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Abstract—Satellite-based instruments are now routinely used to
map the surface of the globe or monitor weather conditions. How-
ever, these orbital measurements of ground-based quantities are
heavily influenced by external factors, such as air moisture content
or surface emissivity. Detailed atmospheric models are created to
compensate for these factors, but the satellite system must still be
tested over a wide variety of surface conditions to validate the in-
strumentation and correction model. Validation and correction are
particularly important for arctic environments, as the unique sur-
face properties of packed snow and ice are poorly modeled by any
other terrain type. Currently, this process is human intensive, re-
quiring the coordinated collection of surface measurements over
a number of years. A decentralized, autonomous sensor network
is proposed which allows the collection of ground-based environ-
mental measurements at a location and resolution that is optimal
for the specific on-orbit sensor under investigation. A prototype
sensor network has been constructed and fielded on a glacier in
Alaska, illustrating the ability of such systems to properly collect
and log sensor measurements, even in harsh arctic environments.

Index Terms—Arctic environments, autonomous robots, mobile
sensor networks, remote sensing, satellite sensor validation.

I. INTRODUCTION

N ASA’s Earth Observing System (EOS) provides a poten-
tial wealth of information regarding the state of the en-

vironment through a variety of on-orbit sensing capabilities.
NASA’s Ice, Cloud, and land Elevation (ICESat) satellite [1]
is mapping the earth’s surface using a Geoscience Laser Al-
timeter System (GLAS), while Landsat is capturing high resolu-
tion imagery. Several climate-oriented instruments on-board the
Terra [2] gather such information as the Land Surface Temper-
ature (LST) and pollution levels. Despite the fact that satellite
data is the only practical means of collecting dense sensor read-
ings over entire continents, there has been hesitation on the part
of the climate modeling community to make use of this data,
citing concerns over accuracy and the lack of thorough valida-
tion [3]. For example, the Moderate Resolution Imaging Spec-
troradiometer (MODIS) instrument, from which LST is derived,
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has been independently validated at only a handful of sites [4],
[5], partly due to the manpower required to perform such sensor
validations.

The problem of acquiring validation data is particularly acute
in arctic regions. The harsh environment makes routine human
expeditions to collect in situ sensor measurements an expensive
and dangerous proposition. At the same time, the unique surface
properties of packed snow and ice are poorly modeled by other
surface types. Values derived from calibration sites for almost
any place on Earth may introduce systematic biases if applied
to measurements over glacial regions [6]. Instead of relying on
human-led campaigns, a mobile robotic sensor network is pro-
posed which greatly mitigates the human resource requirements
associated with performing satellite validation tasks.

Section II describes several existing techniques used for
satellite validation experiments, while Section III extrapolates
from these experiments the base requirements needed by a
robotic sensor network for satellite validation tasks. Section IV
describes the implementation of a prototype sensor web, de-
tailing how each requirement has been fulfilled. The prototype
sensor network was then fielded on a glacier in Alaska, the
details of which appear in Section V. Finally, conclusions
drawn from these experiments are presented in Section VI.

II. LIMITATIONS OF CURRENT CALIBRATION

AND VALIDATION TECHNIQUES

Orbital measurements of ground-based quantities are heavily
influenced by external factors, such as air moisture content or
surface emissivity [1]. Detailed atmospheric models are created
to compensate for these factors, but the satellite system must still
be validated to ensure the accuracy of the instrumentation and
correction model [3], [6]. For proper on-orbit sensor validation,
calibration sites should be selected to cover the expected range
of global ground surface properties. Further, data should be col-
lected at a variety of scales, similar in size to the single pixel
area of the data product under consideration [2]. Calibrating
over areas that closely represent the measurement areas of in-
terest enhance the accuracy of the model. These measurements
can take the form of airborne sensing, automatic weather sta-
tions (AWS), or human-led field expeditions, with each method
carrying its own drawback.

Airborne sensing, particularly laser altimetry for vali-
dating digital elevation models (DEMs), has been found to
be extremely useful when the sensor suite available includes
commercial scanning laser equipment, multiple GPS receivers,
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and high-end inertia navigation systems [7]. Aerial measure-
ment campaigns enable scientists to collect data on areas that
would be otherwise unreachable for ground-based experiments
or are simply too vast to cover accurately. Typically, however,
performing these runs requires safe flight conditions (wind
speed, temperature, visibility) as well as sufficient funding and
resources to maximize the number of possible experiments that
take place within a short period of time.

AWS networks are popular tools for in situ measurements as
well. These instruments remain fixed in a single location and are
usually equipped with several weather-oriented sensors, such
as pyranometers. These devices enable the collection of albedo
data allowing inference of elevation change. Given the immo-
bility of these devices, the accuracy of measurements taken be-
comes a function of sampling and estimation capacity relative
to the entire network. Each AWS unit spans a limited radius
of coverage and scientists must consider other units in the net-
work, relying more heavily on extrapolation methods to obtain a
breadth of coverage in an area. For example, the AWS system in
Greenland and Antarctica average one station per 100,000 km .
Short of accessing measurements taken by the network, any data
collected from one unit can only represent a single point on a
map, useful only as a heuristic to indicate what changes may be
taking place [8].

One project did make use of sparse, stationary weather
stations for estimating MODIS error measurements [3], but
only readings taken at night were considered. During this
validation exercise, it was assumed that the Earth’s surface
was a uniform temperature over large areas, allowing a single
point measurement to be representative of the whole region.
However, this is only valid for nighttime measurements, and
only vegetated regions were included in the study.

Finally, human-led field campaigns provide the highest reso-
lution for these types of weather measurement data. GPS and
Ground Penetrating Radar (GPR) surveys are useful calibra-
tion techniques for validation of remote sensing equipment such
as GLAS [6]. These surveys require constantly manned equip-
ment with integrated sensing, and carefully planned navigation
paths. Though the coverage area is considerable for in situ trials
(100 km ), the duration of these field experiments is potentially
more strenuous on the scientists performing the tests.

An example of this methodology has been used to validate
the LST recorded by MODIS on-board the Terra satellite [5]. A
1 km region of a large rice field in Spain was selected as the
validation site. The rice field offered a large, flat area that was
uniformly covered in vegetation. Hand-held temperature sen-
sors were stationed at several points within the test site. During
the satellite overpass event, GPS-registered temperature read-
ings were collected and logged several times a minute as the
sensor was moved over a 100 m traverse. Due to the satellite
orbit, only a handful of overpass events occur within the valida-
tion site during each repeat cycle. Further, as the satellite repeat
cycle is 183 days long, only one such cycle occurs each year
within the growing season, during which the site has uniform
vegetation coverage. During the three year period over which
these experiments were performed, only 11 validation events of
MODIS were recorded.

III. SENSOR NETWORK REQUIREMENTS

Most of the calibration and validation procedures described
in the preceding section are human intensive. The use of appro-
priate robotic technology could be used to mitigate the expense
of human-based data collection, particularly in the hazardous
terrain of arctic environments.

For such a solution to be viable, the network must meet
certain goals. First, the network must be fault-tolerant. When
deployed in unknown, natural environments, unforeseen events
could disable specific robotic nodes. A failure of a single node
should be handled gracefully, with other nodes taking over
critical positions in the network topology. Because a large
number of nodes will be required for the network, and because
of the environmental threat to the health of a node, each agent
must be relatively inexpensive. Secondly, the network must be
reconfigurable. The deployed location, inter-agent spacing, and
scientific instrumentation package must all be easily modified
in order for a single network to be used for different satellite
instrumentation or different data product resolutions from a
single satellite sensor. Next, each robotic node must be able
to navigate to its goal position autonomously. The number of
nodes and size of the deployment area preclude teleoperation
as a viable control strategy. As such, each agent must be able
to assess the environment for potential hazards, and replan
paths to the goal that avoid hazardous areas. Finally, each agent
must be able to properly stamp each sensor reading with the
acquisition location. Since the agent position can never be
known exactly, beyond just accuracy, an estimate of the current
positional error is needed.

IV. PROTOTYPE SENSOR NETWORK

A set of prototype rovers were designed to fulfill the identi-
fied network requirements. The mechanical design emphasized
high mobility, low cost construction. A snowmobile chassis was
selected as the base for the SnoMote prototype robotic mobile
sensor. The chassis, based on an RC snowmobile chassis, was
heavily modified to incorporate a dual-track design. The main
reason tracks are used for snow traversal is a matter of weight
distribution. Similar to cross-country skis or snow shoes, the
large area of a snowmobile track is able to distribute the vehicle
weight, allowing it to “float” on the surface of the snow. The
original front suspension mechanism was replaced by a passive
double-wishbone system, increasing the ski-base over 30%. The
overall increase in the platform width drastically increased the
platform’s stability and roll characteristics. The modified plat-
form has been equipped with an embedded processor and micro-
controller for controlling the on-board systems, a high-torque
drive and steering system for negotiating the snow-covered ter-
rain, and a wireless communication system for relaying sensor
data and rover state information back to an observation com-
puter. To simulate the science objectives of the mobile sensor, a
weather-oriented sensor suite was added to the rover. The instru-
ment suite includes sensors to measure temperature, barometric
pressure, and relative humidity. Ultimately the science package
can be configured for the specific sensing and validation task to
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Fig. 1. A diagram of the electronics and sensors on-board an early revision of
the rover.

be performed. Fig. 1 shows a diagram of the internal and ex-
ternal robot components.

A. Fault Tolerance

To achieve fault-tolerant operation, a distributed algorithm
was used to allocate tasks to the different agents [9], [10]. After
the desired sensor locations have been established, the agents
conduct an auction to award each sensor location to a specific
robot. So-called market-based algorithms work like regular auc-
tions where two roles are played dynamically by robots: auc-
tioneers and bidders. The auctioneer is the agent in charge of
announcing the tasks and selecting the best bid from bidders. In
our case the bid is a quantity that reflects how much it will cost
the robot to go to a certain waypoint, such as the euclidean dis-
tance or the traversability index [11]. Market-based algorithms
are independent from the number of robots, and have no single
point of failure. Therefore, if one robot fails, tasks will be allo-
cated to the remaining robots automatically.

B. Autonomous Navigation

In each robot, a path planning algorithm, an obstacle avoid-
ance routine, a slope assessment algorithm, and a task execu-
tion unit have all been integrated into a single behavior-based
architecture [10]. Navigation is implemented using the DAMN
architecture [12] to combine the competing outputs of each be-
havior module. The DAMN architecture was designed to com-
bine different behaviors for mobile robots in unknown and dy-
namic environments. Within the DAMN architecture, each be-
havior votes for a set of possible actuator values satisfying its
objectives. Then, an arbiter combines those votes and generates
actions which reflect the behavior objectives and priorities.

The path planning unit allows the system to integrate map-
based information in the navigation scheme. The algorithm is
based on a heuristic estimator to find the optimal solution faster
than a general search algorithm. A Pure Pursuit algorithm [13]
is then applied to follow the path generated by the planner. The

Pure Pursuit algorithm geometrically determines the curvature
that will drive the vehicle to a chosen path point defined as one
lookahead distance from the current position of the robot.

As small-scale surface variations cannot be determined from
existing map sources, the threat of roll-over is a major concern.
To minimize the likelihood of roll-over, a fuzzy logic slope as-
sessment scheme has been developed to keep the rover on level
terrain [14]. The behavior makes use of a slope estimation tech-
nique using only a single camera [15]. The control scheme is
able to easily capture inherently nonlinear heuristic knowledge,
providing a flexible, easily extendable architecture for designing
navigational control laws [16].

C. Localization

The need for low-cost units pushes the localization methods
away from centimeter accuracy GPS and military-grade IMU
sensors, and towards consumer-grade sensing technologies. In
particular, vision is an attractive option. By tracking the motion
of visual features within the image, the motion of the camera
can be computed. Recent advances in computer vision algo-
rithms have shown that camera-based localization can be solved
tractably [17], [18], and a camera is already included on the plat-
form for hazard detection.

The use of vision for localization purposes revolves mainly
around multi-view geometry methods and the related simul-
taneous localization and mapping (SLAM) methods. Vision-
based SLAM attempts to solve this problem in a probabilistic
framework [19], [20]. The system attempts to maximize the joint
probability of the robot pose, , and a map of 3-D landmarks,

, given the entire set of robot control inputs, , and obser-
vations, .

(1)

The major advantage of this approach for localization is the
explicit use of probability distributions to describe the current
state. The positional uncertainty can be extracted at any time
by simply marginalizing out the appropriate variables from
the current solution. A commonly used method of solving for
the SLAM probability distribution is to employ a Rao-Black-
wellized particle filter (PF) to estimate the robot pose [21], also
known as FastSLAM. The PF samples many pose “particles”
from the pose distribution, and assumes each pose particle is
the true robot pose. Since the error in the robot pose is now as-
sumed to be zero, the landmark distribution estimates become
decoupled, allowing the independent estimate of the visual
landmarks. The standard FastSLAM factorization is shown
in (2). The decoupling of the robot pose from the landmark
locations allow systems with large databases of landmarks

to be calculated in real-time. Although the Fast-
SLAM system was not originally derived for use with vision,
vision-based implementations have recently been presented
[22], [23].

(2)

where is the current number of landmarks in map .
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Fig. 2. A map of the relative position of each test site on Mendenhall Glacier.

However, these methods require strong visual features, or
distinctive areas in the image. As distinctive areas are rare in
the all-white images of snow-covered glaciers, methods for en-
hancing and extracting subtle features are first applied [24].

V. RESULTS

Mendenhall Glacier is part of the Juneau Ice Field, the fifth
largest glacier system in North America. As part of the Tongass
National Forest, the Mendenhall Glacier is visited by almost half
a million people annually. In addition, the Mendenhall Glacier
is the subject of ongoing scientific research by the SEAMonster
Project [25]. Due to the continued interest in Mendenhall by the
public and scientists alike, it was selected as the subject for the
SnoMote rover deployment.

Several test sites were selected across Mendenhall Glacier in
order to test the system in a variety of glacial terrains. Sites A
and C are located at the top of the northern branch. These areas
are completely covered with soft snow and are largely flat for
several kilometers in any direction. The areas are ultimately sur-
rounded by distant mountain peaks, with an “ice fall” visible
near Site C. Site B is located in the upper plateau of the ter-
minus. Here the underlying ice is exposed and the terrain is char-
acterized by small, rolling hills several meters in height. Some
crevasses are present in this area, and melt water pools in some
of the small valleys. Site D is located at the lower edge of the
northern branch, near a bend in the glacier. Again, the site is
completely snow covered, but is much closer to the mountains.
Due to the proximity of the Mendenhall Tower peaks and the
bend in the path, the terrain exhibited large-scale undulations.
Finally, Site E is located at the top of the southern branch, with
terrain similar to that of Site A. Fig. 2 shows the location of each
test site on the glacier.

During a satellite validation event, each rover would be re-
quired to perform a traverse of the validation site. Based on
human-conducted validation experiments, these traverses are
expected to be on the order of 100 m. Though, the actual tra-
verse distance could be dependent on the terrain as well as the
on-orbit sensor in question. During these traverses, the sensor
data must be logged, and tagged with both the acquisition time
and position. To test the rover’s ability to localize itself, thus

Fig. 3. The localization results using GPS alone and in combination with Vi-
sual Odometry at Site E. The calculated uncertainty value has been reduced
considerably through the use of vision-based techniques.

Fig. 4. The localization results using GPS alone and in combination with Visual
Odometry at Site B, the most challenging of the test sites due to the large terrain
variability.

providing accurate position information, a prototypical data log-
ging traverse was conducted at each test site. During each test
traverse, the rover logged the system time, sensor data, raw
GPS position, and camera images at a sensor-dependent rate no
slower than 1 Hz.

The camera images and robot control values were then used as
input to the visual odometry system, and fused with the GPS in-
formation. The odometry systems produces a maximally likely
position estimate, as well as predicts the current position error
covariance based on a linearized system model. Fig. 3 shows
a typical example of the localization output recorded at Site E,
compared with the recorded GPS values and corresponding GPS
error. As seen, the calculated localization variance is signifi-
cantly smaller than the GPS uncertainty. Fig. 4 shows the lo-
calization results at Site B, the most challenging of the test sites
due to the large terrain variability. Again, the proposed local-
ization method significantly outperforms GPS alone in terms of
measured uncertainty. Fig. 5 presents a summary of the traverse
experiments performed, including the GPS coordinates of each
site, total distance traveled, and the average 95% confidence
uncertainty for the traverse, as calculated by the localization
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Fig. 5. Summary of field trial localization results, listing time and location of
each test site, the total distance traveled, and the average positional uncertainty
achieved by the proposed localization system.

Fig. 6. Weather-related sensor data collected and geolocated during a sensor
node placement trial at Site E on Mendenhall Glacier, Alaska. Measurements
include temperature, relative humidity, and barometric pressure, with samples
displayed at approximately 10 m intervals.

system. As expected, the calculated positional uncertainty gen-
erally increases with the total distance traveled, but stays well
below the rated 10 m accuracy of the GPS alone.

Before any of the robotic sensor nodes can perform their data
logging traverses, they must first navigate to a desired goal lo-
cation. However, due to GPS noise, terrain variability, and the
dynamics of the rover itself, it is impossible to achieve the desire
goal exactly. To assess the autonomous navigation performance
of the prototype sensor network, several different three-node
sensor configurations were uploaded to the system. The robotic
nodes negotiated which node would fulfill each task based on the
current network state. Control laws on-board each node then au-
tonomously navigated to its own goal location. Node displace-
ment error is calculated as the difference between the desired
goal position based on the GPS position of a fixed location and
the final GPS position as reported by each node. During these
trials, the average sensor node placement error was 2.84 m.
Sensor node orientation was not considered during these tests.
Fig. 6 shows the resulting in situ sensor data associated with the
traverse of one sensor during a node placement trail at Site E.

Finally, the question of data collection frequency should
be addressed. During the human-led campaigns to validate
MODIS, only 11 satellite overpass events occurred during the
three year project. In contrast, the prototype rovers averaged
over 1 m/s traversal rate in glacial conditions. This travel rate
places 14 overpass events of ICESat within a 4 hour radius
of a single base location, potentially allowing far more data

gathering opportunities. Although the prototype rovers are not
currently capable of such extensive travel, a final rover design
should be capable of at least twelve hours of autonomous
operation.

VI. CONCLUSION

A robotic sensor network has been proposed, constructed and
tested as a means to minimize the efforts (aerial, AWS, and
human) involved in collecting in situ ground measurements for
sensor validation tasks. In situ validation is of particular impor-
tance in arctic environments, where data collection campaigns
present a serious hazard to persistent human presence. Our pro-
totype network was developed for glacier environments, empha-
sizing distributed, fault tolerant, low cost sensor nodes, while
still enabling significant autonomy. The network was weather-
hardened and successfully deployed to glaciers in Alaska, where
the three sensor nodes autonomously navigated to desired lo-
cations while logging weather-related sensor data. Further, the
collected camera images were processed using an arctic-specific
visual SLAM implementation to track the robot position within
the environment. As expected, the visual localization algorithm
resolved many issues that arise when using standard GPS re-
ceivers, such as GPS outages and bias shifting as the satellites go
in and out of view. The visual odometry system provides more
accurate positions than GPS over short deployments, and calcu-
lates a situation-dependent error model for the current position
estimate. However, as the position error of the visual system
tends to increase over time, the visual odometry estimates have
been fused with the GPS data to create a bounded, positional es-
timation system. During trials, the fused position estimate was
often able to achieve sub-meter accuracy.

The work has shown how a mobile robotic sensor network can
potentially improve data gathering methods for on-orbit sensor
validation in several ways. First, the number of accessible val-
idation events, where the satellite-based instrument is directly
overhead, is increased significantly by a mobile base. When
using fixed weather stations, the number of validation oppor-
tunities is limited to, at best, two per cycle, while human cam-
paigns are limited by time, expense, and logistics. In contrast,
the proposed mobile rover could reach 14 overpass events of
ICESat within a cycle from a single base location. Improve-
ments upon data collection methods are also achieved as our
system demonstrates a logging frequency of 10 Hz, efficiently
recording weather sensor data points with a corresponding time
stamp. Our system combines the automated data logging capa-
bilities of stationary equipment with the mobility of human-led
teams. Also, the visual localization algorithm is able to produce
position estimates that exceed that capabilities of GPS alone,
while simultaneously calculating the current position error. This
allows the log file to be tagged with not only the best position
estimate, but also the positional uncertainty of all collected sci-
ence data. Finally, while other robotic systems have been de-
ployed to Greenland and Antarctica in the past, these projects
have focused on constructing a single, large robotic unit. This
project has demonstrated that autonomous navigation and data
collection in glacial environments is feasible using the kinds of
low-cost sensing solutions that would be available in a multi-
robot deployment.
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