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Abstract- The majority of manipulation systems are 
designed with the assumption that the objects’being 
handled are rigid and do not deform when grasped. 
This paper addresses the problem of robotic grasp- 
ing and manipulation of 3-D deformable objects, such 
as rubber balls or bags filled with sand.‘ Specifically, 
we have developed a generalized learning algorithm 
for handling of 3-D deformable objects in which prior 
knowledge of object attributes is not required and thus 
it can be applied to  a large class of object types. 
Our methodology relies on the implementation of two 
main tasks. Our first task is t o  calculate deformation 
characteristics for a non-rigid object represented by a 
physically-based model. Using nonlinear partial differ- 
ential equations, we model the particle motion of the 
deformable object in order t o  calculate the deformation 
characteristics. For our second task, we must calcu- 
late the minimum force required to  successfully lift the 
deformable object. This minimum lifting force can be 
learned using a technique called ‘iterative lifting’. Once 
the deformation characteristics and the associated lift- 
ing force term are determined, they are used to train 
a neural network for extracting the minimum force re- 
quired for subsequent deformable object manipulation 
tasks. Our developed algorithm is validated with two 
sets of experiments. The first experimental results are 
derived from the implementation of the algorithm in a 
simulated environment. The second set involves a phys- 
ical implementation of the technique whose outcome is 
compared with the simulation results t o  test the real 
world validity of the developed methodology. 

Keywords- Deformable Object Manipulation, Learn- 
ing, Iterative Lifting. 

I. INTRODUCTION 

Most robotic systems currently in existence have 
been built under the assumption that manipulation 
of rigid objects remains the primary task. Geometry 
of the object is usually static, with very little variance 
between one instance of the object and another. The 
robot must have knowledge pertaining to the exact 
structure and location of objects in the environment 
and the precise actions to be performed. In reality 
though, many objects are non-rigid. Most are unsym- 
metrical, compliant, and have alterable shapes. Even 
solid objects can deform when the object’s dimensions 
become extensive. In general, deformable objects may 
have one-, two-, or three-flexible degrees of freedom. 
In the real world, these classes of objects include such 
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items as rubber balls, beams, hoses, cloth, and wire. 
In this paper, we discuss a generalized learning al- 

gorithm for handling of 3-D deformable objects. We 
define this as a ‘generalized approach’ since it does not 
assume prior knowledge of object characteristics and 
can thus be utilized for an extensive range of 3-D de- 
formable object types. We define a ‘3-D deformable 
object’ as an object whose three flexible degrees of 
freedom are characterized by viscoelastic interactions 
between molecules. Such an object, when an external 
force is applied, changes the volumetric space it oc- 
cupies as well as its shape. This thus excludes such 
objects as cloth sheets, steel beams, and glass plates. 
Furthermore, we do not consider crushable objects 
that are permanently deformed under pressure, since 
they can be considered rigid after crushing. 

In order to manipulate a 3-D deformable object in 
the presence of gravity, we must determine the force 
required to successfully lift the object. We define 
the minimum force necessary for such an operation 
as the minimum object ‘lifting force’. Based on this 
classification, we define the basic problem as: Given 
a 3-D deformable object, calculate the object lifting 
force. Based on our methodology, we show that the 
attributes which the system needs to know for calcu- 
lating the object lifting force can be learned off-line for 
a wide range of three dimensional deformable objects. 
The attributes learned can then be mapped such that, 
during run-time, enough relevant attributes can be re- 
trieved to grasp any three dimensional deformable ob- 
ject presented to the system. The research described 
in this paper addresses this issue. 

11. RELATED PAST WORK 

Manipulation of 3-D deformable objects is one of 
the least addressed research areas in robotics. Clas- 
sical robotic systems assume only rigid objects will 
be manipulated by the system. Such systems assume 
that object geometry maintains a single, stable, con- 
figuration during the manipulation task. Many robotic 
systems which address manipulation of deformable ob- 
jects focus on force control and stability in the pres- 



ence of environments with compliant properties [5] [4]. 
With this focus, in-depth knowledge of the object de- 
formation characteristics is usually incorporated di- 
rectly into force calculation and force feedback is uti- 
lized to ensure grasp stability. 

Some systems focus on deformation control versus 
force control. In these systems, the robot manipulator 
is designed to control the deformation of the object 
[6] [7]. Those systems which do not assume knowl- 
edge of object characteristics are limited in that they 
assume manipulation of an object with no more than 
two flexible degrees of freedom. Deformable objects 
also appear in the field of robotics in terms of grasp- 
ing with soft fingers [12] [14]. This type of research 
suffers from the same limitations as does rigid manip- 
ulation of compliant objects. 

In computer graphics, deformation is seen as a tool 
for producing realistic looking animations. Currently 
there are some efforts which focus on virtual control 
prototyping in which a user interacts with a virtual 
deformable object in the exact same way they would 
interact with the physical object [9] [l]. The main 
limitation with these techniques are the same which 
face the robotic world. These systems assume in-depth 
knowledge of object characteristics is available for in- 
clusion into the simulated environment. 

The problems which arise in grasping of non-rigid 
objects have been inadequately addressed in previous 
research attempts. These limitations have motivated 
the development of a methodology which does not re- 
quire prior in depth knowledge of object attributes for 
manipulating 3-D deformable objects. 

111. METHODOLOGY 

- 

Our main focus is to learn an adequate grasp for a 
deformable object. We choose to represent grasping as 
the act of pushing against an object from two opposite 
ends [15]. Our system, therefore, utilizes two coop- 
erative manipulators, each possessing an end-effector 
constructed as a flat surface palm and possessing a 
force sensor able to detect and record any force ap- 
plied to the palm’s surface area. 

For determination of an adequate grasp we must 
learn the minimum forces a multiple robotic mecha- 
nism must exert in order to lift a common deformable 
object cooperatively. If F, is the force required to lift 
a rigid object of weight W with frictional coefficient p ,  
we define the minimum deformable object lifting force 
Lf as F, + Fd where Fd is the minimum additional 
force term required to compensate for the deformation 
of the object. 

We shall begin the process of determining L f  by fo- 
cusing on the physical changes of the deformable body. 

We show that once a representation for both the ex- 
ternal and internal positional movements of the de- 
formable object is retrieved, the object lifting force can 
be determined. In effect, we show that a relationship 
between object deformation and force can be learned 
such that an adequate grasp with minimal force can 
be achieved. Once this relationship is learned, we can 
utilize these factors to maintain a firm grasp on any de- 
formable body by comparing the current run-time ob- 
ject deformation with the learned relationship. When 
they are equivalent, we can retrieve the necessary ob- 
ject lifting force required for manipulation. 

A .  Deformable Object Model 
At the submicroscopic scale, all solid material is 

composed of atoms. Adjacent atoms in a solid ex- 
hibit both attractive and repulsive forces which keep 
the atoms at an equilibrium distance from each other. 
When the spacing between ‘atoms is increased, a 
pulling force is created which tends to pull the atoms 
toward each other. In an equivalent manner, if the 
spacing is decreased, a pushing force is created which 
pushes the atoms away from each other. The tendency 
to maintain this equilibrium spacing leads to an ‘elas- 
tic’ manifestation. 

The grouping of atoms leads to the formation of 
solids. A solid can be classified as crystalline, amor- 
phous, or a combination of both. A crystalline mate- 
rial is made up of crystals, an orderly array of atoms 
arranged in three dimensional rows such that each 
atom is at an equilibrium distance from each other. 
This structural arrangement is called a space lattice 
PI (Fig 1). ~~~-~ ~ . ~ - ~  I-ZZ- l  

Fig. 1. Space Lattice Arrangement 

A crystalline material has an orderly arrangement 
and thus we shall utilize its atomic structural char- 
acteristics to approximate the modeling of an elastic 
solid. We shall utilize the space lattice characteris- 
tic to represent an object as a particle based system 
constructed from a discretized sampling of its volume. 
Let Q > 0 represent the object discretization con- 
stant. The particle based representation of the object 
is thus given by a set Q of particles where each particle 
Gn E Q’, has an associated Cartesian position vector 

Pn = ( ~ n ,  ~ n ,  zn) = Z n i  + ~ n j  + znk 
‘where n 5 a3 
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Deformation of a material is caused at the mi- 
croscopic level by visco-elastic interactions between 
atoms. This visco-elastic interaction can be modeled 
by the Kelvin Model which is characterized by a spring 
and damper in parallel. We shall utilize this model and 
characterize a deformable object as a set of particles 
locally interconnected by damped springs (Fig 2). 

Fig. 2. Network of Interconnected Particles and Springs 

B. Calculating Deformation Characteristics 
Let us now extract a piece of the interconnected par- 

ticle system as shown in Figure 2. Let f n  represent the 
external force 

applied to particle +n . Let rn, represent the mass of 
particle &. Let Sn represent the number of damped 
springs connected to particle Gn. Based on the math- 
ematical equations defining the Kelvin Model, the 
forces acting on the nth particle are accumulation of 
external force, inertial force, damping force and spring 
force. Using Newton’s law of motion, the partial dif- 
ferential equation of motion for the nth particle can be 
written as: 

Sn 

+ Dn,zagn,z(fn, t )  = f n  (1) 
z=1  

where Dn, the deformability coefficient, is a function 
of the force and the change in spring length, A,, the 
damping coefficient, is a function of the force and 
the instantaneous change in spring length, APn,Z(fn, t )  
represents the chan e in spring length in each Carte- 
sian direction, and y(fn, t )  represents the instan- 
taneous change in spring length. We shall desig- 
nate the summation Agn,%(fn,t) as the parti- 
cle displacement vector d( fn, t )  and the summation c:zl w(fn, t )  as the particle displacement veloc- 
ity vector d’ ( fn ,  t ) .  

From Equation 1, we see that the only parameters 
which are not directly defined as a function of time are 
the mass, deformability, and damping coefficients. If 
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we assume that the mass of the object is given, then 
we can classify the overall deformation of the object in 
terms of the deformability function D and the damping 
function A. The algorithm we implement for determin- 
ing the deformability function is as follows: 

01. Using both manipulators, apply a force against 
the object’s surface. At time t ,  = t o ,  t l ,  . . . , t n ,  
record the force f(t,) felt by the manipulator. 

2. Calculate the particle displacement vector 
J(f(t,),t,) for all t ,  E t 

3. The deformability function is D ( f , d )  = & for all t ,  E t 
The technique we use for determining the damping 

function is as follows: 
01. 

2. 

3. 

Using both manipulators, apply a force against 
the object surface. At time t ,  = t o ,  t l ,  . . . , tn ,  
record the force f ( t m )  felt by the manipulator. 
Calculate the particle displacement velocity vec- 
tor d‘(fa(t,),t,) for all t ,  E t where f a ( t m )  = 
f ( t m )  - Dd(f(t,),  t,) is the damping force. 
The damping function is 

fa t ,  - -  
A ( f m  = &(fa(L)!tm) 

C. Learning An Adequate Grasp 
“Learning denotes changes in the system that are 

adaptive in the sense that they enable the system to 
do the same task or tasks drawn from the same pop- 
ulation more efficiently and more effectively the next 
time” [lo]. In this research, we wish to learn how to ef- 
ficiently and effectively grasp a deformable object. To 
learn the characteristics of an adequate grasp, we must 
determine the relationship between mass, deformation, 
and force. Once this relationship is learned, we can 
utilize these factors to maintain a firm grasp on any 
deformable body by comparing the current run-time 
mass/deformation of the object with the learned rela- 
tionship. When they are equivalent, we can retrieve 
the minimum force required for grasping a deformable 
object. The steps required to handle manipulation of 
3-D deformable objects are as follows: 

Learn what forces a robotic system must exert 
in order to successfully grasp a deformable 3-D 
object 

1. Record dimensions of a known object 
2. Calculate the deformability and damping func- 

tions 
3. Determine the minimum force necessary to 

grasp known object by iteratively lifting object 
4. Link object attributes and grasping force into a 

index table 
We assume that an object first presented to the sys- 

tem is initially in an equilibrium state. Thus the sum- 
mation of all forces inherent to the object converges 
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to zero. To begin the iterative lifting process we apply 
a force F,,, to the object.and lift the object until the 
object particles have stabilized their positions. If, at 
this time, the object has not slipped, the object is in 
equilibrium and a firm grasp on the object has been 
achieved. This then is the object lifting force Lf. We 
record its value at  this time and terminate the lifting 
process. If the object has slipped from the manipula- 
tor grasp, we increase the applied manipulator force 
and repeat the lifting process. Eventually a minimum 
force will be reached which, when applied, will be able 
to lift the deformable object. The force required to lift 
a rigid object of weight W is F,. Therefore we know 
that the object lifting force must be greater or equal 
to this force2: Lf = F, + Fd 2 F,. 

After learning values for the lifting force, we store 
this information into an index table where given the 
mass, deformability, and damping functions we can ex- 
tract the object lifting force. The table constructed is 
only valid for the objects explicitly learned. However, 
we wish to determine the general relationship between 
mass, deformability, damping, and lifting force. To ac- 
complish this, we utilize a neural network character- 
ized by three inputs, one hidden layer, and one output 
node to learn the desired relationship (Fig 3). 

Force 

- Output Layer 

Hidden Layer - 
- Input Layer 

Fig. 3. Neural Network 

A simple backpropagation algorithm [ll] is used for 
the training process. 

IV. EXPERIMENTAL SETUP 

We have validated our methodology for the success- 
ful manipulation of 3-D deformable objects using two 
experimental setups. The first setup consists of the 
implementation of the algorithm in a simulated envi- 
ronment. The second involves a physical implementa- 
tion of the algorithm whose outcome is compared with 
the simulation results in order to test the real world 
validity of the developed methodology. 

*we define the deformable object lifting force Lf as Fw + Fd 
where Fd is the minimum additional force required to compen- 
sate for the deformation of the object. 

A .  Simulation 
Reznik and Laugier’s simulated the deformation of a 

“virtual” deformable finger as it was pressed against a 
rigid surface [9]. We shall utilize Reznik and Laugier’s 
algorithm as a basis for simulating the deformation of 
a “virtual” deformable object as the rigid surface of 
the manipulators is pressed against it. Their modified 
algorithm will provide us with the necessary force and 
deformation feedback parameters required to model 
a 3-D deformable object in a simulated environment. 
Using this model, we have implemented the ‘iterative 
lifting’ simulation program which calculates the defor- 
mation characteristics of 3-D deformable objects and 
learns the desired minimum object lifting force. 

B. Automation of Manipulator System 
The physical test setup involves running our algo- 

rithm on an automated stereo-vision dual manipulator 
system (Figure 4). The dual robotic devices are used 
to perform the deformable object grasping routines. 
The vision system provides object dimension and po- 
sition to the robotic manipulators for task initializa- 
tion. In addition, the vision system provides feedback 
for determining object slippage in order to successfully 
accomplish the recursive learning process. 

Fig. 4. Dual Manipulator System 

The two manipulators are commanded using in- 
verse kinematics. Thus, given a location x,y,z in 3D 
world coordinates, the system determines the neces- 
sary joint angles required to position the manipulator 
end-effector at the desired Cartesian location. The 
only difference between the joint angles required to  
control the two manipulators is that both the base 
and wrist joints must be equal and opposite in mag- 
nitude. This allows us to achieve the appearance of 
approximate parallelism. All other joint parameters 
will maintain equivalent values with respect to each 

18 



manipulator. 
For automation, the camera system determines ob- 

ject dimension and passes the center side position to 
the Microbots. Internally, we discretize the object 
using the calculated dimensions and a discretization 
constant equal to 1.0. The Microbots then move to 
each side of the object ensuring that the flat-plate 
end-effector is positioned normal to the object side. 
The Microbots then perform X squeezing operations3. 
After each such operation, the outputs from the Mi- 
crobot wrist force sensors are read. These force values, 
along with the amount the object was squeezed are 
used for calculating the deformability and damping co- 
efficients. The iterative lifting process is then begun. 
For the first iteration attempt, a force equivalent to the 
Weight Force is applied. The Microbots then attempt 
to lift the object until the manipulators have moved 
a distance of 0.5*object height. After “lifting”, the 
cameras are used to determine whether the object has 
been successfully grasped. If the object is no longer 
in the grasp of the manipulator, the Microbots repo- 
sition themselves against the object’s side, increment 
the lifting force by 20%, and begin the lifting process 
again. At some point, the object will be successfully 
grasped and the object lifting force is recorded. 

Thus, our system autonomously determines the re- 
quired lifting force for an elastic deformable object. 

Sponge 
Cotton 
Sand 

Water 

V.  RESULTS 
For the experimental implementation, we utilize 

four deformable objects, each with different deforma- 
tion characteristics and weights4. The objects relative 
properties are given in Table I and our physical imple- 
mentation results are tabulated in Table 11. The calcu- 
lated results in Table I1 are derived from the physical 
experimentation whereas the simulation results are de- 
rived from the simulated environment. Based on the 
results, we conclude that we can achieve an error level 
of 14% with respect to the simulation lifting force. 

A .  Neural Network Results 
To test the learning capability of the system, we 

train the neural network on simulation results re- 
trieved from a multitude of deformable objects possess- 
ing different deformation characteristics. Our network 
possesses 3 input nodes representing the deformability 
coefficient, damping coefficient, and object weight, two 
hidden nodes, and 1 output node representing the min- 
imum object lifting force. For our simulation, we in- 

3Each Microbot applies a force against the object, thus 

4Each object is composed of a cloth bag filled with the speci- 
“squeezing” the object. We perform 3 such operations. 

fied interior material. 

G V 

A 
4 4  
.r( d 5 
E 
6 
CEl 

49.18 
13.03 
30.02 
10.52 

17.8 x 19.1 x 9.2 
19.1 x 19.7 x 19.1 

Sand 2.9 11.4 x 11.4 x 9.5 
D Water 4.9 10.8 x 11.4 x 8.9 

Cotton 

TABLE I 
PHYSICAL IMPLEMENTATION: OBJECT CHARACTERISTICS 

11 Calculated I Simulation 

TABLE I1 
PHYSICAL IMPLEMENTATION RESULTS 

corporate 40 corresponding input-output pairs into the 
training set and 33 corresponding input-output pairs 
into the testing set. The minimum error derived from 
the testing set occurred when we trained the network 
for 1000 epochs. A sample of the neural network test- 
ing set output results are shown in Table 111. The 
maximum error retrieved from the network is < 14.8%. 
Based on this error calculation, we conclude that there 
is a derivable relationship between weight, deformabil- 
ity, damping and the object lifting force which can be 
learned. 

VI. SUMMARY 

In this paper, we discussed a generalized algorithm 
capable of successfully manipulating 3-D deformable 
objects without assuming prior in-depth knowledge of 
object attributes. Our methodology was able to incor- 
porate a wide variety of deformable object types. We 
validated our developed algorithm with two sets of ex- 
periments. The first experimental results were derived 
from the implementation of the algorithm in a simu- 
lated environment. The second set involved a physical 
implementation of the technique whose outcome was 
compared with the simulation results to test the real 
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NN Input 11 Expected 

40.81 
56.33 
47.22 
27.00 
59.92 
21.15 
23.32 
21.38 
28.94 

41.66 
45.99 
46.08 
42.91 
33.03 
50.71 
43.19 
49.99 
45.56 

28.72 

NN Output 

n z 
V 

74.41 
73.95 
87.92 
48.96 
99.86 
30.12 
38.47 
34.48 
30.87 

TABLE I11 
SIMULATION RESULTS: NEURAL NETWORK OUTPUT 

world validity of the developed methodology. Based 
on the results, we are able to show that even using 
a number of simplfying assumptions for a simulation 
model, we can achieve both a physical and simulation 
lifting force for the same deformable object which only 
differ from each other by a maximum of 14%. In fact, 
with more accurate equipment, we could use the re- 
sults extracted from the trained neural network to get 
an approximate measurement of the lifting force with- 
out having to physically perform the iterative lifting 
process. This force could be directly input into the 
robotic device for lifting. The iterative lifting process 
would then only need to be performed to incrementally 
compensate- for the approximation error with a given 
deformable material. 
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