Discrete Math. Lett. **7** (2021) 40–43 DOI: 10.47443/dml.2021.0024

Research Article

Minimum 2-vertex strongly biconnected spanning directed subgraph problem

Raed Jaberi*

Department of Software and Information Systems, Tishreen University, Latakia, Syrian Arab Republic

(Received: 16 March 2021. Received in revised form: 7 June 2021. Accepted: 18 June 2021. Published online: 21 June 2021.)

© 2021 the author. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

A directed graph G=(V,E) is strongly biconnected if G is strongly connected and its underlying graph is biconnected. A strongly biconnected directed graph G=(V,E) is called 2-vertex-strongly biconnected if $|V|\geq 3$ and the induced subgraph on $V\setminus\{w\}$ is strongly biconnected for every vertex $w\in V$. In this paper, the following problem is studied: Given a 2-vertex-strongly biconnected directed graph G=(V,E), compute an edge subset $E^{2sb}\subseteq E$ of minimum size such that the subgraph (V,E^{2sb}) is 2-vertex-strongly biconnected.

Keywords: directed graphs; approximation algorithms; graph algorithms; strongly connected graphs; strongly biconnected directed graphs.

2020 Mathematics Subject Classification: 05C85, 05C20.

1. Introduction

The underlying graph of a directed graph G = (V, E) is the undirected graph $G_1 = (V_1, E_1)$, where $V_1 = V$ and $E_1 = \{(v, w) \mid (v, w) \in E \text{ or } (w, v) \in E\}$. A directed graph G = (V, E) is strongly biconnected if G is strongly connected and its underlying graph is biconnected. A strongly biconnected directed graph G = (V, E) is called k-vertex-strongly biconnected if |V| > k and for each E = V with |E| < k, the induced subgraph on E = V is strongly biconnected. The minimum E = V vertex-strongly biconnected spanning subgraph problem (denoted by MKVSBSS) is formulated as follows. Given a E = V vertex-strongly biconnected directed graph E = V compute an edge subset E = V of minimum size such that the subgraph E = V is E = V is E = V. Note that each 2-vertex-strongly-biconnected directed graph is 2-vertex-connected, but the converse is not necessarily true.

Thus, optimal solutions for minimum 2-vertex-connected spanning subgraph (M2VCSS) problem are not necessarily feasible solutions for the 2-vertex strongly biconnnected spanning subgraph problem, as shown in Figure 1.

The problem of finding a k-vertex-connected spanning subgraph of a k-vertex-connected directed graph is NP-hard for $k \geq 1$ [4]. Results of Edmonds [2] and Mader [16] imply that the number of edges in each minimal k-vertex-connected directed graph is at most 2kn [1]. Cheriyan and Thurimella [1] gave a (1+1/k)-approximation algorithm for the minimum k-vertex-connected spanning subgraph problem. Georgiadis [6] improved the running time of this algorithm for the M2VCSS problem and presented a linear time approximation algorithm that achieves an approximation factor of 3 for the M2VCSS problem. Georgiadis et al. [7] provided efficient approximation algorithms based on the results of [3,5,9,10] for the M2VCSS problem. Strongly connected components of a directed graph and blocks of an undirected graphs can be found in linear time using Tarjan's algorithm [17, 18]. Wu and Grumbach [19] introduced the concept of strongly biconnected directed graph and strongly biconnected components. Clearly, the MKVSBSS problem is NP-hard for $k \geq 1$. In this paper, we study the MKVSBSS problem when k = 2 (denoted by M2VSBSS).

2. Approximation algorithms for the M2VSBSS problem

In this section, we present approximation algorithms for the M2VSBSS Problem. A vertex w in a strongly biconnected directed graph G=(V,E) is a b-articulation point if $G\setminus\{w\}$ is not strongly biconnected. Algorithm 2.1 is based on b-articulation points, minimal 2-vertex-connected subgraphs, and Lemma 2.1.

Lemma 2.1. Let $G_s = (V, E_s)$ be a subgraph of a strongly biconnected directed graph G = (V, E) such that G_s is strongly connected and G_s has t > 0 strongly biconnected components. Let (u, w) be an edge in $E \setminus E_s$ such that u, w are not in the

Figure 1: (a) A 2-vertex strongly biconnected graph. (b) An optimal solution for the minimum 2-vertex-connected spanning subgraph problem. But note that this subgraph is not 2-vertex strongly biconnected because the underlying graph of the subgraph obtained by removing vertex 1 is not biconnected. (c) An optimal solution for the minimum 2-vertex strongly biconnected spanning subgraph problem.

same strongly biconnected component of G_s . Then the directed subgraph $(V, E_s \cup \{(u, w)\})$ contains at most t - 1 strongly biconnected components.

Proof. Since G_s is strongly connected, there exists a simple path p from w to u in G_s . Since the edge (u, w) does not belong to the path p, the path p and edge (u, w) form a simple directed cycle c in the directed subgraph $(V, E_s \cup \{(u, w)\})$. Moreover, the cycle c is also a simple undirected cycle in the underlying undirected graph of the directed graph $(V, E_s \cup \{(u, w)\})$. Consequently, the vertices u, w are in the same strongly biconnected component of the subgraph $(V, E_s \cup \{(u, w)\})$.

Lemma 2.2. Algorithm 2.1 returns a 2-vertex strongly biconnected directed subgraph.

Proof. It follows from Lemma 2.1.

The following lemma shows that each optimal solution for the M2VSBSS problem has at least 2n edges.

Lemma 2.3. Let G = (V, E) be a 2-vertex-strongly biconnected directed graph. Let $O \subseteq E$ be an optimal solution for the M2VSBSS problem. Then $|O| \ge 2n$.

Algorithm 2.1.

```
Input: A 2-vertex strongly biconnected directed graph G = (V, E)
Output: a 2-vertex strongly biconnected subgraph G_{2s} = (V, E_{2s})
    find a minimal 2-vertex-connected subgraph G_1 = (V, E_1) of G
     if G_1 is 2-vertex strongly biconnected then
3
       output G_1
     else
4
5
       E_{2s} \leftarrow E_1
       G_{2s} \leftarrow (V, E_{2s})
6
7
       identify the b-articulation points of G_1
8
       for every b-articulation point b \in V do
          while G_{2s} \setminus \{b\} is not strongly biconnected do
10
            calculate the strongly biconnected components of G_{2s} \setminus \{b\}
            find an edge (u, w) \in E \setminus E_{2s} such that u, w are not in
11
12
            the same strongly biconnected component of G_{2s} \setminus \{b\}.
13
            E_{2s} \leftarrow E_{2s} \cup \{(u,w)\}
14
       output G_{2s}.
```

Proof. for any vertex $x \in V$, the removal of x from the subgraph (V, O) leaves a strongly biconnected directed subgraph. Since each strongly biconnected directed graph is strongly connected, the subgraph (V, O) has no strong articulation points. Therefore, the directed subgraph (V, O) is 2-vertex-connected.

Let l be the number of b-articulation points in G_1 . The following lemma shows that Algorithm 2.1 has an approximation factor of (2 + l/2).

Theorem 2.1. Let l be the number of b-articulation points in G_1 . Then, $|E_{2s}| \leq l(n-1) + 4n$.

Proof. Results of Edmonds [2] and Mader [16] imply that $|E_1| \le 4n$ [1,6]. Moreover, by Lemma 2.3, every optimal solution for the M2VSBSS problem has size at least 2n. For every b-articulation point in line 8, Algorithm 2.1 adds at most n-1 edges to E_{2s} in while loop. Therefore, $|E_{2s}| \le l(n-1) + 4n$

Theorem 2.1. The running time of Algorithm 2.1 is $O(n^2m)$.

Proof. A minimal 2-vertex-connected subgraph can be found in time $O(n^2)$ [6,7]. B-articulation points can be computed in O(nm) time. The strongly biconnected components of a directed graph can be identified in linear time [19]. Furthermore, by Lemma 2.1, lines 9–13 take O(nm) time.

Results of Mader [14, 15] imply that the number of edges in each minimal k-vertex-connected undirected graph is at most kn [1]. Results of Edmonds [2] and Mader [16] imply that the number of edges in each minimal k-vertex-connected directed graph is at most 2kn [1]. These results imply a 2-approximation algorithm [1] for minimum k-vertex-connected spanning subgraph problem for undirected and directed graphs [1] because every vertex in a k-vertex-connected undirected graphs has degree at least k and every vertex in a k-vertex-connected directed graph has outdegree at least k [1]. Note that these results imply a 7/2 approximation algorithm for the M2VSBSS problem by calculating a minimal 2-vertex-connected directed subgraph of a 2-vertex strongly biconnected directed graph G = (V, E) and a minimal 3-vertex connected undirected subgraph of the underlying graph of G. The running time of this algorithm is $O(m^2)$.

Lemma 2.4. Let G = (V, E) be a 2-vertex strongly biconnected directed graph. Let $G_1 = (V, L)$ be a minimal 2-vertex-connected subgraph of G and let $G_2 = (V, U)$ be a minimal 3-vertex-connected subgraph of the underlying graph of G. Then the directed subgraph $G_s = (V, L \cup A)$ is 2-vertex strongly biconnected, where $A = \{(v, w) \mid (v, w) \in E \text{ and } (v, w) \in U\}$. Moreover, $|L \cup A| \leq 7n$

Proof. Let w be any vertex of the subgraph G_s . Since the $G_1 = (V, L)$ is 2-vertex-connected, the directed subgraph G_s has no strong articulation points. Therefore, $G_s \setminus \{w\}$ is strongly connected. Moreover, the underlying graph of $G_s \setminus \{w\}$ is biconnected because G_2 is 3-vertex-connected and G_2 is a subgraph of the underlying graph of G_s . Results of Edmonds [2] and Mader [16] imply that $|L| \leq 4n$. Furthermore, Results of Mader [14, 15] imply that $|U| \leq 3n$.

3. Open problems

We leave as an open problem whether each minimal k-vertex strongly biconnected directed graph has at most 2kn edges.

Cheriyan and Thurimella [1] presented a (1+1/k)-approximation algorithm for the minimum k-vertex-connected spanning subgraph problem for directed and undirected graphs. The algorithm of Cheriyan and Thurimella [1] has an approximation factor of 3/2 for the minimum 2-vertex-connected directed subgraph problem. Let G = (V, E) be a 2-vertex strongly biconnected directed graph and let E^{CT} be the output of the algorithm of Cheriyan and Thurimella [1]. The directed subgraph (V, E^{CT}) is not necessarily 2-vertex strongly biconnected. But a 2-vertex strongly biconnected subgraph can be obtained by performing the following third phase. For each edge $e \in E \setminus E^{CT}$, if the underlying graph of $G \setminus \{e\}$ is 3-vertex-connected, delete e from G. We leave as as open problem whether this algorithm has an approximation factor of 3/2 for the M2VSBSS problem.

The present author [11–13] studied twinless articulation points and some related problems. Georgiadis and Kosinas [8] presented linear time algorithms for computing twinless articulation points and twinless bridges. An important question is whether there is a connection between twinless articulation points and the M2VSBSS problem.

Acknowledgement

The author would like to thank the anonymous reviewers for their helpful comments and suggestions.

References

- [1] J. Cheriyan, R. Thurimella, Approximating minimum-size k-connected spanning subgraphs via matching, SIAM J. Comput. 30 (2000) 528-560.
- [2] J. Edmonds, Edge-disjoint branchings, In: R. Rustin (Ed.), Combinatorial Algorithms, Algorithmics Press, New York, 1972, pp. 91–96.
- [3] D. Firmani, G. F. Italiano, L. Laura, A. Orlandi, F. Santaroni, Computing strong articulation points and strong bridges in large scale graphs, In: R. Klasing (Ed.), Experimental Algorithms, SEA 2012, Lecture Notes in Computer Science, Vol. 7276, Springer, Berlin, 2012, pp. 195–207.
- [4] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman & Co., New York, 1979.
- [5] L. Georgiadis, Testing 2-vertex connectivity and computing pairs of vertex-disjoint s-t paths in digraphs, In: S. Abramsky, C. Gavoille, C. Kirchner, F. Meyer auf der Heide, P. G. Spirakis (Eds.), Automata, Languages and Programming, ICALP 2010, Lecture Notes in Computer Science, Vol. 6198, Springer, Berlin, 2010, pp. 738–749.
- [6] L. Georgiadis, Approximating the smallest 2-vertex connected spanning subgraph of a directed graph, In: C. Demetrescu, M. M. Halldórsson (Eds.), Algorithms - ESA 2011, Lecture Notes in Computer Science, Vol. 6942, Springer, Berlin, 2011, pp. 13–24.
- [7] L. Georgiadis, G. F. Italiano, A. Karanasiou, Approximating the smallest 2-vertex connected spanning subgraph of a directed graph, Theoret. Comput. Sci. 807 (2020) 185–200.
- [8] L. Georgiadis, E. Kosinas, Linear-time algorithms for computing twinless strong articulation points and related problems, *Proceedings of the 31st International Symposium on Algorithms and Computation* (ISAAC 2020), pp. 38:1–38:16.
- [9] L. Georgiadis, R. E. Tarjan, Dominator tree certification and divergent spanning trees, ACM Trans. Algorithms 12 (2016) Art# 11.
- [10] G. F. Italiano, L. Laura, F. Santaroni, Finding strong bridges and strong articulation points in linear time, Theoret. Comput. Sci. 447 (2012) 74–84.
- [11] R. Jaberi, Twinless articulation points and some related problems, arXiv:1912.11799 [cs.DS], (2019).
- [12] R. Jaberi, 2-edge-twinless blocks, Bull. Sci. Math. 168 (2021) Art# 102969.
- [13] R. Jaberi, Computing 2-twinless blocks, Discrete Math. Lett. 5 (2021) 29-33.
- [14] W. Mader, Minimal n-fach kantenzusammenhängende graphen, Math. Ann. 191 (1971) 21–28.
- [15] W. Mader, Ecken vom grad n in minimalen n-fach zusammenhängenden graphen, Arch. Math. 23 (1972) 219–224.
- [16] W. Mader, Minimal n-fach zusammenhängende digraphen, J. Combin. Theory Ser. B 38 (1985) 102-117.
- [17] J. M. Schmidt, A simple test on 2-vertex- and 2-edge-connectivity, Inform. Process. Lett. 113 (2013) 241-244.
- [18] R. E. Tarjan, Depth first search and linear graph algorithms, SIAM J. Comput. 1 (1972) 146–160.
- [19] Z. Wu, S. Grumbach, Feasibility of motion planning on acyclic and strongly connected directed graphs, Discrete Appl. Math. 158 (2010) 1017–1028.