
 

 

 

  

Abstract— In this paper, we discuss a methodology to 

extract play primitives, defined as a sequence of low-level 

motion behaviors identified during a playing action, such as 

stacking or inserting a toy. Our premise is that if a robot 

could interpret the basic movements of a human’s play, it will 

be able to interact with many different kinds of toys, in 

conjunction with its human playmate. As such, we present a 

method that combines motion behavior analysis and behavior 

sequencing, which capitalizes on the inherent characteristics 

found in the dynamics of play such as the limited domain of 

the objects and manipulation skills required. In this paper, 

we give details on the approach and present results from 

applying the methodology to a number of play scenarios. 

I. INTRODUCTION 

NTERACTIVE play with physical toys has an important 

role in the development of cognitive, physical, and 

social development in children [1]. Robots as toys has 

shown to aid in early intervention for children with 

development delays [e.g. 2,3], assisting with physically 

challenged children [e.g. 4], and to engage children in 

imitation base play [e.g. 5]. Although robots are shown to 

be of use in these various children-robot interaction 

scenarios, robots, in these venues, are positioned more as 

tools rather than partners or playmates.  As such, in 

practice, it has been shown that most “commercially 

available robots seldom cross the 10-h barrier [i.e. 10 hours 

of combined human-robot interaction]’’ typically found 

between humans and their life-long pet companions [6].  

Long-term interaction and thus the effectiveness of robot 

usage in interactive play therefore has not reached its full 

potential.  

The effect of playing has shown to have a lasting effect 

due to the dynamic nature of interacting with the world [7]. 

With respect to playing with others, a shared interest arises 

between playmates to make the play continuously 

entertaining, thus engaging the mind, and creating 

opportunities for extended play over longer durations.  We 

believe that a step necessary to transition robots from toys 
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to playmates involves providing them with manipulation 

capability so that they can physically interact with toys in 

conjunction with their human (child) partner. This is 

compatible with the play theory that exploration and 

manipulation are prerequisites to meaningful play 

experiences [8].   

Based on this theory, the challenge that must first be 

addressed is whether a robot could become an effective 

playmate. We believe that by observing others play, a 

robot can effectively learn acceptable play behavior. This 

is similar in nature to learning from observation and/or 

demonstration. Most research though that addresses 

learning manipulation tasks from human-robot interaction 

derived from observation and/or demonstration tries to 

address the problem associated with a single or a set of 

arbitrary manipulation tasks [e.g. 9-13]. Additionally, 

observing a human perform a task does not imply that the 

robot will be able to perform the task, and, in fact, 

typically requires that the robot has the ability to determine 

how to move its body with respect to the human. In 

contrast, we propose that if the robot could interpret the 

basic movements of a human’s play, it will be able to 

interact with many different kinds of toys, in conjunction 

with its human playmate.  

As such, in this paper, we present a methodology 

designed to extract play primitives, defined as a sequence 

of low-level motion behaviors identified during a playing 

action, such as stacking or inserting a toy. This 

methodology is designed as the first steps to endow a robot 

with the ability to identify general play behavior associated 

with manipulation tasks related to play activities. The 

primary algorithm consists of two key components - 

Motion Behavior Analysis and Behavior Sequencing. We 

give details of the method and discuss results applied to 

toy manipulation in two play scenarios.  

II. DEFINING PLAY PRIMITIVES 

One of the benefits of playing with toys through 

manipulation is to stimulate the development of fine motor 

skills, which require control of small, specialized motions 

using the fingers and hands. These skills evolve over time 

starting with primitive gestures, such as grabbing [14]. By 

examining the interaction of children with toys, a number 

of common primitive gestures can be extracted, including 

acts of grasping, transporting, inserting, hammering, 

stacking, and pushing. With regards to a robotic playmate, 

these primitive gestures are what we further define as play 
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primitives. 

In various studies conducted on the dynamics of play, a 

number of mutually exclusive categories of play have been 

derived [15, 16]. Of these, two are associated with physical 

manipulation - 1) functional play, which involves the 

conventional use of objects (Figure 1a) and 2) relational 

play, which is defined as the association of two or more 

objects together (Figure 1b).  As such, we define two types 

of robot play primitives: 

• Functional play primitives - hand/fingers manipulate 

a single toy object  

• Relational play primitives - hand/fingers manipulate 

a single toy object such that it makes contact with 

another toy object.  

 

 

 

 

 

 

 

 

  (a)     (b) 

 

Figure 1. Examples of play: a) functional play - grabbing 

b) relational play – stacking. 

 

Based on this classification, functional play primitives 

are defined with respect to a single play object, whereas 

relational play primitives are defined with respect to both a 

play object and a target object. These are key 

characteristics that allow a robotic system to distinguish 

between the two categories of play. We propose that the 

method needed to identify individual play primitives 

within each category involves first identifying low-level 

behaviors extracted during a human playing action.  

A. Motion Behavior Analysis 

A motion behavior is used to represent an interpretation 

of the basic movements of a human’s play. It is not 

designed to compute specific motion vectors (such as 

specific arm joint trajectories), but rather to provide 

information about general movements of the toy object of 

interest. For example, if a human playmate lifts a toy up in 

the air (which would be defined as a functional play 

primitive), we would like the system to identify that a toy 

was grabbed and lifted. We are not concerned about its 

exact ending position in the z-plane. For a relational play 

instance (such as inserting), if a play action involves 

inserting a ring on a stack, we would like the system to 

identify that a toy was moved towards another toy object 

until contact was made. We are not concerned with the 

absolute position of the target object.   

To enable this interpretive construct, we define a motion 

vector  

�v = (d,v)          (1) 

where d represents the direction of motion and v represents 

the velocity of motion. In addition, the possible values 

associated with d and v are discretized based on pre-

defined linguistic classes, as depicted in Table I. As such, 

there is a finite number of motion vectors that exist for 

defining a low-level motion behavior. We define this finite 

set of possible motion vectors as the motion class �motion.  

 

Table 1.  Motion behavior definition structure 

Motion 

Parameter 

Play 

Primitive 
Linguistic Values 

Functional 

Left 

Right  

Up 

Down Direction (d) 

Relational 

Positive: towards target 

Negative: away from 

target 

Velocity (v)  
Slow 

Fast 

 

 

Computing Functional Direction 

Functional direction represents the absolute direction of the 

play object with respect to a world coordinate system. The 

following direction vectors are used to classify this motion 

parameter: 
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Computing Relational Direction 

Relational direction, compared to the functional direction, 

describes the motion of an object relative to the target. 

Distance between an object and a target is computed when 

a motion initiates, di, and terminates, dt. These two 

distances are then compared and define the positive and 

negative relational direction. 

 

• POSITIVE : object moving towards the target 

dt � di  

 

• NEGATIVE:  object moving away from the target 

dt > di  

 

Computing Velocity 

The velocity of the motion behavior, v , is measured as 

follows: 

� =
�p

�t
 (px/s)         (5) 

�p  is defined, with respect to an observation, as the 

distance between the location of an object when a motion 
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initiates and terminates.�t is measured by counting the 

frame numbers during a motion and dividing it by the 

average frame rate of the camera.   

 

�t =
#  of  frames

fps
(sec)      (6) 

 

Since the velocity required in this study need not be 

precise, it is reclassified as a speed: SLOW/FAST. If a 

motion is faster than the overall sequence speed average, it 

is defined as FAST, and as SLOW otherwise. 

 

As an illustrative example, Table II shows the association 

between low-level motion behaviors and the resulting 

motion vectors. 

 

Table II.  Association between motion behaviors and 

vectors 

Illustrative Description of 

Motion Behavior  
Motion Vector 

Human quickly lifts toy from 

table 
(Up, Fast)  

Human inserts toy into toy-bin (Positive, Slow) 

Human shakes toy to the right  (Right, Fast) 

 

The goal of the motion behavior analysis process is to 

populate instances of the motion vector based on 

observation of a human playing action (such as depicted in 

Table II). This process is executed by computing a motion 

gradient during human play actions and fitting the motion 

gradient to the pre-defined motion class. Algorithmically, 

our motion behavior analysis process consists of the 

following steps:  

 

1. Compute the motion gradient associated with 

observation of the human. Compute and normalize 

the motion gradients for N consecutive motion 

frames to minimize the effect of motion jitter (where 

�x, �y represents the change in pixel location of the 

imaged object). 

  

G[i] =
�xi
�yi

�

�
�

�

�
	,  �xi

2
+ �yi

2
= 1,  0 � i � N  (2) 

 

2. Find the motion vector M�  which minimizes, 
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m� ,x

m� ,y

�
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�

�
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M
|| M 	G[i] ||

i
�      (3) 

 

This minimization is equivalent to the least squares 

estimation of the motion model fit and a closed form 

solution to this problem can be expressed in terms of 

a linear matrix equation, 
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3. Normalize and fit the motion vector M�  to the pre-

defined motion class to compute direction and 

velocity of the motion (as discussed below). 

 

The best-fit motion vector (with populated values) defines 

the current instance of the motion behavior. As an 

example, test results of fitting a M�=(Right, Slow) motion 

vector to an object moving in the right direction is shown 

in Figure 3, whereas Figure 4 shows a two motion 

sequence of an object moving right, then up. In these 

figures, N represents the number of frames used to 

calculate the motion gradient in Equation 2. The dots in the 

figures represent the position of the object following each 

N consecutive motion frames. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Motion model fitting. Above motion is labeled as 

� RIGHT  (N=5) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Motion Sequence. Above sequence is labeled as 

� RIGHT -�UP  (N=5) 
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B. Behavior Sequencing 

In order to extract play primitives for a robot playmate, 

behavior sequencing involves identifying, and labeling, the 

sequence of motion behaviors associated with a play 

scenario. Due to the limited nature of the play domain, we

assume there is a finite number of common primitive

gestures that need to be identified (e.g. grasping, 

transporting, inserting, hammering, stacking, pushing). 

Therefore, to perform this sequencing operation, the toy of 

interest is first identified and then tracked over subsequent 

motion frames. A set of individual motion behaviors is 

then determined and used to identify which of the 

corresponding play primitives is active.  

 

1. Object Detection 

Detecting toy objects in the scene consists of three 

primary steps - RGB to HSV color conversion, 

histogram back-projection, and segmentation.  Since 

most children’s toys use saturated colors to keep visual 

attention, we use color as the key feature for detecting an 

object. During a human playing action, a color input 

image is captured at 30 frames per second and converted 

into a one channel Hue image. This image is then back-

projected with a pre-defined histogram to segment color. 

Each segmented group is then re-examined to eliminate 

outliers and unsymmetrical contours.  Through this 

process, individual toy objects resident within the image 

can be identified. An example of this process is shown in 

Figure 5. 

 

 

 (a)   (b)   (c) 

 

 

 

 

 

(d)   (e)   (f) 

Figure 5.  (a) Original Toy Scene Image (b) Back-

projected Hue Histogram (c) Histogram Back-projected 

Image (d) Smoothed Image with Gaussian Filter (e) Binary 

Thresholded Image  (f) Final Toy Objects Detected (center 

marked with green box) 

 

2. Object Tracking  

Among the multiple toys detected, we define the first 

one to take an action as the play object.  The other toys 

are then marked as targets, and the motion of the 

reference toy is described relatively to them. Object 

tracking involves the repeated process of object 

detection, in which the back-projection histogram only 

references the color of the play object (Figure 6). This 

construct allows us keep track of the dominant play 

object, even when there might be different objects of the 

same color present in the play scene. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. (Top) Identifying toy objects (Bottom) Tracking 

the identified play object 

 

3. Play Primitive Extraction 

Using the motion behavior analysis process, individual 

behaviors are identified and sequenced based on 

movement of the play object. The final resting 

destination of the play object is then used to identify the 

final play primitive. For testing results, we select two - 1) 

Insert: after a downward motion towards the target, the 

play object disappears, and 2) Stack: after a downward 

motion towards the target, the play object is placed on 

top of the target. In this same manner, other play 

primitives are pre-determined based on prior observation 

of the motion behaviors during human play dynamics.  

 

Although this paper focuses on the methodology developed 

for extraction of the play primitives, the structure of the 

derived play primitive is designed for transmission to a 

robot platform for subsequent toy manipulation (Figure 7) 

[17]. In this scenario, the human has a toy that is identical 

to the robot’s toy, so that the human and the robot can play 

side by side. The play primitives, once transmitted to the 

robot, are matched to the autonomous robot’s behaviors in 

order to allow for subsequent side-by-side play actions. 

. 

  

 

  

 

 

 

 

Figure 7. Robot platform used for subsequent toy 

manipulation. 
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III. EXPERIMENTAL SETUP AND RESULTS 

To test the capability of the system, we use a stereo 

camera system (Videre) to analyze the motion behavior. 

The supporting algorithms are run under the Fedora Linux 

operating system. 

Four adult test subjects were asked to perform repeated 

play primitives (insert/stack) for five different play 

scenarios. The human was observed from a fixed camera 

with a side view. Multiple toy objects were randomly 

positioned in the play scene and the human was instructed 

to either 1) select any object and stack onto another or 2) 

select any object and insert into another.  In three of the 

play scenarios, the human was instructed to perform these 

actions continuously (i.e. multiple times) and in two of the 

play scenarios the human was instructed to perform only 

one play action. The experiments were designed to test the 

capability of the system to identify both the motion 

behaviors as well as the correct play primitives, given the 

differences in motion behaviors for the different subjects.  

Figure 8 depicts a sequence associated with the inserting 

play primitive. Figure 9 shows snapshots of other play 

scenarios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Inserting Sequence 

 

 

 

 

 

 

 

 

Figure 9. Various Play Scenarios 

 

Test results were documented using the construct shown 

in Table III, which represents a specific instance of an 

insertion play scenario. The testing input documents the 

actual color of the play object, the target object, and the 

velocity of operation. Although for the insertion and 

stacking operations, the speed of the motion is not 

significant, it helps to distinguish between other similar 

primitives (such as hammering versus repeated pushing). 

The testing output documents the results of applying our 

methodology to the play scenario.  Each column represents 

the best-fit motion vector determined by the motion 

behavior analysis process and the sequence of motion 

vectors used to identify the play primitive.  

 

Table III.  Methodology Performance Results 

Test Input for Insert Sequence  

Target Color RED 

Object Color GREEN 

Operation 

Type 
INSERT 

Object 

Velocity 
(0,42) px/s (-64,0) px/s (0,22) px/s 

 

Test Output for Insert Sequence 

Absolute UP RIGHT DOWN 

Relative  NEG  POS  POS 

Speed SLOW FAST SLOW 

Primitive INSERT 

 

 

Given the various test scenarios, the performance of the 

system was categorized based on correct recognition of 

play and target objects, identification of the motion 

behaviors, and correct labeling of the play primitive. Table 

IV documents these results. The play/target object 

recognition rates are associated with the ability to correctly 

identify both the play object (upon grabbing a toy object) 

and the target object (upon releasing the play object). 

Motion behavior recognition results are associated with 

correctly determining the best-fit motion vector associated 

with human movement. Errors in this calculation were 

primarily due to miscalculation of speed (slow versus fast). 

The play primitive recognition rate was associated with 

correctly identifying the play primitive (insert/stack).  

 

Table IV.  Methodology Performance Results 

Overall Recognition Rates 

Play Primitive  100.00% 

Motion Behavior  98.17% 

Play/Target Object  100.00% 

 

IV. CONCLUSIONS AND FUTURE WORK 

As robots continue to hold a greater role in educational 

and therapeutic aspects with respect to children, the 

necessity for endowing them with interactive play 
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capability poses interesting challenges. Through this 

research, we seek to show a methodology that will provide 

the robot the ability to identify general behaviors for 

playing with toys. Experiment results show that the 

methodology enables the robot to interpret the playing 

behavior of a human, with increased variety of toys. We 

believe that, although there will be differences between an 

adult versus child playmate (e.g. addition of ‘uncorrelated’ 

motion primitives, noise in low-level motion gradients, 

repeatability in play), the methodology proposed provides 

an infrastructure for providing instruction to a robotic 

playmate. Future work will be focused on expanded 

motions such as hammering, pushing, and aligning, as well 

as interacting with the human by taking turns within the 

same play scenario. 
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