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Singular value decomposition is central to many problems in engineering and scien-
tific fields. Several quantum algorithms have been proposed to determine the singular
values and their associated singular vectors of a given matrix. Although these algo-
rithms are promising, the required quantum subroutines and resources are too costly on
near-term quantum devices. In this work, we propose a variational quantum algorithm
for singular value decomposition (VQSVD). By exploiting the variational principles for
singular values and the Ky Fan Theorem, we design a novel loss function such that
two quantum neural networks (or parameterized quantum circuits) could be trained
to learn the singular vectors and output the corresponding singular values. Further-
more, we conduct numerical simulations of VQSVD for random matrices as well as
its applications in image compression of handwritten digits. Finally, we discuss the
applications of our algorithm in recommendation systems and polar decomposition.
Our work explores new avenues for quantum information processing beyond the con-
ventional protocols that only works for Hermitian data, and reveals the capability of
matrix decomposition on near-term quantum devices.

1 Introduction
Matrix decompositions are integral parts of many algorithms in optimization [1], machine learn-
ing [2], and recommendation systems [3]. One crucial approach is the singular value decomposition
(SVD). Mathematical applications of the SVD include computing the pseudoinverse, matrix ap-
proximation, and estimating the range and null space of a matrix. SVD has also been successfully
applied to many areas of science and engineering industry, such as data compression, noise reduc-
tion, and image processing. The goal of SVD is to decompose a square matrix M to UDV † with
diagonal matrix D = diag(d1, · · · , dr) and unitaries U and V , where r denotes the rank of matrix
M .

Quantum computing is believed to deliver new technology to speed up computation, and it
already promises speedups for integer factoring [4] and database search [5] in theory. Enormous
efforts have been made in exploring the possibility of using quantum resources to speed up other
important tasks, including linear system solvers [6–10], convex optimizations [11–14], and machine
learning [15–17]. Quantum algorithms for SVD have been proposed in [18, 19], which leads to
applications in solving linear systems of equations [9] and developing quantum recommendation
systems [18]. However, these algorithms above are too costly to be convincingly validated for near-
term quantum devices, which only support a restricted number of physical qubits and limited gate
fidelity.

Hence, an important direction is to find useful algorithms that could work on noisy intermediate-
scale quantum (NISQ) devices [20]. The leading strategy to solve various problems using NISQ
devices are called variational quantum algorithms [21–24]. These algorithms can be implemented
on shallow-depth quantum circuits that depend on external parameters (e.g., angle θ in rotation
gates Ry(θ)), which are also known as parameterized quantum circuits or quantum neural networks
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(QNNs). These parameters will be optimized externally by a classical computer with respect
to certain loss functions. Various variational algorithms using QNNs have been proposed for
Hamiltonian ground and excited states preparation [25–31], quantum state metric estimation [32,
33], Gibbs state preparation [34–36], quantum compiling [37–40], machine learning [16, 17, 41–43]
etc. Furthermore, unlike the strong need of error correction in fault-tolerant quantum computation,
noise in shallow quantum circuits can be suppressed via error mitigation [44–49], indicating the
feasibility of quantum computing with NISQ devices.

In this paper, we formulate the task of SVD as an optimization problem and derive a varia-
tional quantum algorithm for singular value decomposition (VQSVD) that can be implemented on
near-term quantum computers. The core idea is to construct a novel loss function inspired by the
variational principles and properties of singular values. We theoretically show that the optimized
quantum neural networks based on this loss function could learn the singular vectors of a given
matrix. That is, we could train two quantum neural networks U(α) and V (β) to learn the singular
vectors of a matrix M in the sense that M ≈ U(α)DV (β)†, where the diagonal matrix D provides
us the singular values. Our approach generalizes the conventional methods of Hamiltonian diago-
nalization [29, 50] to a non-Hermitian regime, extending the capabilities of matrix decomposition
on near-term quantum computers. As a proof of principle, we conduct numerical simulations to
estimate the SVD of random 8 × 8 matrices. Furthermore, we explore the possibility of applying
VQSVD to compress images of size 32 × 32 pixel, including the famous MNIST dataset. Finally,
we showcase the applications of VQSVD in recommendation systems and polar decomposition.

2 Main results
2.1 Variational quantum singular value decomposition
In this section, we present a variational quantum algorithm for singular value decomposition of
n× n matrices, and it can be naturally generalized for n×m complex matrices. For given n× n
matrix M ∈ Rn×n, there exists a decomposition of the form M = UDV †, where U, V ∈ Rn×n are
unitary operators and D is a diagonal matrix with r positive entries d1, · · · , dr and r is the rank of
M . Alternatively, we write M =

∑r
j=1 dj |uj〉〈vj |, where |uj〉, |vj〉, and dj are the sets of left and

right orthonormal singular vectors, and singular values of M , respectively.
A vital issue in NISQ algorithm is to choose a suitable loss function. A desirable loss function

here should be able to output the target singular values and vectors after the optimization and in
particular should be implementable on near-term devices. As a key step, we design such a desirable
loss function for quantum singular value decomposition (cf. Section 2.2).

The input of our VQSVD algorithm is a decomposition of the matrix M into a linear combi-
nation of K unitaries of the form M =

∑K
k=1 ckAk with real numbers ck. For instance, one could

decompose M into a linear combination of Pauli terms. And a method for finding such a decom-
position was proposed in a recent work [51]. Several important generic matrices in engineering and
science also exhibit LCUs, including Toeplitz, circulant, and Hankle matrices [52]. After taking
in the inputs, our VQSVD algorithm enters a hybrid quantum-classical optimization loop to train
the parameters α and β in the parameterized quantum circuits U(α) and V (β) via a designed
loss L(α,β) (cf. Section 2.2). This loss function can be computed on quantum computers via the
Hadamard tests. We then feeds the value of the loss function or its gradients (in gradient-based
optimization) to a classical computer, which adjusts the parameters α and β for the next round
of the loop. The goal is to find the global minimum of L(α,β), i.e., α∗,β∗ := arg minα,β L(α,β).

In practice, one will need to set some termination condition (e.g., convergence tolerance) on
the optimization loop. After the hybrid optimization, one will obtain values {mj}Tj=1 and optimal
parameters α∗ and β∗. The outputs {mj}Tj=1 approximate the singular values of M , and approx-
imate singular vectors of M are obtained by inputting optimal parameters α∗ and β∗ into the
parameterized circuits U and V in VQSVD and then applying to the orthonormal vectors |ψj〉 for
all j = 1, ..., T . The detailed VQSVD algorithm is included in Algorithm 1. A schematic diagram
is shown in Fig. 1.
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Figure 1: Schematic diagram including the steps of VQSVD algorithm. (a) The unitary decomposition of matrix
M is provided as the first input. This can be achieved through Pauli decomposition with tensor products of
{X,Y, Z, I}. The algorithm also requires the desired number of singular values T , orthonormal input states
〈ψi|ψj〉 = δij and two parametrized unitary matrices U(α), V (β). Finally, the weight is usually set to be
integers qj = T + 1− j. The former two information will be sent to the hybrid-optimization loop in (b) where
the quantum computer (QPU) will estimate each singular value mj = Re〈ψj |U†MV |ψj〉 via Hadamard test.
These estimations are sent to a classical computer (CPU) to evaluate the loss function until it converges to
tolerance ε. Once we reach the global minimum, the singular vectors {|ûj〉, |v̂j〉} can be produced in (c) by
applying the learned unitary matrices U(α∗) and V (β∗) on orthonormal basis {|ψj〉}T

j=1 to extract the column
vectors.

Algorithm 1 Variational quantum singular value decomposition (VQSVD)

1: Input: {ck, Ak}Kk=1, desired rank T , parametrized circuits U(α) and V (β) with initial param-
eters of α, β, and tolerance ε;

2: Prepare positive numbers q1 > · · · qT > 0;
3: Choose computational basis |ψ1〉, · · · , |ψT 〉;
4: for j = 1, · · · , T do
5: Apply U(α) to state |ψj〉 and obtain |uj〉 = U(α)|ψj〉;
6: Apply V (β) to state |ψj〉 and obtain |vj〉 = V (β)|ψj〉 ;
7: Compute mj = Re〈uj |M |vj〉 via Hadamard tests;
8: end for
9: Compute the loss function L(α,β) =

∑T
j=1 qjmj ;

10: Perform optimization to maximize L(α,β), update parameters of α and β;
11: Repeat 4-10 until the loss function L(α,β) converges with tolerance ε;
12: Output {mj}Tj=1 as the largest T singular values, output U(α∗) and V (β∗) as corresponding

unitary operators (〈ψj |U(α∗)† and V (β∗)|ψj〉 are left and right singular vectors, respectively).

2.2 Loss function
In this section, we provide more details and intuitions of the loss function in VQSVD. The key
idea is to exploit the variational principles in matrix computation, which have great importance
in analysis for error bounds of matrix analysis. In particular, the singular values satisfy a subtler
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variational property that incorporates both left and right singular vectors at the same time. For a
given n× n matrix M , the largest singular value of M can be characterized by

d1 = max
|u〉,|v〉

|〈u|M |v〉|
‖u‖‖v‖

= max
|u〉,|v〉∈S

Re[〈u|M |v〉], (1)

where S is the set of pure states (normalized vectors) and Re means taking the real part. Moreover,
by denoting the optimal singular vectors as |u1〉, |v1〉, the remaining singular values (d2 ≥ · · · ≥ dr)
can be deduced using similar methods by restricting the unit vectors to be orthogonal to previous
singular value vectors.

For a given n× n matrix M , the largest singular value of M can be characterized by

d1 = max
|u〉,|v〉∈S

Re[〈u|M |v〉], (2)

where S is the set of pure states (normalized vectors) and Re[·] means to take the real part.
Moreover, by denoting the optimal singular vectors as |u1〉, |v1〉, the remaining singular values
(d2 ≥ · · · ≥ dr) can be deduced as follows

dk = max Re[〈u|M |v〉]
s.t. |u〉, |v〉 ∈ S,
|u〉⊥span{|u1〉, · · · , |uk−1〉},
|v〉⊥span{|v1〉, · · · , |vk−1〉}.

(3)

Another useful fact (Ky Fan Theorem, cf. [53, 54]) is that

T∑
j=1

dj = max
orthonomal {uj},{vj}

T∑
j=1
〈uj |M |vj〉. (4)

For a given matrix M , the loss function in our VQSVD algorithm is defined as

L(α,β) =
T∑
j=1

qj × Re〈ψj |U(α)†MV (β)|ψj〉, (5)

where q1 > · · · > qT > 0 are real weights and {ψj}Tj=1 is a set of orthonormal states. The setting
of constants qj not only theoretically guarantees the correct outcome but also allows our approach
to be more flexible. Usually, choosing these constants with excellent performances are empirical.

Theorem 1 For a given matrix M , the loss function L(α,β) is maximized if only if

〈ψj |U(α)†MV (β)|ψj〉 = dj , ∀ 1 ≤ j ≤ T, (6)

where d1 ≥ · · · ≥ dT are the largest T singular values of M and |ψ1〉, · · · , |ψT 〉 are orthonormal
vectors. Moreover, 〈ψj |U(α)† and V (β)|ψj〉 are left and right singular vectors, respectively.

Proof Let assume that 〈ψj |U(α)†MV (β)|ψj〉 = mj are real numbers for simplicity, which could
be achieved after the ideal maximization process.

Then we have

L(α,β) =
T∑
j=1

qj ×mj (7)

≤
T∑
j=1

qj ×m↓j (8)

=
T∑
j=1

(qj − qj+1)
j∑
t=1

m↓t (9)
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|0〉A H • H

|ψ〉W / U

Figure 2: Quantum circuit for implementing Hadamard test

≤
T∑
j=1

(qj − qj+1)
j∑
t=1

dt. (10)

Assume qT+1 = 0. The first inequality Eq. (8) follows due to the rearrangement inequality.
The second inequality Eq. (10) follows due to property of singular values in Eq. (4). Note that the
upper bound in Eq. (10) could be achieved if and only if

∑j
t=1 dt =

∑j
t=1 mt for all j, which is

equivalent to

mj = dj , ∀ 1 ≤ j ≤ T. (11)

Therefore, the loss function is maximized if and only if 〈ψj |U(α)†MV (β)|ψj〉 extracts the
singular values dj for each j from 1 to T . Further, due to the variational property of singular
values in Eq. (2) and Eq. (3), we conclude that the quantum neural networks U and V learn
the singular vectors in the sense that 〈ψj |U(α)† and V (β)|ψj〉 extract the left and right singular
vectors, respectively. �

In particular, the weights qj can be any sequence that satisfies the condition in Theorem 1.
They are the key to train the quantum neural networks to learn the right singular vectors. Such
weights can be understood as the tool to discriminate and identify the eigen-space.

Proposition 2 The loss function L(α,β) can be estimated on near-term quantum devices.

ForM =
∑K
k=1 ckAk with unitariesAk and real numbers ck, the quantity Re〈ψj |U(α)†MV (β)|ψj〉

can be decomposed to

K∑
k=1

ck × Re〈ψj |U(α)†AkV (β)|ψj〉. (12)

To estimate the quantity in Eq. (12), we could use quantum subroutines for estimating the quantity
Re〈ψ|U |ψ〉 for a general unitary U . One of these subroutines is to utilize the well-known Hadamard
test [55], which requires only one ancillary qubit, one copy of state |ψ〉, and one controlled unitary
operation U , and hence it can be experimentally implemented on near term quantum hardware. To
be specific, Hadamard test (see Fig. 2) starts with state |+〉A|ψ〉W , where A denotes the ancillary
qubit, and W denotes the work register, and then apply a controlled unitary U , conditioned on
the qubit in register A, to prepare state 1√

2 (|0〉A|ψ〉W + |1〉AU |ψ〉W ), at last, apply a Hadamard
gate on the ancillary qubit, and measure. If the measurement outcome is 0, then let the output
be 1; otherwise, let the output be −1, and the expectation of output is Re〈ψ|U |ψ〉. As for the
imaginary part Im〈ψ|U |ψ〉, it also can be estimated via Hadamard test by starting with state

1√
2 (|0〉A + i|1〉A)|ψ〉W .

Remark 1: Notice that terms in Eq. (12)may be exponentially many for matrices with particular
real-world applications, endowing a potential obstacle to the loss evaluation. However, we could
apply the importance sampling technique to circumvent this issue. We provide a detailed discussion
in Appendix B. In particular, we show that the loss evaluation efficiency is dependent on the `1-
norm of all coefficients ck rather than the integer K. Hence, for a matrix with a reasonable `1-norm
(e.g., polynomial size), the evaluation could be efficient even for large-size problems. Besides, we
take the circulant matrix as an example in Appendix B for illustration, suggesting the potential
application of our approach in related practical fields.
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Ry(α1) • · · · Ry(αND+1) •

Ry(α2) • · · · Ry(αND+2) •

Ry(α3) • · · · Ry(αND+3) •

Ry(αN )
×D
· · · Ry(αND+N )

Figure 3: Hardware-efficient ansatz used in the simulation for both U(α) and V (β). The parameters are
optimized to minimize the loss function L(α,β). D denotes the number of repetitions of the same block
(denoted in the dashed-line box) consists of a column of single-qubit rotations about the y-axis Ry(αj) following
by a layer of CNOT gates which only connects the adjacent qubits.

2.3 As a generalization of the VQE family
In this subsection, we discuss the connection between our VQSVD algorithm and the variational
quantum eigensolver (VQE) [25], which estimates the ground-state energy given a molecular
electronic-structure Hamiltonian H. This is a central problem to quantum chemistry as many
properties of the molecule can be calculated once we determine the eigenstates of H. Several
related algorithms have been proposed to improve the spectrum learning capability of VQE (i.e.,
SSVQE [31]) such that the properties of excited states can also be explored. We consider these
algorithms as a unified family and promising applications for quantum chemistry.

For practical reasons, one has to discretize the aforementioned Hamiltonian H into a series of
Pauli tensor products di ⊗ · · · ⊗ dj to work on quantum devices. Many physical models naturally
fit into this scheme including the quantum Ising model and the Heisenberg Model. In particular,
if the input of VQSVD in Eq. (5) is a Hamiltonian in a discretized form (i.e., a linear combination
of Pauli tensor products or equivalently a Hermitian matrix), VQSVD could be naturally applied
to diagonalize this Hamiltonian and prepare the eigenstates. Therefore, VQSVD can be seen as a
generalization of the VQE family that works not only for Hamiltonians, but also for more general
non-Hermitian matrices.

3 Optimization of the loss function
Finding optimal parameters {α∗,β∗} is a significant part of variational hybrid quantum-classical
algorithms. Both gradient-based and gradient-free methods could be used to do the optimization.
Here, we provide analytical details on the gradient-based approach, and we refer to [56] for more
information on the optimization subroutines in variational quantum algorithms. Reference about
gradients estimation via quantum devices can be found in Ref. [30, 57, 58].

3.1 Gradients estimation
Here, we discuss the computation of the gradient of the global loss function L(α,β) by giving an
analytical expression, and show that the gradients can be estimated by shifting parameters of the
circuit used for evaluating the loss function. In Algorithm 1, to prepare states |uj〉 and |vj〉, we
apply gate sequences U = U`1 ...U1 and V = V`2 ...V1 in turn to state |ψj〉, where each gate Ul and
Vk are either fixed, e.g., C-NOT gate, or parameterized, for all l = 1, ..., `1 and k = 1, ..., `2. The
parameterized gates Ul and Vk have forms Ul = e−iHlαl/2 and Vk = e−iQkβk/2, respectively, where
αl and βk are real parameters, and Hl and Qk are tensor products of Pauli matrices. Hence the
gradient of loss function L is dependent on parameters (α,β) and the following proposition shows
it can be computed on near-term quantum devices.

Proposition 3 The gradient of loss function L(α,β) can be estimated on near-term quantum
devices and its explicitly form is defined as follows,

∇L(α,β) =
(
∂L

∂α1
, ...,

∂L

∂α`1

,
∂L

∂β1
, ...,

∂L

∂β`2

)
. (13)
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Particularly, the derivatives of L with respect to αl and βk can be computed using following for-
mulas, respectively,

∂L

∂αl
= 1

2L(αl,β), (14)

∂L

∂βk
= 1

2L(α,βk), (15)

where notations αl and βk denote parameters αl = (α1, ..., αl + π, ..., α`1) and βk = (β1, ..., βk −
π, ..., β`2).

Proof Notice that the partial derivatives of loss function are given by Eqs. (14) (15), and hence
the gradient is computed by shifting the parameters of circuits that are used to evaluate the loss
function. Since the loss function can be estimated on near term quantum devices, claimed in
Proposition 2, thus, the gradient can be calculated on near-term quantum devices.

The derivations of Eqs. (14) (15) use the fact that ∂θ(Rez(θ)) = Re(∂θz(θ)), where z(θ) is a
parameterized complex number, and more details of derivation are deferred to Appendix A. �

3.2 Barren plateaus
It has been shown that when employing hardware-efficient ansatzes (usually problem agnostic) [59],
global cost functions 〈Ô〉 = Tr[ÔU(θ)ρU(θ)†] of an observable Ô are untrainable for large problem
sizes since they exhibit exponentially vanishing gradients with respect to the qubit number N
which makes the optimization landscape flat (i.e., barren plateaus [60]). Consequently, traditional
optimization methods including the Adam optimizer utilized in our numerical experiments are
impacted. This trainability issue happens even when the ansatz is short depth [61] and the work [62]
showed that the barren plateau phenomenon could also arise in the architecture of dissipative
quantum neural networks [63–65].

Several approaches have been proposed to mitigate this problem. One can either implementing
identity-block initialization strategy [66] or employing the technique of local cost [61], where the
local cost function is defined such that one firstly construct a local observable ÔL, calculating
the expectation value with respect to each individual qubit rather than gathering information in
a global sense, and finally adding up all the local contributions. The latter strategy has been
verified to extend the trainable circuit depth up to D ∈ O(poly(log(N))). Recently, a new method
of constructing adaptive Hamiltonians during the optimization loop has been proposed to resolve
similar issues [67].

4 Numerical experiments and applications
Here we numerically simulate the VQSVD algorithm with randomly generated 8×8 non-Hermitian
real matrices as a proof of concept. Then, to demonstrate the possibility of scaling VQSVD to
larger and more exciting applications, we simulate VQSVD to compress some standard gray-scale
32×32 images. Fig. 3 shows the variational ansatz used. Since only real matrices are involved, the
combination of Ry rotation gates and CNOT is sufficient. For the case of complex matrices and dif-
ferent ansatzs, see Appendix C. We choose the input states to be {|ψj〉} = {|000〉, |001〉, · · · , |111〉}
and the circuit depth D is set to be D = 20. The parameters {α, β} are initialized randomly from
an uniform distribution [0, 2π]. All simulations and optimization loop are implemented via Paddle
Quantum [68] on the PaddlePaddle Deep Learning Platform [69, 70].

4.1 Three-Qubit example
The VQSVD algorithm described in Section 2.1 can find T largest singular values of matrix Mn×n
at once. Here, we choose the weight to be positive integers (q1, · · · , qT ) = (T, T − 1, · · · , 1). Fig. 4
shows the learning process. One can see that this approach successfully find the desired singular
values and one can approximate the original matrix M with inferred singular values and vectors
M

(T )
re =

∑T
j=1 mj |ûj〉〈v̂j |. The distance between Mre and the original matrix M is taken to be
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Figure 4: Distance measure between the reconstructed matrix Mre and the original matrix M via VQSVD
with different circuit depth D = {10, 20} and compare with the classical SVD method. Specifically, we plot the
learning process (zoom in the plot) of selected singular values {m2,m3,m4} when using the layered hardware-
efficient ansatz illustrated in Fig. 3 with circuit depth D = 20.

the matrix norm ||An×n||2 =
√∑n

i,j=1 |aij |2 where aij are the matrix elements. As illustrated in
Fig. 4, the distance decreases as more and more singular values being used.

4.2 Image compression
Next, we apply the VQSVD algorithm to compress a 32× 32 pixel handwritten digit image taken
from the MNIST dataset with only 7.81% (choose rank to be T = 5) of its original information.
By comparing with the classical SVD method, one can see that the digit #7 is successfully re-
constructed with some background noise. Notice the circuit structure demonstrated in Fig. 3 is
ordinary and it is a not well-studied topic for circuit architecture. Future studies are needed to
efficiently load classical information into NISQ devices beyond the LCU assumption.

5 Solution quality estimation
After obtaining the results (singular values and vectors) from Algorithm 1, it is natural and desir-
able to have a method to benchmark or verify these results. In this section, we further introduce a
procedure for verification purposes. Particularly, we propose a variational quantum algorithm for
estimating the sum of largest T squared singular values, i.e.,

∑T
j=1 d

2
j , of a matrix M ∈ Cm×n as

a subroutine. In the following, we first define the error of the inferred singular values and singular
vectors, and then show its estimation via a tool provided in Algorithm 3.

Let {mj}Tj=1 denote the inferred singular values of the matrixM that are arranged in descending
order, and let {|ûj〉}Tj=1

(
{|v̂j〉}Tj=1

)
denote the associated inferred left (right) singular vectors. The

error of inferred singular values is defined as follows,

εd =
T∑
j=1

(dj −mj)2, (16)

where djs are the exact singular values of matrix M and also arranged in descending order. And
the error εv of inferred singular vectors is defined below,

εv =
T∑
j=1
‖ H|ê+

j 〉 −mj |ê+
j 〉 ‖

2 +
T∑
j=1
‖ H|ê−j 〉+mj |ê−j 〉 ‖

2, (17)
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Figure 5: Performance of simulated 5-qubit VQSVD for image compression. (a) shows the original handwritten
digit #7 and it is compressed via classical SVD up to the largest 5 singular values in (b). The performance of
VQSVD is presented in (c) and (d) with the same rank T = 5 but different circuit depth D = {20, 40}.

where H is a Hermitian operator of the form H = |0〉〈1| ⊗M + |1〉〈0| ⊗M†, and |ê±j 〉 = (|0〉|ûj〉 ±
|1〉|v̂j〉)/

√
2. It is worth pointing out that when inferred vectors |ê±j 〉 approximate the eigenvectors

|e±j 〉 of H, i.e., εv → 0, inferred singular vectors |ûj〉 and |v̂j〉 approximate the singular vectors |uj〉
and |vj〉 respectively, and vice versa.

Now we are ready to introduce the procedure for verifying the quality of VQSVD outputs.
To quantify the errors, we exploit the fact that errors εd and εv are upper bounded. Specifically
speaking,

εd ≤
T∑
j=1

d2
j −

T∑
j=1

m2
j , (18)

εv ≤ 2(
T∑
j=1

d2
j −

T∑
j=1

m2
j ), (19)

We refer the detailed proofs for Eqs. (18), (19) to Lemma 4 included in Appendix D.
Thus, we only need to evaluate the sum

∑T
j=1 d

2
j , which is the Frobenius norm of matrix M ,

and the sum
∑T
j=1 m

2
j independently. The latter can be directly computed from the outputs of

VQSVD while the former quantity can be estimated through Algorithm 3 presented in Appendix D.

6 Applications
In this section, we give a brief discussion about the application of VQSVD in recommendation
systems, and some other problems such as polar decomposition.

Recommendation systems The goal of a recommendation system is to provide personalized
items to customers based on their ratings of items, or other information. Usually, the preferences
of customers are modeled by an m× n matrix A, where we assume there are m customers and n
items. The element Alj indicates the level that customer l rates the item j. In particular, finding
suitable recommendations means to locate the large entries of rows.
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One commonly used method for locating the large entries of rows is matrix reconstruction.
Given an arbitrary matrix and integer k, the goal is to output a small k-rank matrix as an ap-
proximate matrix. In recommendation system, such an low-rank approximate matrix Ak of the
preference matrix A is usually used to recommend items. In this sense, our VQSVD algorithm
finds its application in recommendation system by learning such a small rank matrix. To be more
specific, the information about its singular values and vectors can be obtained.

After obtaining the low rank matrix Ak, the process of recommendation for customer l proceeds
as follows: project the lth row vector of A onto the space spanned by the right singular vectors of
Ak. Specifically, denote the right singular vectors of Ak by |v1〉, ..., |vk〉, and projection operator
by Π :=

∑k
t=1 |vt〉〈vt|, then apply Π to the lth normalized row vectors |b〉 of A. Specially, let |b̂〉

denote the normalized vector after projection, given below:

|b̂〉 = Π|b〉
‖ Π|b〉 ‖ = 1

G

k∑
t=1

ξt|vt〉, (20)

where the right singular vectors {|vt〉} form an orthogonal basis, ξt are the corresponding coeffi-

cients, and G denotes the normalization factor, i.e., G =
√∑k

t=1(ξt)2.

The state |b̂〉 can be efficiently prepared via paramerized circuit V (β) as long as we can prepare
the state 1

G

∑k
t=1 ξt|ψt〉. Particularly, there are k coefficients ξt in Eq. (20), determining |b̂〉.

Further, we present a procedure for estimating these coefficients in Algorithm 2 (shown below).

Algorithm 2
1: Input: matrix A ∈ Rn×n, desired rank k, parametrized circuits U(α) and V (β) with initial

parameters of α, β, and tolerance ε, and a circuit Ub to prepare state |b〉 ∈ Rn;
2: Run VQSVD in Algorithm 1 with A, k, U(α), V (β), ε, and return the optimal parameters

α∗, β∗, and {dj}kj=1 as singular values;
3: for t = 1, · · · , k do
4: Apply V (β) to state |ψt〉 and obtain |vt〉 = V (β∗)|ψt〉;
5: Apply Ub to state |0〉 and obtain |b〉 = Ub|0〉;
6: Compute ξt = 〈vt|b〉 via Hadamard test;
7: end for
8: Output {ξt} as coefficients in Eq. (20).

Finally, measure |b̂〉 in the computational basis and output the outcome.

Polar decomposition and other applications Another important application of our VQSVD
algorithm is finding the polar decomposition which has many applications in linear algebra [71, 72].
Recently, Lloyd et al [73] proposed a quantum polar decomposition algorithm that performs in a
deterministic way. For a given a complex matrix M ∈ Cn×n, the right polar decomposition is
defined as follows,

M = WP, (21)

where W is a unitary and P is a positive-semidefinite Hermitian matrix. Particularly, suppose the
singular value decomposition of M is calculated through the VQSVD algorithm M = UDV †, then
W = UV † and P = V DV †. It is interesting to explore whether our VQSVD could be applied to
polar decomposition.

For Hermitian matrices, the VQSVD algorithm can be applied as an eigensolver since singular
value decomposition reduces to spectral decomposition in this case. Recently, some work has been
proposed to extract eigenvalues and reconstruct eigenvectors of Hermitian matrices [31, 74], density
operators [75].

In the context of quantum information, SVD could be used to compute the Schmidt decompo-
sition of bipartite pure states and we note that our VQSVD algorithm could also be applied to do
Schmidt decomposition. Meanwhile, a recent work by Bravo-Prieto et al. [76] introduces a novel
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varitional quantum algorithm for obtaining the Schmidt coefficients and associated orthonormal
vectors of a bipartite pure state. In comparison, our VQSVD algorithm can deal with the SVD
of the general matrix, while Ref. [76] is intended for the Schmidt decomposition of bipartite pure
states.

7 Discussion and outlook
To summarize, we have presented a variational quantum algorithm for singular value decomposition
with NISQ devices. One key contribution is to design a loss function that could be used to train
the quantum neural networks to learn the left and right singular vectors and output the target
singular values. Further improvements on the performance of our VQSVD algorithm may be
done for sparse matrices together with more sophisticated ansatzes. We have numerically verified
our algorithm for singular value decomposition of random matrices and image compression and
proposed extensive applications in solving linear systems of equations. As a generalization of the
family of VQE algorithms on Hamiltonian diagonalization (or spectral decomposition), the VQSVD
algorithm may have potential applications in quantum chemistry, quantum machine learning. and
quantum optimization in the NISQ era.

Our algorithm theoretically works well for large-scale problems if we could have carefully han-
dled the trainability and accuracy of QNN. Just like regular variational quantum algorithms, there
are still several challenges that need to be addressed to maintain the hope of achieving quantum
speedups when scaling up to large-scale problems on NISQ devices. We refer to the recent review
papers [22–24] for potential solutions to these challenges.

One future direction is to develop near-term quantum algorithms for non-negative matrix fac-
torization [3] which have various applications and broad interests in machine learning. See [77]
as an example of the quantum solution. Another interesting direction is to develop near-term
quantum algorithms for higher-order singular value decomposition [78].
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A Proof details for Proposition 3
In this section, we show a full derivation on the gradients of the loss function in our VQSVD
algorithm.

L(α,β) =
T∑
j=1

qj × Re〈ψj |U†(α)MV (β)|ψj〉 (22)

The real part can be estimated via Hadamard test. Equivalently saying that,

Re〈ψj |Ô|ψj〉 = 1
2

[
〈ψj |Ô|ψj〉+ 〈ψj |Ô†|ψj〉

]
(23)
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Consider the parametrized quantum circuit U(α) = Π1
i=nUi(αi) and V (β) = Π1

j=mVj(βj). For
convenience, denote Ui:j = Ui · · ·Uj . We can write the cost function as:

L(α,β) = 1
2

T∑
j=1

qj ×
[
〈ψj |U†1:n(α1:n)MVm:1(βm:1)|ψj〉

+ 〈ψj |V †1:m(β1:m)M†Un:1(αn:1)|ψj〉
]

(24)

Absorb most gates into state |ψj〉 and matrix M ,

L(α,β) = 1
2

T∑
j=1

qj ×
[
〈φj |U†` (α`)GVk(βk)|ϕj〉

+ 〈ϕj |V †k (βk)G†U`(α`)|φj〉
]

(25)

where |ϕj〉 = Vk−1:1|ψj〉, |φj〉 = U`−1:1|ψj〉 and G ≡ U†`+1:nMVm:k+1. We assume U` = e−iα`H`/2

is generated by a Pauli product H` and same for Vk = e−iβkQk/2. The derivative with respect to
a certain angle is

∂U1:n

∂α`
= − i2U1:`−1(H`U`)U`+1:n (26)

∂V1:m

∂βk
= − i2V1:k−1(QkVk)Vk+1:m (27)

Thus the gradient is calculated to be

∂L(α,β)
∂α`

= 1
2

T∑
j=1

qj ×
[
i

2 〈φj |H
†
`U
†
` (α`)GVk(βk)|ϕj〉

− i

2 〈ϕj |V
†
k (βk)G†H`U`(α`)|φj〉

]
(28)

With the following property, we can absorb the Pauli product H` by an rotation on α` → α` + π

U`(±π) = e∓iπH`/2

= cos(π2 )I ∓ i sin(π2 )H`

= ∓iH` (29)

Plug it back and we get,

∂L(α,β)
∂α`

= 1
4

T∑
j=1

qj ×
[
〈φj |U†` (α` + π)GVk(βk)|ϕj〉

+ 〈ϕj |V †k (βk)G†U`(α` + π)|φj〉
]

(30)

This can be further simplified as

∂L(α,β)
∂α`

= 1
2

T∑
j=1

qj × Re〈ψj |U†(α` + π)MV (β)|ψj〉

= 1
2L(α` + π,β) (31)

Similarly, for βk we have

∂L(α,β)
∂βk

= 1
2

T∑
j=1

qj ×
[
i

2 〈φj |U
†
` (α`)GQkVk(βk)|ϕj〉
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− i

2 〈ϕj |Q
†
kV
†
k (βk)G†U`(α`)|φj〉

]
(32)

This can be further simplified as

∂L(α,β)
∂βk

= 1
2

T∑
j=1

qj × Re〈ψj |U†(α)MV (βk − π)|ψj〉

= 1
2L(α, βk − π). (33)

One can see from the above derivation that calculating the analytical gradient of VQSVD algorithm
simply means rotating a specific gate parameter (angle α` or βk) by ±π which can be easily
implemented on near-term quantum devices.

B Supplemental material for cost evaluation
In this section, we show how to apply the importance sampling technique to reduce the cost of
estimating the loss function in Eq. (12). For convenience, we restate Eq. (12) below.

C(α,β) =
K∑
k=1

ck × Re〈ψj |U(α)†AkV (β)|ψj〉. (34)

We assume all coefficients ck in Eq. (12) are positive, since their signs can be absorbed into unitaries
Ak.

Define an importance sampling in a sense that

R =


A1 with probability p1 = c1

‖c‖`1
A2 with probability p2 = c2

‖c‖`1
...

...
AK with probability p1 = cK

‖c‖`1

(35)

where c = (c1, c2, . . . , cK), and ‖ · ‖`1 denotes the `1-norm. Random variable R indicates that each
unitary Ak is selected at random with probability proportional to its weight. Here, we rewrite
Eq. (34) by using R.

C(α,β) = E [‖c‖`1 · Re〈ψj |RV (β)|ψj〉] . (36)

As C(α,β) is formed as an expectation, the sample mean is supposed to estimate it. By
Chebyshev’s inequality, O(Var/ε2) samples suffice to compute an estimate up to precision ε
with high probability, where Var denotes the variance, and ε denotes the precision. By Cher-
noff bound, the probability can be further improved to 1 − δ costing an additional multiplicative
factor O(log(1/δ)). Regarding C(α,β), the variance is bounded by ‖c‖2

`1
. We, therefore, only

need to choose O(‖c‖2
`1

log(1/δ)/ε2) many unitaries to evaluate C(α,β). Viewed from this point,
the cost of the evaluation is dependent on the ‖c‖`1 instead of the integer K. As a result, the loss
evaluation could be efficient if the ‖c‖`1 is small, even there are exponentially many terms.

Example. Suppose we use VQSVD to compute SVDs of circulant matrices, which have ap-
plications in signal processing, image compression, number theory and cryptography. A circulant
matrix Cd is given by

Cd =


c0 c1 . . . cd−1
cd−1 c0 . . . cd−2
...

...
. . .

...
c1 c2 . . . c0

 (37)
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Clearly, the matrix Cd is determined by the sequence c = (c0, c1, . . . , cd−1). It can be easily
decomposed into a weighted sum of cyclic permutations.

Cd = c0I + c1P1 + c2P2 + . . .+ cd−1Pd−1, (38)

where

P1 =


0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

. . .
...

0 0 . . . 1 0

 , P2 =


0 0 . . . 1 0
0 0 . . . 0 1
1 0 . . . 0 0
...

. . . 0
...

0 . . . 1 0 0

 ,

. . . , Pd−1 =


0 1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0
...

. . . 1
1 0 . . . 0 0

 .

The loss for a circulant matrix in Eq. (34) is given by

d−1∑
k=0

ck × Re〈ψj |U(α)†PkV (β)|ψj〉

= E
[
‖c‖`1 · Re〈ψj |U(α)†PkV (β)|ψj〉

]
(39)

Hence, for circulant matrices with feasible cost ‖c‖`1 (e.g., polynomial size), the loss evaluation
could be quite efficient even for large-size problems. Our VQSVD algorithm is expected to find
further applications in circulant matrix-related problems.

C Supplemental material for different ansatzs
In this section, we supplement additional numerics on 8 × 8 real matrices to explore the effect of
different circuit ansatzs and later test our VQSVD algorithm on random complex matrices. First,
we introduce several ansatz candidates.

(a) U •

U •

U ×D1

(b) U • U

U U U • U

U U ×D2

(c) U •

U •

U •
×D3

(d) U • U

U • U

U U • •
×D4

Figure 6: Ansatz candidates considered in numerical experiments. When the input data M contains only
real elements, we take U = Ry(αj) to reduce the trainable parameters. Otherwise, we choose U =
Rz(θj)Ry(φj)Rz(ϕj) as a general rotation on the Bloch sphere to enhance expressibility. (a) is the basic
hardware-efficient ansatz. (b) consists of dressed CNOT gates (rotation gates on both sides). (c) and (a) dif-
fers by an extra CNOT which forms a circular entangling structure and is expected to have a stronger entangling
capability. (d) is designed to explore the influence of CNOT gates.

After introducing all the candidates, we test the distance measure on a real matrix similar to
Fig. 4. For fair comparison, we want all the ansatz candidates to have the same total amount of
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Figure 7: Distance measure between the reconstructed matrix Mre and the original matrix M (real elements
only) via VQSVD with different ansatz candidate and compare with the classical SVD method.

trainable parameters Ntot = 24 and leads to the specific depth D1 = 8, D2 = 3, D3 = 8, D4 = 4.
Other setups including desired rank T = 8, the weight coefficient (T, T − 1, · · · , 1), the random
seed for generating trainable parameters, number of optimization iterations ITR=200, learning rate
LR=0.05, and the Adam optimizer are fixed. The result is illustrated in Fig. 7. The advantage
of candidate (a) and (d) is observed consistently in numerical experiments. Finally, we repeat the
same experiments on random 8 × 8 complex matrices. No clear advantage of a specific ansatz
candidate is observed under this setup. Most of the time, candidate (a), (c) and (d) would return
a better result compare to candidate (b). But in certain cases, the performance of candidate (a)
could be very bad due to the lack of entangling capability. We report a case study in Fig. 8. Further
studies are needed to check more ansatz candidates by manipulating the entangling structure.

D Supplemental material for verification of the solution quality
In this section, we provide the necessary proofs in Sec. 5 and detailed discussions on variational
quantum Frobenius norm estimation algorithm.

D.1 Definitions
Recall that the error of inferred singular values is defined as follows,

εd =
T∑
j=1

(dj −mj)2, (40)

where dj are the exact singular values of matrix M and also arranged in descending order. And
the error εv of inferred singular vectors is defined below,

εv =
T∑
j=1
‖ H|ê+

j 〉 −mj |ê+
j 〉 ‖

2 +
T∑
j=1
‖ H|ê−j 〉+mj |ê−j 〉 ‖

2, (41)

where H is a Hermitian of the form H = |0〉〈1|⊗M+|1〉〈0|⊗M†, and |ê±j 〉 = (|0〉|ûj〉±|1〉|v̂j〉)/
√

2.
The quantity ‖H|ê±j 〉∓mj |ê±j 〉‖2 quantifies the component of H|ê±j 〉 that is perpendicular to |ê

±
j 〉,

which follows from (I −
∣∣ê±j 〉〈ê±j ∣∣)H|ê±j 〉.

Accepted in Quantum 2021-06-24, click title to verify. Published under CC-BY 4.0. 19



Figure 8: Distance measure between the reconstructed matrix Mre and the original matrix M (complex
elements) via VQSVD with different ansatz candidate and compare with the classical SVD method. The
number of trainable parameters is now changed to Ntot = 144.

It is worth pointing out that when inferred vectors |ê±j 〉 approximate the eigenvectors |e±j 〉,
where |e±j 〉 = (|0〉|uj〉 ± |1〉|vj〉)/

√
2, of H, i.e., εv → 0, inferred singular vectors |ûj〉 and |v̂j〉

approximate the singular vectors |uj〉 and |vj〉 respectively, and vice versa. On the other hand,
the error εv which is used to quantify the extent that vectors |ê±j 〉 approximate eigenvector |e±j 〉
can quantify the extent that inferred vectors {uj} and {vj} approximate the singular vectors.
Specifically, these distances have an equal relation, which is depicted in the following equation.

D({|uj〉, |vj〉}, {|ûj〉, |v̂j〉}) = D({|e+
j 〉, |e

−
j 〉}, {|ê

+
j 〉, |ê

−
j 〉}), (42)

where D denotes the distance between vectors.
Here, we give the explicit forms of the distances . (42). The distances between {|uj〉, |vj〉} and

{|ûj〉, |v̂j〉} are defined in the following form,

D({|uj〉, |vj〉}, {|ûj〉, |v̂j〉}) (43)
≡ ‖ |uj〉 − |ûj〉 ‖2 + ‖ |vj〉 − |v̂j〉 ‖2 . (44)

And the distances between |e±j 〉 and |ê
±
j 〉 are defined below,

D({|e+
j 〉, |e

−
j 〉}, {|ê

+
j 〉, |ê

−
j 〉}) (45)

≡ ‖ |e+
j 〉 − |ê

+
j 〉 ‖

2 + ‖ |e−j 〉 − |ê
−
j 〉 ‖

2 . (46)

Notice that both of the Right-Hand-Sides of Eqs. (44), (46) are equivalent to 4 − 2(Re 〈uj |ûj〉 +
Re 〈vj |v̂j〉), and then the relation in Eq. (42) follows.

D.2 Error analysis
After running VQSVD, it would be ideal if we can verify the quality of the outputs from VQSVD.
For achieving this purpose, we show that these error εd and εv are upper bounded and give the
explicit form of upper bounds. We present the derivation for upper bounds on errors in the following
lemma.

Lemma 4 Given a matrix M ∈ Cn×n, let εd and εv denote the errors of the inferred singular
values and singular vectors in Eqs. (40), (41), respectively, then both of them are upper bounded.

Accepted in Quantum 2021-06-24, click title to verify. Published under CC-BY 4.0. 20



To be more specific,

εd ≤
T∑
j=1

d2
j −

2∑
j=1

m2
j ,

εv ≤ 2(
T∑
j=1

d2
j −

T∑
j=1

m2
j ),

where djs are singular values of matrix M , and mjs are inferred singular values from Algorithm 1.

Proof Recall the definitions of εd and εv in Eqs. (40), (41), and notice that

εd =
T∑
j=1

d2
j − 2

T∑
j=1

djmj +
T∑
j=1

m2
j . (47)

Since the dot product with decreasingly ordered coefficients is Schur-convex and {dj} majorize
{mj}, i.e.,

∑`
j=1 dj ≥

∑`
j=1 mj for all ` = 1, ..., T , then

∑T
j=1 djmj ≥

∑T
j=1 m

2
j , which results an

upper bound on error εd.
Note that the error εv can be rewritten as

εv =
T∑
j=1

(〈ê+
j |H

2|ê+
j 〉+ 〈ê−j |H

2|ê−j 〉 − 2
T∑
j=1

m2
j , (48)

and eigenvectors {|ê±j 〉} can be expanded into a basis of the space, then we have

T∑
j=1

(〈ê+
j |H

2|ê+
j 〉+ 〈ê−j |H

2|ê−j 〉 (49)

≤Tr(H2) = 2
T∑
j=1

d2
j . (50)

�

D.3 A tool for solution quality estimation
The goal of this section is to provide a tool that computes the sum of largest T squared singular
values, which is used in Sec. 5 to analyze the accuracy of outputs of VQSVD. In the following, we
mainly show the correctness analysis of Algorithm 3. The detailed discussions on loss evaluation
and gradients estimation are omitted, since we can employ the same methods introduced in Ref. [79]
to loss evaluation and gradients derivation. The differences of our method from that in Ref. [79]
occur in input states. Specifically, we input computational states |ψj〉 for all j into the circuit,
while they input state |0〉. For more information on loss evaluation and gradients derivation, we
refer the interested readers to Ref. [79].

Algorithm 3
1: Input: {ck, Ak}Kk=1, desired rank T , parametrized circuits U(α) and V (β) with initial param-

eters of α, β, and tolerance ε;
2: Choose computational basis |ψ1〉, · · · , |ψT 〉;
3: for j = 1, · · · , T do
4: Apply U(α) to state |ψj〉 and obtain |uj〉 = U(α)|ψj〉;
5: Apply V (β) to state |ψj〉 and obtain |vj〉 = V (β)|ψj〉 ;
6: Compute oj = |〈uj |M |vj〉|2 via Hadamard test;
7: end for
8: Compute the loss function F (α,β) =

∑T
j=1 oj ;

9: Perform optimization to maximize F (α,β), update parameters of α and β;
10: Repeat 4-10 until the loss function F (α,β) converges with tolerance ε;
11: Output F (α,β) as Frobenius norm.
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Correctness analysis The validity of Algorithm 3 follows from a fact that, for arbitrary matrix,
its squared singular values majorize the squared norms of diagonal elements. Specifically, the sum
of the largest T squared singular values is larger than the sum of squared norms of the largest T
diagonal elements. We summarize this fact in the lemma below and further provide a proof.

Lemma 5 For arbitrary matrix M ∈ CN×N , let singular values of M be d1, d2, ..., dN , which are
arranged in descending order. Then for any k ∈ [N ], we have the following inequality:

k∑
j=1

d2
j ≥

k∑
j=1
|D↓j |

2, (51)

where D is the diagonal vector of M , i.e., D = diag(M), and the notation ↓ means that the |Dj |
are arranged in descending order. In particular, the equality holds if and only if M is diagonal.

Proof The core of the proof is to connect singular values and diagonal elements. Specifically, this
process can been done with the following inequalities:

k∑
j=1

d2
j ≥

k∑
j=1

~M↓j , (52)

k∑
j=1

~M↓j ≥
k∑
j=1
|D↓j |

2, (53)

where dj are singular values of M , and ~M is the vector denoting the diagonal elements of MM†.
The first inequality Eqs. (52) can be derived since eigenvalues of a Hermitian matrix majorize its
diagonal elements. As d2

js are the eigenvalues of MM†, we have

k∑
j=1

d2
j ≥

k∑
j=1

~M↓j , (54)

for any k ∈ [N ]. Second, note that diagonal elements of MM†, i.e., ~Mj , can be expressed in the
following form:

~Mj =
N∑
l=1
|Mjl|2. (55)

Then, from Eq. (55), we can easily derive inequalities below:

k∑
j=1

~M↓j ≥
∑
l∈S

~Ml ≥
k∑
j=1
|D↓j |

2. (56)

where sum
∑k
j |D

↓
j |2 includes the largest k absolute values of diagonal elements Dj , and set S

contains indices of rows that all |D↓j | belong. Here we explain inequalities in Eq. (56). The second
inequality holds since the sum

∑
l∈S

~Ml contains entries of rows that |Dj |↓ locate. Thus it not
only contains the diagonal elements that appear in the sum

∑k
j |D

↓
j |2 but also other off-diagonal

elements. Meanwhile, recall that the sum
∑k
j=1

~M↓j consists of the largest k diagonal elements
of matrix MM†. Thus it must be larger than any sum

∑
l∈S

~Ml that contains some k diagonal
elements of MM†, validating the first inequality.

Note that the equality in Eq. (53) holds only when ~M↓j = |D↓j |2 for all j ∈ [N ]. Thus, it implies
that M is diagonal. On the other hand, if the matrix M is diagonal, then the equality in Eq. (52)
immediately follows. Overall, the equality in Eq. (51) holds if and only if M is diagonal. �
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Loss evaluation We consider the evaluation of oj in VQFNE, which can be rewritten as

oj = 〈uj |M |vj〉〈vj |M†|uj〉 (57)

=
∑
k1,k2

ck1ck2〈uj |Ak1 |vj〉〈vj |A
†
k2
|uj〉. (58)

In principle, these inner products in Eq. (58) can be efficiently estimated via Hadamard test and
a little classical post-processing. Actually, there are other methods named Hadamard-overlap test
for estimating oj . Hadamard-overlap test was introduced in Ref. [79] to compute a quantity of the
form 〈0|U†AlV|0〉〈0|V†A†l′U|0〉, while in VQFNE, we substitute state |0〉 with state |ψj〉, which
makes no difference in loss evaluation and gradients derivation. Particularly, instead of estimating
each inner product 〈uj |Ak1 |vj〉 and 〈vj |A

†
k2
|uj〉, the values 〈uj |Ak1 |vj〉〈vj |A

†
k2
|uj〉 can be estimated

via Hadamard-overlap test at the expense of doubling the number of qubits.

Gradients The gradient of the loss function F (α,β) is given below,

∇F (α,β) = ( ∂F
∂α1

, ...,
∂F

∂αh1

,
∂F

∂β1
, ...,

∂F

∂βh2

), (59)

where

∂F

∂αl
=
∑
j

∂oj
∂αl

=
∑
j

∑
k1k2

ck1ck2

∂Rj,k1,k2

∂αl
(60)

∂F

∂βt
=
∑
j

∂oj
∂βt

=
∑
j

∑
k1k2

ck1ck2

∂Rj,k1,k2

∂βt
. (61)

where Rj,k1,k2 = 〈uj |Ak1 |vj〉〈vj |A
†
k2
|uj〉.

More details on deriving gradients in Eqs. (60), (61) can be found in Ref. [79].
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