINE GETAB(F,VSTEP,M,SM,BM,AA,AP,A,B,Y) 
REAL A(202),B(202),AA,AP,F(6,202),VSTEP,Z,SM,BM,E(202) 
REAL P(202),H(202),G(202),K(202),DB,DA,S1,S2,S3,S4,S5 
INTEGER M,X,Y,N 
Z=-5.0 
DO 10 X=1,M 

CALL FINDA(F,Z,VSTEP,AA,AP,M,A(X),Y) 
CALL FINDB(F,Z,VSTEP,AA,AP,SM,BM,M,B(X),Y) 
Z=Z+VSTEP 

10 CONTINUE 
ETA=-5.0 
DO 20 X=1,M 

H(X)=B(X)*F(Y,X) 
G(X)=A(X)*F(Y,X) 
K(X)=ETA*B(X)*F(Y,X) 
P(X)=ETA •F(Y,X) 
E(X)=F(Y,X) 
ETA=ETA+VSTEP 
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20 CONTINUE 
CALL SIMPS(H,M,VSTEP,S1) 
CALL SIMPS(G,M,VSTEP,S2) 
CALL SIMPS (K,M,VSTEP,S3) 
CALL SIMPS (P,M,VSTEP,S4) 
CALL SIMPS(E,M,VSTEP,S5) 
IF (S5.EQ.0.0) RETURN 
DB=-S1/S5 
DA=-(S2-S3-DB*S4)/S5 
DO 30 X=1,M 

B(X)=B(X)+DB 
A(X)=A(X)+DA 

30 CONTINUE 
RETURN 
END 

SUBROUTINE FINDA(F,Z,VSTEP,AA,AP,M,A,Y) 
REAL F(6,202),Z,VSTEP,AA,AP,A,ETA,SOLN,H(202),FD2 

INTEGER X,M,Y 
ETA=-5.0 

DO 10 X=1,M 
CALL FD2(F,M,X,VSTEP,FD2,Y) 

H(X)=FD2''ABS(ETA-Z) 
ETA=ETA+VSTEP 

10 CONTINUE 
CALL SIMPS(H,M,VSTEP,SOLN) 
A=(SOLN*AA)/(2.0*AP) 
RETURN 

END 

SUBROUTINE FINDB(F,Z,VSTEP,AA,AP,SM,BM,M,B,Y) 
REAL F(6,202),Z,VSTEP,AA,AP,B,ETA,G2,SOLN 
REAL J(202),FD3,SM,BM 
INTEGER X,M,Y 
ETA=-5.0 
DO 10 X=1,M 

CALL FD3(F,M,X,VSTEP,FD3,Y) 
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J(X)=FD3*ABS(ETA-Z) 

ETA=ETA+VSTEP 
10 CONTINUE 

CALL SIMPS(J,M,VSTEP,SOLN) 
B=-(AA/AP)*(SM/(2.0*BM))*SOLN 
RETURN 
END 

SUBROUTINE SIMPS(F,N,H,RESULT) 
REAL F(202),H,RESULT 

INTEGER N,NPANEL,NHALF,NBEGIN,NEND 
NPANEL=N-1 
NHALF=NPANEL/2 
NBEGIN=1 

RESULT=0.0 
IF ((NPANEL-2*NHALF).NE.0) THEN 

RESULT=3.0*H/8.0*(F(1)+3.0*F(2)+3.0*F(3)+F(4)) 
NBEGIN=4 
IF (N.EQ.4) RETURN 

ENDIF 
RESULT=RESULT+H/3.0*(F(NBEGIN)+4.0*F(NBEGIN+1)+F(N)) 

NBEGIN=NBEGIN+2 
IF (NBEGIN.EQ.4) RETURN 
NEND=N-2 
DO 10 I=NBEGIN,NEND,2 

RESULT=RESULT+H/3.0*(2.0*F(I)+4.0*F(I+1)) 
10 CONTINUE 

RETURN 
END 

SUBROUTINE FD2(F,M,X,VSTEP,FD2,Y) 
REAL F(6,202),FD2,VSTEP 
INTEGER X,M,Y 
IF (X.LE.1) THEN 

FD2=(F(Y,X+2)-2.0*F(Y,X+1)+F(Y,X))/(VSTEP**2) 
ELSE IF (X.GE.M) THEN 

FD2=(F(Y,X)-2.0*F(Y,X-1)+F(Y,X-2))/(VSTEP**2) 
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ELSE 

FD2=(F(Y,X+1)-2.0"F(Y,X)+F(Y,X-1))/(VSTEP"2) 
ENDIF 
RETURN 
END 

SUBROUTINE FD3(F,M,X,VSTEP,FD3,Y) 
REAL F(8,202),FD3,VSTEP 

INTEGER X,M,Y 
IF (X.LE.2) THEN 

FD3=(F(Y,X+3)-3.0*F(Y,X+2)+3.0*F(Y,X+1)-F(Y,X))/(VSTEP"3) 
ELSE IF (X.GE.M-1) THEN 

FD3=(F(Y,X)-3.0*F(Y,X-1)+3.0"F(Y,X-2)-F(Y,X-3))/(VSTEP"3) 
ELSE 

FD3=(F(Y,X+2)-2.0*F(Y,X+1)+2.0*F(Y,X-1)-F(Y,X-2))/ 
(2.0*(VSTEP"3)) 

ENDIF 
RETURN 
END 

SUBROUTINE MODIAG(M,D,MATRIX,C,SOLN,TRBLE,N) 

REAL A(8,202),B,SOLN(202),MATRTX(6,8,202),C(202) 
INTEGER M,D,W,X,Y,Z,TRBLE,N,I,MN1 
TRBLE=0 
DO 10 X=1,D+2 

DO 20 Y=1,M 
IF (X.EQ.D+2) THEN 

A(X,Y)=C(Y) 
ELSE 

A(X,Y)=MATRIX(N,X,Y) 
ENDIF 

20 	CONTINUE 
10 CONTINUE 

DO 30 I=2,M 
A(2,I)=A(2,I)/A(3,I-1) 
A(3,I)=A(3,I)-A(2,I) *A(4,I-1) 
A(5,I)=A(5,I)-A(2,I)*A(5,I-1) 
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30 CONTINUE 
DO 80 X=1,M 

IF (A(3,X).EQ.0) THEN 

PRINTs ,'MATRIX HAS NO SOLUTION' 

TRBLE=999 
GOTO 999 

ENDIF 

80 CONTINUE 
MN1=M-1 
A(5,M)=A(5,M) /A(3,M) 
DO 40 I=MN1,1,-1 

A(5,I)=(A(5,I)-A(4,I)*A(5,I+1))/A(3,I) 

40 CONTINUE 
DO SO X=1,M 

SOLN(X)=A(5,X) 

SO CONTINUE 
999 RETURN 

END 

SUBROUTINE AVE(F,M,N,JJ) 
REAL F(6,202) 

INTEGER X,N,M,Z,JJ 
DO 443 Z=1,N-1 

IF ((JJ.EQ.1).AND.(Z.EQ.2)) GOTO 443 
IF ((JJ.EQ.2).AND.(Z.EQ.1)) GOTO 443 
DO 444 X=2,M-1 

F(Z,X)=(.025*F(Z,X-1)+F(Z,X)+.025*F(Z,X+1))/1.05 
444 	CONTINUE 
443 CONTINUE 

RETURN 
END 

SUBROUTINE TOT(F,FTOTAL,PHI,N,M,VSTEP,DU,DUPHI1) 
REAL F(6,202),FTOTAL(202),PHI(6),VSTEP,G(202),N0(6),DU 

REAL X1,X2,TOL,F1,F2,XERR 
INTEGER M,N,X,Y,NLIM 

L=(M+1)/2 
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DO 10 X=1,N-1 
DO 20 Y=1,L 

G (Y)=F(X,Y) 
20 	CONTINUE 

CALL SIMPS(G,L,VSTEP,NO(X)) 

10 CONTINUE 
X1=0.0 
X2=1.0E6 
TOL=.0001 
NLIM=50 

30 CALL FCN(NO,X1,N,F1) 
CALL FCN(NO,X2,N,F2) 
IF (F1*F2.GT.0.0) THEN 

X2=X2*10.0 
IF (X2.GT.1.0E15) THEN 

WRITE(*,*) 'NO SIGN CHANGE UP TO 1E15' 

RETURN 
ENDIF 
GOTO 30 

ENDIF 

DO 40 J=1,NLIM 
DU=(X1+X2)/2.0 
CALL FCN(NO,DU,N,FR) 
XERR=ABS(X1-X2)/2.0 
IF (XERR.LE. TOL) GOTO 1000 

IF (ABS(FR).LE.TOL) GOTO 1000 
IF (FR*X1.GT.0.0) THEN 

X1=DU 
F1=FR 

ELSE 
X2=DU 
F2=FR 

ENDIF 
40 CONTINUE 

WRITE(*,*) 'NLIM EXCEEDED' 

RETURN 
1000 DO 50 X=1,M 

FTOTAL(X)=0.0 

DO 60 Y=1,N-1 
FTOTAL (X) =FTOTAL (X) +DU** (Y-1)*F(Y,X) 
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C 	 DOS FILE TECINIT.FOR 
C****************************************************************** 
C 	TEC DATA INITIALIZATION ACCESS CODE 
C 	WRITTEN BY GREGORY L RIDDERBUSCH 
C 	 AUGUST 1986 
C****************************************************************** 

REAL ARRAY(9) 
INTEGER IPARAM(5) 
WRITE(*,103) 
OPEN(UNIT=2,FILE='PINDATA. DAT',STATUS='OLD') 
READ(2,101) (ARRAY(I),I=1, 9) 
READ(2,102) (IPARAM(I),I=1 ,5) 

10 WRITE(*,104) (ARRAY(I),I=1 ,7) 
WRITE(*,105) 
READ(*,*) IVALUE 
IF (IVALUE .EQ. 0) THEN 

GOTO 20 
ELSE 

WRITE(*,106) 
READ(*,*) VALUE 
ARRAY(IVALUE)=VALUE 
GOTO 10 

ENDIF 
20 WRITE(*,107) (IPARAM(I),I=1,5) 

WRITE(*,110) ARRAY(8),ARRAY(9) 
WRITE(*,105) 
READ(*,*) 'VALUE 
IF (IVALUE .EQ. 0) THEN 

GOTO 30 
ELSE 

WRITE (*, 108) 
IF (IVALUE .EQ. 6 .OR. IVALUE .EQ. 7) THEN 

READ(*,*) VALUE 
ARRAY(IVALUE+2)=VALUE 
GOTO 20 

ELSE 
READ(*,*) INEW 
IPARAM(IVALUE)=INEW 
GOTO 20 

ENDIF 
ENDIF 

30 REWIND(2) 
WRITE(2,101) (ARRAY(I),I=1,9) 
WRITE(2,102) (IPARAM(I),I=1,5) 
CLOSE(2) 
WRITE(*,109) 
STOP 

C 
101 FORMAT(F8.1/F8.1/F6.3/F6.3/F6.3/F6.3/F7.2 
102 FORMAT(I1/I1/I3/I3/I3) 
103 FoRmAT(ix, , ****************************** 

&' 	 TEC OPERATING CONDITIONS'/ 
&lx,I************************************* 

104 FORMAT(//4X,'CURRENT CONVERTOR OPERATING 
&7X,'1. 	EMITTER TEMPERATURE: 

	
',F8.1,' 

&7X,'2. 	COLLECTOR TEMPERATURE: 
	
',F8.1,' 

&7X,'3. 	EMITTER WORK FUNCTION: 	',F6.2, 
&7X,'4. COLLECTOR WORK FUNCTION: 
	

',F6.2, 
&7X,'5. 	CONVERTOR PRESSURE: 
	

',F6.2, 
&7X,'6. 	 GAP THICKNESS: 
	

',F6.2,  

/F5.2/F6. 

********* 

*****,) 
SETTINGS: 
KELVIN',/ 
KELVIN',/ 
' EV'/ 
' EV'/ 
' TORR'/ 
' MM'/ 



&7X,'7. 	OPERATING CURRENT: ',F7.2,' AMPS/CMA2') 
1[)5 FORMAT(/4X,'ENTER ID NUMBER OF VALUE TO BE CHANGED, 0=NONE: ') 
106 FORMAT(4X,'ENTER NEW OPERATING SETTING: ') 
107 FORMAT(//4X,'CURRENT TEC FUNCTION SETTINGS:'// 

&7X,'1. DIAGNOSTIC LEVEL: ',I3,' 	(0—RESTRICTED OUTPUT)'/ 
&7X,' 	 (1—FULL OUTPUT)'/ 
&7X,' 	 (2—ENABLE SHEATH DIAGNOSTICS)'/ 
&7X,' 	 (3—ENABLE DOT DIAGNOSTICS)'/ 
&7X,'2. RESTART SEQUENCE: ',I3,' 	(0—DEFAULT STARTUP VALUES)'/ 
&7X,' 	 (1—RESTART WITH PREVIOUS VALUES)'/ 
&7X,'3. STEPS BETWEEN PRINTS: ',I3/ 
&7X,'4. 	POINT DENSITY: ',I3,' 	(11,21,31,...151)'/ 
&7X,'5. LOTUS SKIP FACTOR: ',I3,' (1..99)') 

ICO3 FORMAT(4X,'ENTER NEW FUNCTIONAL SETTING: ') 
io FORmAT (lx, ******************************************, 

&1X,'******************************************'
) 

110 FORMAT(7X,'6. 	TIME STEP: ',F5.2, 
&' 	(0.1,0.2,0.3,0.4,0.5)'/7X,'7. 	END TIME: ', 
&F6.1,' 	(1.0,2.0,...,10.0)') 
END 

I lq 



DOS FILE PRED1.FOR 
c************************************************************************** 
C 	PROGRAM TEC 
c*************************************************************************** 

REAL CNE,ENE,ECHI,CCHI,EALPHA,CALPHA,LAMNEB,LAMTAU 
REAL DTP,T2,AN,AT,CN,CT,BN,BT,RE,KN,TCHAR,PN,DT 
REAL SMR,LAMDAR,NR,TE,TC,ENR,I,ARECN,EGNDB,ELOSSB,NNR 
REAL TAU(0:150),NEB(0:150),DELTAT,SN,ST,PI,CA,CSAHA,DZ 
REAL DTAUNDZ,MUI(0:150),RMUR,TAUN(0:150),EMISS,TIME2,LCCHI 
REAL NDOT1(0:150),TDOT1(0:150),NNB(0:150),TIMELJNET,CV(0:150) 
REAL FYEN,IVD,IKN,EGRADA,PHIB,EWF,CWF,D,ESOURCE(0:150) 
INTEGER N,IDEN,EFIX,CFIX,CHKDOT,ICOUNT,NSTEPS,C,PC,LS,LC,EO,EC 

C 
COMMON /PRED/ CA,CSAHA,DT,DTAUNDZ,DZ,EGNDB,ELOSSB,ENR,I,IDEN,KN 
COMMON /PRED/ LAMDAR,LANINEB,LAMTAU,MUI,N,NNB,NNR,NR,PI,RE,RMUR 
COMMON /PRED/ TAUN,EFIX,CFIX,CHKDOT,FYEN,ENE,ECHI,CCHI,CNE 
COMMON /PRED/ EALPHA,CALPHA,CV,ESOURCE,LCCHI 

data nsteps /1/ 
C 

OPEN (UNIT=2,FILE='PINDATA.DAT',STATUS='OLD') 
OPEN (UNIT=4,FILE='EXOUT.DAT',STATUS='UNKNOWN') 
OPEN (UNIT=7,FILE='LOTUS1.DAT',STATUS='UNKNOWN') 
OPEN (UNIT=8,FILE='PREDRES.DAT',STATUS='OLD') 
OPEN (UNIT=9,FILE='PRNTOUT.DAT',STATUS='UNKNOWN') 

C....SET ABBREVIATED PRNTDAT SAMPLING POINTS WITH PC 
C...SET LOTUS SKIP COUNTER WITH LC 
C 

CALL INITIAL(TE,TC,EWF,CWF,PN,NSTEPS,DTP,T2,AN,AT, 
&CN,CT,BN,BT,TCHAR,SMR,ARECN,DELTAT,SN,ST,TAU,NEB,LS,pc) 
c=pc 
LC=LS 
E0=100*LS 
EC=EO 

C 
IF (CHKDOT .EQ. 3) 
& OPEN (UNIT=9,FILE='D:PDOTDIAG.DAT',STATUS='UNKNOWN') 
IF (CHKDOT .GT. 1) 
& OPEN (UNIT=11,FILE='D:PSTHDIAG.DAT',STATUS='UNKNOWN') 

C 
C 

EGRADA=0.0 
ICALCS=INT(T2/DTP+0.001) 
WRITE(*,76) 
DO 30 ICOUNT=0,ICALCS 

WRITE(*,77) (icount),100*(icount)/ICALCS 
TIME1= (icount) *DTP 
TIME2= (icount+1) *DTP 
CALL PREDCOR(TIMELTIME2,TAU,NEB,NSTEPS,TE,TC,TDOT1,NDOT1, 

& PN,ARECN,TCHAR,AN,AT,BN,BT,CN,CT,IVD,SMR,EGRADA,PHIB,JNET) 
VOUT=EWF + (PHIB + IVD/I + LCCHI)*TE/11600 - CWF 
IF (C .EQ. PC) THEN 
WRITE (9,67) TIME1,VOUT 
IF (CHKDOT .EQ. 0) THEN 
WRITE (9,70) 
WRITE (9,71) (I1,NEB(I1),TAU(I1),I1=1,N) 

ELSE 
EMISS=ENR/NEB(1) 
WRITE(9,72) ENE,ECHI,EALPHA,CNE,LCCHI+CCHI,CALPHA,PHIB, 



IVD/I,EMISS 
WRITE(9,73) (I1,NDOT1(I1),NEB(I1), 

TDOT1(I1),TAU(I1),I1=0,N+1) 
ENDIF 
IF (EFIX .EQ. 1) WRITE(9,74) 
IF (CFIX .EQ. 1) WRITE(9,75) 
C=0 

ENDIF 
c=c+1 
IF (LC .EQ. LS) THEN 
WRITE(7,78)TIME1,VOUT,ENE,JNET,ECHI,CCHI,EALPHA,CALPHA, 

PHIB,IVD/I,EMISS,NEB(1),NEB(11),TAU(1),TAU(11) 
LC=0 

ENDIF 
LC=LC+1 
IF (EC .EQ. EO) THEN 
WRITE(4,*) TIME1 
WRITE(4,71) (I1,NEB(I1),TAU(I1),I1=1,N) 
EC=0 

ENDIF 
EC=EC+1 

30 	CONTINUE 
C 
C*****OUTPUT STARTUP VALUES TO PREDRES.DAT 

WRITE(8,69) ENE,CNE,ECHI,CCHI,EALPHA,CALPHA,N 
WRITE(8,68) (NEB(I1),TAU(I1),I1=0,N+1) 
REWIND(8) 
CLOSE(8) 
STOP 

C 
67 	FORMAT(//,'RESULTS AT TIME = ',F8.2,4X,'OPERATING VOLTAGE=',F6.3) 
68 	FORMAT(2F8.3) 
69 	FORMAT(F9.4/F9.4/F8.3/F8.3/F9.4/F9.4/I3) 
70 	FORMAT(/3X,' # 	NEB(#) 	TAU(W/  

&3X,' 	 ,) 

71 	FORMAT(3X,I3,4X,F6. 3,7X,F5.2) 
72 	FORMAT(/3X,'ENE =', F8.3,4X,'ECHI=', F8.3,4X,' EALPHA=',F8.3/ 

&3X,'CNE =',F8.3,4X, 'CCHI=',F8.3,4X, 'CALPHA=' ,F8.3/ 
&3X,'PHIB=',F8.3,4X, 'VD =',F8.3,4X, 'EMISS =' ,E8.3/ 
&/3X,' # NDOT(#) NEB(#) TDOT(#) TAU(#)', 
&/3X,' 	  

73 	FORMAN (3X,I3,4X,F7.4,4X,F6.3,7X,F7.4,4X,F5.2) 
74 FORMAT ('***AT LEAST ONE UNPHYSICAL EMITTER BC WAS INVOKED.') 
75 FORMAT ('***AT LEAST ONE UNPHYSICAL COLLECTOR BC WAS INVOKED.') 
76 	FORMAT (/1X,' 	TEC CALCULATIONS BEGIN...(WAIT)...') 
77 	FORMAT (4X,'ITERATION #',I3,' 	COMPLETION--',I3,' %') 
78 	FORMAT (16E13.6) 

END 
c*,"************************************************************************* 

SUBROUTINE PREDCOR(T1,T2,TAU,NEB,NSTEPS,TE,TC,TDOT1,NDOT1, 
PN,ARECN,TCHAR,AN,AT,BN,BT,CN,CT,IVD,SMR,EGRADA,PHIB,JNET) 

c**k************************************************************************ 
REAL 
REAL 
REAL 
REAL 
REAL 
REAL 
REAL 
REAL 

T1,T2,DT,AN,AT,BN,BT,CN,CT,IVD,LAMTAU,LAMNEB,CNE 
TAU(0:150),NEB(0:150),TDOT1(0:150),NDOT1(0:150),ENE 
ECHI,CCHI,EALPHA,CALPHA,MUI(0:150),I,DZ,TCHAR,LCCHI 
TE,TC,DTAUNDZ,PN,ENR,NR,EGNDB,ELOSSB,RE,SMR,LAMDAR 
RMUR,KN,NNR,ARECN,PI,CA,CSAHA,NNB(0:150),TAUN(0:150) 
MSOURCE(0:150),ESOURCE(0:150),CV(0:150),MUEA(0:150) 
NDOT2(0:150),TDOT2(0:150),TTILDA(0:150),NTILDA(0:150) 
J,IIVD,AVD,FYEN,EGRADA,PHIB,JNET 

01 



INTEGER N,CFIX,EFIX,IDEN,CHKDOT,NSTEPS 
C 

COMMON /PRED/ CA,CSAHA,DT,DTAUNDZ,DZ,EGNDB,ELOSSB,ENR,I,IDEN,KN 
COMMON /PRED/ LAMDAR,LAMNEB,LAMTAU,MUI,N,NNB,NNR,NR,PI,RE,RMUR 
COMMON /PRED/ TAUN,EFIX,CFIX,CHKDOT,FYEN,ENE,ECHI,CCHI,CNE 
COMMON /PRED/ EALPHA,CALPHA,CV,ESOURCE,LCCHI 

C 
C*****HANDLE EXCEPTIONAL CONDITIONS 

DZ=1.0/ (N-1) 
DT= (T2-T1) /NSTEPS 
CFIX=0 
EFIX=0 

C*****SET NEUTRAL TEMPERATURE AND DENSITY 
IF (TE.EQ.TC)THEN 

DO 10 I1=0,N+1 
TAUN(I1)=1.0 

10 	CONTINUE 
ELSE 

DO 20 I1=0,N+1 
TAUN(I1)=1.0+(TC/TE-1.0)*(I1-1.0)/(N-1) 

20 	CONTINUE 
ENDIF 
NNR=965.5E16*PN/TE 
DO 30 I1=0,N+1 

NNB(I1)=1.0/TAUN(I1) 
30 CONTINUE 

DTAUNDZ=TAUN(N)-TAUN(1) 
C*****SET TRANSPORT PARAMETERS 

RMUR=LAMDAR*SMR 
DO 40 I1=0,N+1 

MUI(I1)=SQRT(TAUN(I1)) 
40 CONTINUE 

C*****SET IONIZATION AND SAHA PARAMETERS 
CA=0.41283*ARECN*TCHAR*(NR/1.0E14)**2*(TE/1500)**(-4.5) 
CSAHA=LOG((1.4027E20*NNR/NR/NR)*(TE/1500)**1.5) 

C 
DO 70 ICOUNT=0,NSTEPS-1 

C 	PREDICTOR STEP 
IF (CHKDOT.EQ.3) WRITE(9,81) 
CALL DOT(NDOT1,TDOT1,NEB,TAU,EGRADA,PHIB,JNET) 
DO 45 I1=0,N+1 

NTILDA(I1)=NEB(I1)+AN*DT*NDOT1(I1) 
TTILDA(I1)=TAU(I1)+AT*DT*TDOT1 (I1) 

45 	CONTINUE 
C 	CORRECTOR STEP 

IF (AN.EQ.0.0.AND.AT.EQ.0.0) THEN 
DO 50 I1=0,N+1 

NDOT2 (I1) =0. 0 
TDOT2 (I1)=0.0 

50 	CONTINUE 
GOTO 55 

ELSE 
IF (CHKDOT.EQ.3) WRITE(9,82) 
CALL DOT(NDOT2,TDOT2,NTILDA,TTILDA,EGRADA,PHIB,JNET) 

ENDIF 
55 	DO 60 I1=0,N+1 

NEB(I1)=NEB(I1)+DT*(BN*NDOT1(I1)+CN*NDOT2(I1)) 
TAU(I1)=TAU(I1)+DT*(BT*TDOT1(I1)+CT*TDOT2(I1)) 

60 	CONTINUE 
70 CONTINUE 



C- 
C**"*UPDATE TIME DERIV.S, IMAGE POINTS, AND FIND PLASMA POWER GAIN 

CV(0)=0.0 
CV(N+1)=0.0 
ESOURCE(0)=0.0 
ESOURCE(N+1)=0.0 
IF (CHKDOT.EQ.3) WRITE(9,83) 
CALL DOT(NDOT1,TDOT1,NEB,TAU,EGRADA,PHIB,JNET) 
IIVD=0.0 
DO 75 I1=2, (N-1) 

IIVD=IIVD+(ESOURCE(I1)-CV(I1)*TDOT1(I1)) 
75 CONTINUE 

AVD=0.5*(ESOURCE(1) -CV(1)*TDOT1(1))+0.5*(ESOURCE(N)-CV(N) 
*TDOT1(N)) 

IVD=(AVD+IIVD)*DZ+2.0*I*(TAU(1)-TAU(N))-(NEB(1)*ENE/KN) 
*(TAU(1)-1) 

RETURN 
C 
81 	FORMAT(//,'CALL DOT FOR FIRST TIME.',//) 
82 	FORMAT(//,'CALL DOT FOR SECOND TIME.',//) 
8:3 	FORMAT(//,'CALL DOT FOR LAST TIME.',//) 

END 
C 



C 	 DOS FILE PRED2.FOR 
c*************************************************************************** 

SUBROUTINE DOT(NEBDOT,TAUDOT,NEB,TAU,EGRADA,PHIB,JNET) 
C*************************************************************************** 

REAL A,ALPHA(0:150),BETA(0:150),CA,CALPHA,CCHI,CDETA,CNE,SIGMA 
REAL CTETA,CTZ,CV(0:150),CONVECT,D21B,D32B,DT,DZ,DGDU,DELU 
REAL DETAP,DTAUNDZ,ESOURCE(0:150),ELOSSB,EGNDB,ETZ,ETETA,DELTAU 
REAL ENE,ECHI,ENR,F(15),FYEN,GAMMAP,GAMMAM,GU,I,IB,K(0:150) 
REAL LAMTAU,LAMDAR,LAMNEB,MUI(0:150),MSOURCE(0:150),MUISOLD 
REAL MURSOLD,MUIS,MURS,MUEA(0:150),NR,NNR,NEB(0:150),NBCOA 
REAL NBC1A,NBC1B,NBC1C,NES2,NNB(0:150),NUE,NA(0:150),NB(0:150) 
REAL NEBU(0:150),ND(0:150),NS(0:150),NEBDOT(0:150),NEBA(0:150) 
REAL NEBV(0:150),PC(0:150),PI,PB,PBP,POHMIC,P0,QKP,QKM,RE,RMUR 
REAL TAU(0:150),TAUN(0:150),TAUDOT(0:150),TA(0:150),TB(0:150) 
REAL TS(0:150),TAUA(0:150),TAUB(0:150),TAUC(0:150),TAUV(0:150) 
REAL TBCOB,TBCOC,TBC1A,TBC1B,TBC1C,U,CSAHA,DETA,EALPHA,KN,KDE 
REAL NEBB(0:150),TAUU(0:150),NEBC(0:150),NC(0:150),NBCOB,LCCHI 
REAL NBCOC,TC(0:150),TBCOA,JNET,SMR,EGRADA,PHIB,BIGU,JRC,CGRADA 
INTEGER CFIX,EFIX,CHKDOT,CFLAG 

C 
COMMON /PRED/ CA,CSAHA,DT,DTAUNDZ,DZ,EGNDB,ELOSSB,ENR,I,IDEN,KN 
COMMON /PRED/ LAMDAR,LAMNEB,LAMTAU,MUI,N,NNB,NNR,NR,PI,RE,RMUR 
COMMON /PRED/ TAUN,EFIX,CFIX,CHKDOT,FYEN,ENE,ECHI,CCHI,CNE 
COMMON /PRED/ EALPHA,CALPHA,CV,ESOURCE,LCCHI 

C 
F(1)=5.74E-3 
F(2)=1.40E-3 
F(3)=2.3 
F (4) =0.2 
F(5)=2.70E-2 
F(6)=5.74E-3 
F(7)=4.24E-2 
F(8)=2.82 
F(9)=0.0 
F (10) =11. 607 
F(11)=0.0 
F(12)=27.04 

C*****SET THERMAL & ELECTRICAL CONDUCTIVITIES AT 0+ (E) & 1- (C) 
IF(TAU(1).LT.0.1)THEN 

TAU(1)=0.1 
EFIX=1 

ENDIF 
IF(TAU(N).LT.0.1)THEN 

TAU(N)=0.1 
CFIX=1 

ENDIF 
IF(RE.EQ.0.5)THEN 

DO 10 I1=0,N+1 
MUEA(I1)=TAUN(I1) 

10 	CONTINUE 
ENDIF 
IF(RE.EQ.0.0)THEN 

DO 20 I1=0,N+1 
MUEA(I1)=TAUN(I1)/SQRT(TAU(I1)) 

20 	CONTINUE 
ENDIF 
IF(RE.EQ.-0.5)THEN 

DO 30 I1=0,N+1 
MUEA(I1)=TAUN(I1)/TAU(I1) 

/al 



30 	CONTINUE 
ELSE 

DO 40 I1=0,N+1 
MUEA(I1)=TAUN(I1)*(TAU(I1)**(RE-0.5)) 

40 	CONTINUE 
ENDIF 
DO 50 I1=0,N+1 

K(I1)=((RE+2.0)/FYEN)*MUEA(I1)*NEB(I1)*TAU(I1) 
PC(I1)=NEB(I1)*(TAU(I1)+TAUN(I1)) 

50 CONTINUE 
DETA=ALOG(K(2)/K(1))*DZ/(K(2)-K(1)) 
DETAP=ALOG(K(2)/K(1))*DZ/(K(2)-K(1)) 

C**"*DETERMINE EMITTER SHEATH***** 
JNET=(I*KN*1.595769)/(SQRT(TAU(1))*NEB(1)) 
CALL SHEATH(JNET,ENR/NEB(1),TAU(1),ECHI,PHIB,EALPHA,ENE) 

C-----FIND EMITTER (0+) DERIVATIVES FROM B.C. 
IF(ECHI.LE.1E-5.OR.ECHI.GE.20) EFIX=1 
ETETA= (TAU (1) -1) *ENE*NEB (1) /KN-I* (ECHI-TAU (1) /2) 
ETZ=ETETA/K(1) 
EPCZ=(SQRT(PI/8/EALPHA)/LAMDAR/KN)*NEB(1)/MUI(1)-I/MUEA(1) 
ENZ=(EPCZ-NEB(1)*(ETZ+DTAUNDZ))/(TAU(1)+TAUN(1)) 

C'"""*SOLVE COLLECTOR SHEATH 
CFLAG=0 
CNE=0.0 
U=1.0 
GU=G(U,NEB(N),TAU(N),I,KN) 
DELU=0.05 
DO 80 11=1, 50 

DGDU= (G (U+DELU, NEB (N) , TAU (N) , I, KN) -GU) /DELU 
DELTAU=-GU/DGDU 
U=U+DELTAU 
GU=G(U,NEB(N),TAU(N),I,KN) 
IF (ABS(GU).LE.0.001) THEN 

CCHI=U*TAU(N) 
GOTO 85 

ENDIF 
8 1 ) 	CONTINUE 

CCHI = 0.0 
WRITE(*,205) 
IF (CHKDOT .GT. 1) WRITE(11,205) 

C*"*DETERMINE DERIVATIVES AT COLLECTOR (1-) FROM B.C. 
E5 	IF (CHKDOT .GT. 1) 

&WRITE(11,206) EGRADA,ALPHA2,TAU(1),ENR/NEB(1), 
&JNET,ECHI,PHIB,ENE,EALPHA,CCHI,CALPHA,IFLAG,RCODE 
DPH = -CCHI/TAU(N) 
IF(DPH.LT.0.0000001) DPH = 0.0000001 
CALPHA=(1.0/TAU(N))*(3.14159265/2)*( (1.0 + ERF(SQRT(DPH))) 
+ - (1./2.)*(1.0 + ERF(SQRT(4.0*DPH))) )**2 / ( EXP(-DPH) 
+ - (1./4.)*EXP(-4.0*DPH) )**2 
LCCHI = 0.0 
IF(CCHI.LT.0.0) THEN 

LCCHI = CCHI 
CCHI = 0.0 

ENDIF 
CTETA=-I*(CCHI-TAU(N)/2.0) 
CTZ=CTETA/K(N) 
CDETA=ALOG(K(N)/K(N-1))*DZ/(K(N)-K(N-1)) 
NBCOA=TAU(1)+TAUN(1) 
NBCOB=SQRT(PI/EALPHA/8.0)/LAMDAR/KN/MUI(1)-ENE*NEB(1)/K(1)* 

(TAU(1)-1.0)-DTAUNDZ 



NBCOC=I*NEB(1)/K(1)*(ECHI-TAU(1)/2.0)-I/MUEA(1) 
NBC1A=TAU (N) +TAUN (N) 
NBC1B=-SQRT(PI/CALPHA/8.0)/LAMDAR/KN/MUI(N)-CNE*NEB(N)/K(N)* 

(TAU(N)-1.0)+DTAUNDZ 
NBC1C=-I*NEB(N)/K(N)*(CCHI-TAU(N)/2.0)-I/MUEA(N) 
TBCOA=1.0 
TBCOB=ENE*NEB(1)/KN+I/2.0 
TBCOC=-ENE*NEB(1)/KN-I*ECHI 
TBC1A=-1.0 
TBC1B=CNE*NEB(N)/KN-I/2.0 
TBC1C=-CNE*NEB(N)/KN+I*CCHI 
NEBA(0)=(NBCOA*LAMNEB) / (2.0*DZ) 
NEBB(0)=-LAMNEB*NBCOB 
NEBC (0) =-NBCOA*LAMNEB/ (2. 0*DZ) 
NEBV(0)=NBCOB*(1.0-LAMNEB)*NEB(1)+NBC0C-(1.0-LAMNEB)* 

NBCOA*(NEB(2)-NEB(0))/(2.0*DZ) 
TAUA(0)=TBCOA*LAMTAU/(2.0*DETAP) 
TAUB (0) =-LAMTAU*TBCOB 
TAUC(0)=-TBCOA*LAMTAU/(2.0*DETAP) 
TAUV(0)=TBCOB*(1.0-LAMTAU)*TAU(1)+TBC0C-(1.0-LAMTAU)* 

TBCOA*(TAU(2)-TAU(0))/(2.0*DETAP) 
NEBA(N+1)=(NBC1A*LAMNEB)/(2.0*DZ) 
NEBB(N+1)=-LAMNEB*NBC1B 
NEBC(N+1)=-NBC1A*LAMNEB/(2.0*DZ) 
NEBV(N+1)=NBC1B*(1.0-LAMNEB)*NEB(N)+NBC1C-(1.0-LAMNEB)* 

NBC1A*(NEB(N+1)-NEB(N-1))/(2.0*DZ) 
TAUA(N+1)=TBC1A*LAMTAU/(2.0*CDETA) 
TAUB(N+1)=-LAMTAU*TBC1B 
TAUC(N+1)=-TBC1A*LAMTAU/(2.0*CDETA) 
TAUV(N+1)=TBC1B*(1.0-LAMTAU)*TAU(N)+TBC1C-(1.0-LAMTAU)* 

TBC1A*(TAU(N+1)-TAU(N-1))/(2.0*CDETA) 
C*****INITIALIZE GAMNAP & QKP FOR LOOP 

MURS=MUI(2)/MUEA(2)+MUI(1)/MUEA(1)*(1-2*DZ*( 
(0.5-RE)*ETZ/TAU(1)-0.5*DTAUNDZ/TAUN(1))) 

GAMMAP=0.5*(((MUI(1)+MUI(2))*(PC(1)-PC(0)) 
)/DZ+I*MURS) 

QKP=(TAU(1)-TAU(0))/DETA 
MUIS=MUI(1)+MUI(2) 

C 
DO 100 J=1,N 

C 	UPDATE FOR NEW J 
GAMMAM=GAMNAP 
QKM=QKP 
DETA=DETAP 
MUISOLD=MUIS 
MURSOLD=MURS 
IF (J.NE.N) THEN 

DETAP=ALOG(K(J+1)/K(J))*DZ/(K(J+1)-K(J)) 
MUIS=MUI(J)+MUI(J+1) 
MURS=MUI(J)/MUEA(J)+MUI(J+1)/MUEA(J+1) 

ELSE 
MURS=MURS+2*DZ*(MUI(N)/MUEA(N))*((0.5-RE)*CTZ/TAU(N) 

-0.5*DTAUNDZ/TAUN(N)) 
ENDIF 

C 	FIND AMBIPOLAR FLUX AT J+1/2 
GAMMAP=0.5*((MUIS*(PC(J+1)-PC(J)))/DZ+I*MURS) 

C 	FIND MASS SOURCE AT J 
A=CA/TAU(J)**4.5 
NES2=NNB(J)*TAU(J)**1.5*EXP(CSAHA-EGNDB/TAU(J)) 
D21B=F(7)*(1+F(8)/TAU(J)) 



D32B=F(2)*EXP(F(3)/TAU(J)) 
IB=A*NES2*(1+F(1)/NEB(J))/(1+D21B*(1+D32B/NEB(J))/NEB(J)) 
P0=1+(F(4)/NEB(J))*(1+F(5)/NEB(J))/(1+F(6)/NEB(J)) 
NUE=NEB(J)*NEB(J)/NES2 
MSOURCE (J) =NEB (J) *IB* (1-PO*NUE) 
IF (IDEN.EQ. 1) MSOURCE (J) =NEB (J) *A*NES2 

NEBDOT(J)=RMUR*(GAMMAP-GAMMAM)/DZ+MSOURCE(J) 
NA(J)=RMUR*MUIS*(TAU(J+1)+TAUN(J+1))/2.0/DZ**2 
NB(J)=RMUR*(MUIS+MUISOLD)*(TAU(J)+TAUN(J))/2.0/DZ**2 
NC(J)=RMUR*MUISOLD*(TAU(J-1)+TAUN(J-1))/2.0/DZ**2 
ND(J)=I*(MURS-MURSOLD)*RMUR/DZ/2.0 

+NEB(J)*IB*(1.0+SQRT(PO/NES2)*NEB(J)) 
C 

	

	NS(J)=IB*(1.0-PO*NUE) 
NS(J)=-NEB(J)*IB*(1.0+SQRT(PO/NES2)*NEB(J))*SQRT(PO/NES2) 
IF (IDEN.EQ.1) NS(J)=A*NES2 

NEBA(J)=-DT*NA(J)*LAMNEB 
NEBB(J)=1.0+DT*NB(J)*LAMNEB-DT*NS(J)*LAMNEB 
NEBC(J)=-DT*NC(J)*LAMNEB 
NEBV(J)=NEB(J)+DT*NA(J)*(1.0-LAMNEB)*NEB(J+1)-DT*NB(J)* 

(1.0-LAMNEB)*NEB(J)+DT*NC(J)*(1.0-LAMNEB)*NEB(J-1)+ 
DT*ND(J)+DT*NS(J)*(1.0-LAMNEB)*NEB(J) 

KDE=K (J) * (DETA+DETAP) /2 
QKP=(TAU(J+1)-TAU(J))/DETAP 
CONVECT=- (1.5) *I* (DETA*QKP+DETAP*QKM) / (2*KDE) 
SIGMA=NEB(J)*MUEA(J) 
POHMIC=I*(I/SIGMA+TAU(J)*(NEB(J+1)-NEB(J-1)) 

/(2*DZ*NEB(J))) 
PBP=(F(9)*NNR/NR)*EXP(-F(10)/TAU(J)) 
PB=(F(11)*NNR/NR)*EXP(-F(12)/TAU(J)) 
CV(J)=1.5*NEB(J)+NNB(J)*(F(10)*PBP+F(12)*PB*NUE) 

/(TAU(J)*TAU(J)) 
ESOURCE (J) =-ELOSSB*MSOURCE (J) 

-NNB(J)*PB*(2*NUE*NEBDOT(J)/NEB(J)) 
TAUDOT(J)=((4KP-QKM)/KDE+CONVECT+POHMIC+ESOURCE(J)) 

/CV(J) 
TA(J)=1.0/(DETAP*KDE*CV(J)) 
TB(J)=(1.0/DETAP+1.0/DETA)/KDE/CV(J) 
TC(J)=1.0/DETA/KDE/CV(J) 
TS(J)=(CONVECT+POHMIC+ESOURCE(J))/CV(J) 
TAUA (J) =-DT*LAMTAU*TA (J) 
TAUB (J) =1. 0+DT*LAMTAU*TB (J) 
TAUC(J)=-DT*LAMTAU*TC(J) 
TAUV(J)=TAU(J)+DT*(1.0-LAMTAU)*TA(J)*TAU(J+1) 

-DT*(1.0-LAMTAU)*TB(J)*TAU(J) 
+DT* (1. 0-LAMTAU) *TC (J) *TAU (J-1) 
+TS (J) *DT 

IF (CHKDOT.EQ.3) WRITE(9,201) J,NEB(J),J,TAU(J), 
J,MSOURCE(J),J,PB,PBP,A,D21B,D32B,PO,IB, 
NUE,NES2,QKP,GAMMAP,DETAP,MURS 

110 CONTINUE 
C 

NEBC(0)=NEBC(0)-NEBC(1)*NEBA(0)/NEBA(1) 
NEBB(0)=NEBB(0)-NEBB(1)*NEBA(0)/NEBA(1) 
NEBV(0)=NEBV(0)-NEBV(1)*NEBA(0)/NEBA(1) 
NEBA(0)=NEBB(0) 
NEBB(0)=NEBC(0) 
NEBA(N+1)=NEBA(N+1)-NEBA(N)*NEBC(N+1)/NEBC(N) 
NEBB (N+1) =NEBB (N+1) -NEBB (N) *NEBC (N+1) /NEBC (N) 
NEBV (N+1) =NEBV (N+1) -NEBV (N) *NEBC (N+1) /NEBC (N) 
NEBC (N+1) =NEBB (N+1) 



NEBB (N+1 ) =NEBA (N+1 ) 
TAUC (0) =TAUC (0) -TAUC (1) *TAUA (0) /TAUA (1) 
TAUB (0) =TAUB (0) -TAUB (1) * TAUA (0) / TAUA (1) 
TAUV (0) =TAUV (0) -TAW (1) *TAUA (0) /TAUA (1) 
TAUA (0) =TAUB (0) 
TAUB (0) =TAUC (0) 
TAUA (N+1) =TAUA (N+1) -TAUA (N) *TAUC (N+1) /TAUC (N) 
TAUB (N+1) =TAUB (N+1) -TAUB (N) *TAUC (N+1) /TAUC (N) 
TAUV(N+1)=TAUV(N+1)-TAUV(N)*TAUC(N+1)/TAUC(N) 
TAUC (N+1) =TAUB (N+1) 
TAUB (N+1) =TAUA (N+1) 
ALPHA(0)=-NEBA(0)/NEBB(0) 
DO 110 I1=1,N 

ALPHA(I1)=-NEBA(I1)/(NEBC(I1)*ALPHA(I1-1)+NEBB(I1)) 
110 	CONTINUE 

ALPHA(N+1)=0.0 
BETA(0)=NEBV(0)/NEBB(0) 
DO 120 I1=1,N+1 

BETA(I1)=(NEBV(I1)-NEBC(I1)*BETA(I1-1))/(NEBC(I1) 
*ALPHA(I1-1)+NEBB(I1)) 

120 	CONTINUE 
NEBU (N+1) =BETA (N+1) 
DO 130 I1=N,0,-1 

NEBU(I1)=ALPHA(I1)*NEBU(I1+1)+BETA(I1) 
130 	CONTINUE 

ALPHA(0)=-TAUA(0)/TAUB(0) 
DO 140 I1=1,N 

ALPHA(I1)=-TAUA(I1)/(TAUC(I1)*ALPHA(I1-1)+TAUB(I1)) 
140 	CONTINUE 

ALPHA (N+1) =0.0 
BETA(0)=TAUV(0)/TAUB(0) 
DO 150 I1=1, (N+1) 

BETA(I1)=(TAUV(I1)-TAUC(I1)*BETA(I1-1))/(TAUC(I1) 
*ALPHA(I1-1)+TAUB(I1)) 

150 	CONTINUE 
TAUU(N+1)=BETA(N+1) 
DO 160 I1=N,0,-1 

TAUU(I1)=ALPHA(I1)*TAUU(I1+1)+BETA(I1) 
160 	CONTINUE 

DO 170 I1=0,N+1 
TAUDOT(I1)=(TAUU(I1)-TAU(I1))/DT 
NEBDOT(I1)=(NEBU(I1)-NEB(I1))/DT 

170 	CONTINUE 
IF (CHKDOT.EQ.3) THEN 

WRITE(9,202) (I1,NEBDOT(I1),I1,TAUDOT(I1),I1=0,N+1) 
WRITE(9,203) (I1,ALPHA(I1),I1,BETA(I1),I1=0,N+1) 
WRITE(9,204) al,NEBU(I1),ILTAUU(I1),I1=0,N+1) 

ENDIF 
RETURN 

C 
201 FORMAT('NEB(',I2,')=',F8.3,' 

&' 	 PB=',F8.3, 
&' PBP=',F8.3PA=',F8.3,' D21B=',F8.3,' D32B=',F8.3/ 

NES2=',F8.3/ 
&'QKP=',F8.3,' GAMMAP=',F8.3PDETAP=',F8.3,' MURS=',F8.3) 

202 FORMAT('NEBDOT(',I2,')=',F8.3,' TAUDOT(',I2,')=',F8.3) 
203 FORMAT('ALPHA(',I2,')=',F8.3,' BETA(',I2,')=',F8.3) 
204 FORMAT('NEBU(',I2,')=',F8.3,' TAUU(',I2,')=',F8.3) 
205 FORMAT(//2X,'COLLECTOR SHEATH FAILED TO CONVERGE',//) 
206 FORMAT(/1X,'EGRADA=',F7.3,3X,'ALPHA2=',F7.3/ 



&1X,'RLE=',F5.2,3X,'EMISS=',F9.1,3X,'JNET=',F7.4/ 
&1X,'ECHI=',F7.3,3X,'PHIB=',F7.3,1X,'ENE=',F10.3,3X, 
VEALPHA=',F7.4/1X,'CCHI=',F7.3,3X,'CALPHA=',F7.4/1X, 
VIFLAG=',I1,3X,'RCODE=',A1) 
END 

C**k*********************************************************************** 
FUNCTION G (UX, NEB, TAU, I, KN) 

C**,4*********************************************************************** 
REAL UX,NEB,TAU,I,KN,SQX,GX 
DOUBLE PRECISION ERF 
IF(UX.LE.0.0)THEN 

SQX=0.0 
ELSE 

SQX=SQRT(UX) 
ENDIF 

C 	G=UX*LOG(1.0+ERF(SQX)) - LOG(NEB*SQRT(TAU)/I/KN/2.0) 
G=UX - LOG(NEB*SQRT(TAU)/I/KN/2.0) 
RETURN 
END 

C****************************************************************** 
FUNCTION ERF(X) 

C** *************************************************************** 
DOUBLE PRECISION X1,SUM,ERF,ERFX,P(3,6),Q(3,6),PI,TSUM1,TSUM2 
INTEGER IPOWER(3) 
DATA IPOWER/2,1,-2/ 
P1=3.1415926535898 
TSUM1=0.0 
TSUM2=0.0 
X1=X 
IF (X1 .LT. 0.0) X1=-X1 
IF (X1 .GT. 5.93) THEN 

ERFX=1.0 
GOTO 1240 

END IF 
IF (X1 .EQ. 0.0) THEN 

ERF=0.0 
GOTO 1245 

ELSE 
IFLAG=1 

END IF 
IF (X1 .LE. 4.0 .AND. X1 .GE. 0.47) IFLAG=2 
IF (X1 .GT. 4.0) IFLAG=3 
DO 1205 J=1,6 

TSUM1=TSUM1 + P(IFLAG,J) * (X1**(IPOWER(IFLAG)*(J-1))) 
TSUM2=TSUM2 + Q(IFLAG,J) * (X1**(IPOWER(IFLAG)*(J-1))) 

12C5 CONTINUE 
SUM=TSUM1/TSUM2 
GOTO (1210,1220,1230),IFLAG 

1210 ERFX=Xl*SUM 
GOTO 1240 

1220 ERFX=1.0 - DEXP(-X1*X1)*SUM 
GOTO 1240 

12A ERFX=1.0 - DEXP(-Xl*X1)/X1*(1.0/DSQRT(PI)+(1.0/(Xl*X1)*SUM)) 
1240 ERF=ERFX 

IF (X .LT. 0.0) ERF=-ERFX 
1245 RETURN 

C**t*************P(IFLAG,J)******Q(IFLAG,J)****** 
DATA P(1,1)/3.20937758913847D+03/,P(1,2)/3.774852376853D+02/ 
DATA P(1,3)/1.1386415415105D+02/,P(1,4)/3.16112374387057/ 
DATA P(1,5)/1.85777706184603D-01/,P(1,6)/0.0/ 



DATA Q(1,1)/2.84423683343917D+03/,Q(1,2)/1.2826165077372D+03/ 
DATA Q(1,3)/2.44024637934444D+02/,4(1,4)/2.36012909523441D+01/ 
DATA Q(1,5)/1.0/,4(1,6)/0.0/,P(2,1)/2.2898992851659D+01/ 
DATA P(2,2)/2.6094746956075D+01/,P(2,3)/1.4571898596926D+01/ 
DATA P(2,4)/4.2677201070898/,P(2,5)/5.6437160686381D-01/ 
DATA P(2,6)/-6.0858151959688D-06/,4(2,1)/2.2898985749891D+01/ 
DATA Q(2,2)/5.1933570687552D+01/,4(2,3)/5.0273202863803D+01/ 
DATA Q(2,4)/2.6288795758761D+01/,4(2,5)/7.5688482293618/ 
DATA Q(2,6)/1.0/,P(3,1)/ - 6.58749161529838D-04/ 
DATA P(3,2)/-1.60837851487423D-02/,P(3,3)/-1.2578172611123D-01/ 
DATA P(3,4)/-3.60344899949804D-01/,P(3,5)/-3.05326634961232D-01/ 
DATA P(3,6)/-1.63153871373021D-02/,Q(3,1)/2.3352049762687D-03/ 
DATA Q(3,2)/6.05183413124413D-02/,Q(3,3)/5.27905102951428D-01/ 
DATA Q(3,4)/1.87295284992346/,4(3,5)/2.56852019228982/,4(3,6)/1/ 
END 

3 0 



C 	 DOS FILE PRED3.FOR 
c**i******************************************************************* 

SUBROUTINE INITIAL(TE,TC,EWF,CWF,PN,NSTEPS,DTP,T2,AN,AT, 
&CN,CT,BN,BT,TCHAR,SMR,ARECN,DELTAT,SN,ST,TAU,NEB,LS,pc) 

c**A******************************************************************* 
REAL CA,CSAHA,CNE,ENE,ECHI,CCHI,EALPHA,CALPHA,LAMNEB,LAMTAU 
REAL DT,DTAUNDZ,DTP,T2,AN,AT,CN,CT,BN,BT,RE,KN,TCHAR,PN 
REAL SMR,LAMDAR,NR,TE,TC,ENR,I,ARECN,EGNDB,ELOSSB,MUI(0:150) 
REAL TAU(0:150),NEB(0:150),DELTAT,SN,ST,PI,TAUN(0:150),NNB(0:150) 
REAL NEBCAL(0:150),FYEN,LAMDAE,LAMDAI,EWF,CWF,J,RMUR,LCCHI 
REAL ESOURCE(0:150),CV,JRIC,VALUE,PHISDAT(154,6),PHIBDAT(21,6) 
INTEGER N,IDEN,CHKDOT,OFILE,EFIX,CFIX,NSTEPS,LS,pc 

C 
COMMON /PRED/ CA,CSAHA,DT,DTAUNDZ,DZ,EGNDB,ELOSSB,ENR,I,IDEN,KN 
COMMON /PRED/ LAMDAR,LAMNEB,LAMTAU,MUI,N,NNB,NNR,NR,PI,RE,RMUR 
COMMON /PRED/ TAUN,EFIX,CFIX,CHKDOT,FYEN,ENE,ECHI,CCHI,CNE 
COMMON /PRED/ EALPHA,CALPHA,CV,ESOURCE,LCCHI 
COMMON /XSHEATH/ PHISDAT,PHIBDAT 

C 
WRITE(*,150) 

C*****READ FILE INDATA.DAT 
READ(2,151) TE,TC,EWF,CWF,PN,D,J,DTP,T2,CHKDOT,OFILE,pc,N,LS 
REWIND(2) 
CLOSE (2) 

C*****READ FILE PRECOR.DAT 
C 	CALL DATAINT 
C*****SET NUMERICAL PARAMETERS, RECOMPILATION REQUIRED TO CHANGE 

AN=0.5 
AT=0.5 
CN=0.5 
CT=0.5 
BN=1.0-CN 
BT=1.0-CN 
PI=3.1415926 
IDEN=0 
RE=0.0 
FYEN=1.0 
NR=1.0E14 
DELTAT=DTP/NSTEPS 
LAMNEB=1.0 
LAMTAU=1.0 

C**'**SET TRANSPORT PROPERTIES 
LAMDAE=1.0/32.3/PN 
LAMDAI=1.0/96.6/PN 
LAMDAR=LAMDAI/LAMDAE 
KN=LAMDAE/D 
TCHAR=D/(KN*3.75*(TE**.5)) 
SMR=1.0/492.2 

C*****EXECUTE OFILE SELECTION SETTING 
IF (OFILE .EQ. 1) THEN 

READ(8,152) ENE,CNE,ECHI,CCHI,EALPHA,CALPHA,N 
READ(8,154) (NEB(I1),TAU(I1),I1=0,N+1) 
REWIND(8) 

ELSE 
ENE=0.8 
CNE=0.8 
ECHI=3.0 
CCHI=3.0 
EALPHA=0.5 

1.31 



CALPHA=0.5 
DO 10 I1=0,N+1 

NEB(I1)=I1 
NEBCAL(I1)=(NEB(I1)-1)/(N-1) 
NEB(I1)=4.0*(KN+NEBCAL(I1)*(1-NEBCAL(I1))) 
TAU(I1)=2700/TE 

10 	CONTINUE 
ENDIF 

C*****MISCELANEOUS DEFAULTS 
ARECN=0.31 
EGNDB=3.896/8.609E-05/TE 
ELOSSB=EGNDB 
SN=DELTAT*(N-1)**2*3*LAMDAR*SMR*(BN+CN) 
ST=DELTAT*(N-1)**2*0.667*(RE+2)*2**(RE+0.5)*(ET+CT)/FYEN 

C*****NONDIMENSIONALIZE CURRENT AND CALCULATE RICHARDSON EMISSION 
VALUE=EXP(-11600.0*EWF/TE) 
ENR=(7.676E+14*(TE)**1.5*VALUE)/NR 
I=J / (KN*NR*(3.1265322E-13)*SQRT(TE)) 
JRIC=120.0*TE*TE*(EXP(-11600.0*EWF/TE)) 

C*****OUTPUT INITIALIZATION DATA TO PRNTOUT.DAT 
WRITE(9,155) TE,TC,EWF,CWF,PN,D,J,CHKDOT,OFILE,N, 

JRIC,NR,TCHAR,I,ENR,KN,SMR,LAMDAR, 
NSTEPS,T2,DELTAT,DTP,LS 

IF (CHKDOT.GT.1) THEN 
WRITE(9,160) ECHI,ENE,EALPHA,CCHI,CNE,CALPHA,AN,AT, 

BN,BT,CN,CT,SN,ST,LAMNEE,LAMTAU,ELOSSE, 
ARECN,EGNDB,IDEN,FYEN,RE 

WRITE(9,159) (I1,NEB(I1),I1,TAU(I1),I1=1,N) 
ENDIF 
WRITE (9, 161) 

C*****CHECK FOR UNREAL CURRENT CONDITION J/JR > 1.0 
IF (2*KN*I/ENR .GE. 1.0) THEN 

WRITE (*, 153) 
STOP 

ENDIF 
RETURN 

C 
C 

150 FoRmAT (1x, *****************************************, / 
&1X,'***** 	 *****,/ 
&1X,'***** 	 TEC 	START 	*****'/ 
&1X,'***** 	 *****, / 
&1X,'*****************************************, ///) 

151 FORMAT(F8.1/F8.1/F6.3/F6.3/F6.3/F6.3/F7.2/F5.2/F6.1/ 
&I1/I1/I3/I3/I3) 

152 FORMAT(F9.4/F9.4/F8.3/F8.3/F9.4/F9.4/I3) 
153 FORMAT(1X,'***SMALL J IS TOO LARGE...CASE TERMINATED***'//) 
154 FORMAT(2F8.3) 
155 FORMAT(12X,' 	TEC INITIAL DATA SUMMARY'/ 

&1x,' 	 ' // 
&1X,'PHYSICAL OPERATING CONDITIONS 	'// 
&1X,' 	EMITTER TEMPERATURE 	(TE)=',F8.1,' KELVIN'/ 
&1X,' 	COLLECTOR TEMPERATURE 	(TC)=',F8.1,' KELVIN'/ 
&1X,' EMITTER WORK FUNCTION 	(EWF)= 	',F6.3,' EV'/ 
&1X,'COLLECTOR WORK FUNCTION 	(CWF)= 	',F6.3,' EV'/ 
&1X,' CONVERTOR PRESSURE 	(PN)= 	',F6.3,' TORR'/ 
&1X,' GAP THICKNESS 	(D)= 	',F6.3,' MM'/ 
&1X,' OPERATING CURRENT 	(J)= ',F7.3,' AMPS/CM^2 1 // 
&1X,' TEC FUNCTION SETTINGS 	'// 
&1X,' DIAGNOSTIC LEVEL 	(CHKDOT)= ',Ili 



&IX,' 	RESTART SEQUENCE 	(OFILE)= 
&1X,' 	 POINT DENSITY 	(N)=',I3// 
&1X,'PHYSICAL PARAMETERS EVALUATED 	' // 
&1X,' RICHARDSON CURRENT 	(JRIC)=',E9.2,' AMPS/CM^2'/ 
&1X,' 	REFERENCE DENSITY 	(NR)=',E9.2,' 1/CM^3'/ 
&1X,' CHARACTERISTIC TIME (TCHAR)= ',F7.4,' SECS*E - 06'/ 
&1X,' 	NONDIM CURRENT 	(I)= ',F7.4/ 
&1X,' 	NONDIM EMISSION 	(ENR)= ',F8.3,'(NRIC/NR)'/ 
&1X,' 	KNUDSEN NUMBER 	(KN)= ',F7.4/ 
&1X,' 	SQRT(MASS RATIO) 	(SMR)= ',F7.4/ 
&1X,'MEAN FREE PATH RATIO (LAMDAR)= ',F7.4// 
&1X,'TIME SETTINGS 	'14X,'NSTEPS=',13/ 
&4X,' 	T2=',F6.1/4X,'DELTAT=',F6.3/4X,' 	DTP=',F6.3/ 
&4X,' 	LSF=',I3) 

359 FORMAT(4X,'NEB(',I2,')=',F8.3,' 	TAU(',I2,')=',F8.3) 
160 FORMAT(//1X,'ADVANCED DIAGNOSTIC OUTPUT 	'// 

&4X,'ECHI=',F5.1,' ENE=',F7.4,' EALPHA=',F7.4/ 
&4X,'CCHI=',F5.1,' CNE=',F7.4,' CALPHA=',F7.4/ 
&4X,'AN=',F7.4, 1  AT=',F7.4/4X,'BN=',F7.4,' BT=',F7.4/ 
&4X,'CN=',F7.4,' CT=',F7.4/4X,'SN=',F7.4,' 	ST=',F7.4/ 
&4X,'LAMNEB= ',F5.2/4X,'LAMTAU=',F5.2/4X,'ELOSSB= ',F6.3/ 
&4X,'ARECN= ',F6.3/4X,'EGNDB= ',F6.3,/4X,'IDEN=',I1/ 
&4X,'FYEN= ',F5.2/4X,'RE= ',F5.2// 
&1X,'STARTUP DENSITY AND TEMPERATURE RATIOS 	,) 

161 FORMAT(/1X,' 	  
& 

c 
END 
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