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Abstract – In this paper, we present a hierarchical methodology 
that learns new walking gaits autonomously while operating in 
an uncharted environment, such as on the Mars planetary 
surface or in the remote Antarctica environment. The focus is to 
maintain persistent forward locomotion along the body axis, 
while navigating in natural terrain environments. The 
hierarchical strategy consists of a finite state machine that models 
the state of leg orientations coupled with a modified evolutionary 
algorithm to learn necessary leg movement sequences. 
Locomotion behavior is assessed by monitoring the robot’s 
progress toward a specified goal location. Details of the 
methodology are discussed, and experimental results with a six-
legged robot are presented. 
 

I. INTRODUCTION AND BACKGROUND 
     Field mobile robots must traverse long distances on 
hazardous terrain safely and autonomously using uncertain 
and imprecise information. Research such as traversability 
analysis, deliberative path planning with pre-stored terrain 
maps and embedded reactive behavior [1] have been used to 
address the problems of navigation in natural terrain, but the 
process of successfully navigating between two designated 
points in rough terrain with minimal human interaction is 
still difficult to achieve in some environments [2].  Legged 
robots, versus wheeled mobility platforms, offer many 
advantages due to their ability to traverse a wide variety of 
terrain, but the control of walking poses special challenges 
in natural environments. Even simple legged-robot platforms 
have a large degree of coupled interactions and no single 
walking gait is suitable for all terrain surfaces.  Walking 
surfaces can vary in a number of factors including traction 
properties, hardness, frictional coefficients, and bearing 
strength. 

To successfully operate within varying terrain 
environments, an automatic gait adaptation method for field 
mobile robots is a desirable attribute. In [3], a learning 
method using a gradient descent algorithm was able to 
optimize the fastest 4-legged walking gait, as published in 
the literature.  Typical learning time approximated three 
physical hours, with the process simultaneous learning over 
three distributed robots. A main limitation was the necessity 
for initializing the algorithm with a known set of reasonable 
walking gait parameters. Efforts that use evolutionary 
approaches, such as proposed by Veloso in [4], have also 
been used to control walking motions. In this work, walking 

gaits derived from a random initialization of gait parameters 
were learned in approximately five hours, with learning 
spread simultaneously over four robots. Another innovative 
approach is the utilization of central pattern generators 
(CPG), which can adapt rhythmic walking patterns in real-
time using sensory feedback. In this focus, Fukuoka [5] 
applied the method for adaptive dynamic walking on 
irregular terrain, which required a manually intensive design 
process with regards to the mechanical system and control 
parameters.  On the other hand, Lewis [6] used a staged 
evolution approach to learn the parameters of the central 
pattern generator for the control of leg movements of a six-
legged walking robot.  This approach was designed to 
accelerate learning such that evaluations could be carried out 
on real hardware, and required approximately 52 generations 
to evolve a walking gait. The fitness score was provided by 
the experimenter, and not by the system, so the actually 
learning time-period could not be determined.  This limits 
one’s ability to compare the approach to other methods. 

The limitations with many current methods are the need 
for either a manually intensive process to design the control 
system apriori or a large number of gait evaluations, which 
makes it infeasible for learning during run-time. As such, in 
this paper we discuss a hierarchical methodology that learns 
new walking gaits autonomously in order to enhance 
operations in remote planetary environments such as Mars. 
The focus is to maintain persistent forward locomotion along 
the body axis, while navigating in natural terrain 
environments. Section 2 provides detail of the hierarchical 
approach while Section 3 presents experimental results using 
a six-legged robot. Conclusions drawn from this work are 
reported in Section 4. 

II.  HEIRARCHICAL STRATEGY 
Typically, developing gaits for legged robots is a difficult 

task that requires optimizing parameters in a high-
dimensional parameter space. Since our goal is to maintain 
consistent forward progress in natural terrain environments, 
we focus on developing a method in which performance can 
be evaluated in the real-world and a new satisfactory gait 
can be learned in as few field trials as possible. These 
objectives are achieved by combining a finite state machine 
that models the state of leg orientations coupled with a 
modified evolutionary algorithm to learn necessary leg 
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movement sequences.  Satisfactory forward motion is 
evaluated by monitoring the robot’s progress toward a 
specified goal location using vision-based terrain assessment 
methods. 

 

A. Finite State Machine 
 At the lowest level of the hierarchy, a finite state 
machine (FSM) is used to model the robotic system by 
representing achievable leg orientations and the 
corresponding commands that allow transitions between 
each. 

Given that the legs of the robotic platform can be 
oriented in a number of different positions, a finite number 
of states for each leg orientation are first determined using a 
symbolic construct. The symbolic representation is designed 
to be generic so that it can be applied to a general class of 
legged robots, as shown in Figure 1. This representation 
leads to different leg state combinations for the platform 
where Left-Leg-Pair (L), Center-Leg-Pair (C), and Right-
Leg-Pair (R) act as the variables of the system, each with 
their own subset of possible values. The L and R variables 
are represented by values of Forward (F), Neutral (N), or 
Back (B) and the C variable is represented by Tilt-Right 
(TR), Neutral (N), or Tilt-Left (TL). For example, the state 
where the left legs are positioned forward, the right legs are 
placed in the back position and the platform is tilted to the 
left, is described as FTLB.  

 
 
 
 
 
 
 
 
 
 
 

Figure 1: Leg state definitions for a six-legged robot 

To describe transitions from one state to another, a 
function was designed to uniquely characterize both changes 
in direction and degree of leg movement. The six 
corresponding commands were modeled as linear functions 
and were based on servo instructions that control each leg 
pair, such that: 

 Transition Command Description 
1 

! 

"
LF

 for θ ≥ 0 Left Legs Forward 
2 

! 

"
LB

 for θ ≤ 0 Left Legs Backward 
3 

! 

"
RF

 for θ ≤ 0 Right Legs Forward 
4 

! 

"
RB

 for θ ≥ 0 Right Legs Backward 
5 

! 

"
CT

R

 for θ ≤ 0 Tilt Frame Left 

6 

! 

"
CT

L

 for θ ≥ 0 Tilt Frame Right 

Table I. Description of transition commands 
 

where θ is the instruction that provides control of each leg 
pair and 

! 

"  is the function that controls the robot’s transition 
from one state to another. In our implementation, θ is a 
percentage value of servo angle rotation. A negative value 
suggests counter-clockwise rotation and a positive value 
suggests clockwise rotation. The output of each command is 
measured in percentage of angular displacement. For our 
application, the following equations model each of the six 
legs of the hexapod robot based on x (the percentage of 
servo position displacement) used in our experimental 
studies: 

 

 

 

 

 

where 

 Individual Leg Model Description 
1 

LF
!  

Left FRONT Leg 

2 
LB
!  Left BACK Leg 

3 
RF
!  Right FRONT Leg 

4 
RB
!  Right BACK Leg 

5 
CR
!  Center RIGHT Leg 

6 
CL
!  Center LEFT Leg 

Note that ζCTR and ζCTL were measured in centimeters 
off the ground, whereas ζLF, ζLB, ζRF and ζRB were measured 
in degrees of rotation [0, 180]. As an example, the 
combination of ζLF(x) and ζLB(x) leg equations designates 
that the left legs will jointly rotate between 0 to 50% of their 
maximum angular displacement for instructions in the range 
[-50, 0]. These instructions are provided to the servo that 
commands the left leg pair. Construction of these equations 
(i.e. associating control signals to leg movement) was 
implemented using an off-line approach and is discussed 
further in [7]. 

 
B. Learning Algorithm 

The FSM allows us to construct a representative model 
of the robotic system, which also characterizes the 
commands used to transition between states. At the highest 
level of the control hierarchy, an evolutionary learning 
algorithm is coupled with the finite state machine. The 
primary goal of the learning algorithm is to optimize the 
sequence of states and/or transitions found in the FSM to 
allow the robotic platform to persistently progress in a 
specific direction. 

Genetic algorithms [8] are a methodology for searching 
through the space of solution possibilities using the concept 
of evolution. By constructing individual chromosomes that 

Leg Definitions

L: Left leg pair

C: Center leg pair

R: Right leg pair

Leg positions (Left and Right leg pairs )

F: Forward

N: Neutral

B: Back

Leg positions (Center leg pair )

TR: Tilt Right

N: Neutral

TL: Tilt Left

TR: N: TL:

N: B:F:

L: C: R:

! 

"
LF
(x) = #0.7891x + 87.5

"
LB
(x) = #0.7023x + 85.045

"
RF
(x) = #0.6495x + 95.5

"
RB
(x) = #0.7764x + 99.163

"
CT

R

(x) = #0.0007x + 0.0482

"
CT

L

(x) = #0.0007x + 0.0401

(1)

(2)

(3)

(4)

(5)

(6)
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represent possible solutions in the search space, genetic 
algorithms determine the fitness of an individual based on an 
objective function.  The goal of the learning algorithm is to 
find a solution that correlates to maximizing the fitness 
value. The genetic algorithm process consists of the 
following steps: 
 
1) Create initial population 

To ensure the learning algorithm is not dependant on 
platform specifications, the individual genes of each 
encoded chromosome are represented by the transition 
commands from the FSM. This representation places a 
significant amount of restrictions on the genetic algorithm, 
which is desirable for limiting the population generation 
process.  In essence, when in certain states, only N ∈ [1,6] 
of the possible commands are available (Table I), and when 
transitioning to another state, a different set of N commands 
become available. For example, when starting from state 
NNN (Neutral-Neutral-Neutral) all six commands are 
available for selection. If command 4 is chosen, as shown in 
Figure 2, state NNB would then become the current state and 
only commands 1, 2, 5, and 6 would be available when 
selecting the next transition. 

 
 

 

 

 

 

 

 

 
Figure 2: Example of chromosome encoding and 

transitioning from one state to another 

 
2) Evaluate fitness 

To evaluate the fitness value of each chromosome (i.e. 
measure how well a set of transition commands allow 
forward progress), we wish to evaluate both robot velocity 
and position while operating in the field.   We assume, as 
does our platform, that the robot has a sensor suite that 
includes a color camera capable of image retrieval at a 
minimum rate of approximately 20-30 Hz. During the 
navigation cycle, the robot is commanded to locate the 
largest landmark in the camera field-of-view and record its 
location before and after executing the commands specified 
by a chromosome. Forward locomotion along the body axis 
implies movement in a straight line, while not varying to the 
left or right significantly. The fitness function therefore 
combines landmark pixel count as well as movement of the 
landmark center-of-mass, such that: 
 

! 

Fitness = "0.1*#xcenter"of "mass + (pt+1 " pt )     (7) 
 

where Δxcenter-of-mass represents the left or right shift in the 
landmark center-of-mass, 

! 

pt  represents the pixel count 
before execution of the chromosome commands, and 

! 

pt+1 
represents the pixel count after execution. Significant weight 
is given to the difference in pixel count since forward 
velocity has higher priority than left or right movement.  
Screen shots of example chromosome transitions are shown 
in Figure 3. 

When learning alternative directions of movement 
(moving backwards, turning left/right), the data from the 
vision sensor is manipulated differently.  However, only 
slight variations in the fitness equation are required (i.e. 
greater weight given to Δxcenter-of-mass for determining 
left/right directions).  This allows a robust method for 
assessing omni-directional motion in the field. 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: Successful transition (LEFT); Less successful 
transition (RIGHT) 

 
3) Reproduce  

As a variation on the standard five step procedure 
common in a genetic algorithm (i.e. encoding, fitness 
evaluation, crossover or combination, mutation, and 
replacement), a modified version of the evolutionary 
algorithm is implemented to allow for real-time, fast 
implementation in the field, which also minimizes undue 
wear and tear on the hardware.  Due to the nature of the 
FSM and its architecture, two features of the learning 
algorithm required attention during design: crossover and 
mutation.  

Based on the representation used for encoding the 
chromosomes, there is no guarantee that randomly 
combining elements of two of the chromosomes would 
result in a valid sequence of transitions unless unique 
attention was paid to the crossover point as well as to each 
chromosome selected.   In addition, the mutation process in 
genetic algorithms commonly involves independently 
changing one gene in a given chromosome in order to 
imitate nature’s random influence on evolution. Since 
transition commands and corresponding states carry a certain 
degree of dependence on each other in our approach, the 
random, independent, actions found in the crossover and 
mutation stage need to be modified. As such, reproduction of 

6

4

2
1 5

NNB

NNN
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a new chromosome involves randomly selecting a 
crossover/mutation point and then reproducing the 
remainder of the chromosome using the same process as in 
the generation of the initial population.  In addition, instead 
of selecting the fittest member of the population for each 
crossover operation, the least fit chromosome is selected 
during the process in order to decrease the number of 
generations required for in-the-field operation.   
 
4) Create next generation  

The primary computational bottleneck in evolutionary 
algorithms is the number of evaluations required to obtain an 
optimal solution. For implementation on the physical 
hardware, three primary factors effect convergence time – 1) 
the number of genes that comprise a chromosome, which 
defines the walking pattern, 2) the number of chromosomes 
that comprise a generation, which equates to the number of 
times a potential walking gait must be implemented, and 3) 
the number of generations that must be evaluated before an 
optimal solution can be found. As such, to minimize the time 
required for learning, we institute a process that adaptively 
expands the number of genes found within a population, 
while keeping the original set of genes constant.  In this way, 
the fitness of a newly created chromosome needs only to be 
reassessed and remain in the population until the specified 
number of evolutions has occurred. This duplication and 
continued evolution process tests the robustness of the first 
half of the chromosome while independently developing a 
second half as a supplementary gait. Producing a new 
generation thus involves the following process: 
1) Generate an initial population of α chromosomes with β 

genes per chromosome. 
2) Evolve over γ generations, selecting and mutating the 

two least fit chromosomes during each evolution and 
creating a new generation with the most fit 
chromosomes. 

3) Expand the population to α chromosomes with 2*β 
genes.  

4) Repeat Step 2-4 until convergence. 
 
This process using different values of α, β, and γ was tested 
multiple times and the results are presented in the next 
section.  
 
C. Real-time adaptation after learning 
After an optimal solution is achieved and a walking strategy 
that maintains persistent forward progress is learned, the 
fitness value Fitnessmax is used to monitor and compare 
forward progress during navigation.  When fitness falls 
below a certain threshold such that: 
 

! 

Fitness
max

"

"0.1*#xcenter"of "mass + (pt+k " pt+(k"1))
k=1

N

$

N
< %

 

  

the learning algorithm is activated until forward progress is 
again maintained.  In this way, the process used for learning 
is integrated into real-time operation such that it can be used 
to re-learn during navigation within varying terrain 
environments.  
 

III. FIELD TEST STUDIES 
 For assessment of the learning methodology, we 
implement the hierarchical strategy on a legged platform that 
consists of a mechanical body frame, high torque servos, 
vision sensor and a controller (Figure 4).  The skeletal body 
of the platform is equipped with six legs and has dimensions 
of [7.5 x 26.5 x 24] cm.  Movement of each unit is 
accomplished using three HI-Tec HS-645MG high torque 
servos to control movement of three sets of legs. One servo 
is used to control a set of left legs (front and back) while the 
other controls a set of right legs (front and back). The third 
servo is used to control a center set of legs (left and right). 
When oriented correctly, this center set allows a vertical tilt 
of the unit from one side to the other. Each servo is 
orientated in-between its respective set of legs, such that 
each set is coupled using a push-pull scheme. Thus, as a 
servo pushes one leg, it simultaneously pulls the other in the 
same direction. An example of this can be seen with the left 
set of legs in Figure 5. 
 

 
 

 
 
 
 
 
 
 
 

Figure 4: Legged robotic platform 

 
 
 

 

 

 

 

 

 

 

 

Figure 5: Servo-to-leg relationship 
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 The CMUCam2 vision sensor, with multiple ports for 
servo control, provides the primary sensor data.  Finally, a 
RidgeSoft Intellibrain™ robotics controller is used to 
implement the learning algorithm and provide the control 
signals for commanding robot movement. 
 Experimental tests were conducted using the robotic 
platform.  Twenty separate trial runs were tested with the 
robot positioned at varying starting locations. The trials were 
used to test the effectiveness of our hierarchical strategy in 
learning a new robot walking strategy, without the 
traditional time complexity associated with implementation 
of genetic algorithms on physical hardware. The learned 
walking strategy was compared with a hand-tuned set of 
commands as shown in Table II. 
 The average fitness value associated with the hand-
tuned chromosome commands was computed at 68.8 (based 
on 6 different trial iterations).  In Table III, we show a 
snapshot of an experimental run based on our approach, 
using chromosomes of varying gene lengths. The fitness 
values depicted in each row of Table III documents the best 
fitness values associated with both the initial and evolved 
population. In our experimental runs, our initial populations 
consist of 10 chromosomes each. The average number of 
evaluations until convergence was approximately 400 
evaluations, resulting in an implementation time of 17 
minutes.   
 
 

Transition 
Command 

Description 

6 Tilt body frame to right 
1 Left Leg set forward 
5 Tilt body frame to left 
3 Right Leg set forward 
6 Tilt body frame to right 
4 Right Leg set backward 
5 Tilt body frame to left 
3 Right Leg set forward 
2 Left Leg set backward 
6 Tilt body frame to right 

Table II: Hand-tuned chromosome commands 
 
 

Initial Population Expansion (convergence 
occurred after ~5 evolutions) 

Number of 
Genes (β) 

Best 
Fitness 
Value 

Number of 
Genes (β) 

Best Fitness 
Value 

3 genes 3.2 6 genes 66.6 
 7.1  66.8 

4 genes 5.5 8 genes 32.8 
 -6.7  65.0 

5 genes -5.0 10 genes 50.1 
 18  59.0 

6 genes 22 12 genes -7.3 
 16  37.9 

Table III. Data from example experimental scenario 
 

Based on our experiments, a number of observations are 
made. For a 3-gene and 4-gene initial population set, 
comparable results were achieved with respect to the hand-
tuned walking pattern. Since the system was not biased with 
any prior knowledge on a suitable walking gait, the 
developing of a pattern based on a methodology that can 
quickly learn in the field satisfies our original objectives.  
We do note that our hierarchy approach did not improve 
over the hand-tuned walking pattern, primarily due to the 
fact that our convergence criteria was based on using this 
value as our stored maximum fitness value, as discussed in 
Section IIIc. Our primary focus though was to maintain 
persistent forward locomotion along the body axis, while 
navigating in natural terrain environments, which the system 
was able to achieve. 

In addition, we notice that although expanding from an 
initial gene size of 4 (versus 3), shows results comparable to 
the hand-tuned chromosome, the longer chromosome length 
combined with the lower fitness values show that less 
accurate forward movement was achieved. This was viewed 
to be due to the random selection of state transition 
commands resulting in excessive servo movement. 
Examining the 5-gene initial set shows that, although the 
number of genes per chromosome increases, the average 
fitness values for the best performing chromosomes remains 
lower than those of lower chromosome length. This further 
suggests the occurrence of unnecessary leg executions 
hindering the overall performance of the unit. Additionally, 
the fitness values of the least fit chromosomes are noticeably 
lower than those for the previous two gene cases.  Finally, 
the 6-gene set demonstrates the worst performance of 
lengthened chromosomes. More qualitative observations 
include undesired movement to the left and right of the 
target in excess of 30 degrees with respect to the origin-to-
target line of sight. This contributed to the largely negative 
fitness values shown above.  These observations have us 
conclude that starting with a smaller gene-size provides 
better results with respect to our forward locomotion criteria 
used for success.  

IV. CONCLUSION 
The contribution of this work includes a detailed process for 
providing a legged mobility platform with the ability to learn 
new walking gaits autonomously while operating in an un-
chartered environment. The primary benefit is that the 
methodology can be applied to a large class of multi-legged 
robotic platform, provided that the number of states can be 
defined for a FSM and the optimal chromosome length is 
established when implementing the modified learning 
algorithm.  Future work will involve testing in more variable 
terrain environments, as well as exchanging learned walking 
gait parameters with other robots that are operating 
simultaneously within the field. 
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