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Abstract— Scan-matching based on data from a laser scanner is
frequently used for mapping and localization. This paper presents
an scan-matching approach based instead on visual information
from a stereo system. The Scale Invariant Feature Transform
(SIFT) is used together with epipolar constraints to get high
matching precision between the stereo images. Calculating the
3D position of the corresponding points in the world results in
a visual scan where each point has a descriptor attached to it.
These descriptors can be used when matching scans acquired
from different positions.

Just like in the work with laser based scan matching a map
can be defined as a set of reference scans and their corresponding
acquisition point. In essence this reduces each visual scan that
can consist of hundreds of points to a single entity for which only
the corresponding robot pose has to be estimated in the map.
This reduces the overall complexity of the map.

The SIFT descriptor attached to each of the points in the
reference allows for robust matching and detection of loop closing
situations. The paper presents real-world experimental results
from an indoor office environment.

I. INTRODUCTION

Simultaneous Localization and Mapping, or SLAM, is the

process of concurrently building a map of the environment and

using that map for estimating the position of the robot. This

is a key component in an autonomous mobile robot system

and as such has attracted a lot of attention in the robotics

community.

SLAM based on range sensors in indoor, structured, envi-

ronments is now considered to be a mature technology within

the research community. As an example, several systems using

ultra sonics sensors [1]–[3] and lately more often with a

laser scanner [4]–[9] have been presented. Range sensors

provide mostly a geometric interpretation of the environment.

Furthermore, the laser scanner is comparably expensive which

makes it unfit for many applications, especially high volume

type applications.

In the last few years the focused has shifted from using

laser scanners to visual systems [10]–[19]. The amount of

information available in images far surpasses that what a

laser scan provides but much more involved algorithms are

needed to extract that information. However, a camera system

will probably offer a much more cost efficient solution as

computational power gets cheaper, and may therefore be

applicable even to consumer type products.

In the computer vision community the problem of structure

from motion (SFM) has been studied for quite some time and

even before that vision based reconstruction was studied in

the photogrammetry community. The formulation of the SFM

problem is similar to SLAM but in SFM the position of the

camera is typically estimated using only the visual information

whereas in SLAM additional information from odometry often

is incorporated. Where SFM typically is performed offline

by batch processing, SLAM aims at running in real time on

a robot with all the challenges that this brings in terms of

computational complexity, scalability, etc.

Davison was one of the first to address the problem of visual

SLAM. In [20] a system is presented that uses a stereo rig to

detect and fixate on visual landmarks. The extended Kalman

filter provides the framework for fusing odometry and visual

information as well as information from accelerometers. The

robot is able to build a map while traveling over uneven terrain.

In more recent work Davison has focused on single camera

SLAM and in particular on how SLAM can be performed

without any information from odometry. This is important

when the camera is hand held or mounted on a human for

example [21].

Se, Lowe and Little [13], [14] use the Scale Invariant
Feature Transform or SIFT invented by Lowe [22] in an EKF-

based implementation of SLAM. In [23] a Rao-Blackwellised

particle filter is instead applied to SLAM using SIFT features.

Karlsson et al. [16], [17] use a monocular camera and

combine this with SIFT features in the so called vSLAM

algorithm. The 3D position of points is estimated through

Structure from Motion using three consecutive frames. The

collection of 3D points along with their SIFT descriptors

defines a landmark in their map. The mapping process creates

new landmarks when there is no correspondence between the

SIFT features in the current image and the previous landmarks.

Visual SLAM has also been used in under-water appli-

cations. In [24] a downward looking camera that overlooks

the sea floor is used. The system uses an augmented state

Kalman filter to estimate the position of the vehicle at the

current position and the past trajectory. Each position in the old

trajectory is represented by one image. The overlap between

different images can be used to create measurements.

In [25] a system for so called visual odometry is presented.

This term refers to estimating the motion of a camera system

based only on visual information. In [26] stereo data in

combination with ICP is used to estimate the 6 DoF motion of

a robot that moves in rocky terrain. No map is made in either
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of these cases.

In this paper we work with a stereo camera and use the SIFT

descriptor to match interest points between the two camera

images. What sets this work apart from for example [13] that

also use SIFT features is that we do not treat the individual

points as landmark but instead treat all the points that are

matched between the two stereo images as one 3D scan much

like a laser scan. The whole cluster of SIFT points can in this

way be used to identify the scan when matching new scans to

old.

The idea in this paper is to use the visual scans like in the

abundance of work with laser based scan matching [4], [6],

[27]. That is, the raw scans together with the positions from

where they were acquired define the map. Furthermore, just

like in [24] we will use the EKF framework with an augmented

state representation to demonstrate our idea. However, any

of the algorithms used for laser based scan matching can be

applied here as well. In contrast to the laser based counter

part our scans have very strong discriminative power thanks

to the SIFT points. The rest of the paper presents one pos-

sible implementation of visual scan-matching to illustrate the

concept.

II. VISUAL SCAN

As mentioned in the Introduction we use the Scale Invariant
Features Transform or SIFT points by David Lowe [28]. These

has become very popular both in the vision community for

example for object recognition and in robotics for example

as landmarks for SLAM. The strength of the SIFT is that

it is invariant to scale changes and image rotation up to

approximately 30◦ which allows for robust matching even

when the view point has changed.

This section just describes one way to extract and define

the visual scans. The standard implementation available online

from David Lowe is used for extracting the SIFT key points.

Points are detected as minimas and maximas of differences

of Gaussians across different images scales. Along with the

location in the images, each point has a feature vector asso-

ciated with it. This feature vector consists of the image pixel

gradients calculate in 8 direction in a 4x4 grid around the

point, which results in 4x4x8=128 values. In addition the scale

and dominant orientation for each point is stored.

In particular the descriptor of 128 elements and the orienta-

tion associated with each feature, are very robust to image

changes and allows to track and recognize a point in a

sequence of consequent images, acquired along the robot path.

Typically the Euclidean distance between the two descriptors

are used to when matching two SIFT points.

A. Creating a Visual Scan

To create the visual scans we have to match interest points

between the two camera images acquired by the stereo system.

To make the matching between the left and right camera

images easier we make sure that the images are rectified.

We exploits this and the fact that the geometry of stereo

system (baseline of 160mm) and the intrinsic parameters of

the camera, are known in the matching. An alternative would

be to use motion stereo to create the visual scans.

The Euclidean distance between the descriptors and the

difference between the orientations is used to verify the

matching. The threshold for matching SIFT points p and p′ is

set to 8% between the descriptors δ, δ′ and 20◦ between the

orientations θ and θ′. For each point we pick as the matching

point the one closest to the current. Formally, the matching

can be expressed as:

1) | θ−θ′ | < 20

2) ‖ δ−δ′ ‖2 <‖ δ−δ′′ ‖2 , ∀δ′′ ∈ SIFT on the same row

3) ‖ δ−δ′ ‖2 < 62000

where 62000 � 222 · 128 means a tolerance of about 8% for

each couple of values of the two descriptors.

We perform matching both left to right and right to left and

keep only those points that has a one-to-one matching.

For each of the matching SIFT points we then calculate the

3D position. These 3D position along with the SIFT descriptor

from, in our case, the left image defines our visual scan.

B. Matching Visual Scans

For each new image pair we produce a new visual scan

and match this to existing scans. This matching is performed

in steps. First we find all existing scans that are close to

the current pose of the robot. That is, we select all visual

scan which the current scan is likely to be able to match.

Then, we use the estimated difference between the robot pose

corresponding to the existing scan and the current pose to

predict the image coordinates for the points from the existing

scan in the current image.

Currently, there is a fixed search window around the

predicted position of each point. The dimensions of these

windows are 40× 14 pixels which allows for an uncertainty

of ±8◦ (horizontally) and ±3◦ (vertically). For the matching

between features in consequent images, similar conditions as

in the stereo matching are used:

1) ‖ δ1 −δ2 ‖2 < ‖ δ1 − δ̄2 ‖2 , ∀δ̄2 ∈ SIFT in the tolerance

window

2) ‖ δ1 −δ2 ‖2 < 74000

The condition on orientation is not used here and a bit more

margin is used when matching the descriptors, 74000 � 242 ·
128 means a tolerance of about 10%.

Matching is performed between the points in the two scans

using the descriptors from the left images. Also here a 1-

1 match is required, that is, the matching is performed in

both directions and only those matches that are consistent are

considered correct.

III. ESTIMATION OF RELATIVE DISPLACEMENT

Given a set of matches between the current scan and an

existing scan the relative displacement between the scans must

be computed. This serves as the measurement in the system.

We we use the method by Kanatani [29] to solve for the

absolute orientation and to get the pose between two sets of
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points, represented in two reference systems:

min
R,t

N

∑
i=1

‖wi − (Rw′
i + t)‖2 (1)

If c̄ and c̄′ are the centroids of the two sets and

w̄i = wi− c̄ , w̄′
i = w′

i− c̄′ are the two point sets translated with

the corresponding centroid, it is possible to solve an equation

equivalent to Eq. 1 without t:

min
R

N

∑
i=1

‖w̄i −Rw̄′
i‖2, (2)

and finally to solve for the translation t with:

t = c̄−Rc̄′. (3)

Since the data is corrupted by noise like inaccurate feature

localization, intrinsic error in triangulation and false corre-

spondences, it’s not possible to use the minimization in Eq. 2

without any system to compensate these errors. To address

this problem we use the RANSAC algorithm (Random Sample

Consensus) [30].
RANSAC is a voting protocol that permits good results

with up 50% of outliers. This algorithm works with a set

of elements S and a model characterized by ξ parameters.

S is related to the couples of correspondent points and ξ
to the pose R, t. RANSAC requires six parameters: P, p,

ε, N, T , t. P is the probability to randomly get p inliers

in N tries (P = 0.999) and p is the minimum number of

points, to compute R and t with Kanatani knowing the intrinsic

parameters of the camera (p = 5). ε is the unknown percentage

of outliers (experimentally found ε = 0.35). The parameter

T is the unknown absolute number of inliers (in percentage

T = 1− ε) and t is the threshold for the vote.
Now it is possible to find N with:

P = 1− (1− (1− ε)p)N

0.999 = 1− (1− (1−0.35)5)N

⇒ N � 56

The value of t depends on the average distance of each couple

of points (z′,z′′) to the camera. The following equation gives

the uncertainty of a general triangulated point:

Δz =
√

2 · z2 ·Δv
b · f

· dimPixelCCD (4)

where z = z′+z′′
2 , b is the baseline, f is the focal length and δv

is the precision in the point coordinates. This is correct if the

disparity of two corresponding points is perfect. To account

for more realistic cases an experimental constant unZ = 1.88

is multiplied to Δz in order to increase the uncertainty. So,

finally t = unZ ·Δz. The relative displacement is now found

with 56 iterations of RANSAC and Kanatani. The pose that

accumulates the most votes is chosen and the corresponding

matches are used to calculate the final estimate of the relative

displacement.
To remove highly uncertain matches we use a threshold of

T = 65% and also require that we have at least 10 matching

points.

A. Visual Reference Scans

In order to implement visual scan-matching we need to store

visual reference scan and thus also define which scans to store.

The decision on what to turn into a reference scan is delayed

one step. That is, at step k we decide if the scan acquired

in step k − 1 should become a reference scan. The scan in

step k− 1 is turned into a reference scan if in step k we are

unable to match to any existing reference scan but can match

to the previous scan. Notice here that we, by the definition of

the matching rules, cannot match to a scan that has too few

points. Therefore we will not turn scans with too few points

into reference scans.

IV. MAP ESTIMATION

In this paper we use an augmented state Kalman filter for

estimating the current robot position and the position of the

visual reference scans, similar to [24].

The state vector starts out containing only the robot pose,

x(k) =
(
xr(k)

)
. (5)

To allow for delaying the decision about turning a visual scan

into a visual reference scan one step we also keep the previous

robot pose in the state vector, i.e. disregarding the reference

scans the state vector contains,

x(k) =
(

xr(k)
xr(k−1)

)
. (6)

When the previous scan is flagged as a reference scan we

simply let the second state in the state vector, the previous pose

and also the current estimate of the pose of the new reference

scan, transition into a reference position, i.e.

x(k) =
(

xr(k)
xr(k−1)

)
⇒ x(k +1) =

⎛
⎝ xr(k +1)

xr(k)
x1(k +1) = xr(k−1)

⎞
⎠ ,

(7)

where xr(k +1) is the new robot pose after the next step has

been taken.

This process continues by augmenting the state vector for

every new reference scan,

x(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

xr(k)
xr(k−1)

xN(k)
...

x2(k)
x1(k)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (8)

where N is the number of reference scans. When revisiting

areas, new visual reference scans do not need to be added if

the robot can navigate with respect to already existing scans.

This augmented state Kalman filter implementation is just

one of many possible ways to realize visual scan-matching.

Even though the representation with reference scans reduces

the number of states in the state vector with respect to keeping

all the individual SIFT points as in [14] the Kalman filter still

scales badly. As an example the FastSLAM algorithm could

be used as in [6] with laser based scan matching.
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Fig. 1. Left: The experimental platform, the PowerBot Dumbo from ActivMedia. Right: A close up of the Videre stereo rig used in the experiments.

V. EXPERIMENTAL EVALUATION

We performed the experimental evaluation on a PowerBot

robot equipped with a VIDERE STH−MDSC2−VAR−C stereo

rig. The robot and a close up of the stereo system can be seen

in Fig. 1.

For the evaluation we drove the robot around in our indoor

office environment along a trajectory starting in one room,

passing through a corridor section to another room and then

back ending up at almost exactly the same position as the

start position. Figure 2 shows some images from the the

environment.

Fig. 2. Some images from the environment. The top row shows to different
views from the room where the robot start. On the lower row the first image
shows the view when driving out of the starting room and the second shows
the rather sparse corridor.

Figure 3 shows snapshots of the positions of the reference

scan poses along the trajectory. The uncertainty in the refer-

ence positions are illustrated with uncertainty ellipses. Notice

how drift causes the estimate to deteriorate but how at the end

when the robot re-observes some of the initial reference scans

this is corrected.
In Figure 4 a histogram is shown over the number of points

per scan. The visual scans contains up to 206 scan points in

this experiment. In total there are 126 reference scans and a

total of 8333 points in the map. Using the reference scans has

thus reduced the number of landmarks from 8333 to 126, i.e.,

a factor of 66. This is not entirely true though as some of the

points will be represented in more than one reference scan but

it is clearly a very large reduction and at the same time the

map still contains all the descriptive power of using all points.

Fig. 4. Histogram showing the number of points per scan.

Figure 5 shows the final map with all points from the

different reference scans overlayed. Notice how the scans are

nicely aligned.
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(a) After 60 steps. (b) After 167 steps before the robot is turning back.

(c) After 266 just before observing some of the first reference scans again. (d) The final estimate, after 272 steps.

Fig. 3. The figure shows the position and uncertainty of the reference scan positions at different time during the building of the map. Notice how the map
is corrected when the loop is closed and the robot successfully matches to some of the initial reference scans.

VI. SUMMARY AND CONCLUSION

In this paper we have introduced the concept of visual

scan matching. The idea is to build upon the success that

laser based scan matching has had. This way we inherit the

strong advantages of scan matching such as the representation

flexibility (the sensor data itself is the representation) and

combine that with the advantages of using vision which adds

the ability to add appearance to the data association process.

Some initial experimental results were presented where

a stereo rig was used to estimate the 3D position of the

points detected and described by the Scale Invariant Feature

Transform or SIFT.
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