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Abstract—In this paper, an analysis of a market-based
approach applied to the Initial Formation Problem is presented.
This problem tries to determine which mobile sensor should go
to each position of a desired formation in order to minimize
an objective. In our case, this objective is the global distance
traveled by all the mobile sensors. In this analysis, a bound
on the efficiency for the market-based algorithm is calculated
and it is shown that the relative difference as compared with
the optimal solution increases with the logarithm of the total
number of mobile sensors. The theoretical results are validated
with numerous simulations.

I. INTRODUCTION

Mobile sensor networks have been shown to be a powerful

tool for enabling a number of environmental monitoring

activities such as monitoring of seismic activity, monitoring

of civil and engineering infrastructures, and monitoring of

biological agents throughout a region [14]. In most sensor

network applications, individual sensor agents collect infor-

mation about their neighboring agents using peer-to-peer

communication. Unfortunately, as the size of the network

increases, bandwidth limitations and the absence of feasible

communication channels severely limits the possibility of

conveying and using global information. As such, the uti-

lization of decentralized techniques for forming new sensor

topologies and configurations is a highly desired quality

of mobile sensor networks. Establishment of these sensor

configurations involves determining how to allocate sensor

positions to mobile sensor agents in order to achieve a

desired topology.

This Initial Formation Problem [1], [13] can be cast as a

task allocation problem which can be stated as follows:

Given a desired topology expressed by a number of

positions, {P1, P2, ...PN}, a group of mobile sensors
{S1, S2, ..., SM}, a function C(Pi, Sj) that specifies the
cost of going to the position Pi by mobile sensor Sj and

considering that the number of positions must be less or

equal than the number of mobile sensors, i.e., N ≤ M . Find
the assignment that allocates one position per mobile node

and minimizes the global cost defined as
∑M

j=1
C(Pi, Sj),

where i is the position assigned to mobile sensor j.

If the number of mobile sensors is bigger than the number

of positions, the problem remains the same but there will

be some mobile sensors that will not be allocated with any
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position. Therefore, all the mobile sensors take part on the

allocation mechanism, but only the same number of mobile

sensors as positions will have a task to execute. The other

mobile sensors will be idle until new tasks are introduced or

generated dynamically. Also, these mobile sensors could be

used to take care of positions that cannot be finished since

one or more mobile sensors could fail in the middle of a

execution.

This problem can also be viewed as a classical job

assignment problem where mobile sensors are workers and

the desired positions are the different jobs. The classic

job assignment problem can be solved using centralized

solutions such as the Hungarian method [9], but this type of

solution requires a total knowledge of the world and has all

the disadvantages related to centralized systems: low fault

tolerant, computational complexity and slow response for

dynamic changes in the environment.

In the last few years, different approaches have been used

to solve the multirobot task allocation problem [4] in a

distributed way with local information. So far, one of the

most successful has been the market-based approach [2],

[3], [6], [16] since it offers a good compromise between the

communication requirements and the quality of the solution

by using negotiations to allocate the different positions. This

negotiation is typically implemented by using some variant

of the Contract Net Protocol [15], [17], where two roles

are played dynamically by mobile sensors: auctioneer and

bidders. The auctioneer is the mobile sensor in charge of

announcing the desired positions and selecting the best bid

from all the bids received from the bidders. The best bid is

considered the one with the lowest cost.

In order to use a market-based algorithm to solve the

Initial Formation Problem, we must reformulate it as a task

allocation problem where the tasks are waypoint tasks that

coincide with the positions of the formation. For that reason,

the cost used in the bids is a quantity that reflects how much

it will cost the mobile sensor to go to a certain waypoint,

such as the euclidean distance or the traversability index [8].

Also, it is important to point out that one mobile sensor can

only be allocated one task, since the final objective is to

assign one position of the formation to each mobile sensor.

Although the efficiency of the market-based algorithms

have been proven in numerous simulations and some real

implementations [5], [7], none of these works has obtained

a theoretical bound on the real efficiency of these algorithms.

As far as we know, the only work that obtains a bound for

a task allocation algorithm based on auctions is [11] but it

supposes that all the mobile sensors know all the desired
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positions from the beginning. Therefore, their decentralized

implementation differs from the classical market-based ap-

proach and computes the bids using the global information

of the desired positions plus the local information of the

mobile sensor. Our algorithm goes a step forward and it

uses the basic market-based approach where the bids are

calculated just using the local information of the mobile

node, i.e., its position and the desired position to be allocated.

Also, for the algorithm explained in this paper, we prove

that the upper bound of the global cost gets worse when

the number of mobile sensors increases. From the best of

our knowledge, this is the first time that it is proven that a

market-based algorithm only obtains efficient (close to the

optimal) solutions when the number of mobile sensors is

relatively small.

The paper is organized as follows. In the next section, a

basic market-based algorithm that solves the Initial Forma-

tion Problem will be explained. In Section III a mathematical

analysis of the performance will be presented supposing that

the costs of the different desired positions are uniformly

distributed. The bound calculated in this section will then

be validated with various simulations in Section IV. Finally,

conclusions and future work are provided in Section V.

II. MARKET-BASED APPROACH FOR THE

INITIAL FORMATION PROBLEM

A. Description of the algorithm

A market-based algorithm has been used to solve the

Initial Formation Problem. As usual in algorithms based on

the Contract Net Protocol, two roles are played dynamically

by mobile sensors: auctioneer and bidders. The auctioneer

is the agent in charge of announcing the desired positions

and selecting the best bid from all the received bids. In

our case the best bid is the one with the lowest cost and

the cost is equal to the distance from the mobile sensor to

the desired position. The complete algorithm is explained in

Algorithm 1. On the other hand, the bidder role is explained

in Algorithm 2. The basic idea is that each mobile sensor

must have only one desired position, so it will keep the

position with the lowest cost. If it wins a new position that

has a lower cost than the one already won, it will sell the old

position to the mobile sensor with the best bid but worse than

its own bid. The best bid worse than the mobile sensor’s bid

is selected in order to avoid infinite loops in the negotiation.

This scenario could happen when two mobile sensors have

the best bids for at least three positions.

For formation initialization, a slight modification is in-

stituted for the market-based structure. At the beginning,

positions are introduced by a human operator, such as a sci-

entist, using a monitoring center or a planner that generates

the desired positions. Therefore, in our system there are two

types of agents: mobile nodes and monitoring center, and two

types of roles: auctioneer and bidders. Both types of agents

can play both roles. However, the monitoring center plays the

auctioneer role at the beginning and after all the positions

are introduced, it switches to the bidder role with a constant

bid equal to infinite for all positions in order to assure that it

will never win a desired position after the auction starts, or

if we want to minimize the communication messages, it will

not bid to any announced task. It is important to point out

that the monitoring center need not be unique, i.e, the same

algorithm works with distributed insertion of tasks. Also,

tasks can be generated dynamically by mobile sensors, and

therefore, there is no firm requirement for existence of a

monitoring center. It is rather just an implementation detail.

Algorithm 1 Auctioneer algorithm

if announcement-position list is not empty then

announce desired position

while timer is running do

receive bids

end while

calculate best bid worse than the mobile sensor’s bid

send desired position to best bidder

delete desired position from announcement-position list

end if

Algorithm 2 Bidder algorithm

a new message is received

if new message is a desired position announcement then

calculate bid (distance to the position)

if mobile sensor has won already a position then

if cost of won position is bigger than received posi-

tion then

send bid to the auctioneer

end if

else

send bid to the auctioneer

end if

else if new message is a desired position award then

if the mobile sensor has already won a desired position

then

if cost of the new position < cost of the won one
then

introduce old position in announcement-position

list and delete it from won-positions list

introduce won position in the won-positions list

else

introduce won position in the announcement-

position list

end if

else

introduce won position in the won-positions list

end if

end if

B. Matrix-scan algorithm for the assignment problem

The matrix-scan is a heuristic algorithm to solve the

assignment problem. When this problem is expressed in

a matrix form where each element is the cost associated

with the respective worker and job, the algorithm works as

follows:
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• The smallest element of the entire matrix is selected.

• The row and column associated to this element are

deleted and therefore the order of the matrix is reduced

by one.

• The matrix is searched again for the smallest element

and the process is repeated until a matrix of order one

is reached.

• The selected elements are the solution of the assignment

problem.

C. Basic market-based algorithm as a matrix-scan algorithm

The use of reallocations in the basic market-based al-

gorithm ensures that it will obtain the same solutions as

the matrix-scan algorithm. This fact is illustrated with the

following example:

• The initial positions of the mobile sensors and the

desired positions are the ones show in Figure 1.

• Supposing that the columns represent the desired posi-

tions and the rows represents the mobile sensors, the

matrix that models this specific problem is:





30.0 41.23 20.0
50.0 10.0 44.72
80.0 72.11 30.0





• Following the algorithm steps, the smallest element

of the matrix is selected. This element is 10.0 which
assigns the mobile sensor B with the position number 2.

The row and column of the selected element is deleted

and the following matrix is obtained:

(

30.0 20.0
80.0 30.0

)

• Again the smallest element of the new matrix is se-

lected. This element is 20.0 and, therefore, the mobile
sensor A is assigned to the position number 3.

• Finally, the last assignment is made such that mobile

sensor C is assigned to position number 1.

As can be observed in Figures 1 and 2, the solution

obtained with the basic market-based approach is exactly the

same as the one obtained by the matrix-scan method. Thus,

the same bound can be applied to both algorithms.

III. ANALYSIS OF THE ALGORITHM

A. Assumption

The analysis of the algorithm will be based on a proba-

bilistic approach [10]. The main assumption for this analysis

is which distribution is used to model the costs. In this

section, a theoretical bound for the matrix-scan algorithm,

and therefore, for the basic market-based algorithm is found

supposing that the costs, i.e., the distance among the mobile

sensors and the desired positions, are uniformly distributed.

Thus, it can be stated that our proof assures that:

• The elements in the cost matrix are uniformly dis-

tributed in [0, D], where D is the maximal distance
between every mobile sensor and desired position.

Fig. 1. Initial position of the mobile sensors and the desired positions, and
also, the final assignment obtained with the basic market-based algorithm.

B. Theoretical bound

If we model our assignment problem with a matrix as done

in Section II-C, it is supposed that all the elements dij are

uniformly distributed in the matrix within the range [0, D].
However, it is more interesting to have all the elements (cij)

between [0, 1], so all the elements of the matrix will be
divided by D.
For the Initial Formation Problem, we minimize the global

distance traveled by all the mobile sensors. However, it is

usually easier to solve the maximal assignment problem than

the minimal one, and also, it is known that both problems are

equivalent. If eij = (1−cij), solving the maximal assignment
problem for the matrix with elements eij is equivalent to

solve the minimal assignment problem for the matrix cij .

Thus, the relation between our original cost matrix (dij) and

the one used to calculate the bound (eij) is:

dij ∈ [0, D], (1)

cij =
dij

D
∈ [0, 1], (2)

eij = 1 − cij = 1 −
dij

D
∈ [0, 1]. (3)

Let the expected value given by the matrix-scan method be

denoted by M(n) for a matrix of order n. This value can be
considered as the sum of the costs for the allocated positions

in our particular problem. Also, it can be supposed that the

maximum value in the matrix is x, where 0 ≤ x ≤ 1. The
remaining elements after that maximum element is selected,

are then independently and uniformly distributed in [0, x].
Therefore, the expected value of the matrix-scan method on

a matrix of order n−1 is xM(n−1), considering that if every
element of the n− 1 matrix is divided by x, a n− 1 matrix
of elements in the range [0, 1] is again obtained. So, given
that the maximum value is x, then M(n) = x + xM(n− 1)
where n2xn2

−1dx is the probability that x is the maximum
value. Thus,
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Fig. 2. Messages exchanged among the different mobile sensors using the
basic market-based algorithm. The initial positions of the mobile sensors
and the positions of the formations are the same as Figure 1.

M(n) =

∫ 1

0

[x + xM(n − 1)]n2xn2
−1 dx

=
n2

n2 + 1
[1 + M(n − 1)]. (4)

A lower bound for M(n) is found, using the following
recursive relation:

M(n) =
n2

n2 + 1
[M(n − 1) + 1]

=
1

1 +
1

n2

[M(n − 1) + 1]. (5)

Since
1

1 +
1

n2

= 1 −
1

n2
+

(

1

n2

)2

− ..., then

M(n) >

[

1 −
1

n2

]

[M(n − 1) + 1] (6)

or

M(n) − M(n − 1) > 1 −
M(n − 1)

n2
−

1

n2
; (7)

and since each element that contributes to M(n − 1) ∈
[0, 1], M(n − 1) ≤ n − 1,

M(n) − M(n − 1) > 1 −
n − 1

n2
−

1

n2
= 1 −

1

n
. (8)

Taking the sum of both sides, with n going from 1 to T ,
gives the result

T
∑

n=1

[M(n) − M(n − 1)] >

T
∑

n=1

(

1 −
1

n

)

, (9)

which is equal to

M(T ) − M(0) > T −

T
∑

n=1

1

n
. (10)

As M(0) = 0 and γ1 >
∑T

n=1

(

1

n

)

− lnT ,

M(n) > n − γ − lnn. (11)

Now, M(n) = Me(n) = x1 + x2 + ... + xn where xn is

the maximum value of the matrix of order n. Therefore, the

sum of the cost for the minimization problem is mc(n) =
1 − x1 + 1 − x2 + ... + 1 − xn = n − Me(n). Due to the
fact that the values are normalized within the interval [0, 1],
md(n) = D(n−M(n)). As a result, an upper bound for our
algorithm has been found:

md(n) < D · (γ + lnn). (12)

The relative error in comparison with the optimal solution

has the following upper bound:

C − C∗

C∗
=

C

C∗
− 1 =

md(n)

C∗
− 1 <

D · (γ + lnn)

C∗
− 1, (13)

where C∗ is sum of the costs for the optimal solution,

C the sum for the solution obtained with our market-based
approach and D is the maximum possible cost.
A simple lower bound for the optimal solution is

C∗ ≥ n · d, (14)

where d is the smallest cost among all the mobile sensors

and desired positions. Thus,

C − C∗

C∗
≤

D · (γ + lnn)

n · d
− 1. (15)

This bound can be narrowed using the following result

from [12]:

c∗ > 1 + 1/e + O(n−1+ε), (16)

where c∗ is the optimal solution when the costs are uniformly
distributed between [0, 1].
However, it is important to point out that only when the

number of mobile sensors is large enough the termO(n−1+ε)
can be dismissed. Thus,

c∗ > 1.368. (17)

1γ is the Euler-Mascheroni constant which is defined as γ =

limn→∞

»

P

n

k=1

1

k
− ln n

–

and γ ≃ 0.577
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Since it has been supposed that the costs are uniformly

distributed within the range [0, D], a lower bound for the
optimal solution is:

C∗

> D · 1.368. (18)

Finally, using the lower bound for the optimal solution

from Equation 18, the following improved bound is obtained:

C − C∗

C∗
<

D · (γ + lnn)

D · 1.368
− 1 =

γ + lnn

1.368
− 1. (19)

It can be observed that the relative difference with the

optimal solution is proportional to lnn which means that
the efficiency of this algorithm gets worse when the number

of mobile nodes and desired positions increases. Thus, the

market-based algorithm described in this paper only obtains

efficient solutions close to the optimal when the number of

mobile sensors is relatively small.

IV. VALIDATION THROUGH SIMULATIONS

A multi-mobile sensor simulator has been used to test

the decentralized algorithms discussed in this paper. The

simulator is based on an architecture designed for hetero-

geneous mobile sensors and divided into three layers [18].

The highest layer is independent from the type of mobile

sensor and is aware of the existence of other sensors. Thus,

the task allocation algorithm is implemented in this layer.

The other two layers are used to execute the different tasks

allocated to the mobile sensor and make easier the creation

of new algorithms by using a modular and component-based

architecture.

The basic market-based algorithm has been tested using

uniformly distributed costs between 0 and 500 in a virtual
world of 353.55x353.55 meters. The simulations were run
using different numbers of mobile sensors and desired posi-

tions ranged from 4 up to 20, and for every case one hundred

simulations were run. Firstly, some simulations have been

performed using the matrix-scan algorithm as a equivalent of

the original distributed algorithm, obtaining the results shown

in Figure 3. It can be seen that the global cost calculated

from the experimental results are always smaller than the

theoretical bound calculated in the previous section. On the

other hand, the same simulations have been run using the

multi-mobile sensor simulator and the distributed algorithm,

the results are shown in Table I where, in each cell, the mean

of the global cost and the error in percentage in comparison

with the optimal solution are presented. The optimal solution

has been calculated using the Hungarian method [9]. As

can be seen in this table, the experimental results coincide

with the theoretical ones since the error, as compared with

the optimal solution increases with the number of mobile

sensors. This fact can be observed in more detail in Figure

4, where the global cost obtained from these simulations

is compared with the bound from Equation 12. As was

expected the experimental global cost is always smaller than

the theoretical bound and the results are very similar to the

ones obtained using the matrix-scan method shown in Figure
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Fig. 3. Comparison between the theoretical and experimental global costs,
i.e., the distance traveled by all the mobile sensors. The experimental results
are calculated using the matrix-scan algorithm over 100 missions per case
where the costs of going to the desired positions for each mobile sensor are
uniformly distributed between 0 and 500. The circles represent the standard
deviation of the global cost from the experimental results.
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Fig. 4. Comparison between the theoretical and experimental global costs,
i.e., the distance traveled by all the mobile sensors. The experimental results
are calculated using distributed basic market-based algorithm over 100
missions per case where the costs of going to the desired positions for each
mobile sensor are uniformly distributed between 0 and 500. The circles
represent the standard deviation of the global cost from the experimental
results.

3. Finally, in Figure 5 both the theoretical and experimental

percentage error in comparison with the optimal solution are

compared. In this figure, there is more difference between the

theoretical and experimental results since we are using for the

theoretical error a conservative upper bound for the optimal

solution, and in the experimental results, we are using the

exact optimal solution. In summary, the experimental results

shown in this section validate the theoretical bound that

comes from the analysis of the market-based algorithm (see

Section III).

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

The Initial Formation Problem has been stated and de-

scribed in terms of the task allocation problem. In order
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# of Positions &
Mobile Sensors

Market-Based Optimum

4 585.24 (12.09%) 521.23

6 708.86 (20.88%) 584.75

8 823.74 (28.15%) 642.78

10 949.96 (35.22%) 702.55

12 957.65 (41.57%) 676.43

15 1107.78 (56.53%) 707.68

20 1274.13 (66.96%) 763.12

TABLE I

RESULTS COMPUTED FOR FORMATIONS WITH DIFFERENT NUMBER OF

MOBILE SENSORS AND DESIRED POINTS OVER 100 SIMULATIONS PER

EACH CASE. IN EACH CELL THE MEAN OF THE GLOBAL COST (IN

METERS) AND THE ERROR IN PERCENTAGE WITH THE OPTIMAL

SOLUTION ARE PRESENTED.
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Fig. 5. Comparison between the theoretical and experimental errors in
percentage in comparison with the optimal solution. The experimental error
is calculated over 100 missions per case where the costs of going to the
desired positions for each mobile sensor are uniformly distributed between
0 and 500. The theoretical error is calculated from Equation 19.

to solve it, a market-based algorithm has been developed.

This algorithm obtains the same results as the matrix-scan

algorithm used for the job assignment problem. Although the

market-based algorithm does not obtain an optimal solution

that minimizes the global cost, it is known that these types of

algorithms obtain efficient solutions. This has usually been

demonstrated by means of numerous simulations without a

theoretical proof that supports it. However, based on the

analysis of the market-based algorithm explained in this

paper, we have demonstrated that the efficiency of this

algorithm gets worse when the number of mobile sensors

increases. Therefore, it can be stated that this algorithm only

obtains solutions close to the optimal (efficient solutions)

when the number of mobile sensors is relatively small.

Finally, the theoretical bound calculated for this algorithm

has been validated with numerous simulations.

B. Future work

Future work includes the extension of the analysis to other

algorithms used for the Initial Formation Problem. Also, we

are interested in finding a theoretical bound that avoids the

assumption that costs must be uniformly distributed or that

accepts other types of distributions for the costs. Finally,

the general task allocation problem will be considered and

considerations made on how the upper-bound analysis could

be adapted to solve it.
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