
 1

A Novel Tiered Sensor Fusion Approach for Terrain 
Characterization and Safe Landing Assessment 

 
Navid Serrano, Max Bajracharya, Ayanna Howard*, Homayoun Seraji 

 
 Jet Propulsion Laboratory *Human-Automation Systems (HumAnS) Lab 
 California Institute of Technology School of Electrical and Computer Engineering 
 4800 Oak Grove Dr. Georgia Institute of Technology 
 Pasadena, CA 91109, USA Atlanta, GA 30332, USA 
 firstname.lastname@jpl.nasa.gov ayanna.howard@ece.gatech.edu 
 
Abstract—This paper presents a novel, tiered sensor fusion 
methodology for real-time terrain safety assessment. A 
combination of active and passive sensors, specifically, 
radar, lidar, and camera, operate in three tiers according to 
their inherent ranges of operation. Low-level terrain 
features (e.g. slope, roughness) and high-level terrain 
features (e.g. hills, craters) are integrated using principles of 
reasoning under uncertainty. Three methodologies are used 
to infer landing safety: Fuzzy Reasoning, Probabilistic 
Reasoning, and Evidential Reasoning. The safe landing 
predictions from the three fusion engines are consolidated in 
a subsequent decision fusion stage aimed at combining the 
strengths of each fusion methodology. Results from 
simulated spacecraft descents are presented and discussed. 
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1. INTRODUCTION 

NASA uses robotic spacecraft, instrumented with a variety 
of sensors for science exploration of remote planetary 
surfaces such as the desolate and rocky terrain of Mars.  
Spacecraft landers are equipped with necessary sensors and 
instruments needed to perform a mission at the site where 
they land.  Their utility, though, is dependent on their ability 
to safely land at targeted scientific sites of interest.  As such, 
these robotic spacecraft must land autonomously, without 
frequent contact with Earth-based mission operators [1]. 
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Typically, engineering criteria established for ensuring 
mission success are constructed by analyzing terrain 
characteristics that affect the spacecraft’s ability to land 
safely on a planetary surface within a geo-referenced ellipse 
of specified uncertainty [2]. Recent images of the surface of 
Mars have been routinely acquired from orbit by cameras 
and instruments on the NASA Mars Global Surveyor and 
Mars Odyssey orbiters.  They have acquired images of the 
landing sites where spacecraft are expected to land. Each 
spacecraft is navigated to land within a landing ellipse of a 
size commensurate with the precision of the spacecraft 
navigation system and with a very high probability of 
success.  

To extract all terrain characteristics that satisfy engineering 
constraints, a suite of on-board heterogeneous sensors can 
be used. The data retrieved from multiple sensors must be 
fused in real-time to ensure safe spacecraft landing. During 
descent, sensor data are used to analyze the approaching 
terrain for hazards, and sites within the landing ellipse that 
are deemed safe for spacecraft landing are selected. This 
enables any trajectory adjustments to occur in the thruster 
command sequence in order to minimize the risk to the 
spacecraft at touchdown. 

2. TIERED APPROACH 

Three sensors are used to provide measurements of the 
terrain features during descent: phased array terrain radar, 
Mars descent imager, and scanning lidar. The characteristics 
for these sensors are shown in Table 1.  

Table 1. Sensor characteristics 
 Radar Camera Lidar 

Min. Range 100m 0m 0.5m 
Max. Range 10km 8km 1.5km 
Resolution 4.4m @ 1km 0.025m @ 10m 1.25mrad / pixel 

FOV 24° 10° 66° 
Image size 10 × 10 1024 × 1024 100 × 100 

 
As can be seen from Table 1, the sensors can be naturally 
grouped in tiers based on their operating ranges. In the first 
tier, at high altitudes (10km – 8km), only the radar is 
operational. In the second tier, at medium altitudes (8km – 
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1km), both the radar and camera are operational. And 
finally, in the third tier, at low altitudes (1km – touchdown), 
all three sensors, the radar, camera, and lidar, are 
operational. Thus, during descent, the terrain is assessed 
from measurements obtained from one sensor, two sensors, 
or three sensors, depending on spacecraft altitude, as 
summarized in Table 2. 

Table 2. Tiered sensor grouping 
Tier Range Active Sensor(s) 

1 10km – 8km Radar 
2 8km – 1km Radar + Camera 
3 1km - Touchdown Radar + Camera + Lidar 

 
Safe landing is the most important factor in landed space 
exploration missions. If the landing safety assessment is 
sensor-driven, it is obviously imperative to avoid sensor 
failure. The use of multiple sensors provides added 
robustness to safe landing site selection through 
redundancy. In addition, the sensors chosen for this study 
provide a complementary set of terrain measurements, 
which enhance the safe landing assessment.  

One of the camera’s strong characteristics is its high 
resolution. However, regions of the terrain with dangerous 
elevation changes are often undetectable under certain 
lighting conditions. This limitation is mitigated by the 
inclusion of the radar, which provides a 2.5-dimensional 
model of the terrain. Although the radar resolution is coarse, 
it is sufficient to detect large hazards and changes in 
elevation; particularly at high altitudes. The inclusion of the 
lidar, which has a very high resolution, is important at lower 
altitudes where smaller hazards, such as rocks, must be 
detected. Finally, the use of both active (radar and lidar) and 
passive (camera) sensors affords flexibility in dealing with a 
variety of environmental conditions, which in turn increases 
the number of feasible landing regions that can be detected. 

3. TERRAIN FEATURES 

Various terrain features are used to assess landing safety, 
depending on the operational sensors. The features used by 
the fusion engines to infer safety must map to known 
hazards, such as craters, rock fields, ravines, cliffs, steep 
hills, and so on. One of the unique aspects of the proposed 
approach is that a combination of low-level terrain features 
derived directly from the sensor measurements are used 
together with high-level terrain features which are obtained 
by landmark detection algorithms. Let r(x,y), c(x,y), l(x,y) 
represent the raw radar, camera, and lidar sensor 
measurements at coordinate (x,y) relative to a fixed frame 
on the terrain surface. The derived terrain features used for 
landing assessment are summarized below. 

Height 

This feature is the difference between the radar range r(x,y) 

and the mean range value r . The mean range value is 
computed over all (x,y) and provides an estimate of the 
terrain surface baseline. The height feature is defined as: 
 
 ),(),(1 yxrryxf −=  (1) 

Radar Slope 

This feature can be obtained by estimating the slope of a 
plane locally fitted to the radar range or more simply by 
calculating the gradient magnitude of the radar range: 
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Camera Roughness 

A measure of terrain roughness as observed by the camera 
is obtained by computing the local intensity variance at each 
pixel: 
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where W is a sub-region of the camera intensity image 
c(x,y), |W| is the cardinality or number of pixels in W, and 

Wc  is the mean intensity in sub-region W. In addition, the 
feature is smoothed to limit noise effects. 

Craters 

In order to enhance the terrain characterization, high-level 
features are also incorporated, that is, features that are 
derived through additional intelligent processing of the 
sensor measurements and map to specific landmarks 
directly associated with landing safety. 
 
The first of such high-level features is the presence of 
craters. The crater detection algorithm described in [3] is 
used to determine the shape of craters detected from camera 
imagery. This is a Boolean feature that represents regions of 
the terrain where craters are observed. After identifying 
candidate craters in the camera image based on the sun 
angle and the cast shadows, the crater detection algorithm 
fits an ellipse to the crater boundaries. Let x0,i, y0,i, ai, bi, and 
θi be the ellipse center x-coordinate, center y-coordinate, 
semi-major axis length, semi-minor axis length, and rotation 
angle, respectively, for the ith detected crater. The Boolean 
map describing the presence of craters is then 
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and x and y are points in a coordinate system rotated by θi 
and translated by x0,i and y0,i.  

Rocks 

The second high-level feature employed is the presence of 
rocks. Rocks are also detected from camera imagery using 
the algorithm described in [4]. The algorithm works by first 
detecting shadows in the image and then determining the 
size of the candidate rock based on the length of the cast 
shadow, the known sun angle, and a generic rock model.  
 
Similar to the craters, the presence of rocks is a Boolean 
feature: 
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where R is the set of pixel locations in the image identified 
as rocks. 

Lidar Slope 

The slope of the terrain is estimated by fitting a plane about 
the local region surrounding every point in the lidar 
elevation l(x,y). Using the plane model z = ax + by + c, the 
Least Median of Squares (LMedSq) regression method [5] 
is used to find the parameters of the best fitting plane at 
each location (x,y). The slope is simply: 
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where â and b̂ are the estimates of plane parameters a and b 
at location (x,y). 

Lidar Roughness 

Using the plane fitting method described above, the lidar 
roughness is merely the residual of the lidar elevation l(x,y) 
and the value of the best fitting plane at (x,y): 
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where ,â ,b̂ and ĉ are the estimated parameters of the best 
fitting plane at (x,y). 

Because the features are derived from different sensors with 
different operating ranges, only subsets of the full feature 
set are used during descent. The feature subsets change 
according to spacecraft altitude, consistent with the tiered 
approach. A summary of the feature subsets used for terrain 
characterization is shown in Table 3.  
 

Table 3. Features used in each tier 
Tier Features 

1 Height, radar slope 
2 Height, radar slope, craters, camera roughness 
3 Height, radar slope, rocks, camera roughness, lidar roughness, 

lidar slope 
  
Although the camera is operational in both tiers 2 and 3, the 
features derived from the camera are different in these two 
cases. Craters are only detected in tier 2 and rocks are only 
detected in tier 3. Examples of the terrain features extracted 
in each of the three tiers are shown in Figure 1. The 
features, as shown, have all been registered. 

4. SENSOR FUSION 

The Entry-Descent-Landing (EDL) operations of a 
spacecraft occur over a very short period of time, typically 
on the order of 1-2 minutes. Therefore, the computational 
speed of any algorithm used for terrain analysis is of utmost 
importance. The framework employed for selection of safe 
landing sites combines terrain hazard information extracted 
from different sensor sources into a global scene description 
[6]. To obtain hazard information, geological terrain 
characteristics are identified from sensor data and combined 
to determine the risk associated with landing within the 
landing ellipse with the given terrain characteristics. 

During spacecraft descent, terrain features are extracted 
from the operational sensors. These features must then be 
integrated in order to determine safe landing areas of the 
terrain. Principles of reasoning under uncertainty are used to 
assess landing safety based on terrain features observed by 
the sensors. Three different methods are considered: fuzzy 
reasoning, probabilistic reasoning, and evidential reasoning.  

The same features (discussed in the previous section) are 
used by each of the three reasoning engines to assess safety. 
A safety score is determined for each cell in a grid overlaid 
on the observed terrain. Instead of using a binary, hard-
decision safety score (i.e. safe vs. unsafe), a multi-level 
safety score is used in the continuous-valued interval: 

 ]0.1,0.0[),( ∈jis  (8) 
 
where i and j are cell coordinates in the terrain grid. Each 
reasoning engine will produce a safety score, determined 
from principles discussed below, in the interval [0.0,1.0]. 
However, the intermediate values between highly-unsafe 
(s(i,j)=0.0) and highly-safe (s(i,j)=1.0) vary according to the 
principles of each method as discussed below. 
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Figure 1. Example terrain (left) and extracted features at each tier (right). 

 

Fuzzy Reasoning 

To enable real-time implementation, hazard maps are 
constructed using a computationally efficient reasoning 
methodology called fuzzy-logic [7]. Fuzzy sets and 
conditional statements allow the system to manage heuristic 
rule-based knowledge, imprecise information from sensors, 
and the uncertainties in the knowledge about the 
environment. Also, fuzzy rule statements model the human 
expert’s domain knowledge. Fuzzy logic rule evaluation 
involves only simple arithmetic calculations that can be 
performed very rapidly. Therefore, the computational time 
required to create a hazard map is quite manageable for a 
real-time decision system, making it feasible for landing 
operations.  

At the lowest tier, the data extracted from the heterogeneous 
sensor suite on-board the spacecraft provide range data that 
can be converted into an elevation map for extraction of 
terrain characteristics such as terrain slope and roughness. 
At the highest tier, the data extracted from the sensor suite 
include topographic features, such as craters and hills. The 
hazard map is represented using a grid of cells in which 
values are represented by fuzzy sets with linguistic labels 
{HSAFE, MSAFE, MUNSAFE, HUNSAFE}, which stand 
for highly-safe, moderately-safe, moderately-unsafe, and 
highly-unsafe, respectively. Each cell is associated with a 
region physically located on the terrain surface.  Additional 
detail on this fuzzy logic methodology is provided in [1]. 

Individual safety maps are created independently for each 
contributing sensor on the spacecraft (i.e. radar, camera, and 
lidar). The safety map for each sensor is obtained by 
applying the set of rules and membership functions defined 
for each sensor. These rules are listed in Tables 4, 5, and 6, 
for the radar, camera, and lidar, respectively. It should be 
noted that the operators shown in the following tables are 
fuzzy t-norm (AND) and t-conorm (OR) operators, not 
Boolean operators. 

Table 4. Radar terrain safety fuzzy rule set 
Height Operator Slope Terrain 
VLOW or STEEP HUNSAFE 
LOW and SLOPED MUNSAFE 
LOW and FLAT MSAFE 
EVEN and FLAT HSAFE 
HIGH and FLAT MSAFE 
HIGH and SLOPED MUNSAFE 

VHIGH or STEEP HUNSAFE 
   
The relation between the linguistic labels for radar slope 
and terrain safety is quite intuitive. Yet, the inclusion of 
radar height merits some discussion. By including 
measurements of terrain elevation, the notion of 
traversability beyond the landing site is being incorporated. 
In the proposed approach, landing sites at very high or low 
elevations are considered unsafe because they typically 
correspond to hills or craters, which will be avoided. 
Although local areas within a crater or at the top of a hill 
may be safe for landing, a rover will not be able to traverse 
very far beyond the site after landing. 

Table 5. Camera terrain safety fuzzy rule set 
Hazard Operator Roughness Terrain 

PRESENT   HUNSAFE 
ABSENT and VROUGH HUNSAFE 
ABSENT and ROUGH MUNSAFE 
ABSENT and SMOOTH MSAFE 
ABSENT and VSMOOTH HSAFE 

 
The Hazard column in Table 5 refers to either craters or 
rocks, depending on the tier (see Table 3). If either craters 
or rocks are detected, the terrain is automatically labeled as 
highly-unsafe. Otherwise, the roughness is used to 
determine the safety level. 

Table 6. Lidar terrain safety fuzzy rule set 
Roughness Operator Slope Terrain 
ROCKY or STEEP HUNSAFE 
ROUGH and SLOPED MUNSAFE 

SMOOTH and SLOPED MSAFE 
ROUGH and FLAT MSAFE 

SMOOTH and FLAT HSAFE 
 

Lidar 

Camera 

Radar Terrain 

Tier 1 (at 8km) Tier 2 (at 4km) Tier 3 (at 1km) 

Roughness Slope 

Roughness 

Slope SlopeSlopeHeight Height Height

RocksCraters Roughness
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Tables 4-6 indicate the rules to be used to determine 
membership in the terrain safety classes. The actual safety 
score is obtained by defuzzification. The defuzzified safety 
score derived from each sensor is then fused in such a way 
that each sensor is allowed to influence the final decision 
process based on a certainty factor. Fuzzy rules and 
membership functions are also used to determine the sensor 
certainty values. The rules are shown in Tables 7 and 8. 

Table 7. Radar and lidar certainty fuzzy rule set 
Reflectance Op. Incidence Op. Range Certainty 

DARK     LOW 
LIGHT and SMALL and NEAR HIGH 

  LARGE   LOW 
LIGHT and SMALL and DISTANT HIGH 
LIGHT and SMALL and FAR MED 

 

Table 8. Camera certainty fuzzy rule set 
Sun Angle Op. Angular 

Motion 
Op. Range Certainty 

  SMALL   LOW 
SMALL     LOW 
LARGE and LARGE and NEAR MED 
LARGE and LARGE and DISTANT HIGH 
LARGE and SMALL and FAR HIGH 

 

The final fuzzy-based safety map is thus computed by 
combining the individual safety maps with sensor certainty 
values: 
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where sr(i,j), sc(i,j), sl(i,j), βr, βc, and βl are the safety scores 
and certainty values for the radar, camera, and lidar, for the 
cell (i,j) respectively. 

Probabilistic Reasoning 

A probabilistic approach to terrain characterization is also 
considered. Specifically, safety assessment is formulated as 
a problem of probabilistic inference using Bayesian 
Networks (BNs) [8]. BNs are directed acyclic graphs 
(DAG), where the nodes represent variables and the links 
between nodes represent causal dependence quantified by 
conditional probabilities. BNs have been used in a variety of 
fields [8], including data fusion [9]. A BN fully encodes the 
joint probability of the landing safety and the terrain 
features: 
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where f is the full set of N terrain features described earlier. 
Safety assessment can be formulated as a probabilistic 
inference problem by application of Bayes’ rule: 
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where S is a discrete random variable representing terrain 
safety, and f is a random vector of terrain features. The joint 
probability expressed in Eq. (10) assumes the features are 
all dependent, resulting in an N-dimensional probability 
distribution. However, computation of the joint probability 
can be simplified considerably by exploiting conditional 
independence relationships captured in the graphical 
structure of the BN. The graphical structure, and in turn the 
dependence relationships, of a BN can be determined by 
expert knowledge or from data. In the simplest case, called 
naïve Bayes [10], the terrain features are all considered 
conditionally independent given the terrain safety. In this 
case, the inference problem of Eq. (11) becomes: 
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The features f are extracted from terrain location (x,y) and 
mapped to cell location (i,j) depending on the resolution of 
the safety grid. A naïve Bayes representation of the terrain 
features and landing safety are used in this paper. The 
graphical representation of the BNs is shown in Figure 2.  
 

 
Figure 2. Naïve Bayes graphical representation. 

 
The absence of links between the feature nodes in Figure 2 
represents the conditional independence. Such an 
assumption does not always hold, though for most 
classification problems it is sufficient [10]. A different 
naïve Bayes structure is used in each tier, according to the 
feature subsets shown in Table 3. 
 
Although the terrain safety is modeled as a discrete random 
variable, S, a continuous-valued safety score can be 
obtained by using the posterior probability P(S|f)∈[0.0,1.0], 
which represents the degree of certainty that the terrain is 
safe for landing given the observed features. Hence, the 
probabilistic safety score at cell location (i,j) is  simply:  
 
 )|(),( fSPjis p =  (13) 
 
Whereas the safety assessment obtained using fuzzy 
reasoning explicitly incorporates sensor certainty, in the 
case of probabilistic reasoning, the sensor confidence is 

f1 

S 

fN ... 
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implicit. This confidence is captured by the likelihood 
)|( fSP . This distribution can be calculated analytically 

with a suitable model or directly from data. Here, a 
supervised learning approach is used to estimate )|( fSP  
from data. The features are extracted from a suite of 
planetary terrains (see section 6 for examples) which have 
associated safety ground truth. The continuous-valued 
features are modeled as Gaussian random variables and the 
parameters of the distributions are computed using 
Maximum Likelihood (ML) estimation. 
 
Evidential Reasoning 

Finally, Dempster-Shafer theory [11] is also considered for 
combining the sensor measurements.  In this approach, 
terrain safety is derived for each of the sensors and then 
combined with Dempster’s combination rule.  Each sensor 
makes a claim that the terrain is safe, unsafe, or unknown 
based on its measurements (terrain slope and roughness, or 
crater and rock detection) and associates a reliability or 
confidence to this claim.  That is, for a claim C, each sensor 
i has a reliability p.  The sensor safety values can then be 
combined using: 
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where Ci is the claim made by sensor i. This provides a 
degree of belief m in the claim.  For instance, if two sensors 
agree that a terrain location is safe, the degree of belief in 
that claim would simply be 1− (1−p1)(1−p2).  If, on the other 
hand, they make contradictory claims, the degree of belief 
in first sensor’s claim would be: p1(1− p2) / (1− p1p2). The 
final landing safety is then computed for the fused claims C: 

 [ ])()(
2
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where m is the degree of belief at cell location (i,j). In this 
case, uncertainty is explicitly captured because a sensor’s 
claim that a location is safe with some probability does not 
imply that it is unsafe with a complementary degree.  
Rather, it is a measure of the degree of belief that a location 
is safe and potentially unknown, which could mean it is 
either safe or unsafe.  As a result, a sensor that fails and acts 
conservatively will not cause the sensed area to be 
considered unsafe, but simply unknown, influencing the 
final combined belief in that area less.     

5. DECISION FUSION 

Each of the reasoning engines described above arrives at a 
safety score in the interval [0.0,1.0] that maps to highly-
unsafe and highly-safe at the lower and higher bounds, 

respectively. The intermediate values in the range depend 
on the unique reasoning characteristics of each of the three 
fusion techniques. Therefore, the distinctive and 
complementary aspects of each reasoning engine can be 
exploited and the individual assessments can be combined 
in a decision fusion step that yields a final safety score. 

Min/Max Decision Fusion 

The aforementioned fusion engines generally differ in terms 
of how aggressively or conservatively the safety scores are 
assessed in various parts of the terrain. Consequently, 
bounds on the numerical safety score can be obtained by 
computing the minimum and maximum safety scores for 
each fusion method at each cell location. 

Computing the minimum safety score—equivalent to a 
logical AND operation—provides a lower bound on the 
overall safety and can be considered a conservative 
assessment: 

 { }),(),,(),,(min),( jisjisjisjis epfmin =  (16) 
 
Computing the maximum safety score—equivalent to a 
logical OR operation—provides an upper bound on the 
overall safety and can be considered an aggressive 
assessment: 

 { }),(),,(),,(max),( jisjisjisjis epfmax =  (17) 

Weighted Average Decision Fusion 

While the use of min/max operators define the safety 
bounds, an intermediate safety score can be obtained by 
linearly combining the predictions of the three fusion 
methods: 

 ),(),(),(),( jiswjiswjiswjis eeppffavg ++=  (18) 
 
where, wf + wp + we = 1. Clearly, the choice of weights wf, 
wp, and we is very important. The weights can be set equally 
(wf = wp = we = 1/3) or can be set to different values in order 
to bias the result in favor of one or more of the fusion 
methods. 

6. SIMULATION RESULTS 

The proposed approach is validated on data obtained from 
simulated spacecraft descents. DSENDS, a high-fidelity 
dynamics and spacecraft simulator for entry, descent and 
landing [12], as well as models of the three sensors (radar, 
camera, and lidar) are used to extract measurements of the 
terrain during descent. The DSENDS simulation 
environment requires topographic models of the terrain and 
the fusion engines require sufficient terrain features in order 
to generalize the safety assessment. Thus, Digital Elevation 
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Maps (DEMs) of various planetary terrains are synthetically 
generated to simulate spacecraft descent. 

The terrain DEMs are created using a fractal model. Hills, 
craters, and rocks are then added interactively to create a 
variety of terrains with different landing hazards. The hills 
are generated using a Gaussian mixture model, the craters 
are generated using a hemispherical model, and the rocks 
are generated using randomly perturbed and quantized 
spheres. Given the suite of terrain DEMs, safety ground 
truth can be automatically generated based on the location 
of known hazards. Alternatively, the landing safety can be 
determined using expert knowledge. A typical synthetic 
terrain is shown in Figure 1. The terrain consists of an 
elevated ridge with a steep drop-off towards a valley. 
Multiple craters of varying sizes are scattered throughout 
the terrain. Also present, though not visible in the figure, are 
large boulders of varying sizes. 

Using a suite of synthetic terrains, the DSENDS simulation 
environment is used to produce sensor measurements of the 
terrain during simulated descents. The sensor measurements 
are then processed to obtain the terrain features. Given the 
features, the fusion engines are applied in order to assess 
safety at various elevations above the surface. Simulation 
results are shown in Figures 3-6. In each case, the safety 
assessment is overlaid on the 3D terrain. The safety color-
scheme is: red=highly-unsafe, orange=moderately-unsafe, 
yellow=moderately-safe, and green=highly-safe. 

The difference between the three reasoning engines is 
evident from the results shown in Figures 3-5. As can be 
seen in Figure 3, the fuzzy safety assessment provides more 
uniformly distributed safety scores as larger portions of the 
terrain are classified as moderately-unsafe and moderately-
safe compared to the other two methods (Figures 4 and 5). 
Unfortunately, this leads to one of the craters in the second 
tier of Figure 3 being classified as moderately-unsafe. 

The probabilistic safety assessment provides more contrast 
as most regions of the terrain are classified as highly-unsafe 
or highly-safe, as shown in Figure 4. There is less 
uncertainty in determining the two extremes of highly-
unsafe and highly-safe. As a result, the crater that is missed 
by the fuzzy reasoning engine in Tier 2 is properly marked 
as highly-unsafe by the probabilistic reasoning. On the other 
hand, fewer regions are classified in the moderate ranges. 

Finally, the results using evidential reasoning can be seen  
in Figure 5. In this case, the features are mapped to safety 
levels heuristically for each sensor. Application of 
Dempster-Shafer’s combination rule in Eq. (14) yields a 
fused safety assessment, as shown in Figure 5. In Figure 5, 
the progression from Tier 1 through Tier 3 shows that the 
landing score depends largely on agreement between the 
sensors. That is, when multiple sensors agree that a 
particular region of the terrain is either safe or unsafe, the 

certainty increases. Conversely, when the sensors do not 
agree, the landing score is set with less certainty. 

As can be seen from Figures 3-5, the results obtained from 
each of the three fusion methods are quite different. This is 
a desirable outcome in that the differing landing scores can 
be integrated to produce a more definitive decision. The 
decision fusion stage allows for the different attributes of 
each approach to be combined. As discussed earlier, by 
taking the minimum of the three safety scores, a 
conservative final assessment is obtained. This result can be 
used if there is not much a priori information about the 
region where the spacecraft is landing. Computing the 
maximum safety score provides an aggressive final 
assessment—one that can be used if a priori information 
suggests the region is mostly safe for landing. By 
computing a weighted average between the three methods, a 
more balanced final assessment is obtained. The difference 
between the three decision fusion approaches is shown in 
Figure 6. 

7. CONCLUSIONS AND FUTURE WORK 

A tiered approach to terrain characterization and safe 
landing assessment is presented. The tiered approach allows 
for the use of a variety of terrain features derived from 
different sensors that are operational at various altitudes 
during descent. Such a framework enhances the safety 
assessment by providing a richer set of terrain features, as 
well as providing added robustness. In addition, three 
different reasoning mechanisms are used to integrate the 
terrain features and determine landing safety. The reasoning 
or fusion engines each provide a unique approach to the 
problem and thus, complementary assessments of landing 
safety. These complementary assessments are combined in a 
decision fusion stage. Thus, the final safety score blends the 
attributes of multiple sensors as well as multiple reasoning 
engines, which is a unique aspect of the proposed method. 
Future work will include arbitrary descent paths (which 
involve more complex data registration techniques) as well 
as the incorporation of safety predictions over time. 
Additional means of combining the safety scores in the 
decision fusion stage will also be investigated. 
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Figure 3. Terrain safety assessment using fuzzy reasoning. 

 

Figure 4. Terrain safety assessment using probabilistic reasoning. 

 

Figure 5. Terrain safety assessment using evidential reasoning. 

 

Figure 6. Terrain safety assessment in tier 1 (at 8km) after decision fusion.
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