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ABSTRACT: 

 

The present work is focused on a semantic segmentation strategy implemented in the workflow of the tool MAGO (standing for 
“Adaptive Mesh for Orthophoto Generation”), considering the contribution of the 3D geometry and the colour information, both 

deriving from the point cloud of the scene. Moreover, the 2D source imagery, previously used to obtain the photogrammetric point 

cloud, is employed even to enhance the procedure with the recognition of moving objects, comparing the evolution of epochs. 

The analysed context is an urban scene, deriving from the UAVid dataset proposed for the ISPRS benchmark. In particular, the so-
called “seq18”, a set of high-resolution oblique images taken by UAV (Unmanned Aerial Vehicle), has been used to test the semantic 

segmentation. The workflow includes the production of two Digital Surface Models (DSMs), containing the geometric and radiometric 

information, respectively, and their processing by means of the Harris corner detector, allowing the understanding of the image 

variability. Then, starting from the source geometry and colour information and combining them with their variability mapping, a 
preliminary classification is performed. Further criteria allow the segmentation of the humans and cars present in the scene. In 

particular, static objects are identified according to the content of the neighbour pixels in a certain kernel, while the evolution in time 

of moving elements is recognized by means of the comparison of the projected images belonging to the different epochs. The presented 

preliminary achievements show some criticalities that require further attention and improvement. In particular, the strategy could be 
enriched getting more information from the source 2D images, which at the moment are directly used only for the comparison of 

consecutive epochs. 

 

 

1. INTRODUCTION 

Semantic segmentation is a Computer Vision technique (Förstner 

and Wrobel, 2016) that aims to the recognition and the 

comprehension of the content of an image at the pixel level. This 
approach is widely used in remote sensing applications, 

especially in the analysis of urban scenarios (Ajmar et al., 2019; 

Huang et al., 2019, Schmitz et al., 2019, Zhou et al., 2019) or in 

the delineation of forest trees (Chen et al., 2021; Sothe et al., 
2020; Kempf et al., 2019). 

The segmentation approach could be based on imagery 

(Marmanis et al., 2018) or three-dimensional models (Ao et al., 

2019), as well as on the combination of both 2D and 3D 
information (Ding et al., 2019). Typically, deep learning methods 

are applied to such procedure, including, to cite some examples, 

Conditional Random Fields (CRF; Pan et al., 2020; Lafferty et 

al., 2001), Markov Random Fields (MRF; Zoltan and Josiane, 
2012), Spatial Pyramid Pooling (SPP; Zhengyu and Joohee, 

2020), and Convolutional Neural Networks (Cresson, 2020; 

Martinez-Soltero et al., 2020; Ouyang and Li, 2021). 

The present work is intended to describe the preliminary 
approach conceived by the authors, developed to obtain the 

segmentation. Both geometric and radiometric information are 

combined; moreover, the 3D point cloud of the object is used as 
source for the identification of static objects, while the 

contribution of 2D imagery allow evaluating the evolution in 

time of moving objects by comparing the projected images at 

different epochs. The analysed case study is represented by the 
UAVid dataset (Lyu et al., 2020), composed by high-resolution 

videos and imagery focusing on urban scenes, whose 
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segmentation is based on eight object categories: buildings, 

roads, static cars, trees, low vegetation, humans, moving cars, 

and background clutter. 

The proposed strategy consists in a machine-learning procedure, 
whose inputs are represented by the images and the 

photogrammetric point cloud obtained from their post-

processing. Since the UAVid imagery is not exactly fitted for 

photogrammetric applications, the dataset employed as case 
study has been chosen paying attention that the image 

overlapping was sufficient to allow the 3D point cloud 

reconstruction by means of Structure From Motion (SFM; 

Ullman, 1979) technique. 
The implemented functions have been introduced as a new 

module in the software MAGO (Mesh Adattiva per la 

Generazione di Ortofoto, literally Adaptive Mesh for Orthophoto 

Generation; Gagliolo, 2019; Gagliolo et al., 2019a and 2019b), 
implemented within the Geomatics Laboratory of the University 

of Genoa. This tool, written in C++ language, is originally born 

for the automatic reconstruction of high-resolution orthophotos 

of adjacent walls, automatically recognising their rotation, and it 
has been enriched with the function of semantic segmentation 

here presented. MAGO procedure already included a module for 

the automatic check of the geometry homogeneity, carried out by 
means of the evaluation of the Z coordinate trend, where Z is the 

direction normal to the representative surface. In the original 

purpose of the software, this module was useful to evaluate and 

apply the transformation required to put the point cloud in a 
service reference system with X and Y axes identifying the 

orthophoto plane and the Z direction along its normal vector. 
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In the present work, taking cue from the described process, a new 

module for the detection of discontinuities is presented. The aim 

is to adopt this function for both geometric and radiometric 

segmentations, therefore joining the results of the two operations 
in a unique classification that takes into account both the aspects, 

assigning autonomously a category to each pixel. 

The paper is organized as follows: in section 2, the case study is 

presented; in section 3, the strategy for the semantic segmentation 

is described; in section 4, the results of the application of the 

conceived approach on the testing dataset are shown; finally, 

conclusions and future perspectives of the work are reported. 

 

2. THE UAVID DATASET 

UAVid collection is a new high-resolution Unmanned Aerial 

Vehicle (UAV) semantic segmentation dataset focused on new 

challenges, including large-scale variation, moving object 
recognition and temporal consistency preservation. The proposed 

scenarios include urban and street scenes. The dataset consists of 

42 video sequences (from “seq1” to “seq42”), which are captured 

with 4K high-resolution by the oblique point of view. The authors 
of the benchmark provided ten images extracted per each 

sequence, labelling the 420 resulting images with eight classes. 

Moreover, the sequences have been classified in three groups, 

i.e., training, test and validated sequences (Lyu et al., 2020). 
Since the proposed approach requires the use of the 3D point 

cloud of the scene, the so-called “seq18” has been chosen as case 

study, given that the overlapping of provided frames was 

sufficient to obtain the photogrammetric reconstruction. 

In Figure 1, the first epoch of the distributed “seq18” is shown. 

 

 

Figure 1. First epoch of “seq18”. 

The 3D point cloud production has been achieved by means of 

the SFM software Agisoft Metashape© (Agisoft© LLC, 2019). 

In this regard, the choice of the input information for the 

photogrammetric post-processing represented the first issue. In 
facts, on the one hand, the extracted images provided for each 

sequence are a few number compared to the usual 

photogrammetric blocks, and their resulting point cloud is 

affected by the presence of outliers due to the scarcity of the 
correspondences, as testified by Figure 2. On the other hand, the 

use of a higher number of frames (91) directly extracted from the 

provided videos has been attempted, leading to the production of 

a visibly distorted point cloud (Figure 3). This behaviour could 
be due to the fact that the drone path followed almost a straight 

line, as in a single stripe dataset. Thus, the presence of a single 

stripe, without any Ground Control Point to stabilize, has been 

badly managed by the software in the set conditions, causing a 
fleeting reconstruction. 

 
Figure 2. Resulting point cloud from the provided frames of 

“seq18”. 

 
Figure 3. Lateral view of the point cloud obtained from 91 

frames, with clearly visible distortions. 

The following parameters have been set to carry out the 

workflow: the ten provided frames have been given as input, then 

the aerotriangulation has been performed at Medium quality, 
meaning that the image has been downscaled by factor of 4 (2 per 

each side). Finally, the dense cloud reconstruction has been 

launched at Ultra High quality, corresponding to process the 

images at their original resolution, and Mild depth filtering. Since 
no information about the Reference System was available, a 

pretended one has been attributed so that the building façades are 

vertical and the objects proportions are coherent with their 

standard measurements. 
The resulting point cloud has been filtered using the Statistical 

Outlier Removal (SOR) and the noise filter available in the open 

source software CloudCompare (CloudCompare Development 

Team, 2021), applying the suggested default parameters; 
moreover, it has been subsampled with a minimum spacing 

between points of 0.1 m. 
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3. SEMANTIC SEGMENTATION APPROACH 

As aforementioned, the proposed semantic segmentation 

approach combines the geometric and the radiometric criteria, in 

order to obtain a unique classification. 
Starting from the 3D point cloud resulting from the 2D images 

provided by the ISPRS benchmark, two raster maps are 

produced: the former consists in the Digital Surface Model 

(DSM) of the scene, while the latter represents the corresponding 
nadiral greyscale map. Both these raster images contain Not a 

Number (NaN) values where the cell could not be filled with any 

source information from the 3D point cloud. 

Both the raster maps are processed using the Harris Corner 
detector (Harris and Stephens, 1988), by means of the 

corresponding function implemented in the OpenCV (OpenCV 

Development Team, 2019) open-source library, available for 

C++ language. This technique allows to rate each image pixel 
with a mark R, according to the presence of a large variation in 

intensity with respect to the neighbours. In particular, the pixels 

are associated to the following groups basing on the obtained 

mark R: 
 

 R > 0: corner, i.e., significant change in all directions; 

 R < 0: edge, i.e., no change along the edge direction; 

 |R| small: flat region, i.e., no change in all directions. 

 

The value R is obtained proceeding with the following steps. A 

greyscale 2D image, denoted as I, and a window W(x, y) of the 
image, shifted time by time of the quantity (u, v), are assumed as 

input. The sum of squared differences (SSD) between these two 

patches, denoted as E, is given by: 

 

𝐸(𝑢, 𝑣) =  ∑ 𝑊(𝑥, 𝑦) ∙ [𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼(𝑥, 𝑦)]2
𝑥,𝑦 ,   (1) 

 

Approximating the quantity 𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) by means of a first-

order Taylor expansion, the function E could be written as: 

 

𝐸(𝑢, 𝑣) ≈ ∑ 𝑊(𝑥, 𝑦) ∙ [𝐼(𝑥, 𝑦) + 𝐼𝑥𝑢 + 𝐼𝑦𝑣 − 𝐼(𝑥, 𝑦)]2
𝑥,𝑦 ,   (2) 

 

Thus: 

 

𝐸(𝑢, 𝑣) ≈  ∑ 𝑊(𝑥, 𝑦) ∙𝑥,𝑦 [𝐼𝑥
2𝑢2 + 2𝐼𝑥𝐼𝑦𝑢𝑣 + 𝐼𝑦

2𝑣2],   (3) 

 
The quadratic approximation could be written in matrix form as 

 

𝐸(𝑢, 𝑣) ≈  [𝑢 𝑣] ∙ 𝑀 ∙ [
𝑢
𝑣

],      (4) 

 

where M is a second moment matrix computed from image 

derivatives:  

 

𝑀 = [
∑ 𝑊(𝑥, 𝑦) ∙𝑥,𝑦 𝐼𝑥

2(𝑥, 𝑦) ∑ 𝑊(𝑥, 𝑦) ∙𝑥,𝑦 𝐼𝑥(𝑥, 𝑦)𝐼𝑦(𝑥, 𝑦)

∑ 𝑊(𝑥, 𝑦) ∙𝑥,𝑦 𝐼𝑥(𝑥, 𝑦)𝐼𝑦(𝑥, 𝑦) ∑ 𝑊(𝑥, 𝑦) ∙𝑥,𝑦 𝐼𝑦
2(𝑥, 𝑦)

],   (5) 

 

𝑀 = [
∑ 𝐼𝑥𝐼𝑥 ∑ 𝐼𝑥𝐼𝑦

∑ 𝐼𝑥𝐼𝑦 ∑ 𝐼𝑦𝐼𝑦
] = ∑ [

𝐼𝑥

𝐼𝑦
] ∙ [𝐼𝑥 𝐼𝑦] = ∑ ∇𝐼 ∙ (∇𝐼)𝑇,   (6) 

 

Each horizontal section of the function E(u, v) is the equation of 

an ellipse. The diagonalisation of the M matrix allows to obtain 

the lengths of the ellipse axes and their orientation, by means of 

the eigenvalues λ1 and λ2 and the corner response measure R, 

respectively. 

 

𝑀 = 𝑅−1 ∙ [
𝜆1 0
0 𝜆2

] ∙ 𝑅,      (7) 

 

As previously described, the method implemented in OpenCV 

takes into account the corner response measure, using the value 

R, which is calculated as: 

 

𝑅 = 𝜆1𝜆2 − 𝛼(𝜆1 + 𝜆2)2 = det(𝑀) − 𝛼 𝑡𝑟𝑎𝑐𝑒(𝑀)2, (8) 

 

where α is an empirically determined constant ranging within 

0.04 and 0.06. In the present work, the value 0.04 has been 

adopted. 

The input parameters for the cv::cornerHarris function are the 

source image, the destination image, the kernel size, the aperture 

parameter for the Sobel operator (Duda and Hart, 1973), and the 
constant α. 

Once both the geometric and the radiometric input maps have 

been processed with this technique, each cell has been classified 

according to the obtained R value. In particular, the service 
images containing the R marks obtained from the radiometric and 

the geometric contribution are called Rcolour and Rgeom, 

respectively. Moreover, a synthesis of the two contributions is 

stored in the matrix Rclass, giving a label based on the following 
criterion, such that the obtainable Rclass values are resumed in 

Table 1. 

 

if then 

Rcolour > 0  &  Rgeom > 0  Rclass = +4  

Rcolour < 0  &  Rgeom < 0  Rclass = –4 

Rcolour < 0  &  Rgeom > 0  Rclass = +3 

Rcolour > 0  &  Rgeom < 0  Rclass = –3 

|Rcolour| small  &  Rgeom > 0  Rclass = +2 

Rcolour > 0  &  |Rgeom| small  Rclass = –2 

|Rcolour| small  &  Rgeom < 0  Rclass = +1 

Rcolour < 0  &  |Rgeom| small  Rclass = –1 

|Rcolour| small  &  |Rgeom| small Rclass = 0 

Table 1. Rclass attribution conditions. 

Resuming, the labelling operation allows identifying the level of 

variability associated to each pixel, considering the changes in X 
and Y directions and in geometric and radiometric information. 

The following step is the processing of the classification map by 

grouping in homogeneous regions the neighbour pixels with the 
same assigned value (Nikhil and Sankar, 1993). The set of 

regions that derives from this segmentation process is called 

partition. 

The needed phases for the achievement of the partition are 
detailed in the following. First, the labelling results from the R-

based classification determine for each pixel the so-called event 

in which it is involved, tagging if pixels are pertaining or not to 

an area. Then, the operation of grouping allows joining the pixels 
with the same label in a cluster. This operation generates regions, 

i.e., a set of neighbouring pixels, called connected components. 

The label assigned to each pixel is an integer that identifies the 

belonging region of the pixel. 

Two pixels 𝑝 and 𝑞 with the same label 𝑓 belongs to the same 

connected component 𝐶 if there is a sequence of points 

(𝑝0, 𝑝1, … , 𝑝𝑛) of value 𝑓 belonging to 𝐶 where 𝑝0 = 𝑝 and 𝑝𝑛 =
𝑞 and 𝑝𝑖 is neighbour to 𝑝𝑖−1 for 𝑖 = 1, … , 𝑛. 
The value of each pixel is replaced by the smallest label value of 

its neighbours belonging to same connected component; the pixel 

above and the one on the left are considered, obtaining a 4-

connected grouping. This operation is carried out recursively 
from the left to the right and from the top to the bottom. Thus, 

bottom-up row scan follows, considering the 4-connected 
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neighbourhood made by the lower pixel and the one on the right.  

The replacement of the values is iterated until no more label 

changes are applicable.  

Until now, the greyscale colour space has been chosen to apply 
the geometric segmentation using the Harris corner detector for 

the gathering of the discontinuities. Nevertheless, this colour 

space does not easily allow recognizing the hue of the analysed 

pixel, as well as the well-known RGB (Red Green Blue). Thus, 

the authors decided to convert in the HSV (Hue Saturation Value) 

range the original map of colours, obtained from the coloured 

point cloud. Starting from the HSV associated to each cell, 

several masks are arranged in order to identify the pixel 
membership. In particular, the threshold criteria are listed in the 

following; they have been chosen according to the authors 

interpretation and not using a superimposed classification. The 

OpenCV interpretation of the input values is due to the bytes 
coverage and requires that the H is within 0° and 180° instead of 

360°, and S and V are within 0 and 255 instead of between 0 and 

1. Table 2 resumes the input parameters for colour masking, 

according to OpenCV convention. 
 

Colour H S V 

White  0 – 180 0 – 24 230 – 255  

Red 

0 – 14  25 – 255  100 – 255 

165 – 180 25 – 255  100 – 255 

0 – 14  100 – 255 25 – 255 
165 – 180 100 – 255 25 – 255 

Brown 0 – 14  25 – 99 25 – 99 

Purple 135 – 180 25 – 99 25 – 99 

Green 
45 – 74  25 – 255 25 – 255 

15 – 44  25 – 99 25 – 99 

Blue 105 – 134 25 – 255 25 – 255 

Cyan 75 – 104  25 – 255 25 – 255 

Yellow 
15 – 44 25 – 255  100 – 255 
15 – 44 100 – 255 25 – 255 

Magenta 
135 – 164 25 – 255  100 – 255 
135 – 164 100 – 255 25 – 255 

Black 0 – 180 0 – 255 0 – 24 

Grey 0 – 180 0 – 24 25 – 230 

Table 2. HSV categories. 

In such regions having a resulting value Rclass equal to 0 or 1, i.e. 

with no significant radiometric and null or low geometric 
variation respectively, the HSV masking is applied 

homogeneously, on the basis of the most recurrent value in the 

area. 

In the first step of the segmentation, the criteria coming from 
Rclass or directly the height information resulting from the DSM 

are combined with the colour inferred from the HSV masking, as 

listed in Table 3. 

 

Class Label Conditions  

0 no data NaN 

1 buildings HSV ∉ green & Z > 6 m 

2 roads grey & Rclass < 2 

4 trees green & Rclass ≥ 2 

5 low vegetation green & Rclass < 2 

8 background clutter remaining 

Table 3. Applied criteria for the preliminary labelling. 

In this phase, the static scene is distinguished in five macro-areas, 

including buildings, roads, trees and low vegetation, as well as 
the remaining background. 

Further criteria need to be implemented in order to point out also 

the three remaining categories, i.e., static cars, humans and 
moving cars, isolating them from the generic background. 

In this regard, the actual potentialities of the algorithm are not 

suitable to discern humans from cars. Thus, the label static cars  

(class 3) and moving cars (class 7) are changed to static and 

moving objects respectively, while the category humans (class 6) 
is suppressed. 

Regarding the segmentation of static objects, they are extracted 

from the generic background checking the presence of at least a 

certain number of cells labelled as road (class 2) or static object 

(class 3) in the neighbourhood of the analysed pixel by using a 

kernel. In particular, the road and the static object cells need to 

be more than the half of cells filled with categories different from 

the background and the empty ones (classes 8 and 0, 
respectively). 

If at least one of the neighbour cells is road, a further check on 

the difference between the analysed pixel and the mean of the 

heights in the surrounding road cells is performed, i.e., if the Z 
coordinate of the analysed pixel is lower than three meters over 

the road average height, the matching with class 3 is confirmed. 

The last step is the recognition of the moving objects, which is 

achieved thanks to the comparison of the 10 epochs provided in 
the UAVid source imagery. 

The frames, obtained from the acquisition of the camera as 

central projections, are orthogonally projected using the tool 

MAGO firstly on a plane with a similar orientation to the original 
image attitude, then on the XY plane. The intermediate phase, 

which takes into account a service plane approximately at the 

same inclination of the original image, allows MAGO to optimize 

the research of the matching points that compose the adaptive 
mesh (Gagliolo et al., 2019b). 

Once the projections are performed, the resulting greyscale maps 

are subtracted, in order to highlight the difference from the 

previous to the following epoch. The pixels that are not visible in 
at least one of the single analysed views are excluded from the 

comparison. Moreover, a threshold of 30 in the range of greyscale 

tones is applied to exclude changes barely perceivable by the 

human eye. 
 

4. RESULTS AND DISCUSSION 

The described procedure has been applied on the case study of 

the “seq18” belonging to the UAVid dataset proposed for the 
ISPRS benchmark. 

First, the 3D point cloud built starting from the provided frames 

sequence has been processed to obtain two DSMs, the former 

containing the geometric information in terms of Z coordinate 
median (Figure 4), while the latter containing the radiometric 

information converted to greyscale values (Figure 5). The 

following Figure 6 and Figure 7 are focused on a portion of 

interest, depicted in red in Figure 4 and Figure 5. This box, 
located where the obtained point cloud is sufficiently satisfying, 

has been chosen to carry out the test. The poor quality of the 

obtained point cloud for the analysed dataset is due to the fact 

that the shooting of the source images was not planned to obtain 
a 3D survey.  
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Figure 4.  DSM with the highlighting of the focusing box. 

 

Figure 5. Corresponding greyscale map with the highlighting of 

the focusing box. 

 

Figure 6. Detail of DSM focused on the indicated box. 

 

 

Figure 7. Detail of greyscale map focused on the indicated box. 

Then, Rclass map has been computed, as described in section 3; 
Figure 8 shows the portion belonging to the established 

boundaries, indicated in Figure 4. It is possible to notice that most 

of the areas are denoted with value 4, interpretable as high 
variability both in geometry and radiometry and both in the X and 

Y directions, or -2, identifying high variability in colour but null 

in geometry.  

The starting Rcolour and Rgeom data are obtained using the 
cv::cornerHarris function, setting the kernel size at 7, 

comparable with the dimension of trees crowns and cars 

considering that each pixel is 0.5 m, the aperture parameter for 

the Sobel operator at 3, and the constant α at 0.04. 
The Rcolour and Rgeom values considered as limit for the flat region 

(|R| small) are 10-5 and 10-9 respectively. 

 

 

Figure 8. Rclass map. 

The preliminary segmentation, resulting from the sheer analysis 

of the static scenario, is depicted in Figure 9. It includes all the 

categories except for the moving objects (class 7). The kernel 
used for the static objects research has size 5×5. It is worth noting 

that the class of the trees is satisfying, as well as the ones of 

buildings, roads and low vegetation. Regarding static objects, it 

is recognisable the presence of the cars waiting at the crosswalk 
or parked on the roadside. 

Moving objects are isolated subtracting the resulting projections 

of consecutive epochs time by time, as shown in Figure 10. The 

points depicted in red represent the variations between two 
consecutive epochs. Nevertheless, their quantity is excessive 
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with respect to the real presence of moving objects. The 

development of further strategy for the outlier removal would be 

needed in future. In facts, some mismatches could be associated 

to discontinuities, which are not perfectly overlapping even if 
pertaining to static elements. 

From the shown results, the processing outcomes are strongly 

affected by the quality of the input data, i.e., the 3D point cloud 

and the deriving geometric and radiometric DSMs. Undoubtedly, 

the upstream 3D reconstruction is badly influenced by the 

presence of many moving objects, which would require a huge 

time to be singularly masked in each source frame in the Agisoft 

Metashape© interface. Thus, it could be worthy to bring forward 
the moving object detection, working already on their recognition 

on the 2D images, so that it would be possible to automatically 

exclude them from the point cloud reconstruction. 

 

 

Figure 9. Preliminary segmentation of the static scenario. 

 

Figure 10. Final segmentation: moving objects varying in consecutive epochs are highlighted in red. 

 

5. CONCLUSIONS AND FUTURE PERSPECTIVES 

The present work shows the first experience of the authors with 

a segmentation strategy, based on both 2D and 3D source data 
and considering both the geometric and the radiometric aspects. 

The produced maps point out the steps to reach the final 

segmentation. First, the 3D point cloud has been obtained from 

the provided frames of the UAVid “seq18”, considered as a better 
choice than the extraction of input images directly from the UAV 

video, which highlighted a substantial distortion. The so-obtained 

point cloud has been used as input for the geometric and 

radiometric DSMs production. Then, these maps have been 
processed using the Harris corner detector in order to underline 

the image variability, according to whether the geometric or 

radiometric components and analysing both X and Y directions. 

The results of this phase are resumed in an Rclass map, whose 
labels are associated to the possible combination of corner, edge 

and flat regions deriving from the Harris corner detector applied 

on the two maps Rcolour and Rgeom. 

Starting from the DSM heights, the Rclass values and the HSV 
image masking, the criteria for the static scenario classification, 

except for humans and cars, are applied. Further rules are 

established to isolate static objects that could pertain to humans 

or cars. 
Finally, the moving objects are isolated subtracting the images 

referred to consecutive epochs and applying a proper threshold in 

order to exclude not perceivable changes. Nevertheless, a 

strategy to exclude outliers, i.e., points along discontinuities not 
perfectly overlapped, has still not been conceived. For sure a 

stereo camera acquisition and permanent Ground Control Points 

may substantially improve the obtainment of the 3D model and, 

as consequent result, the classification by means of the proposed 

strategy. 

The preliminary achievements shown in the present work are 

useful to do a critical analysis of the proposed workflow, putting 
in place new prompts for the further enhancement of the 

procedure. In particular, this method could be improved to get 

more information from the primary source, represented by the 

acquired video and images. Moreover, the moving objects need 
to be treated so that they do not represent an obstacle to the 

processing but an opportunity to improve it.  
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