
2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 4048

Real-time 3D Model-based Tracking Using Edge and Keypoint Features
for Robotic Manipulation

Changhyun Choi and Henrik I. Christensen
Robotics & Intelligent Machines, College of Computing

Georgia Institute of Technology
Atlanta, GA 30332, USA

{cchoi,hic}@cc.gatech.edu

Ahstract- We propose a combined approach for 3D real-time
object recognition and tracking, which is directly applicable to
robotic manipulation. We use keypoints features for the initial
pose estimation. This pose estimate serves as an initial estimate
for edge-based tracking. The combination of these two comple
mentary methods provides an efficient and robust tracking so
lution. The main contributions of this paper includes: 1) While
most of the RAPiD style tracking methods have used simplified
CAD models or at least manually well designed models, our
system can handle any form of polygon mesh model. To achieve
the generality of object shapes, salient edges are automatically
identified during an offline stage. Dull edges usually invisible in
images are maintained as well for the cases when they constitute
the object boundaries. 2) Our system provides a fully automatic
recognition and tracking solution, unlike most of the previous
edge-based tracking that require a manual pose initialization
scheme. Since the edge-based tracking sometimes drift because
of edge ambiguity, the proposed system monitors the tracking
results and occasionally re-initialize when the tracking results
are inconsistent. Experimental results demonstrate our system's
efficiency as well as robustness.

I. INTRODUCTION

As robots moves from industrial to daily environments, the
most important problem robots face is to recognize objects
and estimate 6-DOF pose parameters in less constrained
environments. For the last decade, computer vision, robotics,
and augmented reality have all addressed this as a model
based tracking issue. Most of the work has been based on 3D
CAD models or keypoint metric models. The former models
correspond to edges in an image, which can be efficiently
computed, while the latter models match with keypoints in an
image which are suitable for robust wide baseline matching.
A strategy for using keypoint for pose initialization and
differential methods for pose tracking is presented.

II. RELATED WORK

For the 6-DOF pose tracking, robotics and augmented re
ality areas have employed a number of different approaches.
One of the easiest way is through use of fiducial markers.
Artificial markers are attached to the object or environment
as camera targets. Although the method provides an easy
and robust solution for real-time pose estimation, attaching
markers has been regarded as a major limitation. Hence,
researchers have focused on tracking using natural features.
For several decades methods, which employ natural fea
tures, have been proposed: edge-based, optical flow-based,

MonOCUlarcam~ Image
Acquisition

1 1
Edge Model

Detection Rendering

! ~ t
Error

Pose

Calculation - Update
with IRLS

Local Pose Estimation

---I

i

-----------------1

r-·
r-----------J

t
Keypoint
Matching

!

•
Pose

Estimation

I I L ___________________________________ J

Object Models Global Pose Estimation

Fig. I: Overall system flow. We use a monocular camera. The
initial pose of the object is estimated by using the SURF keypoint
matching in the Global Pose Estimation (GPE). Using the initial
pose, the Local Pose Estimation (LPE) consecutively estimates
poses of the object utilizing RAPiD style tracking. keyframes
and CAD model are employed as models by the GPE and LPE,
respectively. The model are generated offline.

template-based, and keypoint-based. Each method has its
own pros and cons, but surveying every methods in this
paper is out of scope. For an in-depth study of the different
methods, we refer the interested reader to the survey [1].

Among the various methods, we focus on two methods:
edge-based and keypoint-based. The edge features are easy to
compute and computationally cheap. Since the edge is usu
ally computed by image gradients, it is moderately invariant
to illumination and viewpoint. The keypoint features are also
capable of being invariant to illumination, orientation, scale,
and partially viewpoint. But the keypoints requires relatively
computationally expensive descriptors which maintain local
texture or orientation information around stable points to be
distinctive.

In edge-based methods, a 3D CAD model is usually
employed to estimate the full pose using a monocular cam
era. Harris [2] established RAPiD (Real-time Attitude and
Position Determination) which was one of the first marker
less 3D model-based real-time tracking system. It tracks an
object by comparing projected CAD model edges to edges
detected in a gray-scale image. To project the model close

Fig. 2: Example keyframes of the teabox object. The keyframes are saved during offline analysis and later utilized in the GPE.

to the real object, the system use the previous pose estimate

as a priori. Since it use an 1-D search along the normal

direction of sample points for the closest edge locations, it

rapidly calculate errors which must be minimized to solve

for the 6-DOF motion parameters. The motion parameters

are subsequently estimated between frames. Drummond and

Cipolla [3] solved a similar problem, but enhanced ro-

bustness by using the iterative re-weighted least squares

with a M-estimator. To perform hidden line removal, they

used a BSP (Binary Space Partition) tree. Marchand and

Chaumette [4] proposed an augmented reality framework,

which relies on points and lines, and that has been applied

to the visual servoing [5]. Comport et al. [6] compared and

evaluated the two different systems, but they concluded both

are fundamentally equivalent.

In keypoint-based methods, a sparse 3D metric model

is used. Like CAD models, the keypoint models are built

offline. With a set of images in each has a view of an

object from a slightly different viewpoint, the non-linear

optimization algorithm, such as Levenberg-Marquardt, return

a refined 3D model of keypoints. Since this model maintains

3D coordinates of each keypoint, the pose estimation is easily

performed by using the correspondence between the 3D

points of the model and the 2D keypoints in an input image.

Using this model, Gordon and Lowe [7] proposed an aug-

mented reality system that calculates pose with scale invari-

ant features [8]. Collet et al. [9] applied a similar method to

robot manipulation where they combined RANSAC [10] with

a clustering algorithm to locate multiple instances. Vacchetti

et al. [11] used standard corner features to match the current

image and the reference frames, so called keyframes. Unlike

the efforts using non-linear optimization, they obtained 3D

coordinates of 2D corner points by back-projecting them onto

the object CAD model.

Since the edge and the keypoint methods are comple-

mentary to each other, several have reported combined

approaches [12], [13]. Vacchetti et al. [14] incorporated the

edge-based method with their corner point-based method to

make the system more robust and jitter free. As part of

the edge-based tracking, they used multiple hypotheses to

handle erroneous edge correspondence, but it is equivalent

to the nearest hypothesis of RAPiD-like approaches. Rosten

and Drummond [15] similarly combined corner points with

lines, but they only used corner points to estimate motion

parameters between frames.

We also adopt a combined approach in which keypoint-

based matching and edge-based tracking are employed. As

depicted in Fig. 1, our system is composed of a Global

Pose Estimation (GPE) and a Local Pose Estimation (LPE).

Unlike [14] and [15] which use keypoints to estimate motion

between frames, we only use the keypoints for estimating

the initial pose in GPE. After estimating the initial pose an

edge-based tracking scheme is utilized in the LPE.

In the remainder of the paper, we first explain the GPE

in Section III. Section IV describes the LPE including the

salient edge selection from polygon mesh models and the

edge-based tracking formulation. Quantitative and qualitative

results using the system are presented in Section V.

III. GLOBAL POSE ESTIMATION USING KEYPOINTS

In this section, we present the Global Pose Estimation

(GPE) in which we use SURF keypoints [16] to match the

current image with keyframes. The model keyframe is a set

of images that contains a target object. The keyframes are

saved offline. To estimate pose, the 3D coordinate of each

keypoint is computed by back-projecting to the CAD model.

A. Keyframe Model Acquisition

To estimate an initial pose, our system requires keyframes,

which are reference images. Since the keyframes will be

compared with the input image, the keyframes should contain

appearance of the object similar to the one in the input image.

But it is practically impossible to maintain every image to

cover all possible appearances of the object due to variability

across illumination, scale, orientation and viewpoint. In a

real application, a smaller number of keyframes is preferred.

Ideally there would only be one keyframe per aspect for

the object. For the maximum coverage of a keyframe, a

keypoint descriptor that describes local appearance around

corner-like points is used. If the local descriptor is discrim-

inative then matching keypoints between two images can

be performed despite variations in orientation, scale, and

illumination. However, the local appearance is only semi-

invariant to viewpoint change. For robust pose initialization

we are required to maintain multiple keyframes to cover

multiple view aspects.

Capturing keyframes is performed offline. Since keyframes

will be used for pose estimation in which there is a need

for generation of 2D-3D correspondences, we need to know

the 3D coordinates of each keypoint. To calculate 3D co-

ordinates, we use 3D CAD models with the current pose

estimate. In this phase, the current pose is estimated by the

LPE as will be explained in Section IV. With a CAD model

and the current pose, we can compute the 3D coordinates

of each keypoint by back-projecting the 2D keypoint to

4049

!"#$%& '%%(

)*+)#,-.%%,

Fig. 3: Original and simplified CAD models. By using the salient edges selection, we can get a set of good model edges to track.

the corresponding facet of the CAD model. For fast facet

identification, we use ‘Facet-ID’ trick which encodes i-th

facet of the target object’s model in an unique color in order

to identify the membership of each 2D keypoints by looking

up the image buffer that OpenGL renders [11]. The 3D

coordinates of the keypoints are then saved into a file for

later use in keypoint matching.

B. Matching keypoints

After obtaining keyframes offline, keypoint matching is

performed between an input frame and keyframes. A simple

strategy for the matching might use naı̈ve exhaustive search.

However, such a search has O(n2) complexity. Using an

approximate method the complexity can be reduced. As an

approximated search, we use the Best-Bin-First (BBF) algo-

rithm [17] which can be performed in O(n log n). While [18]

and [8] used a fixed number of nearest-neighbors, we set the

number of nearest-neighbors as the number of keyframe + 1.

We use the ratio test described by [8], and the ratio threshold

we used was 0.7. Once the putative correspondences has been

determined, they are further refined using RANSAC [10]. In

each RANSAC iteration, we estimate a homography matrix

and eliminate outliers from the homography matrix. Since

general objects have multiple faces or even curved surface,

using the homography matrix might not be an optimal

solution. It is here assumed that correspondences can be

approximated by a plane to plane transformation. In addition,

the size of objects is relatively small in images, so this

approximation does not limit the number of correspondences.

Another solution would be estimating a camera projection

matrix directly as part of the RANSAC as we know 3D

coordinates of each 2D keypoint, an option that may be

considered in future work. After removing outliers, we then

calculate the 6-DOF pose parameters by using standard least

square estimation. This pose estimate is provided to the LPE

as an initial value.

IV. LOCAL POSE ESTIMATION USING EDGES

In this section, we explain the Local Pose Estimation

(LPE) in which edges are utilized for object tracking.

A. Automatic Salient Model Edges Selection

!"#$%&'()* +,--&'()*

.
!.

"
.
"

.
!

Fig. 5: Determining salient edges. We use the face normal vectors
available in the model.

Since most of objects which exist in our daily environment

are manufactured, their CAD models might be available,

and such models provide helpful information for robotic

manipulation. Although there are various formats in CAD

models, most of them can be represented in a polygon

mesh. A polygon mesh is usually composed of vertices,

edges, faces, polygons and surfaces. In the LPE, we use

edge features in images coming from a monocular camera to

estimate the pose difference between two consecutive frames.

So we should determine which edges in the model of a

targeted object would be visible in images. Here we make an

assumption that sharp edges are more likely to be salient. To

identify sharp edges, we use the face normal vectors from the

model. As illustrated in Fig. 5, if the face normal vectors of

two adjacent faces are close to perpendicular, the edge shared

by the two faces is regarded a sharp edge. If two face normal

vectors are close to parallel, the edge is regarded a dull edge.

For the decision, we use a simple thresholding scheme with

the value of the inner product of two normal vectors. More

formally, we can define an indicator function with respect to

4050

4051

Fig. 4: The flow of the LPE. From the input image, an edge image is obtained using the Canny edge detector, and the CAD model is
rendered with the prior pose. After calculate the error between the projected model and edge image, Iterative Re-weighted Least Square
estimates the posterior pose. The estimated pose is shown in the last image.

the edges in the model by:

I(edgei) = { ~ if Int· nrl :s; Ts

otherwise

where nt and nr are the face normal unit vectors of the two
adjacent faces which share the i-th edge, edgei. We found the
threshold Ts = 0.3 is a reasonable value. This salient edge
selection is performed fully automatically offline. In general,
the salient edges are only considered in edge-based tracking,
but when the dull edges constitute the object's boundary they
are also considered. Testing boundary of the dull edges are
performed at run-time using back-face culling.

B. Mathematical and Camera Projection Model

Since our approach is based on the formulation from
Drummond and Cipolla [3], we adopt the Lie Algebra
formulation. In the LPE, our goal is to estimate the posterior
pose Et+1 from the prior pose Et given the inter-frame
motion M:

where Et+1 , Et , and M are 6-dimensional Lie Group of
rigid body motion in SE(3). At time t + 1, we know the
prior pose E t from the GPE or the previous LPE. Hence we
are interested in determining the motion M to estimate the
posterior pose. M can be represented in the exponential map
of generators Gi as follows:

,,6e
M = exp(JL) = eL- i~l /-" i (1)

where JL E JR;.6 is the motion velocities corresponding to the
6-DOF instantaneous displacement and the Gi are the group
generator matrices:

(

0001) (0000) (0000) _ 0000 _ 0001 _ 0000 G 1 - 0 0 0 0 , G 2 - 0 0 0 0 ,G3 - 0 0 0 1 ,
0000 0000 0000

(

0000) (0010) (0-100) _ 00 -1 0 _ 0 000 _ 1 0 00
G4 - 0 1 0 0 ,G5 - -1000 ,G6 - 0 0 00 .

0000 0000 0000

As a camera model, we use the standard pin-hole model
given by:

(2)

where p = (u v) T is 2D image coordinates corresponding
to the 3D model coordinates pM = (x M yM zM 1)T and
the matrix K represent the camera's intrinsic parameters:

o
Iv

uo)
Vo

where Iu and Iv are the focal length in pixel dimensions, and
Uo and Vo represent the position of the principal point. The
3D coordinates in camera coordinates pc = (xC yC zC 1)T
can be calculated by:

where E is the extrinsic matrix or camera's pose. For sim
plicity, we ignore the radial distortion as image rectification
is performed during the image acquisition phase.

C. Model Rendering and Error Calculation

Fig. 7: Error calculation between projected model (yellow lines)
and extracted edges (black tortuous lines) from the input image.
Sample points (green points) are generated along the model per
fixed distance, the error of each sampled point is calculated by the
l-D search along the direction orthogonal to the model edge.

To estimate the motion M, we need to measure errors
between the prior pose and the current pose. As a first step
to calculate errors, we project the CAD model to the image
plane using the prior pose E t . Instead of considering the
edge itself, we sample points along the projected edges. Since
some of sampled points are occluded by the object itself, a
visibility test is performed. While [3] used a BSP tree for
hidden line removal, OpenGL occlusion query is an easy and
efficient alternative. Each visible point is then matched to
the edges in the input image. The edge image is obtained by
using a Canny Edge Detector [19]. We find the nearest edge
by using a I-D search along the direction perpendicular to
the projected edge. The error vector e is obtained by stacking
all of the errors of each sample point as follows:

e=(e1 e2 ... eNf

Fig. 6: Tracking results of the four targeted objects. From top to bottom, teabox, book, cup and car door. From left to right, t < 10, t =
100, t = 200, t = 300, t = 400 and t = 500 where t is the frame number. The very left images are results of the GPE.

where ei is the Euclidean distance from i-th sample point to

the nearest edge and N is the number of valid sample points

(i.e. sample points correspond to the nearest edge). Fig. 7

illustrates the error calculation, and ei is the length of the

i-th red arrow.

D. Update Pose with IRLS

After calculating the error vector e, the problem is reduced

to:

µ̂ = arg min
µ

N
∑

i=1

‖ei‖
2

= arg min
µ

N
∑

i=1

‖pi − Proj(PM

i ;Et exp(µ),K)‖2

where pi is the 2D image coordinates of the nearest edge

which is corresponding to the projected 2D point of the i-th

3D model coordinates PM

i
= (xM

i yM
i zM

i 1)T and N is

the number of valid sample points.

To calculate µ which minimizes the error e, a Jacobian

matrix J ∈ R
N×6 can be obtained by computing partial

derivatives at the current pose:

Jij =
∂ei

∂µj

= ni
T ∂

∂µj

(

ui

vi

)

= ni
T ∂

∂µj

(

Proj(PM

i ;Et exp(µ),K)
)

where ni is the unit normal vector of the i-th sample point.

We can split Proj() in Eq. 2 into two parts as follows:

(

ui

vi

)

=

(

fu 0 u0

0 fv v0

)

ũi

ṽi

1

(

ũi

ṽi

)

=

xC
i

zC
i

yC
i

zC
i

Their corresponding Jacobian matrices can be obtained:

JK =

(

∂ui

∂ũi

∂ui

∂ṽi
∂vi

∂ũi

∂vi

∂ṽi

)

=

(

fu 0
0 fv

)

JP =

(

∂ũi

∂xC
i

∂ũi

∂yC
i

∂ũi

∂zC
i

∂ṽi

∂xC
i

∂ṽi

∂yC
i

∂ṽi

∂zC
i

)

=

1
zC

i

0 −
xC

i

(zC
i

)2

0 1
zC

i

−
yC

i

(zC
i

)2

Since ∂
∂µj

(exp(µ)) = Gj at µ = 0 by Eq. 1, we can get:

∂PC

i

∂µj

=
∂

∂µj

(Et exp(µ)PM

i)

= EtGjP
M

i

Therefore the ith row and jth column element of the

Jacobian matrix J is:

Jij =
∂ei

∂µj

= ni
T JK

(

JP
0
0

)

EtGjP
M

i

We can solve the following equation to calculate the motion

velocities:

Jµ = e

4052

0 100 200 300 400 500 600 700 800 900 1000
−150

−100

−50

0
X Translation

Frame number

(m
m

)

0 100 200 300 400 500 600 700 800 900 1000
−150

−100

−50

0
Y Translation

Frame number

(m
m

)

0 100 200 300 400 500 600 700 800 900 1000
300

400

500

600
Z Translation

Frame number

(m
m

)

0 100 200 300 400 500 600 700 800 900 1000
−50

0

50

100
Roll Angle

Frame number

(d
e

g
re

e
)

0 100 200 300 400 500 600 700 800 900 1000
−10

0

10

20

30
Pitch Angle

Frame number

(d
e

g
re

e
)

0 100 200 300 400 500 600 700 800 900 1000
−60

−40

−20

0

20
Yaw Angle

Frame number

(d
e

g
re

e
)

Ground Truth

GPE

GPE+LPE

Fig. 8: 6-DOF pose plots of the book object in the general tracking test. While our approach (GPE+LPE) has convergence to ground
truth, the GPE only mode suffers from jitter and occasionally fails to estimate pose.

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

Normalized Translational Residue: || ∆T ||

Frame number

(m
m

)

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

Normalized Rotational Residue: || ∆R ||

Frame number

(d
e

g
re

e
)

GPE

GPE+LPE

Fig. 9: Normalized residue plots of the book object in the general tracking test. The jitter and tracking failures result in a high residual.

Rather than using the usual pseudo-inverse of J , we solve

the above equation with Iterative Re-weight Least Square

(IRLS) and M-estimator:

µ̂ = (JT WJ)−1JT We

where W is a diagonal matrix determined by a M-estimator.

The i-th diagonal element in W is wi = 1
c+ei

where c is a

constant.

V. EXPERIMENTAL RESULTS

!

"

#

!

"

#

!

"

#

!"#

!$#

!%#

$
%

&

$
&

'

$
%

'

Fig. 10: Experimental setting and transformations between camera
{C}, object {O} and marker {M} frames. We used AR markers to
compute the ground truth pose.

In this section, we validate our visual recognition and

tracking algorithm with several experiments. To show the

generality of our system, we performed experiments with

4 objects: teabox, book, cup and car door. Note that these

objects have different complexity and characteristics. The

first three objects are especially interesting in for service

robotics while the last object is of interest for assembly

robots.

Our system is composed of a standard desktop computer

and a Point Grey Research’s Flea 1394 camera (640 × 480
resolution). The CAD models of teabox, book and cup were

generated by using BlenderTM which is an open source 3D

modeling tool. The car door model was provided by an

automobile company. We converted all of the models to the

OBJ format1 to be used in our C++ implementation.

For the GPE, we prepared keyframe images. As a smaller

number of keyframes is desirable, we captured only five

keyframes per object. Each keyframe has different appear-

ances of object as shown in Fig. 2.

A. General Tracking Test

The tracking results for the four objects are shown in

Fig. 6. The images in left-most column show estimated pose

from the GPE and the last of them depicts the pose estimated

by the LPE. Note that although the pose estimated by the

GPE is not perfect, the subsequent LPE corrects the error and

the pose estimates converge to the real pose. For quantitative

evaluation, we employed AR markers to gather ground truth

pose data. As shown in Fig. 10, we manually measured the

transformation MTO which is the description of the object

frame {O} relative to the marker frame {M}. So the ground

1OBJ format is developed by Wavefront Technologies and has been
widely accepted for 3D graphics. That format can be easily handled by
using the GLUT library.

4053

~········1 ~········1
~ 1 t ·· .······~t ···2S j

~ •••••••• 1 [t ••••• r ••• ! ••••••••• j ••••••• !:: ••• j==J ~

LL11"" II A:::J l l ,I I, ,, ••••••••• 1=. 1

4054

X Translation

,~~~ ••••••... •• ••••••••• ~ •••••••••••••••••••••• ~ •••••••••••••••••••••• ~ •••••••••••••• ..•••• ~Ll
o 200 400 600 800 1000 1200 1400

Frame number
ZTransiation

,~~]
o 200 400 600 800 1000 1200 1400

Frame number

I~~ •••••••• J
o 200 400 600 800 1000 1200 1400

Frame number

YTransiation

!·::~ l
-2000~--~2~OO----~400~--~'~OO----OO~O~--~lOO~O--~1~~~O--~,400

Frame number

IJ0&f~ 1
o 200 400 600 800 1000 1200 1400

Frame number
Yaw Angle

-30

1:~a2'"'~ 1
_70L~ ____ -"---__ ----' ____ ---'--____ --'---____ '---__ ----'-____ --.J_

o 200 400 600 800 1000 1200 1400
Frame number

Fig. 11: 6-DOF pose plots of the book object in the re-initialization test. The shaded spans mean that the object and the marker are
invisible because of fast camera movement or occlusion. Our approach (GPE+LPE) takes more frame to re-initialize than the AR marker,
but it maintains track of the object.

Normalized Translational Residue: IlaT II Normalized Rotational Residue: liaR II

,lJJJJ2JJ£2t·······j
o 200 400 600 800 1000 1200 1400

Frame number Frame number

Fig. 12: Normalized residual plots of the book object in the re-initialization test. The three peaks are due to a time difference between
the AR marker and our approach.

truth pose cTa can be obtained as follows:

cTa = cTM MTo

where cTM is the pose estimated by AR markers. The
estimated pose by our system C To is compared with the
ground truth cTa as shown in Fig. 8 and Fig. 11. The
plot shows the estimated poses of the book object from the
OPE only mode and the OPE+LPE mode. Since the OPE
relies on the keypoint matching, the quality of the keypoint
correspondences directly affect the pose results. Hence the
OPE only mode produces significant jitter. Sometimes it fails
to estimate pose when the number of correspondences is
insufficient (in our experiments, we only considered 12 or
more correspondences after the RANSAC iterations). These
shortcomings result in the high residues in both translation
and rotation (Fig. 9). The RMS (Root Mean Square) errors
of the tracking test for the four objects are presented in
Table I. For each object, the upper ones are the results of
the OPE only mode and the lower ones are the results of
our approach (i.e OPE+LPE). Except the roll angle of the
book object, our approach outperforms the OPE only mode
in terms of accuracy. Note the significant errors for the cup
and the car door objects. The errors are due to limitations
of their appearances which stem from the lack of surface
texture. This implies that when an object is textureless, the
keypoint-based method might encounter challenges.

B. Re-initialization Test

During the LPE, it might converge to a local minima be
cause of edge's ambiguity. So monitoring and re-initializing
is required to generate a robust tracking system. Here we

TABLE I: RMS ERRORS.

RMS Errors (in meter and degree)

x y z roll pitch yaw

Teabox
0.0076 0.0119 0.0355 7.90 6.01 8.73
0.0033 0.0018 0.0068 3.27 4.32 3.95

Book
0.0043 0.0030 0.0182 1.53 2.61 3.84
0.0026 0.0021 0.0042 1.73 1.58 0.95

Cup
0.0603 0.0246 0.2687 17.50 46.58 30.35
0.0083 0.0092 0.0272 2.09 1.83 5.05

Car door
0.0502 0.0908 0.5743 51.06 17.64 23.42
0.0211 0.0122 0.0411 1.73 3.72 3.73

use a simple heuristic based on the difference in position of
the object between frames and the number of valid sample
points. When the tracked object drifts, it frequently moves
rapidly while the general motions of the object or the camera
does not because the frequency in the image acquisition is
high2

. The number of valid sample points also gives a clue
to the quality of the pose. Since a good status in LPE implies
that most of the sampled points are matched to image edges,
we can reason that lots of invalid sample points indicate a
risks of tracking failure. In this experiment, we use a criteria
when at least one of the xyz coordinates of the object moves
more than 10 cm between frames or the number of valid
sample points is lower than the half of the total visible sample
points, the algorithm switch from the LPE to the OPE and re-

2In our implementation, the frame rate is close to 30Hz which means the
period is about 33 msec.

4055

initializes. For the test, we intentionally moved the camera to
a new scene that does not have the tracked object, shaked the
camera rapidly to test on blurred images, and occluded with
a paper. Fig. 11 shows the full pose of the book object in the
re-initialization test. There are three trials of re-initialization
and the invisible spans are shaded in each plot. Since corner
features are more easily identified than SURF keypoints in
blurred images, the AR marker (i.e. Ground Truth) returns
slightly faster than the GPE. This time difference leads to
peaks in residue plots (Fig. 12).

C. Computation Times

Frame number

(a) General tracking test

I~F?1r :, :,~=:I' ,,' : JfOf:~"l
o 200 400 600 800 1 000 1 200 1400

Frame number

(b) Re-initialization test

Fig. 13: Computation times of the two experimentations of the
book object.

For robotic manipulation, higher frame rates are an im
portant requirement. Fig. 13 shows the computation times
plot of the two experiments. Since the GPE is executed
during re-initializations, our approach (i.e GPE+LPE) takes
nearly the same times as the GPE only mode. The reason
why the GPE takes less time during re-initialization spans
is that the insufficient number of matching skips RANSAC
and the pose estimation. The average computation times of
the aforementioned experiment is showen in Table II.

TABLE II: AVERAGE COMPUTATION TIMES.

Teabox
Book

Book (re-init)
Cnp

Car door

GPE (msec) GPE+LPE (msec)

83.3984
85.3586
84.5773
83.6209
94.3990

32.6695
32.6478
39.9883
43.8241
42.4021

VI. CONCLUSIONS

We presented a hybrid approach for 3D model-based
object tracking. The keypoint-based global pose estimation
enabled the proposed system to initialize the tracking sys
tem. The edge-based local pose estimation achieves efficient
pose tracking. By monitoring the pose results, our system
can automatically re-initialize when the tracked results are
inconsistent. Since our approach can handle general polygon
mesh models, we expect the proposed system can be widely
employed for robot manipulation of complex objects.

VII. ACKNOWLEDGMENTS

This work was fully funded and developed under a
Collaborative Research Project between Georgia Tech and
the General Motors R&D, Manufacturing Systems Research
Laboratory on Interaction and Learning for Autonomous
Assembly Robots. General Motors support is gratefully ac
knowledged.

REFERENCES

[1] V. Lepetit and P. Fua, "Monocular model-based 3d tracking of rigid
objects: A survey," in Foundations and Trends in Computer Graphics
and Vision, 2005, pp. 1-89.

[2] C. Harris, Tracking with Rigid Objects. MIT Press, 1992.
[3] T. Drummond and R. Cipolla, "Real-time visual tracking of complex

structures," IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, no. 7, pp. 932-946, 2002.

[4] E. Marchand and F. Chaumette, "Virtual visual servoing: a frame
work for real-time augmented reality," in Computer Graphics Forum,
vol. 21, 2002, pp. 289-297.

[5] A. I. Comport, E. Marchand, and F. Chaumette, "Robust model
based tracking for robot vision," in Proceedings of the IEEEIRSJ
International Conference on Intelligent Robots and Systems, IROS'04,
vol. 1, 2004.

[6] A. Comport, D. Kragic, E. Marchand, and F. Chaumette, "Robust
Real-Time visual tracking: Comparison, theoretical analysis and per
formance evaluation," in Proceedings of the IEEE International Con
ference on Robotics and Automation, ICRA'05, 2005, pp. 2841-2846.

[7] I. Gordon and D. Lowe, "What and where: 3D object recognition with
accurate pose," Toward Category-Level Object Recognition, (Springer
Verlag), pp. 67-82, 2006.

[8] D. G. Lowe, "Distinctive image features from scale-invariant key
points," International Journal of Computer Vision, vol. 60, no. 2, pp.
91-110, 2004.

[9] A. Collet, D. Berenson, S. S. Srinivasa, and D. Ferguson, "Object
recognition and full pose registration from a single image for robotic
manipulation," in Proceedings of the IEEE International Conference
on Robotics and Automation, ICRA'09, 2009, pp. 48-55.

[10] M. A. Fischler and R. C. Bolles, "Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography," Commun. ACM, vol. 24, no. 6, pp. 381-395,
1981.

[11] L. Vacchetti, V. Lepetit, and P. Fua, "Stable real-time 3d tracking
using online and offline information," IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 26, no. 10, 2004.

[12] V. Kyrki and D. Kragic, "Integration of model-based and model
free cues for visual object tracking in 3d," in Proceedings of the
IEEE International Conference on Robotics and Automation, ICRA'05,
vol. 2, 2005, pp. 1566-1572.

[13] M. Pressigout and E. Marchand, "Real-time 3d model-based tracking:
Combining edge and texture information," in Proceedings of the IEEE
International Conference on Robotics and Automation, ICRA'06, 2006.

[14] L. Vacchetti, V. Lepetit, and P. Fua, "Combining edge and texture
information for real-time accurate 3d camera tracking," in Third IEEE
and ACM International Symposium on Mixed and Augmented Reality,
ISMAR'04, 2004, pp. 48-56.

[15] E. Rosten and T. Drummond, "Fusing points and lines for high
performance tracking," in Tenth IEEE International Conference on
Computer Vision, ICCV'05, vol. 2, 2005.

[16] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, "Speeded-up robust
features (SURF)," Computer Vision and Image Understanding, vol.
110, no. 3, pp. 346-359, 2008.

[17] J. Beis and D. Lowe, "Shape indexing using approximate nearest
neighbour search in high-dimensional spaces," in IEEE Computer
Society Conference on Computer Vision and Pattern Recognition,
CVPR'97, 1997, pp. 1000-1006.

[18] M. Brown and D. G. Lowe, "Unsupervised 3d object recognition and
reconstruction in unordered datasets," in Fifth International Confer
ence on 3-D Digital Imaging and Modeling, 3DIM'05, 2005, pp. 56-
63.

[19] J. Canny, "A computational approach to edge detection," IEEE Trans
actions on Pattern Analysis and Machine Intelligence, pp. 679-D98,
1986.

