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sider here only the case in which the source and receiver lie in a plane 

z --constant. (We assume e -i(A  time dependence and use k = 6.1/c.) The 

acoustic pressure at the receiver is expressed as 

4 
G(rI i=1 G(t i )H(Tr- 

with 

G(t) = exp(ikR)/R 

R(t) = [r 2+r 2  - 2rr cos 0 

= 213 - le-e o  
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= 

where fi(C) is the unit step function. The terms G() 	various 

wave contributions inferred from the method of images. The sum of the 

lilt.) terms corresponds to the diffracted wave. Each term may be expreseed 

with the abbreviation 

A(t) = 1.1-1(7r-E) 

as 

V() =-EN(E)/Taeik(r+ro /(r+r 0 )] Fv (IAI,a 	 ( 5 ) 

with 

Fv (IAI 	= I dq[e_K/(1+icK)] 	 (6a) 



where v = 7/a and C is a contour in the first quadrant of the complex 

q - plane with end points q = 0,1 and such that on C, q and K are related 

by 
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As q traverses the contour C from q = 0 to q = 1, the parameter K 

creases monotically from 0 to 	a is always positive and b ranges between 

0 and vn. 

The numerical evaluation of the integral in Eq. (6a) is effected 

the present algorithm , by selecting a sequence of values for the parameter 

K, computing the corresponding values of q from Eq's. (7), and approximat-

ing the contribution to the value of the integral from the interval 

(qn-1 ' qn) as  

1 ic )](qn -q 1 (8 ) 

where lc is intermediate between Kn_l  and K. An error analysis indicates 

that F can be approximated to within a margin 6 by choosing 

Kn+ = Kn + 6ea n(l+E 2K2 )[a 2  + E 2 ( a ) 	 (9) 



and using the fact that K = 0 corresponds to q = 0. The intermediate 

value 	is taken as 

n_ +Kn)/2 - (1/a)ln cosh[(a/2)(Kn-Kn_)] 	 (10) 

which is such that the integral of e 	K 	to R-n.  is equal to 

that from 	to K. 

The algorithm outlined above has been used in a comparison with 

experimental data obtained during the summer of 1976 for the case of a 

screen with a small source near one surface and with microphones on an 

arc, centered on the top edge of the screen with radius 42.5 inches. The 

results of the comparison for two frequencies, 900Hz and /650Hz, are 

shown in Figures 1-2. In each figure, results are presented for three 

source locations. It should be noted that the computed sound pressure 

levels have been adjusted so as to force a match with the experimental 

data at e = 180°. 

The agreement between computed and measured sound pressure levels 

is noticeably more consistent for the 1650Hz case than for 900Hz. The 

poorer agreement at 900Hz may indicate that the effect of sound trans-

mission through the plywood screen (with transmission loss dominated by 

the 'mass law") was a significant experimental artifact. We hope that 

this question will be resolved as comparisons for other frequencies are 

completed. It should be noted that the geometric shadow lines for 

source positions 2 and 3 in both Figures 1 and 2 are at 0 = 133 °  and 

0 = 143° respectively. The fact that the experimental and computed SPL's 

in the shadow zone are in quite good agreement for the 1650Hz case gives 

a favorable indication for the numerical evaluation of the diffraction 

integrals. 



II. REDUCTION OF OTHER DATA 

In anticipation of the completion of the analysis of diffraction of 

spherical waves by barriers with curved surface, the experimental data 

obtained for the case of a barrier with a semi-cylindrical top, the radius 

of the top being one foot, have been presented in graphical form, as shown 

in Figures 3-5. Several source locations, with increments of 3 inches in 

a vertical plane 4 inches from the side of the barrier , were used. For 

clarity in the presentation, the maximum levels in successive curves have 

been offset by 10 dB. Where comparisons with the thin-screen data are 

appropriate, it appears that there is considerably more variation with 

receiver angle with the wide barrier than with the thin screen. 

III. PLANS FOR FUTURE EXPERIMENTS 

The next logical step in our investigation of wing shielding in air-

craft noise is to use a section of a model wing as the diffracting barrier. 

A suitable wing section was identified in the summer of 1976. The planned 

experiments with this section essentially parallel those previously carried 

out with a thin screen. It is felt that the most fruitful set of tests 

can be made in an anechoic room using a controlled sound source with micro-

phones located on an arc at a constant distance from the edge of the wing 

section. Because of the different radii of curvature of the leading and 

trailing edges, we anticipate two types of mountings for the wing section. 

In the first case, one of the edges would be employed as the diffracting 

edge, with the sound transmission path at the other edge blocked by a 

"floor" consisting of a felt pad above a hard (plywood or masonite) base. 

Two tests of this type are envisioned, using successively the trailing and 



trailing edges of the wing section as the diffracting edge. In the second 

type of test the "floor" would be removed, admitting the possibility that 

diffraction could occur past both edges of the wing section. 

As in the previous experiments, pure tone excitation of an acoustic 

driver with an inverse exponential horn will be used as the sound source. 

For data presentation we hope to use a real time analyzer. (If such a 

device is not available a 1/3-octave band analyzer would suffice.) 
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INTRODUCTION 

This report presents a summary of work performed during the six month 

initial phase of the subject grant. Several laboratory experiments were 

conducted at NASA Langley Research Center during the summer of 1976. The 

intention in each experiment was to investigate effects that may be expect-

ed to be important in wing shielding of noise which arises from use of the 

engine-over-wing configuration in STOL aircraft. Where necessary, analyt-

ical investigations are being performed to aid in interpreting the experi-

mental data. The bulk of this report is an extended version of a present-

ationl by Ms. Robin Vidimos, an undergraduate research assistant, at the 

92nd meeting of the Acoustical Society of America. 
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SUMMARY OF ACTIVITIES 

The STOL (short take-off and landing) aircraft has, in recent years, 

been looked to more and more as a solution to transportrtion problems in 

crowded metropolitan areas. The engine-over-the wing configuration has 

been suggested as a means of developing increased lift, particularly during 

take-off and landing. Our purpose in this set of experiments was to see to 

what extent (if any) noise is shielded by placing the engine over the wing. 

Such noise-shielding should be effective primarily in steady flight. 

The study of diffraction phenomena has a rich history, dating to 

Poincare 2  and Sommerfeld 3 . However, most asymptotic theories of sound 

diffraction assume that the source is many wavelengths from the diffracting 

edge. This assumption is not entirely appropriate for our case, especially 

when considering frequencies in the range of 1000 Hz. 

Our study deals with three cases. The first is the diffraction of 

noise around the wing edge when the source is not far from the edge relative 

to the frequency of interest. Analytical and experimental approaches are 

involved in this facet of the study, as is the effect of ambient flow in this 

case. We also studied the effect of surface curvature and shape on noise 

diffraction. Finally, the most realistically, we wanted to see how noise 

was diffracted from distributed aircraft noise sources. 

The analytical aspects of these problems were approached with the idea 

that a numerical evaluation of the integral which describes the diffraction 

effects could be found without restricting it to a large source-edge separa-

tion. This has led to the development of an improved analytical method for 

estimating wing-shielding effects. 

Dr. Pierce is preparing a manuscript describing this technique for 

submission to JASA. We are currently working on optimizing the numerical 



integration procedure. 

We started with a widely studied case as shown in Figure 1. This is 

the problem of a point source near a rigid wedge of arbitrary wedge angle, 

where a thin screen is the limiting case. Our experiment used this limit-

ing case in the form of a plywood screen four feet high. Our sound source 

was a driver at a distance of eight inches horizontally from the screen. 

It was moved to various positions on a vertical axis, the highest position 

being level with the top of the screen. The receivers were microphones 

positioned in an arc at a radius of 421/2" from the top of the screen as 

well as a vertical array at a distance of 12" from the side of the screen. 

Narrow band sound pressure level measurements were taken at discrete fre-

quencies ranging from 490 Hz to 5000 Hz. 

The analytical solution to this boundary value problem may be expressed 

as geometrical acoustics terms plus a contour integral. The standard form 

of this integral is slowly convergent and the integrand may be singular. We 

have transformed this integral to one over a path of finite length in a com-

plex plane with the integrand uniformly bounded and the real and imaginary 

parts of the integrand non-oscillatory. The rigid-wedge diffraction exper-

iment was used primarily to check the consistency of our analytical and 

experimental methods. 

We then investigated the effect of ambient flow on sound diffraction. 

The insertion loss without flow is well known. It should be possible to 

obtain the insertion loss for the wedge with flow present (at low mach 

numbers) by inserting the parameter transformations suggested by Candelfs 

study 4  of diffraction of plane waves in a moving media as shown in Figure 2. 

This was tested using the same basic set-up as used in the first exper-

iment. The driver was left in place and an eight inch jet below the screen 
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was used to provide ambient flow around the thin screen at a pressure of 

approximately .59 psi. Narrow band sound pressure level measurements were 

taken at the same discrete frequencies previously used. 

In the next case, the driver was removed and replaced with a one-inch 

jet at a pressure of 5 psi. as a noise source. The rest of the experimental 

configuration remained unchanged. The jet location was chosen so as to 

minimize the effects of ambient flow and scrubbing noise. 

The data from this experiment will be interpreted by adapting from 

the jet-noise literature 5 ' 6  a spatial source distribution, S(x), or a 

source distribution correlation function which will be used in conjunction 

with the rigid wedge Green's function to estimate the mean-square pressure 

at the receiver locations as shown in Figure 3. 

In some cases idealizing diffraction by using a thin screen is not 

appropriate. For instance, when considering the diffraction of higher 

frequencies around the leading edge, a different approach must be used. 

An asymptotic solution for wave diffraction by curved surfaces whose radii 

of curvature is larger than or comparable to a wavelength is being developed. 

The experimental set-up for this case is shown in Figure 4. A thick 

barrier capped by a plywood hemi-cylinder 4' x 8' x 2' was used. The driver 

was used as the noise source. The same microphone array was used, the only 

difference being that the vertical array was positioned behind the arc. 

Again, sound pressure level measurements were taken at discrete frequencies 

in the same range previously used. 

CONCLUSION 

In conclusion, we are engaged in a study combining analytical and 

experimental work, aimed at improved estimates of the wing-shielding effects 



associated with engine-over-the-wing aircraft. The salient features of this 

study are the development of a numerically evaluated Green's function for 

the diffraction of sound by a wedge for arbitrary source locations and a 

series of experiments aimed at determining separately the effects of ambient 

flow, surface curvature, and distribution noise sources. Reduction of data 

is in process; further reports will present the results of these investiga-

tions. 
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Chapter 1 

INTRODUCTION 

During the period June 1974 to the present, research 

relative to the understanding and alleviation of aircraft noise 

has been carried out by the investigators with grant support 

from the National Aeronautics and Space Administration. This 

report summarizes the principal results from this research. 

Among the activities during the grant period were lab-

oratory experiments and theoretical studies on the diffraction 

of sound by surfaces with the intention of providing basic 

information relevant to the understanding of the acoustical 

implications of the engine over wing configuration. That the 

presence of the wing below the engine may partially shield 

listeners on the ground from engine noise during flyovers has 

1- been the topic of a number of previous reports and papers 5 

 and has been the subject of investigation by Hellstrom6 , by 

von Glahn, Goodykoontz and Wagner 7 , by Conticelli, Di Blasi 

and O'Keefe 8 by Jeffery and Holbeche 9 , and by Sears. 10  A 

principal objective is the attainment of a rational method 

for quantitatively estimating just how much noise reduction 

would be achieved by a given design. Such a method would 
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serve as a guide in the design of future EOW aircraft and 

would enable one to make quantitative comparisons of alterna-

tive designs. 

In order to gain some quantitative insight into the nature 

of sound diffraction by wings and to provide a data base for 

the assessment of various theoretical approaches to the over-

all problem, a series of experiments were conducted at NASA 

Langley Research Center during the summer of 1976. These were 

carried out by Allan D. Pierce and Robin Vidimos in collabora-

tion with John S. Priesser and other NASA personnel; the 

reduction of the data was carried out under the direction of 

W. James Hadden, Jr. In Chapter 2, a summary is given of the 

nature of these experiments and of the results. 

One of the theoretical problems presented by the overall 

topic of aircraft engine noise diffraction by wings is that 

the source of the sound is not a large number of wavelengths 

away from the diffracting surface (although in cases of 

interest the listener is). Virtually all existing computa-

tional techniques for sound diffraction by bodies are based 

on the assumption that both distances are large, so some 

analytical development was necessary to revise existing 

theories such that they would be amenable to rapid computation 

and would give quantitative insight for cases corresponding 

to the topic of wing shielding of engine noise. The details 

of this analytical study are given in Chapter 3. 
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Another topic considered during the period of the grant 

was the effect of variable ground impedance on aircraft noise 

propagation. A pertinent question is to what extent the sound 

received on the ground is characteristic of the local impedance 

near the listener and to what extent the impedance at distant 

points affects the local reception. Chapter 3, prepared by 

Dr. Hadden, gives a theory for the scattering of spherical 

waves by a rectangular area whose acoustic impedance differs 

from that of the surrounding plane. Results of experiments 

(performed during summer 1975 at NASA Langley Research Center 

by W. James Hadden, Jr., Robin A. Vidimos, and Philip Sencil) 

concerning reflection from rectangular patches are also 

described in Chapter 4. 

A topic related to both the variable ground impedance 

problem and that of the diffraction of noise by wings is that 

of the effects of finite surface impedance on diffraction. 

Chapter S is comprised of a paper by the authors written 

during the grant period which summarizes the principal results 

of an analytical study concerned with this topic. 

Chapter 6 gives a theory developed during the grant 

period for the diffraction of sound from a point source by 

a thin rigid screen in the absence of ambient flow. The work 

described there is a simple extension of work reported by 

S. Candel on the plane wave diffraction problem. (See Chapter 

6 for a listing of relevant references.) Analysis given here 

shows that a simple transformation will reduce the point source 



4 

problem in the presence of ambient flow to one in which there 

is no flow. The solution so derived should allow some insight 

into the influence of forward motion effects on aircraft 

noise diffraction by wings. 
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Chapter 2 

LABORATORY EXPERIMENTS ON SOUND DIFFRACTION 

The experiments performed in connection with the study of 

wing-shielding of noise were divided into three parts. In the 

first experiment (Fig. 1), the obstacle used was a thin screen, 

the source was an acoustically small driver through which 

selected pure tones were projected, the source being located 

close to the barrier. Narrow-band sound pressure levels were 

measured on a circular arc far from the edge of the screen and 

also at several locations close to the screen but well inside 

its acoustic shadow. In the second experiment the previously 

described barrier and receiver configuration was used, the 

pure-tone source being replaced by a 1 inch diameter jet. The 

third experimental configuration (Fig. 2) consisted of the 

acoustic driver, a thick straight-sided barrier with a cylin-

drical cap, and receiver and arc centered on the junction of 

the cap and the straight side of the barrier which was nearer 

to the driver. 

The source-obstacle-receiver configuration for the first 

experiment is sketched in Fig. 3. Narrow-band pressure levels 

were recorded at the microphone positions shown. Results for 

pure tone exciation of the driver at 490, 900 and 2050 Hz with 

the driver in positions 2 (level with the top of the screen) 

and 4 (9 inches below the top of the screen) are presented in 

6 
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Fig. 1. 	Photograph of experimental apparatus for 

first experiment. 
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Fig. 	2. 	Photograph of experimental apparatus for 

third experiment. 
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Fig. 3. Sketch of source-receiver-screen configuration 
for first experiment (see also Fig. 1). 
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Figs. 4-6. The pressure levels for microphone positions 1, 7, 

and 8, shown in Fig. 3, are presented in Table I. Although the 

pressure levels measured at a fixed distance from the edge of 

the screen show the expected trends of increased shadowing 

effect on the screen as the frequency increases and as the 

source height decreases, we strongly suspect that these data 

were affected by transmission through the plywood screen. A 

brief calculation indicates that the coincidence frequency for 

such a panel is approximately 800 Hz. Thus, the measurements 

at the lower two frequencies mentioned above may be significantly 

contaminated by sound transmission through the screen. 

The geometric arrangement for the second experiment is 

shown in Figs. 7 and 8. The one-inch diameter jet was operated 

at pressures of 2.8 and 5 psi; one-third octave band levels 

were recorded at the microphone positions indicated in Fig. 7, 

for center frequencies 500, 1000, 2000, and 4000 Hz. The 

measured 1/3-octave band levels for the reference condition 

(Fig. 7) and in the presence of the screen (Fig. 8) are com-

pared in Figs. 9-11. It should be noted that the results for 

1000 Hz in Fig. 9 and for 4000 Hz in Fig. 10 have been shifted 

upward by 10 dB for convenience in presentation. Similarly, 

the results for 2000 Hz in Fig. 12 have been shifted downward 

by 10 dB. As in the first experiment, it is likely that 

transmission through the plywood screen is a contaminating 

artifact of the measurements in the bands centered at 500 and 

1000 Hz. The measured 1/3-octave band levels for microphone 
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Fig. 5. Measured narrow-band pressure levels 3.5 ft. from top of 
screen at 900 Hz for two source positions (see Fig. 1). 
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WITH 10 dB DOWNWARD ADJUSTMENT 

Fig. 6. Measured narrow-band pressure levels 3.5 ft. from top of 
screen at 2050 Hz for two source positions (see Fig. 1). 
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Fig. 7. Sketch of source-screen-receiver configuration 
for sound experiment. 
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Fig. 8. Sketch of source-receiver geometry for second 
experiment: jet noise directivity measurements. 
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Fig. 11. Measured 1/3-octave band levels at outer 
frequencies shown for jet noise: jet 
pressure, 5.0 psi; distance from top of 
screen, 3.5 ft. (see Figs. 7 and 8). 
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Table I. Narrow-band Pressure Levels Close to the Screen in the Acoustic Shadow of a Point Source 

Frequency 	490 Hz 	 900 Hz 	 2050 Hz 	 4050 Hz 

Microphone 	 Driver 	 Driver 	 Driver 	 Driver 

Locationa 	Position 	Position 	Position 	Position 	Position 	Position 	Position 	Position 
2 4 2 4 2 4 2 4 

1 59.0 dB 65.3 dB 84.0 dB 85.3 dB 82.8 dB 83.0 dB 88.3 dB 86.3 dB 

7 69.5 66.0 89.8 84.0 82.8 84.0 76.5 80.0 

8 58.8 56.3 81.5 71.0 82.8 81.3 76.0 73.0 

a
Refer to Figure 1 for microphone positions. 
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positions 1, 7, 8, and 9 are presented in Table II. 

The third experiment was intended to supply information 

as to the effects of a thick barrier and a curved diffracting 

surface. The source-barrier-receiver geometry for this 

experiment is sketched in Fig. 13. The sides of the barrier 

were sheets of 1" plywood. The cap was also constructed of 

1" plywood formed so as to produce a half-cylinder with a 

radius of 12 inches. As in the first experiment, pure-tone 

excitation was applied to an acoustically small source. The 

source was located close (in terms of acoustic wavelengths) to 

one side of the obstacle. Several source heights relative to 

the highest point on the barrier were used. Narrow-band sound 

pressure levels were measured on an arc at a fixed distance from 

a point near the junction between the straight and curved por-

tions of the barrier. Additional sound level measurements 

were made in a vertical plane in the acoustical shadow of the 

barrier at a horizontal distance of 88 inches from the source. 

The measured pressure levels for several source heights are 

presented in Tables III-V. These measurements show the expected 

increase of the shadowing effect with frequency and, in the 

main, the expected increase of the shadowing effect with 

difference between the source heights and the highest point on 

the obstacle. In some cases the variation in pressure level 

with angle is not a uniform decrease from the position almost 

directly above the source to that well inside the shadow of 

the barrier: the deviations which arise are no doubt due to 
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Fig. 13. Sketch of source-barrier-receiver geometry for 
third experiment (see also Fig. 2). 
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Table 	II. 	One-third Octave Band Levels 	Close to the Screen 	in the Acoustic Shadow of a 	1-inch Jet 

Frequency 	500 Hz 1000 Hz 2000 Hz 4000 Hz 

Microphone Screen Screen Screen Screen Screen Screen Screen Screen 
Locationa Absent Present Absent Present Absent Present Absent Present 

Pressure: 2.8 	psi 

1 69.8 dB 70.0 dB 74.2 dB 74.0 dB 76.0 dB 75.6 dB 74.2 dB 74.0 dB 

7 64.5 62.6 68.6 64.0 72.0 65.0 73.5 63.6 

8 62.8 60.8 65.5 60.2 70.0 60.2 72.2 59.2 

9 61.0 58.2 63.0 56.0 66.0 57.8 69.5 56.5 

Pressure: 5.0 	psi 

1 78.0 77.5 83.5 84.0 87.8 88.0 85.5 85.0 

7 71.0 70.5 77.0 72.0 83.0 75.0 85.0 74.2 

8 69.0 67.5 73.8 68.0 80.0 70.5 83.5 70.0 

9 57.6 66.0 61.2 63.8 66.6 68.2 70.8 67.0 

a
Refer to Figs. 7 and 8 for microphone positions. 
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Table 	III. Narrow-band Pressure Levels for Diffraction of 
Sound by a Cylindrically Capped Barrier: 	Source 
12" Below Highest Point on Barrier. 

Microphone Frequency 

Locationa 490 Hz 900 Hz 2050 Hz 4050 Hz 

1 64.5 dB 86.8 dB 81.5 dB 91.5 dB 

2 64.0 88.0 83.5 90.3 

3 59.0 82.0 79.8 82.5 

4 55.5 80.3 66.3 66.8 

5 52.3 68.5 60.5 66.5 

7 50.5 74.5 69.5 62.0 

8 39.5 71.5 58.8 64.5 

9 51.5 70.0 47.8 70.3 

a
Refer to Fig. 13 for microphone positions. 
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Table 	IV. Narrow-band Pressure Levels for Diffraction of 
Sound by a Cylindrically Capped Barrier: 	Source 
6" Below Highest Point on Barrier. 

Microphone 
Locationa 

Frequency 

490 Hz 900 Hz 2050 Hz 4050 Hz 

1 66.0 dB 91.0 dB 89.0 dB 95.0 dB 

2 63.8 86.8 83.3 87.5 

3 59.3 84.5 77.0 87.5 

4 58.0 78.3 69.5 75.8 

5 53.8 68.3 65.0 70.5 

7 49.5 73.5 68.0 67.5 

8 45.0 75.3 67.5 69.8 

9 51.3 74.8 65.3 61.3 

a
Refer to Fig. 13 for microphone positions. 



Table V. Narrow-band Pressure Levels for Diffraction of Sound 
by a Cylindrically Capped Barrier: Source at Height 
of Highest Point on Barrier. 

Microphone 
Locationa 

  

F e uenc 

  

490 Hz 900 Hz 

 

2050 Hz 4050 Hz 

1 	 66.3 dB 	 91.3 dB 	 87.3 dB 	 85.8 dB 

2 	 64.5 	 84.5 	 86.3 	 89.5 

3 	 61.8 	 86.8 	 81.5 	 86.8 

4 	 56.0 	 75.8 	 68.5 	 78.8 

5 	 55.0 	 71.5 	 68.3 	 69.8 

7 	 49.3 	 75.3 	 72.3 	 74.8 

8 	 47.5 	 77.0 	 66.3 	 61.0 

9 	 51.0 	 71.3 	 63.3 	 65.0 

a Refer to Fig. 13 for microphone positions. 
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constructive interference between waves transmitted directly to 

the receiver and those reflected from the cylindrical cap. 



Chapter 3 

THEORY OF SOUND DIFFRACTION 

AROUND SCREENS AND WEDGES 
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INTRODUCTION 

Solutions corresponding to constant frequency sound dif-

fraction by a rigid wedge or a rigid screen (a limiting case 

of a wedge) are well known. 1 ' 2  In particular, the exact so-

lution for the case of a point source in the vicinity of such 

a wedge or screen appears in various places in the literature 

as a contour integral in the complex plane with an integrand 

of moderate complexity involving elementary transcendental 

functions. 3 ' 4 This integral is not directly expressible in a 

closed form, but its value when both  source and listener dis-

tances from the edge are large compared to a wavelength can 

be expressed to a uniform asymptotic approximation in terms 

of Fresnel integrals 5 ' 6  or related functions 7 . Expansions 

have also been derived which are appropriate to the case when 

either source or listener is close (relative to a wavelength) 

to the edge. 8 

For those situations in which one of the distances in-

volved is neither large nor small compared to a wavelength, 

it may be necessary to perform a numerical integration of the 

contour integral (or of other integrals which would appear in 

equivalent expressions) or to sum a large number of terms of 

the expansion appropriate to the length being small compared 

to a wavelength. Such numerical integration or summation, 

however, may be slowly convergent and may be difficult to per-

form even with the aid of a large digital computer. Although 
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direct computations of this sort have been performed by Ambaud 

and Bergassoli 9 , the method they describe, while leading to 

accurate values which agree well with their experiments, is 

intrinsically limited in application to source-listener geo-

metries in which neither location is at an extremely large 

number of wavelengths from the edge. Further, the method is such 

that severe computational difficulties would be encountered 

were the listener arbitrarily close to the shadow zone boundary. 

While one might expect such calculations to meld with calcula-

tions using the results of a uniform asymptotic approximation, 

the match would be evident only from a direct numerical com-

parison. 

The present chapter is prompted by the problem of estimating 

aircraft noise shielding by wings (engine-over-wing configura-

tion), one of the features of which is that the sound sources 

are neither very close or very far (relative to all wavelengths 

of interest) from the wing trailing edge. Research on this 

topic should be aided by the availability of a convenient gen-

eral purpose method for the calculation of the acoustic pressure 

(i .e., the Green's function) at an arbitrary listener location 

caused by the presence of a unit strength point source near a 

rigid wedge or screen. Ideally, the method should be based on 

a formulation which reduces directly (without excessively intri-

cate manipulations) to know limiting cases (i.e., source on 

edge or source and listener both far from edge). 
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1 

POINT 
SOURCE LISTENER 

Fig. 1 	Geometry used to describe diffraction of sound 
waves from a point source by a wedge. 
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Such a formulation, with accompanying numerical examples, 

is presented here. Furthermore, the plots included here should 

enable one, without further need of a digital computer, to esti-

mate the sound field and the sound reduction for the important 

limiting case when the listener is many wavelengths away from 

the edge and much further than is the source (kL»1,rr o /L 2 <<1 

in the notation explained below). Discussion is also given of 

the accuracy of approximations commonly made in acoustical 

studies. 

I. GEOMETRY AND FORMAL SOLUTION 

The geometry appropriate to the problem under consideration 

is that of a rigid wedge whose edge lies along the z-axis (Fig. 

1) in a cylindrical coordinate system (r,e,z), with the two 

faces taken as the e = 0 and e = (i planes, such that the region 

exterior to the wedge extends from e = 0 to e = a (with a>7). 

A thin screen corresponds to (3 = 27. 	(Here we use the same 

notation as was used in a previous paper 7 by one of the authors.) 

The source of sound is a single harmonic point source (ang-

ular frequency w, wavenumber k = w/c) located at a point (r 0 ,8 0 

 zo ) and of strength such that the acoustic pressure field p in 

the source's immediate vicinity is given by e ikR/R plus bounded 

terms when R, the net distance from the source, is substantially 

less than the distance of source from edge. Here a customary 

time dependent factor of e-iwt is understood but omitted for 
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simplicity. The acoustic pressure field dependence thus cor-

responds to a Green's function G(xix o ) which satisfies the 

scalar Helmholtz equation with the customary source term 

-47(5(x-x o  ) on the right hand side. Boundary conditions cor- % '1J 

responding to the rigid wedge are that G/Dei = 0 at e 	0 and 

o = (3, respectively. 

For present purposes, it is convenient to take the solu-

tion to the problem just posed in the form (but in the present 

notation) utilized by Ambaud and Bergassoli 9 . This, with some 

paraphrasing of notation, can be written 

   

G x V(c i  (1) 

   

where 

10-0 o 
	 (2a) 

2i3 - 	e-e 
0 
	 (2b) 

+ 
o 
	 (2c) 

4 	- (0+0 0 ) 
	

(2d) 

Here U(r) is the Heaviside unit step function. The G( i )U(Tr-c 1 ) 

terms for i = 1,3,4 correspond to waves inferred from purely geo-

metrical acoustical considerations, i.e., (i=1) a direct wave, 

(i=3) a wave reflected from the 0 = 0 face, and (1=4) a wave re-

flected from the 0 = 13 face. 	(The term G(c 2 )U(7-c 2 ) is always 



zero, since r,2  is always greater than u, but is included to 

preserve the symmetry of the expression.) The term G(0 

represents a radially symmetric spherically spreading wave, 

generically denoted by e
ikR 

 /R, where (arbitrary argument 

R = [r2 	r2 	Z-z 0 ) 2  - 2rro cos 

This distance, for the four particular values of 	listed 

above, may be interpreted as: 	(1=1) distance from source; 

(i=2) distance from an image-image point; Cr 0 , 2(6-u) + 

if 0>0; (i=3) distance from image of source reflected through 

0 = 0 plane; and (i=4) distance from image of source reflected 

through e = s plane. (While the geometrical interpretation of 

2  may seem irrelevant since U(u- 2)is always zero, the inter-

pretation is germane to the interpretation of V(i 2 ) in the 

limiting case, termed the Fresnel number approximation, below. 

The image-image is formed either by reflecting the source 

through the e = 0 plane, then reflecting this image through 

the e = s plane or by carrying out the reflections in inverse 

order. The construction is indicated in Fig. 2.) In the cases 

i = 1,3,4, the presence of the Heaviside unit step functions as 

factors in the geometrical acoustics terms insures that: 	(1=1) 

the direct wave is zero unless the source may be "seen" by the 

listener; (i=3) there is no contribution from a wave reflected 

from the e = 0 face unless one can construct a specularly re-

flected ray going from source to face to listener; and (i=4) 

34 
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there should be an analogous ray reflected from the e = s face 

connecting source and listener if the corresponding geometrical 

acoustics term can contribute to the field. 

The sum of the terms V(c i ) in Eq. (1) may be interpreted 

as the diffracted wave. Each may be written in a similar 

fashion as a definite integral, which, in the form taken by 

Ambaud and Bergassoli, is 

v( c) 	= 	-(1 / G(ff+iw) Q(w,v,c) dw 	 (4) 

with 

Q (w , v,c ) 
(v/2) s in tv(7-01  

cosh(vw) - cos[v(7 - c)] ( 5 ) 

the index v being 	= 1/2 for the thin screen, 2/3 for a 

right angled wedge). Here G(Tr+iw) represents the wave function 

e ik H/R, R being given by Eq. (3), with c replaced by Tr+iw, or, 

equivalently, with cos ç  replaced by -cosh w. The quantity R 2 

 is real and positive, R being understood to be the positive 

square root of R 2 , throughout the integration over w. 

II. REFORMULATION OF DIFFRACTION INTEGRAL 

Direct numerical evaluation of V((), while possible, is 

unwieldy because of (1) the infinite limits, (2) the oscilla-

tory nature of the integrand and the attendant slow convergence 

in many cases of interest, and (3) the fact that Q is unbounded 
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near w = 0 as c4-7. To avoid such difficulties we change the 

variable of integration and the path of integration. To this 

purpose, we note that Q = dtp/dw where tp is such that 

tan ip 	= 	tan[A(c)]tanh[(v/2)w] 

and where. A is ( 2)(-(3-7+0 plus any multiple of 7. 	If we 

refine the definition of A(c) and 1p such that * varies from 

0 to A as w varies from 0 to co, the proper choice for A is 

(given 0<c<213) 

A(c) 	 707-c) 
	

(6) 

The value of tp corresponding to its tangent as given above is 

understood to lie between -7  and u and to have the same sign as 

A. One may note that A(c) is discontinuous at c 	7: A(c) in- 

creases from a positive value (v/2)((3-7) at 	= 0 up to 7/2 at 

= ir, then drops abruptly to -7/2 at i =
+ 
and subsequently 

increases linearly, passing through 0 at c = 	up to the 

original value (v/2)((3-7) when c = 2(3. 

Some indication of the variation of values of the A(c i ) 

[abbreviated A i  here] with the source and listener coordinates 

o and e may be obtained if one considers the specific case 

Ttypically of greatest interest) in which the source is on the 

far side of the wedge, (3 > 0 > 
	the listener is in the 

shadow zone, 0 < e < 0 	- r (See Figure 3). 	In this case all 

the A. are negative and between -7/2 and 0, the magnitudes 
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0 

Fig. 3 	The functions A(c i ) for i = 1,2,3,4 (where c i  

is a function of the wedge angle and the source 
and listener angles). 



an(A) 	+ tan(qA 
tan(A) - tan(qA) 

1/(2v) 
Y 
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and 1A 4 1 increasing with increasing 0 and conversely for 

and IA 2 1. At e = 0, A = A 3  and A 2  = A4 ; in general one 
has A 	> JA3   > IA 2 ! and IA 1 > IA 4 ! > A 2 • One may note 

that the line, A versus e equals -7/2 at the shadow zone boundary. 

The lines A 3  and A4  cross only if 0
o > (13+7)/2 and, when they do, 

they cross at 0 	- e with the mutual 0 

value A 3  = A4 	-7/2 + (v/2)(0-7) 	-7v/2. 

If we now change the variable of integration to q = tp/A, 

then Q dw = A dq and q varies from 0 . to 1. The remainder of the 

integrand can also, after some algebra, be expressed in terms of 

q rather than w. The pertinent intermediate result is 

[L 2  + rro (Y - 	 (7) 

.here we abbreviate 

[ ( 
r+ 

The quantity Y, and therefore the spherical wave factor, is in-

dependent of the sign of A. Thus we may rewrite the integral in 

Eq. (4) as 

V(ç) 
	

A()(e ' /L)  Fv (IA1,a, 	 (10) 

where 

F v (IAI,a,E I(q) dq 

(11a) 
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= k rr /L -  E = rr o /L 2  o 	' 

I(q) = (L/R) e ik(R-L) 
	

(11b) 

with L and R as given above. 

The set of arguments of F is readily seen from the above 

equations to be complete. The forms chosen for the parameters 

E and a are particularly convenient in the consideration of limit-

ing cases. From geometrical considerations, E is always less than 

1/4. The parameter a, which has the appearance of a Fresnel wave 

parameter, may in principle have any value. The quantity L has 

the important geometrical interpretation of being the length of 

the shortest two segment path which goes from source to edge 

and then to listener (i.e., L is the length of a diffracted 

ray path). 

III. THE DEFORMED CONTOUR 

The variable q is now considered as a complex variable 

and the integral over I(q) in the definition of F above is 

interpreted as a contour integral in the complex q plane. 

Rather than integrate directly along the real axis, we choose 

a path C which (1) goes from 0 to 1, (2) has finite length, 

(3) is such that Re(R-L) - 0 at every point on the path, and 

(4) is such that, for nonzero a, eik(R-L) decreases monotonic 

ally from 1 to 0 as q travels the path C from q = 0 to q = 1. 

That a path with these properties exists is supported by the 

mathematical foundations of the method of steepest descents and 

is substantiated by the construction given below. 

The evaluation of the integral along the contour C is 

facilitated by a reformulation of the function I(q), Eq. (12).,  
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The restriction Re(R-L) = 0 along the path implies that we may 

introduce a real parameter K such that, at any point on the 

path, R is related to K by 

R = L[1 + iEK 2 ] 
	

(13) 

Here K ranges from 0 through positive values when q ranges from 

0 through successive points on the path. The relationship 

between q and K may be determined by equating the squares of 

Eqs. (7) and (13), then inserting the expression (9) for Y, 

and solving for q. In this manner one finds 

- q  =  1 	tan 	[tanh 	tan All 
lAl 	 2 

(14a) 

with 
1/2 

sinh X = K[i/2 - EK 2 /4] 	 (14b) 

The several ambiguities in the definitions of the square root 

and of the implied inverse trigonometric functions are 

resolved by the requirement that q vary continuously from 0 

to 1 (although not on the real axis) as K varies from 0 t 

To accomplish this, one defines the square root in Eq. (14b) 

to be such that its phase is between 7/4 and 7/2, then defines 

X to be such that Re(X) > 0, 0 < Im(X) < 7/2, and q to be such 

that it lies in the first quadrant. 

The computation of q R  and q 1  for given values of K is 

generally facilitated by reducing Eqs. (14) to explicit equations 

involving only elementary functions of real variables. Such a 

reduction yields, for example 
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tan( 2 A - sin (2IA ) sinh a  
(IR )   cos b + cosh a cos(2IAI) 

(15a) 

in which 

sinh (a/v) 

sin (b/v) 
	= K[(1 + Q 2 ) 1 / 2 

	
Q] 1 / 2 
	

(15b) 

with 

K 2 [1 - E _ E 210] 
4 (15c) 

The expression for tanh (21Alq 1 ) is similar to Eq. (16a): 

sinh a , cosh a and cos b should be replaced by sin b, cos b, 

and cosh a, respectively. 	The restrictions mentioned above 

concerning phases and btanchesimply that b/v is between 0 and 

7/2 for K < (2/ ) / 4  and is between 7/2 and 7 for K > (2/ ) 1 / 4 

 The restrictions further imply that 2IAlqR  lies between 

9 and 

Some computed plots of the deformed contour C in the com-

plex q plane and of the corresponding variation of K along the 

contour are shown in Figs. 4 and 5. Analysis of the equations 

given above indicates that such contours always proceed from 

q = 0 obliquely upward at an angle of 45° with the real axis 

and this is confirmed by the computations. The terminal point 

q = 1 , is approached from above and to the right, making an 

angle (1-v)7 with the real axis to the right of q = 1 for non-

zero E. In the limiting case of a screen, 	the contour 

terminates at a right angle with the real axis. In the limit 
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of vanishingly small C, the contour C approaches a limiting form 

which approaches q = 1 obliquely downward from the left, making 

an angle of v7/2 with the real axis. The principal modification 

of this limiting form caused by nonzero c is a small "kink" 

near q = 1 in which (I R  overshoots qR  = 1 slightly (except for 

, ), the contour then bending back and approaching q = 1 

obliquely downward from the right. The quantity K always in-

creases monotonically from 0 to - along the contour, except for 

the limiting case where Al is identically 7/2. 	If 1A1 is 

slightly less than this upper limit, K remains virtually zero 

along the major bulk of the contour but increases rapidly to 

near the very end of the path. 

At this point, we may note that the reformulation of the 

diffraction integral as represented by Eqs. (10-12), with C 

taken as the integration contour, has removed all the difficul-

ties pointed out at the beginning of this section. The limits 

of integration are now finite, the modulus of the integrand I(q) 

is bounded by 1, and the integration along C removes the problem 

of the oscillatory nature of the integrand. 

IV. LIMITING CASES 

The formulation as presented leads either directly or with 

minor mathematical manipulation to a number of important limit-

ing expressions for the Green's function and for the various 

terms which contribute to it. 
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1. Source  or listener on edge.  This case is characterized 

by E = 0 and R = L for all values of q, so we have 

F v (IA1,0,0) = 1 	 (19a) 

and the total Green's function reduces to 

G = 2vL e 
-1ikL (27/(3)L- le i kL ( 19b ) 

where, in this instance, L is simply the distance from source to 

listener. The above pressure field, except for the limiting case 

of a thin screen (where (3 = 27), is always larger than what would 

be expected were the wedge not present. The Green's function for 

source or receiver on the edge could also be derived from simple 

symmetry arguments (the field must exhibit spherical symmetry for 

source on edge, the total volume velocity of the source must be 

the same as in the absence of the wedge, but the volume velocity 

per unit solid angle increases by a factor of 47/2(3 where 2(3 is the 

solid angle external to the wedge about a point on the edge) 

without the necessity of the general solution. 

2. 	The limit 	lAi 	.1/2 or c 	ff. 	In this case the ap- 
proximation R = L is valid over most of the length of the contour 

C, the contribution from portions of the contour where this ap-

proximation does not hold becoming increasingly negligible as 

becomes progressively closer to 7/2. Thus, we obtain 
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2, 	 (16a) 

so the sum of the corresponding geometrical wave G(OU(7-) and 

the appropriate diffracted wave term VW should have the limit 

lim {G()U(7 - 	+ V(c)1 = (1/2)e ikL / 
	

(16b) 
C -4.7  

regardless of from which side the limit is approached. Thus, the 

total field, as expected, is continuous. 

3. The uniform asymptotic limit, where krr o /L » 1, 1A1 is  

arbitrary. This corresponds to both kr and kr o  being large and 

11 - z o I being less than or comparable to (r 2  + r 2 ) 	Equiva- 

lently, both source and listener are far from the edge and the 

angle between the edge and the broken ray from source to edge to 

listener is not close to 0. 

In the evaluation of this asymptotic limit, it is convenient 

to regard K as the variable of integration. The derivative dq/dK 

may be evaluated by implicit differentiationof Eqs. (15b) such 

that dq/dK is a function of a and b times the derivative 

d(a+ib)/dK. Since krro/L is large we may expect the dominant 

contribution to the integral to come from small values of K. 

However in the limit K + 0, dq/dK is inversely proportional to 

cos ( 2 Al) and is singular when IA! + 7/2. To cover this contingency 

one expands the denominator in the function just mentioned to the 

next order nonvanishingterm (which turns out to be second order) 
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in K. The remainder of the factors (except for the exponential) 

are approximated by their limits as K 	0. In particular, one may 

note from Eqs. (15) that d(a+ib)/dK is just v(l+i) in this limit. 

The variable of integration is next changed to u = a 1 / 2 K, then 

the resulting integral is recognized as a constant times the integral 

(x/ 7 
0
-U2 du  

[(7/2)X + i u2] 
(1 71 

= f(X)-i g(X) 

where 

X = [4a/7r] 
	

cos(1A1) 	 (18) 

Here F(X) and g(X) are the auxiliary Fresnel functions discussed 

in a previous paper
7 by one of the authors and which are tabu-

lated on pages 323-324 of the NBS Handbook of athematical Func-

tions. 11  The mathematical manipulations as outlined above then 

lead to the expression 

e i '114  [(sinIAI)/IAl][f(X) - i g(X)] 
	(19) 
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for krr o /L >> 1. One may note that, although the coefficient of 

cos(1A1) in Eq. (18) is presumed large, it cannot necessarily be 

assumed that X is large since cos(1A1) would be very small were 

Al close to 7/2. 

In the limit of large X, the quantity f - ig approaches 

1/(7X) and thus F decreases asymptotically as the inverse square 

root of a for nonzero value of cos(1,41). When Al approaches 7/2, 

both f(X) and g(X) approach the value 1/2, the limiting values for 

X -,- 0. 	In this limit F goes to 1, just as indicated by Eq. (16a). 

It should also be noted that in this approximation F is indepen-

dent of the parameter e for a fixed value of a, 

4. The Fresnel number approximation.12  If, in addition to 

krro /L » 1, it is true that cos(1A1) is substantially less than 

the parameter X in Eq.(18) may be interpreted as X = (2N 

where N is a Fresnel number given by 

N = (L - RA )/(A/2) 
	

(20) 

which represents the excess of the diffracted path length L be-

yond some direct path length R A  in units of half wavelengths. 

The appropriate identification of R A  is 

+ r 2 + (Z_z) 2 	2rr cos(B y )] 	 (21) 

with B (1A1) taken as 
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HAI) = 	- (2/ 	7/2 - 1A1)1 	2n7 	 (22) 

with n being an integer (Cl, positive, or negative) and with any 

choice of the two signs. With the purpose of giving a meaning- , 

 ful geometrical interpretation of By , one may show with some 

effort that it is possible to choose the sign and the integer 

n such that 

e + B 

 

( c 

 

(23a) 

(23b) 

(23c) 

(23d) 

(23e) 

 

= e o + 2( 	TT ) 

= e o - 2(0- jr) 

= 20 - 0 

213-1e - 8 0 1 

= 	e o 	8 0  

= 20 - e - 

> e
o 

Thus, with reference to the discussion following Eq. (3), R A  is 

the direct distance of listener from Ci = 1) the source; (1 = 2) 

the image of the image; (i = 3) the image formed by reflection 

through the 6 = 0 plane; or (i = 4) the image formed by reflec-

tion through 0 = 	plane. 

That X is approximately (2N) 2  where N is as defined above 

in the limits cos( Al) « v, a, follows from the general expres- 

ion (22), from the (consistent) approximation sin[(1/y)(7/2 - 1A1)] 

(1/y)cos(1A1), from the fact that E is always less or equal to 

1/4, from the definition (8) of L, and from an appropriate binomial 
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expansion of RA.  

When the Fresnel number approximation is valid lAl  should 

be close to 7/2, so it is consistent to approximate the 

sin(lAI)/ AI factor in Eq. (19) by 2/7 and the resulting expres-

sion for F becomes 

e 	{f([20) - i g([2N] ) 	 (24) 

This represents a considerable simplification in that the right 

side depends on one and only one parameter N of relatively simple 

geometrical interpretation. There is no explicit v, 1AI, c, or 

c dependence, other than the manner in which these enter into the 

determination of N. The expression above also has the virtue of 

never giving a magnitude of F y  greater than 1. 

The corresponding expression for V(c) in the Fresnel number 

approximation may be obtained from Eq. (10) with A(c) replaced 

by (7/2)sin(7 - O. This is in accordance with Eq. (6) and the 

fact that IAI should be close to 7/2. Consequently, Eq. (24) 

should be multiplied by sin( - 7)(2L) -  le i"  to obtain V(c). 

5. The case when kL is large but krr o /L is finite or 

finite. The two statements are equivalent since kL 	- with krr o /L 

fixed implies rr o /L 2 	O. This limiting case is of interest in 

those problems where the source is at finite or small distance re-

lative to a wavelength from the edge but the listener is at a large 

number of wavelengths from the edge, much further than is the 

source. Conversely, because the solution conforms to reciprocity 
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(interchange of source and listener), the corresponding limiting 

solution corresponds to the pressure field in the vicinity of the 

edge when the source is a large distance away. In this reciprocal 

problem the incident wave near the edge is very nearly planar, so 

the limit can be obtained from the solution of the related problem 

of plane waves incident on a rigid wedge. The limiting case, 

source near edge, listener far from edge, is of principle interest 

in aircraft noise problems where the source is in the vicinity of 

a wing but the listener is on the ground at a large distance away. 

The limiting value of the diffraction integral F v  as 

rr o /L 2 	0 may be simply denoted as F (1A1,a,0). The limit exists 

and may be readily obtained from the formulation given in the 

previous section by (1) replacing the factor L/R in the integrand 

by 1 and (2) 	setting c = 0 inEqs. (14) and (15). This 

yields sin(b/v) = tanh(a/v) and Eq. (15b)gives K 2 = sinh 2 (a/v)/ 

cosh(a/v). The integrand I(q) reduces toe -a' K2 along the contour C. 

The value of the integral Fv( 1A1 	, 0 ) for 1A1 = 7/2, or for 

=-0, or for a » 1 may be inferred from the cases 1-3 discussed 

above. Thus F is 1 for lAl = 7/2 or for a - 0 and is given by 

Eq.(19) for a » 1. Also, the Fresnel number approximation, Eq. 

(24) , should be applicable in the double limit a » 1 and cos A << 

the appropriate identification for the Fresnel number N in the 

limit 6 	0 being 

N = 4[rro /(AL)]cos 	Bv /2) 	 (25) 
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As regards the behavior of F v (1A1 
	

0) for a « 1, one can 

derive an expansion of the contour integral in noninteger 

powers of a, the starting point being 

F v (IAI,a,o) = -,a1( - e 	)(dq/da)da (26) 

In view of the restriction krr o/L « 1, the first factor in 

integrand above is small unless a is relatively large. Thus, 

if we seek just the leading term and anticipate that this, for 

sufficiently small values of the expansion parameter, is larger 

than any given constant times this parameter, it is sufficient 

to adopt the approximations K 2 = (1/2)e, dq/da 	1A1 -1 sin 

(21A1)e ivff / 2  e -a , i.e. asymptotic limits for e = 0, a large. 

Then the variable of integration may be changed to u = (1/2) ae a/v 

 such that (dq/da)da is a product of u-independent factors and 

u - ')-1 du, one of these factors being [a/2] v . The lower limit on 

the u integration becomes a/2, but, providing v is not very 

close to 1 (i.e., we here exclude the case of highly obtuse 

wedges), this can be approximated by 0 insofar as we are only 

interested here in the lowest order (which is lower than first 

order) term in a. In this manner, one obtains 

F v ( IA1 ,a,0) = 
	

IAI - lsin(21A1) e iv7/2 [a/2] v F(1- 	 (27) 

Here we recognize (after integration by parts) that the inte-

gral over u of v(l-e)u' 	is the gamma function with ar- 

gument 1-v, 
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The fact that v is less than 1 implies that the magnitude 

of Fv decreases sharply from 1 (the derivative of its magnitude 

with respect to the expansion parameter is negative and becomes 

singular when the parameter approaches zero) when a increases 

from zero. As discussed subsequently below, this implies that 

a modest amount of sound reduction in the shadow zone is 

achieved even when the source is only a slight distance from 

the edge. 

In this same limit of rr o /L 2  4- 0, krro /L << 1, the total 

Green's function (found by inserting the above into Eq. 1) 

becomes 

G(xix % ,vo 
IikL (2 	e 7/)L - 	+ 2e /2 [1/r(l+v)][krr o /(2L) 

(28) 
cos(e)cos(vo)}  

where we make use of the identity 

sin(vir)r(1-v) = wrilr(l+v) 

The above approximate Green's function is consistent with a 

more general expansion given by Tuzhilin. 8  One may note that, 

if the listener is in the shadow zone, cos(ve) and cos(v0 0 ) 

have opposite signs, so the second term in Eq. (28) would de-

crease the magnitude of the Green's function in such cases 

(as should be expected) from that represented by just the first 

term. The phase of the Green's function is predicted to be 

greater than kL. (The formulation in general requires the 
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phase in the shadow zone to lie between kL and kL + 7/4.) 

6. The case of a thin screen (v = 1/2) for 	0 with  

a finite. For the most part, it is conceptually simpler to 

consider each Vk i ) in Eq. (1) as being calculated individu- 

ally, the sum being found subsequently. Although these occur 

in pairs, V() and V(2fi-c) there appears in general to be no 

major analytical simplification obtained by considering such 

a pair as a unit. An important exception is the case of the 

thin screen (v = 1/2). The fact that some simplification 

should be possible in this limit should be evident from the 

fact that the geometry of source, images, and image-image in 

this limit is degenerate: the source and image-image coincide 

and the locations of the two images coincide. The analytical 

simplification is of minor computational advantage except in 

the limit c 	0. The simplification which results in this limit 

(which, as pointed out above, is equivalent to the problem of 

diffraction of plane waves by a thin screen) is that the 

Green's function and each of its two constituent pairs, 

V( 1 ) + 	) and V( 3 ) + 	), can be expressed rather 

simply in terms of Fresnel integrals. (Given the incident 

plane wave interpretation of this limit, this is a well known 

result.) 

The manner in which the result may be obtained from the 

formulation presented here is first to change the integration 

over q to one over a. 	Then the sum V() + V(20 - ), with V(c) as 

given by Eqs. (10-12), with the q integration along the contour 
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ay be grouped as a single integral over a from 0 to . 

which involves a factor 

A(c) dq(1A C)1,a)/da + A(2f3-) dq(1A 2(3-C)1 	Pda 

One should note that q, considered as a function of A and a, 

will in general have different values if 1A1 is taken as 

1A(c)1 or 1A(2(i-)1. 	Evaluating this expression for v = 1/2, 

= 2Tr, 	= 0, such that sin[21A(c)1] = Icos(/2)1, cos[21A()1] = 

-sin(/2) 	tan b = tanh a, K 2 = sinh(2a)tanh(2a), etc., it 

eventuates, after some lengthy algebra and application 

of various trigonometric identities, that this can be expressed 

rather simply as a function of K and cos(/2) times the der-

ivative dK Ida with no explicit dependence on a. Consequently, 

the variable of integration can readily be changed to u = a 1/2K . 

 Once this is done, the integral appears in the form of a constant 

times the diffraction integral AD (X) of Eq. (17) with the ap-

propriate identification for X being 

X = [4a/Tr] 	cos(/2)1 	 (29) 

In this manner, we obtain 

A()F,(1A(c)1,04,0) + A(2v)F 1 (IA(2V)1,a,0) 

(30) 

=signicos( /2)1(7 2 	ei7/4 [f(X)-i g(X)] 

with X as given above. The corresponding expression for 
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V() + V(213-) is just -(1/7)L 1  eikl, times Eq. (30). 	The 

total Green's function may then easily be written down from 

Eq. (1). In the case where the listener is in the shadow zone 

(diffracted field only), cos(c/2) is negative both for 

= 10-e 1 and for 	= 0+8
0' 

so the field is 

G 
	

= 2 -kL eikLei7/4 {MX) - i g(X)] 
C = 

(31) 

+ [f(X) 	i g(X)] 	0  + 00 } 

in which the indicated values of 	are to be used in Eq. (29) 

to compute the variable X. 

V. NUMERICAL INTEGRATION SCHEME 

We return now to the general problem of determining the 

integral F. The integral over I(q) along the curve C can be 

symbolically written 

F 
	

I(K,E,a)dq 
	 (32) 

who re 

	

I(K,E,) = (1 + ieK2)1 e-aK2 
	

(33) 

The quantity K is that given implicitly by Eqs. (15) and may be 

considered a monotonically increasing real function of distance 

along the contour C. 
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The prototype integration scheme suggested is one in which: 

(1) the variable of integration is first changed to K; (2) the 

domain of K integration is broken into N + 1 intervals (0, K 1 ) 

(K 1 , K2) 	(KN, ) where N 	1; 	(generally one takes 

N = 1) and (3) the integration over the first N intervals is 

transformed through an "integration by parts". Thus one has 

F 
v 

J(K, 6 , a, Al) dK 	(34) 

  

K
n-1 

   

+ I(KN ,  6 , a) q(KN , 6) (I)(dot/dK)dK 

where 

J(K) = -2 I(K) q(K)K 

We also use the fact that q(K) = 0 if K = O. 

One may note that the real and imaginary parts of the 

function J(K) are bounded and continuously differentiable and 

that these component parts are certainly not oscillatory. 

Thus, one may expect that the first N integrals of the above will 

be amenable to any numerical integration scheme which, while 
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utilizing values of the integrand at only a relatively limited 

number of points (less than, say, 10), achieves a high accuracy 

because of the "smoothness" of the integrand. Possible integration 

formulas (Chebyshev's equal weight, Gauss's, or Lobatto's, for 

example) are summarized in particular in Sec. 254 of the 

Handbook of Mathematical Functions'. (Our experience has been, 

in the present context, that 10 point Lobatto integration 

invariably gives at least eight digit accuracy.) 

As regards the integral from K N  to 	the qualitity 

1-q(K) may for most practical purposes be considered 

as an upper bound to its magnitude. It may be presumed that one 

has chosen K N sufficiently large, either that the magnitude of the 

integral is definitely negligible within the desired computational 

accuracy or else that the ed(2 factor in the integrand dominates 

its decay. In the former case the last term is discarded while 

in the latter case it is evaluated by (1) integrating by parts 

and (2) performing the integration over the resulting expression, 

which has the form (representing the sum of the last two terms in 

Eq. (34). 

e -aK 2  L(K) dK 

(with an obvious identification for L(K)) by Hermite integration. 14 

 (Our experience is that an 8 point scheme is more than adequate). 

The choice for the K1 , ...,KN as well as the parameter N 

should not be too critical. One could compare answers obtained 

with different choices of these parameters in order to assess 
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whether or not some desired accuracy has been obtained. One 

could, for example, simply take N 	1 and KN 	1/a, unless 

a were extremely small compared to unity. (We have at present 

a somewhat elaborate scheme for chosing these parameters, but 

the details seem too arbitrary and unimportant to warrant their 

inclusion here.) 

Computation time for a single value of F v  may be considered 

as roughly directly proportional to the number of times which the 

function q(K) must be computed from Eq. (15) (which is a straight- 

forward evaluation requiring trigonometric and inverse trigonometric 

functions). This number is typically just 18 with the scheme 

as outlined above so the computation time should be of minor 

consequence, given the availability of a modern high speed 

digital computer. 

Some sample calculations are presented in Figs. 6 and 7. 
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Chapter 4 

SCATTERING OF SPHERICAL WAVES 

BY RECTANGULAR PATCHES 

The body of this chapter consists of a copy of a 

paper prepared for submission to the Journal of Sound  

and Vibration by W. James Hadden, Jr., Robin A. Vidimos 

and Philip M. Sencil. 	[The experiments described in 

the paper were performed in an anechoic chamber at 

NASA Langley Research Center (Fig. ) • ] 
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Fig. 	i. 	Photograph of experimental arrangement 
for scattering by patches. 



Abstract 

A theory is presented for the scattering of spherical waves 

by a rectangular area whose acoustic impedance differs from that 

of the surrounding plane. This theory extends previous analyses 

to include diffraction effects explicitly. Results of experiments 

concerning reflection from rectangular patches are also reported. 

Agreement between these results and predicted values is not 

uniformly good, although improvements could be achieved through 

alterations in the measurement procedure. 
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INTRODUCTION 

The present paper is motivated by an interest in the effects 

of acoustical characteristics of the ground on sound originating 

in low-flying aircraft. As part of this study , analytical and 

laboratory investigations have been performed on the reflection of 

sound by plane surfaces of known acoustic impedance [1]. In 

analyses of the reflection of spherical waves by a plane surface 

on which a local-reaction impedance boundary condition is imposed, 

it is customary to employ the method of steepest descents in order 

to obtain an approximation for the reflected pressure [2,3]. The 

use of this approximation can be interpreted in terms of geometrical 

acoustics as neglecting the effect of waves scattered from regions 

of the surface outside a neighborhood of the shortest reflected 

ray path from the source to the receiver. The investigation with 

which the present paper is concerned sought to determine the size 

of the effective area near the vertex of the reflected ray. This 

information could be used in developing a simplified technique for 

predicting the received sound for moving sources near the surface. 

In the interest of simplicity, experimental measurements were 

made in an anechoic chamber of sound pressure levels above rectan-

gular patches of various areas. Pure tones were used to excite a 

small source. Sound pressure level measurements were made in the 

direction of the presumed reflected ray path. These experiments 

are described more fully in Section IV. In conjunction with the 
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experimental work, a theoretical investigation of scattering by 

rectangular areas was undertaken in which diffraction effects due 

to the finite size of patches were included. This analysis is 

discussed in Sections I-III. 

ORETICAL EXPOSITION 

The analytical development is roughly parallel to that of 

Morse and Ingard for plane wave incidence [4]. The surface z = 0 

contains a rectangular patch with point impedance pcnA; outside 

the patch the normalized impedance is taken as n.  The geometry 

is illustrated in Figure 1: A point source is located at (r 5 ,O,  

the receiver coordinates are (r,e,cp). 

The received pressure may be expressed, employing Green's 

theorem, as 

p(r)= p G(r1 
DP 

DZ
O  

p 
DG 

( 
(1) 

o zo=o 
 

in which the Green's function G(riro  ) is approximated by teems 

representing a source point r0 = (ro'o'o) and a single image 

point r 	(r0 ,7-e0 ,(p0 ) with the image source strength (a modified 

plane-wave reflection coefficient) chosen such that the condition 
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iklr - ro 	iklr - 
e  

R' 	 
4ir 

G(Eiro) (3a) 
r - ro l 	47r 	- r

I 
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in aG(r 
G(r,r0) - 

k az 
	 z = 0 	 (2) 

is satisfied to a better degree of approximation than could be 

obtained by using the plane-wave reflection coefficient. The 

approximation to the Green's function is 

n B' case' - 1 
R' 

n B' cose' + 1 

B' = 1+ 

  

(3c) 

where e l  is the azimuthal angle between the source-to-receiver 

point line and a line parallel to the z axis, and the inclusion 

of the factor B' represents an attempt to account for the curvature 

of the wavefront. 

The pressure tenns in the integrand of equation (1) are 

approximated in a similar fashion as a combination of waves 

incident from a point source at rs  and an image source at r's 

 below a plane characterized by the normalized impedance nA . The 

appropriate form for this approximation for the pressure may be 

( 3b) 



lKp 

PSC(T) 	Tf 	ff dSo e 1r - 	ro S 

ik(Ir - r - rs  I ) 

inferred readily from equations (3) with suitable modifications 

of parameters. Thus the "direct" pressure term in equation (1) 

is taken as 

( iklr - rs 1 	ik 	- 	\ s 1 1  

Pllir (r) 	Po 	 Rs 1r - rs 1 

in which Rs has the form of equation (3b) with 

B'-■ Bs = 1 + i/kr and 	4-6 = cos - / ). The scattered o 	s 

pressure term may be written as 

70 

In order to obtain a closed-form expression for the pressure at 

some distance from the scattering area it is expedient to expand 

the factors in equation (5) which involve the distances Fr  - ro 1 

d 1ro  - rs I as power series in xo and yo . The expansions of 

such factors multiplying the exponential in equation (5) may be 

truncated so as to yield a desired accuracy which depends on 

ratios such as L/r and W/r. However, in the exponent the 

B' B' cose' cosec (n - n A) X (1 + nB' cos ) (1 + TIAN cos 

(4) 

(5) 



criterion governing truncation of the expansion involves the 

Fresnel wave parameters, which have the form r/kL 2 . 

Retaining second-order terms in xo'  yo  in the exponent in 

equation (5) yields approximations for the scattered pressure in 

which diffraction effects are readily discernible. In addition, 

this treatment allows one to investigate the transition from the 

Fraunhofer diffraction regime (large Fresnel parameter - equivalent 

to the Morse-Ingard treatment [4]) to the Fresnel diffraction 

(small Fresnel parameter) range and beyond to the ray theory 

limit. An outline of the present expansion of equation (5) is 

given in Appendix A. The scattered pressure is approximated by 

ik(r + rs ) 
kLW e 

P (r)   P 	I(a sc 	 41Trr 	Sc 
s 

with the abbreviations 

B Bs cos() cow s 
iPo (1 + nB cose)(1 	nABs  cose s 
	 (7) 
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Sc
P  

and 

2 

dX e-i(a1X-1X  ) dY e 
-1 

2
Y2 ] 

X(1 + MX + NY + QX2 	+ S)Y)(n - nA) 	(8) 



and, finally 

1 
2 

1 
2 

cos (sine cos . 0 + sine 	0  sin 	s sin s 2 

  cos2 
- sin2 e   

sin 

L) 

	
(9a) 
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2 	cos 2 ,  k + r(1 - sin e s  sin2 Y s ) -I 8rr  
(9b) 

I = 
kLW 

sin 2 e sin2q + r sin2 e s sin4 s 8rrs 
(9c) 

The parameters a l  and a 2  involve projections of the scattering 

area's dimensions (normalized by wavelength) on the lines from 

source and receiver for the center of the area. The parameters 

8 1 ,  82 and y are similarly projected inverses of Fresnel wave 

parameters. These parameters characterize the diffraction effects 

in the approximation for the scattered pressure. The coefficients 

M, N, Q, R and S in equation (8), in addition to providing 

correction terms depending on the size of the scattering area 

relative to source and receiver distances from the patch, are 

functions of the other geometrical and impedance parameters. The 

coefficients M and N are linearly dependent on quantities such as 

sine, sin o and L/r or W/r, Q, R and S are quadratic in these 

quantities. Explicit expression for these coefficients are given 



in Appendix A. 

II. PATCH WITH CONSTANT IMPEDANCE 

For cases in which the impedance of the scattering area is 

constant, the integrals in equation (8) could be evaluated by 

completion of squares in the exponents followed by application 

of standard integration formula, but for one complication - the 

inner integral (e.g., the integration with respect to Y in 

equation (8) results in several terms involving Fresnel integrals 

[5] whose arguments have the form, in this case, 
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(10) 

The presence of the second integration variable precludes exact 

analytical evaluation of the remaining integration. However, 

reference to equations (9) indicates that the X-dependent and 

unity terms in the arguments are of order (L/r) compared to the 

u 2  terms. In addition it can be seen that both 0. 2  and - vanish 

in the important case of specular reflection (9 = s 	= 0, 

). For these reasons, and in view of the behavior of the 

Fresnel integrals in the small- and large-argument limits [5], 

it seems a reasonable approximation to neglect the X-dependent 

terms but to retain the unity terms in the arguments exemplified 

by equation (10). 



i B1 	i(1) 2+ (e 	- e  i4)2-)] 

(271113 1 ) 1/ 2  

If this approximation is accepted and the resulting expression 

simplified by neglecting tents which are of order (kr)- 1, (L2/r2) 

or smaller, the integral in equation (8) may be approximated as 

  

p -1/2 e 	AF02 02/2(3 24A,AF( 	/21.1 
2(y 2 ) 1/2 
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iB2 e -i(1) 3+ 	( AF 
(2 ,ffii2) 1/2  

- o  

with 

-y
2 /413 1 	a 2112a 1 2 (12a) 

2 
(va l)2 	a2 

(12b) 

= a  ( 	 1)2  
1 	211‘3 1  

(12c) 



(al t Y)2  
(12d) 
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and 

AF(a,b) = F [ 	2  b + 1) - F [ 1/2 (b - 1)] 	(13) 

in which we have employed the abbreviation F 

Al

(  = C(x) 	iS(x), 

C and S being the well-known Fresnel integrals [5]. The coefficients 

of the several terms in equation (11) are 

Ra2 	Ry ) al  
B2 	N + 	+ (S + 	 232 	213 2 	213 

(14a) 

Ny + Sa 2 	Rya2  

23 2 	235 
(14b) 

Nat Ra2 2  vat 
1+ 	 + 	+ 	 B1 

213 2 	4 2 	1 

Sy 	Ry2 ) 
+ 	+ 	 

2f3 2  
(14c) 

 contains terms of order unity. The terms in equation (11) 

which involve B 1 and B2 are of order (kr)
-1/2 . General 

expressions for M, N, Q, R and S are given in equations (A13). 



One may check that equation (11) reduces to an extension of the 

result reported by Morse and Ingard [4] by noting that in the limit 

p
2 

and y become very small the function AF(a,b) [equation 

(13)], with arguments such as those in equation (11), may be 

approximated [6] as 
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AF(a,b) (72a  2 	.2 -
1 

lab 	. b 	e 	sin(2ab) (15) 

Upon substituting this expression in equation (11), the first 

term reduces to a form similar to equation (8.3.5) of reference 

4. The second term in equation (11) vanishes in this limit, while 

the third term is of order (1/2)  and hence negligible. 

III. TWO LIMITING CASES 

Although considerable simplification in the above expressions 

for the scattered pressure may be achieved in several interesting 

special geometrical configurations - forward scattering (4) = cP s - n) 

and specular reflection (4) = cp s  - 7T and e = e s ) - only two special 

or limiting cases will be considered in detail here for brevity. 

The first, which is relevant to the experiments reported in 

Section IV, concerns reflection in the special case in which the 

source and receiver are in the plane bisecting perpendicularly 

the scattering area, i.e., cp s  = ff. [The case in which the 

source and receiver are in a plane parallel to the x - z plane 

of Figure 1 can be treated by an obvious modification of the 



(17) 
L2  cos 2 e s 

w2 

limits of integration in equation (8).] The second case for which 

a compact expression for the scattered pressure can be obtained 

concerns scattering by a strip (taken here as lying along the y-axis 

of Figure 1). 

An explicit expression for the scattered pressure can be 

readily obtained in the special case of specular reflection with 

= 7T : 

ik(r+rs ) B Bs cosa s (n -  ) e 	 X  
ip 	 Pspec 	° (r+rs ) 	(l+nB cose s )(1 ABs cose s 
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1/2 	1/2 
1 	2 (16) 

where the factors B and Bs are defined after equation (4). In 

this case the parameters 	and 13 2  become 

The reduction of equation (16) to the foam obtained by Leizer [7] 

for a rigid rectangle is readily apparent if one takes the limit of 

equation (16) as the normalized impedance nA  becomes very large. 

An expression for the scattering by a strip of width L may be 

obtained from equations (11)-(14) by considering the limit as 

2 
f3 2' and y become very large. It is also convenient to take 



advantage of the y-translational invariance of the geometry by 

setting cp s  = 7. In the case of scattering in the specular plane, 

the scattered pressure term reduces to 

spec ,strip 

i[k(r+r5 ) +l/4] 

2rrs (s 13 2 ) 1 1/2 kL P sc 

 

	21 e  

   

 

+ Q 
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(18) 

   

   

   

in which the parameter 2  of equation (9b) has been modified to 

(19) 

to produce a form consistent with the direct computation from 

equation (A4) et seq. with the y o -limits set to infinity. The 

coefficients H and Q in this case are: 

[ L (2  + 	cose) sine] 
- 

2 	(1 + 1B cose) 
(20a) 
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Q 
L2 	sin 28 	1/2 (2+n B cos8)(1-3 sin 2  8) 
	  -  

4r2 (l+n B cosO L 	(l+n B cos8) 

 

  

L 2 	 L2 sine sine s 
2 

[same] s 
4r  rrs (l+n B cose)(1+n A  Bs cose s ) 

[2+ nB cose+nABs  cose s +1/2nnABBs  cose cose s ] 

For e =0 s (specular reflection), equation (18) reduces to 

i[k(r+rs ) + 1/471- ] 
e 	 1/2 

Prefl,strip " 

	

	  2 Psc Ff1 ) 	(21)  
(r+rs ) cose s 

with e l  given by equation (17). 

IV. EXPERIMENTS ON REFLECTION 

In the experimental phase of this investigation, measurements 

of sound pressure level were made in the specular reflection 

direction above rectangular scattering areas composed, in one 

instance, from 4' x 8' (1.22m x 2.44m) sheets of 3/4-inch (0.019 m) 

plywood laid on the floor of the Anechoic Noise Facility at the 

NASA Langley Research Center; in a second set of measurements the 



plywood was overlaid with one-inch (0.025 m) glass-fiber panels. 

In each case, pure tones were projected from a source small 

compared with the acoustic wavelength. The source and receiver 

(a 1/2-inch microphone) were arranged so that the specular plane 

bisected the scattering area. Incidence angles of 70° and 80 ° 

 were used. Normal impedances of samples of the plywood and 

glass-fiber plus plywood were obtained from impedance tube measure-

ments. 

The measured impedances were employed in computations based 

on equation (16); the "background" specific impedance was assumed 

as unity. The measured impedances for two selected frequencies are 

presented in Table I. Comparisons of the experimentally obtained 

sound pressure levels with those computed from equations (1), (3) 

d (16) are presented in Tables II-IX. Because the primary 

interest in this study was the variation of the reflected sound 

with size of the scattering area, all measurements have been 

normalized to the experimental result for the largest rectangle. 

As may be seen from Tables II-IX, the agreement between 

experimental and theoretical results is by no means uniformly 

good. Two possible causes of the discrepancies are suggested: 

First, the assumption that the impedance of the grill-work floor 

which surrounded the scattering areas can be taken as that of air 

is suspect. Second, there is the possibility of a distributed-

reaction effect in the measurements. The former question could be 

resolved by further measurements of sound pressures above the 
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bare floor of the anechoic chamber. The second possible problem 

could be rectified by the inclusion of a distributed impedance in 

the development following equations (3). 

V. CONCLUSION 

A theory has been presented for the scattering of sound by 

rectangular patches characterized by uniform (local-reaction) 

acoustic impedances. The theory explicitly includes diffraction 

effects absent from previous analyses. Comparison between this 

theory and a set of laboratory experiments reveals discrepancies 

which may be reduced by changes in the measurement procedure or in 

the analytical model. 
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RECEIVER 

Fig. 1. Sketch of the source-patch-receiver configuration used 
in the analysis of scattering of sound by a rectangular 
patch in which the acoustic impedance differs from that 
in the rest of the plane including the patch. 



Table I. Measured Specific Acoustic Impedances of Scattering Areas 

Frequency 
	

Plywood 
	

Glass-Fiber over Plywood 

1600 Hz 
	

41.89 + i56.69 
	

0.08 - 11.03 

3200 Hz 
	

2.33 + i22.62 
	

0.10 + i0.17 

Table II, Relative SPL above Rectangular Areas of Plywood with 
Receiver Distance 2.7 m and Incidence Angle 80 ° . 

Scatterer 
Dimensions 

(m) 	 f = 1600 Hz 	 f = 3200 Hz 

Theory 	Experiment 	Theory 	Experiment 

84 

6.6 x 5.8 
	

0 db 
	

0 db 
	

0 db 
	

0 db 

4.4 x 2.9 
	

3.2 
	

2.8 
	

6.1 	-2.8 

2.9 x 2.9 
	

1.9 
	

2.0 
	

2.5 	-1.6 

2.9 x 1.5 	 -0.6 
	

3.0 	 3.1 	-3.3 

1.5 x 1.5 	 -2.4 
	

3.4 	-7.4 	-4.3 



Table III. Relative SPL above Rectangular Areas of Plywood with 
Receiver Distance 2.7 m and Incidence Angle 70 ° . 

Scatterer 
Dimensions 

(m) 	 f = 1600 Hz 	 f = 3200 Hz 

Theory 	Experiment 	Theory Experiment 

6.6 x 5.8 	 0 db 	0 db 	0 db 	0 db 

4.4 x 2.9 	 0 	-1.0 	 0 	0 

2.9 x 2.9 	 0.7 	-0.8 	 0 	0 

1.5 x 1.5 	 7.0 	0.8 	0.9 	3.4 

Table IV. Relative SPL above Rectangular Areas of Plywood with 
Receiver Distance 2.6 m and Incidence Angle 80 ° . 
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Scatterer 
Dimensions 

(m) 

6.6 x 5.8 

4.4 x 2.9 

2.9 x 1.5 

1.5 x 1.5 

f = 1600 Hz 	 f = 3200 Hz 

Theory 	Experiment 	Theory 	Experiment 

0 db 
	

0 db 	0 db 	0 db 

	

2.3 
	

3.0 	 6.5 	-0.5 

	

-1.6 
	

8.0 	 3.1 	8.5 

	

-3.4 
	

3.0 	-9.1 	6.0 



Scatterer 
Dimensions 

(m) 

4.4 x 2.9 

2.9 x 2.9 

2.9 x 1.5 

1.5 x 1.5 

1600 Hz 	 = 3200 Hz 

Theory 	Experiment 	Theory 	Experiment 

-2.8 	0.6 	 2.3 

0 db 

0.6 

-0.2 

0 db 

-0.1 

3.0 1 .0 

1.4 

0 db 	0 db 

-7.9 

-10.2 

2.0 

Table V. Relative SPL above Rectangular Areas of Plywood with 
Receiver Distance 2.4 m and Incidence Angle 80 ° . 

Table VI. Relative SPL above Rectangular Areas of Glass 
Fiber over Plywood with Receiver Distance 2.7 m 
and Incidence Angle 80 ° . 

Scatterer 
Dimensions 

(m) 	 1600 Hz 	 = 3200 Hz 

Theory 	Experiment 	Theory 	Experiment 

6.6 x 5.8 	 0 db 	0 db 	0 db 	0 db 

4.4 x 2.9 	 -0.3 	-2.6 	 0.2 	1.0 

2.9 x 2.9 	 -1.4 	-1.6 	 0.1 	0 

1.5 x 1.5 	 -2.6 	0.4 	 0.1 	-3.4 
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0 db 

-10.0 

-2.5 

-7.5 	0.2 

0.6 

0.4 

0 db 	0 db 

-13.8 

-21.8 

-3.4 

Table VII. Relative SPL above Rectangular Areas of Glass Fiber 
over Plywood with Receiver Distance 2.7 m aad 
Incidence Angle 70 ° . 

Scatterer 
Dimensions 

(m) 	 = 1600 Hz 	 = 3200 Hz 

Theory 	Experiment 	Theory Experiment 

6.6 x 5.8 	 0 db 	0 db 	0 db 	0 db 

4.4 x 2.9 	 -0.6 	-1.0 	 0.1 	-3.0 

2.9 x 2.9 	 0 	-1.2 	 0.1 	-4.7 

1.5 x 1.5 	 -1.0 	-2.8 	-0.4 	-5.4 

Table VIII. Relative SPL above Rectangular Areas of Glass Fiber 
over Plywood with Receiver Distance 2.6 m and 
Incidence Angle 80°. 

Scatterer 
Dimensions 

(m) 	 1600 Hz 	 3200 Hz 
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6.6 x 5.8 

4.4 x 2.9 

2.9 x 2.9 

1.5 x 1.5 

Theory 	Experiment 	Theory Experiment 



Table IX. Relative SPL above Rectangular Areas of Glass Fiber 
over Plywood with Receiver Distance 2.6 m and 
Incidence Angle 70 ° . 

Scatterer 
Dimensions 

(m) 	 f = 1600 Hz 	 f = 3200 Hz 

6.6 x 5.8 

4.4 x 2.9 

2.9 x 2.9 

1.5 x 1.5 

Theory 	Experiment 	Theory 	Experiment 

0 db 
	

0 db 
	

0 db 
	

0 db 

-0.6 
	

5.5 
	

0.1 	-0.9 

-0.9 
	

5.5 
	

0.2 	-0.8 

-0.6 
	

6.0 	-0.4 	].0 
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Appendix A 

Approximations for the Incident Pressure 
and the Green's Function 

It is desired to obtain an approximation for the integrand of 

equation (5) in which the source and receiver distances from the 

center of the scattering area are used as reference quantities, 

correction terms being incorporated in the exponent in the integrand 

to include diffraction effects and in the remaining factors in the 

integrand to indicate additional dependences on the size of 

scattering region. 

In order to accomplish this, it is expedient to expand the 

factors in equation (5) which involve the distances 1r - r_ and 

and 1r - 	1 as power series in xo and y, yielding (to second 9 

order), 
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with 

sine (x0 coscp + yo sing)) 
	

(A3a) 
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V(8,) 
x
2 	 2 

2 	Yo  - sin 0 cos 2 (15 + 	(1 - sin2 e sin 2 (1) 
2 	 2 

2 - 
1
-x y s in  LO sin4 

2  o (A31)) 

x
2 	 2 

- 3sin2  cos) 	- 3sin2 e sin2 q) 
2 	 2 

3 — x y sin 0 sin2q 
2  o o (A3c) 

Applying these approximations throughout equation (5) and factoring 

out the constants results in an integral of the form 

-ikF(xo ,y0 ) 
G(x0 ,y0  (A4) 

in which the abbreviations are 

- (V/r + Vs 	 (A5a) 

20s  
rr E + Es -2 + EE BB 2 s s 

1 (A5b) 



and 

1 + i(krB) 
nB cose 

+ 1- 3 cose 

9l 

B 

 

(A5c) 
1 + 	B cose 

Upon collecting like powers of x o' yo and introducing the change of 

variables X = 2x0/L, Y = 2y0/W the expressions for F and G become: 

	

2 	2 

	

= - °1X 	I3 2Y  

G = (1 + MX 	Qx2 	Ry2 + SXY)(11 	7.10 

with 

	

M= (-- — sine cossb) 	(s e  
\r2 

L 

W 	 ) 
N = 	--sine sincb 

\r 2 

-(1-E2 
sin

2
0 cos 	- — (1-3sin 2 0 cos )] 

_ 4 	 8 

L 2 	1 
	 E+E -2+ —EE BB 	sine sine cosyb cos(p rrs\  s 	2 	ss 	 s 	s  

F + yX)Y + alX (A6) 

(A7) 



(1-Efij 2  sin20 sin 2  . 22 — (1-3sin 0 sin 
8 
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+ 	E+E -2 + — EE BB sine sine s simp sing)s rr 

L2 (- 
s 	2 	s s 

1 — 

S = LW  sin 	sin2cp 
r2 

  

1-  E 	2 + 	EEs  BB s  sine sine s sin(cp + s ) ?rr 	s 
s 	

2  

and 

1 
2 

1 

2 cos )
sine s sin s 

2 

2 cos 
- sin 2  0 sin 2  

( 

	

2 	cos 2 
+ r 1 - sin e s sin  cp 2  

	

kLW 2 	 . 2 	 (rs sin 0 	 sin4 + r sin s sin4s 8rrs  

These expressions are to be used in equations (6)-(8). 

(A9 ) 



Chapter 5 

PLANE WAVE DIFFRACTION BY A WEDGE 

WITH FINITE IMPEDANCE 

This chapter consists of a paper by Allan D. Pierce 

and W. James Hadden Jr. which appeared in the Journal of the 

Acoustical Society of America, volume 63, pages 17-27. 



Plane wave diffraction by a wedge with finite impedance 
Allan D. Pierce and W. James Hadden, Jr. 

School of Mechanical Engineering. Georgia Institute of Technology, Atlanta, Georgia 30331 
(Received 8 September 1976; revised 30 July 1977) 

A theory is presented for the diffraction of acoustic waves by barriers with finite acoustical impedance, 

the shape of the barriers being such that, insofar as diffraction into the shadow zone is concerned, they 

may be idealized as semi-infinite wedges. The analytical development is based on the known exact 

solution for plane wave diffraction by a finite impedance wedge, versions of which have been previously 

given in the literature by Williams [Proc. R. Soc. London Ser. A 252, 376-393 (1959)], by Senior 

[Commun. Pure Appl. Math. 12. 337-372 (1959); Proc. R. Soc. London Ser. A: 213, 436-458 

(1952)1, and by Maliuzhinets [Sov. Phys. Acoust, 1, 152-174, 240-248 (1955)]. This solution is 

described in detail and the asymptotic limit is derived in a form which demonstrates the satisfaction of the 

reciprocity principle. Practical implementation is discussed, both through numerical examples and through 

the presentation of graphs of quantities which will be helpful in barrier design. 
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if F ODUCTION 

ile the diffraction of sound around obstacles is a 
ssic problem in wave theory, dating back to Poin-

c o' .2  and Sommerfeld, 3  the design or assessment of 
, posed designs of barriers to reduce noise levels in 
AS adjacent to community noise sources is currently 

a toJic of considerable interest in applied acoustics. 4-7  
( , ;iity, such designs should be based on a comprehen-

:,. 	ind accurate theory of sound diffraction around 
I ,! . ,H.ers. In practice, however, the inherent complexi- 

ttssociated with the development of such a theory 
h , 	necessitated the introduction of a variety of approx- 
ir ,,r,ions and idealizations. Because of the remanent 

lytical difficulties, it is difficult to assess the ap-
:ccility of such approximations and idealizations to 

otl or proposed barriers. In one of the most severe 
ic l. 	the barrier is assumed to be perfectly 
• Within the context of this idealization, it is prob-
:li' 1air to state that the current status of the available 
tr, :ries and computation procedures is relatively satis-
f,3,' 	- 37 4  Diffraction around rigid barriers with planar 
sl,,aces can be considered using results derived from 
tr „ries based on the ideal models of thin screens, 3 • 3 

 v” 	tos, 	and trapezoidal (three-sided) barriers. 7,9.10 

t'lle rigid-barrier theories, however, give informa- 
Ally on the effects of barrier size, shape, and ge-

com. , try on diffraction; they give no insight into the el-
k c l cf the surface properties on sound levels in the 
sk,cf:w zone. Conceivably, the latter should be an im-
p( rl it consideration in barrier design. It is well 
kt 

 
'it, for example, that the finite impedance of the 

I d may drastically alter the sound levels received 
us, 1. :he ground from a source also located near the 

(i.e., the so-called excess ground attenuation 
et ,  -1' 12  caused by the interference of direct and phase- 

1 ground reflected waves). 

... regards available theories on the effect of surface 
i,t:.;'datice on sound diffraction by barriers, the only one 
• :, 1j,ically devoted to acoustic diffraction of which we 
• :tware is that of Jonasson" who gives an approximate 
th. , ,t,:'y of sound diffraction by a wedge of finite imped- 

ance. This theory, however, applies at best only to 
highly obtuse wedges, i.e., where the exterior angle ,3 
is only slightly greater than 180 0 . Moreover, it suffers 
from a lack of rigorous basis and is cumbersome to ap-
ply: a crucial set of variables is presented only pictori-
ally. Furthermore, a completely separate construction 
must be performed and several variables reinterpreted 
in order to show that the reciprocity principle" is sat-
isfied (the point source solution should be invariant on 
interchange of source and receiver locations). It is ac-
cordingly suspect, notwithstanding its good agreement 
with a limited amount of field data. 

There is, however, in the electromagnetic wave prop-
agation literature, an exact solution for diffraction of 
plane waves by wedges of finite conductivity. Versions 
of this theory have been independently given by Wil-
lianis," -17  Senior,  ,"' 13  and by Maliuzhinets. 20,21  (Of the 
three, we have found Williams's account" to be the most 
readable, although it suffers from a number of minor 

misprints and algebraic errors.) The purpose of the 
present paper is to extend and apply this theory to prob-
lems of acoustic wave diffraction by wedges of finite im-
pedance. 

I. STATEMENT OF PROBLEM AND SUMMARY OF 
RESULTS 

In this section we first describe the mathematical 

model on which our analysis is founded. Immediately 
following this statement of the problem, we present a 
concise summary of formulas for the estimation of the 
acoustic pressure diffracted around a wedge with finite 
acoustic impedance. This statement of results prior to 
their derivation is intended to facilitate the application 
of the results and to give an indication of the objective 
of the theoretical development in the following sections. 

A. The model 

We consider sources of such an extent and/or distance 
from the barrier's tip that the incident pressure waves 
may be approximated as plane waves. 'The geometrical 
arrangement is depicted in Fig. I; the z axis of a cy- 
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T 	NE_ 

ISTENER 

t. Diffraction of incident plane wave by wedge of finite 
edance, Listener coordinates are r, e z. The ware is 

Pent from the 0 direction, wave-front normals make an 
-', with the wedge edge bz 

I 01: - ical coordinate system is taken along the apex of 
Om wedge; the surfaces of the wedge are the planes 
t0 and 0= 0, where 3 is the exterior angle of the wedge 
( 	T). We consider plane waves [with time dependence 

suppressed throughout the analysis] incident from 
direction 0 0  and at an angle y with respect to the z 

On the surfaces 0= 0 and 19 = 0, the acoustic im-
y.c(ance is given in terms of a dimensionless quantity  

is 

p 0 1"77 , 	 (1) 

■ ,- 1 , ?re p a r is the characteristic impedance of air. This 
cription of the problem is amplified in Sec. II; it 
cid suffice however, in the explanation of the nature 
I,he results. 

6. Estimated insertion loss 

For purposes of barrier selection or design, it is de-
, rable to have an estimate of the effectiveness of a 
i-rier in reducing sound levels at a given location, 

of computation is certainly desirable. The model 
:add be a reasonable idealization of practical cases. 

conditions are fulfilled for the case of plane waves 
Iracted by a nearly rigid wedge with exterior angle 

TT) for larger observer distances r from the wedge 
),), viz., such that the condition kr siny 	1 holds (where 

:'/c), and for angles 8 considerably less than eo — 
e , listener well inside the shadow zone). 

The quantity of interest is the insertion loss 

201og io ( Pno bar. /1Pc„hb ar j) 
	

(2) 

c'Tsh, in the case of a rigid barrier, is well described 
the formula s  

S 8( 0 , 0 0 ) = 2 [M(8 +00)+11,(8 - e 0)1 - ` - 	0) - 	e o ) 
(6) 

with 6j 8(- 0) obtained from Fig. 2 or Fig. 3, Further 
discussion of the [unction Q 6(-- 8) is presented in Appen-
dix D. Several numerical examples, in which the com-
putations may be performed using modern desk calcu-
lators, are discussed in Sec. VII. The analytical steps 
which intervene between Pis. A and B of this section 
are discussed in the following sections. 

II. FORMAL SOLUTION FOR DIFFRACTION OF 

OBLIQUELY INCIDENT PLANE WAVES 

In the present section, the formal solution is summa-
rized for the diffraction of obliquely incident plane waves 
by a wedge of finite acoustic impedance. This is es-
sentially the same as those solutions given previously in 
the literature by Williams, by Senior, I8  and by 
Maliuzhinets, 2°  although with considerable changes in 
nomenclature. Consistent with the discussion in Sec. 
I.A, the incident plane wave is taken in the form 

ihr sirry,  costa - 0 0)1 exp(ikz cos -y) . 	(7) 

Here 8  denotes the angular coordinate of the direction 
from which the incident wave is coming, y (taken be-
tween 0 and -- 7) represents the angle which incident 
wave-front normals make with the z axis; k is w/c. One 
may note that the z-translational symmetry of the prob-
lem implies that the resulting solution for the acoustic 
pressure should have the same z-dependent factor as in 
(7) above. The dependence on 0 and r is governed by 
the reduced wave equation 

	

+ k2  sin2y. p = 0 
	

(8) 

Boundary conditions at the wedge faces are that the ratio 
of pressure amplitude to inward normal fluid velocity 
component amplitude be p o rm where 17, the specific (di-
mensionless) normal incidence impedance, should have 
a real part greater than zero for an absorbing wedge. 
(Typically its imaginary part is positive, although not 
necessarily. ) Thus one has 

Op/ae±(ikr/17)p 	, at 61 = 0 and 0= 	, 	 (9) 

where the upper and lower signs correspond to 0 = 0 and 
6, respectively. 

An alternate parameter describing the wedge imped-
ance which proves to be especially convenient is that 
of the (complex) angle a', defined such that 

1 a 	1 
r ar 

AIL= - 10 log 10 { 1 +1 S 8(8,0 0) (77 sin -01 
	

(5) 

in which one must use 

10 log io(kr siny) - 20 log o  1714; 1 (0 (9 0)+ M 1-; 10 + 0 0 )] 

(3) 
	cosa =(nsinyri 

	
(10) 

e hich we have used 

11 (0)=. 
cos(v7)-cos(i3O)  

,  
sin(v7) 

v=77/0, The principal result of this paper is that 
a hard (but not rigid) wedge, there is an additional 

• I'm in the insertion loss estimate, given by  

and such that - 	< aR  < 17, a i > 0 given 17 R  >0 and siny 
positive. The sign of a R  is determined from sgn(a R ) 
-sgn(h,). For a rigid wedge, 77 + a 0:1- 7. For a 
perfectly soft wedge, h- 0, a'- i. 

 solution for the boundary value problem as posed 
above may be taken in the form of a contour integral 

(4) 
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FIG. 2, (a) The function Q a(- 0) for se-
lected values of the parameter (3. Note 
that Q is undefined for U 	fb) The func- 

tion Q9(— 6) for selected values of the 
parameter 13. 
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FIG. 3, The function -C 9(--0) plotted 
versus for selected values of 0• 
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, 0 0, 0 )-11 5( 	ci)/11  f(- 00,a) 
	

(16) 

where the function:H. 8(t , a) is defined in terms of a func-
tion Fa()  (here termed Williams' F funclion in recogni-
tion of the fact that it is the same as used by Williams' s ): 

1f( a) - 

- Fo(t +20+ a) F,,(t +20 - a) 

The analytic properties of the functions F8(t) and 
H,3(t , a) are discussed extensively in Appendix A. For 
angles 0 of the form 

p=pr/2q 

with p an odd integer and p, q relative primes, the func-
tion F,(0 is given by 

F)= 	sin 141 + 	( 4 n - 1)- 201} 

sin{ 	20(ni + 1 )i}' 	 (18) 

Expressions for F5() can be obtained for other values of 
f3, but at the expense of considerably more computational 
effort.  15  

(17) 

4. Integration contours in the complex t plane for evalua-
t, i rr  )1-  the acoustic field caused by a plane wave incident on a 

,ge of finite impedance. 

exp(ikz cosy) 1 
	

exp(- ikr siny cost) 

f(t . ,0,0 0 ,a)d 	(11)  

ire the contour C r  for the t integration may be taken 
c: Fig. 4) as C,4- C 11  + C 111  where C 1  is the path of 
pest descents passing through the saddle point at 

(1 of the exponential factor in the integrand, going 
: 11 1 = -1 7- i cc to = u+ioc. Similarly, C 0  is the 

;,,'h of steepest descents going from t = rr +?;.0 to = Tr 
through the saddle point at = 7F. The contour C 111  

ircles in the counterclockwise sense all poles of 
0, 6 0 ,a) which lie in the t plane between C i  and C 11  . 

f (described below) is an odd function of t , the in-
Jral on contour C, vanishes identically, so only con-
irs 	and C u , are of interest. 

Pie function f(l,  0, 0 0 , a) is of a relatively complicated 
H r 'r: and given by 

=S(- t -9 , 9 0 , c)h( 	9, 9, a) 

- S( -9,  90, a) 	-9, 9, a) 	 (12) 

f. 

, 	(v/2) sin(v0 0 ) ;,(,  rr - a -  0)  
h(t ea, 	4c(0 0 , t) 

That Eq. (11) is indeed the appropriate solution can 
be ascertained by explicitly substituting it into Eqs, (8) 
and (9) followed by some integrations by parts. The 
fact that f is the sum of a function of (; -0 and a function 
of + 9 is sufficient to insure that the partial differential 
equation be satisfied. The boundary conditions are sat-
isfied by virtue of the manner in which 11,3V , a) is de- 
fined in terms of Williams' F functions and of the fact 
that the h's in Eq, (13) are periodic in t with period 
20. The explicit form of the function h was chosen in 
conformance with notions of radiation conditions; i.e., 
that at large r the solution must consist of waves (other 
than the incident wave) which proceed outwards from 
the wedge and which do not grow exponentially with r. 
This requires in particular that f not have any poles 
between C, and C u  for which the imaginary part of cost 
is positive. Since the function 11 6( - 9, a) does not nec-
essarily have this property, h( - 0,9 0 ,0 was designed 
to have a zero which just canceled the "forbidden" pole 
of H( - 9, a). Also, in order that the solution repro-
duce the assumed incident wave, it was required that f 
have poles at t =0 - 90 and at t =0 0  - 9 one of which is 
enclosed by C u, when geometry indicates the incident 
wave is present. Finally, the function was required to 
have residues of appropriate values at these poles such 
that the C 111  integration would give a term in the evalua-
tion of (11) equal to (7) when geometry indicated the 
presence of the incident wave. It has been verified 22 

 that this formulation is consistent with notions of reci-
procity. (13) 

we have abbreviated 

sin[( v)(a b)1sint ( 12-  v)(a - b)] 

- -- [cos(vb) - cos(va)1 , 

rr/0 • 

The limiting cases of rigid and soft wedges may be 
obtained by examining the limiting forms of the functions 
H 0(t • , a), S(,0 , a), and hg , 0 ,a). In the limit of a rig- 

(14) id wedge (a 	ir), the limiting form of f (t , ,0 0 ,a), Eq. 
(12) is 

f(,(9 , 00,7)=- Qp(t,e— 0 0) 	9  + 0 0) 	(19) 

with 

(15) 

that h is an even function of t.) The function S is 
tc:ined by 

.!ir oust. Soc. Am., Vol. 63, No. 1, January 1978 
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I k 

tisin(tiO'lcos(1,6)-cos(1,01 . 

-Hation (19) corresponds exactly to the function used 
;:c . (1) of a previous paper 9  by one of the authors. 

fl Iv ,  limit of an acoustically soft wedge (a -i00), the 
It Awn f becomes 

, 0, 00, i., )=(W, 0  - 0 o) -  Q,A. , 0  + 9 0) 

L, again, is the correct limit. 

ASYMPTOTIC SOLUTION FOR DIFFRACTED 

he shadow zone, the major contribution at large 
(I - ances r from the edge comes from the C. 11  portion of 

contour integral in Eq. (11). The C u , integration 
Iply gives the incident wave, a specularly reflected 

, and possibly a surface wave; the former two of 
1 -1 do not exist in the shadow zone, the third of which 
i:= rally dies out exponentially with large r. The con-

tt ILLItion Ppm, n from contour C 11  at large r may be ob-
t. 'PI by application of the saddle-point approximation 

into account the possible proximity of poles and 
•z to the saddle point at = 7i. 

"'he poles of ,f(t,0, 00,a) are (i) those corresponding 
t. • It ,  incident and specularly reflected waves and (ii) 
A ■f,ole of 11 0(t - 0,a) or H,(- t  - 0,a) which is not also 
a 	o of kif  - - 	7/2 - a - IS) or kIi,,R• -0, 7r/2 - a - 
r 	ctively. [See Eqs. (12) and (13).1 The first rate- 

of pole is manifested by the factor kIi,,(0 0 , 	in the 
ninator of the definition (13). The second category 

o :cies may be determined with reference to Eqs. (A6); 
(:nly ones which could conceivably be close to the 
saddle point are where t  -9 or - t  - 9 equals 17T 

- 3, ±a r t3, respectively, or thus where t = a 7F 

H, t=z 7F ±a +13- . For given 9 and a, at most 
or these poles will be near the saddle point. Let 

u 	sume that the relevant pole is at t = 7F + P ; we then 

x Gi.)A D(rm,;•))+G-)A D(rm,y))+G(.)A0P 0,)1. 

(24) 
where 

G 1.1  - 	
G(7,0 , 0 0 ,a) 

m,;•)] [P a  -  

(26)  

(27)  

The other two coefficients of the function A D(X) in Eq. 
(24) are obtained by cyclic permutations of the quantities 

M,;" ) , and Pa . In the argument of A D(X), we have 
used 

--1(krsiny) 711/2 	 (28) 

The function A D(X) which appears in Eq. (24) is the dif-
fraction integral defined in the previous paper 9  by 

AD(X) = - -27r  
•.11 f 

	7) 112  X - e-i"/4 s 
ds 	

(29) 

which, when X is real, can be expressed as 

A D (X)=sign(X)[ f (11(1)- ig(1X1)1 , 	 (30) 

where f (X) and g(X) are the auxiliary Fresnel functions 
tabulated on pages 323-324 of the NBS Handbook of 
Mathematical Functions . 23  If X is not real, as would be 
the case for x=rpo„ the above would be inapplicable, 
but, instead, one could write 

AD (X)-(C if/4 /Tff) uleir / 4(,T /2)1/ 2 xl 	 (31a) 

or 

AD(X) = - (e- 	
4 / /2) w[ e -if/ 4(7/2)1/2x*]* 	(31b) 

which would hold for Im(e ifi4 X) positive or negative, re-

spectively. The function w(z) is related to the error 
function of complex argument and is tabulated on pages 
325-328 of the NBS Handbook23  for complex values of z. 

(25) 

(20) 	M, (:1 =M,(0 -0 0): M,`,. ) =Mt,(0  + 0 0 , 

with M;, °)  given by Eq. (4), and 

(vsint,70 2  

- 7F - P . 	 (21) 

'r. equently, if one sets 

1) (, 19 , 9 o,a) (-_,9,60,(')-- 	Di D2 D3 

The calculation of the function 6(!, 9, 0 0 , a), which is 
quite tedious, is sketched in Appendix C. The results 
which are relevant to Eq. (25) are 

(22) 	
a (n, 0 , 9o) a) 	u( 90, a) M9, ) D( 9 , 00, (32)  

(33) 

(34)  

e, upon rearranging the product of xlf„(B o , g -0) and 
+ a) into the factors 

0 1  = cos(tit) - cos v(9 - B o ) , 	 (23a) 

02 = cos(1,0 - cosv(e +0 0) , 	 (23b) 

l!li function c13(, B , B 0 , a) so defined will have no poles 
vicinity oft = 7i. 

1 he analysis then proceeds, as described in Appendix 
iv replacing tb, D 1 , D2, 1)3 by power series expansions 
!•st order in (t - 7) and integrating the resulting form 
'q. (11) along the line of steepest descents through 

tl saddle point at t = 7T. Thus the integral on contour 
, i a Eq. (11) can be expressed in terms of standard 

.tions occurring in diffraction problems as 

where 

U(0, ci )=
1/8(-  

and 

D(9, 0 0, a) = M„(0 + 00+ M„(0 - 00 ) 

cos(2vci)-cos(v7r) 
v sinvir 

In the complete asymptotic limit, where P0„ M,;+ ) , 
M (,," )  are all finite and r is large, A D (X) can be replaced 
by (7rX) -1  and a considerable simplification results in 
Eq. (24). Specifically, one finds 

PDiff r, II = exp [ik(z cosy+ rsiny)] 

x (c if/4 /[2) (TrrrIG(t9, 90 , a), 	 (35) 

()sin(vt9) 

I' 	, = exp[ ik(z cosy +r siny)] (elf " / T2) 	 where 
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G(0, eo, ) = 5  (7, 0 , 0o, ct)/P.M:• *) M -) . 	 (36) 

that, with G(iI, e, o,  a) given by Eq. (32), the fac-
P,, cancels out. 

:lie symmetry of Eq. (36) with respect to 8 and 0 0  is 
13us from ,M11,(0 - 8 o ) = M„(80 - 8). Thus the reciprocity 

t.t L irement is definitely satisfied. In the limit of a rigid 
ie (a =ITT) one has U(O, 	= -1 by virtue of Eqs. 

I :1\ (17), and (A3), and D(0, 0 0 , Pr) = M(0 + 	+ M„(8 - eo ). 
,r,sequently, one has 

1 	1 	 
G(0, 0 0 , ;7) _ 	 (37) 

M(0+ 60 ) 
+

M, (0- do ) 

the result for asymptotic diffraction by a rigid wedge 

in the limit of an acoustically soft wedge, 
a - i 	D(0, d o , a) approaches exp(- i2va)/ 2v sinvn. 

:t 	7T - - (3) approaches - expliv(r/2 - a)1, 
e, a) approaches exp[- ( v n)], so U(0 0 . a) U(0 0 , a) 

07, do , a) approaches 2 sine sinO 0  divided by v sinvn 
just ?I4(& + 80)- M i,(0 - 00). Consequently, one has 

Making similar expansions in Eqs. (33) and (34) the 
function O(Tr, 6, 6 0 , a) in Eq. (32) may be written as 

a(TT,ITP, 0 0 , a) 	 + AcL  ).] 11 + §0 (6' , 0 o ) 	TT - a) I 	(43) 

and consequently, from Eq. (36), 

1 	 1  

+ ) '14,0 - 

in which 

K. ,(6, ,uo) -2[A1,(& +e,) m i,(6- 6 0 )fi 	 . 
(45) 

For observation angles other than U = 0, the diffracted 
pressure field may be approximated-by combining Eqs. 
(24), (25), (40), (43), and (45)-as 

PpiTtroi`' exp[ik(z cosy + rsiny ) (e" / 4 N-2-) 

xP„rivi i," ) +m -) 1I Y(* ),A,(riti) 

+ r(- 	) + Y ( ' ).4,,(rP c,)] 	(46) 

where 

G(0, 0 0 , a) (177 - 

(44) 

) - 	
1 	 1  

- 	„(e e a ) 

1 y(•) 
(38) 	) Al, *) 1 [Pa - Ivi] 

(47) 

A , ach, again, is the correct limit. 

:tt addition to the above-mentioned contributions from 
int! integration contour C 11 , a complete description of 
t:( pressure field in the shadow zone should include the 
,po;;sibility of a contribution from a surface wave which 
k refracted from the shadowed face of the wedge. Such 
a contribution would arise from a pole enclosed by the 
corrour C 111 . For a< TT and b o > + e, the only pole of 

6, 00 , a) that could conceivably lie within C, is at 
- a + 6. This pole will Lie within the contour only 

12 TT - a,< sin"(tanhad 	 (39) 

r,t1 since in this case the imaginary part of cosa - a 
1 is negative, by (11) the C 111  contribution from this 

I decays exponentially with distance from the sur-
_ 	. Furthermore, reference to Eq. (10) indicates 

the inequality (39) is not likely to be satisfied in 
- L ations of physical interest. For these reasons we 

)1 an explicit description of the surface wave contri- 
on (which is included in Sec. IV of Ref. 22).  

and the other coefficients in Eq. (46) are obtained by 
cyclic permutation of xr, 	and Pc,. Similarly, in 

the complete asymptotic limit, one has 

PD fair. II,cal exp[ik(z cosy + r sinY)1 (e" / 	(77r) -1  

x {. [M,H-1 + [n4,1,- 141[1+ s(e, 0)/i sinI . 
(48) 

From this last expression one may obtain a correction 
to the insertion loss for a hard barrier (vis-a-vis a rigid 

barrier) given by 

- 10 1og10 11 +S 0 (0, bo )/77 sinyl 2  dI3 	 (49) 

which is just Eq. (5). 

V. PRACTICAL APPLICATIONS 

The formulas presented in the preceding sections 
probably appear more formidable than is actually the 
case. The first important point is that these results 
can be used most fruitfully in the computation of barrier 
insertion loss, as set forth in Eq. (2) 

IL r  =201og10 ( P no bar. 

N. NEARLY RIGID BARRIERS 

I!' the barrier is nearly rigid, for 77 1 > 0 a is close to 
and one can take the solution of Eq. (10) as 

77 - a = (77siny) -1 
	

(40) 

Htts it would seem appropriate to expand Hs( a) in a 
[ v'er series in TT - a, keeping up to first-order terms 
t r - a. In this event one has, from Eq. (17) 

11 8 t, a) 	- tan[4v] [1+Q 5 ()(17r- a)J, 	 (41) 

tiere 

Ff3 ( +0+ I 77)F 0 (c +20+4TT) 
(42) 

Ft3 ( + - 7r)F 6 ( + 2(3 - Tr)] 

If, as is generally true, the surface wave contribution 
may be neglected, Eq. (5) provides an estimate of the 
change in insertion loss, with respect to a rigid bar-
rier's effect, of a barrier with finite impedance. 

The second important consideration concerns the func-
tion Q 8(- 0) which appears in this correction term. It is 
shown in Appendix D that for angles 0 of the form pr/ 
2q, Q 0 ( - 0) has a form which is amenable to numerical 
computations; in some cases computations are not so 
taxing as to require a large computer. In practice, it 
should be possible to obtain useful estimates of the in-
sertion loss (or sound pressure distribution) using a 
value of 0 of the above form. One then has [see Eq. 
(D4)] 

 	In 
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%IL (dB) 
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116. 5. The finite-impedance correction to the insertion loss 
f 1. a wedge with interior angle l0'. The surface admittance 

'.-(s taken as (1 (7)=0,1 — if), 05. The source-receiver orienta- 
are identified by the configuration numbers: in conf igura-

m I the incidence direction is at 30 from the adjacent wedge 
while the receiver is at 45' from its adjacent wedge face. 

1  
siniv(t,  — 2nTr)Tsinlv[0 —(2n— 1)711 

	

sin(& + 	2m13) + sin[ H 	+ (2m + 	1)01 
(50)  sin(& + 2,0) sinro, (Zor vi31 	' 

Fur angles & of the form 6=krr/2q, k an integer less 
(.1.:In or equal to p, there is a singlular term in each sum 
ir. Eq. (50). A straightforward expansion of the two 
tr-,.ms reveals that they combine so that Q 0 (- 9) is in 
fr.ct regular. Difficulties in numerical computations 
may be avoided by avoiding such angles. 

A more detailed investigation of the cases in which 
lull receiver angle 6 is very small or the source angle 

approaches 13 reveals that Q,(- 6) becomes 

(T) 13( - 6 ) ="Q,s( -  + 6) 	(sin6r1  , 	1 	 (51) 

rirr,e 1?(- &/&i sin)') serves as a first-order correction 
h- run to the rigid-wedge limit for 1-10 (- 0) [see Eq. (41)1, 
1:•?. behavior of Q a  exhibited in Eq. (51) indicates that 

approximation in Eq. (41) is not useful for situations 
which the incidence or receiver directions are at 

r mail angles 5 with respect to a wedge face. This be- 
ior is a manifestation of the familiar phenomenon 

r*: ihe vanishing effective surface impedance for plane 
...ves at grazing incidence." This is borne out by in-
- .:ection of Eq. (A5): Substituting in the appropriate 
N ilries for and or, one has 

— (17 siny) -1 1 -= R[0 - 6,17 - ( ti 

tan( -  rir5)  tan(u/2n sin  

	

an( vt5) +tan(v/Zrisin)') 
	(52) 

the plane wave reflection coefficient at each face. 
1, 1* a given value of 11, the reflection coefficient ap- 

()aches - 1 as 6 goes to zero. These considerations 
i(lcate that useful estimates of the insertion loss cor-

:T.tion can he obtained for 617 sin)' ›- 1. 

As an alternate aid to applications of these results, 
we have computed Q 0 (- 6) for a number of values of (3 
and B. These are presented in Fig. (2). In addition, 
these curves are plotted again, with 13 appearing as the 
independent variable, & as a parameter, in Fig. (3). 
Thus one has the option of using one of the "special" 
values of (3 to approximate a desired wedge or of using 
values for the desired wedge angle for a selection set 
of angles O. 

As an illustration of the use of these results we have 
calculated the correction to the insertion loss via Eq. 
(5) for perpendicular incidence (r = -2' Tr) on wedges with 
exterior angles 13=350 °  and 240 °  for a surface admit-
tance rj i  =0.1 - i 0,05, which is representative of turf 
at 1000 Hz. 25  Values for the function Q were obtained 
from Figs. 2 and 3. Insertion-loss corrections are 
presented in Figs. 5 and 6 for several incidence and 
observation angles. 

In the case of the acute-angled wedge, the surface im-
pedance has a small effect—less than 3 dB. For the 
obtuse-angled wedge, the effect from considering the 
finite acoustic impedance is on the order of 6 dB when 
both source and receiver are at fairly small angles with 
respect to their adjacent sides of the wedge. Thus con-
sideration of the finite impedance seems to be of con-
siderably greater significance for obtuse wedges than 
for acute ones, especially since in many practical real-
izations of the obtuse wedge model the sources and re-
ceivers are close to the surface. 

VI. CONCLUSION 

A theoretical analysis has been presented for the dif-
fraction of plane waves by a wedge of arbitrary surface 
impedance. Particular attention has been given to the 
pressure field in the shadow zone for large distances 
from this tip of the wedge. The results presented here 
make use of simplifications that result for a large num-
ber of special wedge angles. In a detailed discussion of 

RECEIVER 
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20. le 
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4 

A IL (dB) 	 61 
	

4.6 	1 , 8 	6.9 

FIG. 6. The f inite-impedance  correction to the insertion loss 
for a wedge with interior angle 120' and surface admittance 
(1 ,11)- 0. 1 i0. 05. Source and receiver orientations are 
labelled as in Fig. 5. 

= — v sin(vv) 
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ht nearly rigid wedge a correction to the insertion loss 
a rigid wedge has been obtained. Numerical computa- 

. r ins indicate a significant effect of finite surface im-
.iance for obtuse wedges with source and/or receiver 
a fairly small angle with respect to the plane of the 

Age face. In addition, the solution presented here 
provide a good point of departure for the analysis 

diffraction by spherical waves or by broad barriers. 
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•-YPENDIX A: DISCUSSION OF THE F AND H 
F , INCT IONS 

The F function Fo (0 appearing in Eq. (17) is defined 
that it satisfied the two recurrence relations 

F + 213) = F5 (0 taniA - 7r)] , 	 (Ala) 

(Alb) 

n..1 such that it is analytic and has no poles or zeros in 
strip 0< < 23, the function asymptotically approach 

;i.; zero as ,--± .0. Explicit expressions for this func-
I icr. for some particular values of 3 are given in Appen-
d,.. B. 

Since F) has no zeros or poles in the strip (0, 2p) 
it lollows from Eqs. (Al) that its zeros must be at 

(A2a) 

ile its poles are at 

(A2b) 

where K = 2nn + 2m i3 ?- 0, n and yn being arbitrary non-
Jgative integers. (Of course, there is the possibility 

a pole location may coincide with a zero location, 
in which case the function will have neither a pole nor 
s. y,?ro at the point in question.) Examination of the 
1(-::,ttions of the poles and zeros of the function {sint (Iv) 

+ Tr)] F 	+ 701-1 , reveals that these are identical to 
given above, so one may infer that F5() has the 

Fi&) Fo( C + Tr 	sin[( 1, v)( 	7r)] 	' 

	

A a 	
(A3) 

, ',ore A o  is some number independent of (the precise 
,lue of which is immaterial). It then follows from this 
!„ci Eq. (A2b) that the asymptotic values of F5() should 

F 8 () - A ae i (YR)C 	 (A4a) 

iAae -1 (IA 	 c•O 
	

(A4b) 

Analogous relations may be deduced for the Ho (, a) 
nction starting from the definition of Eq. (17). It sat- 

isfies recurrence relations of the form 

sin(v) - cos(va)  
sin(v)+cos(vo) 

tan' ( -1z  v)(t - iT + a)]  

tani(1 	(+ !, — a)] 

Ho (- - i3,  a) --- R(, a) 
H a (t — a) 

where 	a) may be interpreted as a plane wave re- 
flection coefficient. The zeros of Ha(, a) are at 

(A6a) 

and 

(A6b) 

any sign combinatim being a possibility, while its poles 
are at 

(A7a) 

and 

• =-±(7r—a)±(rr+P+K) 	 (A7b) 

for, again, K= 27777 + 2n43, n 0, m ?' 0. Also, it follows 
from Eq. (A3) that 

110 (, a) 14(t + Tr , a) 

sin{lv[(5+TE)+HIsint -Lv[1(t 77)  — () .1  (A8) 
cos[(-17)+a 1}cos rdvf ;(t + 37)-a1 

APPENDIX B: THE FUNCTION F,3 (0 FOR 
PARTICULAR VALUES OF THE WEDGE 
ANGLE f3 

The function F,(w) defined in Eq. (32) of Williams' 
paper 15  fails to exhibit the proper asymptotic behavior 
in the limit as a - ioo, e.g., it does not obey our Eq. 
(A4). Accordingly, we describe here the construction 
of our function F8 () for d =p7r.`2q, with p an odd integer, 
q an integer. We shall include two examples for wedge 
angles of particular physical interest. 

We begin by recalling from Eq. (A2a) that the function 
Fo() has zeros at the values 

(131) 

which, for the particular values of under consideration 
here, may be written as 

(2q/lr)( - pTr/2q)=± (p+3q+4nq+2mp)-=± Fz  (n, 	(B2) 

Similarly, FoG) has poles at (see Eq. (A2b) 

(33) 

which in turn may be written as 

(2q/Tr)(t -p .11/2q)=± (p + q +4nq + 2Thp) E±  Fo (n, 	(B4) 

We may use Eqs. (B2) and (B4) to represent the function 
F () schematically by 

HtA, a)  
Ho(-, a) 

(A5) 

Fa  ( = Fz (n, nr)l[x + 	(n, m)] , m)l[x + Fp (n, rn)l . 	 (B5) 
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are several relationships between the pole and zero locations. F z (n, m) and F,(n, rn 

110: development of Fo (C). They are 

1), m — q) F,,(n, m), 

F„(n, m) = F(- n + ;'•(p— 1), 	m -.1-  q), and 

Fp (n + p, m 2q) Fp (n, m) 

Eq. (B6) into Eq. (135), with appropriate changes of limits, yields 

i, (t), 	II 	If [x - Fp (n, m)][x + Fp(n, no)] II II [x Fp (n, m)1[ x + F p (n , m)] . 

canceling out the common factors, we have 

hich are 

102" 

portant in 

(B6) 

(B7) 

(B8) 

(B9) 

co(S) = 	I 	[x -F(, ni)][x + F,,(n, no 
n.-1/2(P-1) 

7,11)1[x+Fp (n, no)]. 	 (B10) 

next apply Eq. (B7) to the [x+ Fr,(n, frn)1 factors in Eq. (B10) and rearrange the factors to obtain 
-1 	 P-1 	(24.1) 	 a-I 	 1/2(p-0 -(4,1)  

I = 	I I 	 [X  Fp(n, no) i 	FI 	IT Lx - F•p (n, m)]/ If 	Fp (n, m)] H 	fl [x— Fp (n, n')1 (B11) 

	

.jj 2.P-i) m=a .0 m.0 	 am-24 m.1 / 2(0.1) m.-m 

ih becomes, after use of Eq. (B8) and further adjustment of the product limits, 

) i p n 	 - 	[ I if [x — F;(n, m) ] H 
/ 	 -1/24+0 a-1 

[I 	— F(, m)1 	ff 
-1 	 -1 

2(P-1)

I [x Fp (n, m)1 
m.-m 	 .0 rn.0 	 n. -m 	m.0 

;ti :I! that the numerator of Eq. (B12) may be consolidated to read 

,m)1. 	(B12) 

(1313) 

mlar treatment of the denominator of Eq. (B12) yields a form similar to Eq. (B13), but with the limits, n I 	, 
( ; 	q - 1, Thus we have the final schematic representation for Fs(C) 

	

H H 	m>1 H H[ x-Fp(n, n)] 

	

nr-1/ 20-1) m.-co 	 m.(1 n.-m 

A Tecific functional form for F3 (0 which satisfies all the requirements of zero and pole locations is 

e (.0 = 	sin(oif2p)[x— p — (4n+ 1) q 
n7-1./ 2(P-1) 

Ill? re we have used the definition of F,,(n, m), Eq. (A4). Finally, making the substitution, 	(2q/Tr)( -p7r/2q), and 
.i..111;plifying, we obtain 

sin[(q 'p) t— TO +(iTc//2p)(4n- -(pTr/2q)(m+1)]. 	 (B16) 

   

a-I 

rJ sin -471  x —p — (2m +1)pi, 

(1314) 

(B15) 

conclude by quoting two examples for particular 
NkNie, angles p which are of physical interest. First 
F he right-angle wedge, p=177, Eq. (B16) yields: 

-V2cos()  
Fir/2(s ,-  • sin()+cos(1) 

for the oblique wedge, j3 = 51T/4, we find 

V-2- 1cos()  -cos(tTr)]  
F5,i4k" - 11 +cos(1)+sin(15)1 

0 In i wedge angles may be treated with greater effort. 
noteworthy, however, that the expression we have 

of Limed for Fs (S) is considerably simpler than that ob-
tat oil by Williams. It may be verified readily that Eq. 
(E1 exhibits the correct asymptotic limits prescribed 
b .) q. (A4). 
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APPENDIX C: ASYMPTOTIC APPROXIMATION 
OF f( - ,0,0 0 ,a) 

In obtaining an approximation for the function f 	0, 

00 , et) in the vicinity of the saddle point at = Tr, the 
quantities D I , D2, 0 3  and 47.(, 9 ,9, ei) in Eqs. (23)-(25) 
are expanded in powers of 	or) to yield 

:' - (t -70 	v 

, 

(Cl) 
where we have used M' =M(9 + 90 ) and Mr ) =ML,(0 -00), 
with M„ given in Eq. (5), while 

a) - 
(v 

9, 00 , 	 (c2) 

is assumed to be expanded in a power series in - r up 
to first order in - 

(B17) 

(B18) 
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CO 

regards the actual integration, one replaces cost 
`.+ (LI ) ( - Tr)2  in the exponential factor of Eq. (11) 

(' integrates along the line of steepest descent of the 
alp! cdrnate1ntegrand, i.e. , along a line going oblique- 

unwards making an angle of 45 with the real axis 
aii 1 passing through the saddle point at Tr. The integra-
i. ill variable is charged to s, given by 

- Tr) = (2/kr siny) I /2  s 	/ 4  

It 

 

. s integration now going from -Do to 	The approx- 
ii 1.,,e factor for f is also replaced by means of the al-

'aic identity 

It serves as a corection term in the function 1/0 (t) for 
nearly rigid wedges. Since the function F0 (t) takes on a 
simple form for angles 0 of the form prr/2q, it is rea-
sonable to expect that Q()) might also be cast in a rela-
tively simple form in the same instances. 

One begins by noting that from Eq. (B16) one has 
1/2(F-1, 

ltiF0(t)= 	ln(sinht. 	- 20+1 tr(4n - 1)]}) 
712 

n(sin{-1]t — 17r — 20(m+ 1) .11) 	(D2) 

r-s)(b-s)(c-s) 	(b-a)(c- 	-s 

+ two additional terms obtained by 
cyclic permutation of a, b, and c. 

IC + XS 	 _ 	1 	xa 
C3) 

and thus 

d 
InF 0(0 = v — 20+ .TT(4n — 1)11 

yields the asymptotic approximation to the clif-
f 1::ted pressure field, Eq. (24). 

I i Is now necessary to obtain a suitable expression for 
,90 a). By comparing Eqs. (12) and (22) and their 
ciated definitions, one may obtain an explicit rep-

r i::,(3ntation for 4' 

2vsin(ve)D 3  
q'V, 	00, 	- 0,11r - a - 	00, a) 

x 	+ 00 1  - 	0)02] , (C4) 

e 

0, 2  xP,At — 0,.1 — a — j3)11,3 (± — 0, 	. 	(Cs) 

:‘;', I A', by using Eqs. (A8) and (14) in Eq. (C5) and per-
t - wing several trigonometric manipulations, one may 

hl am 

	

1 	 9 	a)  
=(c6) 

	

'2 4 	 —9 , a)4'  

flIN1 after substituting Eqs. (C6) into Eq. (C4), the re- 
into Eq. (C2), and expanding and recombining the 

r rns 

■M o , + e) ,P2,(t — 	7T, CO '(O0,  a - 0)*2 „(t + 0 -lir, a) 

using the definition 

U(8, a)E 	
a) 4'.(0,Vr -  a - 
	 (C7) 

I I? has finally 

C(Tr, 8,8Q , a) = Pc,U (8 , a)U (00 , a)D(0 , B o , 	(Cs) 
I 

00 , a) = M„( 	00 ) + M,(8 — 	+ 
cos(2v a)cos(vTr)  

v sin(v7) 

(C9) 
ich completes the outline of the analysis leading to 
is, (32)-(34). 

D: THE FUNCTION Q(> FOR 
P 1 11TICULAR ANGLES )3 

'1 he function (i0(t) is defined in Eq. (42) as 

Q,3Q. ) = —
a 

In 
 F + 0+170 (t + 20+ In)  

at 	Fo (t• + - 1.  Tr)F(t + 20 - id 
	

(D1) 
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cot{[ t - 37r - 29(m + 1)il . 	(D3) 

Then upon substitution of Eq. (D3) into Eq. (D1), con-
solidation of arguments of the several cotangents, and 

use of the identity 

cote,. ± cot(921 sin(82±0i)= 
sinS 1  sinS2  

followed by the use of trigonometric angle-addition re-
lationships, one may obtain 

4) 0(t) =- v sin(vrr 

a-I 
sin(  — 2,a0) + sink - 0(2m+ 	1)] 

(D4)  
mr.ti sin(t - 2m0) sink - 0(2m + 1)] ' 

It should be pointed out that for t - k /2q, with k a posi 
tive integer Less than p, there is one singular term in 
each sum in Eq. (D4). It can be shown, however, that 
the two singular terms combine in such a way that Q(t) 
is continuous at the apparent singularity. For t =0, 
there is a true singularity in Q8.  In this case one may 
see from Eq. (41) that this singularity is cancelled by 
the tan(t vt. ) factor in 11, to give 

ii 

 2i1 siny 

for a' = 	- (77 sin-y)-1 , which indicates the manner in 
which the rigid wedge limit of 11 0(0, a) is approached as 
the impedance Ti becomes infinite. Similar behavior may 
be noted for t =- 0. 
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Chapter 6 

EFFECTS OF AMBIENT FLOW AND 

DISTRIBUTED SOURCES 

Diffraction in the Pressure of Ambient Flow  

The model sketched in Fig. 1 may be used to assess the 

effects of ambient flow on barrier diffraction. The barrier 

is taken as a thin screen which occupies the region x <0 of 

the y= 0 plane; the edge of the screen lies along the z axis. 

The source is taken as being localized as a point x s ,y s ,z s 

 where ys  < 0, the listener is at (x L ,y L ,z0. A uniform ambient 

flow of velocity U0  is in the +x direction, tangential to the 

screen and having the same velocity on both sides of the 

screen. Since the screen is idealized as being arbitrarily 

thin, there is no discontinuity in Uo  at the edge. 

The solution for plane wave diffraction in terms of such 

a model has previously been given by Candel. 1 ' 2 Here, a 

slightly different approach is used for the case when the inci-

dent wave ensues from a point source. 

If one limits one's consideration to a single frequency 

component and uses the device of taking e-iwt to describe the 



A 

A 

LISTENER 
(xL,yL,z) 

SOURCE 
(xs,Ys,zs) 

UNIFORM 
STEADY FLOW 

106 

Fig. 1. Geometry used in the study of the effects of 
ambient flow on sound diffraction. A point 
source is immersed in a uniform steady flow 
near a thin screen. 



107 

time dependence, then the complex amplitudes of the acoustic 

field variables satisfy the equations 

-iw + Uo D/ax]p/c
2 + p

o
V.1.1 = 0 

-iw + U 0 a/ax]ii + vp = 0 	 (lb) 

everywhere except in the immediate vicinity of the source. 

From these one may derive the generalization of the scalar 

Helmholtz equation which takes ambient flow into account , i.e., 

{p} 

v 2 	c-2 [-iw + U 0  a/ax]
2 

There is a transformation 3  which, for U o /c < 1, will reduce 

equation (2) to one resembling the scalar Helmholtz equation 

without ambient flow, i.e., 

w/c)x/ 2  x/a (4) 

where 

Uo /c 
	

(5 ) 

is the Mach number, and 
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= 	[1 - M 2 ] 1/2 
	

(6) 

2 
	= 2 /D(x/f3) 2 + a 2 /ay 2 + 2 /Bz 2 + (w/13) 2 /c 2 	

( 7 ) 

Consequently, one may conclude that any solution of Eq. 

(2) corresponding to a given angular frequency w may be taken 

as 

p(x,y,z,w) 	= 	 p(x,y,z,w) e -i(Mw/c)x/13
2 	 (8) 

where 

= 	x/ f3 	 (9a) 

= Y 	 (9b) 

z 	= 	z 	 (9c) 

w = w/f3 	 (9d) 

and 

2 	-2 	2 	2 	2 	-2 	2 [a /ax + a /ay + a /az + (w/c) ]P = 0 	(10) 

The latter is the scalar Helmholtz equation corresponding to 

no ambient flow. 

For the screen diffraction problem, one requires that 

uy  = 0 at y = 0 for x < 0. Consequently, from Eq. (lb), ap/ay 

should also be zero for the same circumstances. However, one 
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sees from Eq. (8) that this requires 

alS/a5r' 	= 	0 	 0 	 (11) 

which is the same boundary condition as one would have in the 

absence of ambient flow. Also, if the source is at x s ,y s ,z s , 

then P should correspond to a field generated by a source at 

,y s ,z s . Consequently, one concludes that the solution of 

-4wS(x,y,z) 
	

(12) 

subject to the boundary condition mentioned above may be taken 

as 

p=ffie 
i(Mw/c)(x0-x)/ 2 

S(xo ,y0 ,z 0)G(x/ (3,y,z1x0/,y0 ,zo l w/ O dxodyodzo  

(13) 

where G(x,y,z x o  ,y o  ,z o  1w) is the Green's function for the 

scalar Helmholtz equation in the absence of ambient flow 

satisfying 

+ (w/c) 2 ]G(x,y,z 	 -476(X - X- 0 ) (14) 

In the case S(x,y,z) is taken as S 	x - 	the above reduces 

to 



L 

e
ikL e i7/4 

27N
1/2 

N » 1 (16c) 

/ )(x- x)/i32 
p = e 	 ,y,z1xs/,ys ,z 

which may be considered as the Green's function for the 

problem of diffraction of waves by a thin screen in the 

presence of ambient flow. 

Effect of Ambient Flow on Insertion Loss  

The Green's function without ambient flow included is 

described in some length in Chapter 1 of the present report 

and the fact that it is amenable to numerical computation 

implies that the problem discussed above is also. Here, for 

simplicity, we limit our discussion to the circumstances 

described by Fig. 2. The Green's function in the absence of 

ambient flow for such circumstances is given by the Fresnel 

number approximation 

) 
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(15) 

       

G 
e
ikL 

e
iff/4 

f([2N 2 ) - ig([2N]1 2  (16a) 

 

/2 

 

       

       

e
ikL 

L 
(1/2) _ N 1/2 e -i N « 1 (16b) 

     

where N is the Fresnel number given by 
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YLI  

I 1ST EN ER 
(XL ,Y L ,Z L )  

i____ xs1<< iYs i 4414,  

SOURCE  
(xslYslzs) 	P 

UNIFORM STEADY FLOW 

Fig. 2. Sketch of limiting case discussed in the text. 
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N 
L - R 

(17) 
(02) 

where A = 2ff/k and 

Z S
) 

2 (18a) 

R 
	

+ (yL  - ys ) 2 + (z L  - z s ) 2 ] 1/2 	(18b) 

2 	2 ;  
YL 

2 	2 1/2 
YS )  (18c) 

The functions f and g are the auxiliary Fresnel functions  

tabulated in the NBS Handbook of Mathematical Functions. 4 

For most purposes, the asymptotic limit (16c) may be con-

sidered as realized when (2N) 1/2 > 2 or N >2. 

The insertion loss due to the barrier is defined as the 

loss in decibels of the sound pressure level at the listener 

location due to the presence of the barrier and, for waves 

from a point source, is accordingly 

IL = 10 log 10 	1 2 	 (19) 

where GNB and GB are the Green's function without and with 

the barrier present, respectively, Thus, in the absence of 

ambient flow and in the Fresnel number approximation, one has 



[2N ] 1/2 	+ g 2 ([2N] 1 2 

2 	 N « 1 

(21) 

IL z -10 log 10  [2N 112 + G 2 ([2N] 1  

113 

20) 

Furthermore, for circumstances allowing the Fresnel number 

approximation, it is a good approximation also to set the 

factor R/L .., 1, 	so one has 

IL 4  -10 log 0 

20 log 	0 2[1 + 	(2N 

20 log 0 2 + [20/xn 

6 + 	(12.3)N 
1/2  

10 log 10 (47 = 

10](2N) 1/2 	N «1 

dB 
	

N « 	 (22) 

16 + 10 log 10  N 	N »1 	(23) 

which is a monotomically increasing function of Fresnel num-

ber only. 

According to the analysis of the preceding section the 

magnitude of a Green's function when ambient flow is present 

is that of the Green's function when ambient flow is not 

present providing one lets x+x/ii, 	xs  = x s /r3 in the 

arguments of the latter. 	(This is true regardless of whether 

or not the barrier is present.) Consequently, the above 

approximate expressions for the insertion loss will still 



2 
x L 

(26) 

2  (YL  Ys) [4/Ys xL2 /Y 

( z L zS) 2 	(Y 	YS ) 2i /2  

(27a) 

 

- Z S )  2 	(YL  YS 

  

2 
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apply to the case when there is an ambient flow, providing the 

Fresnel number is similarly transformed, i.e., 

,y 	
, Ys , zslw )  

s" , Ys , 
	 (24) 

In general, the ratio of the transformed and untransformed 

Fresnel numbers is spatially dependent. However, for the 

case when ly /x l«1 and ly s /x s  

4/4 1 

2 
lYS 	xS/2Ysl  

«1, one has 

(25a) 

(25b) 

( YL 
2 

x S /2YS )2  

Y 	Ys) 2  (YL Y ) 

- z S )  2 	(YL  L YS 
(Xs 

-z S )2+
(
yLYS )  

1/2 + 
1/2 

(27b) 
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and, consequently, 

2
-  -( YL / YS )xS  -R 

+ 2x S xL (27c 

 

2 1/2 
(z L - z s ) 2  + (y - y s ) -  

(Here, it should be recalled that the source and listener are 

presumed to be on opposite sides of the barrier, so y L  and y s 

 have opposite signs. Consequently, the above gives L- R> 0, 

as must be the case.) 

The above expression for L- R is bilinear in XS  and  X L 

so with the substitutions x 5  x5 /6, y5-y 5 /i3  one has 

L - R-> (L - R)/8 2 . Also the substitution w->w/8 causes 

A/2 -> 8A/2. Consequently, in the case described above 

N 	N/8 3 

Since 8 = (1-M2 ) 1 / 2 
 is less than 1, the transformed Fresnel 

number is larger than that corresponding to no flow. The 

insertion loss with ambient flow present is then given by 

Eqs. (21,22,23) only with N replaced by N/8 3  so one has in 

particular 

IL 	., 	6 + (12.3) 	2 	3 2 	 N<<1 	 (28a) 

IL ,-. 	10 1og 0 	 N»1 	 (28b) 

In summary, the insertion loss is increased when there 

is an ambient flow, the increase being independent 



G 
= e ikL e "4 

L 
	

2 
X) - ig(X)] 

C  = 	°SI 
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of the direction of the flow. 	For larger values of the 

Fresnel number, the effect of ambient flow is to add an additional 

increment to the insertion loss of 

A(IL) 	= 	10 1og 10 [l/(1 - 
	2 	 (29) 

If the Mach number is 0.5, for example, the additional 

insertion loss is 1.9 dB. 

Green's Function for Source Near Edge  

In Chapter 3, one of the limiting cases examined was 

that of a thin screen 	1/2) when rr 5 /L 2÷0, kr r/L finite. 

This includes the case shown in Fig. 3 when the listener is 

many wavelengths from the diffracting edge and when the source 

is much closer to the edge than is the listener. However , the 

source is not presumed to be either very close or very far 

from the edge relative to a wavelength. The Green's function 

for this case can be constructed easily by the principle of 

reciprocity from Sommerfeld's known exact solution for the 

diffraction of an incident plane wave by a thin screen. (This 

was pointed out to one of the authors by Donald Lansing.) 

The result, for the case when the listener is in the shadow 

zone, is that the Green's function is given by 



f(X) - ig(X)] 
= 0 + 

with 

X = [8rr s /A 
	

2 Icos(C/2)I 
	

(31) 

The functions f(X) and g(X) are the auxiliary Fresnel functions 

described in the previous section. This Green's function may 

also be modified to take into account the presence of ambient 

flow by use of the transformation described previously. 

The fact that the above Green's function covers cases 

when rS  is very close and not so close to the edge, that it 

is easily computed, and that it may be easily extended to 

include ambient flow suggests that it may be useful in studies 

of the diffraction of engine noise around wings while an air-

plane is in flight. 

Sound from Distributed Sources  

In order to illustrate the application of the general 

theory to sound diffraction from a distributed source (Fig. 4), 

one may take, for simplicity, all the sources to be along the 

far side of the screen with 	= 27 in each case and to each 

have Z S 0 (i.e., the sources lie along a line transverse to 

the edge of the screen). The listener is considered also to 

have z coordinates equal to 0 and we consider r»r s  such that 
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(30) 



SOURCE 

wm4wAw4wIw#4wmd 

SCREEN 

DIFFRACTED WAVE 
PATH 

r >> rs 

kr » 

LISTENER 

Fig. 3. Limiting case of listener many wavelengths from 
edge of thin screen. 
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TURBULENT 
JET, EXIT 
VELOCITY "U" 

RAYS FROM ELEMENTS OF 
DISTRIBUTED SOURCE 

THIN SCREEN 
Ar 4r Air AV 	 dr 	.0 

DIFFRACTED RAY 
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LISTENER 

Fig. 4. Sketch of concepts utilized in the analysis 
of diffraction from a distributed source. 



we may approximate L by r except in the exponent where it is 

taken as r+rS'  In this manner, 6 reduces to 

120 

■7 2 e i [kr + T14] 
r 

- ig([8r 	] 1/2 cos[0/2] 
	e ikr 	

(32) 

uagth per unit length is taken as 

iency component, then the corresponding 

:tide in the far field is given by super- 

ikr s  

	

- igl(rs ) e 	drS 	(33) 

we assume the source does not extend 

edge, so all of the received sound is 

also assume the spatial extent of the 

s than a wavelength of the radiated 
ikr 

	

approximate f, g and e 	by 

power series expansions. If we do so, 

2- 	/A)1/2 cos(e/2)e-iff 4 



(r5 ) [1 + ikrs  - (1/2)k 2 r 2 ] dry  

One of the interesting aspects of the above is that the 

diffraction could enhance the received sound at low frequencies. 

Suppose, for example, that the source were a quadrupole (e.g., 

as for jet noise) such that 

• f (r s )drs 
	

f rs(rs 
	0 	 (35) 

Then the expression for p would reduce to 

, -(1/4)k' 	2 
rS s 

4/(27)1/2k1/2 eikr 
r 	

cos(e/2)e-iu/4 1/2 rS 	s( 

(36) 

The first term is weakened at low frequencies by the presence 

of the k 2 factor while the second has a factor of k 1/2 which 

may be larger when the frequency is low. The first term,  

incidentally, is just the sound field expected in the absence 

of the screen. 	[Time limitations, unfortunately, have pre- 

cluded a more thorough investigation of the question of 

whether diffraction could actually enhance the sound of a 

distributed source which tends to radiate as a quadrupole in 

the absence of a barrier.] 
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