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Abstract—Applications of robotics are quickly changing. Just
as computer use evolved from research purposes to everyday
functions, applications of robotics are making a transition to
mainstream usage. With this change in applications comes a
change in the user base of robotics, and there is a pronounced
move to reduce the complexity of robotic control. The move
to reduce complexity is linked to the separation of the role of
robot designer and robot operator.

For many target applications, the operator of the robot needs
to be able to correct and augment its capabilities. One method to
enable this is learning from human data, which has already been
successfully applied to robotics. We assert that this learning
process is only viable when the demonstrated human behavior
is coherent. In this work we test the hypothesis that quantifying
the coherence in the provided instruction can provide useful
information about the progress of the learning process.

We discuss results from the application of this method to
reactive behaviors. Such behaviors permit the learning process
to be computationally tractable in real-time. These results
support the hypothesis that coherence is important for this
type of learning and also show that this property can be used
to provide an avenue for self regulation of the learning process.

I. INTRODUCTION

The description of the average robot user is changing.

Just as computers have evolved from the realm of research

and extreme novelty applications to becoming commonly

found in multiple places in a typical modern home, as well

as in the modern workplace - robotics is also making a

similar transition. Changing applications results in a change

in the typical user and whether an amputee, an arthritic

grandmother, or a health care worker providing in-home

assistance, a general theme is that people seek to have less

computational effort expended to control the devices they

use. Also, as the user base becomes more non-technical, there

is an increased push to reduce the need to be technically

involved in robotic instruction.

With the change in demographics of the average robot

user, there is a need to separate the role of robot designer

and robot user. Such a separation would require that the

user be able to provide new or fine tune existing robotic

capabilities, and learning by teleoperation is one such method

of accomplishing this task. For the changing user to utilize

an in-home robot, we believe that this will allow the typical

home user the ability to train the robot without placing heavy

requirements on expertise and prior training. Learning from

teleoperation can also be classified with similar approaches

such as learning by demonstration [1], [2], and learning by
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observation [3], [4]. These methods have been applied to

robotics and serve as a valid method of enabling a robot to

perform new tasks.

One challenge created by using such an approach is that

the robot will need to be endowed with the ability to regulate

when it learns in concert with its user/teacher/operator.

We propose that this self regulation, a critical component

of autonomous robotic learning from human supervision

is hinged on some base properties that must be properly

explored. One such property, coherence, has not been fully

treated in robotics and in this work we seek to investigate

coherence and its relationship to learning from human data.

II. BACKGROUND

There are two challenges with incorporating home users

into the robotic learning process. First, the user may not be

able to identify when the limits of the robot’s capabilities are

reached and second, the user may not initially be capable of

providing competent training to the robot. We believe that

coherence is a property that can be used to address these

two challenges.

Coherence is a term that has been mentioned in several

engineering and science domains. Merriam-Webster defines

coherence as a “systematic or logical connection or consis-

tency”, but in each domain the definition varies to some

degree. In robotics the term has been used in [5], [6], [7]

but even in these usages, a process to quantify coherence is

not evident.

In this work we use the definition that coherence in

teleoperation data is the property that forces the action

state to be linked to a specific sensory state for each

behavior. Coherence rises from a causal relationship between

the actions executed and the sensory evidence provided.

Because of this relationship the actions executed should

be logically consistent with the evidence provided. In this

work, we present an approach which enables a robot to

quantify coherence in the instruction which it is provided.

For humans, it is often times obvious that if data are not

coherent this will pose challenges for learning. We believe

that if robots are so equipped to also identify this property,

then it can have positive impact, especially for applications

in which autonomous robot learning is useful. The approach

utilizes a property known as the mean quantization error

which will be defined more fully in section III. By isolating

characteristics of this property we show how it can be used

to augment the process of learning from teleoperation when

possible and also to identify when it is not possible for the

robot to learn in that manner.
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III. METHODOLOGY

There are several possible methods that have been im-

plemented to accomplish learning from teleoperation. This

paper does not aim to present a comparative analysis of such

methods, but it seeks to present a study on how coherence

affected one of these methods [8]. This method uses an

interactive learning method to incrementally learn a target

behavior via teleoperation starting with zero initial knowl-

edge. In this work we test the hypothesis that quantifying

the coherence in the provided instruction can provide useful

information about the progress of the learning process. This

information is directly related to the performance of the

learned behavior. We also seek to allow a robot to generate

this information as the behavior is learned.

A. Behavior

A behavior is defined as a specific relationship between

evidence provided and actions executed. It is a policy of

action that defines how the robot operates when specific

sensor data is detected. If this relationship is causal, it

implies that the behaviors under consideration are reactive.

Mathematically a behavior can be represented as a mapping

f : X → Y where X is the sensor space provided to

the user for teleoperation, and Y is the action space of the

haptic device used to capture human action. If the behavior is

defined by teleoperation, the mapping is essentially shown by

example. A given example (xk, yk) indicates that the action

yk ∈ Y is executed when the sensor data xk ∈ X is detected.

The example is an “if-then” rule that captures a facet of the

behavior.

To highlight this process, Fig. 1 shows paths demonstrated

at different stages as the robot learned. At the beginning of

the interaction, there are few examples of the target behavior

provided for the robot to learn from. As more examples are

presented for learning, the robot is better able to learn the

task.

B. Learning the Behavior

As outlined, teleoperation can be used to capture a set of

examples performed by the human user. This set, defined in

(1), provides examples of a behavior fN . Through interactive

learning, the target behavior is defined as more examples are

provided for the learning process (as N increases). In essence,

fN → f if the learning process is successful.

B = {(xk, yk)}, k ∈ {1, ..., N} (1)

(a) 10 (b) 25 (c) 150 (d) 400

Fig. 1. Navigation behavior learned as more human examples are provided.

where N is the number of training points provided.

The interactive learning approach utilized also incorpo-

rated two Self Organizing Maps [9] to reduce the dimen-

sionality of the sensing and the acting spaces by mapping

X → X̂ and Y → Ŷ . This neural network inspired tool was

utilized so that the process of determining the behavior f
would become tractable in realtime and without bias for the

target behavior or robotic platform. Using SOMs permitted

the sensing and acting state to be adaptively classified -

with more examples the classifiers became better tuned to

the input data provided. The learned behavior thus becomes

f̂N : X̂ → Ŷ . If the learning process is successful, f̂N → f
as N increases.

C. Coherence

Coherence is a property that describes the logical consis-

tency between sensing and action for the behavior demon-

strated via teleoperation. If the user is demonstrating a

coherent behavior, they consistently perform the same actions

when presented with the same sensor input. The use of

a classification method to identify sensor and action data,

especially an adaptive method, lies as the core of quantifying

coherence.

The mean quantization error (MQE) of the classifier is

a value which represents how accurately the method is able

to classify data. This term is defined in (2) where u is the

number of classes, n is the dimension of the data, and mi is

the best matching unit (BMU) in the classifier for the data

item ak. ak is either xk or yk depending on whether the

MQE is being calculated for sensing or actuation data.

MQE =
1

u

∑

k

1

n
||mi − ak|| (2)

D. Characteristics of the MQE

The quantization error of an adaptive classifier can be used

to provide insight to how the classified data changes over

time. As each new data item is presented, the classifier will

generate MQE values that increase. Once the data values

presented are no longer novel, the MQE will increase less

since the data items will more closely match their BMU.

It is important to note that only in cases where the

data are almost the same as the classifier’s BMUs will the

MQE values decrease. This means that if the classifier is

starting as a blank slate with no knowledge of the data,

initially the MQE should increase rapidly, since every new

data item will be poorly classified. As more data items are

presented it is likely that some of them will be similar

to items previously presented, if there is coherence in the

demonstrated behavior. As such, after an initial adaptation

period where the MQE increases, it can be expected that

the MQE will stop increasing. If learning is successful, the

rate at which examples are provided should reduce as well

after some initial learning period (although these two periods

might not fully coincide).

If the robot is not able to learn the task, the reduction

in intervention - where the human provides examples of the

target behavior - will not occur. If this inability to learn is
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(b) Wandering.

Fig. 2. Path of teacher demonstrating behavior.

Fig. 3. Real and simulated Khepera robot. Sensors 1 to 8 are labeled.

related to poor classification capabilities, the MQE values

generated by the classifier will also increase, although pos-

sibly at a slower rate than the initial adaptation period. Poor

classification could either be the result of inadequacies in

the sensors provided, in the fidelity of the actuator provided,

or even through short comings in the classification method

itself. This understanding is filtered down into (3) which

quantifies coherence in order to predict performance after

period j.

predictionj =

Endj−1∑

p=Begj

max{MQEp+1 − MQEp, 0} (3)

Where Begj and Endj − 1 mark the first and the

penultimate examples during period j. MQEp is the error

calculated after the pth example has been provided.

IV. EXPERIMENTAL SETUP

A. Scenario

For this work, two behaviors were selected for study.

The first, wall following is a staple in many navigation

applications. The second, wandering, fills a useful niche

in “fetch and carry” applications. This behavior was also

selected since it was a sufficiently distinct behavior from

wall following. Both of these are among the five behaviors

indicated as basis behaviors in [10]. Figs. 2(a) and 2(b) show

an example of each behavior.

Simulation was used to provide a level of control over

environmental factors. The simulated robotic platform used

was based on the Khepera mobile robot (K-TEAM) and

endowed with eight infrared sensors and two actuators pro-

viding differential drive (see Fig. 3). The simulated sensors

possessed a noise profile in line with the hardware sensors

after which they were fashioned.

B. Evaluating Coherence

To artificially inhibit the ability to demonstrate coherent

behavior by teleoperation, noise was introduced into sensing

TABLE I

CASES CONSIDERED

actuator\sensor not modified modified

not modified Case 1 Case 2

modified Case 3 Case 4

and action. This noise, or random data, reduced the consis-

tency in human action. The effect of modifying coherence

was evaluated by attempting interactive learning under each

of the cases in Table I, then observing the outcomes in each

situation. For each form of the cases, the target behavior

remained the same - wall following.

To introduce noise in the sensing process (as in Cases

2 & 4), sensor data from sensors 4,5 and 6 (see Fig. 3)

were replaced by three independently identically distributed

uniform random numbers Ui ∼ U(0, 1024). These sensor

values were critical to the task of wall following. Since Ui

is not related to actual sensor values, the new values are

effectively “decoupled” from the actual sensors. The sensor

state X̂ used in the learning process is a corrupted version

of the actual sensor state.

To introduce noise in actuation (as in Cases 3 & 4), values

provided through the use of the haptic device were modified

by adding two normal random numbers Ni ∼ N(1, 5).
As an aside, it is useful to note that introducing ran-

domness is useful in another important way as well. Other

than providing an artificial method to reduce coherence in a

controlled manner, randomness can exist as a natural feature

of teleoperation. The robot’s ability to identify when its

learning is impeded by intrinsic randomness is also of great

value.

C. Experiments

The experiments in this work used human subjects with

varying degrees of expertise to teach a mobile robot interac-

tively. Each subject performed the target behavior teleoper-

atively for one lap then entered into an interactive learning

phase where the robot learned for ten laps. During interactive

learning the user incrementally provided examples of the

target behavior and observed the robot’s actions. Whenever

examples were provided to the robot it incorporated them

into its behavior and then demonstrated the updated behavior.

Through this incremental process the user and the robot

simultaneously adapted to each other. A two-axis joystick

was used to capture human action and instead of providing

just sensor values to the human, the overhead view of the

robot in the simulated arena was provided (see Fig. 1).

D. Evaluating Performance

To evaluate the performance of the wall following behav-

ior, the examples gathered during interaction were grouped

into laps. To calculate the performance after the kth lap, the

examples provided during laps 1, ..., k are collected and used

for learning. This is one advantage of the learning approach

used in that it is able to apply data interactively or in batch

form.
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The metric used to compute performance is presented in

(4). It is a two part construct of the time to complete a lap,

t and the distance to the nearest wall, d.

performance = α1d + α2t (4)

The weights α1 and α2 are extracted from the values of 1/d
and 1/t when the behavior was executed using a controller

devised using evolutionary techniques. By definition the

performance of this controller is 2 and for the listed perfor-

mance metric, smaller values are produced with improved

performance. It is noted that expert human operators can

demonstrate better performance than this coded controller,

but the purpose of using its weights in this manner is to

provide a basis for comparison.

V. RESULTS

To provide a baseline for comparison, results are first

presented for teleoperation without the effect of learning. Fig.

4 shows the number of interventions required for the robot

to travel a single lap while performing the wall following

behavior. When learning was introduced, the number of

interventions required decreased significantly for the first lap

and then decreased further as interaction time increased in

each case (as shown in Fig. 5). Since interactive learning

was applied, situations where the robot learned to perform

the appropriate task reduced the need for the operator to

intervene. Cases where the levels of intervention decreased

over time indicate cases in which the operator determined

that the robot was learning the task. Such a pronouncement

is confirmed by the improvements in performance over time

that are also presented in Fig. 6. In all considered cases some

level of learning was attained.

The levels of interaction needed for Cases 2 & 4, are

higher than for Cases 1 or 3, yet the performance demon-

strated in the former cases is poorer. This indicates that not

only was learning less successful in Cases 2 & 4 but that

they also required more input from the operator.

To get a better viewpoint on the success of learning, the

mean quantization plots are presented. These plots (Fig. 7)

show the MQE for both sensor and actuation classifiers in

each of the four cases. As expected, each plot can be consid-

ered in two phases. The first phase occurs primarily during

the first lap of interactive learning where the classifiers learn
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Fig. 4. Teleoperation (without learning).
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Fig. 5. Interaction level vs. # laps.

to classify examples of sensor and actuation data. During this

phase the largest increases in MQE are found since in each

case the learning begins from zero initial knowledge. The

second phase occurs over the remaining nine laps. In cases

where classifiers are presented with perturbed data, Figs.

7(c), 7(f), 7(g) & 7(g), the MQE values increase steadily

over this phase. The MQE values in the second phase of

these cases are also significantly higher than cases where

like classifiers (either sensing or actuation) are considered.

This confirms the theory that the classifiers are impeded

by incoherence caused by randomness. Further support is

drawn from the observation that the level of interaction over

this phase does not significantly drop in these incoherent

cases. In the case where randomness was introduced only

in sensing (Case 2), the MQE plot for the MQE values

for the actuation classifier do not significantly increase (see

Fig. 7(d)) however the interaction level remains relatively

constant. The same can be seen in Fig. 7(e) which shows the

MQE for the sensing classifier in the case where randomness

was introduced in the actuation (Case 3). These two plots

show a situation that indicates the classifiers are neither

getting better nor getting worse. Were these plots not coupled

with MQE plots with values that increased, they would have

identified the case where the user thought robot learning was

inadequate yet the classifiers had reached their limits. Such

cases will be investigated more fully in future work.

Fig. 8 shows the paths demonstrated by robots that learned

in each of the four cases. All robots were taught the same

wall following task but only in Case 1, where coherence

was not violated, does the robot perform the task as well as

the operator who trained it. These results, especially those

presented in Fig. 7, show that coherence has a measurable

effect on learning from teleoperation. This measure of co-
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Fig. 6. Performance vs. # laps.

TABLE II

EFFECT OF APPLYING STOPPING RULE

Case #laps Performance %Performance lost %Examples saved

1 6 2.02 9.18 50.8
2 3 4.43 18.2 151.0
3 3 2.32 -15.6 87.0
4 5 4.01 -1.42 91.0

herence can be used to predict robot performance during

the learning process. This effect, quantified in (3), permits

the graphs shown in Fig. 9 to be generated. As anticipated,

the relationship found in these plots closely mirrors that

presented in Fig. 6 (measured performance). As an example

of how coherence be used to regulate learning, a simple

stopping rule is evaluated: Stop learning at lap j > 1
if predictionj − predictionj+1 < 0. The results of this

rule are presented in Tab. II. These results show that the

amount of time required for human instruction is significantly

reduced, while still maintaining satisfactory robot perfor-

mance. Because of space limitations the results presented

focus heavily on only one of the two target behaviors. The

second, wall avoidance, while a vastly different behavior

also demonstrated similar results. Fig. 10(a) and 10(b) show

the MQE plots for example of wall avoidance. Many of the

properties mentioned for wall following are also present in

these graphs. Fig. 10(c) shows the path of a robot that learned

the behavior and Fig. 10(d) shows the predicted performance

plot. This predicted performance plot is quite significant in

this case since a suitable performance metric for this behavior

was difficult to define.

VI. SUMMARY AND FUTURE WORK

While it is a foregone conclusion to some that learning

from incoherent data is not ideal, it is an important area of

(a) Case 1 Sensing. (b) Case 1 Actuation.

(c) Case 2 Sensing. (d) Case 2 Actuation.

(e) Case 3 Sensing. (f) Case 3 Actuation.

(g) Case 4 Sensor. (h) Case 4 Actuation.

Fig. 7. MQE vs. Time (superimposed on lap boundaries).

study since endowing the robot to identify such situations

has not yet been presented. In this work incoherence was

introduced to behaviors by artificially adding randomness

and the effect on learning from teleoperation was studied.

It was shown that there was a measurable difference in

performance, but there was also a systematic change in the

properties of the quantization error. Capturing this change

enabled coherence to be quantized using data that can be

extracted as instruction is occurring.

One application of the quantification of coherence was

presented which indicated the savings in time and effort that

could have been provided given this information. In general,

such information can be directly used to autonomously

regulate the learning process and also to enable the robot

to provide useful feedback to the user. Both of these are
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Fig. 8. Robot demonstrating learned behaviors.
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Fig. 9. Predicted Performance vs. # laps.

(a) Case 1 Sensing. (b) Case 1 Actuation.

(c) Learned path.
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Fig. 10. Wall avoidance behavior.

capabilities that would well serve users who teach robots by

teleoperation. This work thus provides useful results that will

help cope with the future needs of the in-home robot user.
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