
A Hierarchical Strategy for Learning of Robot Walking Strategies in Natural
Terrain Environments

Ayanna M. Howard
Human-Automation Systems (HumAnS) Lab

School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, GA, USA

Lonnie T. Parker
Department of Electrical Engineering

Rochester Institute of Technology
Rochester, NY

Abstract – In this paper, we present a hierarchical methodology
that learns new walking gaits autonomously while operating in
an uncharted environment, such as on the Mars planetary
surface or in the remote Antarctica environment. The focus is to
maintain persistent forward locomotion along the body axis,
while navigating in natural terrain environments. The
hierarchical strategy consists of a finite state machine that models
the state of leg orientations coupled with a modified evolutionary
algorithm to learn necessary leg movement sequences.
Locomotion behavior is assessed by monitoring the robot’s
progress toward a specified goal location. Details of the
methodology are discussed, and experimental results with a six-
legged robot are presented.

I. INTRODUCTION AND BACKGROUND
 Field mobile robots must traverse long distances on
hazardous terrain safely and autonomously using uncertain
and imprecise information. Research such as traversability
analysis, deliberative path planning with pre-stored terrain
maps and embedded reactive behavior [1] have been used to
address the problems of navigation in natural terrain, but the
process of successfully navigating between two designated
points in rough terrain with minimal human interaction is
still difficult to achieve in some environments [2]. Legged
robots, versus wheeled mobility platforms, offer many
advantages due to their ability to traverse a wide variety of
terrain, but the control of walking poses special challenges
in natural environments. Even simple legged-robot platforms
have a large degree of coupled interactions and no single
walking gait is suitable for all terrain surfaces. Walking
surfaces can vary in a number of factors including traction
properties, hardness, frictional coefficients, and bearing
strength.

To successfully operate within varying terrain
environments, an automatic gait adaptation method for field
mobile robots is a desirable attribute. In [3], a learning
method using a gradient descent algorithm was able to
optimize the fastest 4-legged walking gait, as published in
the literature. Typical learning time approximated three
physical hours, with the process simultaneous learning over
three distributed robots. A main limitation was the necessity
for initializing the algorithm with a known set of reasonable
walking gait parameters. Efforts that use evolutionary
approaches, such as proposed by Veloso in [4], have also
been used to control walking motions. In this work, walking

gaits derived from a random initialization of gait parameters
were learned in approximately five hours, with learning
spread simultaneously over four robots. Another innovative
approach is the utilization of central pattern generators
(CPG), which can adapt rhythmic walking patterns in real-
time using sensory feedback. In this focus, Fukuoka [5]
applied the method for adaptive dynamic walking on
irregular terrain, which required a manually intensive design
process with regards to the mechanical system and control
parameters. On the other hand, Lewis [6] used a staged
evolution approach to learn the parameters of the central
pattern generator for the control of leg movements of a six-
legged walking robot. This approach was designed to
accelerate learning such that evaluations could be carried out
on real hardware, and required approximately 52 generations
to evolve a walking gait. The fitness score was provided by
the experimenter, and not by the system, so the actually
learning time-period could not be determined. This limits
one’s ability to compare the approach to other methods.

The limitations with many current methods are the need
for either a manually intensive process to design the control
system apriori or a large number of gait evaluations, which
makes it infeasible for learning during run-time. As such, in
this paper we discuss a hierarchical methodology that learns
new walking gaits autonomously in order to enhance
operations in remote planetary environments such as Mars.
The focus is to maintain persistent forward locomotion along
the body axis, while navigating in natural terrain
environments. Section 2 provides detail of the hierarchical
approach while Section 3 presents experimental results using
a six-legged robot. Conclusions drawn from this work are
reported in Section 4.

II. HEIRARCHICAL STRATEGY
Typically, developing gaits for legged robots is a difficult

task that requires optimizing parameters in a high-
dimensional parameter space. Since our goal is to maintain
consistent forward progress in natural terrain environments,
we focus on developing a method in which performance can
be evaluated in the real-world and a new satisfactory gait
can be learned in as few field trials as possible. These
objectives are achieved by combining a finite state machine
that models the state of leg orientations coupled with a
modified evolutionary algorithm to learn necessary leg

23361-4244-0991-8/07/$25.00/©2007 IEEE

movement sequences. Satisfactory forward motion is
evaluated by monitoring the robot’s progress toward a
specified goal location using vision-based terrain assessment
methods.

A. Finite State Machine
 At the lowest level of the hierarchy, a finite state
machine (FSM) is used to model the robotic system by
representing achievable leg orientations and the
corresponding commands that allow transitions between
each.

Given that the legs of the robotic platform can be
oriented in a number of different positions, a finite number
of states for each leg orientation are first determined using a
symbolic construct. The symbolic representation is designed
to be generic so that it can be applied to a general class of
legged robots, as shown in Figure 1. This representation
leads to different leg state combinations for the platform
where Left-Leg-Pair (L), Center-Leg-Pair (C), and Right-
Leg-Pair (R) act as the variables of the system, each with
their own subset of possible values. The L and R variables
are represented by values of Forward (F), Neutral (N), or
Back (B) and the C variable is represented by Tilt-Right
(TR), Neutral (N), or Tilt-Left (TL). For example, the state
where the left legs are positioned forward, the right legs are
placed in the back position and the platform is tilted to the
left, is described as FTLB.

Figure 1: Leg state definitions for a six-legged robot

To describe transitions from one state to another, a
function was designed to uniquely characterize both changes
in direction and degree of leg movement. The six
corresponding commands were modeled as linear functions
and were based on servo instructions that control each leg
pair, such that:

 Transition Command Description
1

!

"
LF

 for θ ≥ 0 Left Legs Forward
2

!

"
LB

 for θ ≤ 0 Left Legs Backward
3

!

"
RF

 for θ ≤ 0 Right Legs Forward
4

!

"
RB

 for θ ≥ 0 Right Legs Backward
5

!

"
CT

R

 for θ ≤ 0 Tilt Frame Left

6

!

"
CT

L

 for θ ≥ 0 Tilt Frame Right

Table I. Description of transition commands

where θ is the instruction that provides control of each leg
pair and

!

" is the function that controls the robot’s transition
from one state to another. In our implementation, θ is a
percentage value of servo angle rotation. A negative value
suggests counter-clockwise rotation and a positive value
suggests clockwise rotation. The output of each command is
measured in percentage of angular displacement. For our
application, the following equations model each of the six
legs of the hexapod robot based on x (the percentage of
servo position displacement) used in our experimental
studies:

where

 Individual Leg Model Description
1

LF
!

Left FRONT Leg

2
LB
! Left BACK Leg

3
RF
! Right FRONT Leg

4
RB
! Right BACK Leg

5
CR
! Center RIGHT Leg

6
CL
! Center LEFT Leg

Note that ζCTR and ζCTL were measured in centimeters
off the ground, whereas ζLF, ζLB, ζRF and ζRB were measured
in degrees of rotation [0, 180]. As an example, the
combination of ζLF(x) and ζLB(x) leg equations designates
that the left legs will jointly rotate between 0 to 50% of their
maximum angular displacement for instructions in the range
[-50, 0]. These instructions are provided to the servo that
commands the left leg pair. Construction of these equations
(i.e. associating control signals to leg movement) was
implemented using an off-line approach and is discussed
further in [7].

B. Learning Algorithm

The FSM allows us to construct a representative model
of the robotic system, which also characterizes the
commands used to transition between states. At the highest
level of the control hierarchy, an evolutionary learning
algorithm is coupled with the finite state machine. The
primary goal of the learning algorithm is to optimize the
sequence of states and/or transitions found in the FSM to
allow the robotic platform to persistently progress in a
specific direction.

Genetic algorithms [8] are a methodology for searching
through the space of solution possibilities using the concept
of evolution. By constructing individual chromosomes that

Leg Definitions

L: Left leg pair

C: Center leg pair

R: Right leg pair

Leg positions (Left and Right leg pairs)

F: Forward

N: Neutral

B: Back

Leg positions (Center leg pair)

TR: Tilt Right

N: Neutral

TL: Tilt Left

TR: N: TL:

N: B:F:

L: C: R:

!

"
LF
(x) = #0.7891x + 87.5

"
LB
(x) = #0.7023x + 85.045

"
RF
(x) = #0.6495x + 95.5

"
RB
(x) = #0.7764x + 99.163

"
CT

R

(x) = #0.0007x + 0.0482

"
CT

L

(x) = #0.0007x + 0.0401

(1)

(2)

(3)

(4)

(5)

(6)

2337

represent possible solutions in the search space, genetic
algorithms determine the fitness of an individual based on an
objective function. The goal of the learning algorithm is to
find a solution that correlates to maximizing the fitness
value. The genetic algorithm process consists of the
following steps:

1) Create initial population

To ensure the learning algorithm is not dependant on
platform specifications, the individual genes of each
encoded chromosome are represented by the transition
commands from the FSM. This representation places a
significant amount of restrictions on the genetic algorithm,
which is desirable for limiting the population generation
process. In essence, when in certain states, only N ∈ [1,6]
of the possible commands are available (Table I), and when
transitioning to another state, a different set of N commands
become available. For example, when starting from state
NNN (Neutral-Neutral-Neutral) all six commands are
available for selection. If command 4 is chosen, as shown in
Figure 2, state NNB would then become the current state and
only commands 1, 2, 5, and 6 would be available when
selecting the next transition.

Figure 2: Example of chromosome encoding and

transitioning from one state to another

2) Evaluate fitness

To evaluate the fitness value of each chromosome (i.e.
measure how well a set of transition commands allow
forward progress), we wish to evaluate both robot velocity
and position while operating in the field. We assume, as
does our platform, that the robot has a sensor suite that
includes a color camera capable of image retrieval at a
minimum rate of approximately 20-30 Hz. During the
navigation cycle, the robot is commanded to locate the
largest landmark in the camera field-of-view and record its
location before and after executing the commands specified
by a chromosome. Forward locomotion along the body axis
implies movement in a straight line, while not varying to the
left or right significantly. The fitness function therefore
combines landmark pixel count as well as movement of the
landmark center-of-mass, such that:

!

Fitness = "0.1*#xcenter"of "mass + (pt+1 " pt) (7)

where Δxcenter-of-mass represents the left or right shift in the
landmark center-of-mass,

!

pt represents the pixel count
before execution of the chromosome commands, and

!

pt+1
represents the pixel count after execution. Significant weight
is given to the difference in pixel count since forward
velocity has higher priority than left or right movement.
Screen shots of example chromosome transitions are shown
in Figure 3.

When learning alternative directions of movement
(moving backwards, turning left/right), the data from the
vision sensor is manipulated differently. However, only
slight variations in the fitness equation are required (i.e.
greater weight given to Δxcenter-of-mass for determining
left/right directions). This allows a robust method for
assessing omni-directional motion in the field.

Figure 3: Successful transition (LEFT); Less successful
transition (RIGHT)

3) Reproduce

As a variation on the standard five step procedure
common in a genetic algorithm (i.e. encoding, fitness
evaluation, crossover or combination, mutation, and
replacement), a modified version of the evolutionary
algorithm is implemented to allow for real-time, fast
implementation in the field, which also minimizes undue
wear and tear on the hardware. Due to the nature of the
FSM and its architecture, two features of the learning
algorithm required attention during design: crossover and
mutation.

Based on the representation used for encoding the
chromosomes, there is no guarantee that randomly
combining elements of two of the chromosomes would
result in a valid sequence of transitions unless unique
attention was paid to the crossover point as well as to each
chromosome selected. In addition, the mutation process in
genetic algorithms commonly involves independently
changing one gene in a given chromosome in order to
imitate nature’s random influence on evolution. Since
transition commands and corresponding states carry a certain
degree of dependence on each other in our approach, the
random, independent, actions found in the crossover and
mutation stage need to be modified. As such, reproduction of

6

4

2
1 5

NNB

NNN

2338

a new chromosome involves randomly selecting a
crossover/mutation point and then reproducing the
remainder of the chromosome using the same process as in
the generation of the initial population. In addition, instead
of selecting the fittest member of the population for each
crossover operation, the least fit chromosome is selected
during the process in order to decrease the number of
generations required for in-the-field operation.

4) Create next generation

The primary computational bottleneck in evolutionary
algorithms is the number of evaluations required to obtain an
optimal solution. For implementation on the physical
hardware, three primary factors effect convergence time – 1)
the number of genes that comprise a chromosome, which
defines the walking pattern, 2) the number of chromosomes
that comprise a generation, which equates to the number of
times a potential walking gait must be implemented, and 3)
the number of generations that must be evaluated before an
optimal solution can be found. As such, to minimize the time
required for learning, we institute a process that adaptively
expands the number of genes found within a population,
while keeping the original set of genes constant. In this way,
the fitness of a newly created chromosome needs only to be
reassessed and remain in the population until the specified
number of evolutions has occurred. This duplication and
continued evolution process tests the robustness of the first
half of the chromosome while independently developing a
second half as a supplementary gait. Producing a new
generation thus involves the following process:
1) Generate an initial population of α chromosomes with β

genes per chromosome.
2) Evolve over γ generations, selecting and mutating the

two least fit chromosomes during each evolution and
creating a new generation with the most fit
chromosomes.

3) Expand the population to α chromosomes with 2*β
genes.

4) Repeat Step 2-4 until convergence.

This process using different values of α, β, and γ was tested
multiple times and the results are presented in the next
section.

C. Real-time adaptation after learning
After an optimal solution is achieved and a walking strategy
that maintains persistent forward progress is learned, the
fitness value Fitnessmax is used to monitor and compare
forward progress during navigation. When fitness falls
below a certain threshold such that:

!

Fitness
max

"

"0.1*#xcenter"of "mass + (pt+k " pt+(k"1))
k=1

N

$

N
< %

the learning algorithm is activated until forward progress is
again maintained. In this way, the process used for learning
is integrated into real-time operation such that it can be used
to re-learn during navigation within varying terrain
environments.

III. FIELD TEST STUDIES
 For assessment of the learning methodology, we
implement the hierarchical strategy on a legged platform that
consists of a mechanical body frame, high torque servos,
vision sensor and a controller (Figure 4). The skeletal body
of the platform is equipped with six legs and has dimensions
of [7.5 x 26.5 x 24] cm. Movement of each unit is
accomplished using three HI-Tec HS-645MG high torque
servos to control movement of three sets of legs. One servo
is used to control a set of left legs (front and back) while the
other controls a set of right legs (front and back). The third
servo is used to control a center set of legs (left and right).
When oriented correctly, this center set allows a vertical tilt
of the unit from one side to the other. Each servo is
orientated in-between its respective set of legs, such that
each set is coupled using a push-pull scheme. Thus, as a
servo pushes one leg, it simultaneously pulls the other in the
same direction. An example of this can be seen with the left
set of legs in Figure 5.

Figure 4: Legged robotic platform

Figure 5: Servo-to-leg relationship

2339

 The CMUCam2 vision sensor, with multiple ports for
servo control, provides the primary sensor data. Finally, a
RidgeSoft Intellibrain™ robotics controller is used to
implement the learning algorithm and provide the control
signals for commanding robot movement.
 Experimental tests were conducted using the robotic
platform. Twenty separate trial runs were tested with the
robot positioned at varying starting locations. The trials were
used to test the effectiveness of our hierarchical strategy in
learning a new robot walking strategy, without the
traditional time complexity associated with implementation
of genetic algorithms on physical hardware. The learned
walking strategy was compared with a hand-tuned set of
commands as shown in Table II.
 The average fitness value associated with the hand-
tuned chromosome commands was computed at 68.8 (based
on 6 different trial iterations). In Table III, we show a
snapshot of an experimental run based on our approach,
using chromosomes of varying gene lengths. The fitness
values depicted in each row of Table III documents the best
fitness values associated with both the initial and evolved
population. In our experimental runs, our initial populations
consist of 10 chromosomes each. The average number of
evaluations until convergence was approximately 400
evaluations, resulting in an implementation time of 17
minutes.

Transition
Command

Description

6 Tilt body frame to right
1 Left Leg set forward
5 Tilt body frame to left
3 Right Leg set forward
6 Tilt body frame to right
4 Right Leg set backward
5 Tilt body frame to left
3 Right Leg set forward
2 Left Leg set backward
6 Tilt body frame to right

Table II: Hand-tuned chromosome commands

Initial Population Expansion (convergence
occurred after ~5 evolutions)

Number of
Genes (β)

Best
Fitness
Value

Number of
Genes (β)

Best Fitness
Value

3 genes 3.2 6 genes 66.6
 7.1 66.8

4 genes 5.5 8 genes 32.8
 -6.7 65.0

5 genes -5.0 10 genes 50.1
 18 59.0

6 genes 22 12 genes -7.3
 16 37.9

Table III. Data from example experimental scenario

Based on our experiments, a number of observations are
made. For a 3-gene and 4-gene initial population set,
comparable results were achieved with respect to the hand-
tuned walking pattern. Since the system was not biased with
any prior knowledge on a suitable walking gait, the
developing of a pattern based on a methodology that can
quickly learn in the field satisfies our original objectives.
We do note that our hierarchy approach did not improve
over the hand-tuned walking pattern, primarily due to the
fact that our convergence criteria was based on using this
value as our stored maximum fitness value, as discussed in
Section IIIc. Our primary focus though was to maintain
persistent forward locomotion along the body axis, while
navigating in natural terrain environments, which the system
was able to achieve.

In addition, we notice that although expanding from an
initial gene size of 4 (versus 3), shows results comparable to
the hand-tuned chromosome, the longer chromosome length
combined with the lower fitness values show that less
accurate forward movement was achieved. This was viewed
to be due to the random selection of state transition
commands resulting in excessive servo movement.
Examining the 5-gene initial set shows that, although the
number of genes per chromosome increases, the average
fitness values for the best performing chromosomes remains
lower than those of lower chromosome length. This further
suggests the occurrence of unnecessary leg executions
hindering the overall performance of the unit. Additionally,
the fitness values of the least fit chromosomes are noticeably
lower than those for the previous two gene cases. Finally,
the 6-gene set demonstrates the worst performance of
lengthened chromosomes. More qualitative observations
include undesired movement to the left and right of the
target in excess of 30 degrees with respect to the origin-to-
target line of sight. This contributed to the largely negative
fitness values shown above. These observations have us
conclude that starting with a smaller gene-size provides
better results with respect to our forward locomotion criteria
used for success.

IV. CONCLUSION
The contribution of this work includes a detailed process for
providing a legged mobility platform with the ability to learn
new walking gaits autonomously while operating in an un-
chartered environment. The primary benefit is that the
methodology can be applied to a large class of multi-legged
robotic platform, provided that the number of states can be
defined for a FSM and the optimal chromosome length is
established when implementing the modified learning
algorithm. Future work will involve testing in more variable
terrain environments, as well as exchanging learned walking
gait parameters with other robots that are operating
simultaneously within the field.

2340

V. ACKNOWLEDGEMENT
The authors would also like to express their gratitude to the
National Science Foundation (Grant Nos. EEC-0453295 and
EEC-9402723) for their financial support of the SURE
program.

VI. REFERENCES

1. E. Tunstel, A. Howard, T. Huntsberger, A. Trebi-
Ollenu, J. Dolan, “Applied Soft Computing Strategies
for Autonomous Field Robotics,” Fusion of Soft
Computing and Hard Computing for Autonomous
Robotic Systems, Physica-Verlag, 2003.

2. Committee on Army Unmanned Ground Vehicle
Technology, Technology Development for Army
Unmanned Ground Vehicles, National Academy of
Sciences, 2002.

3. N. Kohl and P. Stone, “Policy gradient reinforcement
learning for fast quadrupedal locomotion,” Proc. IEEE
Int. Conf. on Robotics and Automation, May 2004.

4. S. Chernova and M. Veloso, “An Evolutionary
Approach to Gait Learning For Four-Legged. Robots,”
Proceedings of IROS'04, Sendai, Japan, Sept. 2004.

5. Y. Fukuoka, H. Kimura and A.H. Cohen, "Adaptive
Dynamic Walking of a Quadruped Robot on Irregular
Terrain based on Biological Concepts", Int. Journal of
Robotics Research, Vol.22, No.3-4, pp.187-202, 2003.

6. M.A. Lewis, A.H. Fagg, and G.A. Bekey, “Genetic
algorithms for gait synthesis in a hexapod robot,” In
Y.F. Zheng, editor, Recent trends in mobile robots.
World Scientific, 1993.

7. A. M. Howard, L. Parker, B. Smith, “A Learning
Approach to Enable Locomotion of Multiple Robotic
Agents Operating in Natural Terrain Environments”,
Int. Journal of Intelligent Automation and Soft
Computing, to appear 2007.

8. D.E. Goldberg, "Genetic Algorithms in Search,
Optimization, and Machine Learning," Addison-
Wesley, 1989.

2341

