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Recursive Learning for Deformable Object Manipulation 

Abstract 
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This paper presents a generalized approach to handling of 
3D deformable objects. Our task is to learn robotic 
grasping characteristics for a non-rigid object represented 
by a physically-based model. The model is derived from 
discretizing the object into a network of interconnected 
particles and springs. Using Newtonian equations, we 
model the particle motion of a deformable object and thus 
calculate the deformation characteristics of the object. 
These deformation characteristics allow us to learn the 
required minimum forces necessary to successfully grasp 
the object and by linking these parameters into a learning 
table, we can subsequently retrieve the forces necessary to 
grasp an object presented to the system during run time. 
This new method of learning is presented and the results 
of a virtual simulation are shown. 
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1. Introduction 

Most robotic systems have been built under the 
assumption that manipulation of rigid objects remains the 
primary task. Geometry of the object is usually very 
static, with very little variance between one instance of the 
object and another. The robot must have knowledge 
pertaining to the exact structure and location of objects in 
the environment and the precise actions to be performed. 
But, in reality, many objects are non-rigid. Most are 
unsymmetrical, compliant, and have alterable shapes. 
Even solid objects can deform when the object’s 
dimensions become extensive. Seemingly simple 
manipulations and actions can result in complex changes 
to the object due to the large deformation caused by 
external forces. In general, deformable objects may be 
one-,two-, or three-dimensional (flexible beam, flexible 
plate, flexible body). In the real world, these classes of 
objects include balls, beams, hoses, cloth, and wire. 
Manipulation of a deformable three dimensional object is 
the least addressed in research areas, with many feeling 
that ,by addressing the simpler one-dimensional case, a 
generalized three dimensional solution can be easily 
found. Unfortunately, no one has, as of yet, developed a 
generalized solution to manipulation of 3D deformable 

objects. As a result, automated handling of soft, flexible 
3D objects still needs to be addressed. 

This proposal presents a generalized approach to handling 
of 3D deformable objects. In the past, the operating 
robotic system required in-depth knowledge of object 
characteristics in order to successfully complete a 
manipulation task. These attributes included object 
dimensions, stiffnesdelastic coefficients, and density 
parameters. Normally when an object is unexpectedly 
presented to the system, such information as this is not 
readily available. At most the object’s weight may 
possible by measured as it traverses down an assembly 
line. A robust robotic system therefore requires more 
general modeling of an object. We therefore propose to 
address the issue of a generalized model in terms of a 
learning process. We propose that the attributes which the 
system needs to know for grasping a deformable object 
can be learned off-line for a wide range of three 
dimensional objects. The attributes learned can then be 
mapped such that, during run-time, enough relevant 
attributes can be retrieved to grasp any three dimensional 
object presented to the system. This approach thus ensures 
that a robotic system remains robust and able to handle a 
multitude of three dimensional objects belonging to the 
class of deformable or rigid bodies. 

11. Background 

There has been some study on automated handling of non- 
rigid objects. David W. Meer and Stephen M. Rock [5] at 
Stanford University researched the development of a 
controller which can explicitly control the deformation of 
a flexible object. Although the project was successful in 
implementing an insertion task in which the object had to 
be deformed within certain specifications in order to 
perform the assembly operation, the proposed method 
possessed some limitations. The system only modeled a 
single flexible degree of freedom. It required an explicit 
initial model of the object which included masslobject 
dynamics and a model of the object’s flexibility, and 
complex sensors were required to measure the position 
and force of the object. 

Patton, Swern, Tricamo, and van der Veen [7] used an 
adaptive control loop to generate correct tension on a 
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piece of cloth. The adaptive controller was used to 
successfully control the straightening of a wrinkled piece 
of cloth. The disadvantages to this research effort were the 
system only modeled a two dimensional object and the 
system required explicit knowledge of the initial and 
desired tension in terms of x, y, and 8. 

A.M. Annaswamy (MIT) and D. Set0 (Boston University) 
[ l ]  addressed the issue of manipulation of deformable 
objects using compliant finger pads. The simulation 
results showed the system’s ability to control the global 
motion of the object while keeping the deformation of the 
object at a constant. Unfortunately, the parameters which 
define an object as deformable must explicitly be 
provided to the system before successful completion of 
the task. 

Robotic handling of deformable objects is comparable to 
the handling of rigid objects by soft, deformable robotic 
fingers. Reznik and Laugier [9] from UC Berkeley, 
address the issue of real-time dynamic simulation and 
control of a “virtual“ deformable object. A simulation 
program was successfully able to map the “virtual” 
deformation of a three dimensional finger as it pressed 
against a rigid surface. The only disadvantage to this 
system is that the object’s volumetric dimensions, density, 
and elasticity must be known a prior. 

Shimoga (Carnegie Mellon University) and Goldenberg 
(University of Toronto) [ 111 modeled a soft finger using 
the Kelvin model in which a spring and damper are placed 
in parallel. Using experimentally calculated stiffness and 
damping coefficients in the Kelvin model, and given the 
desired impedance parameters, the researchers were able 
to successfully control the impedance of a soft fingertip. 
Unfortunately this model is only for the one-dimensional 
case. 

111. Technique 

Our main focus is to learn an adequate grasp for a 
deformable object. To be more specific, our task is to 
learn what forces a multiple robotic mechanism must exert 
in order to grasp a common deformable object 
cooperatively. We choose to represent grasping as the act 
of pushing up against an object from two opposite ends. 
Our system, therefore, utilizes two cooperative 
manipulators, each possessing an end-effector constructed 
as a flat surface palm and possessing a force sensor able 
to detect and record any force applied by (or against) the 
palm’s surface area. 

In order to adequately manipulate an object, we need to 
maintain a firm grasp on the deformable body. We must 

therefore maintain an internal representation of the object 
which keeps track of the dynamic state of the body. We 
shall begin by focusing on the physical changes of the 
deformable body. Once a representation for the 
positional alterations of the deformable object is retrieved, 
an adequate grasp can be determined. We propose that a 
relationship between deformation, stiffness, and force can 
be learned such that an adequate grasp with minimal force 
can be achieved. Once this relationship is learned, we can 
utilize these factors to maintain a firm grasp on any 
deformable body by comparing the current run-time mass 
and deformability of the object with the learned 
relationship. When they are equivalent, we can retrieve 
the necessary force required for grasping a deformable 
object. 

Constructing a Physically Bused Model 

Discretizing the Object 

For a class of elastic, isotropic materials, molecules are 
organized as an orderly array of atoms arranged in rows 
such that each atom is at an equilibrium distance from 
each other. This structural arrangement is called a space 
lattice and is represented by a 3-dimensional array of 
cubic blocks [2 ] .  

Fig. 1 Space Lattice Arrangement 

We shall utilize this characteristic to represent an object 
as a particle based system constructed from a discretized 
sampling of its volume. The discretization factor, a>O, is 
derived from the density characteristics inherent to the 
object’s material properties. For this effort, we shall 
assume all objects presented to the system have known 
masses. Thus the density can be calculated with respect to 
the object’s mass and volume and can be used for 
determination of a. Assume the object’s perpendicular 
faces give rise to the (xo,yo,zo) coordinate system and the 
object’s corner is centered at the origin. Given the 
derived discretization constant, the number of particles 
that comprise the object can be determined. 

where V is the volume of the object, A, is the area of the 
object’s face projected along axis E i j  and fixed at zero, 
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and di is the diameter of the object's face projected along 
axis E i and fixed at zero (Fig. 2). 

. Y  I 
Fig 2. Representation of A,, di 

We shall thus represent the particle discretization by Vijk, 

a three dimensional matrix of vectors. 

Let Ri = maximum radius of object in i direction 
V i,j,k E x,y,z: f, = k * ( 2 R ,  + a )  

a 
U = [a * ( i  - f i ) ]  - R i  
b = [a * ( j -  f i l l -  R ,  
~ = [ a * k ] - R ,  
if 0 S f(a,b,c) Sg(Ri,Rj,Rk), vijk= (a,b,c)T 

else, vijk= $ 

Modeling Object Deformation 

Deformation of a material are caused at the microscopic 
level by visco-elastic interactions between molecules. 
Such deformation consists primarily of distortions of the 
atomic space lattice. When such an object is compressed, 
the distances between atoms is decreased. 
Accumulations of these small decreases result in over-all 
elastic shortenings. The equations governing the particle 
motion of such a deformable object can be written in 
Lagrange's form as: 

The relationship between distance and applied force is 
approximately linear for the small changes in space 
usually considered. Elastic deformation therefore 
involves volume change and is linear in nature. A 
viscoelastic material exhibits three basic characteristics: 
instantaneous elastic response, viscous damping, and 
delayed elastic response. These characteristics can be 
modeled by a spring and damper in parallel (Kelvin 
model). The spring deforms in direct proportion to the 
amount of load applied. Depending on the rate of 
loading, the dashpot deforms proportionately, acting as a 
damper to soak up deformation energy. These two 
characteristics, the ability to deform in a perfectly elastic 
manner and the ability to undergo relaxation, enable the 
Kelvin model to behave visco-elastically. In order to use 

this model in characterizing a deformable object, we must 
ensure that there is enough connectivity between mass 
nodes within the object to adequately model its 
deformation. In addition, the system must remain as 
simple as possible by keeping the number of modeling 
elements to a minimum. The spring and dashpot model is 
uncomplicated, is able to run in real time, and works well 
with 1Tge deformations. We shall thus utilize the Kelvin 
model and characterize a deformable object as a set of 
atomic particles locally interconnected by damped springs 
(Fig 3). For this case, p (  'y, ,t) is the position of 
particle vijk at time t, m is the mass of each particle, p is 
the damping coefficient, and aE(x)/ ap is the elastic force 
of the body (the potential energy of the elastic 
deformation) [ 121. 

Fig. 3 Network of Particles and Springs 

Now, we must determine the deformability of an object. 
In order to do this, we must determine an approximate 
value for the spring and damper constant of each spring. 
The spring constant will be denoted as D - the 
deformability constant, and p will denote the damper 
coefficient. To measure the deformability constant, we use 
the following procedure: 
1. Using both manipulators, apply a known constant 

force against the object's surface 
2. Measure displacement of the surface 
3. Calculate D from knowledge of the discretization of 

the object 
4. Repeat this for several force values, plot, and fit to a 

curve 
5. The force-deformation analytical relation is fsWng = 

D(x)*x 

To measure the damper coefficient, we use the following 
procedure: 
1. Using both manipulators, deform the object surface a 

known constant displacement 
2. Measure force on the manipulator (fd" = fsensd - 

3. Repeat this for several displacement values, plot, and 
fit to curve 

4. The force-damping analytical relation is fdmped = 
p(x',x)*x' 

fspring) 
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Learning An Adequate Grasp 

To learn the characteristics of an adequate grasp, we must 
determine the relationship between mass, deformability, 
and force. Once this relationship is learned, we can utilize 
these factors to maintain a firm grasp on any deformable 
body by comparing the current run-time 
maddeformability of the object with the learned 
relationship. When they are equivalent, we can retrieve 
the necessary force required for grasping a deformable 
object. The steps required to handle manipulation of 3D 
deformable objects are as follows: 
I. Learn what forces a robotic system must exert in order 
to grasp a deformable 3D object 

a) Record dimensions of a known object 
b) Calculate deformability of a known object 
c) Determine force necessary to grasp known object 

by iteratively lifting object 
d) Link object attributes and grasping force into a 

learning table 
a. Retrieve the learned forces a robotic system must 

exert in order to grasp a deformable object on-line 
a) Determine the 3D position and dimensions of an 

unknown object 
b) Calculate the deformability of an unknown object 
c) Map these object attributes into the learning table 

to retrieve grasping force 

IV. Simulation Results 

A simulation program was written which simulates the 
above learning process. In order to validate the process, 
Reznik and Laugier’s algorithms are used to analytically 
model the deformation of the object as it is grasped. 

Reznik and Laugier’s Algorithm 

A Particle System T is a tuple (P,S) made up of a set P of 
particles and a set S of springs. Each particle is 
represented by (m,x,v,f) where m is the particle’s mass, x 
is the particle’s position, v is the particle’s velocity, and f 
is the force acting on the particle. Each spring is 
represented by (i,j,k,p,lo) where pi,pj E P are connected 
by the spring, k is the spring’s elastic constant, p is the 
damping factor, and lo is the rest length. Let uij be the 
force spring s applies to its endpoint particles pi and pj. 

Let ui, = [k(lldll-lo) + plldllld wherek(lldlCl,)dis the 
resultant of the tensions of the springs linking pi to its 
neighbors and p 11; is the viscous damping used to 

model in first approximation the dissipation of the 
mechanical energy of the model. 

Given this initial model, we must now determine particle 
displacement as a known force is applied against the 
surface. In order to ensure spring convergence, we must 
calculate internal forces at an iterative instant of time. 
The period of an oscillatory particle system is given by 

= &. The time factor must therefore by chosen 

such that At << To. 

At each instance of time, the force acting on the particle 
consists of the summation of internal spring forces and 
any external force applied to the particle. 

We can use the standard equations of motion to calculate 
all particle displacements at time t. 

x ( t  + A t )  = xo  + vAt  
v ( t  + A t )  = v o  + aAt  

f% ( t )  
a ( t  -+ A t )  = - 

m 

Assumptions 

We assume that: 
1. Object is isotropic and homogeneous 
2. Object displays perfectly linear elastic and time- 

independent behavior 
3. At time t = 0, object is fixed in a stable position 
4. Weight of the object is provided during run time. 

Object Model 

The object presented to the system is a six-sided convex 
object with each side possessing equivalent dimensions. 
After discretization, the object is represented as below 
(Fig. 4) 

1 5  

1 

0 5  

0 

-0 5 

1 

-1  5 

Fig. 4 Object Discretization 

Technical Approach 
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To determine the forces necessary to lift a deformable 
object, we must first calculate the deformability of the 
object. Using the above described technique, we derive 
the graph for fspring = D(x)*x for objects with differing 
deformability factors. Based on the first two 
assumptions, this graph is linear in nature (Fig. 5). 

Since we assume that the object exhibits time- 
independent behavior, the damping coefficient p = 0. 
Therefore, fdamped = 0 for all x, x’. 

Although we have knowledge pertaining to the internal 
representation of the model, we experience some error in 
the retrieved value of D(x) due to the fact that, although 
we can visually retrieve the deformation distances along 
the outer edges of the object, we choose to only 
approximate the internal deformation in order to ensure 
calculations in real time (Fig. 5). 

Once deformation is retrieved, we must now learn an 
adequate grasp. Using the above procedure, we can learn 
the necessary forces required for grasping. This learned 
force, along with weight and spring constant are then 
stored in a table. Since, the simulation only utilizes a 
small subset of objects, a simple look up table was 
sufficient for storage at this time. 

After learning, an object is once again presented to the 
system. Based on the calculated deformation, the stored 
force is extracted and applied to the object for grasping. 

V. Future Research 

We next propose to implement the system in a real-world 
environment. The first step is to implement the system 
based on a list of assumptions similar to those as stated 
above. Upon successful completion of this task, we plan 
to relax the assumptions of homogeneity, isotropicity, and 
uniform elasticity to encompass the class of generic 3-D 
deformable objects. 

VI. Conclusion 

We have presented a generalized approach to handling of 
3D deformable objects. Our task was to derive a new 
method for learning grasping characteristics for a non- 
rigid object represented by a physically-based model. 
Based on the results of the simulation, we determine that 
once we calculate the spring constant of the object, this 
factor, along with the given weight of the object, index 
into a database for extraction of force and displacement of 
the manipulator. To successfully lift the object, these two 

parameters are the necessary inputs required for the 
robotic system. 
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Fig. 5 Sample of Learned Deformability Constant and Error Graph 
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