Minimum 2-vertex strongly biconnected spanning directed subgraph problem

Raed Jaberi*
Department of Software and Information Systems, Tishreen University, Latakia, Syrian Arab Republic

(Received: 16 March 2021. Received in revised form: 7 June 2021. Accepted: 18 June 2021. Published online: 21 June 2021.)
(C) 2021 the author. This is an open access article under the CC BY (International 4.0) license (www. creativecommons.org/licenses/by/4.0/).

Abstract

A directed graph $G=(V, E)$ is strongly biconnected if G is strongly connected and its underlying graph is biconnected. A strongly biconnected directed graph $G=(V, E)$ is called 2-vertex-strongly biconnected if $|V| \geq 3$ and the induced subgraph on $V \backslash\{w\}$ is strongly biconnected for every vertex $w \in V$. In this paper, the following problem is studied: Given a 2 -vertexstrongly biconnected directed graph $G=(V, E)$, compute an edge subset $E^{2 s b} \subseteq E$ of minimum size such that the subgraph ($V, E^{2 s b}$) is 2-vertex-strongly biconnected.

Keywords: directed graphs; approximation algorithms; graph algorithms; strongly connected graphs; strongly biconnected directed graphs.
2020 Mathematics Subject Classification: 05C85, 05C20.

1. Introduction

The underlying graph of a directed graph $G=(V, E)$ is the undirected graph $G_{1}=\left(V_{1}, E_{1}\right)$, where $V_{1}=V$ and $E_{1}=$ $\{(v, w) \mid(v, w) \in E$ or $(w, v) \in E\}$. A directed graph $G=(V, E)$ is strongly biconnected if G is strongly connected and its underlying graph is biconnected. A strongly biconnected directed graph $G=(V, E)$ is called k-vertex-strongly biconnected if $|V|>k$ and for each $L \subset V$ with $|L|<k$, the induced subgraph on $V \backslash L$ is strongly biconnected. The minimum k-vertex-strongly biconnected spanning subgraph problem (denoted by MKVSBSS) is formulated as follows. Given a k -vertex-strongly biconnected directed graph $G=(V, E)$, compute an edge subset $E^{k s b} \subseteq E$ of minimum size such that the $\operatorname{subgraph}\left(V, E^{k s b}\right)$ is k-vertex-strongly biconnected. In this paper, we consider the MKVSBSS problem for $k=2$. Note that each 2-vertex-strongly-biconnected directed graph is 2-vertex-connected, but the converse is not necessarily true.

Thus, optimal solutions for minimum 2-vertex-connected spanning subgraph (M2VCSS) problem are not necessarily feasible solutions for the 2-vertex strongly biconnnected spanning subgraph problem, as shown in Figure 1.

The problem of finding a k-vertex-connected spanning subgraph of a k-vertex-connected directed graph is NP-hard for $k \geq 1$ [4]. Results of Edmonds [2] and Mader [16] imply that the number of edges in each minimal k-vertex-connected directed graph is at most $2 k n$ [1]. Cheriyan and Thurimella [1] gave a ($1+1 / k$)-approximation algorithm for the minimum k -vertex-connected spanning subgraph problem. Georgiadis [6] improved the running time of this algorithm for the M2VCSS problem and presented a linear time approximation algorithm that achieves an approximation factor of 3 for the M2VCSS problem. Georgiadis et al. [7] provided efficient approximation algorithms based on the results of [3,5,9,10] for the M2VCSS problem. Strongly connected components of a directed graph and blocks of an undirected graphs can be found in linear time using Tarjan's algorithm [17, 18]. Wu and Grumbach [19] introduced the concept of strongly biconnected directed graph and strongly biconnected components. Clearly, the MKVSBSS problem is NP-hard for $k \geq 1$. In this paper, we study the MKVSBSS problem when $k=2$ (denoted by M2VSBSS).

2. Approximation algorithms for the M2VSBSS problem

In this section, we present approximation algorithms for the M2VSBSS Problem. A vertex w in a strongly biconnected directed graph $G=(V, E)$ is a b-articulation point if $G \backslash\{w\}$ is not strongly biconnected. Algorithm 2.1 is based on barticulation points, minimal 2-vertex-connected subgraphs, and Lemma 2.1.

Lemma 2.1. Let $G_{s}=\left(V, E_{s}\right)$ be a subgraph of a strongly biconnected directed graph $G=(V, E)$ such that G_{s} is strongly connected and G_{s} has $t>0$ strongly biconnected components. Let (u, w) be an edge in $E \backslash E_{s}$ such that u, w are not in the

[^0]

Figure 1: (a) A 2-vertex strongly biconnected graph. (b) An optimal solution for the minimum 2-vertex-connected spanning subgraph problem. But note that this subgraph is not 2-vertex strongly biconnected because the underlying graph of the subgraph obtained by removing vertex 1 is not biconnected. (c) An optimal solution for the minimum 2 -vertex strongly biconnected spanning subgraph problem.
same strongly biconnected component of G_{s}. Then the directed subgraph $\left(V, E_{s} \cup\{(u, w)\}\right)$ contains at most $t-1$ strongly biconnected components.

Proof. Since G_{s} is strongly connected, there exists a simple path p from w to u in G_{s}. Since the edge (u, w) does not belong to the path p, the path p and edge (u, w) form a simple directed cycle c in the directed subgraph $\left(V, E_{s} \cup\{(u, w)\}\right)$. Moreover, the cycle c is also a simple undirected cycle in the underlying undirected graph of the directed graph $\left(V, E_{s} \cup\{(u, w)\}\right)$. Consequently, the vertices u, w are in the same strongly biconnected component of the subgraph $\left(V, E_{s} \cup\{(u, w)\}\right)$.

Lemma 2.2. Algorithm 2.1 returns a 2-vertex strongly biconnected directed subgraph.
Proof. It follows from Lemma 2.1.
The following lemma shows that each optimal solution for the M2VSBSS problem has at least $2 n$ edges.
Lemma 2.3. Let $G=(V, E)$ be a 2-vertex-strongly biconnected directed graph. Let $O \subseteq E$ be an optimal solution for the M2VSBSS problem. Then $|O| \geq 2 n$.

```
Algorithm 2.1.
Input: A 2-vertex strongly biconnected directed graph \(G=(V, E)\)
Output: a 2-vertex strongly biconnected subgraph \(G_{2 s}=\left(V, E_{2 s}\right)\)
    find a minimal 2-vertex-connected subgraph \(G_{1}=\left(V, E_{1}\right)\) of \(G\)
    if \(G_{1}\) is 2-vertex strongly biconnected then
        output \(G_{1}\)
    else
        \(E_{2 s} \leftarrow E_{1}\)
        \(G_{2 s} \leftarrow\left(V, E_{2 s}\right)\)
        identify the b-articulation points of \(G_{1}\)
        for every b -articulation point \(b \in V\) do
            while \(G_{2 s} \backslash\{b\}\) is not strongly biconnected do
                calculate the strongly biconnected components of \(G_{2 s} \backslash\{b\}\)
                find an edge \((u, w) \in E \backslash E_{2 s}\) such that \(u, w\) are not in
                the same strongly biconnected component of \(G_{2 s} \backslash\{b\}\).
                \(E_{2 s} \leftarrow E_{2 s} \cup\{(u, w)\}\)
        output \(G_{2 s}\).
```

Proof. for any vertex $x \in V$, the removal of x from the subgraph (V, O) leaves a strongly biconnected directed subgraph. Since each strongly biconnected directed graph is strongly connected, the subgraph (V, O) has no strong articulation points. Therefore, the directed subgraph (V, O) is 2 -vertex-connected.

Let l be the number of b-articulation points in G_{1}. The following lemma shows that Algorithm 2.1 has an approximation factor of $(2+l / 2)$.

Theorem 2.1. Let l be the number of b-articulation points in G_{1}. Then, $\left|E_{2 s}\right| \leq l(n-1)+4 n$.
Proof. Results of Edmonds [2] and Mader [16] imply that $\left|E_{1}\right| \leq 4 n$ [1,6]. Moreover, by Lemma 2.3, every optimal solution for the M2VSBSS problem has size at least $2 n$. For every b-articulation point in line 8, Algorithm 2.1 adds at most $n-1$ edges to $E_{2 s}$ in while loop. Therefore, $\left|E_{2 s}\right| \leq l(n-1)+4 n$

Theorem 2.1. The running time of Algorithm 2.1 is $O\left(n^{2} m\right)$.
Proof. A minimal 2-vertex-connected subgraph can be found in time $O\left(n^{2}\right)$ [6,7]. B-articulation points can be computed in $O(n m)$ time. The strongly biconnected components of a directed graph can be identified in linear time [19]. Furthermore, by Lemma 2.1, lines $9-13$ take $O(n m)$ time.

Results of Mader [14, 15] imply that the number of edges in each minimal k-vertex-connected undirected graph is at most $k n$ [1]. Results of Edmonds [2] and Mader [16] imply that the number of edges in each minimal k-vertex-connected directed graph is at most $2 k n$ [1]. These results imply a 2 -approximation algorithm [1] for minimum k-vertex-connected spanning subgraph problem for undirected and directed graphs [1] because every vertex in a k-vertex-connected undirected graphs has degree at least k and every vertex in a k-vertex-connected directed graph has outdegree at least k [1]. Note that these results imply a $7 / 2$ approximation algorithm for the M2VSBSS problem by calculating a minimal 2 -vertexconnected directed subgraph of a 2-vertex strongly biconnected directed graph $G=(V, E)$ and a minimal 3-vertex connected undirected subgraph of the underlying graph of G. The running time of this algorithm is $O\left(m^{2}\right)$.

Lemma 2.4. Let $G=(V, E)$ be a 2-vertex strongly biconnected directed graph. Let $G_{1}=(V, L)$ be a minimal 2-vertexconnected subgraph of G and let $G_{2}=(V, U)$ be a minimal 3-vertex-connected subgraph of the underlying graph of G. Then the directed subgraph $G_{s}=(V, L \cup A)$ is 2-vertex strongly biconnected, where $A=\{(v, w) \mid(v, w) \in E$ and $(v, w) \in U\}$. Moreover, $|L \cup A| \leq 7 n$

Proof. Let w be any vertex of the subgraph G_{s}. Since the $G_{1}=(V, L)$ is 2-vertex-connected, the directed subgraph G_{s} has no strong articulation points. Therefore, $G_{s} \backslash\{w\}$ is strongly connected. Moreover, the underlying graph of $G_{s} \backslash\{w\}$ is biconnected because G_{2} is 3-vertex-connected and G_{2} is a subgraph of the underlying graph of G_{s}. Results of Edmonds [2] and Mader [16] imply that $|L| \leq 4 n$. Furthermore, Results of Mader [14, 15] imply that $|U| \leq 3 n$.

3. Open problems

We leave as an open problem whether each minimal k-vertex strongly biconnected directed graph has at most $2 k n$ edges.

Cheriyan and Thurimella [1] presented a $(1+1 / k)$-approximation algorithm for the minimum k-vertex-connected spanning subgraph problem for directed and undirected graphs. The algorithm of Cheriyan and Thurimella [1] has an approximation factor of $3 / 2$ for the minimum 2-vertex-connected directed subgraph problem. Let $G=(V, E)$ be a 2-vertex strongly biconnected directed graph and let $E^{C T}$ be the output of the algorithm of Cheriyan and Thurimella [1]. The directed subgraph ($V, E^{C T}$) is not necessarily 2-vertex strongly biconnected. But a 2-vertex strongly biconnected subgraph can be obtained by performing the following third phase. For each edge $e \in E \backslash E^{C T}$, if the underlying graph of $G \backslash\{e\}$ is 3 -vertexconnected, delete e from G. We leave as as open problem whether this algorithm has an approximation factor of $3 / 2$ for the M2VSBSS problem.

The present author [11-13] studied twinless articulation points and some related problems. Georgiadis and Kosinas [8] presented linear time algorithms for computing twinless articulation points and twinless bridges. An important question is whether there is a connection between twinless articulation points and the M2VSBSS problem.

Acknowledgement

The author would like to thank the anonymous reviewers for their helpful comments and suggestions.

References

[1] J. Cheriyan, R. Thurimella, Approximating minimum-size k-connected spanning subgraphs via matching, SIAM J. Comput. 30 (2000) $528-560$.
[2] J. Edmonds, Edge-disjoint branchings, In: R. Rustin (Ed.), Combinatorial Algorithms, Algorithmics Press, New York, 1972, pp. 91-96.
[3] D. Firmani, G. F. Italiano, L. Laura, A. Orlandi, F. Santaroni, Computing strong articulation points and strong bridges in large scale graphs, In: R. Klasing (Ed.), Experimental Algorithms, SEA 2012, Lecture Notes in Computer Science, Vol. 7276, Springer, Berlin, 2012, pp. $195-207$.
[4] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman \& Co., New York, 1979.
[5] L. Georgiadis, Testing 2 -vertex connectivity and computing pairs of vertex-disjoint s-t paths in digraphs, In: S. Abramsky, C. Gavoille, C. Kirchner, F. Meyer auf der Heide, P. G. Spirakis (Eds.), Automata, Languages and Programming, ICALP 2010, Lecture Notes in Computer Science, Vol. 6198, Springer, Berlin, 2010, pp. 738-749.
[6] L. Georgiadis, Approximating the smallest 2-vertex connected spanning subgraph of a directed graph, In: C. Demetrescu, M. M. Halldórsson (Eds.), Algorithms - ESA 2011, Lecture Notes in Computer Science, Vol. 6942, Springer, Berlin, 2011, pp. 13-24.
[7] L. Georgiadis, G. F. Italiano, A. Karanasiou, Approximating the smallest 2-vertex connected spanning subgraph of a directed graph, Theoret. Comput. Sci. 807 (2020) 185-200.
[8] L. Georgiadis, E. Kosinas, Linear-time algorithms for computing twinless strong articulation points and related problems, Proceedings of the 31st International Symposium on Algorithms and Computation (ISAAC 2020), pp. 38:1-38:16.
[9] L. Georgiadis, R. E. Tarjan, Dominator tree certification and divergent spanning trees, ACM Trans. Algorithms 12 (2016) Art\# 11.
[10] G. F. Italiano, L. Laura, F. Santaroni, Finding strong bridges and strong articulation points in linear time, Theoret. Comput. Sci. 447 (2012) $74-84$.
[11] R. Jaberi, Twinless articulation points and some related problems, arXiv:1912.11799 [cs.DS], (2019).
[12] R. Jaberi, 2-edge-twinless blocks, Bull. Sci. Math. 168 (2021) Art\# 102969.
[13] R. Jaberi, Computing 2-twinless blocks, Discrete Math. Lett. 5 (2021) 29-33.
[14] W. Mader, Minimal n-fach kantenzusammenhängende graphen, Math. Ann. 191 (1971) 21-28.
[15] W. Mader, Ecken vom grad n in minimalen n-fach zusammenhängenden graphen, Arch. Math. 23 (1972) 219-224.
[16] W. Mader, Minimal n-fach zusammenhängende digraphen, J. Combin. Theory Ser. B 38 (1985) 102-117.
[17] J. M. Schmidt, A simple test on 2-vertex- and 2-edge-connectivity, Inform. Process. Lett. 113 (2013) 241-244.
[18] R. E. Tarjan, Depth first search and linear graph algorithms, SIAM J. Comput. 1 (1972) 146-160.
[19] Z. Wu, S. Grumbach, Feasibility of motion planning on acyclic and strongly connected directed graphs, Discrete Appl. Math. 158 (2010) $1017-1028$.

[^0]: *E-mail address: jaberi.raed@gmail.com

