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sider here only the case in which the source and receiver lie in a plane

z = constant. (We -assume e—lmt time dependence and use k = w/c.) The

acoustic pressure at the receiver is expressed as

G(rlr,) = ﬁz: Glg; JH(m-g;) + V(g;) (1)
with
G(g) = exp(ikR)/R (2a)
R(g) = [r2+r ? - 217 cos £]” (2b)
and
gy = lo-6 ] | (3a)
£, =28 - |6-0_| (3b)
E; = 016 (3¢)
g, = 2 - (ote ) | (3d)

where H(g) is the unit step function. The terms G(gi) represent various
wave contributions inferred from the method of images. The sum of the
’V(ii) terms corresponds to the diffracted wave. Each term may be expreseed,
with the abbreviation
A(g) = wH(r-£) + (v/2)(g-7-8) (4)

as

Vle) = LA/ R ol (v )T F_ (1A a,¢) (s)
with

F(Alase) = 7 dale™/(14icK)] (62)



« = krr /(r+r ) 5 ¢ = 1T / (r+r ) (6b)

where v = n/8 and C is a contour in the first quadrant of the complex

q - plane with end points q = 0,1 and such that on C, q and K are related

by
in{2|A inh
tan(2|A|qy) = Cossén.f. c';olzzi\g) ios a (72)
in(2[A in b

tanh(ZlAqu) - cos(ZTfilg g:os[»)bsincosh a (70)

SR 1= iRae)® = Q) (7¢)
and

Q=

(K/2)[1-¢ + (eK/2)2] (7d)

As q traverses the contour C from q = 0 to q = 1, the parameter K in-
creases monotically from 0 to =, a is always positive and b ranges between
0 and vr.

The mumerical evaluation of the integral in Eq (6a) is effected, in
the present algorithm, by selecting a sequence of values for the parameter
K, computing the corresponding values of q from Eq's. (7), and approximat-

ing the contribution to the value of the integral from the interval
(g » 9y) as
I, = [/ (1+icK )1(q_-q_ ;) | (8)

where Kn is intermediate between K _; and K,. An error analysis indicates

that F, can be approximated to within a margin § by choosing

K

1 = Kn + 6eaKn(1+ezK121)[a.2 + 5’2(1'*&1(11)2]—1/2 : (9)



and using the fact that K = Q corresponds to q = 0. The intermediate

value R% is taken as

X = (K _;#K )/2 - (1/a)in { cosh[(o/2)(K -K )]}

which is such that the integral of e X from K1 to K is equal to
that from R; to K .

‘The algorithm outlined above has been used in a comparison with
experimental data obtained during the summer of 1976 for the case of a
‘screen with a small source near one surface and with microphones on an
arc, centered on the top edge of the screen with radius 42.5 inches. The
results of the comparison for two frequencies, 900Hz and /650Hz, are
shown in Figures 1-2. In each figure, results are presented for three
source locations. It should be noted that the computed sound pressure
levels have been adjusted so as to force a match with the experimental
data at & = 180°.

The agreement between computed and measured sound pressure levels
is noticeably more consistent for the 1650Hz case than for 900Hz. The
poorer agreement at 900Hz may indicate that the effect of sound trans-
mission through the plywood screen (with transmission loss dominated by
the "mass law'") was a significant experimental artifact. We hope that
this question will be resolved as comparisons for other frequencies are
completed. It should be noted that the geometric shadow lines for
source positions 2 and 3 in both Figures 1 and 2 are at & = 133° and
8 = 143° respectively. The fact that the experimental and computed SPL's
in the shadow zone are in quite good agreement for the 1650Hz case gives
a favorable indication for the numerical evaluation of the diffraction

integrals.
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IT. REDUCTION OF OTHER DATA

In anticipation 6f the completion of the analysis of diffraction of
spherical waves by barriers with curved surface, the experimental data
obtained for the case of a barrier with a semi-cylindrical top, the radius
of the top being one foot, have been presented in graphical form, as shown
in Figures 3-5. Several source locations, with increments of 3 inches in
a vertical plane 4 inches from the side of the barrier, were used. For
clarity in the presentation, the maximum levels in successive curves have
been offset by 10 dB. Where comparisons with the thin-screen data are
appropriate, it appears that there is considerably more variation with

receiver angle with the wide barrier than with the thin screen.

III. PLANS FOR FUTURE EXPERIMENTS

The next logical step in our investigation of wing shielding in air-
craft noise is to use a section of a model wing as the diffracting barrier.
A suitable wing section was identified in the summer of 1976. The planned
experiments with this section essentially parallel those previously carried
out with a thin screen. It is felt that the most fruitful set of tests
can be made in an anechoic room using a controlled sound source with micro-
phones located on an arc at a constant distance from the edge of the wing
section. Because of the different radii of curvature of the leading and
trailing edges, we anticipate two types of mountings for the wing section.
In the first case, one of the edges would be employed as the diffracting
~edge, with the sound transmission path at the other edge blocked by a
"floor'" consisting of a felt pad above a hard (plywood or masonite) base.

Two tests of this type are envisioned, using successively the trailing and



trailing edges of the wing section as the diffracting edge. In the second
type of test the "floor" would be removed, admitting the possibility that
diffraction could occur past both edges of the wing section. |

As in the previous experiments, pure tone excitation of an acoustic
driver with an inverse exponential horn will be used as the sound source.
For data presentation we hope to use a real time analyzer. (If such a

device is not available a 1/3-octave band analyzer would suffice.)
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INTRODUCTION

This report presents a summary of work performed during the six month
initial phase of the subject grant. Several laboratory experiments were
conducted at NASA Langley Research Center during the summer of 1976. The
intention in each experiment was to investigate effects that may be expect-
ed to be important in wing shielding of noise which arises from use of the
engine-over-wing configuration in STQOL aircraft. Where necessary, analyt-
ical investigations are being performed to aid in interpreting the experi-
mental data. The bulk of this report is an extended version of a present-
ation! by Ms. Robin Vidimos, an undergraduate research assistant, at the

92nd meeting of the Acoustical Society of America.



SUMMARY OF ACTIVITIES

The STOL (short take-off and landing) aircraft has, in recent years,
been looked to more and more as a solution to transportction problems in
crowded metropolitan areas. The engine-over-the wing configuration has
been suggested as a means of developing increased 1ift, particularly during
take-off and landing. Our purpose in this set of experiments was to see to
what extent (if any) noise is shielded by placing the engine over the wing.
Such noise-shielding should be effective primarily in steady flight.

The study of diffraction phenomena has a rich history, dating to
Poincare? and Sommerfeld3. However, most asymptotic theories of sound
diffraction assume that the source is many wavelengths from the diffracting
edge. This assumption is not entirely appropriate for our case, especially
when considering frequencies in the range of 1000 Hz.

Our study deals with three cases. The first is the.diffraction of
noise around the wing edge when the source is not far from the edge relative
to the fiequency of interest. Analytical and experimental approaches are
involved in this facet of the study, as is the effect of ambient flow in this
case. We also studied the effect of surface curvature aﬁd shape on noise
diffraction. Finally, the most realistically, we wanted to see how noise
was diffracted from distributed aircraft noise sources.

The analytical aspects of these problems were approaéhed with the idea
that a numerical evaluation of the integral which describes the diffraction
effects could be found without restricting it to a large source-edge separa-
tion. This has led to the development of an improved analytical method for
estimating wing-shielding effects.

Dr. Pierce is preparing a manuscript describing this technique for

submission to JASA. We'are currently working on optimizing the numerical



integration procedure.

We started with a widely studied case as shown in Figure 1. This is
the problem of a point source near a rigid wedge of arbitrary wedge angle,
where a thin screen is the limiting case. Our experiment used this limit-
ing case in the form of a plywood screen four feet high. Our sound source
was a driver at a distahce of eight inches horizontally from the screen.

It was moved to various positions on a vertical axis, the highest position
being level with the top of the screen. The receivers were microphones
positioned in an arc at a radius of 42%" from the top of the screen as
well as a vertical array at a distance of 12" from the side of the screen.
Narrow band sound pressure level measurements were taken at discrete fre-
quencies ranging from 450 Hz to 5000 Hz.

The analytical solution to this boundary value problem may be expressed
as geometrical acoustics terms plus a contour integral. The standard form
of this integral is slowly convergent and the integrand may be singular. We
have transformed this integral to one over a path of finite length in a com-
plex plane with the integrand uniformly bounded and the real and imaginary
parts of the integrand non-oscillatory. The rigid-wedge diffraction exper-
iment was used primarily to check the consistency of our analytical and
experimental methods.

We then investigated the effect of ambient flow on sgund diffraction.
The insertiog loss without flow is well known. It should be possible to
obtain the insertion loss for the wedge with flow present (at low mach
numbers) by inserting the parameter transformations suggested by Candel's
study* of diffraction of plane waves in a moving media as shown in Figure 2.

This was tested using the same basic set-up as used in the first exper-

iment. The driver was left in place and an eight inch jet below the screen



was used to provide ambient flow around the thin screen at a pressure of
approximately .59 psi. Narrow band sound pressure level measurements were
taken at the same discrete frequencies previously used.

In the next case, the driver was removed and replaced with a one-inch
jet at a pressure of 5 psi. as a noise source. The rest of the experimental
configuration remained unchanged. The jet location was chosen so as to
minimize the effects of ambient flow and scrubbing noise.

The data from this experiment will be interpreted by adapting from
the jet-noise literatureS’6 a spatial source distribution, S(x), or a
source distribution correlation function which will be used in conjunction
with the rigid wedge Green's function to estimate the mean-square pressure
at the receiver locations as shown in Figure 3.

In some cases idealizing diffraction by using a thin screen is not
appropriate. For instance, when considering the diffraction of higher
frequencies around the leading edge, a different approach must be used.

An asymptotic sclutionrfor wave diffraction by curved surfaces whose radii
of curvature is larger than or comparable to a wavelength is being developed.

The experimental set-up for this case is shown in Figure 4. A thick
barrier capped by a plywood hemi-cylinder 4' x 8' x 2' was used. The driver
was used as the noise source. The same microphone array was used, the only
difference being that the vertical array was positioned béhind the arc.
Again, sound pressure level measurements were taken at discrete frequencies

in the same range previously used.
CONCLUSION

In conclusion, we are engaged in a study combining analytical and

experimental“work, aimed at improved estimates of the wing-shielding effects



associated with engine-over-the-wing aircraft. The salient features of this
study are the development of a numerically evaluated Green's function for
the diffraction of sound by a wedge for arbitrary source locations and a
series of experiments aimed at determining separately the effects of ambient
flow, surface curvature, and distribution noise sources. Reduction of data
is in process; further reports will present the results of these investiga-

tions.



REFERENCES

1. A, D, Pierce, R. A. Vidimos, and W. J. Hadden, Jr., "Preliminary Account
of some Recent Experiments on Sound Diffraction by Barriers," J. Acoust.
Soc. Am. 60, S 22 (1976).

2. H. Poincare”, '"Sur la polarisation par diffraction," Acta Math. 16,
297-339 (1892).

3. A. Sommerfeld, "Mathematische Theorie der Diffraction," Math, Ann. 47,
317-374 (1896).

4. S. M. Candel, "Diffraction of a Plane Wave by a Half Plane in a Subsonic
and Supersonic Medium", J. Acous. Soc. of Am. 54, 1008-1016 (1973).

5. W. T. Chu, J. Laufer, and K. Kao, "Noise Source Distribution in Subsonic
Jets", 1972 Internoise Proceedings, 472-476 (1972).

6. F. R. Grosche, "Distributions of Sound Source Intensities in Subsonic
and Supersonic Jets', Noise Mechanisms, AGARD Conference Proceedings
No. 131 (1973).




NRumerrcal CompuTAaTION OF

Greens Function

Known Exact Sorurron:
GromeEeTRIC Acoustre  [ERms  +

Derinzte TITnrecrars
We Have Transrorwmreo Inveerars To

. PaTu of Fznrte LenorTs

Souvrce 2. Intecrano (Re + Im) naw05et¢.¢47011

3. IntTecrano UnirormiY BounoFo

Rricro Weoor

(Screen I3
LT mITING

CAse ) Frecuae 1




Drerractrron ARouno Screen wWrTw

Amerent Frow C(Tnsertion Loss)

I_ | I.L. wrth fFrow?> I. L. witnout Flow
wrrd X, xl/( -
| o Y, ™Y
—_ 1) %
‘S Xg /( I-m*)

Lrstener - f F/(l-m‘)."

Soofcﬁ (;s,Y,)zs) (,L:VL’%L )

| '

Uarream Flow
| ¥

Ti  Freusr 2

4



Jer Norse Drrrracrron

(P"'(x"h
” 5§ G(xfx) G* (x[x;) <S(x) S(xp)dx olx
) /'/ g
.’::__ - G(xlx.) : Gresn’s Function Wsrra Rr_ox‘o
/ N Sceeen
\\\ S (x,) : Source Fuoncrron

L}

ﬁf DIFfFRacTeD
Norse

Jer | LrsTEnegQ

-
=
01
c
A
m
UQ



DriveEeR HemzcyLInoER MicropHoONE

AarRAYS

Tl
o>

-4
0
<
y )
m



re '“W O R R

Final Technical Report

Grant No. NSG 1307

AIRCRAFT NOISE PROPAGATION

By

W. James Hadden and Allan D. Pierce
Principal Investigators

Prepared for

National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia

June 1978

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF MECHANICAL ENGINEERING
ATLANTA, GEORGIA 30332




GEORGIA INSTITUTE OF TECHNOLOGY
School of Mechanical Engineering

Atlanta, Georgia

ATRCRAFT NOISE PROPAGATION

Final Technical Report
Grant No. NSG 1307
June 1978

By

W. James Hadden and Allan D. Pierce
Principal Investigators

for the

National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia



AIRCRAFT NOISE PROPAGATION

W. James Hadden, Jr. and Allan D. Pierce
Principal Investigators

Final Technical Report
June 1978
Grant No. NSG 1307

National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia



AIRCRAFT NOISE PROPAGATION

W. James Hadden, Jr. and Allan D. Pierce
Principal Investigators

Final Technical Report
June 1978
Grant No. NSG 1307

National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia

Y/ 7

W. Jagks Hadden, Jr AlTan D. Pierce
Principal Investigator Principal Investigator

S. Peter Kezios, Director
School of Mechanical Engineering




TABLE OF CONTENTS

CHAPTER 1 - INTRODUCTION & v vveseeee e e e
RE T O S vttt et e oo nnsessonoenannesossnoeeonnans

CHAPTER 2 - LABORATORY EXPERIMENTS ON SOUND
DIFFRACTION ittt it ittt cannonannnes

CHAPTER 3 - THEORY OF SOUND DIFFRACTION AROUND
SCREENS AND WEDGES ... .i ittt it iiiienanncnnnn.

Introduction ......cciiiiiiiiiiiiiriineneonnnananns
I. Geometry and Formal Solution ..........c.o....
II. Reformulation of Diffraction Integral ......
III. The Deformed CONtOUT . uvvvrrrnnereneennnenn.
IV, Limiting €a8SeS ..ttt it innneeinenonnonoonanns
V. Numerical Integration Scheme ...............
= B o =3 Y o -

CHAPTER 4 - SCATTERING OF SPHERICAL WAVES BY

RECTANGULAR PATCHES ...ttt i ittt iteiannenannns
AbStract ..ttt i i i s e e e e e e
IntrodUCtion t.ivi ittt ittt ittt eneanasansonnas
I. Theoretical EXposition ......c.eoeueceeneenn.
II. Patch with Constant Impedance ..............
ITI. Two Limiting Cases ....ivvivnvinienennnnnnens
IV. Experiments on Reflection .......cciviueunenn
V. ConcluSion ....eiiiiinniirnieonenereaconsas

REef e eI eSS vt it i it it ettt e s e masaneeenennsneas

ii

28
29
32
35
39
44
56
62

64
66
67
68
73
76
79
81

81



CHAPTER 6

Appendix A - Approximations for the Incident

Pressure and the Green's Function

CHAPTER 5 - PLANE WAVE DIFFRACTION BY A WEDGE
WITH FINITE IMPEDANCE .......¢c.0e0vuvenn

INtTOodUCEION 4 st vt v e v v e o mnaennse e

oooooooooo

oooooooooo

I. Statement of Problem and Summary of

Results ... enenn Gt e e e e e as

----------

II. Formal Solution for Diffraction of

Obliquely Incident Plane Waves

PEE R A SR A L

ITI. Asymptotic Solution for Diffracted Wave ...

IV. Nearly Rigid Barriers ......... e
V. Practical Applications ............ e
VI. Conclusion ......... e et e e .

Appendix A - Discussion of the F and H

FUNCTLIONS v it i s sttt e et s nesnns .

Appendix B - The Function F

Values of the Wedge B

Angle B ..

oooooooooo

(z) for Particular

L A S A A )

Appendix C - Asymptotic Approximation of

f(g,e,eo,a) .....................

References ..i..evnerinensenn et a e e

----------

- EFFECTS OF AMBIENT FLOW AND DISTRIBUTED
SOURCES . ittt ii it iii i tienannn.

oooooooooo

Diffraction in the Pressure of Ambient Flow .....

Effect of Ambient Flow on Insertion Loss ........

Green's Function for Source Near Edge .
Sound from Distributed Sources ........

References ...... e e h e ..

iii

Page

89

93

94

94

95
97

99
99

100

101

101

102
103

105

110
116
117
122



Chapter 1

INTRODUCTION

During the period June 1974 to the present, research
relative to the understanding and alleviation of aircraft noise
has been carried out by the investigators with grant support
from the National Aeronautics and Space Administration. This
report summarizes the principal results from this research.

Among the activities during the grant period were lab-
oratory experiments and theoretical studies on the diffraction
of sound by surfaces with the intention of providing basic
information relevant to the understanding of the acoustical
implications of the engine over wing configuration. That the
presence of the wing below the engine may partially shield
listeners on the ground from engine noise during flyovers has

been the topic of a number of previous reports and papersl's

6

and has been the subject of investigation by Hellstrom~, by

7 by Conticelli, Di Blasi

10 A

von Glahn, Goodykoontz and Wagner
and O'Keefeg, by Jeffery and Holbecheg, and by Sears,
principal objective is the attainment of a rational method
for quantitatively estimating just how much noise reduction

would be achieved by a given design. Such a method would



serve as a guide in the design of future EOW aircraft and
would enable one to make quantitative comparisons of alterna-
tive designs.

In order to gain some quantitative insight into the nature
of sound diffraction by wings and to provide a data base for
the assessment of various theoretical approaches to the over-
all problem,‘a series of experiments were conducted at NASA
Langley Research Center during the summer of 1976. These were
carried out by Allan D. Pierce and Robin Vidimos in collabora-
tion with John S. Priesser and other NASA personnel; the
reduction of the data was carried out under the direction of
W. James Haddén, Jr. In Chapter 2, a summary is given of the
nature of these experiments and of the results.

One of the theoretical problems presented by the overall
topic of aircraft engine noise diffraction by wings 1is that
the source of the sound is not a large number of wavelengths
away from the diffracting surface (although in cases of
interest the listener is). Virtually all existing computa-
tional techniques for sound diffraction by bodies are based
on the assumption that both distances are large, so some
analytical development was necessary to revise existing
theories such that they would be amenable to rapid computation
and would give quantitative insight for cases corresponding
to the topic of wing shielding of engine noise. The details

of this analytical study are given in Chapter 3.



Another topic considered during the period of the grant
was the effect of variable ground impedance on aircraft noise
propagation. A pertinent question is to what extent the sound
received on the ground is characteristic of the local impedance
near the listener and to what extent the impedance at distant
points affects the local reception. Chapter 3, prepared by
Dr. Hadden, gives a theory for the scattering of spherical
waves by a rectangular area whose acoustic impedance differs
from that of the surrounding plane. Results of experiments
(performed during summer 1975 at NASA Langley Research Center
by W. James Hadden, Jr., Robin A. Vidimos, and Philip Sencil)
concerning reflection from rectangular patches are also
described in Chapter 4.

A topic related to both the variable ground impedance
problem and that of the diffraction of noise by wings is that
of the effects of finite surface impedance on diffraction.
Chapter 5 is comprised of a paper by the authors written
during the grant period which summarizes the principal results
of an analytical study concerned with this topic.

Chapter 6 gives a theory developed during the grant
period for the diffraction of sound from a point source by
a thin rigid screen in the absence of ambient flow. The work
described there is a simple extension of work reported by
S. Candel on the plane wave diffraction problem. (See Chapter
6 for a listing of relevant references.) Analysis given here

shows that a simple transformation will reduce the point source



problem in the presence of ambient flow to one in which there

is no flow. The solution so derived should allow some insight

into the influence of forward motion effects on aircraft

noise diffraction by wings.
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Chapter 2

LABORATORY EXPERIMENTS ON SOUND DIFFRACTION

The experiments performed in connection with the study of
wing-shielding of noise were divided into three parts. 1In the
first experiment (Fig. 1), the obstacle used was a thin screen,
the source was an acoustically small driver through which
selected pure tones were projected, the source being located
close to the barrier. Narrow-band sound pressure levels were
measured on a circular arc far from the edge of the screen and
also at several locations close to the screen but well inside
its acoustic shadow. In the second experiment the previously
described barrier and receiver configuration was used, the
pure-tone source being replaced by a 1 inch diameter jet. The
third experimental configuration (Fig. 2) consisted of the
acoustic driver, a thick straight-sided barrier with a cylin-
drical cap, and receiver and arc centered on the junction df
the cap and the straight side of the barrier which was nearer
to the driver.

The source-obstacle-receiver configuration for the first
experiment is sketched in Fig. 3. Narrow-band pressure levels
were recorded at the microphone positions shown. Results for
pure tone exciation of the driver at 490, 900 and 2050 Hz with
the driver in positions 2 (level with the top of the screen)

and 4 (9 inches below the top of the screen) are presented in
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Fig. 3. Sketch of source-receiver-screen configuration
for first experiment (see also Fig. 1).
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Figs. 4-6. The pressure levels for microphone positions 1, 7,
and 8, shown in Fig. 3, are presented in Table I. Although the
pressure levels measured at a fixed distance from the edge of
the screen show the expected trends of increased shadowing
effect on the screen as the frequency increases and as the
source height decreases, we strongly suspect that these data
were affected by transmission through the plywood screen. A
brief calculation indicates that the coincidence frequency for
such a panel is approximately 800 Hz. Thus, the measurements
at the lower two frequencies mentioned above may be significantly
contaminated by sound transmission through the screen.

The geometric arrangement for the second experiment is
shown in Figs. 7 and 8. The dne-inch diameter jet was operated
at pressures of 2.8 and 5 psi; one-third octave band levels
were recorded at the microphone positions indicated in Fig. 7,
for center frequencies 500, 1000, 2000, and 4000 Hz. The
measured 1/3—octave band levels for the reference condition
(Fig. 7) and in the presence of the screen (Fig. 8) are com-
pared in Figs. 9-11. It should be noted that the results for
1000 Hz in Fig. 9 and for 4000 Hz in Fig. 10 have been shifted
upward by 10 dB for convenience in presentation. Similarly,
the results for 2000 Hz in Fig. 12 have been shifted downward
by 10 dB. As in the first experiment, it is likely that
transmission through the plywood screen is a contaminating
artifact of the measurements in the bands centered at 500 and

1000 Hz. The measured 1/3-octave band levels for microphone
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EXPERIMENT

¢
1" Dia. NOZZLE

14

NO. 2 - CONFIGURATION 1

90°
4
...-—‘. TT—— \ 600
./2

N

J
1N

RUN | ; 2.8 psi

RUN 2; Spsi

2 [ N
d o /5 -30°
9
L _.____\.:_’
‘6
-450°

Fig. 7.

4
S S S S S S

for sound experiment.

Sketch of source-screen-receiver configuration



15

EXPERIMENT NO. 2 - CONFIGURAT!ON 2
90°
|
B = 52" ?.‘hﬁ%‘\\\“\\/ifa
B, = 55" \\\\
Bs = 55" ////////’A
.. N\
84 = 52 ’/3
-
Bs = 47" @ 9 \

39"

VP

RUN |; 2.8psi '

RUN 2; 5psi

[ T —d -1 u

®

LSS S S S S S S STSSST

Fig. 8.
experiment:

- Sketch of source-receiver geometry for second

jet noise directivity measurements.



0
O

(dB)

80

70

I/3 OCTAVE BAND LEVELS

e

16

~‘\»
\
N\
I000 Hz |
500HzZ\ | | \
7 |
/
/
_— /
WITH SCREEN

—=——=— WITHOUT SCREEN

*WITH

Fig. 9.

I0dB UPWARD ADJUSTMENT

Measured 1/3-octave band levels at outer
frequencies shown for jet noise: jet
pressure, 2.8 psi; distance from top of
screen, 3.5 ft. (see Figs. 7 and 8)}.



©
o

80

70

»
o

“1/3 OCTAVE BAND LEVELS (dB)

R

e

S
S |
194
o

RN -

17

X
\
\\
\
\ \
2000 Hz. 4000 Hz X
| |
. v
/ /
/ /
/
] /

= WITH SCREEN
——=—=— WITHOUT SCREEN

*WITH

Fig. 10.

I0dB UPWARD ADJUSTMENT

Measured 1/3-octave band levels at outer
frequencies shown for jet noise; jet
pressure, 2.8 psi; distance from top of
screen, 3.5 ft. (see Figs. 7 and 8).



Fig.

/3 OCTAVE BAND LEVELS (dB)

18]
@)

90

80

70

60

i

X

N
\‘.A

\
[

/)

/

LA A INRARNNNRN

WITH SCREEN

—ee=— WITHOUT SCREEN

11.

Measured 1/3-octave band levels at outer
frequencies shown for jet noise: jet
pressure, 5.0 psi; distance from top of
screen, 3.5 ft. (see Figs. 7 and 8).

18



Fig.

4:-’"257 -

o~
m
L

N

90

“1/3 OCTAVE BAND LEVELS

=
o
()

s
et i
- i

ARV

-~ WITH SCREEN
=== WITHOUT SCREEN
* WITH 10dB DOWNWARD ADJUSTMENT

12.

Measured 1/3-octave band levels at outer

frequencies shown for jet noise: jet
pressure, 5.0 psi; distance from top of
screen, 3.5 ft. (see Figs 7 and 8).



Table I. Narrow-band Pressure Levels Close to the Screen in the Acoustic Shadow of a Point Source
Frequency 490 Hz 900 Hz 2050 Hz 4050 Hz
Mi crophone Driver Driver Driver Driver
Location@ Position Position Position Position Position Position Position Position
2 4 2 4 2 4 2 4
1 59.0 dB 65.3 dB 84.0 dB 85.3 dB 82.8 dB 83.0 dB 88.3 dB 86.3 dB
7 69.5 66.0 89.8 84.0 82.8 84.0 76.5 80.0
8 58.8 56.3 8l.5 71.0 82.8 81.3 76.0 73.0

qRefer to Figure 1 for microphone positions.

0¢
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positions 1, 7, 8, and 9 are presented in Table II.

The third experiment was intended to supply information
as to the effects of a thick barrier and a curved diffracting
surface. The source-barrier-receiver geometry for this
experiment is sketched in Fig. 13. The sides of the barrier
were sheets of 1" plywood. The cap was also constructed of
1" plywood formed so as to produce a half-cylinder with a
radius of 12 inches. As in the first experiment, pure-tone
excitation was applied to an acoustically small source. The
source was located close (in terms of acoustic wavelengths) to
one side of the obstacle. Several source heights relative to
the highest point on the barrier were used. Narrow-band sound
pressure levels were measured on an arc at a fixed distance from
a point near the junction between the straight and curved por-
tions of the barrier. Additional sound level measurements
were made in a vertical plane in the acoustical shadow of the
barrier at a horizontal distance of 88 inches from the source.
The measured pressure levels for several source heights are
presented in Tables III-V. These measurements show the expected
increase of the shadowing effect with frequency and, in the
main, the expected increase of the shadowing effect with
difference between the source heights and the highest point on
the obstacle. In some cases the variation in pressure level
with angle is not a uniform decrease from the position almost
directly above the source to that well inside the shadow of

the barrier: the deviations which arise are no doubt due to
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Table II. One-third Octave Band Levels Close to the Screen in the Acoustic Shadow of a 1~inch Jet

Frequency 500 Hz 1000 Hz 2000 Hz 4000 Hz
Microphone Screen Screen Screen Screen Screen Screen Screen Screen
Location? Absent Present Absent Present Absent Present Absent Present
Pressure: 2.8 psi

1 69.8 d8  70.0 dB 74.2 dB 74.0 dB 76.0 dB  75.6 dB 74.2 dB 74.0 dB
7 64.5 62.6 68.6 64.0 72.0 65.0 73.5 63.6
8 62.8 60.8 65.5 60.2 70.0 60.2 72.2 59.2
9 61.0 58.2 63.0 56.0 66.0 57.8 69.5 56.5
Pressure: 5.0 psi
1 78.0 77.5 83.5 84.0 87.8 88.0 85.5 85.0
7 71.0 70.5 77.0 72.0 83.0 75.0 85.0 74.2
8 69.0 67.5 73.8 68.0 80.0 70.5 83.5 70.0
9 57.6 66.0 61.2 63.8 66.6 68.2 70.8 67.0

Refer to Figs. 7 and 8 for microphone positions.

€C
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Table III. Narrow-band Pressure Levels for Diffraction of
Sound by a Cylindrically Capped Barrier: Source
12" Below Highest Point on Barrier.

Microphone Frequency
Locationa 490 Hz 900 Hz 2050 Hz 4050 Hz
1 64.5 dB 86.8 dB 81.5 dB 91.5 dB
2 64.0 88.0 83.5 90.3
3 59.0 82.0 79.8 82.5
4 55.5 80.3 66.3 66.8
5 52.3 68.5 60.5 66.5
7 50.5 74.5 69.5 62.0
8 39.5 71.5 58.8 64.5
9 51.5 70.0 47.8 70.3

ARefer to Fig. 13 for microphone positions.
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Table IV. Narrow-band Pressure Levels for Diffraction of
Sound by a Cylindrically Capped Barrier: Source
6" Below Highest Point on Barrier.

Microphone Frequency
Locationd 490 Hz 900 Hz 2050 Hz 4050 Hz
1 66.0 dB 91.0 dB 89.0 dB 95.0 dB
2 63.8 86.8 83.3 87.5
3 59.3 84.5 77.0 87.5
4 58.0 78.3 69.5 75.8
5 53.8 68.3 65.0 70.5
7 49.5 73.5 68.0 67.5
8 45.0 75.3 67.5 69.8
9 51.3 - 74.8 65.3 61.3

3Refer to Fig. 13 for microphone positions.



26

Table V. Narrow-band Pressure Levels for Diffraction of Sound
by a Cylindrically Capped Barrier: Source at Height
of Highest Point on Barrier.

Microphone Frequency
Locationd 490 Hz 900 Hz 2050 Hz 4050 Hz
1 66.3 dB 91.3 dB 87.3 dB 85.8 dB
2 64.5 84.5 86.3 89.5
3 61.8 86.8 81.5 86.8
4 56.0 75.8 68.5 78.8
5 55.0 71.5 68.3 69.8
7 49.3 75.3 72.3 74.8
8 47.5 77.0 66.3 61.0
9 51.0 71.3 63.3 65.0

dRefer to Fig. 13 for microphone positions.
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constructive interference between waves transmitted directly to

the receiver and those reflected from the cylindrical cap.



Chapter 3

THEORY OF SOUND DIFFRACTION
AROUND SCREENS AND WEDGES
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INTRODUCTION

Solutions corresponding to constant frequency sound dif-
fraction by a rigid wedge or a rigid screen (a limiting case

1,2 In particular, the exact so-

of a wedge) are well known.
lution for the case of a point source in the vicinity of such
a wedge or screen appears in various places in the literature
as a contour integral in the complex plane with an integrand
of moderate complexity involving elementary transcendental

3,4

functions. This integral is not directly expressible in a

closed form, but its value when both source and listener dis-

tances from the edge are large compared to a wavelength can
be expressed to a uniform asymptotic approximation in terms

256 or related functions7. Expansions

of Fresnel integrals
have also been derived which are appropriate to the case when
either source or listener is close (relative to a wavelength)
to the edge.8

For those situations in which one of the distances in-
volved is neither large nor small compared to a wavelength,
it may be necessary to perform a numerical integration of the
contour integral {or of other integrals which would appear in
equivalent expressions) or to sum a large number of terms of
the expansion appropriate to the length being small compared
to a wavelength. Such numerical integration or summation,
however, may be slowly convergent and may be difficult to per-

form even with the aid of a large digital computer. Although



30

direct computations of this sort have been performed by Ambaud
and Bergassolig, the method they describe, while leading to
accurate values which agree well with their experiments, is
intrinsically limited in application to source-listener geo-
metries 1n which neither location is at an extremely large
number of wavelengths from the edge. Further, the method is such
that severe computational difficulties would be encountered
were the listener arbitrarily close to the shadow zone boundary.
While one might expect such calculations to meld with calcula-
tions using the results of a uniform asymptotic approximation,
the match would be evident only from a direct numerical com-
parison.

The present chapter is prompted by the problem of estimating
aircraft noise shielding by wings (engine-over-wing configura-
tion), one of the features of which is that the sound sources
are neither very close or very far (relative to all wavelengths
of interest) from the wing trailing edge. Research on this
topic should be aided by the availability of a convenient gen-
eral purpose method for the calculation of the acoustic pressure
(i.e., the Green's function) at an arbitrary listener location
caused by the presence of a unit strength point source near a
rigid wedge or screen. Ideally, the method should be based on
a formulation which reduces directly (without excessively intri-
cate manipulations) to know limiting cases (i.e., source on

edge or source and listener both far from edge).



—

I\

POINT
SOURCE

>7\

LISTENER

1.

Fig.
~waves from a point

LSS SIS S S

Geometry used to describe diffraction of sound

source by a wedge.

31



32

Such a formulation, with accompanying numerical examples,
is presented here. Furthermore, the plots included here should
enable one, without further need of a digital computer, to esti-
mate the sound field and the sound reduction for the important
limiting case when the listener 1s many wavelength§ away from
the edge and much further than is the source (kL>>1,rrO/L2<<1
in the notation explained below). Discussion is also given of
the accuracy of approximations commonly made in acoustical

studies.

I. GEOMETRY AND FORMAL SOLUTION
The geometry appropriate to the problem under consideration
is that of a rigid wedge whose edge lies along the z-axis (Fig.

1) in a cylindrical coordinate system (r,6,z), with the two

faces taken as the 8 = 0 and 6 = 8 planes, such that the region:
exterior to the wedge extends from ¢ = 0 to 8 = g8 (with g>w).
A thin screen corresponds to g = 2. (Here we use the same

notation as was used in a previous paper7 by one of the authors.)
The source of sound is a single harmonic point source (ang-
ular frequency w, wavenumber k‘= w/c) located at a point (ro,eo
zo) and of strength such that the acoustic pressure field p in
the source's immediate vicinity is given by eikR/R plus bounded
terms when R, the net distance from the source, is substantially
less than the distance of source from edge. Here a customary
-iwt

time dependent factor of e is understood but omitted for
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simplicity. The acoustic pressure field dependence thus cor-
responds to a Green's function G(§}5O) which satisfies the
scalar Helmholtz equation with the customary source term
-4n6(%—§0) on the right hand side. Boundary conditions cor-
responding to the rigid wedge are that 3G/36 = 0 at 8 = 0 and
6 = B, respectively.

For present purposes, it is convenient to take the solu-
tion to the problem just posed in the form (but in the present

notation) utilized by Ambaud and Bergassolig. This, with some

paraphrasing of notation, can be written

4
6(xlxe) = X [Blspduli-sg) + Vigy)]
i=1
where

S [e'eol

t, = 28-]8-8_|

bz T 8% 8,

Ly < 28*(84“60)

Here U(z) is the Heaviside unit step function. The G(gi)U(n~ci

(1)

(2a)

)

terms for 1 = 1,3,4 correspond to waves inferred from purely geo-

metrical acoustical considerations, i.e., (i=1) a direct wave,
(i=3) a wave reflected from the o = 0 face, and {(i=4) a wave T

flected from the o = g face. (The term G(CZ)U(w-gZ) 1s always

e-
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Zzero, since Z, is always greater than =», but is included to
preserve the symmetry of the expression.) The term G(t)
represents a radially symmetric spherically spreading wave,

generically denoted by elkﬁ/ﬁ, where (arbitrary argument &)

1
R = [r? + rg + (z-z )2 - ero cos z]° (3)

o

This distance, for the four particular values of ¢ listed

above, may be interpreted as: (i=1) distance from source;

yZ )

(i=2) distance from an image-image point; (ro, 2(B-w) + 6,12,

if 8>80; (1i=3) distance from image of source reflected through
6 = 0 plane; and (i=4) distance from image of source reflected
through & = B plane. (While the geometrical interpretation of
L, may seem irrelevant since U(ﬂ—cz)is always zero, the inter-
pretation is germane to the interpretation of V(gz) in the
limiting case, termed the Fresnel number approximation, below.
The image-image is formed either by reflecting the source
through the 8 = 0 plane, then reflecting this image through
the 8 = g plane or by carrying out the reflections in inverse
order. The construction is indicated in Fig. 2.) In the cases
i=1,3,4, the presence of the Heaviside unit step functions as
factors in the geometrical acoustics terms insures that: (i=1)
the direct wave 1s zero unless the source may be ''seen' by the
listener; (i=3) there is no contribution from a wave reflected
from the 8 = 0 face unless one can construct a specularly re-

flected ray going from source to face to listener; and (i=4)
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there Should be an analogous ray reflected from the 8 = g face
connecting source and listener if the corresponding geometrical
acoustics term can contribute to the field.

The sum of the terms V(ci) in Eq. (1) may be interpreted
as the diffracted wave. Each may be written in a similar
fashion as a definite integral, which, in the form taken by

Ambaud and Bergassoli, is
V() - -(m)f G (reiw) Qlw,v, ) dw (4)
o]

with

(v/2) sin[v{wr-z)]
Qw,v,z) = cosh(vw) - cos[v(m - )] (5)

the index v being n/8 (v = 1/2 for the thin screen, 2/3 for a
right angled wedge). Here G(n+iw) represents the wave function
eikﬁyﬁ, R being given by Eq. (3), with ¢ replaced by =+iw, or,
equivalently, with cos ¢ replaced by -cosh w. The quantity g2
is real and positive, R being understood to be the positive

square root of R2, throughout the integration over w.

II. REFORMULATION OF DIFFRACTION INTEGRAL

Direct numerical evaluation of V(¢), while possible, is
unwieldy because of (1) the infinite limits, (2) the oscilla-
tory nature of the integrand and the attendant slow convergence

in many cases of interest, and (3) the fact that Q is unbounded
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near w = 0 as g¢»n. To avoid such difficulties we change the
variable of integration and the path of integration. To this

purpose, we note that Q = dy/dw where ¢y is such that
tan ¢y = tan[A(z)]tanh[{v/2)w]

and where A is (v/2)(-8-w+z) plus any multiple of n. If we
refine the definition of A{z) and ¢ such that y varies from
0 to A as w varies from 0 to «, the proper choice for A is

(given 0<gz<28)

A(z) = (v/2)(-8-m+g) + nU(m-g) (6)

The value of ¢ corresponding to its tangent as given above is
understood to lie between -7 and ™ and to have the same sign as
A. One may note that A{z) is discontinuous at ¢ = n: A(z) in-
creases from a positive value (v/2)(8-n) at z = 0 up to n/2 at
r = n , then drops abruptly to -n/2 at ¢ = n and subsequently
increases linearly, passing through 0 at ¢ = B8+w, up to the
original value (v/2)(g-v) when ¢ = 28.

Some indication of the variation of values of the A(gi)
[abbreviated Ai here] with the source énd listener coordinates
90 and ¢ may be obtained if one considers the specific case
(typically of greatest interest) in which the source is on the
far side of the wedge, g > 6, > 7, the listener is in the

shadow zone, 0 < @& < 8, - ™ (See Figure 3). In this case all

the Ai are negative and between -v/2 and 0, the magnitudes
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lAll and IA4} increasing with increasing 6 and conversely for
IA3{ and !Azl. At 6 = 0, A; = A; and A, = A,; in general one
has fAl} > }AS! > [AZ! and IAll > IA4[ > [Azf. One may note
that the line, Ay versus & equals -w/2 at the shadow zone boundary.
The lines A3 and A4 cross only if 6, > (B+n)/2 and, when they do,
they cross at @ = g - 6, with the mutual
value Ag = Ay = -n/2 + (v/2)(B-71) = -wv/2.

If we now change the variable of integration -to q = y/A,
then Q dw = A dq and q varies frdm 0 to 1. The remainder of the

integrand can also, after some algebra, be expressed in terms of

q rather than w. The pertinent intermediate result 1is

go= L2+ orr (Y - Y-1)717 (7)

where we abbreviate
1/2
L o= [{r+ 1 )%+ (z - z,)%] (8)

y = Stan(A) + tan(qgA) 1/(2v) (9)

| tan{A} - tan{qA)

The quantity Y, and therefore the spherical wave factor, is in-

dependent of the sign of A. Thus we may rewrite the integral in

Eq. (4) as

V(e) = - (1/v) Alz) (/L) F (1Al ,0,¢) (10)

where

(11a)
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- X - 2
o k rrO/L, € rrO/L

1(q) = (L/R) eik(#-L) (11b)

with L and R as given above.

The set of argumehts of Fv is readily seen from the above
equations to be complete. The forms chosen for the parameters
e and o« are particularly convenient in the’consideration of limit-
ing cases. From geometrical considerations, ¢ is always less than
1/4. The parameter o, which has the appearance of a Fresnel wave
parameter, may in principle have any value. The quantity L has

the important geometrical interpretation of being the length of

the shortest two segment path which goes from source to edge
and then to listener (i.e., L is the length of a diffracted

ray path).

ITTI. THE DEFORMED CONTOUR

The variable q is now considered as a complex variable
and the integral over I(q) in the definition of Fv above is
interpreted as a contour integral in the complex q plane.
Rather than integrate directly along the real axis, we choose
a path C which (1) goes from 0 to 1, (2) has finite length,
(3) is such that Re(R-L) = 0 at every point on the path, and

elk(R-L) decreases monotonic-

(4) is such that, for nonzero a,
ally from 1 to 0 as q travels the path C from q = 0 to q = 1.
That a path with these properties. exists is supported by the
mathematical foundations of the method of steepest descents and
is substantiated by the construction given below.

The evaluation of the integral along the contour C 1s

facilitated by a reformulation of the function I(q), Eq. (12).
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The restriction Re(R-L) = 0 along the path 1implies that we may
introduce a real parameter K such that, at any point on the

path, R is related to K by

R = L[1 + 1eK?)] (13)

Here K ranges from 0 through positive values when q ranges from
0 through successive points on the path. The relationship
between q and K may be determined by equating the squares of
Eqs. (7) and (13), then inserting the expression (9) for Y,

and solving for q. In this manner one finds

1 vX

1 [tanh -— tan [A]|] (14a)
2

Al

tan

with

1/2
sinh X = K[i/2 - €KZ2/4] (14b)

The several ambiguities in the definitions of the square root
and of the implied inverse trigonometric functions are
resolved by the requirement that 4 vary continuously from 0
to 1 (although not on the real axis) as K varies from 0 to =.
To accomplish this, one defines the square root in Eq. (14b)
to be such that its phase is between n/4 and n/2, then defines
X to be such that Re(X) » 0, 0 < Im(X) < n/2, and q to be such
that it lies in the first quadrant.

The computation of g and a1 for given values of K is
generally facilitated by reducing Eqs. (14) to explicit equations
involving only elementary functions of real variables. Such a

reduction yields, for example
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_ sin (2]A]) sinh a

tan(Z[A{qR) (15a)
cos b + cosh a cos(2|A])
in which
sinh (a/v)
= K[(1 2y1/2 4 pg11/2 1
sin (b/v) [(1 + Q2)*/ Q] (15b)
with
Q = Lx2[1 - e+ L 2k (15
2 g c)

The expression for tanh (ZfAIqI) is similar to Eq. (l6a):

sinh a, cosh a and cos b should be replaced by sin b, cos b,
and cosh a, respectively. The restrictions mentioned above
concerning phases and branches imply that b/v is between 0 and
n/2 for K < (2/¢)!/% and is between n/2 and = for K > (2/e)1/%.
The restrictions further imply that ZIquR lies between

9 and n.

Some computed plots of the deformed contour C ir the com-
plex q plane and of the corresponding variation of K along the
contour are shown in Figs. 4 and 5. Analysis of the equations
given above indicates that such contours always proceed from
q = 0 obliquely upward at an angle of 45° with the real axis

and this is confirmed by the computations. The terminal point

it

q 1, is approached from above and to the right, making an
angle (1-v)w with the real axis to the right of q = 1 for non-
zero e. In the limiting case of a screen, v = %, the contour

terminates at a right angle with the real axis. In the limit
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of vanishingly small e, the contour C approaches a limiting form
which approaches q = 1 obliquely downward from the left, making
an angle of vr/2 with the real axis. The principal modification
of this limiting form caused by nonzero ¢ is a small "kink"

near q = 1 in which qp overshoots qp = 1 slightly (except for

v = %), the contour then bending back and approaching q = 1
obliquely downward from the right. The quantity K always in-
creases monotonically from 0 to .« along the contour, except for
the limiting case where |A| is identically =/2. If |A] is
slightly less than this upper 1limit, K remains virtually zero
along the major bulk of the contour but increases rapidly to =
near the very end of the path.

At this point, we may note that the reformulation of the
diffraction integral as represented by Eqs. (10-12), with C
taken as the integration contour, has removed all the difficul-
ties pointed out at the beginning of this section. The limits
of integration are now finite, the modulus of the integrand I(q)
is bounded by 1, and the integration along C removes the problem

of the oscillatory nature of the integrand.

IV, LIMITING CASES

The formulation as presented leads either directly or with
minor mathematical manipulation to a number of important limit-
ing expressions for the Green's function and for the various

terms which contribute to it.
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1. Source or listener on edge. This case is characterized

]

by ¢ = 0 and R = L for all values of q, so we have

F (|A],0,0) =1 (19a)
and the total Green's function reduces to
G(x|x,) = 2vL " Yeikl = (2q/g)1 7 teikD (19b)

where, in this instance, L is simply the distance from source to
listener. The above pressure field, except for the limiting case
of a thin screen (where g8 = 2n), is always larger than what would
be expected were the wedge not present. The Green's function for
source or receiver on the edge could also be derived from simple
symmetry arguments (the field must exhibit spherical symmetry for
source on edge, the total volume velocity of the source must be

the same as in the absence of the wedge, but the volume velocity

per unit solid angle increases by a factor of 4n/28, where 28 is the

solid angle external to the wedge about a point on the edge)

without the necessity of the general solution.

2. The limit [A] » n/2 or ¢ » wn. In this case the ap-
proximation 2 = L is valid over most of the length of the contour
C, the contribution from portions of the contour where this ap -
proximation does not hold becoming increasingly negligible as |[A]

becomes progressively closer to n/2. Thus, we obtain
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F (n/2,0,e) =1 (16a)

so the sum of the corresponding geometrical wave G(g)U(w-z) and

the appropriate diffracted wave term V(g¢) should have the limit

lim {G(z)U(r - £) + V(z)} = (1/2)e*Xl/L (16b)

g+

regardless of from which side the 1imit is approached. Thus, the
total field, as expected, 1is continuous.

3. The uniform asymptotic limit, where krro/L >> 1, |A| is

arbitrary. This corresponds to both kr and kro being large and

o .
| being less than or comparable to (r?2 + rg)z. Equiva-

lz -z
lently, both source and listener are far from the edge and the
angle between the edge and the broken ray from source to edge to
listener 1s not close to 0.

In the evaluation of this asymptotic 1limit, it is convenient

to regard K as the variable of integration. The derivative dq/dX
may be evaluated by implicit differentiationof Egqs. (15b) such

that dq/dK is a function of a and b times the derivative

d(a+ib)/dK. Since krro/L is large we may expect the dominant
contribution to the integral to come from small values of K.

However in the 1limit K » 0, dq/dK is inversely proportional to
cos(2|A|) and is singular when |A| » n/2. To cover this contingency
one expands the denominator in the function just mentioned to the

next order nonvanishing term (which turns out to be second order)
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in K. The remainder of the factors (except for the exponential)
are approximated by their limits as K » 0. In particular, one may
note from Eqs. (15) that d(a+ib)/dK is just v(1+i) in this limit.
The variable of integration is next changed to u = al/ZK, then

the resulting integral is recognized as a constant times the integral

1 «© -u? d
- Y e u
AD(X) = (X/n?) Tr72TXZ + 1 u?]
o 17y
= £(X)-i g(X) (X > 0)
where
X = [4a/n]% (1/v) cos(|A]) (18)

Here F(X) and g(X) are the auxiliary Fresnel functions discussed
in a previous paper7 by one of the authors and which are tabu-

lated on pages 323-324 of the NBS Handbook of Mathematical Func-
11

tions. The mathematical manipulations as outlined above then

lead to the expression

B o= (n/vz) eMT/4 C(sin|A])/[A]TTE(X) - 1 g(X)] (19)
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for krro/L >> 1. One may note that, although the coefficient of
cos(]Al) in Eq. (18) is presumed large, it cannot necessarily be
assumed that X is large since cos(|A|) would be very small were
|A] close to =w/2.

In the 1limit of large X, the quantity f - ig approaches
1/(nX) and thus F decreases asymptotically as the inverse square
root of a for nonzero value of cos{|A|). When |A| approaches w/2,
both f(X) and g(X) approach the value 1/2, the limiting values for
X +~ 0. In this limit F goes to 1, just as indicated by Eq. (16a).
It should also be noted that in this approximation FV is indepen-
dent of the parameter ¢ for a fixed value of a.

4, The Fresnel number approximation.1-2 If, in addition to

krr /L >> 1, it is true that cos([A|) is substantially less than
Y
v, the parameter X in Eq.(18) may be interpreted as X = (2N)?

where N is a Fresnel number given by
N = (L - Ry)/(A/2) (20)

which represents the excess of the diffracted path length L be-
yond some direct path length Ry in units of half wavelengths.

The appropriate identification of RA is

1
= 2 2 - 2 . 2
RA {I’ + ro’+ (Z ZO) ZI‘I‘OCOS(B\))] (21)

with B (|A|) taken as
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BLOIAL) = = (= - (2/v)(s/2 - [A])} + 2nm (22)

with n being an integer (0, positive, or negative) and with any
choice of the two signs. With the purpose of giving a meaning-
ful geometrical interpretation of Bv’ one may show with some
effort that it 1s possible to choose the sign and the integer

n such that

o+ B, =0 (z = Jo - o) (23a)
=9, + 2(g-m) (¢ = 28-|o —eol, 6 > 90) (23b)
=0, - 2(g-m) (z = 28-le -6 |, 8 > 8) (23c)
= -0 * (z =6+ 8) (23d)
=28 - 8, (z =28 -9 -8 (23¢)

Thus, with reference to the discussion following Eq. (3), RA is
the direct distance of listener from (i = 1) the source; (i = 2)
the image of the image; (i = 3) the image formed by reflection
through the & = 0 plane; or (i = 4) the image formed by reflec-
tion through ¢ = g plane.

%

That X is approximately (2N)? where N is as defined above

in the limits cos(|A|) << v, a, follows from the general expres-
ion (22), from the (consistent) approximation sin[(1/v)(w/2 - |A])]
= (1/v)cos(|A]), from the fact that ¢ is always less or equal to

1/4, from the definition (8) of L, and from an appropriate binomial
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expansion of RA

When the Fresnel number approximation is valid, |A| should
be close to n/2, so it is consistent to approximate the
sin(|A|)/|A| factor in Eq. (19) by 2/7 and the resulting expres-

sion for FV becomes
F,o= (V) e M/ (e(281%) - 1 og([281) (24)

This represents a considerable simplification in that the right
side depends on one and only one parameter N of relatively simple
geometrical interpretation. There is no explicit v, |A|, a, or
¢ dependence, other than the manner in which these enter into the
determination of N. The expression above also has the virtue of
never giving a magnitude of FV greater than 1.

The corresponding expression for V(z) in the Fresnel number
approximation may be obtained from Eq. (10) with A(z) replaced
by (ﬁ/Z)Sin(ﬂ - z). This is in accordance with Eq. (6) and the
fact that [A| should be close to n/2. Consequently, Eq. (24)
ikL

should be multiplied by sin(z - n)(2L) le to obtain V(z).

5. The case when kL is 1arge‘put krr /L is finite or e<<1, o

finite. The two statements are equivalent since kL » « with krro/L
fixed implies rrO/L2 + 0. This limiting case is of interest in
those problems where the source is at finite or small distance re-
lative to a wavelength from the edge but the listener is at a large
number of wavelengths from the edge, much further than is the

source., Conversely, because the solution conforms to reciprocity
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(interchange of source and listener), the corresponding limiting
solution corresponds to the pressure field in the vicinity of the
edge when the source is a large distance away. In this reciprocal
problem the incident wave near the edge is very nearly planar, so
the 1imit can be obtained from the solution of the related problem
of plane waves incident on a rigid wedge. The limiting case,
source near edge, listener far from edge, is of principle interest
in aircraft noise problems where the source is in the vicinity of
a wing but the listener is on the ground at a large distance away.
The limiting value of the diffraction integral F as
rro/L2 ~ 0 may be simply denoted as Fv(lAl,a,O). The 1limit exists
and may be readily obtained from the formulation given in the
previous section by (1) replacing the factor L/R in the integrand
by 1 and (2) setting ¢ = 0 inEqs. (14) and (15). This
yields sin(b/v) = tanh(a/v) and Eq. (15b) gives KZ= sinh?(a/v)/
cosh(a/v). The integrand I(q) reduces toe_aKzalong the contour C.
The value of the integral F (|A[,a,0) for |A| = /2, or for
a =0, or for a >> 1 may be inferred from the cases 1-3 discussed
above. Thus F is 1 for |A] = v/2 or for o = 0 and is given by
Eq.(19) for « >> 1. Also, the Fresnel number approximation, Eq.
(24), should be applicable in the double 1limit o >> 1 and cos A << v,
the appropriate identification for the Fresnel number N in the

limit ¢ » 0 being

N = 4[rr0/(AL)]c052(Bv/2) (25)
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As regards the behavior of Fv(lAl,a,O) for o << 1, one can
derive an expansion of the contour integral in noninteger

powers of a, the starting point being

F\)(‘]A!,a,o) =1 ~f®(1 - e*Ky(dq/da)da (26)

In view of the restriction krro/L << 1, the first factor in
integrand above is small unless a is relatively large. Thus,
if we seek just the leading term and anticipate that this, for
sufficiently small values of the expansion parameter, is larger
than any given constant times this parameter, it is sufficient
to adopt the approximations K’= (1/2)ea/v, dg/da = |A| “'sin
(ZIA])ei\m/2 e"®, i.e. asymptotic limits for e = 0, a large.
Then the variable of integration may be changed to u = (1/2) aea/v
such that (dgq/da)da is a product of u-independent factors and
u“V1ldu, one of these factors being [a/Z]Q. The lower limit on
the u integration becomes o/2, but, providing v is not very
close to 1 (i.e., we here exclude the case of highly obtuse
wedges), this can be approximated by 0 insofar as we are only
interested here in the lowest order (which is lower than first

order) term in «. In this manner, one obtains

-ivn/2

FV(IA[,CL,O) = 1 - !AI_IS]_D(ZIAi)e [a/Z]VI'(l-\)) (27)

Here we recognize (after integration by parts) that the inte-

U) -v=-1

gral over u of v(l-e “)u is the gamma function with ar-

gument 1-v,
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The fact that v is less than 1 implies that the magnitude
of Fv decreases sharply from 1 (the derivative of its magnitude
with respect to the expansion parameter is negative and becomes
singular when the parameter approaches zero) when a increases
from zero. As discussed subsequently below, this implies that
a modest amount of sound reduction in the shadow zone is
achieved even when the source is only a slight distance from
the edge.

In this same limit of rrO/L2 - 0, krrO/L << 1, the total
Green's function (found by inserting the above into Eq. 1)

becomes

-ivw/2

) ~ (2n/8)L-teiKl 1+ 26 [1/r(14v)] [krr /(21)]"

(28)
cos(vs)cos(veo)}

where we make use of the identity
sin{vn)r{1-v) = va/T{1+v)

The above approximate Green's function is consistent with a

more general expansion given by Tuzhilin.8

One may note that,
if the listener is in the shadow zone, cos(v8) and cos(vee)
have opposite signs, so the second term in Eq. (28) would de-
crease the magnitude of the Green's function in such cases

(as should be expected) from that represented by just the first

term. The phase of the Green's function is predicted to be

greater than kL. (The formulation in general requires the
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phase in the shadow zone to lie between kL and kL + n/4.)

6. The case of a thin screen (v = 1/2) for ¢ + 0 with

a finite. For the most part, it is conceptually simpler to
consider each V(ci) in Eq. (1) as being calculated individu-
ally, the sum being found subsequently. Although these occur
in pairs, V(z) and V(28-5), there appears in general to be no
major analytical simplification obtained by considering such
a pair as a unit. An important exception is the case of the
thin screen (v = 1/2). The fact that some simplification
should be possible in this limit should be evident from the
fact that the geometry of source, images, and image-image in
this 1imit is degenerate: the source and image-image coincide
and the locations of the two images coincide. The analytical
simplification 1is of minor computational advantage except in
the 1limit ¢ » 0. The simplification which results in this limit
(which, as pointed out above, is equivalent to the problem of
diffraction of plane waves by a thin screen) is that the
Green's function and each éf its two constituent pairs,
V(cl) + V(28'€1) and V(;3)+ V(ZB'QS), can be expressed rather
simply in terms of Fresnel integrals. (Given the incident
plane wave interpretation of this limit, this is a well known
result,)

The manner in which the result may be obtained from the
formulation presented here is first to change the integration
over q to one over a. Then the sum V(z) + V(28-z), with V() as

given by Eqs. (10-12), with the q integration along the contour
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C, may be grouped as a single integral over a from 0 to =

which involves a factor
A(g) dq(|A ¢)|,a)/da + A(28-z) dq(]|A 28-%)]|,a)/da

One should note that q, considered as a function of A and a,
will in general have different values if |A| is taken as

|A(z)| or |A(28-¢)|. Evaluating this expression for v = 1/2,

8 = 2r, ¢ = 0, such that sin[2|A(z)|] = |cos(z/2)|, cos[2]A(c)]|] =
-sin(z/2), tan b = tanh a, K?= sinh(2a)tanh(2a), etc., it
eventuates, after some lengthy algebra and application

of various trigonometric identities, that this can be expressed
rather simply as a function of K and cos(z/2) times the der-
ivative dK‘/da with no explicit dependence on a. Consequently,
the variable of integration can readily be changed to u = w1/2x
Once this is done, the integral appears in the form of a constant
times the diffraction integral AD(X) of Eq. (17) with the ap-

propriate identification for X being
3
X = [4a/m]*|cos(c/2)] (29)
In this manner, we obtain

A(C)F%(IA(c)l,a,O) + A(28-2)F (]A(28-2)],a,0)

(30)
in/4

=sign{cos(g/2)}(w/2%)e [£(X)-1 g(X)]

with X as given above. The corresponding expression for
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V(z) + v(28-¢) is just -(1/7)L ‘e *: times Eq. (30). The
total Green's function may then easily be written down from
Eq. (1). In the case where the listener is in the shadow zone
(diffracted field only), cos(z/2) is negative both for

r = le-eo[ and for ¢ = 0+8 , SO the field is |

2-%L-leikLein/4

G(x[x,) LX) - 1 g(X)], N

(31)
[£(X) - i g(X)]

-+

- }
z 6-*60

in which the indicated values of ¢ are to be used in Eq. (29)

to compute the variable X.

V. NUMERICAL INTEGRATION SCHEME
We return now to the general problem of determining the
integral F . The integral over I{q) along the curve C can be

symbolically written

F, =/ I(K,e,0)dq (52)
C

where
- ")
T(K,c,a) = (1 + iek2) 1 e oK (33)
The quantity K is that given implicitly by Eqs. (15) and may be

considered a monotonically increasing real function of distance

along the contour C.
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The prototype integration scheme suggested is one in which:
(1) the variable of integration is first changed to K; (2) the
domain of K integration is broken into N + 1 intervals (O, Kl),
(Kl, KZ), cee ey (KN, »} where N > 1; (generally one takes
N = 1) and (3) the integration over the first N intervals is

transformed through an "integration by parts'. Thus one has

N Ko
F = [ J(K, e, a,|A]) dK (34)
K

n-1

w0

+ 1(Ky, e, o) q(Ky, e) + / (1) (dq/dK) dK

N

where

J(K) = -2 I(K) q(K)K

We also use the fact that q(K) = 0 if K = O.

One may note that the real and imaginary parts of the
function J(K) are bounded and continuously differentiable and
that these component parts are certainly not oscillatory.

Thus, one may expect that the first N integrals of the above will

be amenable to any numerical integration scheme which, while
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utilizing values of the integrand at only a relatively limited
number of points (less than, say, 10), achieves a high accuracy
because of the '"smoothness' of the integrand. Possible integration
formulas (Chebyshev's equal weight, Gauss's, or Lobatto's, for
example) are summarized in particular in Sec. 254 of the

Handbook of Mathematical Functionsl!%. (Our experience has been,

in the present context, that 10 point Lobatto integration
invariably gives at least eight digit accuracy.)

As regards the integral from KN to «, the qualitity
II(KN)]ll—q(KN)I may for most practical purposes be considered
as an upper bound to its magnitude. It may be presumed that one
has chosen K

N sufficiently large, either that the magnitude of the
integral is definitely negligible within the desired computational
accuracy or else that the e~aK2 factor in the integrand dcminates
its decay. In the former case the last term is discarded while

in the latter case it is evaluated by (1) integrating by parts

and (2) performing the integration over the resulting expression,
which has the form (representing the sum of the last two terms in

Eq. (34).

X3

f e K% k) ax

Ky

(with an obvious identification for L(K)) by Hermite integration.!"“
(Our experience is that an 8 point scheme is more than adequate).

The choice for the Kl’ ...,KN. as well as the parameter N

should not be too critical. One could compare answers obtained

“4

with different choices of these parameters in order to assess
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whether or not some desired accuracy has been obtained. One
could, for example, simply take N = 1 and KN = 1/a, unless

o were extremely small compared to unity. (We have at present
a somewhat elaborate scheme for chosing these parameters, but
the details seem too arbitrary and unimportant to warrant their
inclusion here.)

Computation time for a single value of F  may be considered
as roughly directly proportional to the number of times which the
function q(K) must be computed from Eq. (15) (which is a straight-
forward evaluation requiring trigonometric and inverse trigonometric
functions). This number is typically just 18 with the scheme
as outlined above so the computation time should be of minor
consequence, given the availability of a modern high speed
digital computer.

Some sample calculations are presented in Figs. 6 and 7.
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Chapter 4

SCATTERING OF SPHERICAL WAVES
BY RECTANGULAR PATCHES

The body of this chapter consists of a copy of a

paper prepared for submission to the Journal of Sound

and Vibration by W. James Hadden, Jr., Robin A. Vidimos

and Philip M. Sencil. [The experiments described in
the paper were performed in an anechoic chamber at

NASA Langley Research Center (Fig. 1}.]






Abstract

A theory is presented for the scattering of spherical waves
by a rectangular area whose acoustic impedance differs from that
of the surrounding plane. This theory extends previous analyses
to include diffraction effects explicitly. Results of experiments
concerning reflection from rectangular patches are also reported.
Agreement between these results and predicted values is not
uniformly good, although improvements could be achieved through

alterations in the measurement procedure.
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INTRODUCTION

The present paper is motivated by an interest in the effects
of acoustical characteristics of the ground on sound originating
in low-flying aircraft. As part of this study, analytical and
laboratory investigations have been performed on the reflection of
sound by plane surfaces of known acoustic impedance [1]. In
analyses of the reflection of spherical waves by a plane surface
on which a local-reaction impedance boundary condition is imposed,
it is customary to employ the method of steepest descents in order
to obtain an approximation for the reflected pressure [2,3]. The
use of this approximation can be interpreted in terms of geometrical
acoustics as neglecting the effect of waves scattered from regions
of the surface outside a neighborhood of the shortest reflected
ray path from the source to the receiver. The investigation with
which the present paper is concerned sought to determine the size
of the effective area near the vertex of the reflected ray. This
information could be used in developing a simplified technique for

predicting the received sound for moving sources near the surface.

In the interest of simplicity, experimental measurements were
made in an anechoic chamber of sound pressure levels above rectan-
gular patches of various areas. Pure tones were used to excite a
small source. Sound pressure level measurements were made in the
direction of the presumed reflected ray path. These experiments

are described more fully in Section IV, In conjunction with the



experimental work, a theoretical investigation of scattering by
rectangular areas was undertaken in which diffraction effects due
to the finite size of patches were included. This analysis is

discussed in Sections I-III.

I. THEORETICAL EXPOSITION

The analytical development is roughly parallel to that of
Morse and Ingard for plane wave incidence [4]. The surface z =0
contains a rectangular patch with point impedance pPCNp; outside
the patch the normalized impedance is taken as n. The geometry
is illustrated in Figure 1: A point source is located at (rs,es,¢5);

the receiver coordinates are (r,6,¢).

The received pressure may be expressed, employing Green's

theorem, as
op
p(r) = pGx|ry) - f f 5, [6(z[xg) — (x)
o~ ~ Z ~
S o}

G
< p(ry) = (xlr)] 6

o

=0
z'O

in which the Green's function G(ylro) is approximated by terms
representing a source point r, = (ro,eo,¢o) and a single image
point rg = (ro,ﬂ-eo,¢o) with the image source strength (a modified

~

plane-wave reflection coefficient) chosen such that the condition
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G(r,r) - —— -~ =0 , z=20 (2)

is satisfied to a better degree of approximation than could be
obtained by using the plane-wave reflection coefficient. The

approximation to the Green's function is

ik[r - 7| ikjr - ']

e = e =~ 9
Gzlr) = -+ R (3a)
P 4
du|r - 1| dulr - ?p[

n B! coseé -1

R' = (3b)
n B coseo + 1

B' = 1+— (3c)

where eé is the azimuthal angle between the source-to-receiver
point line and a line parallel to the z axis, and the inclusion
of the factor B' represents an attempt to account for the curvature

of the wavefront.

The pressure terms in the integrand of equation (1) are

approximated in a similar fashion as a combination of waves

t

incident from a point source at T, and an image source at Iy

below a plane characterized by the normalized impedance e The

appropriate form for this approximation for the pressure may be



inferred readily from equations (3) with suitable modifications

of parameters. Thus the "direct" pressure term in equation (1)
is taken as

elklf - ?ﬁ‘ .

Ppip(D = Py |————— + R E— )

T - |

in which RS has the form of equation (3b) with
B'—>BS =1+ i/krs and eé—+es = cos—l(zs/rs). The scattered

pressure term may be written as

k(r - xpf + rg - rg)

ikp
Psc (1) = Offdso .
“ : It - v llry - 1l

-~ ~ -~

t ! -
j:><i: B! Bé cos8' cose, (n nA) )
(1 + nB' cose') (1 + n,B! cose;)

In order to obtain a closed-form expression for the pressure at

some distance from the scattering area it is expedient to expand
the factors in equation (5) which involve the distances |r - rQ]
and |r, - r | as power series in x_ and y,. The expansions og
such facto%g multiplying the exponential in equation (5) may be

truncated so as to yield a desired accuracy which depends on

ratios such as L/r and W/r. However, in the exponent the
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criterion governing trumcation of the expansion involves the

Fresnel wave parameters, which have the form r/kLz.

Retaining second-order terms in x in the exponent in

o’ Yo
equation (5) yields approximations for the scattered pressure in
which diffraction effects are readily discernible. In addition,
this treatment allows one to investigate the transition from the
Fraumhofer diffraction regime (1arge Fresnel parameter - equivalent
to the Morse-Ingard treatment [4]) to the Fresnel diffraction
(small Fresnel parameter) range and beyond to the ray theory

limit. An outline of the present expansion of equation (5) is

given in Appendix A. The scattered pressure is approximated by

ik(r + rg)

psc(f) ~ Anrr PSC 1(0‘1932981 ’82 »Y) (6)
S

with the abbreviations

B B. coss coss
) S s
Psc = 1P, (7)
(1 + nB cose) (1 + nABs coses)

and
1 1
-1 (o X-8,X9) “1[ (a0 - ,¥°]
I = dX e dY e
S| -1

X(L+ MK+ NY + QX%+ RYZ 4 SX) (n - ny) (8)
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and, finally

_ . COS . cos k{L
o = (sdmd gy ¢ * sindg gy 9) E(W) (%a)
Z
2
B, = [r (- sin’e C?SZ )
sin
2
2 2
i 2. COS k (L
+ 1r(1l - sin B¢ oin2 9s)] g??;-(wz) (9b)
) 2 2.
v = (rg sin”e sinZ¢ + r sin"s_ sin2¢ ) (9¢)

8rr
S

The parameters ay and a, involve projections of the scattering
area's dimensions (normalized by wavelength) on the lines from
source and receiver for the center of the area. The parameters
Bys By and y are similarly projected inverses of Fresnel wave
parameters., These parameters characterize the diffraction effects
in the approximation for the scattered pressure. The coefficients
M, N, Q, R and S in equation (8), in addition to providing
correction terms depending on the size of the scattering area
relative to source and receiver distances from the patch, are
functions of the other geometrical and impedance parameters. The
coefficients M and N are linearly dependent on quantities such as
sine, sin¢ and L/r or W/r. Q, R and S are quadratic in these

quantities. Explicit expression for these coefficients are given



in Appendix A.

II. PATCH WITH CONSTANT IMPEDANCE

For cases in which the impedance of the scattering area is
constant, the integrals in equation (8) could be evaluated by
completion of squares in the exponents followed by application
of standard integration formula, but for one complication - the
inner integral (e.g., the integration with respect to Y in
equation (8) results in several terms involving Fresnel integrals

[5] whose arguments have the form, in this case,

G + yX
2
8%/2 — 1 10
282

The presence of the second integration variable precludes exact
analytical evaluation of the remaining integration. However,
reference to equations (9) indicates that the X-dependent and
unity terms in the arguments are of order (L/r) compared to the
a, terms. In addition it can be seen that both oy and v vanish
in the important case of specular reflection (¢ = b, ¢ = 0,

g = m). For these reasons, and in view of the behavior of the
Fresnel integrals in the small- and large-argument limits [5],
it seems a reasonable approximation to neglect the X-dependent
terms but to retain the unity terms in the arguments exemplified

by equation (10).
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If this approximation is acc