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Abstract— An important competence for a mobile robot system
is the ability to localize and perform context interpretation.
This is required to perform basic navigation and to facilitate
local specific services. Usually localization is performed based
on a purely geometric model. Through use of vision and place
recognition a number of opportunities open up in terms of
flexibility and association of semantics to the model. To achieve
this the present paper presents an appearance based method
for place recognition. The method is based on a large margin
classifier in combination with a rich global image descriptor.
The method is robust to variations in illumination and minor
scene changes. The method is evaluated across several different
cameras, changes in time-of-day and weather conditions. The
results clearly demonstrate the value of the approach.

I. INTRODUCTION

A fundamental competence in mobile robotics is the ability

to localize, i.e., to determine its position in the world. The

methods used are either based on metric geometric models

or discrete topological. Semantics has rarely been associated

with such models. However as robot break-down the fences

and start to interact with people there is a need to include

semantics in the models and to enable use of place information

as a way to introduce contextual information into the system.

Place recognition allow localization in topological mapping

and provide a method for loop closing or recovery from the

kidnaped robot problem. In particular, the research on topo-

logical mapping has pushed methods for place recognition.

Scalability issues have been at the forefront of the issues to

be addressed.

Early work on place recognition was based on sonar and/or

laser data, as robust sensory modalities [1]. Recently advances

in vision has made this a viable modality opening up for a

richer variety of places and more robust detection.

This paper presents a vision-based algorithm able to rec-

ognize places on the basis of their visual appearances, under

different illumination conditions and across a significant span

of time. We apply an appearance-based recognition technique,

from the object classification domain, composed by: (a) a rich

visual descriptor consisting of a high dimensional receptive

field histogram. This descriptor has shown remarkable perfor-

mances coupled with computational efficiency on challenging

object recognition scenarios [2]; (b) a support vector machine,

a discriminative classifier which has become the algorithm of

choice for several visual recognition domains [2], [3]. The

method was assessed on a thorough set of experiments, using

3 different camera devices and image data gathered under

varying conditions and times. Results show that the method is

able to recognize places with high precision and robustness,

even when training on images from one camera device and

testing on another.

The rest of the paper is organized as follows: after a review

of previous literature in the field (Section II), we describe our

visual recognition algorithm (Section III). Section IV describes

the experimental setup and Section V presents experiments

showing the effectiveness of the proposed approach. Con-

clusions are drawn and potential avenues for future research

outlined in Section VI.

II. RELATED WORKS

The research on place recognition has been mostly con-

ducted in the mobile robotics community. In [4] a system

using a sequential AdaBoost classifier with simple geometric

features is presented. The features are extracted from two laser

scanners mounted back to back on a robot and correspond to

for example the average laser beam length and the freespace

area. The different classes to distinguish between are room,

door, corridor and hallway.

Several approaches to the vision-based place recognition

have been proposed. These methods employ either regular

cameras ([5], [6]) or omni-directional sensors ([7], [8], [9],

[10], [11]) in order to acquire images. The main differences be-

tween the approaches relate to the way the scene is perceived,

and thus the method used to extract characteristic features from

the scene. Landmark localization techniques make use of either

artificial or natural landmarks in order to extract information

about position. An interesting approach to the problem was

presented by Mata et al. [12]. The system uses information

signs as landmarks, and interprets them through its ability

to read text and recognize icons. Local image features may

also be regarded as natural landmarks. The SIFT descriptor

[13] was successfully used by Se et al. [14] and Andreasson

et al. [11] (with modifications), while Tamimi and Zell [6]

employed Kernel PCA to extract features from local patches.

Global features are also commonly used for place recognition.

Torralba [15] suggested to use a representation called the

“gist” of the scene, which is a vector of principal components

of outputs of a filter bank applied to the image. Several
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other approaches use color histograms [8], [9], eigenspace

representation of images [7] or Fourier coefficients of low

frequency image components [10].

We are not aware of any other evaluation of visual place

recognition algorithms conducted under conditions realistic for

applications, i.e. with varying illumination conditions and over

time; thus, this is one of the major contribution of this paper.

III. DISCRIMINATIVE PLACE RECOGNITION

This section describes our approach to visual place recogni-

tion, and the algorithm we propose to this purpose. Following

[5], we assume that the encoding of the global configuration

of a real-world scene is informative enough to represent

and recognize it. We apply an appearance-based classification

method, successfully used for object recognition in realistic

settings [2]. The method is fully supervised, and assumes that

each room is represented, during training, by a collection of

images which capture its visual appearance under different

viewpoints, at a fixed time and illumination setting. During

testing, the algorithm is presented with images of the same

rooms, acquired under roughly similar viewpoints but possibly

under different illumination conditions, and after some time

(where the time range goes from some minutes to several

months). The goal is to recognize correctly each single image

seen by the system.

The rest of this section describes the feature descriptor

(Section III-A) and the classifier we used (Section III-B). A

comprehensive description of the experimental setup is given

in Section IV.

A. High Dimensional Composed Receptive Field Histograms

Recent work has shown that receptive field responses sum-

marized into histograms are highly effective for recognition

of objects [16], [17] and spatio-temporal events [18]. Here

we used histogram features of very high dimensionality (6-16

dimensions), which should be able to capture the rich visual

appearance of indoor places. When using histograms of such

high dimensionality, computational problems can easily occur.

Thus, we used the method proposed by [2], which makes

use of a sparse and ordered representation allowing to define

efficient operations on them (for instance, a 16-dimensional

histogram of a 256 × 256 image can be computed in about 0.1

s on a 1GHz Sun Fire). High dimensional composed receptive

field histograms can be computed from several types of image

descriptors (and various combinations of these):

• Normalized Gaussian derivatives, obtained by comput-

ing partial derivatives (Lx, Ly, Lxx, Lxy, Lyy) from the

scale-space representation L(·, ·; t) = g(·, ·; t) ∗ f
obtained by smoothing the original image f with a

Gaussian kernel g(·, ·; t), and multiplying the regular

partial derivatives by the standard deviation σ =
√

t
raised to the order of differentiation [19].

• Differential invariants, invariant to rotations in the im-

age plane, mainly the normalized gradient magnitude

|∇normL| =
√

t(L2
x + L2

y), the normalized Laplacian

∇2
normL = t(Lxx + Lyy), the normalized determinant of

the Hessian det(HnormL) = t2(LxxLyy − L2
xy).

• Chromatic cues obtained from RGB-images according to

C1 = (R − G)/2 and C2 = (R + G)/2 − B.

We tested a wide variety of combinations of image descriptors,

with several scale levels σ and numbers of histogram bins per

dimension (for a comprehensive report on these experiments

see [20]). On the basis of these results, here we used composed

receptive field histograms of six dimensions, with 28 bins per

dimension, computed from second order normalized Gaussian

derivative filters applied to the illumination channel.

B. Support Vector Machines

Support Vector Machines (SVMs, [21], [22]) belong to the

class of large margin classifiers. Consider the problem of sep-

arating the set of training data (x1, y1), (x2, y2), . . . (xm, ym)
into two classes, where xi ∈ �N is a feature vector and

yi ∈ {−1, +1} its class label (for the multi-class extensions,

we refer the reader to [21], [22]). If we assume that the two

classes can be separated by a hyperplane w·x+b = 0, and that

we have no prior knowledge about the data distribution, then

the optimal hyperplane (the one with the lowest bound on the

expected generalization error) is the one which has maximum

distance to the closest points in the training set. The optimal

values for w and b can be found by solving the following

constrained minimization problem:

minimize
w,b

1
2
‖w‖2

subject to yi(w · xi + b) ≥ 1,∀i = 1, . . . m
(1)

Solving it using Lagrange multipliers αi (i = 1, . . . m) results

in a classification function

f(x) = sgn

(
m∑

i=1

αiyixi · x + b

)
, (2)

where αi and b are found by using an SVC learning algorithm

[21], [22]. Most of the αi’s take the value of zero; xi with

nonzero αi are the “support vectors”. In cases where the

two classes are non-separable, the solution is identical to

the separable case except for a modification of the Lagrange

multipliers into 0 ≤ αi ≤ C, i = 1, . . . m, where C
determines the trade-off between margin maximization and

error minimization. To obtain a nonlinear classifier, one maps

the data from the input space �N to a high dimensional

feature space H by x → Φ(x) ∈ H, such that the mapped

data points of the two classes are linearly separable in the

feature space. Assuming there exists a kernel function K such

that K(x,y) = Φ(x) · Φ(y), then a nonlinear SVM can be

constructed by replacing the inner product x · y in the linear

SVM by the kernel function K(x,y)

f(x) = sgn

(
m∑

i=1

αiyiK(xi,x) + b

)
. (3)

This corresponds to constructing an optimal separating hyper-

plane in the feature space. Kernels commonly used include
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polynomials K(x,y) = (x · y)d, which can be shown to

map into a feature space spanned by all order d products

of input features, and the Gaussian RBF kernel K(x,y) =
exp{−γ||x−y||2}. In this paper we use the χ2 kernel ([23]):

K(x, y) = exp{−γχ(x − y)2}, (4)

which has shown to give good performances for histogram-like

features [24], [3] in vision applications.

IV. EXPERIMENTAL SETUP

In this section we describe the experimental scenario and

the data acquisition devices employed for the evaluation of our

visual place recognition system. We tested it on two mobile

robot platforms, “Minnie” and “Dumbo”, as well as on images

captured with a standard camera. The robot platforms are

shown in Fig. 1. For the purpose of the experiments with

the camera, we acquired a new database, INDECS (INDoor

Environment under Changing conditionS), comprising pictures

of places. The database represents one of the contributions of

this paper, and together with all the other visual data used

during the experiments, will be made publicly available upon

acceptance of the paper.

The rest of the section is organized as follows: Section IV-

A presents the working scenario, as to say the environment

where we conducted the experiments and the image acquisition

procedure. Then, Section IV-B gives detailed information on

the robot platforms. Finally, Section IV-C provides a brief

description of the INDECS database.

A. Experimental scenario

The experiments were conducted within a five room sub-

section of a larger office environment. Each of the five rooms

represents a different type of functional area: a one-person

office, a two-persons office, a kitchen, a corridor, and a printer

area (in fact a continuation of the corridor). The rooms are

(a) Minnie (b) Dumbo

Fig. 1. Robot platforms employed in the experiments.

physically separated by sliding glass doors, with the exception

of the printer area which was treated as a separate room only

due to its different functionality. Example pictures showing the

interior of each room are presented in Fig. 2. Fig. 5 provides

top views of the environment.

As already mentioned, the visual data were acquired with

three different devices. In each case, the appearance of the

rooms was captured under three different illumination and

weather conditions: in cloudy weather (natural and artificial

light), in sunny weather (direct natural light dominates), and

at night (only artificial light). The image acquisition was

spread over a period of time of three months, for the IN-

DECS database, and over two weeks for the robot platforms.

Additionally, the INDECS database was acquired ten months

before the experiments with the robots. In this way we

captured the visual variability that occurs in the real-world

environments due to varying illumination and natural activities

in the rooms (presence/absence of people, furniture relocated,

changed, added or, removed). Fig. 3 presents a comparison of

images taken under different illumination conditions and using

various devices.

B. Robot platforms

Both robots, the PeopleBot Minnie and the PowerBot

Dumbo, are equipped with the pan-tilt-zoom Cannon VC-C4

camera. However, as can be seen from Fig. 1, the cameras are

mounted at different height. On Minnie the camera is 98cm

above the floor, whereas on Dumbo it is 36cm. Furthermore,

the camera on Dumbo was tilted up approximately 13◦ to

reduce the amount of floor captured in the images. All images

were acquired with a resolution of 320x240 pixels, with the

zoom fixed to wide-angle1, the auto-exposure and the auto-

focus modes enabled.

We followed the same procedure during image acquisition

with both robot platforms. The robot was manually driven

(average speed around 0.3-0.35m/s) through each of the five

rooms while continuously acquiring images at the rate of

five frames per second. For the different illumination con-

ditions (sunny, cloudy, night), the acquisition procedure was

performed twice, resulting in two image sequences acquired

one after another giving a total of six sequences across a

span of over two weeks. Example images can be seen in

Fig. 3. Due to the manual control, the path of the robot

was slightly different for every sequence. Example paths are

presented in Fig. 5. Each image sequence consists of 1000-

1300 frames. To automate the process of labeling the images

for the supervision, the robot pose was estimated during the

acquisition process using a laser based localization method.

Each image was then labeled as belonging to one of the five

rooms based on the position from where it was taken. As

a consequence of this, images taken, for example, from the

corridor, but looking into a room are labeled as corridor.

1Roughly 45◦ horizontal and 35◦ vertical field of view.
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One-person office Two-persons office Kitchen Corridor Printer area

Fig. 2. Example pictures taken from the INDECS database showing the interiors of the five rooms used during the experiments.
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(a) Corridor (b) Kitchen

Fig. 3. Example pictures acquired with the camera and the two robot platforms under various illumination conditions. Pictures on the left show the influence
of the the illumination, while the examples on the right illustrate the differences between pictures acquired in a cluttered environment using different devices.
Additional variability caused by natural activities in the rooms is also apparent (presence of people, relocated furniture).

C. The INDECS Database

The INDECS database consists of pictures of the environ-

ment described above gathered under different viewpoints and

locations. We marked several points in each room (approx-

imately one meter apart) where we positioned the camera

for each acquisition. The number of points changed with the

dimension of the room, from a minimum of 9 for the one-

person office to a maximum of 32 for the corridor. At each

location we acquired 12 pictures, one every 30◦, even when

the tripod was located very close to a wall or furniture. Images

were acquired using an Olympus C-3030ZOOM digital camera

mounted on a tripod. The height of the tripod was constant

and equal to 76 cm; all images in the INDECS database

were acquired with a resolution of 1024x768 pixels, the auto-

exposure mode enabled, flash disabled, the zoom set to wide-

angle mode, and the auto-focus enabled. In this paper the

INDECS images were subsampled to 512x386 before being

used in the experiments. Again, the images were labeled

according to the position of the point at which the acquisition

was made. The images were taken across a span of three

months and, as in the previous case, under various illumination

conditions (sunny, cloudy and night). Fig. 3 illustrates types

of variability captured for some rooms. In total there are 3264

images (324 for the one-person office, 492 for the two-persons

office, 648 each for the kitchen and the printer area, and 1152

for the corridor) in the INDECS database.

V. RESULTS

We conducted three sets of experiments in order to evaluate

the performance of our system and test its robustness to dif-

ferent types of variations. We present the results in successive

subsections and give a brief summary in Section V-D. We

started with a set of reference experiments evaluating our

method under stable illumination conditions (Section V-A).

Next, we increased the difficulty of the problem and tested the

robustness of the system to changing illumination conditions

as well as to other variations that may occur in real-world

environments (Section V-B). Finally, we conducted a series

of experiments aiming to reveal whether a model trained on

images acquired with one device can be useful for solving

localization problems with a different device (Section V-C).

In every case, the system performed the recognition on the

basis of only one input image. In future work we intend

to extend this by fusing information over time, but the aim

of the current work is to investigate the performance of the

underlying recognition system. In view of the fact that the

number of acquired images varied across the rooms, each
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(a) Minnie Cloudy2 ⇒ Minnie Cloudy1 (b) Dumbo Cloudy2 ⇒ Dumbo Sunny2
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(c) Dumbo Cloudy1 ⇒ Dumbo Night1 (d) Minnie Night2 ⇒ Dumbo Night1

Fig. 5. Maps of the environment with plotted paths of the robot during acquisition of the training and test sequences. The training path is plotted with the
thin black line, while the thick line shows the test path. The color of each point indicates the result of recognition, and the arrows show the direction of
driving. Each experiment started at the point marked with square. The position of the furniture (plotted with gray line) is approximate and could vary between
the experiments.
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(a) Training on images acquired with Minnie
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(b) Training on images acquired with Dumbo
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(c) Training on the INDECS database

Fig. 4. Average results of the experiments with both robot platforms
and the standard camera. The results are grouped according to the type of
illumination conditions under which the training images were acquired. The
bottom axes indicate the platform and illumination conditions used for testing.
The uncertainties are given as one standard deviation.

room was considered separately during the experiments. The

final classification rate was then computed as an average to

which the results for each room contributed equally. For all

the experiments we used our extended version of the libSVM
software, and we set C = 100. After a preliminary set of

experiments, we decided to use the χ2 kernel and constant

parameters of the feature extractor. The parameters were,

however, different for the experiments with the robot platforms

(scale σ = 1 and 4) and for images acquired with the camera

(σ = 2 and 8). Such approach was motivated by the fact

that the cameras mounted on the robots offered lower image

quality, and the movement introduced additional distortions.

Kernel parameters were determined via cross-validation.

A. Stable illumination conditions

In order to evaluate our method under stable illumination

conditions, we trained and tested the system on pairs of image

sequences acquired one after the other using the same robot.

We did not use the INDECS database for these experiments

since only one set of data for each illumination condition

was available. Although the illumination conditions for both

training and test images were in this case very similar, the

algorithm had to tackle other kinds of variability such as

viewpoint changes caused mainly by the manual control of

the robot and presence/absence of people. The results of the

performed experiments are presented in Fig. 4a,b. For each

platform and type of illumination conditions used for training,

the first bar presents an average classification rate over the two

possible permutations of the image sequences in the training

and test sets2. On average, the system classified properly

95.5% of the images acquired with Minnie and 97.2% of

images acquired with Dumbo. Detailed results for one of the

experiments are shown in Fig. 5a. It can be observed that the

errors are usually not a result of viewpoint variations (compare

the training and test paths in the kitchen) and mostly occur

near the borders of the rooms. This can be explained by the

relatively narrow filed of view of the cameras as well as the

fact that the images were not labeled according to their content

but to the position of the robot at the time of acquisition. Since

these experiments were conducted with the sequences captured

under similar conditions, we treat them as a reference for other

results.

B. Varying illumination conditions

We also conducted a series of experiments aiming to test the

robustness of our method to changing illumination conditions

as well as to other variations caused by normal activities in

the rooms. The experiments were conducted on the INDECS

database and the visual data captured using both robot plat-

forms. As with the previous experiments, the same device

was used for both training and testing. This time, however,

the training and test sets consisted of images acquired under

different illumination conditions and usually on different days.

Fig. 4a,b show average results of the experiments with the

2Training on the first sequence, testing on the second sequence, and vice
versa.
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robots for each permutation of the illumination conditions used

for training and testing (the two middle bars for each type

of training conditions). Fig. 4c gives corresponding results

obtained on the INDECS database.

We see that in general the system performs best when

trained on the images acquired in cloudy weather. The expla-

nation for this is straightforward: the illumination conditions

on a cloudy day can be seen as intermediate between those at

night (only artificial light) and on a sunny day (direct natural

light dominates). In such case, the average classification rate

computed over two testing illumination conditions (sunny and

night) was equal to 84.6% for Dumbo, 74.5% for Minnie, and

81.0% for the INDECS database. Fig. 5b,c present detailed

results for two example runs. The errors occur mainly for the

same reasons as in the previous experiments and additionally

in places heavily affected by the natural light e.g. when the

camera is directed towards a bright window. In such cases,

the automatic exposure system with which all the cameras

are equipped causes the pictures to darken. Minnie was more

susceptible to that phenomenon due to the higher position of

the camera.

C. Recognition across platforms

The final set of experiments was designed to test the porta-

bility of the acquired model across different platforms. For that

purpose we trained and tested the system on images acquired

under similar illumination conditions using different devices.

We started with the experiments with both robot platforms.

We trained the system on the images acquired using either

Minnie or Dumbo and tested with the images captured with the

other robot. We conducted the experiments for all illumination

conditions. The main difference between the platforms from

the point of view of our experiments lies in the height at

which the cameras are mounted. The results presented in

Fig. 4a,b indicate that our method was still able to classify

up to about 70% of images correctly. The system performed

better when trained on the images captured with Minnie. This

can be explained by the fact that the lower mounted camera

on Dumbo provided less diagnostic information. It can also

be observed from Fig. 5d that in general the additional errors

occurred when the robot was positioned close to the walls or

furniture. In such cases the height at which the camera was

mounted influenced the content of the images the most.

We followed a similar procedure using the INDECS

database as a source of training data and different image

sequences captured with the robot platforms for testing. It is

important to note that the database was not intended to be

used for this purpose, and was acquired ten months before the

experiments with the robots. Additionally, the points at which

the pictures were taken were positioned approximately 1m

from each other and, in case of the kitchen, covered different

area of the room due to reorganization of the furniture.

Consequently, the problem required that the algorithm was

invariant not only to various acquisition techniques but also

offered great robustness to large changes in viewpoint and

the appearance of the rooms. The experimental results are
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Fig. 6. Performance of the system trained on two image sequences acquired
under different illumination conditions (sunny and night) for both mobile
platforms. The classification rates in case of experiments using different
illumination conditions for training and testing were averaged over two test
image sequences. The uncertainties are given as one standard deviation.

presented in Fig. 4c. We see that the algorithm obtains a

recognition performance of about 50%. While this result is

surely disappointing if compared to the 70% reported above,

obtained by using the two robot platforms, it is still quite

remarkable considering the very high degree of variability

between training and test data, and that results are significantly

above chance (which in this case would be 20%).

D. Discussion

The results of the extensive experimental evaluation pre-

sented in this section indicate that our method is able to

perform place recognition using standard visual sensors with

high precision. It offers good robustness to changes in the

illumination conditions as well as to additional variations

introduced by the natural variability that occurs in real-world

environments. As the system is to be used on a robot platform,

it must not only be accurate but also effective. For this reason

we tried to provide the highest possible robustness using

relatively small amount of training data acquired during only

one run. We managed to achieve a recognition time of about

350ms per frame on a Pentium IV 2.6 GHz where the bulk of

the time (300ms) is spent in a piece of code that has not yet

been ported from MATLAB to C/C++.

Additional experiments indicate, that it is possible to im-

prove the robustness by incorporating images acquired during

two runs under different illumination conditions into one

training set. In such case, however, the user pays the price

of the recognition time and the memory requirements. For

example, if the system was trained using the images captured

during sunny weather and at night, the average classification

rate for testing image sequence acquired with cloudy weather

was equal to 90.5% for Dumbo and 88.4% for Minnie (see

Figure 6). Consequently, the classification rate improved by

10% in case of Dumbo and 18% in case of Minnie for testing
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conditions not known during training, while keeping the same

rates for testing conditions used also for training. Since the

number of support vectors in such case usually doubles, the

recognition time increased by about 50ms.

VI. SUMMARY AND CONCLUSION

This paper presented a vision-only recognition algorithm

for place classification under varying illumination conditions,

across a significant span of time and with training and test

performed on different acquisition devices. The method used

rich global descriptors and support vector machines as dis-

criminative classifier; this algorithm has proved successful

in the object recognition domain. We tested our approach

with a very extensive set of experiments, which showed that

our method is able to perform place recognition with high

precision, remarkable robustness and a recognition time per

frame of 350 ms.

This work can be extended in many ways: firstly, we plan to

incorporate invariance to illumination changes in the feature

descriptors, to achieve a higher robustness. Secondly, we

want to move from recognition of single images by fusing

information over time. Finally, we want to extend the system

to be able to perform room categorization. Future work will

address these issues.
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