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Abstract: We present a new algorithm for synthesis of reversible circuits for arbitrary n-bit
bijective functions. This algorithm uses generalized Toffoli gates, which include positive and

negative controls. Our algorithm is divided into two parts. First, we use partially controlled gen-

eralized Toffoli gates, progressively increasing the number of controls. Second, exploring the

properties of the representation of permutations in disjoint cycles, we apply generalized Toffoli

gates with controls on all lines except for the target line. Therefore, new in the method is the

fact that the obtained circuits use first low cost gates and consider increasing costs towards the

end of the synthesis. In addition, we employ two bidirectional synthesis strategies to improve the

gate count, which is the metric used to compare the results obtained by our algorithm with the

results presented in the literature. Accordingly, our experimental results consider all 3-bit bijective
functions and twenty widely used benchmark functions. The results obtained by our synthesis

algorithm are competitive when compared with the best results known in the literature, considering

as a complexity metric just the number of gates, as done by alternative best heuristics found in the

literature. For example, for all 3-bit bijective functions using generalized Toffoli gates library, we
obtained the best so far average count of 5.23.
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1 Introduction

In the last decades, the synthesis of reversible circuits has received considerable attention
due to the possibility of applications in several areas of science, such as signal process-
ing, cryptography, quantum computing, low-power design, computer graphics, optical
computing, DNA computing, bioinformatics, nano and photonic circuits [Saeedi and
Markov, 2013]. One of the main motivations for reversible computing is that quantum
computing has as one of its foundations the reversibility of all gates, that is, quantum
computing circuit models are reversible. This fact stems from the evolution postulate
of quantum mechanics, where a unitary operator describes the time-evolution of the
state of a closed quantum system [Nielsen and Chuang, 2000]. Another main motivation
is the important physical consequences for reversible computing. Landauer [Landauer,
1961] proved that using irreversible logic gates necessarily leads to power dissipation
regardless of the underlying technology. The reason is that each erased bit leads to at
least kT ln 2 energy dissipation, where k is Boltzmann’s constant and T is the absolute
temperature of the circuit. On the other hand, Bennett [Bennett, 1973] showed how to use
reversible logic gates to reduce or even eliminate power dissipation in a circuit. Indeed,
in a reversible circuit—classical or quantum—we can retrieve all information from the
circuit input using what was obtained at the circuit output. That is, in this process no
input information is erased. Moreover, Bennett also showed that zero power dissipation
in circuits is only possible if their calculation is reversible.

An important problem in reversible computing that has been intensively studied for
the last decades is the synthesis of reversible circuits. The problem can be stated as: Given
a bijective function f , find the best possible reversible circuit that implements f [Shende
et al., 2003, Miller et al., 2003, Kowada et al., 2006, Maslov et al., 2007, Golubitsky
et al., 2010, Saeedi and Markov, 2013].

In this work, we present a new algorithm for synthesis of reversible circuits using
multiple-control Toffoli gates [Toffoli, 1980, Iwama et al., 2002] with any number of
positive or negative controls, also known as generalized Toffoli gates [Maslov and
Dueck, 2004, Zakablukov, 2016]. Our method is an upgrade of the cycle-based synthesis
(CBS) algorithm [Ribeiro et al., 2015]. Besides using only totally controlled gates—gates
with controls on all lines except for the target line—we also include partially controlled
Toffoli gates [Iwama et al., 2002]. An important contribution from our method is the
fact that the obtained circuits use low cost gates first, and consider increasing costs
towards the end of the synthesis. For 3 bits, the circuits achieved by our new synthesis
algorithm use less gates than the circuits achieved by the CBS algorithm, and by recent
algorithms in Zhu et al. [Zhu et al., 2018] and Cheng et al. [Cheng et al., 2012] that rely
on partially controlled Toffoli gates with negative controls. Previous works [Wille et al.,
2012, Datta et al., 2013, Rahman and Rice, 2014] have shown that gate libraries including
negative controlled Toffoli gates may bemore efficient for circuit synthesis. Our proposed
algorithm and previous algorithms found in [Maslov and Dueck, 2004, Maslov et al.,
2005] and [Ribeiro et al., 2015] rely on the Hamming distance between the permutation
that needs to be synthesized and the identity, and try to minimize by making the moves
(gate assignments) that do not increase the Hamming distance. We start with gates with
few controls, and then increase the number of controls until we finally have totally
controlled gates, in which case we can apply CBS algorithm [Ribeiro et al., 2015],
which explores properties of the cycle representation of permutations. An alternative
cycle representation has been used in [Saeedi et al., 2010], where the authors consider
the permutation as a product of small not necessarily disjoint cycles and explores the
properties of certain kinds of products, such as products of transpositions, for instance.
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Synthesis can be performed optimally or heuristically, we refer to the survey on
synthesis and optimization of reversible circuits [Saeedi andMarkov, 2013]. We compare
our heuristic results for the synthesis of all 3-bit bijective functions with the main current
results using the Generalized Toffoli library obtained by Zhu et al. [Zhu et al., 2018]
and Cheng et al. [Cheng et al., 2012]. Zhu et al. cycle-decomposition-based synthesis
algorithm is specific to 3-bit bijective functions, and its main idea consists in representing
the permutation in disjoint cycles and then using the so-called Head-Pointer-Adjust,
which, over all cycles, takes the greatest Hamming distance between two consecutive
elements. On the other hand, Cheng et al. synthesis algorithm also specific to 3-bit
bijective functions uses templates and bidirectional method. It is important to mention
that, differently from the algorithms of Zhu et al. and Cheng et al., our algorithm works
for arbitrary n-bit bijective functions. Besides that, our algorithm achieves circuits with
smaller number of gates in average, a cost model adequate when staying within the
traditional reversible framework.

There are optimal algorithms restricted to 3 bits [Wille et al., 2012] and to 4 bits
[Szyprowski and Kerntopf, 2012]. These methodsmainly formulate the synthesis problem
as a sequence of instances of standard decision problems, such as Boolean satisfiability.
We remark that only a small number of qubits can be handled by these methods.

Furthermore, we perform a series of experiments on benchmark bijective functions.
We compare the results obtained by our synthesis algorithm with the best results in
the literature, due to Zakablukov [Zakablukov, 2016] and Maslov et al. [Maslov et al.,
2005, Maslov et al., 2007], for the gate count problem.

The present work is organized as follows. In Sec. 2, we briefly introduce the key
concepts of reversible computing. In Sec. 3, we present our synthesis algorithm. In Sec. 4,
we present the experimental results that we obtained. Finally, in Sec. 5, we present our
final remarks and propose further related questions.

2 Preliminary notions

In the combinational model, a circuit using elementary logical gates AND, OR or NOT
can be used to implement a function f : {0, 1}n → {0, 1}m, where n andm denote the
numbers of bits necessary to represent the input and output size, respectively. If f is a
bijective function, then it can be represented by a permutation with 2n values. Otherwise,
the function f can be transformed into a new bijective function, by adding ancilla bits.
For instance, the function f = {(0, 7), (1, 4), (2, 1), (3, 0), (4, 3), (5, 2), (6, 6), (7, 5)}
can be represented by the permutation [7, 4, 1, 0, 3, 2, 6, 5].

There are gates that implement bijective functions f(x0, . . . , xn−1) called re-
versible gates, that is, such gates compute the function f , given the input x0, . . . , xn−1.
The Multiple-Control Toffoli (MCT) gates are some important reversible gates [Toffoli,
1980, Iwama et al., 2002]. These gates, also known as CkNOT(xe0 , . . . , xek), where
0 ≤ e0, . . . , ek < n, keep the k<n lines related to xe0 , . . . , xek−1

(the control lines)
unchanged and flip the bit in the line related to xek (the target line) if and only if all
control lines carry the 1 value. In particular, for k = 0, 1 and 2 the gates are named
NOT, CNOT and Toffoli, respectively. These reversible gates together with C3NOT are
depicted in Fig. 1.

An n-bit reversible circuit is defined as a sequence of reversible gates each acting on
at most n lines. This type of circuits can be used to implement bijective functions. More
specifically, since each elementary logical gate AND, OR or NOT can be simulated
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x0 x0

x1 x1

x2 x2 ⊕ 1
x3 x3

(a)

x0 x0

x1 • x1

x2 x2 ⊕ x1

x3 x3
(b)

x0 • x0

x1 • x1

x2 x2 ⊕ x0x1

x3 x3
(c)

x0 • x0

x1 • x1

x2 x2 ⊕ x0x1x3

x3 • x3
(d)

Figure 1: Representation of (a) NOT(x2) = x2 ⊕ 1,
(b) CNOT(x1, x2) = (x1, x2 ⊕ x1), (c) Toffoli(x0, x1, x2) = (x0, x1, x2 ⊕ x0x1) and

(d) C3NOT(x0, x1, x3, x2) = (x0, x1, x3, x2 ⊕ x0x1x3).

by a constant number of NOT, CNOT, and Toffoli gates, reversible circuits form a
computational model equivalent to combinational circuits.

The problem of reversible circuit synthesis is defined as, given a bijective function
f : {0, 1}n → {0, 1}n, find an n-bit reversible circuit that computes f . The input of the
problem is a permutation π of S2n and the output is the reversible circuit that transforms
the identity permutation into π. We aim to find the optimal reversible circuit.

The CkNOT gates, with positive and negative controls, called Generalized Toffoli
(GT) gates, allow positive and negative controls to flip the bit in the target line. These
gates flip the bit in the target line if and only if each positive (or negative) control line
carries the 1 (or 0) value. We indicate a negative control line with ′ after the label of the
respective parameter. The values on the remaining lines (without control) do not affect
any output. If k = n−1, we have the generalized Toffoli gates that are totally controlled,
called Totally GT gates. On the other hand, if k < n−1, we have the generalized Toffoli
gates that are partially controlled, called Partially GT gates.

Definition 1 The Hamming distance dH(i, j) between two values i and j in binary
representation is the number of bit positions that differ. Two values i and j are adjacent
if dH(i, j) = 1.

x0 x0

x1 • x1

x2 x2

x3 x3 ⊕ x′
0x1x

′
2

Figure 2: Totally GT gate representing

C3NOT(x′
0, x1, x

′
2, x3) = (x′

0, x1, x
′
2, x3 ⊕ x′

0x1x
′
2). This gate changes the sequence

x3x2x1x0 = 0010 into 1010 (in binary representation) and vice versa. The bottom line

denotes the most significant bit. An equivalent representation is X(2, 10).

An equivalent representation for the Totally GT gate is X(i, j) to indicate that it
swaps values i and j, where i and j should be adjacent. We may also understand the
X(i, j) notation as follows. Let us consider i < j and t the bit position that they differ.
Let bn−1 · · · bt+10bt−1 · · · b0 and bn−1 · · · bt+11bt−1 · · · b0 be the binary representations
of i and j, respectively, where bn−1 is the most significant bit. In an n-bit circuit, the
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X(i, j) gate is equivalent to Cn-1NOT(b0, . . . , bt−1, bt+1, . . . , bn−1, bt). Note that the
target line must be indicated as the last parameter in a Cn-1NOT gate, and the order of the
other parameters, which indicate the control lines, is not relevant. Throughout the text we
shall use the control parameters in crescent order of the indices. See Fig. 2 for an example
of a Totally GT gate, and see Fig. 3 for an example of a reversible circuit that transforms
the identity permutation into π. To clarify our use of equivalent representations, we
include a corresponding Table 1 with the explicit sequence of used gates. The choice of
the example is justified in Sec. 3.3, where we present in Figs. 5 and 6 some optimized
equivalent circuits returned by our proposed algorithm.

g1 g2 g3 g4 g5 g6 g7 g8

x0 • • • f0
x1 • • f1
x2 • f2

Figure 3: Example of a reversible circuit that transforms the identity permutation into

π = [7 4 1 0 3 2 6 5] using only Totally GT gates. The sequence of gates (reading from

left to right) is g1 = X(0, 1), g2 = X(2, 3), g3 = X(0, 4), g4 = X(0, 2),
g5 = X(1, 5), g6 = X(1, 3), g7 = X(2, 3) and g8 = X(5, 7). We consider the

representation of the numbers with x0 being the least significant bit and x2 being the

most significant bit. The output bits are denoted by f2f1f0.

x2x1x0 f2f1f0

000 001 001 001 001 101 101 101 111 = 7
001 000 000 100 100 100 100 100 100 = 4
010 010 011 011 011 011 001 001 001 = 1
011 011 010 010 000 000 000 000 000 = 0
100 100 100 000 010 010 010 011 011 = 3
101 101 101 101 101 001 011 010 010 = 2
110 110 110 110 110 110 110 110 110 = 6
111 111 111 111 111 111 111 111 101 = 5

Gates: g1 ↗ g2 ↗ g3 ↗ g4 ↗ g5 ↗ g6 ↗ g7 ↗ g8 ↗

Table 1: Sequence of gates g1 = X(0, 1), g2 = X(2, 3), g3 = X(0, 4), g4 = X(0, 2),
g5 = X(1, 5), g6 = X(1, 3), g7 = X(2, 3) and g8 = X(5, 7) that transforms the

identity permutation into π = [7 4 1 0 3 2 6 5] using only Totally GT gates (See Fig. 3).

In bold, the bit changes introduced by the corresponding gates. The result of application

of the gate on the bottom of each column is shown in the next column while reading from

left to right.
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Definition 2 Let π and σ be permutations with n elements each. The Hamming distance
dH(π, σ) is the sum of dH(πi, σi) where πi and σi are the elements in position i of π
and σ respectively, for 0 ≤ i < n. We denote by dH(π) the Hamming distance between
π and the identity ι.

For example, the Hamming distance dH(π) between permutation π = [7 4 1 0 3 2 6 5]
and the identity is the sum 3+ 2+2+2+3+3+0+1 = 16. A circuit that transforms
the identity into π is given in Fig. 3.

Our algorithm uses the cycle representation of a permutation. Let π = [π0 π1 · · ·
π2n−1] be a permutation and let π = C1C2 · · ·Cm be its corresponding cycle repre-

sentation. Each cycle C can be represented by C = (c1c2 · · · c|C|), where ci+1 = πci

with c0 = c|C|. Therefore, in case ci = πj , we have dH(ci−1, ci) = dH(j, πj). We
denote by dH(πj) the Hamming distance between πj and j, and we shall use both names
dH(ci−1, ci) and dH(πj) interchangeably. A permutation π is unicyclic if it can be
represented by a single cycle.

Given a cycle C of length |C| in a permutation π, we define

S(C) =

|C|∑
i=1

dH(ci−1, ci), (1)

with c0 = c|C|. It follows immediately from the definition that

dH(π) ≡ dH(π, ι) =

m∑
`=1

S(C`), (2)

wherem is the number of cycles of π.
For example, for the permutation π given by Fig. 3 the cycle representation is

(0 7 5 2 1 4 3)(6), and dH(π) = 16 + 0 = 16.

3 Algorithm

Our algorithm is divided in two parts. The first part which is described in Subsection 3.1
consists in searching Partially GT gates with the goal of finding the gate that gives
us the greatest decrease in Hamming distance, increasing progressively the number of
controls. The permutation associated with each gate is obtained in a preprocessing step
and stored in an array. The second part which is described in Subsection 3.2 consists only
in trying to apply Totally GT gates. Finally in Subsection 3.3, our Synthesis algorithm
with progressive increase of controls in GT gates is described using the algorithms
obtained in the First and Second parts.

3.1 First Part: Partially GT gates

The goal is to decrease the Hamming distance between the current permutation and
the identity, using as few controls as possible for the generalized Toffoli gates at the
beginning of the algorithm. Hence, we first try the NOT gates, while it is possible to
decrease the Hamming distance, then we try the CNOT gates, then we try the gates with
two controls, and so on, until we get to the Totally GT gates.
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In a preprocessing part, we build an array with all possible logical gates for the
Generalized Toffoli library for n-bit circuits. The number of possible GT gates is n3n−1.
Indeed, for each line that the target bit occupies among the n possible lines, the n− 1
remaining lines can be occupied in three different ways: positive control, negative control
or uncontrolled. The construction of the array begins with the Totally GT gates, i.e.,
gates with n− 1 controls. From these gates, we build Toffoli gates with n− 2 controls,
which in turn are used to build the Toffoli gates with n− 3 controls, and so on.

The permutations associated with the Totally GT gates are of the form (i j) in
the cyclic notation, which corresponds to one transposition. In turn, the permutations
associated with the GT gates with n − 2 controls are of the form (i j)(k l), while the
permutations associated with the GT gates with n − 3 controls are formed by four
transpositions, and so on.

We present in Fig. 4 an example for 4 bits, where the composition of two Totally
GT gates corresponding to (4 12) and (5 13) is equivalent to one GT gate (4 12)(5 13)
with 2 controls.

x0 x0

x1 x1

x2 • x2

x3 x3 ⊕ x′
1x2

=

x0 • x0

x1 x1

x2 • • x2

x3 x3 ⊕ x′
0x

′
1x2 ⊕ x0x

′
1x2

Figure 4: The C2NOT(x′
1, x2, x3) gate is equivalent to the composition of gates

C3NOT(x′
0, x

′
1, x2, x3) and C

3NOT(x0, x
′
1, x2, x3).

We say a transformation T over a permutation π is a d-move if dH(π)−dH(T (π)) =
d, or equivalently, dH(π, T (π)) = d.

Lemma 3 If T is a d-move corresponding to a GT gate, with n bits and c controls,
where 0 ≤ c < n, then |d| ≤ 2n−c and |d| is even.

Proof. Let π be a permutation. For each d-move T corresponding to a GT gate, with n
bits and c controls, where 0 ≤ c < n, we have dH(π ⊕ σ, 0) = 2n−c, where σ = T (π)
and ⊕ is the bitwise XOR operation. Therefore, exactly 2n−c bits (in distinct elements)
are swapped by T . Suppose that among the 2n−c bits swapped for T there were q bits that
before the swap differed from the corresponding bits of the ι identity permutation. When
effecting the swap, such q bits will coincide with the corresponding bits of the ι. On the
other hand, the p = 2n−c− q bits that initially coincided with the corresponding bits in ι
will now be different. So, d-move will be such that d = q−(2n−c−q) = 2(q−2n−c−1).
Therefore, d is even and |d| = |q − p| = |2(q − 2n−c−1)| ≤ 2n−c. ut

Thus, in particular, if T is a transformation corresponding to a Totally GT gate, then
T is either a 2-move, or a 0-move, or a −2-move.

For example, let π = (0 7 6 1 2 11 13 12 3 15 14 8 10 5 9 4) be a unicyclic permutation.
The Partially GT gate C2NOT(x1, x

′
3, x0), which corresponds to (2 3)(6 7) applied to π,

returns σ = (0 6 1 3 15 14 8 10 5 9 4)(2 11 13 12)(7) and dH(π)−dH(σ) = 34−30 = 4,
so gate C2NOT(x1, x

′
3, x0) applied to π is a 4-move. Gate C2NOT(x1, x

′
3, x0) applied

to σ is a −4-move. The Partially GT gate C2NOT(x′
1, x3, x0), which corresponds to
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(8 9)(12 13) applied to π, returns λ = (0 7 6 1 2 11 12 3 15 14 9 4)(5 8 10)(13) and
dH(π) − dH(λ) = 34 − 36 = −2, so gate C2NOT(x′

1, x3, x0) is a −2-move. Gate
C2NOT(x′

1, x3, x0) applied to λ is a 2-move.

Definition 4 A d-move is a useful move if and only if d ≥ 0.

So, in the first part of our new algorithm for synthesis of reversible circuits we use
Partially GT gates. Initially, we apply GT gates with few controls, starting with NOT
gates. First, all NOT gates are tested. The NOT gate that results in the larger d-move
will be applied, where d is even and 0 < d ≤ 2n. This procedure will be applied while
the Hamming distance between the current permutation for identity decreases. Then, all
CNOT gates are tested, and the CNOT gate that results in the largest d-move is applied,
where d is even and 0 < d ≤ 2n−1. Again, such a procedure will be applied while the
Hamming distance between the current permutation for identity decreases. The same
procedure is applied for the gates C2NOT and for all other gates with more controls,
until only Totally GT gates are applied in the second part of the algorithm. In this case,
the applied d-move is such that d = 0 or d = 2.

Algorithm 1 below is the first part of our main algorithm, its library is composed
only of GT gates with at most n − 2 controls. The L(c) is the library of Toffoli gates
with exactly c controls.

3.2 Second Part: Totally GT gates

The next lemmas will be used in the second part of our new algorithm, when only Totally
GT gates will be used.

Lemma 5 Let σ be the permutation resulting from the application of the X(i, j) gate
to π, and letm(σ) be the number of cycles in its cycle representation. If i and j are on
the same cycle in π, thenm(σ) = m(π) + 1. Otherwise,m(σ) = m(π)− 1.

Proof. In case i = cs and j = ct belong to the same cycle C, with s < t, the gate
X(i, j) splits C into two cycles, one defined by the sequence of elements cs, . . . , ct−1,
and the other defined by the remaining elements of C. On the other hand, in case i = cs1
and j = ct2 belong to distinct cycles C1 and C2, the gate X(i, j) joins C1 and C2 into

one cycle C defined by the sequence so that cs−1
1 precedes ct2, c

t−1
2 precedes cs1 and the

other elements remain according to the order of C1 and C2. ut
Given three elements i, j and k of a permutation, we say k is in a minimum path

between i and j if dH(i, j) = dH(i, k)+dH(k, j). Moreover, notice that if dH(s, t) = 1,
then for every element u, either s is in a minimum path between u and t, or t is in a
minimum path between s and u. Notice that, in case values i and j are adjacent, we have
dH(i, j) = 1 and for every other element u, |dH(i, u)− dH(j, u)| ≤ 1.

Lemma 6 Let π be a permutation such that πi and πj are adjacent values and consider
the following possible situations: (a) πj is in a minimum path between i and πi; (b) πi is
in a minimum path between j and πj . If both conditions (a) and (b) are simultaneously
satisfied, then gate X(πi, πj) applied to π is a 2-move. If only a single condition (a) or
(b) is satisfied, then gateX(πi, πj) applied to π is a 0-move. If neither condition (a) nor
condition (b) are satisfied, then gate X(πi, πj) applied to π is a −2-move.
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Algorithm 1: First Part: Partially GT gates

Input: a permutation π0 representing a bijective function.

Output: a permutation π such that dH(π) ≤ dH(π0) and a circuit G that

transforms π0 into π.
1 π ← π0;

2 G← ∅;
3 for c← 0 to n− 2 do
4 continue← True;

5 while continue do

6 dmax ← 0;
7 for g ∈ L(c) do
8 d← dH(π)− dH(g(π));

/* See Lemma 3 */
9 if d > dmax then

10 dmax ← d;
11 gmax ← g;

12 end

13 end

14 if dmax = 0 then
15 continue← False;

16 else

17 update π and add gmax in G;
18 end

19 end

20 end

21 return π and G;

Proof. Let π′ be the permutation resulting from the application of X(πi, πj) to the
permutation π. The only elements modified by the application of this gate are πi and πj ,
therefore dH(π, π′) = dH(i, πj) + dH(j, πi)− dH(i, πi)− dH(j, πj).

First, let us consider the case in which both conditions (a) and (b) are simultaneously
satisfied. In this case, dH(i, πi) = dH(i, πj)+ dH(πj , πi) and dH(j, πj) = dH(j, πi)+
dH(πi, πj). Therefore, dH(i, πi) = dH(i, πj)+1 and dH(j, πj) = dH(j, πi) +1. Thus,
dH(π, π′) = 2, indicating that X(πi, πj) is a 2-move.

Now, let us consider the case in which condition (a) is satisfied and condition (b) is not.
In this case, dH(i, πi) = dH(i, πj)+dH(πj , πi) and πj is in the minimum path between j
and πi. Then, dH(j, πi) = dH(j, πj)+dH(πj , πi). Therefore, dH(i, πj) = dH(i, πi)−1
and dH(j, πi) = dH(j, πj) + 1. Thus, dH(π, π′) = 0, indicating that X(πi, πj) is a
0-move.

The analyses of the remaining cases are analogous. ut

Lemma 7 If π 6= ι is not unicyclic, then there is a useful move corresponding to some
Totally GT gate which joins cycles.

Proof. The only permutation that does not allow a 0-move nor a 2-move is the identity.
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Let us consider a not unicyclic permutation π 6= ι which does not allow a 2-move. This
implies that π has more than one cycle and there is at least one cycle with two distinct
elements. Then, there is a cycle in π in which there are two consecutive elements ci and
ci+1 such that there is an element c′ in another cycle that belongs to the minimum path
between ci and ci+1. ut

For example, the gate X(2, 3) applied to π = (0 3 1)(2) returns λ = (0 2 3 1).

Lemma 8 Let C = (c1c2 · · · c|C|) be a cycle with at most one pair of neighbor elements
that are not adjacent. Then there is a sequence of |C| − 1 Totally GT gates which
transforms this cycle into |C| unitary cycles.

Proof. Without loss of generality, consider a cycle C = (c1c2 · · · c|C|) such that the
only possible not adjacent pair is (c|C|c1). Applying Totally GT gate X(c1, c2), this
cycle C is split in two cycles C1 = (c1) and C ′ = (c2 · · · c|C|). After applying the se-
quence of gates X(c2, c3), X(c3, c4), . . . , X(c|C|−1, c|C|), we obtain the unitary cycles
(c1), (c2), . . . , (c|C|). ut

For example, let π = (0 1 3 7 6)(2)(4)(5). Then, the sequence of gates X(0, 1),
X(1, 3), X(3, 7) and X(6, 7) transforms π into ι.

Given a cycle C of length |C| in a permutation π, we define

P (C) =
S(C)

|C|
, (3)

and

P (π) =

m∑
i=1

P (Ci). (4)

For example, let π = C1C2 = (0 3 1)(2). We have that S(C1) = 4 and S(C2) = 0,
therefore P (C1) = 1.33, P (C2) = 0 and P (π) = 1.33.

Lemma 9 Let σ be the permutation resulting from the application of gate X(i, j) to π.
If X(i, j) is a useful move that joins cycles in π, then we have that P (σ) < P (π).

Proof. Let X(i, j) be a d-move gate that can be applied to π such that i ∈ C ′ and
j ∈ C ′′ 6= C ′, creating a new cycle C ′′′ with the union of the two cycles. Let P (C ′) =
S(C ′)/|C ′| and P (C ′′) = S(C ′′)/|C ′′| and P (C ′′′) = S(C ′′′)/|C ′′′|. Since S(C ′′′) =
S(C ′) + S(C ′′)− d and |C ′′′| = |C ′|+ |C ′′|, we have that

P (C ′′′) =
S(C ′) + S(C ′′)− d

|C ′|+ |C ′′|

=
P (C ′) · |C ′|
|C ′|+ |C ′′|

+
P (C ′′) · |C ′′|
|C ′|+ |C ′′|

− d

|C ′|+ |C ′′|
. (5)

Considering that |C ′| < |C ′|+ |C ′′| and |C ′′| < |C ′|+ |C ′′|, if d = 0 or d = 2, then we
have that P (C ′′′) < P (C ′) + P (C ′′). Since the only cycles modified in π were C ′ and
C ′′, we have that P (σ) = P (π)+P (C ′′′)−P (C ′)−P (C ′′). Therefore P (σ) < P (π).

ut

Definition 10 A sequence of useful moves is a useful sequence if it decreases dH(π) or
P (π).
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In order to finish the analysis of the algorithm 4 convergence, we need to see the
case in which the permutation is unicyclic and there is no 2-move. For this goal, we use
the next procedures and lemmas.

Procedure 2: Replace(i, j)

Input: i = in−1 · · · i0, j = jn−1 · · · j0 ∈ π {ik is the bit k of i}
Output: T (π) = X(i, j)π.

1 for k ← 0 to n− 1 do
2 if ik 6= jk then
3 apply the gate X(i, i′), where i′ is the adjacent element of i s.t. i′k = jk;
4 i← i′;

5 end

6 end

Lemma 11 Procedure 2 puts j in the position of i in π, going through all the elements
of a minimum path between i and j.

Proof. In each step of the loop, in which the condition of ‘if’ is true, i′ has the same
bits of i except bit k, and dH(i′, j) = dH(i, j) − 1, therefore i′ is in a minimum path
between i and j. After applying the gate X(i, i′), i′ stays in position of π occupied by i.
After applying dH(i, j) gates, the element j occupies the place of original i. The last i′

is j. ut

Lemma 12 Let i and j be elements of π, such that i is successor of j in a cycle, then
after Replace(i, j) there is a unitary cycle (j).

Proof. If i is successor of j in a cycle then i is in position j (πj = i). Therefore,
Replace(i, j) puts j in position j. ut

Procedure 3: Useful sequence with 2-move

Input: Current permutation π.
Output: A useful sequence with 2-move.

1 j ← 2n − 1;
2 repeat

3 let i be successor of j in the respective cycle, Replace(i, j);
4 j ← j − 1;

5 until Replace(i, j) has a 2-move;

Lemma 13 Procedure 2 outputs a useful sequence.
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Proof. If j is in a unitary cycle then successor of j is j and so Replace(i, j) has no move,
else all moves are useful moves. Indeed, in each gate of Replace(i, j), the present i′ is in
a minimum path between j and πj so, by Lemma 6, this move is a useful move.

This Procedure converges because, in each iteration, the elements greater than j are
in unitary cycles and they do not belong to the minimum path between i and j used by
Replace(i, j). ut

Algorithm 4 is used when it is not possible to apply partially controlled GT gates
that decrease the Hamming distance of the permutation.

Algorithm 4: Second Part: Totally GT gates

Input: a permutation π0 representing a bijective function.

Output: the circuit G that transforms π0 into ι.
1 π ← π0;

2 G← ∅;
3 while dH(π) > 0 do
4 if there is a 2-move that joins cycles then
5 choose X(ci, j) corresponding to the 2-move;
6 apply the corresponding reversible gate;

7 update π and G;

8 else if there is a 2-move that splits cycles then
9 apply the corresponding reversible gate;

10 update π and G;

11 else if there is a sequence of gates that splits cycle in unitary cycles then

12 apply the sequence of gates;

13 update π and G;
/* See Lemma 8 */

14 else if there is a 0-move that joins cycles then
15 choose X(ci, j) corresponding to the 0-move;
16 apply the corresponding reversible gate;

17 update π and G;
/* Necessarily decreases the value of P (π), see

Lemma 9 */
18 else

/* π is unicyclic, see Lemma 7 */
19 apply Procedure 2;

20 update π and G;

21 end

22 end

23 return G;

Theorem14. Correctness of Algorithm 4.
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Proof. At each step, the algorithm either applies a 2-move or a 0-move minimizing P (π),
see Lemmas 5 to 9 and Lemma 13. Therefore, at each step theHamming distance between
π and ι is kept constant or decreases. When the Hamming distance is kept constant, the
function P (π) decreases until the permutation is unicyclic, see Lemmas 5, 7 and 9. In
this case, the algorithm applies a useful sequence that applies a 2-move, see Lemma 13.
Thus, the permutation always converges to the identity permutation ι. ut

3.3 Algorithm with progressive increase of controls in GT gates

Our synthesis method uses gates with 0, 1, . . . , n− 1 controls, increasing the number of
controls progressively. The synthesis algorithm with progressive increase of controls in
GT gates (Algorithm 5) summarized uses Algorithms 1 and 4. See Algorithm 5 for a
sketch of our synthesis method using gates with 0, 1, . . . , n− 1 controls.

Algorithm 5: Synthesis algorithm with progressive increase of controls in GT

gates

Input: a permutation π0 representing a bijective function.

Output: the circuit G that transforms ι into π0.

1 (π,G1)← apply Algorithm 1 to π0;

2 G2 ← apply Algorithm 4 to π;
3 G← reverse(G1G2);
4 return G;

Theorem15. Correctness of Algorithm 5.

Proof. In the first steps, for each quantity k of controls, k ∈ {0, 1, . . . , n − 2}, the
algorithm applies d-moves (d > 0, largest possible, according to Lemma 3), such that
the Hamming distance between the current permutation for identity decreases as much
as possible. When arriving at k = n− 1 controls, just use Theorem 14. ut

Figure 5 depicts the circuit that transforms identity into π = [7 4 1 0 3 2 6 5], for the
case where the input of Algorithm 5 is π = [7 4 1 0 3 2 6 5], considered in the example
in Figure 3. Note that the order of the returned gates is reversed in relation to the order
in which the gates are obtained.

Algorithm 5 produces the circuit by selecting generalized Toffoli gates that manip-
ulate the output side of the circuit. Since the permutation is reversible, we can define
strategies that use Algorithm 5 to improve the gate count.

Strategy 1 (Synthesis of the Inverse) Apply an algorithm to the input permutation and
its inverse. Then, choose the circuit with the least number of gates.

Strategy 2 (Bidirectional Synthesis) Apply an algorithm simultaneously in both direc-
tions. Choose to add input-side or output-side gates of the circuit at each step of the
synthesis.
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g1 g2 g3 g4 g5 g6 g7
x0 • • • f0
x1 • f1
x2 • • • f2

Figure 5: Example of a reversible circuit returned by Algorithm 5, that transforms the

identity permutation into π = [7 4 1 0 3 2 6 5]. The output bits are denoted by f2f1f0.
The sequence of gates (reading from left to right) is g1 = Toffoli(x1, x2, x0),
g2 = Toffoli(x0, x2, x1), g3 = Toffoli(x0, x

′
1, x2), g4 = Toffoli(x0, x2, x1),

g5 = CNOT(x′
1, x2), g6 = NOT(x1) and g7 = NOT(x0), where g7g6g5 and g4g3g2g1

are the circuits returned by Algorithms 1 and 4 respectively.

Figure 6 depicts the circuits that transform the identity into π = [7 4 1 0 3 2 6 5],
obtained with Strategy 1 and Strategy 2, respectively, where the input of Algorithm 5 is
π = [7 4 1 0 3 2 6 5]. As we did before, to clarify our use of equivalent representations, we
include a corresponding Table 2 with the explicit sequence of used gates corresponding
to the circuit depicted in Fig. 6b.

g1 g2 g3 g4 g5
x0 f0
x1 • f1
x2 • • f2

(a)

g1 g2 g3 g4 g5
x0 • f0
x1 • f1
x2 • • f2

(b)

Figure 6: Example of reversible circuits, obtained from Algorithm 5 with (a) Strategy 1

and (b) Strategy 2, respectively, that transform the identity permutation into

π = [7 4 1 0 3 2 6 5]. The output bits are denoted by f2f1f0. (a) The sequence of gates
is g1 = NOT(x0), g2 = NOT(x1), g3 = CNOT(x1, x2), g4 = Toffoli(x′

1, x2, x0) and
g5 = Toffoli(x′

0, x2, x1). (b) The sequence of gates is g1 = NOT(x1),
g2 = CNOT(x1, x2), g3 = Toffoli(x′

1, x2, x0), g4 = Toffoli(x0, x2, x1) and
g5 = NOT(x0).

4 Experimental Results

Firstly, we have considered all 3-bit bijective functions and compared our results with
different synthesis algorithms. The results are in Table 3. Column Size shows the number
of gates of the circuit. The main current results appear in two columns. Column CGWZ
shows the results of synthesis simplification algorithm by Cheng et al. [Cheng et al.,
2012]. Column ZLZPZ shows the results of cycle-decomposition-based synthesis opti-
mized algorithm by Zhu et al. [Zhu et al., 2018]. The results of applying Algorithm 5
to all 3-bit bijective functions are in columns (a), (b) and (c) according to different
strategies as follows:
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x2x1x0 f2f1f0

000 010 110 110 110 111 = 7
001 011 111 111 101 100 = 4
010 000 000 000 000 001 = 1
011 001 001 001 001 000 = 0
100 110 010 010 010 011 = 3
101 111 011 011 011 010 = 2
110 100 100 101 111 110 = 6
111 101 101 100 100 101 = 5

Gates: g1 ↗ g2 ↗ g3 ↗ g4 ↗ g5 ↗

Table 2: Sequence of gates g1 = NOT(x1), g2 = CNOT(x1, x2),
g3 = Toffoli(x′

1, x2, x0), g4 = Toffoli(x0, x2, x1) and g5 = NOT(x0) that transforms
the identity permutation into π = [7 4 1 0 3 2 6 5] using the Algorithm 5 and Strategy 2,

see the corresponding circuit in Fig. 6b. In bold, the bit changes introduced by the

corresponding gates. The result of application of the gate on the bottom of each column

is shown in the next column while reading from left to right.

– In column (a), application of Algorithm 5.

– In column (b), application of Algorithm 5 improved by Strategy 1.

– In column (c), application of Algorithm 5 improved by Strategy 1 plus Strategy 2,
followed by choosing the minimum value between the two results.

The improved Algorithm 5 considered in column (c) obtained the best number 5.23 of
gates in average. The result 5.38 obtained by the algorithm of Cheng et al. [Cheng et al.,
2012] also considers Strategy 1 of their simplification algorithm, in addition to the use
of templates. Our Algorithm 5 considered in column (a) obtained 5.82 gates in average,
improving the result of Zhu et al. [Zhu et al., 2018], which is also a unidirectional
algorithm. Moreover, Zhu et al. algorithm is specific to 3 bits while our Algorithm 5
works for an arbitrary number of bits. The main idea in Zhu et al. algorithm is to
decompose cycles in permutations and use the so-called Head-Pointer-Adjust, which
takes the greatest Hamming distance between elements of the cycle.

Our method is an upgrade of the cycle-based synthesis (CBS) algorithm of Ribeiro et
al. [Ribeiro et al., 2015], including Partially GT gates at the library, and improves the
average number of gates, as follows. The average number of gates necessary to synthesize
a circuit is reduced from 6.74with unidirectional CBS algorithm to 5.82with Algorithm 5
considering column (a), and is reduced from 6.64with CBS algorithm applying Strategy 1
to 5.32 with Algorithm 5 applying Strategy 1 considering column (b).

Secondly, we have performed a series of experiments on reversible benchmark
function synthesis. The results are in Table 4. The first and the second columns show
the name of each benchmark function and its size (number of variables) considered in
the literature, respectively. The third column shows the results obtained by the proposed
approach, using the Algorithm 5 and strategies 1 and 2. The fourth column shows the best
results for the gate count of synthesis algorithm by Zakablukov [Zakablukov, 2016] which
uses properties of Permutation Group Theory to reduce gate complexity and combines
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Algorithm 5 Current literature

Size (a) (b) (c) CGWZ ZLZPZ

0 1 1 1 1 1

1 27 27 27 27 15

2 309 369 369 369 129

3 1797 2505 2601 2633 753

4 5376 7586 8114 7624 3100

5 9758 12932 12994 11263 8409

6 10529 9940 10066 10258 13405

7 7046 4523 4652 5963 10506

8 3922 2166 1450 1716 3625

9 1206 213 24 372 369

10 319 54 18 93 8

11 30 4 4 1 0

AG 5.82 5.32 5.23 5.38 6.03

Table 3: Number of bijective functions using a specified number of gates, considering

all 3-bit bijective functions for different synthesis algorithms as indicated by citations.
Our results are listed in columns (a), (b) and (c). The main current results using GT

library are in columns CGWZ [Cheng et al., 2012] and ZLZPZ [Zhu et al., 2018].

Row AG reports the average number of gates necessary to synthesize a circuit.

cycle-based and Reed-Muller-spectra-based algorithms. The last two columns show
the best results for the gate count of MMD method without/with template matching by
Maslov et al. [Maslov et al., 2005], and the MMD method with the Reed-Muller spectra
by Maslov et al. [Maslov et al., 2007], respectively. All specifications for benchmark
function and their names were taken from the RevLib site1 [Wille et al., 2008] and from
the Reversible Logic Synthesis Benchmarks Page2.

Analyzing the results obtained in Table 4, we see that our approach obtained in more
than half of cases, best results in relation to those obtained by Zakablukov [Zakablukov,
2016] and Maslov et al. [Maslov et al., 2005] for benchmark function synthesis. We
were able to get 9 (out of 17) reversible circuits, which have less or equal gate count
in relation to the two cited references. Comparing our results with those obtained by
Zakablukov, we see that we obtained better results in 5 out of 9 comparisons, being
that, our synthesis algorithm performed better as we increased the number of bits. On
the other hand, comparing with the results obtained by Maslov et al., we see that we
obtained better results in 7 out of 12 comparisons (1 equal), being that, in general our
performance was better for functions up to 7 bits. However, the results obtained by
Maslov et al. [Maslov et al., 2007] based on MMD method [Maslov et al., 2005] using
templates with Reed-Muller spectra are the best results so far.

Thirdly, we have made available at https://github.com/Marquezino/dkmfr an imple-
mentation of our main result to the community. In order to get a sense to what extent 8-bit
permutations can be handled, please see in Figure 7 a graph where we have depicted the
corresponding actual obtained running times. The obtained linear graph in the base-10

1 available at http://www.revlib.org
2 available at http://webhome.cs.uvic.ca/∼dmaslov/
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benchmark function size Algorithm 5 Z-16 MMD-05 MMD-07

3_17 3 6 4 6/6 6
4_49 4 14 - 16/16 12

4b15g_2 4 17 12 - -

4b15g_4 4 19 12 - -

4b15g_5 4 18 14 - -

aj−e11 4 9 - 13∗/− -

ham3 3 6 - 6/5 5
hwb4 4 18 - 18/17 11
hwb5 5 43 - 57/55 24
hwb6 6 103 - 134/126 42
hwb7 7 282 603 302/289 236
hwb8 8 697 1594 688/− 614
hwb9 9 2633 3999 1625/− 1541

mod5adder 6 17 - 37/− 15
mod5mils 5 3 - 5/− -

nth_prime4_inc 4 13 - - 12∗∗

nth_prime5_inc 5 38 - - 25∗∗

nth_prime6_inc 6 79 - - 55∗∗

nth_prime7_inc 7 231 427 - -

nth_prime8_inc 8 627 977 - -
∗ Result based on MMD method executed by [Große et al., 2009] to generate a heuristic result.

∗∗ Result available at http://webhome.cs.uvic.ca/∼dmaslov/

Table 4: Benchmark Function Synthesis. Our results are listed in column Algorithm 5.

The main current results are in columns Z-16 [Zakablukov, 2016],MMD-05 [Maslov

et al., 2005] andMMD-07 [Maslov et al., 2007].

logarithmic scale agrees with the expected exponential behavior as we increase the
number of bits.

5 Concluding remarks

In this work, we presented a new algorithm of reversible circuit synthesis using general-
ized Toffoli gates (GT gates). Our Algorithm 5 is an upgrade of CBS algorithm [Ribeiro
et al., 2015], including Partially GT gates at the library. The new approach progressively
increases the number of Toffoli gate controls. Besides that, our Algorithm 5 explores
properties of the cycle representations of permutations as part of the process and uses
bidirectional strategies. The circuits achieved by our new synthesis algorithm in general
use less gates than the circuits achieved by the CBS algorithm. Our Algorithm 5 works
for arbitrary n-bit bijective functions, whereas the exact synthesis found in the literature
work only for the cases of n = 3 and n = 4 bits [Wille et al., 2012, Szyprowski and
Kerntopf, 2012]. Considering that the quantum cost [Barenco et al., 1995] of each GT
gate is proportional to the number of control bits, the quantum cost of circuits generated
by Algorithm 5 is, in average, less than the quantum cost of circuits generated by CBS
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Figure 7: Actual obtained running times (in seconds) of Algorithm 5. The time-axis is

represented in the base-10 logarithmic scale. We depict in red the trend line with

slope 6/5.

algorithm. In the present work, we consider as a complexity metric just the number
of gates, a cost model frequently used in the literature and considered adequate when
staying within the traditional reversible framework [Saeedi and Markov, 2013].

The main contributions include the best so far average gate count for all 3-bit bijective
functions for the GT library. Besides that, we present experimental results for reversible
benchmark function synthesis, which include twenty reversible circuits consisting of
gates from GT library, that are competitive when compared with the best results for the
gate count of reversible synthesis heuristics in the literature.

As future research, possible directions include using templates to replace by shorter
ones certain sequences of gates in the circuits returned by Algorithm 5. Moreover, we
could use some other approaches such as permutation group theory and Reed-Muller
spectra [Maslov et al., 2007, Zakablukov, 2016] in order to find better gate sequences.
We could also apply similar techniques to the synthesis of quantum circuits [de Almeida
et al., 2019], taking into account that moving to the level of quantum circuits requires
a more fine-grained gate set than considered here and optimizations that align with
error-correction needs.
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