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SUMMARY 

An essential part of any computer-aided design/manufacturing 

(CAD/CAM) system is the mathematical representation that models the 

geometry of objects to be processed by the system. Complex surfaces 

referred to as "sculptured" or "free form" are most accurately repre-

sented by compositions of surface patches. 

The rational B-spline (rB-spline) patch is the most recently 

defined, as well as the most versatile of the many types of surface 

patch. In order to model a composite surface, the order of continuity 

required across patch boundaries must be specified. A method for 

ensuring first order continuity across patch boundaries is developed 

for B-spline and rB-spline surface patches. A first order continuous 

surface is one whose intersection with an arbitrarily oriented plane is 

a space curve with a continuous unit tangent vector. A general state-

ment of first order continuity is applied to B-spline and rB-spline 

surface patches. 

The following tasks have been accomplished. (1) Derivation of 

fourth order basis functions for B-spline surface patches of both 

sixteen and thirty-six control points. (2) Establishment of the 

specific conditions under which a topologically quadrilateral hole in 

an arbitrary surface can be filled with a B-spline or rB-spline surface 

patch such that first order continuity exists across all four patch 

boundaries. (3) Development of an algorithm for "tiling" a 
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topologically cylindrical surface defined by a network of longitudinal 

and circumferential curves with specified conditions at the cylinder 

ends. The network of curves is to lie in the surface, and the control 

points of the B—spline representation which define that surface are 

sought. First order continuity is maintained throughout the entire 

surface. 



CHAPTER I 

INTRODUCTION 

The essential and most fundamental element of any computer-aided 

design/manufacturing (CAD/CAM) system is the mathematical representa-

tion of the geometry of the objects to be processed by the system. 

This representation is the description of the objects that the computer 

can recognize and manipulate at the direction of the designer. The 

mathematical representation should not be arbitrary in any way, that 

is, the description should be unambiguous and should capture the 

designer's wish exactly. 

There has been much research aimed at development of the "best" 

mathematical representation of solid objects. This has been an evolu-

tionary process in that the most flexible and versatile methods have 

been enthusiastically developed, while the less adaptable have fallen 

by the wayside. 

In general, the approach used for representation of an object 

depends on the application for which a model of the object is desired. 

Geometric modeling of objects for computer-aided design is of two basic 

types: constructive-solid geometry (CSG), where the object is defined 

in terms of Boolean operations on solid geometric primitives such as 

spheres, cylinders, cones, etc.; and surface modeling, where the object 

is defined by the surface that bounds it and specification, in some 

way, of the side of the surface on which the object lies. Surface 

1 
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modeling is the preferred technique in designing complex shapes whose 

surfaces are referred to as "sculptured" or "free-form." In what 

follows we deal exclusively with surface modeling. 

Problems to be solved with surface modeling can be divided into 

two broad categories, namely, interpolation and synthesis. In interpo-

lation, a surface or set of points already exists. In synthesis, a 

surface that does not yet exist must be created so as to satisfy a 

given set of design constraints. In either case, the goal is to 

construct an analytical representation of the surface model. This 

done, applications such as rendering, enmeshment, and computation of 

volume or surface integrals can be accomplished precisely using the 

analytical representation as a geometric database. 

Surface modeling is usually accomplished with surface patches. 

Loosely speaking, a surface patch is an essentially two-dimensional, 

bounded set of points, topologically equivalent to a polygon and 

imbedded in E3 . Typically, the analytical representation of a surface 

patch is a biparametric vector equation. Given the equation, any pair 

of parameter values yields the position vector of some point on the 

patch. It is important to realize that an individual patch is rarely 

capable of modeling the entire surface of an engineering object. 

Instead, a collection of patches must be joined to form a composite 

surface. The details of specifying an entire composite surface vary 

greatly depending on the mathematical formulation used for the surface 

patch and the degree of surface continuity required across the patch 

boundaries. 

The rational 13-spline patch is the most recently defined, as 
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well as the most versatile, of all biparametric surface patches. The 

rational B-spline is an extension and generalization of the regular B-

spline, both of which we will examine in some depth throughout the 

present work. In all that follows we will refer to the rational B-

spline as an "rB-spline" and the regular or nonrational (irrational?) 

B-spline as a "B-spline." Despite strong industrial interest in the 

rB-spline patch, no published discussion of its application to 

composite surfaces exists, to the author's knowledge. An extensive 

search of the literature was conducted. Although some publications 

dealing with B-spline curves and surfaces were found, none dealt with 

methods for modeling a first order continuous (FOC) composite surface 

using rB-spline patches. An FOC surface is one whose intersection with 

an arbitrarily oriented plane has a continuous unit tangent vector. 

This is in contrast to a C 1 surface whose intersection with an 

arbitrarily oriented plane has a tangent vector that is continuous in 

both magnitude and direction. Since any individual patch is itself 

FOC, the central problem of forming an FOC surface with composite 

patches is to ensure first-order continuity across boundaries between 

adjacent patches. Although Veron (1976) has derived a general 

statement under which two adjacent patches form an FOC surface, its 

application to rB-spline patches is yet to be addressed. 

The present work will (1) establish the specific condition under 

which a topologically quadrilateral hole in an arbitrary sur—ce also 

defined by rB-spline patches is first order continuous across all 

boundaries (synthesis); (2) develop an algorithm for "tiling" a 

topologically cylindrical surface defined by a network of longitudinal 
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and circumferential curves and specified gradients at its boundaries 

(interpolation). 

Before giving the formal mathematical definition of rB-spline 

patches, it would be worthwhile to answer some questions that will 

undoubtedly come to mind of the unsuspecting reader, as happened to the 

author when first confronted with the proposal of this research: what 

are rational B-splines and why are they of interest? To answer this we 

must briefly digress to look at the background of splines in general, 

and then examine the features that make the rB-spline truly a state-of-

the-art formulation. 

The term spline itself comes from analogy with the draftsman's 

spline--a plastic, metal, or wooden instrument which is deformed by the 

user so as to pass a smooth curve through a number of discrete points. 

The mathematical spline is an equation which passes a smooth curve 

through a number of discrete data points so that the data can be 

handled in some compact manner. B-splines (rB-splines are just a more 

recent generalization of the B-spline) were first developed by 

Schoenberg (1946) as an interpolation tool, and only recently have 

become, for reasons that I hope to make very clear, the preferred 

formulation for curves and surfaces in computer-aided design. The 

following discussion will deal primarily with space curves but it is 

easily extended to include surfaces in E 3 . 

Classical attempts at interpolation aave yielded many useful 

forms including the well-known Lagrangian interpolating polynomial, 

piecewise continuous Hermitian polynomials and a host of others. 

Although many of these forms are still in use today, they are used 
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almost exclusively for interpolation purposes, as they have become too 

cumbersome, in comparison with the modern formulations, for design 

applications. (The point is that, at first, these were the formula-

tions used, and only with the development of the far more flexible 

forms were they discarded. They are mentioned here because they truly 

are the ancestors of the modern design forms.) The Lagrangian formula-

tion has a basic limitation common to many of the more modern types: 

as the number of points to interpolate increases, the curve is likely 

to exhibit a tendency for undesirable oscillation. This is because the 

number of points determines the degree of the equation. To interpolate 

n+1 points we need a polynomial of degree n. It is clear that a 

polynomial whose first derivative can possess as many as n-1 real zeros 

would have precisely this many maxima and minima. An equation with 

this property is said to be variation-increasing and is unacceptable 

for design purposes. At this point we catalog the acceptable and 

desirable properties that the ideal designer's representation would 

possess. 

1. Control Points. The representation should be defined by 

specification of control points. These are points in space through 

which the curve or surface may or may not pass, but that, in either 

case, control the shape of the representation in some predictable way. 

Unfortunately, the concept that the curve or surface might not pass 

through all the control pc -rnts may seem unnatural to those whose 

experience in geometric modeling is limited to interpolation with 

classical splines. In any case, the fact that not all the points that 

control or define a representation lie on the surface being represented 



6 

is an essential feature of all modern surface modeling techniques. 

Specifically, this is a feature of Bezier representations, B-splines, 

and rB-splines. The consequences of this are discussed further in 

Section 2.1. 

2. Basis Functions. This feature is also an essential part of 

all modern surface modeling techniques, as the basis functions are what 

relate the control points to the surface. The basis functions are also 

sometimes called blending functions. The basis functions are, typ-

ically, polynomial parametric equations that multiply the control 

points. Each control point has its own basis function, and as the 

parameters vary over their ranges the particular representation yields 

the position vector of points on the patch. The nature of the basis 

function is what gives the representation its characteristic 

properties. 

3. Multiple Valued. The most flexible representation should be 

able to double back on itself and even intersect itself. In general, 

it is unnecessarily restrictive to require the representation to be a 

single valued function. 

4. Coordinate Frame Independence. The shape of the object 

should not change when the control points are measured from different 

coordinate systems. 

5. Local Control. As the designer m•nipulates a control point 

he would like the surface to change in some small subset of the enti -

curve or surface. A surface representation in which the entire surface 

were to change when only one point was manipulated would be extremely 

annoying to the designer trying to make fine adjustments to one small 
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portion of the surface. 

6. Variation-diminishing. We would like our mathematical 

representation to smooth out any small irregularities outlined by the 

control points. This is the opposite of the effect mentioned earlier. 

7. Versatility. The representation should be able to model a 

wide variety of shapes. For example, a formulation that would only 

allow planes, spheres, and cylinders would be extremely limiting to the 

designer. Such a system would be very difficult to use in modeling a 

complex surface such as the boundary of an airplane. 

8. Order of Continuity. A complex surface is rarely modeled by 

a single patch, but rather by a collection of patches that are joined 

at their boundaries. This is done to obtain local control and to 

increase the versatility: a shape that cannot be modeled by a single 

patch can be formed from a number of patches. The designer must then 

specify the order of continuity across the boundaries. Actually 

obtaining this continuity can be quite difficult, as we shall see. 

Zeroth order continuity means that the patch boundaries are coincident. 

First order continuity was described earlier as continuity of the unit 

tangent vector of the intersection of the surface with an arbitrarily 

oriented plane. Second order continuity means that this same intersec-

tion is continuous in curvature across the boundary. Higher order 

continuity can be described mathematically but cannot be detected 

visually. 

With the properties above in mind, we can now examine the repre-

sentations that led up to the presentation of the B-spline. The modern 

forms of designer's curves are parametric (biparametric for surfaces). 
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Parametric forms have many advantages over other forms. For example 

they are multiple valued and are well suited for computer implementa-

tion. In Cartesian coordinates, a point on a curve is represented as a 

vector 

P(u) = [x(u) y(u) z(u)] , 	 (1.1) 

while a point on a surface requires two parameters 

P(u,v) = [x(u,v) y(u,v) z(u,v)] 	. 	 (1.2) 

As the parameters traverse the parameter ranges, the parametric 

functions trace out the points on the surface. The exact form of the 

representation is precisely what governs the flexibility and possession 

of the properties we have just cataloged. The first modern attempts at 

biparametric surface patches were studied by Coons (1967) and 

subsequently called Coons patches. These representations are important 

in a historical context, but their limitations are such that they are 

rather awkward for design and today are considered obsolete. Ferguson 

(1963) developed a polynomial curve representation that was 

subsequently extended to a Ferguson surface, but it also did not 

possess all of the properties that we woulA like it to have. 

P. Bezier of the French co.Lpany Renault pioneered the use of 

surface modeling of automobiles in computer-aided design. He developed 

mathematical representations known as the Bezier curve and Bezier 

surface which are closely related to the B-spline formulation. Bezier 
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(1982) developed the UNISURF software that has been successfully used 

by Renault for design of the outer panels of several cars since 1972. 

The Bezier representation is important to us here because it was the 

first formulation that incorporated several features that are also 

employed in the rB-spline. The difference between them, however, is 

fundamental and it is what makes the rB-sp line the state-of-the-art 

formulation. Both Bezier and rB-spline representations use basis 

functions and control points. The Bezier formulation was the first to 

use control points that, in general, do not lie on the surface. Though 

the Bezier equations will not be presented here, the interested reader 

is referred to Newman and Sproull (1979) or Faux and Pratt (1979) for 

their formulation. The Bezier formulation possesses nearly all of our 

desired properties except that: (1) it does not provide for local 

control; (2) the versatility is hampered by the fact that the order of 

the basis functions is governed by the number of the control points; 

and (3) continuity requirements at the boundaries are sometimes 

difficult to obtain. 

Now, knowing a little about the mathematical formulations of the 

curves and surfaces leading up to the rB-spline, we can focus our 

attention on its form and better see what an ingenious and powerful 

representation it is. In the development that follows the full-blown 

rB-spline patch is not presented at the outset. Rather, to make the 

individual elements clearer, we will first look at the basic B-spline 

curve, then the B-spline surface patch, then the rB-spline curve, and 

then finally, the rB-spline surface patch. 



CHAPTER II 

THE B-SPLINE MATHEMATICAL FORMULATION 

2.1 Introduction  

Over thirty years ago, Schoenberg (1946) invented a polynomial 

spline called the B-spline, originally intended for ". . . approxima-

tion of equidistant data by analytic functions." The "B"-spline is an 

abbreviation for "basis" spline for reasons that should become clear 

shortly. Riesenfeld (1973) first introduced the B-spline to design 

applications. Although in retrospect, it seems rather obvious that the 

B-spline was ideally suited for design purposes, previous to Riesen-

feld's contribution, it had not been suggested. Let us look at the B-

spline in terms of the criteria which we have previously proposed for 

the ideal designer's formulation and see how the B-spline measures up. 

Then, with the actual equations, we can see how these properties come 

about. 

1. Control Points. The B-spline curve is defined by a network 

of control points. Although at first it might seem that the B-spline 

is hard to use since it does not pass through all of its defining 

pcints, the effect of the control points is very predictable: each 

point seems to exert a pull on the .egion of the curve close to it. 

The curve contains the first and last control points, and is tangent to 

lines drawn from these outside points to the adjacent interior points. 

To see how the control points influence the shape of the resulting 

1 0 
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curve, the reader is referred to Fig. 2.1. 

2. Basis Functions. 	The B-spline has polynomial basis 

functions that relate the control points to the curve. In a sense, the 

curve defined by a B-spline representation is a weighted average of all 

the control points, and the basis functions are the rules which 

determine what weight is assigned to each control point. 

3. Multiple Valued. The parametric formulation of the B-spline 

allows multiple valued shapes. 

4. Coordinate Frame Independence. The B-spline representa-

tion's parametric form is totally independent of the choice of coordi-

nate frame. 

5. Local Control. The B-spline does allow for local control. 

The reason for this is the nature of the B-spline "basis" functions. 

This is also the main reason why the B-spline is so versatile. We will 

see this in the mathematical definition and discuss this feature in 

more detail later. 

6. Variation-Diminishing. The B-spline curve is variation-

diminishing, and thus, tends to form smooth curves without unwanted 

oscillations. 

7. Versatility. The versatility of the B-spline is one of its 

greatest strengths. This is because the degree of the basis functions 

is independent of the number of control points. The power of this 

independence is somewhat subtle, bt 	it cannot be overstressed. 

Theoretically, the B-spline formulation would allow us to define a very 

complex surface with just one patch, and only use, for example, cubic, 

polynomial basis functions. The reason that that may be done is not at 



Figure 2.1. The Effect of Control Points on a B-spline Curve. Those 
sections near a control point are drawn toward that point. 
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all obvious, as it is hidden in the B-spline's mathematical 

formulation. In a way, the B-spline is a piecewise, continuous 

polynomial like the Hermitian polynomial; but in the B-spline, the 

polynomials are basis functions that multiply control points, and thus 

the analogy is not exactly correct. In any case, internal continuity 

is guaranteed up to one order less than the degree of the basis 

function. Then, for example, a B-spline with cubic basis functions is, 

internally, second order continuous. 

8. Order of Continuity. As we mentioned, the B-spline is 

internally continuous up to one order less than the degree of the 

polynomial basis functions. However continuity across boundaries of B-

spline patches can still be somewhat difficult to achieve. 

Nevertheless, the present work will demonstrate how to obtain first 

order continuity. The reason that this is important can be understood 

if we consider the problem previously mentioned. We stated that the B-

spline representation could theoretically be used to model a very 

complex surface with just one patch. In practice, what is done is to 

divide the surface up into a collection of smaller patches, and write 

B-spline surface patch equations for each smaller patch. To do this, 

we must specify the continuity across the patch boundaries. This is 

exactly the problem that the present work will address. 

Although the preceding discussion of the desirable properties 

whicl. the B-spline possesses was primarily for the B-spline curve, all 

of these properties are also present for B-spline surfaces, and rB-

spline curves and surfaces. 
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2.2 The B-spline Curve  

The B-spline curve is defined by 

P(u) = 2: RiNk , i (u) , 
i=1 

(2.1) 

where the 	are the control points, of number n, the N k,i (u) are the 

basis functions, k is the order of the basis functions (degree k-1), 

and u is the parameter. Before continuing in the definition of the 

components, it will be worthwhile to note that the notation used here 

for the n subscript differs somewhat from the way it is used in much of 

the literature. This divergence from the standard notation is made for 

a number of reasons. The practice of beginning a sum at zero is 

logical when you have a polynomial with a zeroth order coefficient that 

is a constant term. However, the lower limit of the sum in Eq. (2.1) 

in no way corresponds with a zeroth order term in the basis functions. 

The lower summation limit here corresponds to the first control point. 

When one uses an index to count points in space, it seems much more 

logical to begin counting at one. There are, therefore, n control 

points using this notation (instead of n-1). This notation becomes 

especially convenient when we begin to work with the surface patches, 

as here we will be dealing with e mesh of control points, and math-

ematically it will be most convenient to w' rk with matrix notation. 

Since it is standard to count matrix elements a ij  starting with i=1, 

j=1, the convention we adopt here allows the subscript of the matrix 

elements to match the subscript of the appropriate basis function 
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instead of being off by one. This is merely a notational detail. The 

nature of the formulation is not at all affected. 

As noted earlier, it is the basis functions which give the B-

spline its desirable properties and we will see their mathematical 

definition in a moment. The most important feature of the basis 

functions is that they are nonzero over only a portion of the parameter 

range. As we can see from Fig. 2.2 for a B-spline with six control 

points (n=6 and k=4, cubic), there are at most four nonzero basis 

functions at any single parameter value. This means that, at any point 

in parameter space, there are at most four control points influencing 

the shape of the curve. This feature gives us our much sought after 

local control. Figure 2.3 illustrates this concept using a B-spline. 

The basis functions used in the present work and in most modern 

design applications are the normalized B-spline basis functions. These 

are normalized divided difference polynomials over some predefined knot 

set which we will discuss below. The mathematical definition used 

here, and in most applications, is a more stable and computationally 

efficient form than the divided difference form, from De Boor (1972), 

and given by the recursive relation 

1 	for 	t.< u< t i+1 

(u) = 
	

(2.2) 

0 	otherwise 



0 8 	N4 (u )  

0.0 
0.0 1.0 

1.0 

7/ 

	

/ 	

I 

I 

N46

I  
I 

0.6 	 N42 (u) 	 N43(u) 

	

......—........ 	

NO? . 

/ 
	\ 	7 	 /o 

N4(U) - 
■ 

e'S 	s• 	1 

X 
	̀ • 

% ... N(U) 	 \ 	 ' 	 •• i 

C 	

• 

0.4 	

.•

..N 	i l .. 
.. 1 

1.. 
1 

.. 
.. 	. 	li 	. 

	

. 	
_ 

. 	 \ 	; 	. 

	

• .• . 	
, 	, 	. 

0.2 	 V 	. . _ 

. / . 	. 

	

.,.. ...••• 	 . 
. ..... ---.., 	 . 

3.0 
Figure 2.2. The B—spline Basis Functions for n=6, k=4. There are at most 

four basis functions that are nonzero for any single parameter 
value. 
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Figure 2.3. An Example of Local Control Using B-splines. The original 
points are marked with small squares and the altered points are 
marked with small circles. Only the second point has changed 
position and only a portion of the curve is affected. 
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(u-ti)Nk_i, i(u) 	(ti+k-u)Nk_1, i 4. 1 (u) 
Nk,i(u) = 	  

) _, (t i+,K -t 1. . 	(ti+k-t i+1 ) 
(2.3) 

where the ti are the knots which we define below. 

Since denominators of Eq. (2.3) can become zero, we adopt the conven-

tion that 0/0 = 0. 

Equations (2.2) and (2.3) require that we choose a knot set, t i , 

that relates the parameter u, to the control points. There are two 

standard sets of rules for choosing this knot set: the uniform perio-

dic knot set; and the uniform nonperiodic knot set. The uniform 

periodic knot set is used for closed curves and since, in general, we 

will be dealing with open curves and surfaces in design, we will use 

the uniform nonperiodic knot set. Using this rule, the knot set values 

t 1 to tn+k are given by 

t • = 

0 	 if 	i < k 

i-k 	if 	k ( i < n 

n-k+l 	if 	i > n . 

(2.4a) 

(2.4b) 

(2.4c) 

With this knot set, the parameter ranges from 0 to n-k+l. 

Equations (2.2), (2.3), and (2.4) are all we need to begin 

calculation and design with B-splines. Appendix A shows, in detail, 

how the basis functions _Jed in the rest of the present work are 

derived. 
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2.3 The B-spline Surface Patch  

The formulation of the B-spline is easily extended to define 

surfaces in E3 by generating the Cartesian product of two curves. We 

now use two parameters, u and v, which can vary independently. For 

both u and v, the basis functions are defined exactly the same. Thus 

we define the B-spline surface by 

n 	n 
12.(19V) = 	1] RijNk , i(U)Nk , j(V) • 

1=1 j=1 
(2.5) 

The control points Rij  are now a mesh of points in space. These points 

provide a three-dimensional "tent" in which the surface is the weighted 

average of the control points as the two parameters vary over their 

ranges. Analogous to the curve, the B-spline surface, in general, only 

contains its four corner control points. We note that the basis 

functions in Eq. (2.5) are given by Eqs. (2.2) and (2.3) with the knot 

set given by Eq. (2.4) exactly as for the B-spline curve. 

2.4 The rB-spline Curve  

The rB-spline curve is a generalization and extension of the B-

spline curve. It assigns to each basis function a weight that is free 

to be specified by the designer, giving the formulation even greater 

flexibility. Any given network of control points defines a whole 

family of rB-spline curves, depending on the weights assigned to the 

individual basis functions. The rB-spline curve is given by 



20 

24WiNk , i ( U) 

(2.6) 

wiNk,i (u)  

where the 21 , Nk,i (u), n, k, and u are exactly as before, and the w i 

 are the weights. Although theoretically any value can be assigned to 

the weights, it is customary to assign weights greater than zero. 

Specifying zero weights nullifies the effect of that corresponding 

control point: it is as if that control point had never been defined 

at all. Negative weights are also not customary. Whereas for positive 

weights, the effect of the control points is to exert a pull on the 

portion of the curve near the control point, negative weights would 

cause the curve to be pushed away from the control point. The 

essential feature of the weights, however, is their ratios to each 

other. For example, if all the weights were negative, it would be the 

same as if they were all positive. More interestingly, if the weights 

were all equal, the rB-spline formulation reduces to exactly the B-

spline formulation. Thus we see that the rB-spline is the more general 

case, as we had claimed previously, and contains the B-spline as a 

special case. It is important to realize that these weights are free 

to be set by the designer unless some other constraint should be 

encountered. Undoubtedly, skillful selection of these weights would 

require extensive experience, as to their effect on the resulting 

curve. One observation in this regard is that by increasing the 

weights corresponding to some interior points, it should be possible to 
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make the resulting curve pass very near those control points. 

With any "automatic" algorithm using rB-spline curves or patches 

it would be more efficient if these weights were chosen automatically 

by the algorithm. The most robust algorithm, of course, would allow 

the designer to select automatically specified weights or actually to 

specify them instead. 

2.5 The rB-spline Surface Patch  

In the exact manner that we extended the B-spline curve to a 

surface patch by forming a Cartesian product, we now extend the rB-

spline curve into the rB-spline surface patch. It is defined by 

n n 
1] 2: QiiwiNk , i (u)wiNk , i (v) 
i=1 J=1 

P(u,v) (2.7) 

 

2: wiNk , i (u) 	witik , i (v) 
i=1 	,=1 

 

where the elements of the equation are all as previously defined. In 

general, the w i  weights corresponding to the Nk,i(u) can be different 

thanthew.weightscorrespondingtothe Nk,j (v ) . 



CHAPTER III 

FIRST ORDER CONTINUITY 

3.1 Preliminary Continuity Considerations  

General continuity conditions for surfaces are inherently 

mathematical. However, when they can be visualized geometrically, it 

is worth the effort to do so. It is also helpful to understand 

physically why we would want to have certain continuities, and what 

they look like. Before presenting the mathematical conditions that 

specify first order continuity, we will begin with a short general 

discussion on continuity. 

When we are designing a composite surface of individual patches, 

we must specify what continuity is required at the boundaries of the 

patches. This has been a problem for all mathematical representations 

of surface patches, including rB-spline patches. We will herein 

demonstrate that first order continuity can be obtained using rB-spline 

patches, provided that certain mathematical conditions are satisfied. 

More simply put, we are looking for the precise manner in which a 

composite surface can be represented exactly and appear "smooth." 

A "smooth" composite surface is one which is continuous in 

position at the boundaries between individual patches within the 

composite, a well as first order continuous at these boundaries: there 

are no kinks, ridges, or other features which disturb its smoothness. 

22 
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We have already defined precisely what we mean, mathematically, by 

first order continuity in terms of continuous unit tangent vectors 

across the boundaries of adjacent patches. Because this presupposes 

that these patches have coincident boundaries, a discussion of 

positional continuity precedes our consideration of FOC. But before 

this, let us consider why we would want "smoothness." 

A smooth surface is an important consideration in design, for a 

number of reasons. First we must consider that important functional 

properties are determined by the smoothness of the surface. Examples 

from common computer-aided design applications include the surface of 

an airplane, the surface of an automobile, hulls of ships, gas turbine 

blades, internal flow surfaces of a rocket engine, etc. In all of 

these examples the performance is significantly affected by the 

presence or absence of discontinuities. In aircraft and automobiles, 

and to some extent ships, we also observe that the smoothness of the 

surface is aesthetically pleasing. The importance of this cannot be 

discounted, as is obvious in the case of the automobile: the smooth, 

sleek sports car is a highly desirable commodity. Exactly why the 

smooth object is pleasing to the eye is uncertain, and in any case, it 

is a topic for debate among psychologists rather than engineers. Here 

we need only concern ourselves with saying that, for whatever reason, 

we want to have the capability to model a smooth, composite surface. 

In some applications, second order continuity i , desired. 

Second order continuity is much less easily obtained, than is first 

order continuity. We can concoct examples in which a curvature 

continuity can be detected, but in general it cannot. A join between 
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two surfaces can be first order continuous and appear smooth, yet be 

discontinuous in curvature. Consider, for example, the surface of a 

cylinder which is tangent to a flat plane along the longitudinal axis 

of the cylinder as in Fig. 3.1. The plane is tangent to the cylinder 

at the join and thus appears smooth. Nevertheless, there is a 

discontinuity in curvature at the join: the radius of curvature, which 

is inversely proportional to the curvature, jumps from some constant 

finite length within the cylinder, to an infinite length at the flat 

plane. In the present work, we will not specifically address the 

problem of second order continuity, but we will make some heuristic 

argument as to how B-splines could be used to achieve it. It is the 

intent of the present work that the mathematical model derived here can 

be built on, in order to obtain second order continuity. 

Although the present work does not assume the reader to have 

previous experience with B-splines, we will here construct an intuitive 

argument on the nature of continuity solutions of various orders. If 

the reader does not find the arguments to be very intuitive at all, 

then we can only suggest that the continuity derivation to follow will 

impart some small amount of intuition, after which the arguments 

presented here will make more sense. 

We reason here as follows. The first control point of a B-

spline curve is dete ..-mined by zeroth order (positional) continuity. We 

have already noted chat a B-spline curve only passes through its first 

and last control points and, hence, for two curves to connect, the 

first control point of the one must be the same as the last control 

point of the other. In a similar manner, we argue that positional 



Curvature 
discontinuity 

Figure 3.1. An Example of a Smooth Curvature Discontinuity. On the 
line of tangency between a cylinder and a flat plane 
exists a discontinuity of curvature. 
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continuity will determine the outside boundary "ring" of control points 

for a topologically quadrilateral B-spline surface patch (see Fig. 

3.2). When we take up the derivation of zeroth order continuity for 

the rB-spline patch, we will see that things are not quite so simple; 

but, in fact, our intuition is correct. Proceeding with this logic, 

and knowing something about the derivatives of B-splines, we reason 

that first order continuity will determine the next ring in from the 

boundary ring of control points. The present work will show that this 

is also correct. Finally, extending this logic yet one more step, we 

argue that second order continuity will determine an inner ring, within 

the first two. Hence, for second order continuity, we postulate that 

we will need at least three concentric rings of control points. We can 

see from Fig. 3.2 that this means we will need at least a six-by-six 

matrix of 36 control points. 

By the arguments in the previous paragraph, we assume that a 

six-by-six matrix of points will be necessary for a second order 

continuous composite surface. We also recall that a B-spline is 

internally continuous up to one order less than the degree of the basis 

function, and thus, for Continuity of order two, we will need cubic 

basis functions. For these reasons, we derive the B-splines with k=4 

(cubic) and six control points. This derivation is presented in 

Appendix A for use in the present work. Whenever possible we will make 

use of these equations to write out specific solutions. Again_ the 

intent of the present work is that second order continuity can be 

obtained by building on the conclusions obtained herein. 

Before proceeding to the derivations of the various continuity 
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• ■/ ••■1101M, 

• 	 

Inner ring set by second order 
continuity 

Middle ring set by first order 
continuity 

Outer ring set by zeroth order 
continuity 

Figure 3.2. Rings of Control Points Determined by Continuity Condi-
tions. The order of continuity will influence progres-
sively more interior rings of control points. For second 
order continuity, we will need, at least, three concentric 
rings of control points. Thus, we require a six-by-six 
matrix of points. 
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conditions for the rB-spline patch, we will first consider a consistent 

coordinate system. We will then move on to zeroth order continuity, 

and then, finally, to first order continuity. 

3.2 A Consistent Coordinate System  

Establishing a consistent global coordinate system must be one 

of the first steps in any engineering or mathematical analysis 

involving vector quantities. The vector quantities in the equations 

that follow are most easily defined in terms of Cartesian coordinates. 

In the present work, whenever a vector relation is given, it is implied 

that these are actually three equations in x, y, and z. However, the 

parametric forms given are not restricted to the Cartesian case, and 

the selection of the coordinate system is left to whichever one is the 

most convenient. 

In addition to the global coordinate system, we need to define a 

local frame of reference for the parameters, u and v, and also the 

numbering system for the control points which specify the rB-spline 

patch. 

Consider the surface patch in Fig. 3.3. This figure shows the 

numbering system and direction of parameter variation that will be used 

in all derivations to follow. Notice first that the control points are 

numbered in exactly the same convention as is used when numbering 

matrix elements. This is consistent with the usage, in the present 

work, of matrix notation for the derivation of the continuity 

conditions. The parameters vary from u=0, v=0, at the upper left-hand 

corner to u=uMaX  at the right-hand edge, and v=vmax  at the bottom edge. 
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v = 3 -- 
J64 	J65 	J66 

U=0 

v= 

.0.61 J63 J62 

Figure 3.3. Number of Control Points and Parameter Variation. The 
points that define the patch are numbered by the same 
convention as are matrix elements. The parameters, u, and 
v, vary independently from zero to three, in the 
directions indicated. 
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For the B-spline basis functions used here and derived in Appendix A, 

u =vmax  =3. This parameter variation and numbering of control points max  

is identical for all surface patches. 

3.3 Zeroth Order Continuity: the 1.B-spline Patch  

Given the basis functions derived in Appendix A, the rB-spline 

patch is defined by a six-by-six matrix of control points. Zeroth 

order continuity requires only that the patches be coincident at their 

boundaries. Because of the nature of the B-spline, we would 

intuitively expect that the control points of one patch at the common 

boundary, would be precisely the same as those on the adjacent patch. 

This can be easily proven for the B-spline patch. However, in the more 

general case of the rB-spline patch, this is not so obvious. The 

topologically quadrilateral surface defined by an rB-spline surface 

patch, in general, only passes through, or contains, its four corner 

points. Along the common boundary the control points might not be the 

same, if the weights corresponding to the points along the boundary are 

not identical for the adjacent patches. In any case, a rigorous 

mathematical development is necessary to see exactly how zeroth order 

continuity is obtained. 

Consider the two portions of the surface patches in Fig. 3.4 

where S1 and S2 are given by 

1 
Si : r(u,v) = 

wl(u,v) (N
4 $ i(v))T [A,](144 , i(u)) (3.1a) 

wl(u,v) = (144,i (v)) T [w](144,j (u)) , 	 (3 .1b) 



	

§61 	b62 	
_b4,65 	b66  

	

V 	an 	D13 	1314 	13 15 	1316 

• • 	• • 
022 	223 	1324 	1325 

S2 : p(u,v) 

Si. : r(u,v) 

Figure 3.4. Continuity Across a Patch Boundary. We consider attaching 
one surface patch to another, with zeroth, and first order 
continuity. These patches could be either B-spline or rB-
spline surface patches. 

31 
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and 

a .. = w. w. a.. 1,v j,uij 	- (3.1c) 

S2 : 2.(u,v) = 
1 

w2(u,v) 014,i(v)}TIel{N4,i(u)} 

w2(u,v) = 014 , i(v)}T [wl{N4 , i(u)} 

b.. = w. 	w. b.. —1J 	1,v j,u--Ij 

(3.2a) 

(3.2b) 

(3.2c) 

where the matrix of weights is given by 

 

wl,vwl, u  

w2,vwl,u 

w3,vwl,u 

w6,vwl,u 

wl,vw2,u 	 wl,vw6,u 

 

[wl 

    

(3.3) 

   

w6,vw6,u 

 

    

       

       

This formulation puts the corresponding weights into the matrices of 

control points designated by the asterisk and given by Eqs. (3.1c) and 

(3.2c). Equations (3.1b) and (3.2c) express the scalar denominators of 

the rB—spline formulation put in a compact form. Note that both 

patches use the same parameters. Since these are merely dummy 

parameters, there should be no confusion about this. Note also that 

the basis functions are the same set for both parameters. 
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The basis functions can be put into a form which will be more 

convenient to use, namely, 

{N(u)} 	[IM1 lki1+IM2D12-14M3lki3l(U) , 	 (3.4a) 

where 

(u-j-l)-µ(u-j) , 
	 (3.4b) 

{U} T  xer 	u u 2  u3 ] 	9 

	 (3.4c) 

Ml 

1 	-3 	3 	1 

9 	7 
0 	 3 	- 7; 

3 	11 
0 	 0 

12 

1 
0 	0 	0 

-6-  

0 	 0 	0 	0 

0 	 0 	0 	0 

(3.4d) 

   



34 

0 
	

0 	0 	0 

2 	-3 
3 	1 
2 	

- 

4 

- 3 	9 	 7 
_ 
2 	-2- 	

-3 
12 

3 9 	9 	_ 7 

4 	
_ 

4 	4 	12 

1 	3 	3 	1 

0 
	

0 	0 	0 

- 	 (3.4e) 

0 0 	 0 

0 	 0 0 	0 

	

9 	9 	3 	1 

	

2 	2 	2 	

- 

6 

	

45 	63 	27 	11 

- 4 	4 	4 	12 

	

63 	93 	45 	7 

	

4 	4 	4 

- 8 	12 	-6 	1 

(3.4f) 

M2 .• 

M3 = 

Along the boundary common to both patches, positional continuity 

is given by 

2.(12 1, 	) = r(u,0); 	 = 3) 	 (3.5) 

Using Eqs. (3.1a) and (3.2a), we find that Eq. (3.5) becomes 
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w2(u

1

3) 
	 01(3)}T [b* l{N(u)} = wl( 1 	 01(0))T [a* l{N(u)} . ( 3.6) 
,u,0) 

We can simplify this by realizing that 

and 

{N(0)} T  = [1 0 0 0 0 0] (3.7a) 

{11(3)}T  = [0 0 0 0 0 1] (3.7b) 

The denominators become 

wl(u,0) = [1 0 0 0 0 0][w]{N(u)} (3.8a) 

= wl i,v [wl i,uw1 2,uw1 3,uw1 4,uw1 5,uw1 6,u ]{li(u)} , 

and 

w2(u,3) = [0 0 0 0 0 l][wl{N(u)} 	 (3.8b) 

= w26,v [w21,uw2 2,uw23,uw24,uw2 5,uw26,11 ]{}1(u)}. 

Equations (3.6) through (3.8) result in 

1 	{t!: .}Tf(N(u)} 

'2 6 ,w {w2i ,u } T {N( u)} 	'1 

1  
{al .} T {11(u)} . 

wli,v
{wli , 11

}T{N(u)} 

(3.9) 
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We use Eqs. (3.1c) and (3.2c) to arrive at the identities 

b 
	

m w2 w2. —6,i 	6,v 1,u-6,i ' 

* 
.2.14 = wli,vwli,ula,i , 

and use these to simplify Eq. (3.9), obtaining 

(w2i ,u ) T (N(u)) {w2"u126°T(N(u))  

1 

91 
1 

{wli,u-41,0T(N(u)) . (3 .11) 

In the general case, the weights are unequal, that is 

{wli,u } # (w2i ,u ) . 	 (3.12) 

We can solve Eq. (3.11) for the control points 12 6,i  to obtain 

w2(u) wl. 1,u 
b 	= • 
—6,1 wl(u) w2iu  14 ,i ,  11 (3.13a) 

where 

wl(u) = (wli ,u ) T (N(u)) , 	 (3.13b) 

w2(u) m (w2i ,u ) T (N(u)) . 	 (3.13c) 
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If the weights are equal for both patches along the common 

boundary, then Eq. (3.13a) reduces to 

126i = ali • 
	 (3.14) 

Let us examine Eq. (3.13a) a little closer. we note that the 

ratio wl(u)/w2(u), where the functions are given by Eqs. (3.13b) and 

(3.13c) may cause some problems. Equation (3.13a) must not give an 

indefinite value, that is, it must be constant, regardless of what 

value we choose for u. Let us see what constraint this imposes on the 

weights of the new surface patch. We begin by assuming that the ratio 

is constant, and then see what constraint is required for it to be a 

constant. Thus, we let 

w2(u) 
C 

wl(u) 

Now using Eqs. (3.13b) and (3.13c), we obtain 

{w2i , u }T000l C{wl i,u }T {N(u)} , 

(3.15a) 

(3.15b) 

and hence 

{w2i,u }T 	C{wl i,u }T  . 	 (3.15c) 

Equation (3.15c) implies that the weight vector for patch S2 

must be some constant times the weight vector for patch Sl. This must 
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be true for Eq. (3.13a) to be independent of u. Now we rewrite Eq. 

(3.13a) using Eqs. (3.15a) and (3.15c). 

w2(u) wli,u 	1 
126i - 	 F • C

u  
• (3.16 ) 

From this we see that the control points along the boundary of S2 must, 

in fact, be identically the control points along the boundary of Si. 

Also from Eq. (3.15), we have that the u weights of patch S2 must be 

proportional to the u weights of patch Sl. Since within a patch it is 

the ratios of weights which are the determining factors, this means, 

essentially, that the u weights for S2 and Si are equal. 

3.4 First Order Continuity: The B-spline Patch  

The general condition for first-order continuity of any 

biparametric vectorial surface representation is given by Veron (1976). 

Although Veron develops continuity using the Bezier surface patch, he 

always precedes the Bezier formulations with the generally applicable 

continuity statement, which we can apply to the B-spline or rB-spline 

representation. 

The following derivation first addresses the problem of applying 

Veron's continuity condition for the B-spline surface patch, and later 

4erives the same for the rB-spline case using results obtained for the 

more tractable B-spline. 

The fundamental problem for obtaining first order continuity in 

B-spline patches arises as a result of exactly the same feature that 
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makes the B-spline so useful. The mathematical trick used in the B-

spline formulation is the use of the step functions in the first order 

bases to turn on and off the higher order polynomial bases, as the 

parameter spans its range. Consider that, whereas, the Bezier formula-

tion has exactly six blending functions (the Bezier blending functions 

are directly analagous to the B-spline basis functions) for six control 

points, one for each point, the B-spline has eighteen basis functions, 

three for each point. In the Bezier formulation all of the blending 

functions are nontrivial over the entire parameter range, while for the 

B-spline there are three independent sets of cubic, polynomial basis 

functions, each set of which is nonzero over only one span of the 

parameter space. 

ferent sets of bases 

Consider the 

(1976), first order 

s' A .-r-c 

where 

3r 
T 	= 

au 

aL 
T 1 	= 

3v 

T
a 
 = — 

As the parameters traverse their ranges, the dif-

turn on and off. 

two patches S1 and S2 shown in Fig. 3.5. 	By Veron 

continuity is given by 

13 	 (3.17) 

= r
U 	2 

 (u 0) 	, 	 (3.18a) 
- 

v=0 

= r
V 	2 

 (u 0) 	, 	 (3.18b) 
•  

v=0 

= 2.(u,3) 	. 	 (3.18c) 
v=3 



Figure 3.5. Derivative Vectors for First Order Continuity. The 
derivative vectors for Veron's continuity condition are 
pictured, where, T I  is the partial derivative of Si with 
respect to v, T 2  is the partial derivative of S2 with 
respect to v, and Ic  is the partial derivative of S1 with 
respect to u. 
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Where, A and (3 can, in general, be some polynomial function of 

the parameter, u. Figure 3.5 illustrates the geometrical orientation 

of the derivatives in Eq. (3.17). 

Let us consider the form of Veron's continuity condition by 

examining the various components. Then we will apply Veron's condition 

to the most constrained FOC problem for a topologically quadrilateral 

patch: filling a hole that is surrounded by other patches whose 

control points are known and which themselves form a first order 

continuous surface. We will then apply the continuity condition on 

each side, one at a time. 

Consider the situation pictured in Fig. 3.6. 	S2 is the surface 

patch with the unknown control points. 	The equations for the patches 

are given by 

SI : r(u,v) = {N(v)}T [a]{N(u)} (3.19a) 

S2 : 2(u,v) = {N(v)} T [b]{N(u)} 	, (3.19b) 

S3 : g(u,v) = {N(v)}T [c]{N(u)) (3.19c) 

S4 : s(u,v) = {N(v)} T [d]{N(u)} 	, (3.19d) 

S5 : t(u,v) = {li(v)} T (e]fN(u)} 	. (3.19e) 

In this first development of the continuity conditions for the 

B-spline patch, the B-spline equations will be expanded into systems of 
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Figure 3.6. The Five Patches. We consider the problem of filling in 
the topologically quadrilateral hole, with a B-spline 
surface patch. Patch S2 is the patch to be filled in. 
Note that this figure clearly shows the points that are 
coincident on the difference patches. The B-spline 
equations for the patches are given in Section 3.4. 
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equations and placed into appropriate places in Eq. (3.17). Once the 

equations are fully expanded, powers of u will be collected over each 

span, coefficients of like powers of u in Eq. (3.17) will be equated 

over each span, and the system of equations will be solved for the 

unknowns. This method can best be described as the "brute force" 

method. Later we will use a more elegant technique to arrive at first 

order continuity for the rB-spline case. In fact, the more elegant 

technique did not become clear until the brute force method had been 

used extensively. However, the brute force method can give us con-

siderable insight into the nature of the solution, and thus is 

presented here in hope that it will make things a little clearer for 

the reader. 

To begin "filling in the hole," consider, again, Fig. 3.4. 

There we see the first edge along which we will impose the continuity 

condition. The equations for the patches are given by Eqs. (3.19a) and 

(3.19b). Our first task is to find out how to take the derivatives of 

the B-spline equations. Butterfield (1976), and De Boor (1972) have 

both shown how this can be done. Here, the method used by De Boor will 

be presented. The derivatives of the normalized B-spline are given by 

Nk, i(u) = (k-1) 
[ Nk_ 1,i (u) 	Nk_i, i +1 (u) • 	

(t• 	-t-) 	(t• 	-t- 	) 	• i+k-1 	i+k 1+1 
(3.20) 

We can see that the B-spline derivatives depenG on two basis 

functions one order lower than the B-spline we are differentiating. 

The definitions of the various components are given in Appendix A. It 

can be shown that at the maximum and minimum of the parameter range, 
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{g(0)}T  .. (k-1)[-1 	1 	0 	0 0 0] 	, (3.21a) 

{N(3)}T  = (k-1)[0 	0 	0 	0 -1 1] 	. (3.21b) 

Using these in Eqs. (3.18a), (3.18b) and (3.18c), we obtain 

T1  .. (k-1){a2i-Al i}T {N(u)} , (3.22a) 

T2  = (k-1){126i-b50 T{N(u)} , (3.22b) 

Ic  = {ali}T {N(u)} 	, (3.22c) 

for i..1,2,...,6. 

Now from Eqs. (3.20) and (3.17), the continuity condition becomes 

{k6i-b 5i } T {N(u)} i. A(u){a 1i } T {N3,i (u)/(t i.2-t i ) 

- N34 4.1(u)/(ti 4.3-ti+1)} + 	u){a2i-a 1i }T {N(u)} . 

(3.23) 

It is evident that if the degree of the {N(u)} vector could somehow be 

increased one degree in u by A(u) so that the {N(u)} vector was identi- 

cal with the {N(u)} vector, we could equate the respective vector 
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elements, one by one, to obtain our solution. This was attempted, but 

it can be shown that this is not possible due to the nature of the 

derivatives. Hence the only way to solve these equations is to collect 

powers of u over each span of the parameter space and equate coef-

ficients of like powers. 

We now use the equations for the basis functions derived in 

Appendix A and use them to arrive at the expanded equation of conti-

nuity: 

[ 1_3u 2+3u  2_113 

+ (2-3u + -3 
2 

	

(b 	-b 	)+[(3u - 9  1 -61 	51 	T u  

	

4 
u 2  - 	u3)1121 (12i2-b52)  

 + -7  u3 )11 
4 	1  

3 
+ [(-2 u2 - 

11 
u3)111 

3 	9 	 1 
+ (- - + - u-3u 2  + 7  u3 )11 ., + -(27-27u+9u 2-u3 )11 3](43-_1353) 2 	2 	12 	6 

9  2 	7 	3 ) 	, 45 	63 	27 2 
+ [(--)11  + (

3 	9 

	

6 1 	T - Z u+ T u - U 111112+ `-+ Tu - T u  

2+u 3 )11 + 1{63-93u+45u 2-7u 3 )11 3 1  + 11  u3 )1I ](b -b ) + [ 1(-1+3u-3u 
12 	3 -64 -54 	4 	 2 4 

x (b-65  -b ) + [-8+12u-6u 2 	11 1 3 (1266 -1256 ) = X(u)([-1+2u- 55 	
3 	

n2 lall 

7 
+ [(1-3u + u2w1 	

4 
(-l+u - 	u2)11 2 ] x12 + ( 

	11 
u2)111  

3 	7 	2 	1 	2 	 u2 
+

/ 
- 2u + 

12 
 u )112 + 

6 
 -9+6u -u)113lA43 

6 

( 7 	2 	3 	 ( 21 	9 
u  + — u + - u -)11 2 

, 11 	) 
12 	2 	4 	4 	2 	u

2 
413JA14 
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1 2 	1 	1 	31 	15 	2 + [(- 	- - + -412  + (- — + 	--u413 1145  + (u2  11 	 -4u+4) 
4 	2 

11 	
4 	4 	2 	4 	 P3A16) 

+ 13(u)([1-3 u+3u 2-u3 1 - 1-11 (121 -P11 )  

9  2 + 7  u3)ii1 
	 1  + (2-3u + 	u2  - - u31, P-2] (A22-'112 )  + [(3u - Ttl 	Z. 	 47 

3 	2 
L 	

2 
 u 

11 	3 
- 

12 
 u )11 1 	+ (- 

3 	9 	2 
2 
 - + 

2 
 - u - 3u 7 	3 	1 + 

12 
 u )11 2  + 

6 
 27-27u 

+ 9112-u3)P3](a23-# 	
3 - 9 	9 2  - 7  u3 )1-11 ) 	r (1. uP 	- 7- 11 	u 7,7 	Ty 43 , 	6 3 )

1  + ( 4 4 

45 	63 	27 	4.  11 	r, 	 2,3)ij 2  + (- 45 

	

 L7 11  -4-112 

	
3413"24-a141 	

r 	
- 

12 u  

+ 1{63-93u+45u 2-7u3 )P3 	a15 l(a 25-) + [(-8+12u-6u 2+u3 )1-13 
4 	 ](A26--116))• 

(3.24) 

We now assume that 

A(u) 	Au + y , 	 (3.25a) 

and 

13( u ) 
	

(3.25b) 

where A, y , and 13 are constants. The reason for this assumption is 

that since the lc  vector is one degree less in u than T 1  and T 2 , this 

form of A (u) and “u) will result in a consistent formulation through-

out. 
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The outside ring of control points is determined by positional 

continuity (see Sec. 3.3). Referring to Figure 3.6, we see that 

1211 	446 	161 
	

(3.25a) 

b = —21 —26 

b = d —31 —36 

(3.25h) 

(3.25c) 

141 = 446 
	

(3.25d) 

151  = 4-56 
	

(3.25e) 

1261 	(16 6 
	

(3.25f) 

1212 	162 
	

(3.25g) 

113' 16 3 
	

(3.25h) 

1214 ig  64 
	

(3.251) 

1245 - 65 
	

(3.25j) 

k16 266 R11 
	

(3.25k) 
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1226 m  S21 

12-36 m  

1246 m  41 

1266 m  S-51 

1266 m 161 m 146 

1265 m 145 

1264 m 114 

1263 m 143 -  

h62 m 142 

61 x111 m 166 

(3.251) 

(3.25m) 

(3.25n) 

(3.25o) 

(3.25p) 

(3.25q) 

(3.25r) 

(3.25s) 

(3.25t) 

(3.25u) 

Using these identities we group like powers of u over each span of the 

parameter space, leaving the unknowns along the first edge on the left 

hand side of the equations. this gives us the system of equations: 



This can be put in a more compact, partitioned matrix form as 

Cl 

C2 

C3 

{1250 = ( Rj ) 
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-7/4 

9/2 

11/12 

-3/2 

-1/6 

0 

0 

0 

-3 0 0 0 

0 0 0 0 

3 -7 7 -3 -52 

-6 12 -9 3 -53 

3 -9/2 9/4 -3/4 -54 

-2 3/2 -3/4 1/4 -55 

0 1/6 -11/22 7/4 

0 -3/2 27/4 -45/4 

0 9/2 -63/4 93/4 

0 -9/2 45/4 -63/4 
_ 	 -i 

R1 \\ 

R3  

11\  

115 

116 

Ea 

-40 

-41 

\ 1112 

(3.26a) 

(3.26b) 

(3.26c) 

(3.26d) 

(3.26e) 

(3.26f) 

(3.26g) 

(3.26h) 

(3.26i) 

(3.26j) 

(3.26k) 

(3.261) 

(3.27) 

where the Rj , j=1,2,...,1 2 are vectors of known control points 

involving A, y and a, where 
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a 	
aa21 . - ( 1 +a)A4i - i=1,2,...,6 . 	 (3.28) 

The R•
J 
 vectors are given by 

7 	7 	11 	11 
R 1 21  5 ..111- 1 	+ a2 + -4 X -a12 - —(1  - 	a  12 3 	12 X-43  

+6 44 + 64414  $ (3.29a) 

9 	7 
R2 	3(b 	 a-3X a  

	

)ka 	 -Y12 51 	1 )-Ya  11 +2 	11 	2 	2 + 4 	12 

3 	11 	 1 
+ 	- —Ya13 + XEin + 2 	-' 	12 	 -6 YA14 $ 

R3 "I -3(1 51 +c41 )+2.4 11-411 +3a2-3 YL12 +X Al2 +YA13 

114 	1Z51 +al +Y112-Y-111 $ 

R5 'I -342-3412+743 +74 13-744-744 14+34 5 +344 15 $ 

7 	 7 
-6R 	"I 6c42-Ya12+4Xa12-12c43 	Y a, ,-8A".13 +9a4 	- 

3 	 3 YA14 

64444-31 5 +Y415-24115 

	

9 	 3 	9 
R 	 -Aa 	+ - 	-2ya i3  + -Aai3  - 	a A 7 	2+Ya  12 	-12 	2 	3 	- 	2 	- 	4 	- 

3 	3 	3 	1 	1 
+ 2Y-4114 - 4A414 	4 5 - 2Ya15 	44415 

(3.29b) 

(3.29c) 

(3.29d) 

(3.29e) 

(3.29f) 

(3.29g) 
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3 	3 	3 	3 
-Y 	- A8 	2 142 	3 	a l3 	 -47 '1414 2 a 	2 Y 	a 4 - 

1 	1 
- a + Ya 

4 5  4 -45  
( 3.29h) 

1 	1 1 	11 	11 	7 
It 2, 	- 	 3 	'a-13 + 12 a4  + —12 --, 	6 	 A814 4 a5 

A -a 15 +a6 +Aa 16 (3.29i) 

	

, 	11 
R10 	

3 
-6k56 	a3+'§-13 	

1 	27 
Y113 - 	a4 

9 
 ^4-14 12  YA-14 

45 	15 , 
+ 4 - 5  + 	A-a15 	7 YA-15 - 6X6 -4  k116+Y16 

( 3.29j) 

R11
27 	3 , 	 63 	21 	9 

12b 6  - 	a3 -  A Ain +Yg4 3 + 	a4 + 4  AL14 	Y.§-14 5 	6 	2 

- 43  5 	
31 , 	15 a + —A a

-is 
 + — 

2y --±" +12a
6 +4A446-4ya16  , 

4  

(3.29k) 

112 I.  -8k56 
9 
 a3 

3 
 -a13 

 45 a
4 1, 

21 
 7 Y4-14 + / 

63 
as 

31 
- 4 y a, - t3a6+4Y:146 • (3.291) 

The form of these equations exhibits a disturbing feature. 

There are twelve equations and four unknowns, which seems to indicate 
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that there is no solution. The three sets of four equations come about 

because over each span in the parameter space, the basis functions 

become three different polynomials. This is the effect of the step 

functions in the first order bases mentioned earlier. However, we must 

remember that the equations are not linearly independent, and, in fact, 

only one set exists in the parameter space at a time. Note also that 

the sets corresponding to partition Cl and C3 are linearly dependent, 

as their determinants are zero by inspection. The C2 partition is the 

only set for which a solution can be obtained. This solution can be 

found readily by inverting the C2 partition of Eq. (3.26). 

(C2]{b 5 i} = (Rj) , 	 (3.30) 

(b51) = (C2] -1 (Ri) 	 (3.31a) 

where 

   

    

 

[C2]
-1 

= 

0 	0 	-1/3 	-1 

0 	-1/6 	-1 	-1 

-1/2 	-11/22 	-2 	-1 

-3/2 	-7/4 	-8/3 	-1 

(3.31b) 

    

and hence 

b52 = .1/3111.713.43 

h.53  = -1/6R -R7  -R -6 — 

(3.32a) 

(3.32b) 



b 54  = 

b 	= 55 

-1/2R5  -11/12R -2R7-R8  8 

-3/2R -7/4R -8/3R -R 5 	-6 	8 ' 

53 

(3.32c) 

(3.32d) 

Our next problem is to verify that this solution is valid over 

the first and third span. We first check the solution over the first 

span. Writing Eq. (3.26) for the first partition and then expanding, 

we have 

for i=2,3,4,5 

[0110) 50 - {Ri } 

and j=1,2,3,4, or 

-7/4 	11/12 

9/2 

	

-3 	0 

	

0 	

-3/2 

[ 	 0 

-1/6 

0 

0 

0 

0 

0 

0 

h52 

h53 

h541 

h55  

R 4 

/2 

A3 

E4  

(3.33) 

(3.34a) 

(3.34b) 

(3.34c)  

. 	(3.34d) 

It is worthwhile to note that Eq. (3.34d) says that g4  = O. This 

result is important and we will use it to verify our solution. The 

reason for this is evident if we look at Eq. (3.29a) through (3.29h). 

The solution we have obtained involves R 5 , 114 , R 7 , and ga  only, and 

does not contain point b 51  which arrears in R l , R2 , R 3 , and g4  on the 

right hand side of Eq. (3.34). Therefore we will need to use R 4  = 0 to 

eliminate b51  from Eq. (3.34). - 



III+ 	U  1151 + al + Y-112 

b = 	- ya + ya 51 	1 	-42 	-41 • 

54 

(3.35a) 

(3.35h) 

The procedure we will use to verify our solution is as follows: 

we back substitute our solution for b 5i  into Eq. (3.34), remove b 51  by 

using Eq. (3.35d) and then use the appropriate Eq. (3.29) to check if 

the resulting equation is an identity. We suspect that the result will 

fix a ratio between the a , and y , constants that appear in our assumed 

polynomial for A(u). 

We will first test Eq. (3.34c), which requires that 

- 3b = R -62 -3 (3.34c) 

We remove b 51  using Eq. (3.35d), and the appropriate equation for the 

Al  vector. The coefficients of the various control points are 

collected, and the equations are reduced, leaving 

-(Y+X)all-2(Y+X)a12+3/2(y+X)a13-3/4(y+X)a14+1/4(Y+X )a15 (3.36) 

We can see by inspection that this will only be an identity if 

= - A . 	 (3.37) 

The result is as expected--a constraint on the ratio between y and A. 

Fo 1 lowing the same procedure for Eqs. (3.34a) and (3.34b), we again 
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find that the only constraint required to make our solution valid over 

the first span is Eq. (3.37). 

The algebraic manipulations required to obtain the results given 

above are very lengthy, and extremely tedious. This researcher was 

encouraged when out of the hopeless snare of equations emerged a 

consistent result, that is, Eq. (3.37). Now, before we become too 

optimistic, let us check our solution for validity over the third span. 

We write our equations for the third span as the C3 partition of 

Eq. 	(3.26) 

IC3l(b5i) 

•MI,  

and rewrite it here for ease of 

= 	(Rj), 	i=2,3,4,5; 	j=9,10,11,12; 

0 	1/6 	-11/12 	7/4 

0 	-3/2 	27/4 	-45/4 

0 	9/2 	-63/4 	93/4 

0 	-9/2 	45/4 	-63/4_ 
INI. 

reference. 

1252  

-53 

b 54 

12 55 

R9  

- R40 

- R41 

R42 

(3.38) 

(3.39a) 

(3.39b) 

(3.39c) 

(3.39d) 

As happened over the first span with b 51 , we have another control point 

b 56  which appears on the right hand side of every one of the Eqs. 

(3.39), but does not appear in the solution vector obtained from the 

second span. However, in this case we do not have an R.1  vector over 

the span that is equal to zero, eLabling us to easily remove b56. 

Nevertheless, an equation for 1256  can be obtained in a somewhat more 

circuitous manner. Each of the Eqs. (3.39) is expanded in terms of the 

solution vector for the (b51  .)' Eqs. Eqs (3.32), which are in terms of R. 1 , 

j=5,6,7,8. Then these R i  vectors are collected in each Eq. (3.39). We 
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arrive at an intermediate set of equations which represent the R i , 

i=9,10,11,12 in terms of the R j , j=5,6,7,8. 

[C I HR') W  (3.40 ) 

-13/6 -9/4 -3 -1 (3.41a) 

27/2 55/4 18 6 -6 -40 (3.41b) 

-27 -27 -35 12 

R5 

R7 

-4 

R11 (3.41c) 

18 18 24 9 118 42 (3.41d) 

This matrix is Gaussian row reduced until we have a row of zeros in the 

bottom row of the [C'] matrix. Again, after lengthy manipulations, we 

arrive at our result for b56 

b56 = -a6 ' 
	

(3.42a) 

where 

(16 'I 13 -4-26-(1+13) g-16 • 
	

(3.42b) 

With the above results, we substitute our solution from the 

second span into Eqs. (3.39), using Eq. (3.42a) to remove b 56 . We then 

use the R.
1 
 vectors as defined by Eqs. (3.29). Once again, a result 

that is consistent for all of the equations on the third span emerges, 

after considerable algebraic massaging. For example, the result for 

Eq. (3.39a) requires that 



1/4(Y+2 )9a12-3/4(Y+2X)al3+3/2(y+2A -) -4114 

-2(Y+2X)a 15 (Y+2X) ' 116 mg 	• 

It is easily seen that this is an identity if, and only if, 

Y = - 2A. . 	 (3.44) 

Unfortunately, this result is inconsistent with our result over the 

first span, namely, 

Y = - A . 	 (3.37) 

The only way that both of these conditions can be satisfied is if 

Y = A n 0 	 (3.45) 

It may be worthwhile to note that some consideration was given 

to, perhaps, using some type of step function in the definition of the 

X(u) function which multiplies the T vector in Eq. (3.17). However, 

this severely stretches the allowable conditions that Veron (1976) has 

defined for A(u). Veron states that, in general, X(u) can be some 

polynomial function of the pavameter, but the use of a step function 

makes A(u) not a polynomial, because it introduces a discontinuity. 

The development in Veron's paper implies that one can select the A-

function so that it varies smoothly along the boundary, but the 

57 

(3.43) 
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discontinuities introduced by using a step function clearly violate 

this concept. Although we will not consider using step functions, it 

can be shown that, even allowing the ratio of X/y to vary in a stepwise 

fashion from span to span, over all four sides of the patch, there are 

too many constraints and too few parameters. The consequence of this 

is that X and y must be zero. In any case, these arguments will not be 

presented explicitly here, as we consider using a step function to be 

stepping out of bounds of Veron's continuity conditions. 

The solution that results from Eq. (3.45) is actually the 

simplest result that could have been obtained. This might have been 

anticipated at the outset, but it could not have been assumed without 

the mathematical development which has been presented. To see how this 

simplifies the continuity condition let us return to our original 

equation for first order continuity, and use Eqs. (3.17), (3.22a) and 

(3.33c) to obtain 

(k-1){126i-b 5i } T {N(u)} = a(k-1){A2i-sli } T {N(u)} , 	(3.46a) 

{126i-b 5i }T 	a { a2i-aid T  • 
	 (3.46b) 

We use the previous result that for positional continuity 

126i ma li ,i=1,2,...,6 	, 
	 (3.14) 

to obtain the final result 



1252 = --311-22+ (1+0.112 

12-53 	-131.123 +(1+° 11-13 

1234 = -4241(1+13) §44 

1155 - -13.2-25 141+5 • 
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(3.47a) 

(3.47h) 

(3.47c) 

(3.47d) 

Equation (3.47) is interesting for a number of reasons. As 

already mentioned, it is the simplest result we could have obtained 

because of the absence of the derivative with respect to the parameter 

varying along the boundary. In addition, we still have the freedom to 

specify the f3 parameter in Eq. (3.47). However, we anticipate that 

this freedom may be removed as we turn the corner and proceed to first 

order continuity along the second edge of S2. 

Referring to Figure 3.7, we can see that FOC along this edge 

will determine the unknown control points b i5 , i=2,3,4,5. S2 and S3 

are defined by Eqs. (3.19b) and (3.19c). It is important to remember 

our numbering convention for the control points, and the directions of 

parameter variation. This will pick off the correct points in the 

matrix formulations of the continuity condition. We can then proceed 

to obtain the solution in exactly the same manner as we did along the 

first edge. It can be shown cnat, along this edge, FOC is obtained by 

1225 m -13 S-12 	(1+13)-S-11 ' 
	 (3.48a) 
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1235 = -13122 (1+13)1 21 (3.48b) 

1145 - -13132 (14)131 	, (3.48c) 

b55 = (14.0s41 (3.48d) 

Actually, first order continuity across the second side of S2 could be 

obtained even if the scalar a in Eq. (3.48) differed from that in Eq. 

(3.47). It can be shown, however, that this leads to an 

overconstrained problem at corner c 11  when we try to enforce FOC across 

the third side of S2. Hence, the equivalence of the a's in the two 

equations is essential. 

Equations (3.47d) and (3.48d) present a problem: we have two 

relationships that specify control point b 55. Before we conclude that 

this cannot be resolved, we must recall that the already existing 

patches must be FOC themselves, and thus the two equations are not 

completely independent. To investigate this situation, consider Figure 

3.8, which shows the corners of Sl, S2, and S3, including the disputed 

control point, b 55 . 	We repeat the two equations for b 55  and also list 

the FOC constraints of the other associated points. 

k55 	-13k25 (lje°k15 ' (3.47d) 

1255 = -13s52 (1 +13 )1 51  , (3.48d) 

1-52 - -af  (1+13)162 	, (3.49) 
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S62 = -f3A15 	(143)216 
	 (3.50) 

f = -425  + (1+8.)A 26  , 
	 (3.51) 

S51 = -426 	(143).116 • 
	 (3.52) 

Now we substitute Eqs. (3.50) and (3.51) into Eq. (3.49). This result 

and Eq. (3.52) are substituted into Eq. (3.48d), and the result equated 

with the right hand side of Eq. (3.47d). The resulting equation is 

(13-1)(8.+1)[(8 +1)( a1 5-A16 )+S( A26 -125 )1  = 0 • 
	 (3.53) 

Since the four control points in this equation are independent, we 

obtain the result that both equations for b 55  are satisfies if, and 

only if, 

(3. m  1 	
• 	

(3.54) 

(The case that f3 m -1 is ignored. Physically, a negative would put 

interior control points of S2 in the interior of S1.) 

Our solution for the control points now takes the form 

1262 = 2a12 1.22 ' (3.55a) 

b53 = 2a13 - A23 ' (3.55b) 

1264 = 2114 - A24 ' (3.55c) 



1255 " 

1 25 

 b35  

.45 ' 

b55' 

63 

2a15 - 125 ' (3.55d) 

2c 11 - 942 ' (3.55e) 

2c21 - R22 (3.55f) 

2k31 k32 (3.55g) 

241 -142 • (3.55h) 

Note that because of Eq. (3.54), either Eq. (3.55d), or Eq. (3.55h) can 

be used to find b55• Before we continue to the third side of S2, let 

us briefly examine the geometrical interpretation of Eq. (3.55). 

Consider, for example, control points b 25  in Figure 3.9. First order 

continuity is obtained by 

h25 m  -125 	2a15  , 
	 (3.55d) 

which we can rearrange as 

ha5 m 145 	(145 - 125 )  • 
	 (3.56) 

As we can see from the figure, the control point is exactly on a line 

that pastes through a 15  and a 25 , exactly the same distance as a 25  is 

from a 15 , but in the opposite direction. Bore we turned the corner, 

the control point could have been anywhere on the line connecting 125 

and -445' Satisfying both equations has, in effect, constrained the 

distance along that line at which b 25  could be located. 



Boundary between 
di S1 and S2 

)25 

Figure 3.9. The Geometrical Interpretation of the Results. The 
position vector of the point to be placed is equal to the 
position vector of the edge point, plus the position 
vector of the difference between the edge point and the 
immediately adjacent interior point. Mathematically, b 25  

m 115 + (A15 - A25 ) * 

64 

Figure 3.10. The Second Corner. Given certain constraint conditions, 
the two equations that arise for b 25  are compatible. 
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As we go around the third and fourth edges of S2, we encounter 

no further surprises. By carefully formulating our continuity 

equations, meaning we maintain our numbering system and directions of 

the parameter variation, we arrive at solutions for all the control 

points. It can also be readily shown, in the way described above, that 

the two equations obtained for the inside corner control points are 

compatible with each other as long as 

points are set by 

= 1. 	The remaining control 

h25 m -155 2165 ' (3.57a) 

1224 m 	154 2164 , (3.57b) 

b 	= -e -23 	-53 + 2e 63 , (3.57c) 

1222 m -152 216 2 • (3.57d) 

1222 m -d 25  2d26 ' (3.58a) 

1232 m  -135 2d36  , (3.58b) 

1242 m -145 4146 , (3.58c) 

1?52 m  -155 2d56 • (3.58d) 

where we note that, for the corner points, either equation can be used. 

The preceding discussion establishes the conditions for first 

order continuity when filling in a topologically quadrilateral "hole" 

surrounded by surface patches using the B-spline formulation. We will 
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now consider the same case using the rB-spline patch, and show how 

first order continuity can be obtained for it. 

3.5 First Order Continuity: The rB-spline Patch  

We now address the problem of first order continuity using rB-

spline patches. We will pursue the same problem as before: filling in 

the topologically quadrilateral hole surrounded by a composite FOC 

surface. In this derivation, we will use a more compact notation, only 

expanding the equations when we want to extract the final results. We 

begin again with the continuity condition given by Veron (1976). 

I-2 31  Alc +137-1 (3.17) 

Using the result of Eq. (3.45), we find that Eq. (3.17) becomes 

T 	= 13T —2 	4 (3.59) 

Consider the 

a r 

first edge, shown in Fig. 3.5, where 

T 	= (3.60a) 
4 	av 

v=0 

32. 
T = — 

av 
(3.60b) 

V=3 

The rB-spline patches herein are defined by 
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{N(v)} T [a*]{N(u)) 
S1 : r(u,v) = 	

wl(u,v) 	, 	 (3.61a) 

0/(v)}T [b*HN(u)} 
S2 : 2(u,v) 	

w2(u,v) 
	 (3.61b) 

where {11(u)} and {N(v)} are the B—spline basis functions as previously 

defined. However, here we will use the matrix form first given by Eqs. 

(3.1), through (3.4) for the formulation of the equations. 

The derivatives required for Eq. (3.59) are 

w2(u,v)1 

2v = w2(u,v) 
1 	161(v)} T  01(v) T  wiv(u,v) i [ 12*l{N(u)} 9 

wl(u,v)1 
	1 
wl(u,v) 

 ifti(v»T  {N(v)}T 
w2(u,v) 
	 Ia*l{N(u)} . 

Iv  

(3.62a) 

(3.62b) 

where the subscript denotes partial differentiation with respect to v. 

It is important to note that the derivatives are more complicated due 

to the denominators, which are functions of the parameter. We evaluate 

ry  at v = 0, and p v  at v = 3. Note that this is consistent with our 

convention for parameter variation. Thus, we have 

{N(3)} =d/au[HMi D-1 1 +IM2 l 1-12+IM3 W3H17}1 	 (3.63a) 



ENO 

, (3.63b) 

and 

= [143] 

3u { : 2 u=3 

= 
2u 

 [N3] 

0 

1 
. 

{ 6 1 

27 

l 
0 

0 

0 

0 

-3 

3  
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{N(3) } . 	
[ N3 ] 

/ 
0 

0 

0 

27 

k 1 / 	, (3.64a) 



1 \  

0 

{ N (0 ) } 	- [N1 ] 

0 0 

0 0 

0 0 

0 (3.64b) J 	 . 
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From our definition of wl(u,v), we can show that 

wl(u,0) = wi (wi  w2  w3  w4  w5  w6]{N(u)} , 	 (3.65a) 

V2(1,3) = w6 [wi  w2  w3  w4  w5  w6 ]{N(u)} , 	 (3.65b) 

and 

wlv(u,0) 	[-3 3 0 0 0 0][w]{N(u)1 

3(w2-wl){wi} T{N(u)} 	 (3.66a) 

w2v(u,3) s  [0 0 0 0 -3 3][w]{N(u)} 

3(w6  -w5  ){wj } T{N(u)} , for j=1,2 ..... 6 . (3.66b) 

Combining these results, Eqs. (3.62a) and (3.62b) become 



	 [0 0 0 0 -1 w5/w6][b*]{N(u)1 . 
w6{wi}T {N(u)} 

247 (u ,3) 
3 

(3.67b) 

[0 0 0 0 -1 w5/w6 ][b*]{N(u)1 
w6{wpT {N(u)} 

3 

(3.68) 
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-3\ 3w2 /wi -3) 1 
T 

3 0 

1 0 0 
r (u,0) 

0 	 0 w1 {wj }T {N(u )} 

0 	 0 

k 	0 1 	0 (3.67a) 

3 
[-w2 /wi  1 0 0 0 0][a*]{N(u)1 

w1 {wj }T {N(u)} 

and similarly 

We now substitute Eqs. (3.47a) and (3.47b) into our continuity equation 

to obtain 

38 

 w1 {wj }T {N(u)} 
[-w2/wi 1  0 0 0 0][a*]{N(u)} . 

This reduces to 

12 
	0 

w2 
6 

0 0 -w6  w5 ][1 	
1

el = 	[-w2  wl  0 0 0 0][ale] . 

1 
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Expanding the remaining matrix product, we obtain 

2(_,* . 1.1)  * 	xT 	2: * 	* 
wi 253w6 63w5r 	"61-Aajwelajwir • (3.70) 

At this point, we see that the equations are easily dismantled. 

We recall that, from positional continuity for rB-spline patches, we 

obtained 

(3.14) 126i = ali 

and that 1, 4 . was related to b • and a
*
• to a • by 63 , 	13 	-13 

•

• 

 = w w-b • -63 	6 3-6 3 

al]

• 

 = winlaj 

from which follows 

w6 * 
26 .

• 

 =  
wi 

alj 

(3.1c) 

(3.2c) 

(3.71) 

Using this, we see that Eq. (3.70) becomes 

w6lw5 	, 2( * 	* 
'1' =-5j146 
	

alb) 	P w6` -l-ljw2+4-2j w1 )  • 
w  

(3.72) 

We use Eqs. (3.1c) and (3.2c) to solve for b 5j  
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w6w2 
125;  - Raj  + a — (24j - 12j) 

14514 1 
(3.73) 

This result demonstrates the added flexibility of the rB-spline due to 

the weights. However, how to make use of the added flexibility is not 

very clear. Considerable expertise would be necessary in order to 

select appropriate weights for some specific design consideration. 

As in the B-spline case, it is suspected that when we turn the 

corner, we will find a constraint on the weights that appear in Eq. 

(3.73). Consider Fig. 3.7 for the rB-spline case. Here 

S2 : 2.(1,v) = 
1  

{N(v)} T [b*]{N(u)} , 
w(u,v) 

(3.61b) 

as before, and 

S3 : g(u,v) = 	
1 
	{N(v) T [c*]{N(u)} . 

w(u,v) 
(3.74) 

Along this boundary, v is varying, and thus we require the derivatives 

with respect to u. More specifically, we need g u(0,v), and gu (3,v). 

These are given by 

gu (0,v) = 3 	{N(v)}T(c*] 
wi{/41(v)} T {N(u)} 



Ru (3,v) = 	
3 	

{N(v)}T[b*] 
w6{N(v)} T (vi) 

O 1  
0 

0 
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Thus, continuity along the second edge gives 

-1 

w5 1' 
\ 	5/ 

(3.75b) 

0 

0 

0 111  

-1 

/w6 (3.76) 

vi(N(v»T (vi) 

$ *3 	
{N(v) 	 0 lq 	

0 11  

0 

We reduce this equation, in the same manner as before, to obtain 

v6v2  
hi5 = Sil 	---- ( 
	

Si2 )  • 
v5v1 

k  0 

(N(v))T [b*] 
w6(N(v» T (vi) 

(3.77) 
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At first inspection, the form of Eq. (3.77) is exactly the same 

as Eq. (3.73). However, let us look a little closer. We found that, 

for positional continuity along the first edge, the weights 

corresponding to {N(u)} had to be identical for both patches. This  

means that the ,u u 	 1 w.1 	for S2 must be the same w. 	for Sl. 	(The 

subscript u here does not signify a partial derivative, but indicates 

that these are the weights corresponding to {N(u)}). Now, along the 

second edge, the weights are ,v w.3. 	corresponding to {N(v)}. This leads 

to the conclusion that, for any surface patch, we will be able to 

select twelve weights, six wi,u , and six wi,v . We have determined that 

the w i,u  weights of S2 must be the same as the w i,u  weights of patch 

Sl, and also, that the w i,v  weights of S2 must be the same as the w• 1,v 

weights of S3. Now, the question that arises is, how does this affect 

Eqs. (3.73), and (3.77)? More specifically, how does the fact that we 

have two equations for b 55  affect the solution in terms of the weights 

and 13 • 

Consider Fig. 3.8. We rewrite Eqs. (3.73) and (3.77) to include 

the u and v subscripts. We also add a third subscript to indicate to 

which patch the weight corresponds. We do this because it has not yet 

been determined whether or not the u weights of S3 need to be equal to 

the u weights of Sl. Also, we must note that the weights in Eq. (3.73) 

are v weights, and the weights in Eq. (3.77) are u weights. Evidently, 

the weights that appear in these equations do so because of the 

parameter which is constant along that particular edge. 

We can arrive at continuity equations for the remaining 
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associated points in Fig. 3.8 by inspection. This is done by analogy 

with similarly located points for which continuity has been determined. 

Also, for ease of manipulation, we define 

vu l- 
w6,u ,1 142 ,u ,1 

(3.78a) 
w5,u,lwl,u,1 

wu3 -  
w6,u,3w2,u,3 

(3.78h) 
w5,u,3w1,u,3 

vvi 
w6,v,1w2,v,1 

(3.78c) 
w5,v,lwl,v,1 

wv- ..5 
w6,v,3w2,v,3 

(3.78d) 
w5,v,3w1,v,3 

With this, we can write the continuity equations for the points of 

interest in Fig. 3.8. 

b 55 = -13143/11125 	(143wv1 )415 

b55 = - Swu3a52 (143wu3 )S51 

S52 -f3wv3L + (l+f3wv3 ) S62 

R62 	-awu1A-15 	(1+13wul )A16 

(3.79) 

(3.80) 

(3.81) 

(3.82) 

f 	- f3v11 1-4-25 	(1 +13,0111 )126 
	 (3.83) 
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R5I = - wv14.26 	(14- vv1 ) .216 
	 (3.84) 

The purpose of what follows is to show that there is some 

constraint on the weights, and on a for which continuity can be 

obtained, whereby Eqs. (3.73) and (3.77) are compatible. The method by 

which we do this is as follows: Eqs. (3.82) and (3.83) are substituted 

into Eq. (3.81); this result, along with Eq. (3.84), is substituted 

into Eq. (3.80). It can be shown that, after collecting coefficients 

of the respective control points, the result is 

b 55 = -133vu3vv3vulA25 	( a2vu3vul 	133wu3wulwv3 )115 

( a2wu3wv3 a3wv3wulwu3 awv1 	2wu3wv1 )a 26 

(_a2vu3vv3 - P " 3
wul 	3wu3wv3wul 

+ a wvl 	a
2 
 vovvi ) .246 • 
	 (3.85) 

This equation must be the same as the right hand side of Eq. (3.79). 

We equate coefficients to obtain 

-awvl 	a3w  3w w  u v3 ul (3.86a) 

a 2w w + R 3w w w 	(1+aw ) u3 ul 	u3 ul v3 	vl 	' k3.86b) 

2 
a vu3vv3 a 3wv3vulvu3 	wvi 	

2 
wu3wvi 0 (3.86c) 
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r3.2 	
P 
02 

u3
w 
 v3 - wu3wul 	wu3wv3wul 1 +3wv1 	wu3wv1 0 * 

(3.86d) 

Although, at first glance, these do not appear to be identities, let us 

suppose that Eq. (3.86a) is actually a constraint on a and the weights. 

This is exactly as we anticipated, although the form of the constraint 

is somewhat unexpected. Let us, furthermore, suppose that the ww3 - 

wvl . We define the constraints specifically as 

wvl - a3wu3wv3wul 
	

(3.87a) 

wv3 = wvl 
	

(3.87b) 

Using Eq. (3.87b), we find that Eq. (3.87a) reduces to 

132wu3vu l m 1  - 
	

(3.87c) 

With the constraints given above, let us inspect Eqs. (3.86a) 

through (3.86d). Equation (3.86a) is satisfied immediately by the 

constraint. The first term on the left hand side of Eq. (3.86b) is 

equal to one, by Eq. (3.87c), and the second term is equal to Rw ul  by 

Eq. (3.87a). Thus, Eq. (3.86b) is an identity. In this same manner, 

Eqs. ( 1.86c) and (3.86d) are shown to be identities.. Hence, for the 

rB-spline patch with the constraints given by Eqs. (3.87a) and (3.87b), 

we have obtained first order continuity for two sides of S2. We now 

proceed to the third side. 
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Having demonstrated repeatedly the process by which first order 

continuity is imposed, we might simply write the solution for the third 

side in the exact same form as was derived for the first and second 

sides. However, if we recall how the particular weights appear in the 

equations, we might have some reason to doubt that the form of the 

solution will be the same. The weights in Eqs. (3.73) and (3.77) 

correspond to the parameter which is constant along that boundary. For 

example, along the first edge, v is constant, with v = 3 for S2, and v 

= 0 for Sl. Along the third side, v is also the constant parameter, 

and thus, we expect the v weights will be the weights to appear in the 

equation. However, along this edge, v = 0 for S3, and v = 3 for S5. 

Therefore, since with {N(0)} and {N(3)} vectors' roles are interchanged 

in the continuity equation, we would expect that different weights 

would be picked out of the [w] matrix, and that the equation would, in 

fact, be different. This is exactly the case. If we proceed in the 

same manner as before, we arrive at the same basic form for the 

continuity condition along the third edge, but with the weight ratio 

appearing in the equation being the reciprocal of what it was in the 

first two cases. Thus, FOC is given here by 

haj - - Swv5e56 	(1+awv5)26i 	 (3.88a) 

where 

wl,v,5w5,v,5 
(3.88b) wv5 m 

w6,v,5w2,v,5 • 
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We now investigate the two equations that define b 25 . We expect 

that they will be satisfied under a similar constraint as we 

encountered for b 55 . We define 

Vu.) 
w6,u,3w2,u,3 

(3.89a) 
w5,u,3w1,u,3 

- u) 
w6,u,5w2,u,5 

w5,u,5w1,u,5 
(3.89h) 

- 

w6,v,3w2,v,3 
(3.89c) 

 

w5,v,3w1,v,3 

Considering Fig. 3.10, we write the equations for the points of 

interest: 

12-25 = - Swv5165 

1225 = -Swu3c22 

S-55 = - awu5f  

S-56 m -(3wv3S-21 

f 	- awv3S-22 

e65 sm -13wu3242 

(14a wv5 )155 

(141"u3 )S21 

(14.(314u5 )1-56 

(1+awv3 )S-11 

(142wv3 )S12 

(1+awu3 )S-11 

(3.90) 

(3.91) 

(3.92) 

(3.93) 

(3.94) 

(3.95) 
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By manipulating these equations as before, we obtain the 

constraints for which Eqs. (3.90) and (3.91) are compatible, to wit, 

wu3 	wu5 ' 
	 (3.96a) 

132wv5wv3 = 1  , 
	 (3.96b) 

where wup wu5 , wv3 , and wv5  are given by Eqs. (3.89a), (3.89b), 

(3.89c), and (3.88b). 

It is worthwhile to note the form of the constraints given by 

Eq. (3.96). Their symmetrical properties would seem to allow us some 

freedom in selection of the weights, and we will return to this later. 

But first, we turn the last corner and find the continuity condition. 

Proceeding exactly as before, we obtain the equations for the b i2  on 

the fourth edge, so that 

hi2 	13wu4A16 	(14.13wu4 )545 
	

(3.97a) 

where 

wu4 
w5,u4w1,u4 

(3.97b) 

 

w6,u4w2,u4 

With Eqs. (3.88a) and (3.97a), we now have two equations for b 22 

 and two for b52 . Again, proceeding exactly as before, we obtain the 

final constraining conditions. The first is 



w6,u4w2,u4 

w5,u4w1,u4 
wu4 (3.99c) 
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wv5 = wv4 * 
	 (3.98a) 

$ 2wu4wu5 = 1  ' 
	 (3.98b) 

where wv5  is given by Eq. (3.88b), wu5  is given by Eq. (3.89b), wu4 is  

given by Eq. (3.97b), and 

wv4 g.  
w5,v4w1,v4 

(3.98c) 
w6,v4w2,v4 

The second condition is 

w  4 gm  w  1 
	 (3.99a) 

132wviwv4 = 1  , 
	 (3.99b) 

where will  is given by Eq. (3.78a), w vi  is given by Eq. (3.78c), wv4  is 

given by Eq. (3.98c), and 

These results have some meaningful implications which we will discuss 

. here. As it stands, it appears that ratios of the weights in Eqs. 

(3.87b), (3.96a), (3.98a), and (3.99a) do not propagate all the way 

around the patch to be filled in. This lack of symmetry does not seem 

consistent. However, if one follows a slightly different path around 
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the patch, that is, going around the patch clockwise instead of 

counterclockwise when obtaining the continuity condition, it can be 

shown that the symmetry of the u and v ratios does exist. That is, 

wul 	wu3 wu4 wu5 
	

(3.100a) 

wvi = wv3 = wv4 = wv5 
	

(3.100b) 

Although Eq. (3.100) seems very restrictive, it really is not. 

It merely requires that the u and v weights assigned to all the patches 

be symmetric about the end points. That is, from Eqs. (3.100), (3.78), 

(3.88b), (3.89), (3.97b), (3.98c), and (3.99c), we have 

w6,vi . w2,vi = w5,vi . wl,vi 

w6,ui ' w2,ui = w5,ui .w i,ui 

(3.101a) 

i=1,3,4,5 . 	(3.101b) 

To understand what we many by this symmetry, we refer to Fig. 3.11. 

Note that the two most interior points need not be symmetric for first 

order continuity. However, it would seem logical to expect that these 

would need to be symmetric for higher order continuity. 

We have determined that for positional continuity the weights 

cc—responding to the parameter that varies along the common boundary 

must be equal from patch to patch. The new requirements on the weights 

would seem to imply that one would globally define the u weights and v 

weights for the entire composite patch. These weights would also need 
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to possess the symmetry that we have mentioned. This endpoint symmetry 

also implies that the ratios given by Eqs. (3.100a) and (3.100b) would 

be equal to one. In this case, Eqs. (3.87c), (3.96b), (3.98b), and 

(3.99b) would take the form 

= 1 	 (3.101) 

Thus, our line of reasoning has led us to the same conclusion that we 

obtained for the B—spline patch, that is, S m  1. 

The selections described above for the weights and 13 , along 

with the previous continuity conditions, will allow us to specify the 

control points of the two outermost rings of surface patch S2 to ensure 

first order continuity along all the boundaries. 

3.6 A Real World Example  

At this point, it may be beneficial to examine why, in a design 

application, we would want to be able to solve the problem of "filling 

in the hole" while maintaining first order continuity. The reasons for 

wanting first order continuity have been previously discussed in the 

introduction. In a general sense, the filling in the hole is 

interesting because it appears to be the most constrained case. Let us 

consider a hypothetical real world example. 

A new and innovative airplane design has been developed that 

promises to be a major advance in high speed manueverability. At the 

velocities in question, the governing differential equations become 

highly nonlinear, and some high powered computation aerodynamic 
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simulations are used on a geometric model of the plane's outward 

surface. The wetted surface of the airplane needs to be absolutely 

defined in the computer-aided design model, so the 1.B-spline 

representation has been chosen for the surface model. The control 

points of the entire model have been specified and development of the 

aircraft is approaching the construction stage. It turns out, as is 

frequently the case, that there must be some minor design changes; 

because of a structural detail some small onboard part needs to be 

slightly larger. This will affect a small portion of the aircraft 

surface. The designer can isolate the surface patch that describes the 

area of interest, redefine the control points to fit the modification, 

and still maintain the necessary continuity. Analysis of the revised 

surface is performed, and the aircraft goes into production with little 

or no delay. 



CHAPTER IV 

MODELING A TOPOLOGICAL CYLINDER 

In the previous chapter we derived the mathematical statement of 

continuity for a composite surface of B-spline or rB-spline surface 

patches. Now that we have the mathematical tools for obtaining first 

order continuity, let us address a less abstract problem. Application 

of the mathematics to practical problems is one of the objectives of 

the present research. Although we will not develop an entire 

applications package, let us consider one possibility. 

If the B-spline representation is to be of real practical use, 

it must be able to model surfaces that already exist, that is we must 

be able to use it to interpolate surfaces that already exist. In 

particular, we must be able to convert from some other representation 

to the B-spline representation. We now demonstrate that this is 

possible by considering a problem where we perform this conversion. 

The problem we consider is this: given a network of 

longitudinal and circumferential curves hereafter referred to as 

"stringers" and "rings," respectively, that lie in an existing 

topologically cylindrical surface (see Fig. 4.1), interpolate the 

surface by "tiling" the network with B-spline patches, subject to the 

conditions that the resulting composite surface (a) be first order 

continuous, and (b) match prescribed tangents at the cylinder ends. 
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stringers 
rings 

boundary constraints 
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Figure 4.1. Interpolation of a Cylinder. The cylinder is given as a 
network of rings and stringers that are to lie in the 
surface, and by boundary constraints at the two ends. At 
the ends, information exists in the form of B-spline 
control points of the surface to which the cylinder to be 
interpolated will be attached. 
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The curve network defines numerous topologically quadrilateral regions 

in the existing cylindrical surface. By tiling, we mean constructing a 

B-spline patch representation for each of these regions such that the 

patch boundary coincides with the corresponding region boundary. The 

steps we take to accomplish the tiling subject to the given conditions 

are discussed below in detail. In brief, they are as follows. 

1. Represent the rings as composite B-splines. 

2. Enforce first order continuity across the end rings, i.e., 

match the tangents prescribed at the ends. 

3. Represent the stringers as composite B-splines. 

4. Determine all other control points in patch interiors 

required to define the desired representation. 

The specific network data required for these steps are (a) the location 

of very ring/stringer intersection, and (b) the tangent vectors of the 

ring and the stringer at each intersection. The accuracy with which 

the resulting representation interpolates the existing surface depends 

on the density of the given curve network. Steps 1 and 3 are not 

difficult, because the B-spline was originally intended for 

interpolation. Steps 2 and 4 are less straightforward, for it is there 

the first order continuity is ensured. 

Before discussing step 1, above, we present a simple example of 

interpolation with B-splines. Suppose that we want to interpolate a 

curve defined by n points, and we seek control points that define a 

suitable B-spline representation. Let r i  be the given points and the 

B-spline be given by 
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n 
Li  =2= RiNk, i(u) 

1=1 
(4.1) 

where the 	are the unknown control points. For a well posed problem 

we could assume that we need the same number of control points as we 

have points to be interpolated. Thus we would write Eq. (4.1) once for 

each of the given points, and have n equations and n unknowns. But 

upon solving Eq. (4.1) for the control points, we would find them to be 

functions of the parameter u. This would be unacceptable, because 

control points are, by definition, constant vectors. Hence, we need to 

choose specific values, u j , for the parameter at each of the given 

points. (It is worthwhile to note that this gives us some degree of 

freedom, but we will not try to exploit this here.) If the points 

given are not too evenly spaced, then it is reasonable to assume an 

even spacing of control points. For example, we could let 

_ j-1 

J =  n-1 max' 	
(4.2) 

We would then have a system of equations of the form 

{r} = [N](2) 	 (4.3a) 

where 
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(4.3b) 

Nk,1n )  

 

Nknn)  

 

The matrix [N] is nonsingular, so that the desired control points are 

given by 

{2} 	[N] -1 {r} 	 (4.4) 

Clearly, Eq. (4.4) gives a solution to the simple interpolation 

associated with Eq. (4.1). In fact, the internal continuity of the 

resulting B-spline can be guaranteed up to any order by using higher 

order basis functions. Nevertheless, the solution of Eq. (4.4) is 

deficient, from a practical viewpoint, because it does not take into 

account any end conditions other than position. Consider, for 

instance, the points r 1  through 14  illustrated in Fig. 4.2. The solid 

line in the figure represents a reasonable interpolation through the 

points. The use of Eq. (4.4), however, might well yield the 

interpolation represented by the dashed line, a B-spline whose control 

points are 21 , through In In many situations, the dashed line would 

be unacceptable because its end slopes are so different from what one 

would expect. 

The solution given by Eq. (4.4) depends on the parameter values 

given by Eq. (4.2). Since, as mentioned above, these values are free 

choices, one could, in principle, use them to control end conditions of 

[N ] = 

Nk 1 	k 2 (ui) 	N 	(u.) 

Nk,l (u2 )  

 

Nk,n (u 1 )  

 

   

    



Li  .p4  

  

13 

 

/ 
/ 

.., 

  

......... 

do 
P.2  

 

• 
P. 3  

.... 

/ 
/ 

/ 

11=12i 

Figure 4.2. Simple Interpolation with B-splines. Given points 1. 1 
 through 14, one would consider the solid line a reasonable 

interpolation. However, if end conditions are not speci-
fied, the B-spline interpolation based on Eqs. (4.2) 
through (4.4) might well yield the dashed line. 
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Symmetrical values of w
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WI 	W1 	W3 	W4 	W5 	W6 

Figure 3.11. Symmetry of Weights. This symmetry consists of a sym-
metry between weights such 0-3t w 6w2  = w5w1 . This can be 
done most easily by choosing weights so that their 
relative values are as depicted above. 



92 

the B-spline of Eq. (4.1). However, this would be a rather indirect 

way of accounting for desired end conditions. It seems more reasonable 

to discard the original assumption on which Eq. (4.2) through (4.4) are 

based, namely, that the number of control points equal the number of 

given points. Additional control points can be introduced and used to 

ensure acceptable tangents, curvatures, etc., not only at the end 

points but at all given points. This is the approach taken below in 

representing the network curves as first order continuous B-splines. 

From discussion in Chapter III, we know that a set of surface 

patches, each of which is defined by a four-by-four array of control 

points, can be used to construct an FOC surface. Thus, each network 

curve segment connecting adjacent ring/stringer intersections will be 

modeled by a. B-spline segment with four control points. The 

ring/stringer intersections at the segment ends are two of the control 

points. The two internal control points are required to match the 

tangent vectors prescribed at the ends. 

Step 1. Rings. A typical ring is illustrated in Fig. 4.3. (For 

convenience, position vectors of control points are represented by 

unadorned capital letters in what follows.) The solid dots in the 

figure represent the points where the ring intersects stringers. To 

achieve first order continuity all around the ring, it is sufficient to 

construct a B-spline segment between each pair of adjacent 

intersections such that each segment (a) is internally first order 

continuous, and (b) has at its ends tangent vectors equal to those for 

the original ring. Since we have chosen fourth order basis functions, 



Figure 4.3. Interpolating a Ring. The points A and D, and the tangent 
vectors TA and TD, are known. The control points B and C 
are sought that interpolate the segment of the ring 
between A and D. This is done for every segment between 
the solid dots. 
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internal continuity of the segments is assured. Since each segment 

will have four control points, we can represent a typical segment (for 

instance, the one between A and D in Fig. 4.3) by 

r(u) = N4,1 (u)A + N4,2 (u)B + N4,3 (u)C + N4,4(u)D , 	(4.5) 

where the N 4,i (u) are derived in Appendix A. Then, condition (b) is 

satisfied if r(u) has unit tangent vectors T A  at A and TD  at D. The 

problem of constructing a B-spline segment with prescribed tangents at 

the ends is addressed in Appendix B. From the discussion there, and 

that in Appendix A, we see that r(u) will have the desired end tangents 

when 

14 ,1 (0)A + 144,2 (0)B + N4,3 (0)C + N4,4(0)D = aTA 	(4.6a) 

114,1(1)A + N4,2B + i4,3 (1)c + N4,4(1)D = aTI, 	 (4.6b) 

where a and a are scalars. Again from Appendix A, we can simplify Eq. 

( 4.6) to 

3(B-A) = aTA 	 (4.7a) 

3(D-C) = STD 	 (4.7b) 

Thus, r(u) will have the desired end tangents if we choose B and C such 

that 
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B 	A + 1/3 TA  , 	 (4.8a) 

C 	D - 1/3 13 TD  . 	 (4.8b) 

The values of a and (3 in Eq. (4.8) influence the shape of the B-

spline. Since our goal here is accurate interpolation of an existing 

curve, we could try to choose a and $ so as to optimize our 

interpolation. However, as stated above, our approach is to control 

interpolation accuracy by adjusting network density. Hence, we can 

assume that any reasonable values of a and (3 will do. It is reasonable 

to place B and C so that the control points are somewhat evenly spaced. 

Since A and D are in some sense near each other, the ring segment is 

near the chord AD. Hence, for nearly even spacing, we choose to make 

the distance from A to B and from D to C equal to one-third that from A 

to D. Thus, we have 

IB-AI 	1/3 IA-D I 
	

(4.9a) 

IC -DI 	1 / 3  1A-DI 
	

(4.9h) 

These, together with Eq. (4.8), yield 

a = 1A-DI 	 (4.10a) 

13, 	1A-DI . 	 (4.10b) 
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Using Eqs. (4.8) and (4.10), we can construct B-spline segments all 

around the ring such that the composite curve is a first order 

continuous interpolation of the original curve. (It should be noted 

here that the usual way of interpolating closed curves with B-splines 

is to use a uniform, periodic knot set. The method given here uses a 

uniform nonperiodic knot set.) 

Step 2. Matching End Tangents 

There are many ways in which the tangency conditions at the ends 

of a topologically cylindrical surface could be prescribed. We 

consider here only one case, namely, that in which the cylinder is to 

mate with an existing surface that is already represented as a first 

order continuous, composite surface of four-by-four B-spline patches 

with fourth order basis functions. Thus, the end ring of the cylinder 

is the common boundary of the two surfaces. Points where stringers of 

the cylinder meet the end ring are patch corners. Fig. 4.4 shows a 

neighborhood of one such corner, the point E. It is assumed that along 

the end ring of the cylinder, patch corners of the two surfaces 

coincide. 

It was shown in Section 3.4 that when first order continuity 

exists across the common boundary of two adjoining B-splines patches, a 

control point next to the common boundary, the control point opposite 

it in the adjoining patch, and the boundary control point between them 

all are collinear (see Eq. (3.47)]. Thus, we have 

I = H + 8 1 (H-G) 	 (4.11a) 



End Ring 
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•A c■ C 
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Patch Corner 

E  

Stringer 

D 

o I • G H 

Si 	

1 

-6-  S2 

Figure 4.4. The Cylinder Edge. S2 is the cylinder surface to be 
interpolated. The neighboring surfaces, Sl, is given. 
First order continuity across the end ring is assured by 
Step 2. Solid and open dots represent control points that 
are given and sought, respectively. Points B, D, H and F 
do not actually 'ie on the patch boundaries. 
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C = F + 132 (F-I) , 	 (4.11b) 

A = B + 133 (B-C) , 	 (4.11c) 

G = D + 134(D-A) , 	 (4.11d) 

where 131  through 34  are scalars. From the discussion of first order 

continuity of adjoining B-splines in Appendix B and the basis function 

derivations of Appendix A, we conclude that 

F = E + 13 5 (E-D) , 	 (4.12a) 

B = E + 3 6 (E-B) , 	 (4.12b) 

where 135  and 136  are scalars. From the known control points and Eqs. 

(4.11d) and (4.12b), 34  and 136  are known. The problem at hand is to 

solve for points C, F, and I, and scalars 3 1 , 3 2 , 3 3  and 3 5  so that 

Eqs. (4.11a) through (4.11c) and (4.12a) are satisfied. 

To solve for the unknowns we substitute Eq. (4.12a) into Eq. 

(4.11b). This result along with Eq. (4.12b), we use in Eq. (4.11c). 

Then Eq. (4.11a) is put into that result and finally Eq. (4.11d) into 

that. Thus, we obtain 

[(1 + 133 )( 1 4436 )—i33 (1+ i32 )(1+ a 5 )]E + [32 133 (1+13 1 )-36 (1 + 33 M 

+ 133 [13 5 ( 1+132 ) —a l a 2 (1 +a4)1D + [3 1 32 33 4-11A = 0 
	

(4.13) 
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Because A, D, E and H are given, independent points, we must 

have 

H1+133 )(1+66 ) - 63 (1+62 )(1+6 5 )] = 0 , 	 (4.14a) 

(62 63 (1+61 ) - 66 (1+63 )] = 0 , 	 (4.14b) 

6 5 (1+6 2 ) - 61 6 2 (1+64) = 0 , 	 (4.14c) 

(4.14d) 61 13 2 133 13 4 m 1  

These equations are not independent; satisfaction of any three implies 

satisfaction of the fourth. If we keep Eqs. (4.14b), (4.14c) and 

(4.14d), we have three equations and four unknowns. This implies we 

have three equations and four unknowns. This implies we have one 

degree of freedom. As a check, we count unknowns and equations in the 

original problem statement. We have three unknown control point 

vectors with three components each, and four unknown scalars, for a 

total of thirteen unknowns. We also have four independent vector 

relations, or twelve scalar equations, to be satisfied. Therefore we 

have one degree of freedom. 

If we suppose that s i  is given, either specified by the user or 

automatically by the algorithm, then we can solve for the other unknown 

scalars. Thus, Eqs. (4.14b) through (4.14d) become 

11-a l  

63
1  7
-7—T— 1 (4.15a) 
' 4'6 



132 = ( 	13l134) 

1131  

6 
(4.15b) 

1+ 13 4  
13 5 = 13 1 13 2 1.02 • (4.15c) 
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In fact, 13 1  must be determined so that the solution at each patch 

corner on the ring is compatible for those at the corners immediately 

above and below. 

From the results of Section 3.4, we know that the control points 

immediately below G, H, and I in Fig. 4.4 must be relocated by an 

equation like Eq. (4.11a) involving the scalar a l . Let the number of 

patch corners on the end ring be m, and the subscript i, where i ranges 

from one to m, denote the individual corners. Then we have 

a 	a 
3,1-1 (4.16) 

Equation (4.15a) implies that 

;)

w 	131 134 136 
1- 1 

- 1 	, 	 (4.17) 

which contains 	 But this, in turn, must equal 13 3,i-2 , which, by 

Eq. (4.17), involves 	etc. Beginning with i-1 at some corner 



a ll .a 3,m 
141m  

77.m a4m a6m 

1-1433,m_l  
a  7—   3,m-1a 4m3  6m 

(4.18) • 	• 	• 

Repeatedly applying Eqs. (4.16) and (4.17), we are led eventually to 

the family of expressions 

p 
1-km-1A,m- i( 1-km_i_2) 

441,1 	
km 	k • i -1 1,m_i  m-i-i 

i=1,2,...,m, 	(4.19a) 

where 

- 0 
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1 

1 

(4.19b) km-j 

am(1 -am_ 1 (1-am_ 2 (...(1 -am_ j+1 ))]) 	j > 1 , 

a
j

= 	 a a . 4j 6j (4.19c) 

Thus, as we proceed around the first ring of patches as shown in Fig. 

4.5, we eventually come to 

1- ci+1311(1-c0) 
3 11 = 	o1 +a11Co 

(4.20a) 



Figure 4.5. The Ring of Patches at a Cylinder End. R 11  is determined 
by Eq. (4.20) when the patches go all the way around the 
cylinder and close on themselves. 
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Or 

CA1  + (C i +C 0-1) f3 ii+C 1 -1 = 0 , 	 (4.20b) 

where from Eq. (4.19b) 

C 1  = am(1-am_ 1 [1-am_2 (...(1-a 2 })il 
	

(4.20c) 

Co  = am(1-am_1[1-am_2 (...(1-a l })il . 
	 (4.20d) 

The solution for R 11  can be found from Eq. (4.20b). 

Once the solution for S11 is  obtained, Eq. (4.19) yields f3 ii , 

i=2,3 ..... m. Then at each corner, Eq. (4.15) yields the other unknown 

scalars, and Eqs. (4.12a), (4.11a), and either (4.11b) or (4.11c) 

determine F, I, and C, respectively. 

Step 3. Stringers 

Following Step 2, the first two control points at each end of 

each stringer are known. The stringer B-splines can then be 

constructed by the technique used in Step 1 to interpolate the rings. 

Step 4. Interior Control Points 

Consider the general interior patch corner depicted in Fig. 4.6. 

E is known from the original network data, B and H from the results of 

Step 1, and D and F from the results of Step 3. Thus, Eq. (4.12) is 

satisfied and f3. 5  and f3 15  are known. The problem at hand is to choose A, 
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Figure 4.6. Matching at an Internal Ring. At some ring in the 
interior of the cylinder, the constraints that propagate 
from the left end meet with the constraints propagating 
from the right end. At this seam we do not have as much 
freedom to pecify the scalar R's, but continuity can 
still be ensured. 
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C, G, and I, and scalars 	(3 2 , 	and $ 4 , so that Eq. (4.11) is 

satisfied. We therefore have four vector, or twelve scalar equations 

and sixteen unknowns. This leaves us four degrees of freedom. Recall 

that in Step 2 we encountered a relationship between a3  at one corner 
and 3 1  at the corner immediately above it. That, together with other 

constraints, led to a somewhat involved set of equations for finding $ 1 

 at each of the corners of the end ring. That situation can readily be 

avoided at any internal ring because there the constraints are fewer. 

For convenience, then, we choose 

S 1 = 3 = 1 
	

(4.21) 

for every patch corner on every internal ring. Two degrees of freedom 

remain at each corner. 

From the results of Section 3,4, we know that 3 4  at E ij  must 

equal (3 2  at E i,j _ i , where the subscripts refer to rings and stringers. 

Now suppose that ring j-1 is an end ring. Then R 2  at every patch 

corner on ring j-1 is determined from the results of Step 2. Hence, at 

every corner on ring j, (34  is given. We remove the single remaining 

degree of freedom by choosing 

3 2 = 1 • 	 (4.22) 

Under these conditions, the location of A follows from Eq. (4.13), 

which simplifies to 
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A = 	[2(136-(35 )E+2(1-%)H+0 5-1-4)D1 • 
1

1

(34 
(4.23) 

The positions of G, I, and C then follow from Eqs. (4.11d), (4.11a) and 

(4.11b), respectively. 

Once applied to the interior ring immediately to the right of 

the left hand end ring, Eqs. (4.21) through (4.23) can be applied to 

the next ring to the right, and then the next, etc., until some further 

constraint is encountered on the right. 

Now suppose that ring j+1 is the right hand end ring. Then the 

approach described above can be applied to rings j, j-1, etc., moving 

one ring at a time to the left. Although Eq. (4.21) still applies, Eq. 

(4.22) must be replaced with 

3 4 	
1 	 (4.24) 

At any given ring, 13 2  follows from the results for 3 4  at the ring 

immediately to the right. The position of A again follows from Eq. 

(4.13), which simplifies to 

1 
A = 1-(32 ([2(1+136)-(1+32)(1+135)]E+2(s2-s6)Ii 

+ [13 5 (1+13 2 ) -23 2 ]D} . 

The positions of G, I, and C are computed as before. 

(4.25) 

Beginning at the left hand end ring, we move to the right 
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applying Eqs. (4.21) through (4.23). Beginning at the right hand end 

ring, we move to the left applying Eqs. (4.21), (4.24), and (4.25). At 

some ring in the interior of the cylinder, we find that 13 4 is 

determined by results from the ring immediately to the right and 132 by 

results from the ring immediately to the left. At this one ring, 

hereafter referred to as the seam, neither Eq. (4.22) nor Eq. (4.24) 

may be used. Equation (4.21) applies, as does Eq. (4.13), which 

becomes 

1 
A = 142134 ([2(1+136)-(1+132)(1+135)1E+202-136)H 

+ P5 (1+13 2 )-13 2 ( 1+t3 4 )101 	 (4.26) 

As before, G, I, and C follow from Eq. (4.11). 

Though the use of unity in Eqs. (4.21), (4.22) and (4.24) is 

somewhat arbitrary, it: is not unreasonable. Nevertheless, should it 

give undesirable results in practice, it could be changed. Another 

arbitrary choice inherent in Step 4 is the location of the seam. One 

could arrange for the seam to lie at any of the internal rings. The 

influence of this location on the resulting interpolation is not clear. 



CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions  

Methods for obtaining first order continuous (FOC) composite 

surfaces of either B-spline or rB-spline surface patches have been 

derived for two different situations. 

In the first case, we have shown how a topologically quadri-

lateral hole in an existing, FOC, composite surface can be filled while 

maintaining first order continuity. Conclusions drawn from this work 

are as follows. 

1. The patch to be filled in must be made zeroth order con-

tinuous with the existing surface. This is accomplished by making 

boundary control points connected with those of adjacent patches, and 

so determines the outside ring of control points for the new patch. 

2. First order continuity for the B-spline is accomplished by 

making each control point next to the boundary, the control point 

opposite it in the adjacent patch, and the boundary point between them, 

collinear. The control points opposite each other must be equidistant 

from the interposed toundary control point. Thus, first order con-

tinuity determines tue outermost interior ring of control points for 

the new patch. 

3. First order continuity for the rB-s p I ine patch is 

accomplished as for the B-spline patch except that certain symmetry 
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conditions must be imposed on the weights. 

In the second case, we have shown how, given a network of 

longitudinal and circumferential curves that lie in an existing, topo-

logically cylindrical surface, and prescribed end tangents, a B-spline 

representation can be found that will interpolate the existing surface. 

5.2 Recommendations  

We have shown how it is possible to model a first order 

continuous composite surface using B-spline and rB-spline surface 

patches. The final result that gives this continuity is deceptively 

simple, but rather laboriously obtained. The present work has not, 

however, rigorously proven that the solution derived here is the only 

solution that will guarantee a first order continuous, composite 

surface using B-spline surfaces patches. In our derivation from the 

continuity condition given by Veron (1976), we have had to assume forms 

for A(u) and 13(u) which are the most logical choices for these 

functions. Using these assumptions, we found that A(u) = O. It is 

possible that for other, less obvious choices of the functions A(u) and 

fi(u), we would find that A(u) need not be identically zero. One 

possible approach to establishing the suitability of other functions 

would be to derive the continuity conditions using them. In fact, 

before we settled on the choice of 

X(u) = Au + y , 	 (5.1a) 

several other functions were tested, namely 
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(5.1b) 

and 

X( u ) =X u 	 ( 5 .1 c ) 

However, both of these functions resulted in X(u) = O. The function 

given by Eq. (5.1a) was presented in the derivation, because this 

function, being a generalization of both Eqs. (5.1b) and (5.1c), came 

the closest to giving a nontrivial result for (u). Obviously, testing 

function after function is a very time consuming process, but what 

other course of action to take is unclear. This can be likened to 

testing whether a vector field is conservative by computing line 

integrals for every possible path in a domain. Unfortunately, there 

are no handy theorems that we can apply here, as there is for the 

conservative field problem in vector calculus. In defense of the 

solution we have obtained, we present an elegant but unproven "theorem" 

from the field of philosophy. Occamm's razor postulates that in a 

problem for which may exist more than one solution, the simplest solu-

tion is the correct one. The solution obtained herein would surely be 

simpler than one obtained by some more complex selection of X(u) and 

$(u), and thus, at least by Occamm's criterion, we may be correct. 

However, Occamm c viously never worked with B-splines; and had he, it 

is likely he would have never had the time to postulate such philo-

sophical speculations as his "razor." In any case, we can only say 

here that, given the form of X(u) in Eq. (5.1a), our solution is the 
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only solution. 

One area that warrants further research is obtaining second 

order continuity of a composite patch using B-spline or rB-spline 

surface patches. This would be a most natural extension of the present 

research, and, as mentioned before, it is the intent of the present 

work that the results obtained herein could be built on to obtain 

second order continuity. Both Veron (1976) and Kahman (1983) have 

presented statements for the condition of second order continuity for 

biparametric, vectorial surface patches. The two statements are quite 

different in appearance, and it would be worthwhile to investigate 

whether or not they are equivalent. The interested and adventurous 

reader is referred to these papers. 
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APPENDICES 



APPENDIX A 

DERIVATION OF THE B-SPLINE BASIS FUNCTIONS 

Use of the recursive relations, Eqs. (2.2) and (2.3) from 

Chapter II of the present work, has been shown by De Boor (1972) to be 

a stable and well conditioned manner in which to calculate the B-spline 

basis functions. In the most general algorithm the designer would be 

allowed to select the order of the basis functions and the number of 

control points. However, such generality is usually not necessary in 

real design applications. For the purposes described in Section 3.1, 

cubic basis function (k=4), with six control points (n=6) should allow 

sufficient flexibility. In Chapter IV, cubic basis functions with four 

control points are required. For both cases, the explicit equations of 

the basis functions are easily derived using Eqs. (2.2) and (2.3). 

Knowing the exact equations of the basis functions allows for the most 

efficient evaluation of the function values as the parameter traverses 

its range. It also allows us to solve, in closed form, for first order 

continuity, and examine the form of the explicit equations. Building 

up the basis functions also gives us valuable insight into the nature 

of the B-spline, and why it is so flexible. However, following this 

derivation is not .  prerequisite to understanding the main ideas of the 

present work, and is thus presented in this appendix. 

The basic recursive relation and rules for the knot set are 

repeated for ease of reference. These are 
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Nki (u) = 
(t i+k_ I-t i ) 	(t- -t- 	) 1+k 1+1 

(ti +k-u)Nk_i, i +I (u) 
(A .2) 
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1 	for t i  < u < t i .o.  

= 
	

(A.1) 

0 otherwise 

with the nonperiodic knot set 

0 ; 
	

if 	i < k 

t-1  = 	i-k ; 
	

if 	kin 
	

(A .3) 

n-k+l ; 
	

if 	i > n 

and we have t i  for i=1,2,...,n+k. 

Consider first the case n=6. Thus, using Eq. (A.3), we set our 

knot values by 

t i  = 0 	 (A.4a) 

t 2 = 0 	 (A.4b) 

t 3 =0 
	

(A.4c) 

t 4  = 0 
	

(A.4d) 

t 5 =1 
	

(A .4e) 

t 6 =2 
	

(A.4f) 

(A .4g) 
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t 8 = 3 
	

(A.4h) 

	

t 9 •. 3 
	

(A .4i) 

t 10 	3 
	

(A .4j) 

Note that there are k repeated knots at the extreme minimum and maximum 

of the parameter range. This is always the case for the uniform 

nonperiodic knot set. Here, k is four. 

We are now ready to obtain the first order bases. Fig. A.1 is a 

graph of these basis functions and also shows their relation to the 

knot set. The equations of the first order basis functions are given 

by 

N 1,1 (u) = 0 

N 1,2 (u)  

N 1,3 (u) = 0 

N1 , 4(u) = .1(u) - p(u-1) =1-1 

 

(A.5a) 

(A.5b) 

(A.5c) 

 

1 (A.5d) 

N 1,5 (u) mil(u-1) - 	 1.1 2 
	

(A.5e) 

N 1,6 (u) 	 - 	 =1-13 
	

(A.5f) 

N1,7 (u) = 0 
	

(A.5g) 
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-10 

t2 	 tg 

t 3 	 t8 
tie 	 t5 	 t6 	 t7 

0 	 1 	 2 	 3 

1 	- 

N (u) 

N 14  (u) 	= 	u(u) 	- 	11(u - 1) 

0 
0 u 	 1 	 2 	 3 

1 - 

N(u) 

•••■•■ 
N15 (u) = 	u(u-1) 	- 	11(u-2) 

0 	Pm,  
0 	 1 2 3 

1 

N (u) 

N16 (u) 	= 	1.1(u-2) 	- 	u(u-3) 

INN 0 I= 
0 	

-, 	
1 	 3 

Figure A.1. 	The First Order B-spline Basis Functions. The three 
nonzero basis functions are graphed, along with their 
relation to the uniform nonperiodic knot set. These 
basis functions are for n=6, k=1. 
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N1,8 (u) = 0 
	

(A.5h) 

N1,9 (u) = 0 
	

(A.5i) 

N1,10 (u) = 0 
	

(A.5j) 

The Greek letter u  in the above equations designates a unit step 

function. Mathematically, a unit step is equal to one when its 

argument becomes greater than zero, and is equal to zero when its 

argument is less than zero. The combination of two unit steps into a 

square pulse, as we have here, yields a powerful tool for constructing 

the higher order basis functions. These higher order functions are 

dependent on the first order functions through the recursive relation 

given by Eq. (A.2). What results is that the higher order polynomial 

bases are turned on and off as the parameter varies. This is the 

essence of the great flexibility of the B-spline. If we look at the 

graphs of the higher order basis functions in Figs. A.3 and A.4, the 

functions appear to be single continuous polynomials. In reality, they 

are piecewise continuous polynomials that have continuous derivatives 

across the join up to one order less than the degree of the polynomial 

basis. This internal continuity is guaranteed by the combined effect 

of the step functions in the first order bases and the form of the 

higher order polynomial bases. This is also the essence of ,he B- 

spline formulations, unparalleled flexibility for design applications. 

Now that we have the first order functions for our knot set, we 

can use Eq. (A.2) to derive the higher order functions. We have 
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selected cubic basis functions, so we need to continue building up 

bases until k=4. 

The first, second order basis function is given by 

( u-0)N1,1 ( u) 	(1-u)N1,2 (u) 
N2 , 1(u) = 	  

0-0 	 0-0 

11'0 	(1-u)*0 
= 0 7r. +  0 (A.6a) 

We recall that this formulation adopts the convention that 

0/0=0. The first nonzero basis function is N 2,3(u). 

N2,3 (u) = (1-u)1-1 1  , 	 (A.6b) 

and similarly 

N2,4 (u)  = '1 ' 11 1 (2-u)U2 (A.6c) 

N2,5 (u) = (u-1)1.12 + (3-u) 113 (A.6d) 

N2,6 (u) = (u-2)1.1 3 (A.6e) 

For i > 6 and k = 2, the basis functions are zero. 

In Fig. A.2, we see the effect of the step function on the 

second order bases. Note that these basis functions are linear and 

possess continuity of one order less than the degree of the equation. 



N23(U ) 
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\N24(u) 
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\\125(U)  /N26" 

1.0 

N(u) 
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/ 	 / \ \ 
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/ 	 / 	
\ 
\ 

/ 
/ 	 \ 

/ 	 / 	\ / 

	

0.0 l
/ 	 / 	 \ I  
/ 	 \ 

	

0.0 	 1.0 	u 	2.0 
Figure A.2. The Second Order B-spline Basis Functions. Pictured above are 

the only nonzero basis functions for n=6, k=2. They are 
linear, and possess zeroth order continuity. 
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In this case, it means we have zeroth order continuity, or positional 

continuity. 

The first nonzero basis function for k=3 is N3 2 ( u ). In the 

same manner as before, we get 

N3 ,2 (u) = (1-2u+u 2 )11 1 , 

1 
N3 , 3(u) = (2u - -2-3 

 u
2 )11 1  + (-2 u

2 
 -2u+2)1-1 2  , 

(A.7a) 

(A.7b) 

L 
"1 1 4

(u)  

N3,5 (u) 

N3,6 (u) 

	

/I 	2. 

	

)11 1 	
+ 

:2 

	

I 	2 	1 

	

= ,
z  u 
	- u +

2 

= (u 2-4u+4)113 

2  +3u  

2
+ 

3 

2 

3  

( 1 	2 	9 
2 + 
	—2 u -3u + _2)113'

(A.7c) 

2 	15 u +7u - T)1.1 3 	 , 	 (A .7d ) 

(A.7e) 

The graphs of these basis functions are shown in Fig. A.3. It 

is interesting to note that these functions appear to be one continuous 

curve. Upon closer inspection, we realize that the curves are 

piecewise continuous parabolas. For example, -as u varies from just 

less than one to just greater than one in N34(u), we are actually ,  

seeing one polynomial turn on, while another is turned off. But 

because these polynomials are quadratic, they are continuous in slope, 

and thus appear "smooth." 

Finally, applying Eq. (A.2) one last time, we obtain the fourth 
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N34 (th  
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Figure A.3. The Third Order B-spline Basis Functions. Pictured above are 
the nonzero basis functions for n=6, k=3. They are piecewise 
parabolic, and possess first order continuity. 

0.8 
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order B-spline basis functions which are used in Chapter III. Graphs 

of these bases are p lotted in Fig. A.4. These polynomial basis 

functions are piecewise continuous cubic polynomials with second order 

continuity, and thus, B-spline representations of this order have 

internally guaranteed continuity of curvature. The fourth order basis 

functions are given by 

N4 1 (u) = (1-3u+3u 2-u 3 )1-1 1  

N4,2 (u) = (3u - -9 	
4 

u 2  + 	u 3 )11, 
2  

+ (2-3u + -3  u 2  - 	u 3 )1-12 
2  

(A .8a) 

(A .8b ) 

3 
u  2  - 

11 
 u  3 
	 3 	

9 u - 3u2 	
72 u 

 3) •N 	(u) 	(- 	— )1-11 + (- - - 4,3 	2 	12 	 2 	2 	 1 	412  

1 
+ -(27-27u+9u2-u3)11 3 ' 6 

(A .8c) 

, 
N(u) = 1 U 3 Al 1 + 3 

	9 	
+ 9 u 2 	7 	3N 

4,4 

	

6 	 4 4 	4 	12 	2 

( - 45 	63 	27 2 	11 3, 
+ + 
	u 	

u + 	u )11 
4 	4 	4 	12 

(A. 8d)  

1 	 1 
N4,5 (u) = -(-1+3u-3u2+u3)1-1, 

L 	4 + -(63-93u+45u 2-7u 3 )I-1 3  , 
4  

(A.8e) 

N4 6(u) "2 (-8+12u-6u 2 +u 3 )11 3  . ,  (A .8f ) 
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Figure A.4. The Fourth Order B-spline Basis Functions. The functions 

graphed here are the final result of our derivation, for n=6 
and k=4. The basis functions of this order are piecewise 
cubic, with continuity of curvature. 
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Consider now the cubic basis functions (k=4) for B-splines with 

four control points (n=4). From Eq. (A.3), the knots are 

t 

0, 

t i   

1, 	i=5,6,7,8 	. 

(A.9) 

We see from Eqs. (A.1) and (A.9) that the only nontrivial first order 

basis function is 

N1 , 4(u) 	1.11 	 (A.10) 

where 11 1 , is defined in Eq. (A.5d). Finally, beginning with Eq. (A.10) 

and repeatedly applying Eq. 

functions: 

N2,3 (u) 	= (1-u)111 

(A.2), we obtain the other nontrivial basis 

(A.11a) 

N2,4 (u) = u111 (A.11b) 

N3,2 (u) = (1-11) 	Pi 	, (A.11c) 

N3,3 (u) = 2u(1-u)111 (A.11d) 

N3,4(u) = u211 1 	$ (A.11e) 



N4,1 (u) = (1 -u) 3111 , 

N4,2 (u) = 3u(1-u)
2

11 1 	' 

N4,3 (u) = 3u 2 (1-u)111 , 

N4,4(u) = u 3 111 • 

(A.11h) 

(A.11i) 

Like the fourth order basis functions for six control points (n=6) 

given in Eq. (A.8), the basis functions given by Eqs. (A.11f) through 

(A.110 are piecewise cubic polynomials with second order continuity. 

In the case where n=6, the fourth order functions are nontrivial over 

three spans. For n=4, the fourth order functions are nontrivial over 

only one span. 



APPENDIX B 

FIRST ORDER CONTINUITY OF B-SPLINE CURVES 

The B-spline curve with n control points is given by 

where 

r(u) = {N(u)} T {p} 

1[ Nk, i(u) 

Nk,2 (u)  
{N(u)} = 

Nk,n (u) 

(B.la) 

(B.lb ) 

1 26 

(B.1c) 

the Nk, i(u) are kth order basis functions of the parameter, u, and the 

p i  are the control point position vectors. 

The first derivative (with respect to u) of the B-spline is 

;.(u) 	61(11)}T{p} 
	

(B.2) 
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where the superior dot denotes differentiation with respect to the 

parameter. At the ends of the B-splines, the first derivatives are 

;(0) 	67(0)1T{0 
	

(B.3a) 

and 

r(u ) = 01(u MP) - 1118X 	 MIX (B.3b) 

B.1 B-splines with Prescribed End-Tangents  

From elementary differential geometry, we know that at any point 

on r(u) the unit tangent vector is parallel to r(u), that is 

i(u) = X(u)T(u) 	 ('B.4) 

where X is a scalar and T is the unit tangent vector. 

Consider the problem of finding the interior control points of a 

B-spline with specified endpoints such that 

T(0) ' 	 (B.5a) 

T(u 	) = T max 	—1 (B.5b) 

where the endpoint tangent vectors, To  and T i , are prescribed. From 

Eqs. (B.3) through (B.5), we see that the control points must satisfy 



128 

{ il( 0) } { p} 
	

(B.6a) 

{kumax )}{p} = f31-1 
	

(B.6b) 

where 

a = A(0) 
	

(B.6c) 

8 =A(umax ) 
	

(B.6d) 

B.2 Adjoining B-splines  

Suppose we have two B-splines 

I4 (u) = {N(u)} T {p} 
	

(B.7a) 

r2 (u) = {N(u)} T {q} 
	

(B.7b) 

that are joined at the ends; that is 

Ea (umax )  = E-2 (0)  • 
	

(B. 8) 

The composite curve is first order continuous if the unit tangent 

vector _s continuous at the join. Thus, we must have 

Ti (umax ) = T2(0) 
	

( B.9) 
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From Eq. (B.4), we know that 

'(u) 
T(u) = 
	

(B.10) 

Equations (B.3) and (B.7) yield 

i. (umax ) = di(u 	{p} 
	

(B.11a) 

i2(0) = 61(0)}T{q} (B.11b) 

The condition for first order continuity is thus expressed by Eqs. 

(B.9) through (B.11). 
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