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Abstract

In many multitarget tracking applications in computer
vision, a detection algorithm provides locations of po-
tential targets. Subsequently, the measurements are as-
sociated with previously estimated target trajectories
in a data association step. The output of the detec-
tor is often imperfect and the detection data may in-
clude multiple, split measurements from a single tar-
get or a single merged measurement from several tar-
gets. To address this problem, we introduce a multiple
hypothesis tracker for interacting targets that generate
split and merged measurements. The tracker is based on
an efficient Markov chain Monte Carlo (MCMC) based
auxiliary variable particle filter. The particle filter is
Rao-Blackwellized such that the continuous target state
parameters are estimated analytically, and an MCMC
sampler generates samples from the large discrete space
of data associations. In addition, we include experimen-
tal results in a scenario where we track several inter-
acting targets that generate these split and merged mea-
surements.

1. Introduction
In many multitarget tracking applications in computer
vision, detection precedes tracking. At each time step, a
detector provides locations of potential targets and, sub-
sequently, in a data association step the measurements
are associated with known target trajectories. However,
the detection step can be imperfect and several common
types of errors are often prevalent in the detection data:
(1) A target may return more than one, split measure-
ment per target. (2) Interacting targets may return a sin-
gle merged measurement. (3) A target may fail to return
a measurement at the current time step. (4) A detector
may return a false detection. A number of heuristic solu-
tions have been proposed to address this problem, moti-
vated by specific tracking applications (e.g. surveillance
[9]).

Probabilistic algorithms for tracking and data associ-
ation, which emerged from the radar tracking literature
(see [15] for a review), fail to adequately address this

problem as they make the following assumptions: (1) a
target can generate at most one measurement at every
time step (2) a measurement could have originated from
at most one target. While reasonable for radar, these as-
sumptions are often violated in multitarget tracking ap-
plications in computer vision.

Merged, or unresolved, targets have been addressed
only to a limited extent in the radar tracking literature.
In [6], Chang and Bar-Shalom describe a version of
the Joint Probabilistic Data Association Filter (JPDAF)
which can address situations where two targets are un-
resolved, or merged. However, the JPDAF represents
the belief over the state of the targets as a Gaussian, and
may not accurately capture the a multi-modal distribu-
tion over the target states. Consequently, a multiple hy-
pothesis tracker was introduced in [11] to handle these
unresolved targets, but the approach was also limited to
two closely spaced targets.

Recently, Genovesio and Olivo-Marin considered the
general case where the set of detector measurements can
be augmented by a set of “virtual measurements” that
account for feasible split and merged detections in the
context of visual tracking [8]. While this is a compelling
idea, introducing virtual measurements does not provide
a model for split and merged measurements providing
flexibility in modelling their formation.

In this paper, we introduce a multiple hypothesis
tracker for interacting targets that generate split and
merged measurements. The tracker is based on an ef-
ficient Markov chain Monte Carlo (MCMC) based aux-
iliary variable particle filter [14]. The particle filter is
Rao-Blackwellized such that the continuous target state
parameters are integrated out analytically [12, 5]. The
advantage of this is that fewer samples are needed since
part of the posterior over the state is analytically cal-
culated, rather than being approximated using a more
expensive and noisy sample representation.

The particle filter relies on a Markov chain Monte
Carlo (MCMC) sampler that generates samples from the
large discrete space of data associations. MCMC sam-
plers have used to address data association problems in
multitarget tracking [2, 13] and structure from motion



[7]. Both occlusion and spurious measurements, were
addresses in previous work. This work represents an ad-
vance in that it also addresses the case of merged and
split measurements.

The algorithm we describe updates a set of hybrid
particles at each time step as measurements arrive. Each
hybrid particle contains a multivariate Gaussian over the
joint configuration of the targets. To update the hybrid
particles, we sample from the posterior over data asso-
ciations, those most consistent with the data, by running
an MCMC sampler over the space of possible data as-
sociations. Using the sampled data associations, we can
compute a hybrid particle approximation of the posterior
over the current target positions.

In the remainder of this paper, we first review a model
for tracking with split and merged measurements in Sec-
tion 2, and express the tracking problem recursively as
a Bayes filter. Next, we detail an efficent method for
approximate inference in this problem that leverages an
auxiliary variable particle filter in Section 3. Last, in
Section 4 we detail experimental results in a scenario
where we track several interacting targets that generate
split and merged measurements.

2. Tracking Model
In this section, describe a model for tracking, stating
assumptions needed to obtain an efficient inference al-
gorithm. First, we specify the joint distribution over
the actual measurements Z1:T , data associations J1:t,
and states X0:T of the targets between time steps 0
to T . We assume that the number of targets N is
fixed, but the number of measurements M can change
at each time step t. If we assume that the target mo-
tion is Markov, the state at the current time step depends
only on the previous time step, we can factor the joint
P (Z1:T ,X0:T ,J1:t) distribution as follows

P (X0)
T∏

t=1

P (Xt|Xt−1)P (Zt,Jt|Xt)

To further simplify the model, we make some additional
assumptions. We assume the initial joint state is Gaus-
sian

P (X0) = N (X0;m0, V0)

where the covariance matrix V0 is a diagonal and targets
move according to a Gaussian random-walk model

P (Xt|Xt−1) = N (Xt;Xt−1,Γ)

Since measurements arrive a random order, the actual
states of the targets do not provide us with any informa-
tion on which data associations are likely. As a conse-
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Figure 1: We sample over bipartite graphs between tar-
gets and measurements. We assume that merge and split
events are mutually exclusive. Targets cannot merge
with another target and split at the same time.

quence, we assume that the data assoctions do not de-
pend on the target states

P (Zt,Jt|Xt) = P (Zt|JtXt)P (Jt)

The data associations themselves are represented by a
bipartite graph Jt = (X(1:N)t, Z(1:M)t,Et) which con-
sist of a set of target nodes X(1:N)t and measurement
nodes Z(1:M)t each connected by a set of edges Et as
shown in Figure 1. We restrict the possible data asso-
cations to the space of the bipartite graphs in which any
tree formed by taking a split target or merged measure-
ment node has a height of one. Our choice reflects the
assumption that merge and split events are mutually ex-
clusive. Targets cannot merge with another target and
split at the same time.

The prior over the data associations can be used to
favor simple data associations where few targets are
merged or split

P (Jt) = exp(−#(merged)α +−#(split)β)

Next, we can use the data associations Jt to divide the
measurements into clutter and observations (Zc,Zo) =



f(Jt, Zt) respectively

P (Zt|Xt,Jt) = P (Zc)P (Zo|Jt,Xt)

We assume the density over clutter is uniform and does
not depend on the state of the targets or data associations
P (Zc) = U(·).

To model the observations, we map H = g(Jt) the
data associations to a sparse measurement matrix in a
Gaussian observation model

P (Zo|Jt,Xt) = N (Zo;HXt,Σ)

The columns of the matrix H correspond to individual
target states and the rows observed measurements. For
every edge connected to a measurement node, an iden-
tity matrix is placed in the corresponding row and col-
umn. For merged measurements, where there are several
edges connecting the measurement to multiple targets.
The identity matrix is multiplied by by the inverse of
the number of edges. This choice reflects the assump-
tion that merged measurements occur at the centroid
of merged targets. An example measurement matrix is
shown in Figure 2.

H =




0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1/2 0 1/2 0
0 0 0 0 0 0 0 1/2 0 1/2
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Figure 2: H shows the sparse measurement matrix for
the bipartite graph in Figure 1. Xt shows the joint target
state. Both the individual measurements and individual
targets are 2-dimensional. The observed measurements
Zo and the clutter measurements Zc are shown as well.

In tracking, we observe the measurements Z1:T but
we do not observe the actual states of the targets X0:T .
Consequently, the objective of all tracking algorithms is
to infer exactly or approximately the probability distri-
bution over the current position Xt of the targets given
all of the measurements observed so far.

It is convenient to write inference in this model re-
cursively via the Bayes filter. The posterior distribution
P (Xt|Zt) over the joint state Xt of all present targets
is given all observations Zt = {Z1, . . . , Zt} up to and
including time t, is updated according to

P (Xt|Zt,M t) = k
∑
Jt

P (Zt,Jt|Xt)×
∫

Xt−1

P (Xt|Xt−1)×

P (Xt−1|Zt−1)

Note that we marginalize over the data associations Jt.
The space of data associations is quite large. We can
approximate this marginalization using Markov chain
Monte Carlo (MCMC) methods.

3. Inference
In this section, we describe a MCMC-based variant of
the auxiliary variable particle filter to approximately in-
fer the position of the targets [14]. The filter samples
over the data associations and sample indicies jointly,
discarding the sample indicies. In doing so, the target
ratio calculation in the filter becomes computationally
efficient.

Next, we show how we can obtain a Rao-
Blackwellized version of the particle filter for the de-
scribed tracking model [5]. In the Rao-Blackwellized
filter, the continuous target state parameters are inte-
grated out analytically [12, 5]. This reduces the vari-
ance of the Monte Carlo approximation of the poste-
rior. Consequently, fewer samples are needed since part
of the posterior over the state is analytically calculated,
rather than being approximated using a more expensive
and noisy sample representation.

3.1. MCMC-based Auxiliary PF
In a typical joint particle filter, one inductively assumes
that the posterior distribution over the joint state of the
targets at the previous time step is approximated by a set
of N samples

P (Xt−1|Zt−1) ≈ {X(r)
t−1}Nr=1

Given this approximate representation, we obtain the
following Monte Carlo approximation of the Bayes fil-
ter:

P (Xt|Zt) ≈ kP (Zt|Xt)
1
N

N∑
i=1

P (Xt|X(r)
t−1) (1)

In a MCMC-based particle filter this becomes the target
distribution from which we sample at each time step.



Note the summation over the target states specifies a
prior over the current state

P (Xt|Zt−1) ≈ 1
N

∑
r

P (Xt|X(r)
t−1)

One typically needs to evaluate this summation in the
target ratio at every time step whcih becomes costly as
the number of samples increase [3, 10].

Auxiliary variable particle filters address this prob-
lem by sampling over the the joint distribution over the
sample index r, the auxiliary variable, and the state Xt,
discarding the sample indicies - as this is equivalent to
sampling from the mixture prior on Xt as in (1). By
eliminating the summation from the target density, the
auxiliary variable particle filter offers considerable com-
putational savings.

3.2. Rao-Blackwellization
Note that we can write the posterior over the target po-
sitions and data associations P (Xt,Jt|Zt) as

kP (Xt|JtZ
t)P (Jt|Zt)

The target motion follows a Gaussian. Consequently, the
first term can be computed analytically using a Kalman
filter, provided we know the data association Jt. If we
had samples from the posterior on data associations
P (Jt|Zt), a hybrid Monte Carlo approximation of the
posterior over the target positions can be obtained. This
reasoning provides the basis for a Rao-Blackwellized
sampling scheme.

To obtain a Rao-Blackwellized particle filter, we use
a hybrid approximation of the posterior over the current
state Xt and current data associations Jt, instead of us-
ing a sample set over the states

P (Xt,Jt|Zt) ≈ 1
N

N∑
r=1

P (Xt|Jt
(r), Zt)δ(Jt

(r))

To obtain the hybrid approximation for the tracking
model, we must be able to sample from the posterior
on the data associations P (Jt|Zt). Because the target
motion is linear Gaussian, the posterior can be written
in terms of a tractable integral over the current state

P (Jt|Zt) ∝ P (Jt)×∫
Xt

P (Zt|Jt,Xt)P (Xt|Zt−1)

where the predictive prior on the current state is a mix-
ture of Gaussians

P (Xt|Zt−1) ≈ 1
N

N∑
r=1

N (Xt;m
(r)
t−1, P

(r)
t−1 + Γ)

Using the mixture naively in an MCMC-based parti-
cle filter would require us to compute the integral for
each mixture component. To address this problem, we
use an auxiliary variable particle filter approach detailed
in Section 3.1 to obtain an efficient Rao-Blackwellized
sampler. We sample the indicies and data associations
jointly

P (Jt, r|Zt) ∝ P (Jt)P (Zc)×∫
Xt

N (Zo;HXt,Σ)×

N (Xt;m
(r)
t−1, P

(r)
t−1 + Γ)

To compute the integral we use the fact that the integral
of any function q(Xt) proportional to a Gaussian, in our
case the function is the product of the likelihood and the
prior

q(Xt) = N (Zt;HXt,Σ)N (Xt;m
(r)
t−1, P

(r)
t−1 + Γ)

is equal to the a maximum of that function X∗
t times a

proportionality constant

∫
Xt

q(Xt) =
√
|2πP

(r)
t |q(X∗

t )

We obtain X∗
t by solving the normal equations after

mapping the data associations to an observation matrix
H = g(Jt) where Q = P

(r)
t−1 + Γ

(H�Σ−1H+Q−1)X∗
t = H�Σ−1Zo+Q−1m

(r)
t−1 (2)

by computing the covariance P
(r)
t = (H�Σ−1H +

Q−1)−1. This procedure describes a method for solv-
ing recursive least squares problems, and is equivalent
to one forward iteration of the Kalman filter.

Hence, the Rao-Blackwellized MCMC sampling al-
gorithm, roughly, consists of the following: (1) propose
to use a certain sample index r, (2) propose a new data
association Jt, (3) compute the covariance P

(r)
t , (4)

finding the optimal state X∗
t , and (5) accept or reject the

new data association by computing the following target
density

π(Jt, r) = P (Jt)P (Zc)
√
|2πP

(r)
t |q(X∗

t )

Note the updated mean and variance for the sth sam-
ple is the optimal state m

(s)
t = X∗

t and computed co-
variance P

(s)
t = P

(r)
t . The sampling algorithm can be

spelled out precisely by defining a Markov chain on the
space of bipartite graphs.



3.3. Markov Chain
In this section, we define a procedure for running a re-
versible Markov chain on the space of bipartite graphs
with the properties described in Figure 1. The station-
ary distribution of the Markov is the posterior over data
associations P (Jt|Zt). The chain operates exclusively
on the set of edges. We use E∗ to denote the set of
all possible edges between target X(1:N)t and measure-
ment Z(1:M)t nodes. The procedure used to run the the
Markov chain is described below:

1. Pick a sample r uniformly at random (u. a. r.).

2. Pick an edge e = {i, j} ∈ E∗ u. a. r.

3. Edge Deletion: If the edge e is in the current edge
set Et, delete the edge E′

t ← Et\{e} to obtain a
new data association Jt

′.

4. Edge Addition: If the edge e is not in the current
edge set Et, add the edge to the edge set E′

t ←
Et∪{e} to obtain a new data association Jt

′.Verify
that adding the edge does not introduce a situation
where a target is splitting and merging at the same
time. This can be done efficiently by computing
the the tree height relative to the measurement node
Zjt and the target node Xit . If height of either tree
exceeds one or the height of both trees is one, then
go back to to step 1.

5. Acceptance Ratio: Accept J′
t with probability a,

where

a = min
{

π(J′
t, r)

π(Jt, r)
, 1

}

3.4. Algorithm Summary
In this section, we summarize the steps of the tracking
algorithm:

1. Start with a set of R hybrid samples

{N (Xt−1;m
(r)
t−1, P

(r)
t−1)}Rr=1

which approximate the posterior over the target
state at the previous time step P (Xt−1|Zt−1).

2. Starting with a random data association where tar-
gets do not merge and split at the same time. Run
the Markov chain described in Section 3.3 until
convergence. Take M sampled data associations
{Jt

(s)}Si=1 at widely separated iterations of the
Markov chain to limit correlation between the sam-
ples.

3. Map the data association to an observation matrix
H = g(Jt

(s)), and separate the measurements into
observations and clutter (Zc,Zo) = f(Jt, Zt).
Solve equation (2) for each data association Jt

(s)

to obtain a new hybrid sample set

{N (Xt;m
(s)
t , P

(s)
t )}Ss=1

which approximates the posterior distribution over
the current state P (Xt|Zt).

4. Experimental Results
Because the application of visual tracking technologies
to monitoring the movement of animals has important
implications in the study of behavior, we applied the
algorithm to tracking interacting ants in a behavioral
experiment [1]. The application presents a substan-
tial challenge as targets deform and frequently interact.
Consequently, merged and split measurements are com-
mon during tracking.

To obtain detections we use the efficient and simple
color segmentation algorithm detailed in [4]. During
each run, the measurement noise and movement noise
were set to Σ = 8IMt

and Γ = 35Id respectively. The
posterior was represented by a total of R = S = 50 hy-
brid samples. The sampler was run 500 iterations where
every 50th sample was taken until the total 50 a samples
were obtained. The estimated position was obtained by
computing the mean of the means of the hybrid samples.

The results of two different tracking runs are shown
in Figure 3. The tracking runs shown in Figure 3(a) and
Figure 3(b) spanned 500 and 1000 frames respectively.
In run (a), the tracker correctly estimated the target posi-
tions. In the tracking run (b) the tracker temporarily lost
track during a sustained interaction between all three tar-
gets. Dealing with data associations in such complex
tracking situations is an area of future work.

5. Conclusions
In this work, we introduced a multiple hypothesis
tracker for interacting targets that generate split and
merged measurements. The tracker is based on an ef-
ficient Rao-Blackwellized MCMC-based auxiliary vari-
able particle filter. We are currently investigating models
of behavior to improve both tracking and data associa-
tion results during interactions.
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