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Ahstract- We propose a combined approach for 3D real-time 
object recognition and tracking, which is directly applicable to 
robotic manipulation. We use keypoints features for the initial 
pose estimation. This pose estimate serves as an initial estimate 
for edge-based tracking. The combination of these two comple
mentary methods provides an efficient and robust tracking so
lution. The main contributions of this paper includes: 1) While 
most of the RAPiD style tracking methods have used simplified 
CAD models or at least manually well designed models, our 
system can handle any form of polygon mesh model. To achieve 
the generality of object shapes, salient edges are automatically 
identified during an offline stage. Dull edges usually invisible in 
images are maintained as well for the cases when they constitute 
the object boundaries. 2) Our system provides a fully automatic 
recognition and tracking solution, unlike most of the previous 
edge-based tracking that require a manual pose initialization 
scheme. Since the edge-based tracking sometimes drift because 
of edge ambiguity, the proposed system monitors the tracking 
results and occasionally re-initialize when the tracking results 
are inconsistent. Experimental results demonstrate our system's 
efficiency as well as robustness. 

I. INTRODUCTION 

As robots moves from industrial to daily environments, the 
most important problem robots face is to recognize objects 
and estimate 6-DOF pose parameters in less constrained 
environments. For the last decade, computer vision, robotics, 
and augmented reality have all addressed this as a model
based tracking issue. Most of the work has been based on 3D 
CAD models or keypoint metric models. The former models 
correspond to edges in an image, which can be efficiently 
computed, while the latter models match with keypoints in an 
image which are suitable for robust wide baseline matching. 
A strategy for using keypoint for pose initialization and 
differential methods for pose tracking is presented. 

II. RELATED WORK 

For the 6-DOF pose tracking, robotics and augmented re
ality areas have employed a number of different approaches. 
One of the easiest way is through use of fiducial markers. 
Artificial markers are attached to the object or environment 
as camera targets. Although the method provides an easy 
and robust solution for real-time pose estimation, attaching 
markers has been regarded as a major limitation. Hence, 
researchers have focused on tracking using natural features. 
For several decades methods, which employ natural fea
tures, have been proposed: edge-based, optical flow-based, 
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Fig. I: Overall system flow. We use a monocular camera. The 
initial pose of the object is estimated by using the SURF keypoint 
matching in the Global Pose Estimation (GPE). Using the initial 
pose, the Local Pose Estimation (LPE) consecutively estimates 
poses of the object utilizing RAPiD style tracking. keyframes 
and CAD model are employed as models by the GPE and LPE, 
respectively. The model are generated offline. 

template-based, and keypoint-based. Each method has its 
own pros and cons, but surveying every methods in this 
paper is out of scope. For an in-depth study of the different 
methods, we refer the interested reader to the survey [1]. 

Among the various methods, we focus on two methods: 
edge-based and keypoint-based. The edge features are easy to 
compute and computationally cheap. Since the edge is usu
ally computed by image gradients, it is moderately invariant 
to illumination and viewpoint. The keypoint features are also 
capable of being invariant to illumination, orientation, scale, 
and partially viewpoint. But the keypoints requires relatively 
computationally expensive descriptors which maintain local 
texture or orientation information around stable points to be 
distinctive. 

In edge-based methods, a 3D CAD model is usually 
employed to estimate the full pose using a monocular cam
era. Harris [2] established RAPiD (Real-time Attitude and 
Position Determination) which was one of the first marker
less 3D model-based real-time tracking system. It tracks an 
object by comparing projected CAD model edges to edges 
detected in a gray-scale image. To project the model close 



Fig. 2: Example keyframes of the teabox object. The keyframes are saved during offline analysis and later utilized in the GPE.

to the real object, the system use the previous pose estimate

as a priori. Since it use an 1-D search along the normal

direction of sample points for the closest edge locations, it

rapidly calculate errors which must be minimized to solve

for the 6-DOF motion parameters. The motion parameters

are subsequently estimated between frames. Drummond and

Cipolla [3] solved a similar problem, but enhanced ro-

bustness by using the iterative re-weighted least squares

with a M-estimator. To perform hidden line removal, they

used a BSP (Binary Space Partition) tree. Marchand and

Chaumette [4] proposed an augmented reality framework,

which relies on points and lines, and that has been applied

to the visual servoing [5]. Comport et al. [6] compared and

evaluated the two different systems, but they concluded both

are fundamentally equivalent.

In keypoint-based methods, a sparse 3D metric model

is used. Like CAD models, the keypoint models are built

offline. With a set of images in each has a view of an

object from a slightly different viewpoint, the non-linear

optimization algorithm, such as Levenberg-Marquardt, return

a refined 3D model of keypoints. Since this model maintains

3D coordinates of each keypoint, the pose estimation is easily

performed by using the correspondence between the 3D

points of the model and the 2D keypoints in an input image.

Using this model, Gordon and Lowe [7] proposed an aug-

mented reality system that calculates pose with scale invari-

ant features [8]. Collet et al. [9] applied a similar method to

robot manipulation where they combined RANSAC [10] with

a clustering algorithm to locate multiple instances. Vacchetti

et al. [11] used standard corner features to match the current

image and the reference frames, so called keyframes. Unlike

the efforts using non-linear optimization, they obtained 3D

coordinates of 2D corner points by back-projecting them onto

the object CAD model.

Since the edge and the keypoint methods are comple-

mentary to each other, several have reported combined

approaches [12], [13]. Vacchetti et al. [14] incorporated the

edge-based method with their corner point-based method to

make the system more robust and jitter free. As part of

the edge-based tracking, they used multiple hypotheses to

handle erroneous edge correspondence, but it is equivalent

to the nearest hypothesis of RAPiD-like approaches. Rosten

and Drummond [15] similarly combined corner points with

lines, but they only used corner points to estimate motion

parameters between frames.

We also adopt a combined approach in which keypoint-

based matching and edge-based tracking are employed. As

depicted in Fig. 1, our system is composed of a Global

Pose Estimation (GPE) and a Local Pose Estimation (LPE).

Unlike [14] and [15] which use keypoints to estimate motion

between frames, we only use the keypoints for estimating

the initial pose in GPE. After estimating the initial pose an

edge-based tracking scheme is utilized in the LPE.

In the remainder of the paper, we first explain the GPE

in Section III. Section IV describes the LPE including the

salient edge selection from polygon mesh models and the

edge-based tracking formulation. Quantitative and qualitative

results using the system are presented in Section V.

III. GLOBAL POSE ESTIMATION USING KEYPOINTS

In this section, we present the Global Pose Estimation

(GPE) in which we use SURF keypoints [16] to match the

current image with keyframes. The model keyframe is a set

of images that contains a target object. The keyframes are

saved offline. To estimate pose, the 3D coordinate of each

keypoint is computed by back-projecting to the CAD model.

A. Keyframe Model Acquisition

To estimate an initial pose, our system requires keyframes,

which are reference images. Since the keyframes will be

compared with the input image, the keyframes should contain

appearance of the object similar to the one in the input image.

But it is practically impossible to maintain every image to

cover all possible appearances of the object due to variability

across illumination, scale, orientation and viewpoint. In a

real application, a smaller number of keyframes is preferred.

Ideally there would only be one keyframe per aspect for

the object. For the maximum coverage of a keyframe, a

keypoint descriptor that describes local appearance around

corner-like points is used. If the local descriptor is discrim-

inative then matching keypoints between two images can

be performed despite variations in orientation, scale, and

illumination. However, the local appearance is only semi-

invariant to viewpoint change. For robust pose initialization

we are required to maintain multiple keyframes to cover

multiple view aspects.

Capturing keyframes is performed offline. Since keyframes

will be used for pose estimation in which there is a need

for generation of 2D-3D correspondences, we need to know

the 3D coordinates of each keypoint. To calculate 3D co-

ordinates, we use 3D CAD models with the current pose

estimate. In this phase, the current pose is estimated by the

LPE as will be explained in Section IV. With a CAD model

and the current pose, we can compute the 3D coordinates

of each keypoint by back-projecting the 2D keypoint to
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Fig. 3: Original and simplified CAD models. By using the salient edges selection, we can get a set of good model edges to track.

the corresponding facet of the CAD model. For fast facet

identification, we use ‘Facet-ID’ trick which encodes i-th

facet of the target object’s model in an unique color in order

to identify the membership of each 2D keypoints by looking

up the image buffer that OpenGL renders [11]. The 3D

coordinates of the keypoints are then saved into a file for

later use in keypoint matching.

B. Matching keypoints

After obtaining keyframes offline, keypoint matching is

performed between an input frame and keyframes. A simple

strategy for the matching might use naı̈ve exhaustive search.

However, such a search has O(n2) complexity. Using an

approximate method the complexity can be reduced. As an

approximated search, we use the Best-Bin-First (BBF) algo-

rithm [17] which can be performed in O(n log n). While [18]

and [8] used a fixed number of nearest-neighbors, we set the

number of nearest-neighbors as the number of keyframe + 1.

We use the ratio test described by [8], and the ratio threshold

we used was 0.7. Once the putative correspondences has been

determined, they are further refined using RANSAC [10]. In

each RANSAC iteration, we estimate a homography matrix

and eliminate outliers from the homography matrix. Since

general objects have multiple faces or even curved surface,

using the homography matrix might not be an optimal

solution. It is here assumed that correspondences can be

approximated by a plane to plane transformation. In addition,

the size of objects is relatively small in images, so this

approximation does not limit the number of correspondences.

Another solution would be estimating a camera projection

matrix directly as part of the RANSAC as we know 3D

coordinates of each 2D keypoint, an option that may be

considered in future work. After removing outliers, we then

calculate the 6-DOF pose parameters by using standard least

square estimation. This pose estimate is provided to the LPE

as an initial value.

IV. LOCAL POSE ESTIMATION USING EDGES

In this section, we explain the Local Pose Estimation

(LPE) in which edges are utilized for object tracking.

A. Automatic Salient Model Edges Selection

!"#$%&'()* +,--&'()*
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"
.
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.
!

Fig. 5: Determining salient edges. We use the face normal vectors
available in the model.

Since most of objects which exist in our daily environment

are manufactured, their CAD models might be available,

and such models provide helpful information for robotic

manipulation. Although there are various formats in CAD

models, most of them can be represented in a polygon

mesh. A polygon mesh is usually composed of vertices,

edges, faces, polygons and surfaces. In the LPE, we use

edge features in images coming from a monocular camera to

estimate the pose difference between two consecutive frames.

So we should determine which edges in the model of a

targeted object would be visible in images. Here we make an

assumption that sharp edges are more likely to be salient. To

identify sharp edges, we use the face normal vectors from the

model. As illustrated in Fig. 5, if the face normal vectors of

two adjacent faces are close to perpendicular, the edge shared

by the two faces is regarded a sharp edge. If two face normal

vectors are close to parallel, the edge is regarded a dull edge.

For the decision, we use a simple thresholding scheme with

the value of the inner product of two normal vectors. More

formally, we can define an indicator function with respect to
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Fig. 4: The flow of the LPE. From the input image, an edge image is obtained using the Canny edge detector, and the CAD model is 
rendered with the prior pose. After calculate the error between the projected model and edge image, Iterative Re-weighted Least Square 
estimates the posterior pose. The estimated pose is shown in the last image. 

the edges in the model by: 

I(edgei) = { ~ if Int· nrl :s; Ts 

otherwise 

where nt and nr are the face normal unit vectors of the two 
adjacent faces which share the i-th edge, edgei. We found the 
threshold Ts = 0.3 is a reasonable value. This salient edge 
selection is performed fully automatically offline. In general, 
the salient edges are only considered in edge-based tracking, 
but when the dull edges constitute the object's boundary they 
are also considered. Testing boundary of the dull edges are 
performed at run-time using back-face culling. 

B. Mathematical and Camera Projection Model 

Since our approach is based on the formulation from 
Drummond and Cipolla [3], we adopt the Lie Algebra 
formulation. In the LPE, our goal is to estimate the posterior 
pose Et+1 from the prior pose Et given the inter-frame 
motion M: 

where Et+1 , Et , and M are 6-dimensional Lie Group of 
rigid body motion in SE(3). At time t + 1, we know the 
prior pose E t from the GPE or the previous LPE. Hence we 
are interested in determining the motion M to estimate the 
posterior pose. M can be represented in the exponential map 
of generators Gi as follows: 

,,6e 
M = exp(JL) = eL- i~l /-" i (1) 

where JL E JR;.6 is the motion velocities corresponding to the 
6-DOF instantaneous displacement and the Gi are the group 
generator matrices: 

(

0001) (0000) (0000) _ 0000 _ 0001 _ 0000 G 1 - 0 0 0 0 , G 2 - 0 0 0 0 ,G3 - 0 0 0 1 , 
0000 0000 0000 

(

0000) (0010) (0-100) _ 00 -1 0 _ 0 000 _ 1 0 00 
G4 - 0 1 0 0 ,G5 - -1000 ,G6 - 0 0 00 . 

0000 0000 0000 

As a camera model, we use the standard pin-hole model 
given by: 

(2) 

where p = (u v) T is 2D image coordinates corresponding 
to the 3D model coordinates pM = (x M yM zM 1)T and 
the matrix K represent the camera's intrinsic parameters: 

o 
Iv 

uo) 
Vo 

where Iu and Iv are the focal length in pixel dimensions, and 
Uo and Vo represent the position of the principal point. The 
3D coordinates in camera coordinates pc = (xC yC zC 1)T 
can be calculated by: 

where E is the extrinsic matrix or camera's pose. For sim
plicity, we ignore the radial distortion as image rectification 
is performed during the image acquisition phase. 

C. Model Rendering and Error Calculation 

Fig. 7: Error calculation between projected model (yellow lines) 
and extracted edges (black tortuous lines) from the input image. 
Sample points (green points) are generated along the model per 
fixed distance, the error of each sampled point is calculated by the 
l-D search along the direction orthogonal to the model edge. 

To estimate the motion M, we need to measure errors 
between the prior pose and the current pose. As a first step 
to calculate errors, we project the CAD model to the image 
plane using the prior pose E t . Instead of considering the 
edge itself, we sample points along the projected edges. Since 
some of sampled points are occluded by the object itself, a 
visibility test is performed. While [3] used a BSP tree for 
hidden line removal, OpenGL occlusion query is an easy and 
efficient alternative. Each visible point is then matched to 
the edges in the input image. The edge image is obtained by 
using a Canny Edge Detector [19]. We find the nearest edge 
by using a I-D search along the direction perpendicular to 
the projected edge. The error vector e is obtained by stacking 
all of the errors of each sample point as follows: 

e=(e1 e2 ... eNf 



Fig. 6: Tracking results of the four targeted objects. From top to bottom, teabox, book, cup and car door. From left to right, t < 10, t =
100, t = 200, t = 300, t = 400 and t = 500 where t is the frame number. The very left images are results of the GPE.

where ei is the Euclidean distance from i-th sample point to

the nearest edge and N is the number of valid sample points

(i.e. sample points correspond to the nearest edge). Fig. 7

illustrates the error calculation, and ei is the length of the

i-th red arrow.

D. Update Pose with IRLS

After calculating the error vector e, the problem is reduced

to:

µ̂ = arg min
µ

N
∑

i=1

‖ei‖
2

= arg min
µ

N
∑

i=1

‖pi − Proj(PM

i ;Et exp(µ),K)‖2

where pi is the 2D image coordinates of the nearest edge

which is corresponding to the projected 2D point of the i-th

3D model coordinates PM

i
= (xM

i yM
i zM

i 1)T and N is

the number of valid sample points.

To calculate µ which minimizes the error e, a Jacobian

matrix J ∈ R
N×6 can be obtained by computing partial

derivatives at the current pose:

Jij =
∂ei

∂µj

= ni
T ∂

∂µj

(

ui

vi

)

= ni
T ∂

∂µj

(

Proj(PM

i ;Et exp(µ),K)
)

where ni is the unit normal vector of the i-th sample point.

We can split Proj() in Eq. 2 into two parts as follows:

(

ui

vi

)

=

(

fu 0 u0

0 fv v0

)





ũi

ṽi

1





(

ũi

ṽi

)
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i

zC
i

yC
i

zC
i





Their corresponding Jacobian matrices can be obtained:

JK =

(

∂ui

∂ũi

∂ui

∂ṽi
∂vi

∂ũi

∂vi

∂ṽi

)

=

(

fu 0
0 fv

)

JP =

(

∂ũi

∂xC
i

∂ũi

∂yC
i

∂ũi

∂zC
i

∂ṽi

∂xC
i

∂ṽi

∂yC
i

∂ṽi

∂zC
i

)

=





1
zC

i

0 −
xC

i

(zC
i

)2

0 1
zC

i

−
yC

i

(zC
i

)2





Since ∂
∂µj

(exp(µ)) = Gj at µ = 0 by Eq. 1, we can get:

∂PC

i

∂µj

=
∂

∂µj

(Et exp(µ)PM

i )

= EtGjP
M

i

Therefore the ith row and jth column element of the

Jacobian matrix J is:

Jij =
∂ei

∂µj

= ni
T JK

(

JP
0
0

)

EtGjP
M

i

We can solve the following equation to calculate the motion

velocities:

Jµ = e
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Fig. 8: 6-DOF pose plots of the book object in the general tracking test. While our approach (GPE+LPE) has convergence to ground
truth, the GPE only mode suffers from jitter and occasionally fails to estimate pose.
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Fig. 9: Normalized residue plots of the book object in the general tracking test. The jitter and tracking failures result in a high residual.

Rather than using the usual pseudo-inverse of J , we solve

the above equation with Iterative Re-weight Least Square

(IRLS) and M-estimator:

µ̂ = (JT WJ)−1JT We

where W is a diagonal matrix determined by a M-estimator.

The i-th diagonal element in W is wi = 1
c+ei

where c is a

constant.

V. EXPERIMENTAL RESULTS
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Fig. 10: Experimental setting and transformations between camera
{C}, object {O} and marker {M} frames. We used AR markers to
compute the ground truth pose.

In this section, we validate our visual recognition and

tracking algorithm with several experiments. To show the

generality of our system, we performed experiments with

4 objects: teabox, book, cup and car door. Note that these

objects have different complexity and characteristics. The

first three objects are especially interesting in for service

robotics while the last object is of interest for assembly

robots.

Our system is composed of a standard desktop computer

and a Point Grey Research’s Flea 1394 camera (640 × 480
resolution). The CAD models of teabox, book and cup were

generated by using BlenderTM which is an open source 3D

modeling tool. The car door model was provided by an

automobile company. We converted all of the models to the

OBJ format1 to be used in our C++ implementation.

For the GPE, we prepared keyframe images. As a smaller

number of keyframes is desirable, we captured only five

keyframes per object. Each keyframe has different appear-

ances of object as shown in Fig. 2.

A. General Tracking Test

The tracking results for the four objects are shown in

Fig. 6. The images in left-most column show estimated pose

from the GPE and the last of them depicts the pose estimated

by the LPE. Note that although the pose estimated by the

GPE is not perfect, the subsequent LPE corrects the error and

the pose estimates converge to the real pose. For quantitative

evaluation, we employed AR markers to gather ground truth

pose data. As shown in Fig. 10, we manually measured the

transformation MTO which is the description of the object

frame {O} relative to the marker frame {M}. So the ground

1OBJ format is developed by Wavefront Technologies and has been
widely accepted for 3D graphics. That format can be easily handled by
using the GLUT library.
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Fig. 11: 6-DOF pose plots of the book object in the re-initialization test. The shaded spans mean that the object and the marker are 
invisible because of fast camera movement or occlusion. Our approach (GPE+LPE) takes more frame to re-initialize than the AR marker, 
but it maintains track of the object. 
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Fig. 12: Normalized residual plots of the book object in the re-initialization test. The three peaks are due to a time difference between 
the AR marker and our approach. 

truth pose cTa can be obtained as follows: 

cTa = cTM MTo 

where cTM is the pose estimated by AR markers. The 
estimated pose by our system C To is compared with the 
ground truth cTa as shown in Fig. 8 and Fig. 11. The 
plot shows the estimated poses of the book object from the 
OPE only mode and the OPE+LPE mode. Since the OPE 
relies on the keypoint matching, the quality of the keypoint 
correspondences directly affect the pose results. Hence the 
OPE only mode produces significant jitter. Sometimes it fails 
to estimate pose when the number of correspondences is 
insufficient (in our experiments, we only considered 12 or 
more correspondences after the RANSAC iterations). These 
shortcomings result in the high residues in both translation 
and rotation (Fig. 9). The RMS (Root Mean Square) errors 
of the tracking test for the four objects are presented in 
Table I. For each object, the upper ones are the results of 
the OPE only mode and the lower ones are the results of 
our approach (i.e OPE+LPE). Except the roll angle of the 
book object, our approach outperforms the OPE only mode 
in terms of accuracy. Note the significant errors for the cup 
and the car door objects. The errors are due to limitations 
of their appearances which stem from the lack of surface 
texture. This implies that when an object is textureless, the 
keypoint-based method might encounter challenges. 

B. Re-initialization Test 

During the LPE, it might converge to a local minima be
cause of edge's ambiguity. So monitoring and re-initializing 
is required to generate a robust tracking system. Here we 

TABLE I: RMS ERRORS. 

RMS Errors (in meter and degree) 

x y z roll pitch yaw 

Teabox 
0.0076 0.0119 0.0355 7.90 6.01 8.73 
0.0033 0.0018 0.0068 3.27 4.32 3.95 

Book 
0.0043 0.0030 0.0182 1.53 2.61 3.84 
0.0026 0.0021 0.0042 1.73 1.58 0.95 

Cup 
0.0603 0.0246 0.2687 17.50 46.58 30.35 
0.0083 0.0092 0.0272 2.09 1.83 5.05 

Car door 
0.0502 0.0908 0.5743 51.06 17.64 23.42 
0.0211 0.0122 0.0411 1.73 3.72 3.73 

use a simple heuristic based on the difference in position of 
the object between frames and the number of valid sample 
points. When the tracked object drifts, it frequently moves 
rapidly while the general motions of the object or the camera 
does not because the frequency in the image acquisition is 
high2

. The number of valid sample points also gives a clue 
to the quality of the pose. Since a good status in LPE implies 
that most of the sampled points are matched to image edges, 
we can reason that lots of invalid sample points indicate a 
risks of tracking failure. In this experiment, we use a criteria 
when at least one of the xyz coordinates of the object moves 
more than 10 cm between frames or the number of valid 
sample points is lower than the half of the total visible sample 
points, the algorithm switch from the LPE to the OPE and re-

2In our implementation, the frame rate is close to 30Hz which means the 
period is about 33 msec. 
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initializes. For the test, we intentionally moved the camera to 
a new scene that does not have the tracked object, shaked the 
camera rapidly to test on blurred images, and occluded with 
a paper. Fig. 11 shows the full pose of the book object in the 
re-initialization test. There are three trials of re-initialization 
and the invisible spans are shaded in each plot. Since corner 
features are more easily identified than SURF keypoints in 
blurred images, the AR marker (i.e. Ground Truth) returns 
slightly faster than the GPE. This time difference leads to 
peaks in residue plots (Fig. 12). 

C. Computation Times 

Frame number 

(a) General tracking test 

I~F?1r :, :,~=:I' ,,' : JfOf:~"l 
o 200 400 600 800 1 000 1 200 1400 

Frame number 

(b) Re-initialization test 

Fig. 13: Computation times of the two experimentations of the 
book object. 

For robotic manipulation, higher frame rates are an im
portant requirement. Fig. 13 shows the computation times 
plot of the two experiments. Since the GPE is executed 
during re-initializations, our approach (i.e GPE+LPE) takes 
nearly the same times as the GPE only mode. The reason 
why the GPE takes less time during re-initialization spans 
is that the insufficient number of matching skips RANSAC 
and the pose estimation. The average computation times of 
the aforementioned experiment is showen in Table II. 

TABLE II: AVERAGE COMPUTATION TIMES. 

Teabox 
Book 

Book (re-init) 
Cnp 

Car door 

GPE (msec) GPE+LPE (msec) 

83.3984 
85.3586 
84.5773 
83.6209 
94.3990 

32.6695 
32.6478 
39.9883 
43.8241 
42.4021 

VI. CONCLUSIONS 

We presented a hybrid approach for 3D model-based 
object tracking. The keypoint-based global pose estimation 
enabled the proposed system to initialize the tracking sys
tem. The edge-based local pose estimation achieves efficient 
pose tracking. By monitoring the pose results, our system 
can automatically re-initialize when the tracked results are 
inconsistent. Since our approach can handle general polygon 
mesh models, we expect the proposed system can be widely 
employed for robot manipulation of complex objects. 
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