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SUMMARY

When there are a large number of predictors and few observations, building

a regression model to explain the behavior of a response variable such as a patient’s
medical condition is very challenging. This is a “p > n” variable selection problem
encountered often in modern applied statistics and data mining. Chapter one of this
thesis proposes a rigorous procedure which groups predictors into clusters of “highly-
correlated” variables, selects a representative from each cluster, and uses a subset of
the representatives for regression modeling. The proposed Penalized method based
on Representatives (PR) extends the Lasso for the p > n data and highly correlated
variables, to build a sparse model practically interpretable and maintain prediction
quality. Moreover, we provide the PR-Sequential Grouped Regression (PR-SGR)
to make computation of the PR procedure efficient. Simulation studies show the
proposed method outperforms existing methods such as the Lasso/Lars. A real-life
example from a mental health diagnosis illustrates the applicability of the PR-SGR.
In the second part of the thesis, we study the analysis of time-to-event data called

a gap data when missing time intervals (gaps) possibly happen prior to the first
observed event time. Estimation of survival function of the first true event time is
complicated by the occurrence of gaps in the gap data. If a gap occurs prior to the
first observed event, then the first observed event time may or may not be the first
true event time. This incomplete knowledge makes the gap data different from the
well-studied regular interval censored data. We propose a Non-Parametric Estimate
for the Gap data (NPEG) to estimate the survival function for the first true event
time on the gap data, derive its analytic properties and demonstrate its performance

in simulations. We also extend the Imputed Empirical Estimating method (IEE),

xii



which is an existing nonparametric method for the gap data up to one gap, to handle

the gap data with multiple gaps.
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CHAPTER I

PENALIZED METHOD BASED ON REPRESENTATIVES
(PR)

1.1 Introduction and Motivation

Consider a problem of parameter estimation for a linear regression model

y = XB+e (1)
p
= D XiBj+e
j=1
where y = (y1,- -+ ,yn)T is an n-vector of responses, X = (X, Xa,+ -+, X,) isannxp
matrix with linearly independent predictors X; = (X, -, X,;)7, 7 = 1,---,p,
B= (B, BT is a p-vector of parameters, and € = (e, -+ ,€,)” is an n-vector of

random errors. This chapter studies a regression model in Equation (1) with a special
type of data called “large-p-small-n” (p > n), where the number of predictors p is
much larger than the sample size n.

Large-p-small-n data are abundant in many fields such as genomics, microarray
study, computational biology, health science, manufacturing and finance to name a
few. For example, expression levels of millions of genes are monitored for a few
hundreds of subjects in a microarray study. Another example is the thousands of
magnetic resonance images (MRI) that are collected for each patient when there are
only tens of patients involved. Section 1.4 uses the high-dimensional data from the
mental health diagnosis on depression to illustrate the proposed method. Note that
in the study, p = 1794 predictors of depression symptoms are examined for each of
the n = 15 patients.

Large-p-small-n regression has been one of the most challenging problems over the



recent years. Due to the high dimensionality of p > n data, the parameters in the
regression model (1) cannot be uniquely estimated because (X?X) is singular ([11]).
Moreover, overfitting might occur, resulting in questionable prediction quality.

The dimension reduction is an attractive method to handle the challenges caused
by the high dimensionality in p > n. Principal Component Analysis (PCA) ([23])
transforms a number of possibly correlated predictors into a smaller number of uncor-
related ones called principal components. PCA uses the eigenvectors of the covariance
matrix of the predictors and finds the independent axes from the linear combinations
of the predictors. While the PCA only uses the highest variation across the predic-
tors, the supervised principal components analysis ([1, 2]) performs PCA using only
a subset of predictors which have strong correlations with the response rather than
using all the predictors in the dataset. However, since the two PCA methods perform
a coordinate rotation, the meaning of the principal components may become obscure,
resulting in the loss of the physical meaning of the original predictors.

As another approach for the dimension reduction, Fan and Lv ([12]) proposed a
pre-screening method called Sure Independence Screening (SIS) to filter out predictors
which have a weak correlation with the response before employing a variable selection
method (for example, the Lasso ([34]) or Adaptive Lasso ([40]), to further select a
subset of predictors. While this correlation filtering method successfully reduces the
dimensionality and keeps the original coordinates of the predictors, it does not handle
the spurious high correlations among predictors caused by the high dimensionality of
predictors (for example, p = 1794 > n = 10).

A series of penalized methods ([5, 22, 34, 39, 40, 41]) which impose a penalization
on the L1— or Lo—norms of the regression coefficients have emerged as highly suc-

cessful techniques in handling the high dimensionality problem. In these methods,



adjustment for overfitting is directly built into the model development and estima-
tion accuracy is improved by effectively identifying a subset of important predic-
tors (variable selection). Hoerl and Kennard ([22]) introduced the Ridge Regression,
which finds its coefficients by minimizing the sum of squared error loss subject to an
Lo—norm constraint on the coefficients. That is, the solution BRidQe can be written

as follows:
BRidae (\) = argmﬁin ly — X815 + Al 813,

where A is a positive regularization parameter. The Ridge Regression achieves a
stable fit by shrinking each coefficient based on the variation of the predictors and
its solution is simplified to f9¢(\) = (XTX + A\)~'XTy ([20, 21]). Consequently,
predictors with high positive correlations tend to yield similar coefficients. Since the
Ridge Regression always keeps all the predictors in the model ([41]), the number of
nonzero coefficients is larger than the sample size n when p > n.

Instead of using an Ly—norm, Tibshirani ([34]) proposed the Lasso which imposes
a penalization on the L;—norm of the coefficients. The Lasso finds its coefficients
by minimizing the sum of squared error subject to an Lynorm constraint on the

coefficients. Equivalently, the solution BLQSSO can be written as follows:
Fhesso() = arg min [y — X85 + N8l

where A is also a positive regularization parameter. Unlike the Ls—penalized methods
such as the Ridge Regression, the L;—penalized methods such as the Lasso assign zero
coefficients to a subset of the predictors and hence the Lasso achieves an automatic
variable selection. Nevertheless, as Zou and Hastie ([41]) discussed, the Lasso tends
to select only one of the predictors when their pairwise correlations are very high,
and the Lasso does not concern which one is selected in the model. Since there

could be highly correlated predictors simply due to high dimensionality (for example,



see Experiments in Section 1.1.1), the arbitrary selection of only one of the highly
correlated predictors can result in “incomplete” use of the selected predictors.

In the presence of high correlations between predictors, the Variance Inflation
Factor (VIF) in an Ordinary Least Square (OLS) regression analysis can be used to
measure how much the variance of an estimated regression coefficient increases due
to the collinearity. VIFj, VIF for a predictor Xj, is calculated as 1—;}%2" where R;
is the multiple correlation coefficient for an OLS regression using X; as t]he response
against all the other p — 1 predictors. However, when p > n, this is not applicable,
because such an OLS regression has p — 1 parameters which is still larger than the
sample size n.

Zou and Hastie ([41]) introduced the Elastic-Net which uses a convex combination

of the L;— and Ly—norms. The solution @AEZ““’“C*N ¢ can be written as follows:
prlastic=Net (X} Xy) = arg min ly — X815 + MBIl + X2l8113,

where A\; and Ay are positive regularization parameters. Since the Elastic-Net com-
promises between the Ridge and Lasso, it selects a subset of the predictors like the
Lasso, and assigns similar coefficients to highly correlated predictors like the Ridge
Regression so that it yields more than n nonzero coefficients. The Elastic-Net is
useful in the situation when highly correlated predictors selected simultaneously in
the model are meaningful. For example, consider a gene expression study where sev-
eral genes share a common biological pathway so that those genes express together.
Naturally, their correlations can be high ([33]), and including all those genes simul-
taneously has better interpretability than including only one gene. However, if there
are highly correlated genes that are detected but do not have any special meaning
in the gene expression study, there is a great deal of confusion and redundancy in
selecting the highly correlated predictors, where the ones without the “meaningful”
information are included in the model. Moreover, the Elastic-Net method may not

reveal the information of which predictors are actually highly correlated based on



their estimated coefficients.

As another method to select highly correlated predictors simultaneously in the
model like the Elastic-Net, Bondell and Reich ([5]) proposed the OSCAR which uses
a combination of the L;— and the pairwise L., —norms. The solution BOSCAR can be

written as follows:

BOSCAR()\, c) = arg mﬁin ly — X813 + AllB]l: + C)\Zmaxﬂ Bi I, | B I},

j<k
where ¢ and A are positive regularization parameters. The L;—norm selects a subset
of the predictors like the Lasso, while the pairwise L.,—norm yields the same coeffi-
cients for highly correlated predictors. Therefore, the OSCAR provides the additional
information on which predictors are highly correlated to each other based on their
estimated coefficients. That is, if two predictors have the same estimated coefficients,
it means that they are highly correlated. However, as the real data study in ([5])
showed, two predictors with different estimated coefficients can have higher correla-
tion than other two predictors with the same estimated coefficients. Therefore, the
OSCAR also suffers somewhat from the inconsistent information of highly correlated
predictors.

In some problems, the predictors belong to predefined groups (factors). For ex-
ample, in regression problems with categorical predictors, a set of dummy predictors
or two/three way interaction dummy predictors can be used to build a group of de-
rived input predictors. When such groups are available, it may be desirable to select
all the predictors from individual group. In this case, the variable selection problem
becomes the selection problem of groups. Given predefined groups, Yuan and Lin
([39]) proposed a general version of the Lasso called Grouped-Lasso. Suppose that
the p predictors are divided into the J factors with factor size p;, 7 =1,---,J. Let
X; be an n x p; matrix corresponding to the jth factor, and 3; be a coefficient vector

of size p;, j = 1,---,J. Now consider a general regression problem with J factors



J
y=X8+e=> X;B; +¢ where X = (X1,Xy,---,X) and § = (BIT, ,5?)?
j=1

Then, the Grouped-Lasso estimate can be written as g¢roured—Lasso.

J
BGTOUped—LaSSO()\> = arg IIlBiIl ||y — Xﬁ”% + A Z \/p_J ||,3j||2,
j=1

where || - ||2 is the Euclidean norm and A is a positive constant. If p; = --- = py = 1,
[3Grouped—Lasso(\) ig equivalent to G2955°(\). As Yuan and Lin ([39]) discussed, the
Grouped-Lasso shares the properties of both L; — and L,—penalized methods. There-
fore, the Grouped-Lasso selects only a subset of the predefined factors by assigning
nonzero coefficients, resulting in automatic variable selection. However, their pro-
cedure does not consider the problem that groups may consist of highly correlated
predictors.

When p > n, one faces two challenges with the application of the penalized meth-
ods. First, the application of the penalized methods can be computationally costly.
Second, there is also a higher chance of having highly correlated predictors as the
data dimensionality increases. Note that the high dimensionality itself can induce
spuriously highly correlated predictors as Hall et al. discussed ([19]). With the pres-
ence of such spurious high correlations, it is not meaningful to contain a subset of the
highly correlated predictors in the model like the Elastic-Net or OSCAR. Moreover,
there are no predefined groups of highly correlated predictors for the methods like
Grouped-Lasso.

In this Chapter, we propose a new method called the “Penalized method based
on Representatives (PR)”, which can achieve dimension reduction and handle high
correlations among the predictors for p > n data. The PR procedure creates clusters
of predictors based on their pairwise correlations. Moreover, the proposed method
selects “representatives” from the clusters and builds a regression model based on
these representatives. All aforementioned steps in the PR procedure are rigorously

defined and formulated. To make computation of the PR procedure efficient, each



group of highly correlated predictors are built via the PR-Sequential Grouped Re-
gression (PR-SGR) Algorithm, which is an adaption of fast algorithm for the PR to
make its implication realistic by the Lars ([9]) algorithm in Section 1.2.4. Without
the predefined groups of highly correlated predictors, the selected representatives can
characterize the corresponding group of highly correlated predictors and provide a
physical interpretation of the impact of the predictors to the response. We show that
the PR can be interpreted as a variant of Lasso with a penalty of the L;—norm of
coefficients applied to the predictor-clusters’ representatives. Its L;—penalty achieves
an automatic variable selection and builds a fitted model with less than n represen-
tatives. Moreover, selecting a representative in each group using a simple rule intro-
duced in Section 1.2.1.2 reduces the computational complexity and achieves better
interpretability of the final model.

Section 1.1.1 uses two experiments to further motivate the study of this chapter.
Section 1.2 proposes the PR method and will discuss its rationale. The proposed
method will be illustrated with simulated examples in Section 1.3 and real dataset in

Section 1.4. Section 1.5 concludes this chapter with discussions and summaries.
1.1.1 Experiment 1 and 2

Experiments 1 and 2 are conducted to illustrate the existence of spurious high
correlations between the predictors due to the high dimensionality of p > n data and

to support the motivation of this thesis study.

Experiment 1: Suppose predictors Xi,---, X, are independent and follow the
standard normal distribution. Based on the generated data matrix X = (X3, -+, X,),
the maximum absolute sample correlation coefficient among predictors was calculated.
We simulated 500 datasets with n = 20,40 and 80 for p = 2000, and n = 10, 20 and
40 for p = 1000, respectively. Figure 1 shows that the distribution of the maximum

absolute correlation coefficients shifts to the right as the ratio p/n increases. Although
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Figure 2: Distributions of absolute sample pairwise correlations with p/n = 200(left-
top), 100(right-top), 50 (left-bottom) and 25(right-bottom) with p = 1000.

the predictors are generated randomly, the maximum absolute sample correlation
coefficient among predictors can be very large. Figure 2 shows the density of absolute
values of all the sample pairwise correlation coefficients among p predictors with
p = 1000 and n = 5,10,20 and 40. It shows that more predictors are spuriously
correlated as p/n increases. Experiment 1 showed that the chance of having spuriously

highly correlated predictors increases with the dimensionality.

Experiment 2: Suppose we have two random vectors X and Y following the stan-
dard normal distribution, with correlation py = Corr(X,Y) = 0.9 and the sample size
n = 50. We also generated 10000 random vectors X’ following the standard normal

distribution with the same sample size, and calculated the correlation Corr(X, X’).
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Figure 3: Ratios of | Corr(X',Y) | /| Corr(X,Y) | vs. absolute values of correlation
between X and X'.

Figure 3 shows that the ratio of | Corr(X',Y) | / | Corr(X,Y) | increases as the
value of | Corr(X, X’) | increases. We had the same conclusion for different values
of n and correlation coefficient py. This experiment shows that for highly correlated
predictors, their correlations to the response, respectively, have similar values. This

means that their regression coefficients would have similar values.

1.2 Methodology

In this section, we propose a new approach called the Penalized method based on
Representatives (PR) for p > n data and correlated predictors. The proposed method
formulates clusters/groups of predictors, which have high pairwise correlations, and

selects one of the predictors from each cluster as a representative. Then, apply the
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Lasso regularization to select regression predictors from these representatives. The
PR minimizes summation of the least squared error and the total representative
selection error according to the L;—penalty. The L;—norm achieves an automatic
variable selection and selects less than n representatives in the final model. The total
representative selection error depends on different representative selection rules. See

Section 1.2.1.2 for details. The following formulates this method rigorously.

1.2.1 Penalized Method Based on Representatives (PR)
1.2.1.1 Definition and Notation

Suppose that there are n data points, {(X,y) : X € X C R™? y € Y C R"},
sampled from an unknown distribution. Here, y is the response and X is the matrix
of p—predictors. Let X; = (Xy;,--+,Xn;)", 7 =1, -+, p be vectors representing the
predictors where X = (X1, Xo, -+, X,), and y = (y1, ,yn)’. Assume that the

predictors have been standardized and the response has been centered so that

iXijzo, injzl, and iyi:(), for j=1,2,--- ,p.
i=1 i=1 i=1

Suppose that the p predictors are divided into the m clusters Cy, - - - ,C,, with cluster
size p;, j =1,---,m. Let X; be an n X p; matrix corresponding to the cluster C;, §;
be a coefficient vector of size p;, j =1,--- ,m, and B = (8f,---, B7)T.

Let R be the set of indices of representatives X' -+ X™ € {Xy,---, X,} where
X7 = X}, for some k € Cj, j=1,---,m (i.e., the representative X7 of the cluster C;
is X}, for some k € C;). For example, where a cluster C; = {1, 2,3} is given (i.e., the
cluster consists of X;, X, and X3) and X, is selected as a representative X' of Cy,
then {2} € R. Let Xz = (X!,--- , X™) be the submatrix of X corresponding to the
representatives, and Sz be the m-dimensional vector of regression coefficient corre-
sponding to X. The representative set X is determined by one of the representative
selection rules described in Section 1.2.1.2. After selecting the representatives, the

original problem of estimating the p-vector § from the linear regression model (1) is
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reduced to the problem of estimating a m—dimensional vector Sz = (B, - - , ﬂ(m))T

based on a smaller sub-model,

y = Xgfr + e

The PR method estimates Sz by minimizing a loss function of errors. This loss
function quantifies both the quality of model fitting and the cost of selecting variables
among representatives.

The loss function for the PR with a given representative set X% is defined as

L((y.X®), Br) = |y — XzBrll3 + wG(Br, (y, Xr)), w >0, (2)

where
G(Br, (v, Xr)) = D> c;1(By) #0)
j=1
is the total representative selection error, and

¢ = iZ’Ri\Xj_R§|Xk , 0<¢ <1
P; kec;
is the representative selection error on the cluster C;. Ri‘ + denotes the coefficient of
determination, R?, which is the portion of the variability in the response y accounted
for by the fitted simple regression model y = & + BX. Ifpy =+ =pn=1, c; =10
and thus G(fgr, (y,Xg)) = 0. Consider the example with C; = {1,2,3} and then

calculate Ril x,» J = 1,2,3. Since the presentative X L of C; is Xs, the representative

selection error ¢; on the cluster C; is

1
v = 3 {1 B = R, 1 Bl = B, 1 | R = Rip, 1}

1
= U By, = Byx, [+ By, — Ry, [

The clusters are formulated in Step 3 of the PR-Sequential Grouped Regression (PR~

SGR) Algorithm, based on the given minimum pairwise correlations p among the
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predictors (see Section 1.2.4 for details). With this clustering method, any two pre-
dictors in a cluster have at least p pairwise correlation, while correlations between
the predictors from different clusters are less than p. Please see Section 1.2.4.2 for
the decisions of p value. While the value of p in Example 11 is selected by a Cross-
Validation, the values of p in Examples 12-20 are 0.9, 0.8, ---, 0.1, respectively to
investigate the sensitivity of p selection. As discussed in Section 1.3, the performance
of the PR-SGR for a fixed representative selection rule does not change much for large
enough p values (p > 0.3), and the PR-SGR with the MAX representative selection
rule is the least sensitive to the changes in p among all the representative selection
rules.

For a predictor X in C; and the representative X7 of the same cluster C;, the
difference | R§,| X3 —Rf,‘ X, | is the extra amount of the variability explained by the fitted
simple regression model of the response on the representative X7 but not explained
by the fitted model on the predictor Xj. Thus, ¢;, the representative selection error of
the cluster C; is calculated as the average amount of such extra variability explained
by the fitted model on the cluster representative X7 which cannot be explained by
the fitted model on another predictor in the cluster. The value of G(8g, (y,Xg)) is
defined as the summation of the representative selection errors from all clusters. We
can control the effect of the representative selection procedure by changing the value
of w.

The PR method is proposed to find the coefficients by minimizing the loss function
L((y,XRr), Br) in Equation (2) subject to an L;—norm constraint on the coefficients

of the representatives. Equivalently, the solution S5® is determined by minimizing:

L((y,Xr), Br) subject to ||fr|l1 <t (3)

ly — Xz Brll3 +wG(Bn, (y, X)) subject to [[frlly <1

—>_ X8y +wzca 5 #0) SubJecttOZWu <t
j=1
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where ¢ > 0 is a tuning parameter. The parameter ¢ controls the amount of shrinkage
that is applied to the estimates. Please see Section 1.2.3 for the decisions of the
tuning parameters w and A (see Equation (4) below).

This constrained loss function can be written as a penalized function, and thus

the PR solution S5% can be written as:

I (w,A) = arg min [y — XrPrlz +wG(Br, (v, Xr)) + Al Brl1, (4)

where A\ and w are positive constants. The ,@%R is equivalent to [Lasso for pp=---=
pm = 1, because ¢; = 0 and G(fg, (y,Xg)) = 0. By imposing the L;—penalty,
the PR assigns zero coefficients to a subset of the representatives and thus none of
the predictors in some clusters may be selected. Consequently, the PR achieves an
automatic variable selection. As the simulation experiments in Section 1.3 and real-
life case study in Section 1.4 show, the proposed method performs superior to the
Lasso/Lars, Elastic-Net, grouped-Lasso and grouped-Lars and that it tends to select

less variables than those comparable methods.
1.2.1.2 Representative Selection Rules

For each cluster C;, j = 1,--- ,m, the following representative selection rules can

be used to determine a representative X7 of the cluster C; where X7 = X, k € C;.

1. (MAX rule) Select a predictor X whose correlation with the response is max-

imized:

k = argmax Corr(X;,y) = arg max | Xy |
1eC;

’LECj

2. (MIN rule) Select a predictor X} whose correlation with the response is mini-

mized:

k = argmin Corr(X;,y) = arg micn | Xy |
S

ZECj
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3. (MED rule) Select a predictor Xj whose correlation with the response is a

median value among correlations between the response and the predictors in

Cji

k = arg median;ec, Corr(X;,y) = arg medianec, | X'y |

4. (RAN rule) Select a predictor X, k € C; at random.

5. (CRT rule) Select a predictor X which minimizes the representative selection

error on C;:

k = arg min ¢
i€C;
XI=X;

1
= argmin —» | Ryy — Ry |-
J

The simulation experiments and real-life case study show the effects of each repre-

sentative selection rule and suggest the MED rule as the best.
1.2.2 Solvable Problem PR

This section shows that the PR is a solvable problem by solving a set of sub-
problems which are of standard forms (i.e., “minimize f(z) subject to g;(x) <0, i =
L,--- k", where f is a convex function and g;, 1 < ¢ < k, are convex functions),
although the objective function of the PR is not convex due to G. The number of
the subproblems of the PR could be large for p > n data, because the number of the
subproblems increases exponentially as the number of clusters m increases. We show
a solution to the PR that can be obtained by solving smaller number of subproblems
(i.e., the number of subproblems increases only linearly).

Table 1 shows that the minimization problem (3) has 2™ subproblems in Table

2, because G has total 2™ possible values. w in the minimization problem (3) is a

positive constant and wG (fr, (y, Xr)) = > weil(Byy # 0) = > GI(By) # 0) by
j=1 j=1
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Table 1: Possible cases.

Case # Value of Sr = (B1y, -+ Bm))’
1 None of ;) is zero
2 Only B is zero and all the others are nonzero.

m+1  Only By is zero and all the others are nonzero.

2™ —1  Only B is nonzero and all the others are zero.
2m Br is zero.

letting ¢ = wc;. For simplicity, we use ¢; instead ¢} in this section. The constraint
regions R;, j =1,---,2™ — 1 in Table 2 are not convex and hence the subproblems
except for the case number 2™ are not of standard forms. However, by taking the
closure of their constraint regions, the subproblems become solvable problems in Table
3 with the corresponding constraint region R; = {fz : g;(8r;) < t}. That is, each

subproblem in Table 3 is of standard form with f_{j:

(Subproblem j) minimize f;(fr, ;) subject to g;(fr,;) <t,

The following example illustrates that the PR with m = 2 is of standard form:

minz (yi - "L‘z‘lﬁ(l) - m?5(2))2 + 61[(5(1) #0) + 021(5(2) #0)
i=1

subject to | Bay | + | By ISt

A constraint region Ry = {fr = (B1), B2)" | Bay | + | By I< t,.8a) # 0,Be) #
0} contains the border and inside area of the rhombus excluding two lines on axes
between —t and ¢ as in the figure on the left panel in Figure 4. Therefore, the
constraint region R; is not convex due to such open points on the horizontal and

vertical axes. On the other hand, the closure of Ry, Ry, on the right panel is convex.
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Table 2: Subproblems of the minimization problem (3)

Case # Subproblem with a constraint region R
1 min [[y — XzSz[3 + > ¢
j=1
. 1Bl <t
subject to .
: { By #0,Vj

with Ry = (Br : |Bell < . B0y #0.))
2 min [y — Xzfzll5+ > ¢

j=2
1Brll <t
subject to ¢ By =0
By #0,¥j=2,--- m
with Ry = {fr : [|Br|i <t Bay=0,8; #0,V5 =2,--- ,m}

m—1
m+1 minly — XgBrlz+ X ¢
7j=1

18Rl <t
subject to ¢ By =0

2™ — 1 minlly — XzBz|5 + cm
18zl <t
subject to ¢ B =0,Vj=1,--- ,m—1
B(m) 7£ 0
with Rom_y = {Br : ||Brlli £t,845)=0,Vi=1,--- ,m =1, By # 0}
2m min ||y — Xz6z||3

subject to {
with Rgm = {0}

Figure 4: Constraint region Ry (left) and its closure R; (right) of the PR with m = 2.
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Table 3: Subproblems of the minimization problem (3) which are of standard forms.

J Br.j fi 9;

1 Brai= Bay, Bumy)" ly = XzBralls + > ¢ IBrall
j=1

2 Br2= (0,82, Bum)" Iy = XrBrallz + 2o ¢ 1Brell
=2

m—1
m+1 Brmi1 = By Bum-1), 00" [y — Xrbrill3 + 2 ¢ |1Brm1lh
j=1

2" —1 PBrom_1=(0,--,0,Bum))" ly — XrBrall3 + cm | Br.2m—1]1
2" Pram =0 ly — Xrfr1ll3 | Br.2m |1

As the solutions of a convex problem always happen on the boundary of its
constraint, region ([4]), the solution 3z ; minimizes the objective function f; when
g; (BRJ) = t. Moreover, the solution becomes exactly the solution of the dual prob-
lem of general penalized form (or Lagrangian form) “minimize f;(8z ;) + A\;g;(Br.,;)”
with a positive A which depends on the value of ¢.

Now, the PR estimate S5 is defined based on fr ,’s as:

APR . 5
~  =arg  min 1i(Br.j)-
6R,j7j:17"' ,2m,

Since each subproblem has the global optimum due to its convex objective function
and convex constraint region, the PR estimate becomes the global optimum.

Since the number of the subproblems in Table 3 increases exponentially as m in-
creases, we suggest the following stepwise procedure to alleviate the computational
burden. If all the representatives are orthogonal, the PR estimate becomes the so-
lution of a subproblem whose constraint region is the closest to the OLS estimate
B%LS . This can be explained by the geometric interpretation which is used in the
Lasso ([34]). The contour of f; becomes a sphere because all the representatives are

OLS

orthogonal, and the contour is centered at BR as the Lasso explained. Therefore,

the solution of (Subproblem j) is the first place that the contour touches its constrain
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region Ej. That is, the solution has the shortest distance from B%LS to the contour.
In this case, we need to calculate the OLS estimate and 2™ distances from B%LS to
constraint regions. And then we need to find the subproblem having the shortest
distance and solve the subproblem, instead of solving all 2™ subproblems.

On the other hand, for non-orthogonal representatives, the contour of f; becomes
elliptical. Similarly with the orthogonal case, the solution for the subproblem j is
the first place that the contour touches its constraint region. Thus, we can find the
PR estimate by first solving the subproblems with all m nonzero coefficient 3;’s,
say the solution Bn,l, searching a subproblem with m — 1 nonzero coefficient 3(;’s
whose contour is the closest to BRJ and solving the problem. Continue this process
until a subproblem with only one nonzero coefficient is found. Therefore, by solving
only m subproblems, we can find the final PR solution. Consequently, the number
of subproblems solved to find the solution of the PR increases linearly instead of

exponentially as the number of clusters m increases.
1.2.3 Tuning Parameters

This section addresses the selection of the tuning parameters p (or m), w and A
(or t). The tuning parameter p (or m) controls the property of clusters, w controls
the effect of the representative selection to the loss function, and A (or ¢) controls the
amount of the shrinkage.

If a validation dataset is available, tuning parameters can be estimated directly by
applying the PR procedure on the validation dataset and minimizing the estimate of
the prediction error. If only a training dataset is available, k—fold Cross-Validation
(k-CV) (for example, k = 10) is a popular method for estimating a prediction error
and comparing different models ([20]). Since there are three tuning parameters, we
need to cross-validate on a three-dimensional surface, as the Elastic-Net ([41]) cross-

validates on a two-dimensional surface for its two tuning parameters. We first pick a
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(relatively large) value for p € (0, 1), say (0.99, 0.98, ---, 0.91, 0.90, 0.85, 0.80, 0.70,
0.60). Then, for each p, we pick a value for w, say (0, 0.01, 0.1, 1, 5, 10). Then, for
each (p, w), we select the other tuning parameter A by k—CV. At the end, we select
(p, w) that gives the smallest CV error. We used 10—CV in the simulation studies
and 5—CV in the real-life study. Since we use only several values for p and w, there
is a chance that other (p, w) gives the lower prediction error than the selected tuning
parameters, but the results in the simulation studies and real-life study show that the
proposed method with selected tuning parameters among the values described above
outperforms other comparable variable selection methods.

For each (p, w), the computational cost of k—CV is the same as that of k-time
OLS fitting with extra cost of clustering. Since the PR imposes a regularization on
the Ly —norm of the regression coefficients for representatives resulting in at most n
representatives in the final model, the computational cost can be manageable in the
three-dimensional CV method if the number of pairs (p, w) tested are moderate.

Other techniques to select tuning parameters are AIC, BIC, or C), that estimate
a prediction error. As a tuning-parameter selection method, each method is com-
putationally more efficient than k—CV. Efron et al. ([9]) showed that the number
of nonzero coefficients is an unbiased estimate of the degrees of freedom (df) for the

Lasso. They calculated C, as
~ 112
. y—p
Cp(p) = % —m + 2df,

where i is a Lars estimate and y ~ (p,0?I) with known ¢® > 0. Since the PR
can be interpreted as a variant of Lasso, we can also select the number of nonzero
representative coefficients as an estimate of the degrees of freedom for the PR. This

is a measure of the model complexity for the proposed algorithm in the final model.
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1.2.4 PR-Sequential Grouped Regression (PR-SGR)

As Madigan and Greg ([28]) discussed, the Lasso had not been popular in statis-
tical practice due to the relative inefficiency of its original algorithm until Efron et al.
([9]) provided an efficient and simple algorithm, the Least Angle Regression (Lars),
for the Lasso. Therefore, L;—penalized methods such as the Elastic Net ([41]) and
Adaptive Lasso ([40]) adapt the Lars Algorithm for better implementation. The PR,
as an L, —penalized method, also faces implementation difficulty and needs an efficient
algorithm to achieve better applicability. This section introduces the PR-Sequential
Grouped Regression (PR-SGR) Algorithm that makes the implementation of the PR

realistic by adapting the Lars Algorithm.
1.2.4.1 PR-SGR Algorithm

The PR-SGR Algorithm operates in a similar way with the Lars Algorithm except
that it additionally builds a cluster and selects a representative of the cluster whenever
it adds a new predictor in the model. We describe the PR-SGR. Algorithm using the

same mathematical notations Efron et al. ([9]) used.

e Initial Setting

Given the data {(X,y) : X € Ry € R"}, where n is the sample size.
Denoted by the columns of X as X; = (Xy;,---,X,;)", j = 1,---,p, these
columns represent the predictors. Assume that each column has been stan-

n

dardized so that > X;; = 0 and ) ij = 1. Also assume that the response
i=1 i=1

y = (Y1, - ,yn)T has been centered so that >_ y; = 0.
i=1

e PR-SGR Stage

1. (Compute residual) The initial residual is r = y —y1 =y, where 7 denotes

the mean of the response.

21



2. (Find the active set) Compute the absolute correlations of the predic-
tors with the residual and select the predictor with the largest absolute-

correlation:

E*=a ax C X,,r)=a a XTy r|.
rg, max  Corr(X;,r) rgke?i..’.fp}| irl/lr]

The corresponding predictor forms the active set A = {k*} and its com-

plement A¢ = {1,---  p}\A.

3. (Build a cluster) For the selected predictor Xj-, build a cluster Cp» C

{1,---,p} such that
Ce =Cr(p) ={Jj = | XX [> p, Vj € AFU{KD,

for a given p. Update the active set A = AU Cp+ and its complement
A¢ = AN\Cy-.

Remark : Please see Section 1.2.4.2 for the decisions of p value. While
the value of p in Example 11 is selected by a Cross-Validation, the values
of p in Examples 12-20 are 0.9, 0.8, ---, 0.1, respectively to investigate
the sensitivity of p selection. As discussed in Section 1.3, the performance
of the PR-SGR for a fixed representative selection rule does not change
much for large enough p values (p > 0.3), and the PR-SGR with the MAX
representative selection rule is the least sensitive to the changes in p among

all the representative selection rules.

4. (Determine a representative variable) Select a predictor X;, i € Cg as
a representative of the cluster Cp+ based on a selection rule described in

Section 1.2.1.2, and form the representative index set R = {i}.

5. Repeat the following steps while | R [<n and )7 | X[t [> 0.
jER

(a) Let ug be the unit vector toward the least squares direction of {X :

jER}
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(b)

(e)

If A€ # (), then solve how much to extend ugr so that the correlations
with the representatives decrease to zero. That is, find the solution A

of the following equation: for A > 0 and any j € R,
Xjr(r — Aug) = 0.

For every X;, k € A° # (), solve how much to extend ug so that the
correlation with the predictor Xy, is the same as those X;, j € R. This
is to find a solution \ of the following equation for all X, k& € A° and

A>0:
XF(r—dug) = X]-T(r — A\ug),

for any j € R. Among the solution N’s, choose the smallest positive
value, and denote it A*. Let 7% be the index of the corresponding
predictor. Now, the active set A extends to A =AU {j*}.

For X, establish a cluster C;« and enlarge the active set A = AUCj-.
Then, A¢ = A°\Cj~. Select a representative X;, ¢ € C;«, and enlarge

the representative index set R = R U {i}.

Compute the residuals: r =1 — S\*UR.

The unit vector ug in Step 5 can be simplified as Efron et al. ([9]) did. Let Xz denote
the submatrix of X for the representatives corresponding to the representative index

set R. Then, ur = ARXRG;;CR, where

If the size of each clusters, | Cy |, is one, then the PR-SGR Algorithm is equivalent to
the Lars Algorithm and A = R.
Remark : The entire sequence of steps of the Lars Algorithm ([9]) with p > n

requires O(n?). Since the PR-SGR uses a clustering algorithm in each step and the
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clustering algorithm scan at most p predictors to build a cluster, the computational
complex of the PR-SGR is O(n’plog p).

Remark : The Lars Algorithm ([9]) works as follows: at the beginning, it always
puts a predictor that is the most correlated with the response into the active set to
contain the indices of the predictors selected in the model. The coefficient of each
predictor in the active set increases in the direction of the sign of its correlation with
the response, until a predictor, currently not in the active set, is as much correlated
with the current residual as the predictor in the active set is. When two predictors are
entered into the active set, their coefficients move in their joint least square direction
until another predictor, not in the active set, is as much as correlated with the current
residual based on the two selected predictors. A new predictor is added to the model
in a subsequent step. The algorithm continues until either the size of the active set
reaches the sample size n, or until all the predictors are selected in the model and the
model attains the ordinary least squared fit. As the Lars algorithm proceeds, all the

predictors in the active set carry the same correlation with the current residual.
1.2.4.2  Tuning Parameters

As discussed in Section 1.2.3, the parameter p (or m), w, and A (or t) can be
estimated directly by applying the PR-SGR Algorithm on a given validation dataset
and minimizing the estimate of the prediction error. If only a training dataset is
available, k—fold Cross-Validation (k—CV) can be used to select the parameter value
in a three-dimensional surface way. In Section 1.3, a validation dataset is generated
for each setting to choose the tuning parameters resulting in the smallest estimated
prediction error. The real-life case study uses 5—CV to select the p value due to its

small sample size, while the simulation studies use 10—CV.
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1.3 Simulation Study

A simulation study is carried out to evaluate the performance of the PR-SGR
Algorithm under various conditions. Each dataset is simulated from the regression
model y = X + o¢, € ~ N(0,1), where 0 > 0. For each simulation setting, 100
datasets are generated. Each dataset consists of a training dataset of size ni, an
independent validation dataset of size no, and an independent test dataset of size ns.
Regression models are fitted on the training datasets, and the validation datasets are
used to select the tuning parameters yielding the lowest prediction error. If tuning
parameters are selected on the training dataset, the selected model tends to contain
n predictors to minimize the prediction error. Therefore, the tuning parameters are
selected on the validation dataset to minimize overfitting. We compute test errors,
by the Mean-Squared Errors (MSE), on the test datasets and the model complexities
by the number of nonzero coefficients. Each simulation setting uses n; = 20, ny, = 20,
ng = 20, 0 = 5 and p = 40 where the number of predictors is p. Each predictor is
generated from the standard normal distribution.

Twenty scenarios are considered. The first four, Examples 1-4, consider the cases
with one cluster of the identical predictors but with different number of nonzero (;’s.
The purpose of changing the number of nonzero coefficients is to compare model
complexities in terms of the number of nonzero estimated coefficients in the final
model. The effect of the representative selection rules can be removed by using only
one cluster of all the identical predictors. The next four, Examples 5-8, consider the
cases with one cluster of highly correlated predictors. By changing the minimum
correlation py among the predictors in the cluster, the effect of the representative
selection rules can be studied. The next three, Examples 9-11, consider the cases
with two clusters of highly correlated predictors. In Example 9, one fixed py value is
used, so that the effect of the number of clusters can be studied. In Examples 10 and

11, the value of pg is varied. The last nine, Examples 12-20, have the same settings
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with Example 11, but use different p values to build clusters. While the value of p
in Example 11 is selected by 10—CV, the values of p in Examples 12-20 are fixed as
0.9, 0.8, ---, 0.1, respectively. Here, the sensitivity of p selection is investigated.

The details of twenty scenarios are as follows:

e In Example 1, a cluster consisting of five identical predictors X;, Xs, -+, X5 is
generated. The other predictors not in the cluster are assumed to be identically
distributed. 8 = (3,0,---,0,1.5,2,4,5,0,---,0)7 with five nonzero f3;’s.

—— ——
4 31

e Example 2 uses the same setting as in Example 1 except for g in which the num-

ber of nonzero coefficients is set to be 10: 8= (3,0,--+,0,2,---,2,0,---,0)T.
—_—— —— ——
4 9 26

e In Example 3, the same setting as in Example 1 except for 5 is used. The number

of nonzero coefficients is set to be 20: = (3,0,---,0,2,---,2,0,---,0)T.
———— e — N —
4 19 16

e In Example 4, we use the same setting as in Example 1 except for 5. The

number of nonzero coefficients in 3 is 30: 8 = (3,0,---,0,2,---,2,0,---,0)T.
4 29 6

e Example 5 has one cluster of three highly correlated predictors X, X5 and X3
whose correlations with other predictors in the cluster are greater than 0.9.

B =1(3,0,0,1.5,2,4,5,0,--- ,0)T has only 5 nonzero 3;’s. The other predictors
——

33
not in the cluster are assumed to be identically distributed and correlated with

the predictors in the cluster with less than 0.9 correlation.

e Example 6 also has one cluster of three highly correlated predictors as in Ex-
ample 5, but 3 is set to have 10 nonzero 3;’s: = (3,0,0,2,---,2,0,---,0)T.
9 28

e In Example 7, the same setting as in Example 5 except for 3 is used. The

number of nonzero coefficients is 20: 8 = (3,0,0,2,---,2,0,---,0)T.
———— N —

19 18
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In Example 8, we use the same setting as in Example 5 except for . The number

of nonzero coefficients in 3 is increased up to 30: 8 = (3,0,0,2,---,2,0,---,0).
—— ——

29 8

In Example 9, a cluster is generated to have three highly correlated predictors
X1, X5, and X3 whose correlations among themselves are set to be greater than
0.9. Another cluster is generated that contains two highly correlated predictors
X4 and X5 whose correlation is set to be greater than 0.9. We set the correla-
tions between the predictors from different clusters less than 0.9. All the other
predictors not in the clusters are assumed to be identically distributed with 10

nonzero f3;’s: 3= (3,0,0,1.5,0,2,---,2,0,---,0)T
——— N —

8 27

Example 10 uses the same setting as in Example 9 except that the minimum

correlations in the clusters are set to be 0.8.

Example 11 also uses the same setting as in Example 9 except that the minimum

correlation was 0.9 for one cluster and 0.8 for the other.

Examples 12-20 use the same setting as in Example 11 but with different p values
to build clusters. Selected p values for each example are 0.9, 0.8, 0.7, ---, 0.1

respectively.

Tables 4 - 8 and Figures 5 - 9 (box plots) summarize the prediction results in terms

of MSE values. The PR-SGR with various representative selection rules has better

performance in most of examples than the ones from the Lasso/Lars, Elastic-Net,

grouped-Lasso or grouped-Lars. The median values of MSEs for the PR-SGR with

different representative selection rules are either the best or second best in all exam-

ples. The PR-SGR with some representative selection rules behaves almost identically

or similarly with the Lasso/Lars in some examples (see Example 7). Table 9 shows

the reduction rates of the PR-SGR with all the representative selection rules. The
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maximum reduction rate for the PR-SGR is 13.12 % and the PR-SGR outperforms
11 times out of 15 examples against the Lasso/Lars and other methods.

Tables 4 - 7 present the model complexity of each simulation setting in terms of
the number of nonzero coefficients in the final model. They show that the PR-SGR
tends to select smaller number of predictors than other methods do. Figure 10 shows
that the model complexity tends to increase as the number of nonzero coefficients
increases, and that the PR-SGR with the MAX representative selection rule tends to
select the smallest number of predictors in the final model.

The results of Example 5-11 evaluate the effect of the different representative
selection rules. Table 10 summarizes the average values of the median MSEs and the
average ranks based on the median values for all the representative selection rules.
Table 10 also summarizes the average values of the model complexities and the average
ranks based on the model complexities for the PR-SGR with all the representative
selection rules. To get the values in Table 10, we first calculate the ranks of the
interesting values (either the median MSEs or the model complexities) for all the
representative selection rules in each example, and then calculate the average ranks
over all the examples for each representative selection rule. Table 10 shows that the
RAN representative selection rule is the best and the MED representative selection
rule is the second best, based on the median MSEs. Based on the model complexities,
the MIN representative selection rule is the best and the MED representative selection
rule is the second best. However, if we consider the ranks, there is no difference among
the representative selection rules. In this comparison, we exclude Examples 1-4 and
12-20, because Examples 1-4 consider only one cluster of identical predictors trivially
resulting in no difference among the representative selection rules, and Examples
12-20 are conducted to compare the sensitivity to the selection of p.

We compare the performance of the PR-SGR with other methods in Examples

13-16. The value of p is selected by 10-fold CV in Example 11, whereas the p values
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Table 4: Statistics of MSE and model complexity in Examples 1 - 3 for the
Lasso/Lars, Elastic-Net, grouped-Lasso (glLasso), grouped-Lars (gLars) and PR-SGR
with 5 representative selection rules.

Example 1
PR-SGR
MSE | Lasso/Lars Elastic glLasso gLars| MAX MIN MED RAN CRT
go.10 40.20 54.13 38.20 38.26| 37.32 36.78 37.11 35.59 39.17
qo.25 53.02 78.05 47.39 52.37| 45.35 47.00 45.67 41.87 46.85
90.50 73.45 9740 64.78 69.46| 61.83 60.18 62.23 62.58 67.62
qo.75 90.11 150.78 83.93 94.31| 84.78 79.97 82.12 82.34 85.16
40.90 147.96 178.64 103.48 140.88|110.94 96.35 105.15 101.99 109.59
s.e 11.41 12.01 9.15 11.72 9.23 8.42 9.10 9.27 9.64
Model PR-SGR
Complexity | Lasso/Lars Elastic glLasso glLars| MAX MIN MED RAN CRT
mean 8.24 7.47 723 729 6.15 710 6.99 702 7.29
s.e 2.76 2.01 2.41 2.84 1.97 2.01 1.94 2.00 2.12
Example 2
PR-SGR
MSE | Lasso/Lars Elastic gLasso gLars| MAX MIN MED RAN CRT
q0.10 49.22  43.30 4234 42.24| 43.88 46.11 49.55 41.34 47.83
do.25 57.39 56.72 56.32 56.35| 54.67 56.69 54.98 54.81 54.84
q0.50 71.54 69.97 73.10 72.99| 68.52 71.67 74.15 70.03 72.06
q0.75 102.91  97.28 93.96 101.88| 88.33 92.26 93.38 90.28 94.03
q0.90 131.79 125.29 120.54 130.12|109.91 115.18 112.86 112.93 110.67
s.e 10.94 9.46 9.69 11.21| 881 897 9.00 985 9.00
Model PR-SGR
Complexity | Lasso/Lars Elastic glLasso gLars| MAX MIN MED RAN CRT
mean 8.40 7.24 8.24 7.21 7.59 7.01 7.54 7.18 7.66
s.e 2.29 2.04 2.03 1.99 1.90 1.41 1.22 1.56 1.88
Example 3
PR-SGR
MSE | Lasso/Lars Elastic glLasso gLars| MAX MIN MED RAN CRT
go.10 70.49 60.36 6292 T71.37| 68.22 69.95 66.94 70.86 67.09
qo.25 87.72 84.86 87.32 89.25| 85.52 84.66 87.93 83.83 81.41
40.50 109.38 105.22 107.30 113.77|101.58 107.63 107.38 107.97 104.93
q0.75 144.95 123.23 130.87 144.72|125.57 133.48 129.94 138.22 127.06
40.90 216.67 145.72 174.73 195.50 | 168.27 154.54 160.64 179.58 150.01
s.e 13.58 10.35 11.50 13.27| 11.00 10.95 10.96 11.06 10.20
Model PR-SGR
Complexity | Lasso/Lars Elastic gLasso glLars| MAX MIN MED RAN CRT
mean 9.77 9.24 899 824| 861 875 9.02 893 9.07
s.e 3.04 2.95 3.01 2.82 2.94 2.75 2.51 2.78 2.07

29




Table 5: Statistics of MSE and model complexity in Examples 4 - 6 for the
Lasso/Lars, Elastic-Net, grouped-Lasso (glLasso), grouped-Lars (gLars) and PR-SGR
with 5 representative selection rules.

Example 4
PR-SGR
MSE | Lasso/Lars Elastic glLasso gLars| MAX MIN MED RAN CRT
go.10 91.35 82.10 96.72 97.10| 85.57 89.14 91.20 93.80 93.01
q0.25 120.73 101.68 110.70 117.29|114.07 112.27 110.81 115.57 113.98
90.50 159.63 121.98 133.92 149.74|131.13 134.04 135.09 130.81 137.05
q0.75 215.05 164.23 192.14 203.67 | 182.88 183.73 185.95 171.37 172.18
40.90 262.98 215.98 247.62 235.53 | 228.50 209.97 219.98 205.89 227.13
s.e 14.64 12,55 13.81 15.40| 13.14 12.70 13.28 11.51 12.91
Model PR-SGR
Complexity | Lasso/Lars Elastic glLasso glLars| MAX MIN MED RAN CRT
mean 13.04 1299 13.07 1291 | 13.04 1342 1296 12.51 13.04
s.e 4.98 5.01 4.86 4.92 5.02 5.28 4.85 4.91 4.86
Example 5
PR-SGR
MSE | Lasso/Lars Elastic gLasso gLars| MAX MIN MED RAN CRT
4o.10 33.31 37.06 34.26 34.09| 34.48 30.69 30.77 32.17 30.80
qo.25 41.46  46.13 41.90 43.87| 41.95 43.15 41.12 40.38 40.10
q0.50 53.39 58.69 52.89 54.55| 51.25 52.80 50.36 49.79 49.52
qo.75 75.76  75.99 73.03 69.30| 63.92 66.62 65.58 60.05 63.03
40.90 117.17 105.06 98.25 96.88| 80.05 79.60 76.06 75.95 78.46
s.e 12.31 9.05 895 12.37| 858 816 7.68 7.50 7.27
Model PR-SGR
Complexity | Lasso/Lars Elastic glLasso gLars| MAX MIN MED RAN CRT
mean 8.01 7.56 728 712 6.62 723 7.04 761 730
s.e 1.96 2.06 2.23 2.15 1.83 2.11 2.27 2.02 2.28
Example 6
PR-SGR
MSE | Lasso/Lars Elastic glLasso gLars| MAX MIN MED RAN CRT
go.10 46.64 47.75 46.73 47.16| 44.34 45.84 45.06 46.70 46.72
qo.25 58.39 61.10 59.82 54.67| 55.08 54.40 58.08 54.30 58.84
40.50 76.85 73.08 7299 75.80| 68.56 68.70 69.54 66.93 69.41
q0.75 104.86  92.37 87.21 101.83| 83.40 80.86 78.56 81.05 79.29
40.90 143.34 111.43 110.85 137.73| 96.81 93.47 95.07 9748 95.60
s.e 10.98 8.77 9.68 10.72| 8.15 849 8.02 987 8.80
Model PR-SGR
Complexity | Lasso/Lars Elastic gLasso glLars| MAX MIN MED RAN CRT
mean 8.08 7.86 801 783| 779 738 751 763 7.86
s.e 2.27 1.98 1.93 1.85 1.82 1.68 1.70 1.86 1.90
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Table 6: Statistics of MSE and model complexity in Examples 7 - 9 for the
Lasso/Lars, Elastic-Net, grouped-Lasso (glLasso), grouped-Lars (gLars) and PR-SGR
with 5 representative selection rules.

Example 7
PR-SGR
MSE | Lasso/Lars Elastic glLasso gLars| MAX MIN MED RAN CRT
go.10 76.11 68.68 6851 76.32| 69.08 62.72 72.32 6791 66.50
qo.25 93.04 87.30 89.06 97.40| 86.27 88.19 88.14 92.95 87.18
q0.50 122.72 106.33 119.84 125.39|118.64 113.06 117.50 112.35 115.58
q0.75 155.41 135.84 155.58 161.71|143.56 146.27 146.07 142.97 142.84
40.90 210.43 167.07 176.14 235.44|168.76 174.21 171.15 166.08 164.09
s.e 1292 1086 11.46 13.07| 1096 11.69 11.12 10.47 10.50
Model PR-SGR
Complexity | Lasso/Lars Elastic glLasso glLars| MAX MIN MED RAN CRT
mean 9.14 9.35 8.18 856| 9.01 898 875 9.04 934
s.e 2.83 2.89 2.76 2.96 2.83 2.74 2.64 2.70 2.54
Example 8
PR-SGR
MSE | Lasso/Lars Elastic gLasso gLars| MAX MIN MED RAN CRT
4o.10 90.87 88.86 92.94 92.04| 86.58 92.72 95.53 92.25 82.54
qo.25 117.10 105.62 118.25 118.20|115.63 113.88 112.52 111.45 114.53
q0.50 162.50 133.56 150.75 160.32|144.40 144.68 143.75 144.68 146.24
q0.75 202.85 166.43 187.07 204.87 | 185.46 186.43 182.22 182.54 183.36
q0.90 242.28 195.23 229.28 239.60 | 222.36 213.98 211.59 211.32 204.64
s.e 13.85 11.09 12.71 12.81| 12.54 12.31 12.14 12.57 11.81
Model PR-SGR
Complexity | Lasso/Lars Elastic glLasso gLars| MAX MIN MED RAN CRT
mean 13.01 12.88 13.24 12.90| 12.83 13.01 12.84 12.78 13.03
s.e 4.10 4.75 4.65 4.98 4.62 4.35 4.98 4.86 4.24
Example 9
PR-SGR
MSE | Lasso/Lars Elastic glLasso gLars| MAX MIN MED RAN CRT
go.10 49.65 47.55 51.80 50.29| 47.12 49.68 45.64 46.28 45.63
qo.25 58.29  57.25 62.03 65.25| 54.26 55.50 54.96 55.78 56.52
40.50 71.03 7038 76.24 79.75| 68.85 69.10 67.69 66.10 68.15
q0.75 95.78 89.04 94.09 108.81| 84.15 87.70 83.14 81.38 85.64
40.90 127.35 107.58 117.56 140.36|103.76 114.54 102.52 105.43 101.91
s.e 10.76 8.20 9.65 10.84| 9.15 9.61 8.06 884 8.73
Model PR-SGR
Complexity | Lasso/Lars Elastic gLasso glLars| MAX MIN MED RAN CRT
mean 8.28 7.90 821 786 7.8 7.23 815 793 8.01
s.e 1.97 1.87 1.83 1.75 1.62 1.72 1.80 1.63 1.78

31



Table 7: Statistics of MSE and model complexity in Examples 10 - 12 for the
Lasso/Lars, Elastic-Net, grouped-Lasso (gLasso), grouped-Lars (gLars) and PR-SGR
with 5 representative selection rules.

Example 10
PR-SGR
MSE | Lasso/Lars Elastic gLasso gLars| MAX MIN MED RAN CRT
qo0.10 49.31 48.50 50.91 50.25| 48.38 46.58 44.79 47.04 47.47
qo.25 61.74 59.95 64.00 62.45| 57.83 57.19 54.50 53.27 57.68
q0.50 79.46 7883 81.70 81.81| 71.57 75.16 70.43 71.60 72.66
q0.75 103.57  96.99 102.12 117.77| 87.98 98.70 89.09 91.95 92.83
40.90 165.10 124.30 135.95 165.78 |102.56 124.97 106.83 115.97 124.78
s.e 12.66 9.67 9.95 1276 895 10.12 9.06 9.67 11.65
Model PR-SGR
Complexity | Lasso/Lars Elastic glLasso glLars| MAX MIN MED RAN CRT
mean 8.36 8.01 823 798| 803 815 793 768 7.80
s.e 1.98 1.76 1.88 1.93 1.93 1.87 1.87 1.63 1.70
Example 11
PR-SGR
MSE | Lasso/Lars Elastic glLasso gLars| MAX MIN MED RAN CRT
qo.10 48.16  48.17 48.15 53.57| 42.04 44.86 43.45 44.77 43.87
do.25 55.77  58.75 59.61 59.55| 53.21 53.87 52.70 51.49 56.48
40.50 74.83 76.03 74.57 80.80| 67.53 68.90 68.80 67.57 67.92
q0.75 98.96 90.41 104.58 104.51 | 87.36 83.52 89.15 85.30 84.13
40.90 137.70 109.26 118.59 126.61 |105.28 115.23 107.67 102.98 107.52
s.e 12.32 9.26 931 9.60| 833 10.17 857 895 8.66
Model PR-SGR
Complexity | Lasso/Lars Elastic gLasso glLars| MAX MIN MED RAN CRT
mean 8.04 7.68 831 795 788 724 7.66 736 791
s.e 2.04 1.96 1.98 2.01 1.97 1.55 1.62 1.41 1.90
Example 13
PR-SGR
MSE | Lasso/Lars Elastic gLasso gLars| MAX MIN MED RAN CRT
qo.10 45.10 46.59 48.77 54.71| 41.99 43.55 42.83 40.15 47.15
go.25 56.66  60.69 58.72 63.00| 53.42 54.87 51.92 52.52 58.59
40.50 7726 84.48 76.85 88.41| 68.37 71.89 66.77 T71.70 72.28
q0.75 100.09 108.41 98.59 113.01| 87.11 93.91 85.32 93.02 89.84
q0.90 148.64 132.15 130.96 163.15|102.86 116.94 102.71 105.46 114.00
s.e 12.56 9.92 10.69 13.91 873 10.13 8.66 9.81 11.26
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Table 8: Statistics of MSE and model complexity in Examples 14-16 for the
Lasso/Lars, Elastic-Net, grouped-Lasso (glasso), grouped-Lars (gLars) and PR-SGR
with 5 representative selection rules.

Example 14
PR-SGR
MSE | Lasso/Lars Elastic gLasso gLars| MAX MIN MED RAN CRT
q0.10 42.53  46.78 44.62 46.61| 40.31 42.73 40.53 42.32 44.34
qo.25 55.43 5898 56.09 58.52| 52.95 55.78 51.01 51.07 54.91
40.50 66.36 77.23 6744 69.94| 64.92 67.78 63.52 66.02 65.36
qo.75 89.98 92.01 88.13 99.15| 77.22 81.59 79.98 84.11 78.77
40.90 128.75 103.65 117.81 158.50| 92.10 92.85 95.15 100.61 94.33
s.e 11.59 8.64 10.06 12.34| 8.13 10.07 833 9.44 8.23
Example 15
PR-SGR
MSE | Lasso/Lars Elastic gLasso gLars| MAX MIN MED RAN CRT
4o.10 44.27 53.46 48.63 45.90| 43.71 45.11 45.64 43.45 44.01
qo.25 58.16 62.58 62.48 60.49| 57.63 57.36 56.49 53.99 55.14
40.50 73.01 7882 77.02 83.54| 73.17 71.01 70.57 70.17 70.10
q0.75 95.90 98.43 106.65 103.87| 90.70 85.44 86.43 88.89 86.70
q0.90 136.42 116.44 135.53 153.51 [113.77 111.94 113.81 107.37 106.47
s.e 11.95 8.87 10.32 11.25 8.95 9.26 8.92 11.13 9.80
Example 16
PR-SGR
MSE | Lasso/Lars Elastic gLasso gLars| MAX MIN MED RAN CRT
q0.10 44.06  45.21 44.06 45.15| 45.92 44.32 44.03 44.32 42.83
qo.25 61.13 57.89 60.12 61.69| 55.34 54.46 54.35 55.93 54.96
40.50 80.43 73.93 T77.88 81.19| 71.29 74.15 70.09 77.52 72.66
q0.75 104.96 89.04 96.50 101.71| 85.00 94.19 85.86 94.45 86.64
40.90 134.09 110.85 118.09 150.32|102.53 109.08 103.37 109.46 117.93
s.e 11.88 9.45 8.91 11.70 8.07 9.49 9.13 9.36 10.22
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Figure 5: Comparing the accuracy of prediction of the Lasso/Lars, Elastic-Net,
grouped-Lasso (glLasso), grouped-Lars (glLars) and PR-SGR with 5 representative
selection rules for Examples 1 - 3.
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Figure 6: Comparing the accuracy of prediction of the Lasso/Lars, Elastic-Net,
grouped-Lasso (glLasso), grouped-Lars (glLars) and PR-SGR with 5 representative
selection rules for Examples 4 - 6.
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Figure 7: Comparing the accuracy of prediction of the Lasso/Lars, Elastic-Net,
grouped-Lasso (glLasso), grouped-Lars (glLars) and PR-SGR with 5 representative
selection rules for Examples 7 - 9.
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Figure 8: Comparing the accuracy of prediction of the Lasso/Lars, Elastic-Net,
grouped-Lasso (glLasso), grouped-Lars (glLars) and PR-SGR with 5 representative
selection rules for Examples 10, 11 and 13.
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Figure 9: Comparing the accuracy of prediction of the Lasso/Lars, Elastic-Net,
grouped-Lasso (glLasso), grouped-Lars (glLars) and PR-SGR with 5 representative
selection rules for Examples 14 - 16.
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Table 9: Reduction rates based on the median MSEs for the best method among the
Lasso/Lars, Elastic-Net, grouped-Lasso and grouped-Lars and the best version of the
PR-SGR in each example.

Example min(median MSEs) | Reduction
Others PR-SGR Rate(%)

1 64.78 68.52 -5.77
2 69.97 68.52 2.07
3 105.22 101.58 3.46
4 121.98 130.81 -7.24
5 52.89 49.52 6.37
6 72.99 66.93 8.30
7 106.33 112.35 -5.66
8 133.56 143.75 -7.63
9 70.38 66.10 6.08
10 78.83 70.43 10.66
11 74.57 67.53 9.44
13 76.85 66.77 13.12
14 66.36 63.52 4.28
15 73.01 70.01 4.11
16 73.93 70.09 5.19

Table 10: Average values of the median MSEs, average ranks based on the median
MSEs, average values of the model complexities, and average ranks based on the
model complexities for all the representative selection rules of the PR-SGR.

Average Value
PR-SGR MAX MIN MED RAN CRT
median(MSE) 75.88 T75.82 75.28 T4.12 75.64
model complexity | 8.57 846 855 858 875
Rank
PR-SGR MAX MIN MED RAN CRT
median(MSE) 1.40 140 1.40 1.40 1.40
model complexity | 1.40 1.40 1.40 1.40 1.40
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Figure 10: Comparison of the model complexity of the Lasso/Lars, Elastic-Net,
grouped-Lasso (glLasso), grouped-Lars (glLars), and PR-SGR with various represen-
tative selection rules for Examples 1-8. Red line for five nonzero coefficients, green
for 10 , blue for 20 and cyan for 30.
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Table 11: Reduction rates based on the median MSEs for the PR-SGR with p selected
by 10—CV and the PR-SGR with a fixed p (p = 0.9, 0.8, ---,0.1).

Median MSE Reduction Rate

p | MAX MIN MED RAN CRT|MAX MIN MED RAN CRT

CV | 67.53 6890 68.80 67.57 67.92| 0.00 0.00 0.00 0.00 0.00

09 | 71.93 69.94 70.89 69.01 70.35| -6.52 -1.51 -3.04 -2.13 -3.58
0.8 | 68.37 71.89 66.77 71.70 72.28 | -1.24 -4.34 295 -6.11 -6.42
0.7 | 64.92 67.78 63.52 66.02 65.36 | 3.86 1.63 7.67 2.29 3.77
0.6 | 73.17 71.01 70.57 70.17 70.10 | -835 -3.06 -2.57 -3.85 -3.21
0.5 | 71.29 7415 70.09 7420 72.66 | -5.57 -7.62 -1.88 -981 -6.98
04 | 68.26 7154 7266 73.70 69.40 | -1.08 -3.83 -5.61 -9.07 -2.18
0.3 | 6484 7092 69.72 68.87 67.30 | 398 -293 -1.34 -1.92 0.91
0.2 | 71.39 75.48 80.43 76.43 7458 | -5.72 -9.55 -16.90 -13.11 -9.81
0.1 | 7295 79.14 80.04 7870 76.50 | -8.03 -14.86 -16.34 -16.47 -12.63

used in Examples 13-16 are 0.8, 0.7, 0.6 and 0.5, respectively. Table 9 shows that
the PR-SGR with those fixed p values still performs better than other competitors,
resulting in the best reduction rate of 13.12%.

The sensitivity of the PR-SGR to the selection of p (0.9, 0.8, ---, 0.1) is examined
in Examples 11-20. While the value of p is selected by 10-fold CV in Example 11,
p values in Examples 12-20 are fixed as 0.9, 0.8, ---, 0.1, respectively. Table 11
provides the reduction rates of the PR-SGR for each representative selection rule for
different p values. All the reduction rates for p > 0.3 are within £10 % for all the
representative selection rules, when compared to the MSE with the p value selected
by 10—CV. However, when p = 0.2 or 0.1, the PR-SGR tends to build a large cluster
that contains many predictors, and thus the PR-SGR results in poor reduction rates
for the small p’s. Overall, the PR-SGR with the MAX representative selection rule
is the least sensitive to the changes in p among all the representative selection rules.

Section 1.2.1.1 shows that the PR is equivalent to the Lasso when all the clus-

ters contain only one predictor (i.e., p; = --+ = p,, = 1). Similarly, the PR-SGR
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Algorithm is shown to be equivalent to the Lars Algorithm in Section 1.2.4. Ap-
pendix B tests the performance of the PR-SGR Algorithm when all the predictors
are assumed to be independent and when there is no group of highly correlated predic-
tors. In this case, the Elastic-Net perform poorly among all the methods compared.
Although there is no group of highly correlated predictors, the PR-SGR builds a
cluster of some predictors with given p and uses a representative of the cluster in
the model. Therefore, the PR-SGR loses the information contained in the predictors
that are not selected as representatives. When p is selected by 10—CV or p is fixed
as 0.9, 0.8, 0.7, 0.6 or 0.5, the PR-SGR for most p values performs better than the

Lasso/Lars and Elastic-Net. For details, see Appendix B.

1.4 Real Data Study

The data in Table 12 for illustrating the proposed method are from the mental
health diagnosis on depression ([6]). In the study, there were 15 patients and 1794
predictors of depression symptoms.

Figure 11 provides a graphical representation of the correlation matrix of the 40
predictors randomly selected. If a pairwise correlation is negative, its absolute value is
taken. The magnitude of each pairwise correlation is presented by a block of blue-red
scale image. The lowest pairwise correlation displayed in Figure 11 is 0.2851 and the
highest correlation between two different predictors is 0.9944. Some of the pairwise
correlations among 1794 predictors are as high as 0.9997. Since the dataset has only
n = 15 samples and p = 1794 predictors (p > n) and contains many groups of highly
correlated predictors, it shows a good illustration of the PR-SGR. behavior.

In this experiment, the PR-SGR with all the representative selection rules (MAX,
MIN, MED, RAN and CRT) are compared with the Lasso/Lars and Elastic-Net.
The predictors are standardized and the response is centered to satisfy the initial

settings described in Section 1.2.4.1. We estimate the average prediction errors by 10
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Table 12: The data from the mental health diagnosis on depression. p = 1794

predictors of depression symptoms are examined for each of the n = 15 patients.

V1 V2 V3 V4
Patient | FP1IDAP1 FP2DAP1 FP3DAP1 FP4DAP1 Response
1 -1.669598  -1.482294  -1.209087  -1.138544 13
2 -2.827492  -2.901544  -3.929796  -3.714740 8
3 -1.633667  -1.755907 -1.757161  -1.920382 24
4 -1.974651  -2.019680 -3.246894  -2.952959 17
5 -2.082676  -2.328255  -2.976314  -3.178645 11
6 -1.892157  -1.253171  -2.578960  -2.372285 14
7 -0.631407  -0.479997  -0.203112  0.012080 9
8 -0.803371  -0.933103  -0.351946  -0.494320 14
9 -1.564549  -1.789021 -1.305570 -1.590910 -1
10 -2.891508  -2.914447 -3.100432 -3.224776 11
11 -1.770761  -1.665579 -1.561414 -1.276832 14
12 -1.745057  -2.057707  -2.795231  -2.314760 15
13 -2.227326  -2.389061  -1.830231  -1.514457 19
14 -3.036525  -2.916400 -4.182050 -3.863695 22
15 -0.155327  0.136238  -1.012903  -0.461372 20

replications of the 5—CV. For each CV, we fit a model on its training dataset with
four-fifth of the observations (12 patients) and then calculated a prediction error on
the test dataset (3 patients). Table 13 provides the average prediction errors on the
test datasets. The PR-SGR with all the representative selection rules performs better
than the Lasso/Lars and Elastic-Net. The PR-SGR with the MAX representative
selection rule is the best, and the PR-SGR with the MED representative selection
rule is the second best. The PR-SGR reduces its average prediction error at least
11.58 % compared to the one from the Lasso/Lars. The reduction of the prediction
error from the PR-SGR with the best representative selection rule is 32.91 %, and
from the second best representative selection rule is 30.74 %.

A regression model on the real-life data is fitted for the PR-SGR with the MAX
and MED representative selection rules. The p value used to build clusters is cho-

sen as 0.91 by 5—CV. The value of s = t/3°%||;, which determines the number of
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Figure 11: Graphical representation of the correlation matrix of the 40 predictors
randomly selected from the real data. If a pairwise correlation is negative, we take
its absolute value. The color scale is presented in the upper-left plot.
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Table 13: Average prediction errors and their standard errors for the Lasso/Lars,
Elastic-Net and PR-SGR with the five representative selection rules on the test
datasets generated by 10 replications of the 5—CV. The reduction rate is calculated
with the largest prediction error of the Lasso/Lars, so that the reduction rate for the
Lasso/Lars is zero.

Average

Prediction Standard Reduction
Method Error Error  Rate (%)
Lasso/Lars 14.25 2.85 0.00
Elastic-Net 13.28 2.34 6.81
PR-SGR MAX 9.56 2.01 32.91
PR-SGR MIN 12.60 2.19 11.58
PR-SGR MED 9.87 2.02 30.74
PR-SGR RAN 10.79 2.16 24.28
PR-SGR CRT 11.77 2.13 17.40

nonzero coefficients in the final model, is also calculated by 5—CV. The final model
fitted by the PR-SGR with the MAX representative selection rule includes nine pre-
dictors. Table 14 displays the clusters built, their representatives and their estimated
coefficients. On the other hand, the final model fitted by the PR-SGR with the MED
representative selection rule includes eleven predictors in Table 15. Profiles of the co-
efficients of the PR-SGR with the MED and MED representative selection rules are
drawn in Figures 12 and 13, respectively, as the tuning parameter ¢ varies. The final
models are determined with the ¢ value chosen by 5—CV, and the vertical red lines in
the figures are drawn at the selected s to indicate the final model and the estimated
coefficients. Both methods build the same clusters up to Step 9, but the PR-SGR
with the MED representative selection rule finds two more clusters in Steps 10 and
11. The two clusters built with the PR-SGR with the MED representative selection
rule are generated due to the representative at Step 9, resulting in the change of the

coeflicients.
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Table 14: The clusters built by the PR-SGR with the MAX representative selection
rule, their representatives and their estimated coefficients.

Cluster Estimated
Step | Cluster Size Representative Coefficient
1 | C3CZ/CACZOVRL2 1 C3CZ/C4CZOVRL2 6.9760
2 | C3CZ/CACZCCOH2 1 C3CZ/C4CZCCOH2 2.0678
3 | ALLLRP3, RHEMLRP3 2 RHEMLRP3 2.0327
4 | FAAMF2, C3AMF2 7 CZAMF2 1.5279
C4AMF2, T4AAMFE2
FZAMF2, CZAMEF?2
PZAME?2
5 | T3/TATASY?2 1 T3/TATASY? 1.5613
6 | BACKDCOH3 1 BACKDCOHS3 2.0747
7 | T3TRP1 1 T3TRP1 1.1024
8 | F3SOMF2, FTOMF2 4 T3OME2 1.3803
T3OMF2, FPZOMEF?2
9 | BACKCCOH2 1 BACKCCOH2 0.6873
10 | F30OMF1, C30MF1 4 FZOMF1 0
FZOMF1, CZOMF1
11 | BACKTRP2 1 BACKTRP2 0
12 | FP1/FP2DCOH?2 1 FP1/FP2DCOH2 0
13 | F3/FATCOH2 1 F3/FATCOH2 0
14 | P3OMF1, PAOMF1 3 PZOMF1 0
PZOMF1
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Figure 12: Profiles of the coefficients of the PR-SGR with the MAX representative
selection rule, as the tuning parameter ¢ is varied. Coeflicients are plotted versus
s = t/||3°F5||;. The vertical red line is drawn and its value is chosen by 10—fold
Cross-Validation.
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Figure 13: Profiles of the coefficients of the PR-SGR with the MED representative
selection rule, as the tuning parameter t is varied. Coefficients are plotted versus
s = t/||8°L5||y. The vertical red line is drawn and its value is chosen by 10—fold
Cross-Validation.
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Table 15: The clusters built by the PR-SGR with the MED representative selection

rule, their representatives and their estimated coefficients.

Cluster Estimated
Step | Cluster Size Representative Coefficient
1 | C3CZ/CACZOVRL2 1 C3CZ/C4CZOVRL2 7.8952
2 | C3CZ/CACZCCOH2 1 C3CZ/C4CZCCOH2  -1.3717
3 | ALLLRP3, RHEMLRP3 2 RHEMLRP3 2.4608
4 | FAAMF2, C3AMF2 7 C3AMF2 2.8855
C4AMF2, T4AAMFE2
FZAMF2, CZAMEF?2
PZAME?2
5 | T3/T4TASY2 1 T3/TATASY?2 -1.2485
6 | BACKDCOH3 1 BACKDCOHS3 4.7140
7 | T3TRP1 1 T3TRP1 1.7374
8 F30MF2, FTOMFEF2 4 F30MF2 6.1716
T3OMF2, FPZOMEF?2
9 | BACKCCOH2 1 BACKCCOH2 3.4511
10 | FP1/FP2DCOH?2 1 FP1/FP2DCOH2 0.7131
11 | F3OMF1, C30OMF1 4 C30MF1 -1.4002
FZOMF1, CZOMF1
12 | BACKTRP2 1 BACKTRP2 0
13 | ALLBRP2 1 ALLBRP2 0
14 | P301/P402CCOH3 2 P301/P402CCOH3 0
BACKCCOHS3
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1.5 Discussion and Summary

In this chapter, we have studied the problem of variable selection in the high
dimensional data for the linear regression model. We have proposed a penalized
method based on representatives (the PR) as extensions of the Lasso. Clusters of
highly pairwise correlated predictors are formulated and representatives of predictors
in clusters are selected. The selected representatives are candidates for Lasso vari-
able selection and the model fitting. We have developed an efficient algorithm (the
PR-SGR) to solve the PR estimates as a generalization of the Lars. The PR-SGR
produces a sparse model having less than n predictors with good prediction accu-
racy, while grouping highly correlated predictors and selecting representatives of the
groups. The simulations and empirical results demonstrate its good performance and
its superiority over the Lasso/Lars, Elastic-Net, grouped-Lasso and grouped-Lars.

This study promotes the following open topics. We consider them as potential fu-
ture works that deserve further attention and study. First, the PR solution can have
an interpretation as the posterior mode for a particular prior distribution like other
penalized regression techniques have, although it is expected to be more complicated
due to the representative selection concept. Second, there are various possibilities to
extend the PR by combining the idea of representative selection with other sparse
penalties such as SCAD ([10]), adaptive Lasso ([34]) or fused Lasso ([35]). Addi-
tionally, we can extend the PR for a linear model to the family of generalized linear
models (GLM). Lastly, we may consider selecting two or more variables from an im-
portant group (when the data size is large enough). If one variable is not enough
to represent its group, that is, two of predictors in the group have similar values of
¢;’s and if the group improves the regression fitting error, including more than one

variable from the group may improve the overall performance.
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1.6 Summary of Contributions

As discussed earlier, handling of high dimensional data has been one of the most
challenging tasks over the recent years. Due to high dimensionality, overfitting might
occur resulting in questionable prediction quality. To improve the prediction accuracy,
penalized methods with L;—penalty have been popular by effectively identifying a
subset of important predictors. Here we focused on the case that the number of
predictors p is much larger than the sample size n in the high dimensional data.

A challenge with high dimensional data is how to select only important predictors
which can be spuriously highly correlated with some or many unimportant ones, as
we discussed in Section 1.1. The existing penalized methods such as the Elastic-net
select all correlated predictors simultaneously (when one of them would give nonzero
coefficient). Some methods such as the grouped-Lasso also select the whole set of
predictors belonging to a pre-defined group/cluster. We discussed why including all
spuriously correlated predictors may not be meaningful. In this chapter, we suggested
a way to take advantage of clustering scheme to reduce the high dimensionality and
take advantage of the L, penalized regression method to fit a sparse model.

We have developed a new method using L;—penalty and the representative con-
cept as a way to handle a high dimensional problem with strong ungenuine cor-
relations. As we explained the details in Section 1.2, the modeling based on the
representatives of clusters handled the spurious correlation problem successfully. The
algorithm PR-SGR introduced in Section 1.2.4 helps build a PR regression model

efficiently.
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CHAPTER 11

NONPARAMETRIC ANALYSIS OF GAP DATA

2.1 Introduction and Motivation

This chapter considers a problem of analyzing time-to-event (survival) data, when
missing time intervals referred as gaps ([14, 15, 38]) are possibly detected prior to the
first observed event. The gap data raises a concern in statistical analysis, because
no data is recorded in those intervals and it is unknown whether an interesting event
happens in the gaps or not. In turn, the gap data causes complications in estimating
the survival function of the occurrence time of an interesting event such as the first
event time.

Green et al. ([14, 15]) motivated and studied the gap data analysis with the
data from a heart disease study carried out at Duke University Medical Center. The
medical data was obtained when using a ST-segment heart monitoring method to
detect reperfusion (reopening) of the infarct artery (partially closed or closed artery)
in patients. The monitoring devices recording the ST-segment levels may experience
periodic failures to store amplitude and result in time intervals of missing data (mul-
tiple gaps) ([15]). Also, a patient can experience more than one recovery (multiple
events), where the recovery indicates the time of the first reperfusion when the ST-
segment amplitude falls to 50 % of the peak deviation. Such data are abundant in
many studies from medical, industrial, and economic fields. For example, gap data
can be obtained when monitoring a patient’s heart activities in biomedical studies
or when evaluating a manufacturer’s product performance in an industrial quality
improvement research.

Left-, right-, or interval-censoring happens when the value of an observation is not
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completely known but partially known. Left-censoring occurs when a data point is
below a certain value but the exact time is unknown. Similarly, right-censoring occurs
when a data point is above a certain value but the exact time is unknown. Interval-
censoring occurs when a data point is somewhere of a time interval between two values.
Peto ([31]) suggested a censoring scheme using a constrained Newton-Raphson search
for locating the maximum of the log likelihood. However,its optimization might not be
feasible with a large number of pseudoparameters and the Newton-Raphson method
does not guarantee to find a global maximum. Turnbull ([36]) introduced a general
scheme and showed that the maximization of the likelihood function is equivalent to
the solution of a self-consistent equation, solved using an Expectation-Maximization
(EM) algorithm for computing the Non-Parametric MLE (NPMLE). To compute the
NPMLE, Groeneboom ([16, 17]) introduced the Iterative Convex Minorant (ICM)
algorithm. Since the EM algorithm might be very slow even with a moderate number
of parameters, Groeneboom and Wellner ([18]) suggested the ICM algorithm which is
much more efficient to compute the NPMLE than the EM algorithm, especially with
a large sample size. Gentleman and Geyer ([13]) proposed a method to ensure that
the solution is a global maximum.

In censored data analysis, the independence between censoring and event is a
crucial assumption. Several statisticians such as Cox ([7]), Efron ([8]), Kalbfleisch and
Mackay ([24]), and Kalbfleisch and Prentice ([25]) have studied more general censoring
processes with relaxation on the independence between censoring and event in one-
side (left- or right-) censored data. Their common idea is to model the censoring-event
process as the process unfolds in time. However, the likelihood function derived from
the independent assumption is valid only if quasi-independence between censoring
and event exists. Therefore, the extension of studies to the dependent censored data

becomes limited.
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At first glance, the gap data seems to be in the broad category of the interval-
censored data, because the missing gaps are half-open intervals and one single time
point can be considered as a closed interval (for example, t = [t,t], ¢ > 0). However,
the assumption of the independence between censoring intervals and events in the
censored data is not applicable to the gap data. In the gap data, the observed first
event time can be viewed as a censoring time, but the observed first event and the
first true event are highly dependent. Therefore, the gap data becomes a new type
of interval censored data with a mixture of independent and dependent censoring
intervals. As Yang ([38]) pointed out, there is no quasi-independent relationship in
the gap data between the first true events and the censoring intervals happening to
include both gaps and the observed first event times, because the observed first events
have positive probability of being the first true events. For example, if a subject record
contains only its observed first event time and a missing gap, all information we can
extract is that the first true event time may be in the gap or exactly same as the
observed first event time. So this is not a censored data but a gap data.

Green et al. ([14, 15]) proposed a parametric likelihood function, the Gap Like-
lihood Function (GLF), to estimate the distribution of the true event time W; with
a gap data where the first observed event times are given with several missing data
intervals. Section 2.2 describes its detailed methodology. The GLF utilizes the data
by comparing standard failure time methods for right-censoring data such as Kaplan-
Meier analysis method ([26]) and analyzing a real data from the Duke Medical School
and several simulation studies. It is shown that the GLF is more efficient and less
biased than right censoring methods. Some prefer parametric methods because they
provide unique information based on their distribution assumptions, but others look
for nonparametric ways because nonparametric methods require less restrictive dis-
tribution assumptions and work well with relatively smaller data.

Yang ([38]) proposed a nonparametric method, the Imputed Empirical Estimating
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method (IEE), which uses the imputation idea when calculating the probability of
the first true event being in the gap, to construct an empirical estimate of the survival
function of the first true event time. It is shown that the IEE method outperforms
other traditional nonparametric methods such as the classical estimating approach
([32]), applied to the observed first event time while ignoring gaps in simulations
studies. However, it is difficult to derive its probabilistic and asymptotic properties,
because the IEE formula uses the ordered subject records sorted by their observed first
event times. Moreover, Yang claimed that the IEE estimate is unbiased and robust
via simulation studies, but it is shown as a biased estimate in Appendix D and it
might not be robust under some conditions provided in Section 2.3.2.2. This chapter
proposes a new nonparametric method, a Non-Parametric Estimate for the Gap data
(NPEG), with clear statistical properties and definition. Based on the analytical work
on the bias of the NPEG and simulation studies, we discuss situations in which the
bias can be reduced.

Section 2.2 defines notations, assumptions and definitions used in deriving the
proposed method. With these notations and assumptions, the detailed methodologies
of the GLF ([14, 15]) and the IEE ([38]) are reviewed. Section 2.3 proposes a new
estimation method and will provide its basic statistical properties such as its mean
and variance. The subsequential section compares the proposed method with the IEE
using a numerical example. The proposed method will be illustrated with simulation
examples in Section 2.4 and a real dataset in Section 2.5. Section 2.6 concludes this

chapter with discussions and summaries.

2.2 Notation, Assumption and Relevant Literature

This section introduces the notations and provides assumptions, used to describe
the gap data. Let T7 denote a random variable of the observed first event time, W}, be

a random variable of the k' true event time, and G = (B, E] be a gap where B and
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E are random variables denoting the beginning and ending of the gap, respectively.
The random variables W}, B, and F are assumed to be independent.

Given n subjects, T1; and G; = (B;, E;], i = 1,--- ,n are assumed independently
and identically distributed (i.i.d.). If no gap has occurred before the observed first
event time 7} ; of the it" observation (no gap case), Ty ; = Wi. In the no gap case,B;
and F; are defined as infinity and G; as an empty set for simplicity. If the i*" obser-
vation has a gap, data collection is continued until the observed first event time 7 ;
is detected. If there are any cases containing more than one gap prior to the observed
first event time, such a case is discarded in this analysis so that cases with either no
gap or only one gap are considered. To simplify the study, it is assumed that the
chance to have more than one event in a gap is negligible.

As a result of the notations and assumptions described above, the i* gap G;

becomes
oo (B;, E;] , with a gap
L 0 , with no gap, i.e., (B;, E;] = (00, x|
And the observed first event time 7} ;, ¢ = 1,--- ,n becomes

Wi, , with no gap
h, = Wi, , with a gap and W1, ¢ G, (5)
Wy, , with a gap and Wy ; € G.
Note that our goal here is estimating the survival function Sy, (w) = P(W; > w) of
the first true event time W; for w € (0, 00).

Here, two existing methods developed to handle the gap data are reviewed in
detail. First, the parametric modeling method GLF proposed by Green et al. ([14,
15]) is reviewed, only when the models are relevant to the study setting of this chapter,
although more complicated cases are considered in the GLF. The joint probability
density function (pdf) of B and E are defined as f(p,g)(b,e), and pdfs of Wi and W,

as fw,(t) and fuw,(t), respectively. When no gap has occurred before the observed
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first event time Ty, = t, the observed first event time 73 ; becomes the first true
event time Wy, and its likelihood becomes fy,(t), 0 < t < oco. In this case, it is
unnecessary to include the information of the second true event time W5 ;. With one
gap before T, the conditional pdf of the observed first event time T given the gap
G = (B, E] = (b, €] is derived as follows:

Frie(®) = fun (1) / St — 2) fun (2, € <t < o (6)

where W5 is the second true event time. Without the assumption that the probability

of two events occurring in a gap is zero, the conditional pdf becomes

Iriwe) () = fu(t) / fw, (t — @) fo, (x)d
/ / fws(t =) fun (v — ) fw, (2)dydz, e <t < oo,

where fyy, is the pdf of the third true event time Wj. Therefore, the conditional
likelihood for the random samples T1; = t1,;, G; = (B;, B;] = (b;,e;], it =1,--- ,nis
defined as

i 1-5;
L= H [fw (t14)] le\ bl,el)(tlz)f(B,E)(bivei)} )
=1

where ¢; is an indicator which equals to 1 with no gap or equals to 0 with a gap.

A nonparametric estimate of gap data, IEE ([38]) starts with estimated probability
that Wi is in the gap. The method simply considers n — 1 subjects as the sample
data for the i’ subject and estimates the probability p,;, of T1; being located in a
known gap G; = (B;, E;|. The following is the algorithm for the IEE estimate: Given

n subjects with (T3, By, E;) = (t14,bi,€:), i =1,--- ,n,

1. Sort the data according to their observed first event time ¢; ; to get the ordered

observed first event time £ ;, 1 =1,--- ,n.

2. For each ordered time point t; (;), two probabilities puig(i,j) and pugp(i) are

estimated. puig(i,5), j # 4, j = 1,---,n for the i ordered subject, is the
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imputed probability that the first true event time W is located at ¢, (;) falling
in the ordered gap G,y = (B, Ey] = [bi), €())- Pwap(i) is the probability that
Wi is at the observed first event time T} ;) = t1,;). The IEE calculates puig(7, )

and Puyap(?) as

ﬁwap<]-> = ]-7

A ﬁwap(l) 1
wi 17 1) = = )
p g( ) " — 1y P

A 1= Puig(1,1) , if 1,0y € (b2), e2)]
Puap(2) = 7
1 , otherwise

where n; is the number of observed gap including ¢, (;), that is, n; = Z I(ty, (i) €

Jj=i+1
(b(j), €(;)]). Therefore, the above equations are written as
i—1
Puap(i) = 1= ) Duigli; HI(Tr ) € (b, ew)), 1= 2+, n, and
j=1
L Puap(i) .
wioli, j) = Li=1,---,n.
Duwig(t,7) p— i n

3. The IEE of Sy, (t) is defined as

SIEE()—l_ Z pwﬁ)()

1
ity ()<t

By letting h;; = I(t1,; € G(j)), the calculations of the IEE are simplified as follows:

gIEE(t) = Z pwiyn

ity @) <t
pli)
- 1— 27
P
21ty (i)<t
= PO) pr, o < ).
i1 hy;
where p(i) =1 — > —Lp(j) and m; =n —n; = n — Z hij. The IEE is extended
j=11M j=i+1

with multiple gaps with this simplified form, in Appendix C.
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Nonparametric methods are sometimes preferred because they require less restric-
tive distribution assumptions than parametric methods and work well with relatively
smaller data. On the other hand, the nonparametric method IEE is built based on the
ordered subject records and it has a limitation in deriving some probabilistic prop-
erties. The subsequent section proposes a new nonparametric method (the NPEG)

with better-defined estimate and clear statistical properties.

2.3 Proposed Estimate

Two main problems are considered in the gap data. First, since the first true event
time W is not observable, it needs to be estimated from the observable variables, the
observed first event T} and observable variable gap G = (B, E]. Another problem is
that it is unknown if W; is in the gap G and/or equals to T7. Therefore, we need
to study the following to construct a nonparametric estimated survival function for
the first true event time W;: first discuss (a) the relationship between I(W; < t)and
I(Ty < t), show (b) the relationship between Sy, and Sr, based on (a), and then
provide (c¢) a new estimate Sypra of Sw, based on (b) in terms of only the observable
variables 77 and G = (B, E].

When estimating the survival function of the first true event, Sy, (t) should be
expressed in terms of 77 and G, because only 7T7’s and G’s are observed with the
incomplete information of whether or not 77 = W;. Based on the relationship between
Wy, Wa, Ty and G, the relationship between [(W; < t) and I(T7 < t) is written as
IWy <t)=I(Th <t)+I1(B < W; <min(F,t))I(T; > t) for a given censoring time t.
Then, the relationship between P(W; < t) and P(T; < t) is shown, by simply taking
expectations on both sides of the equation, as P(W; < t) = P(Ty < t) + P(T}, >
t, B < W; <min(E,t)). The definition of the survival function Sp(t) = P(T > t) =
1 — P(T <t) gives Sy, (t) = S, (t) — P(Ty > t, B <W; < min(E,t)). Sw,(t) can
be written as Sy, (t) = S, (t){1 — P(B < W; < min(E,t)) | T} > t}) by using the
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definition of a conditional expectation. Due to the lack of knowledge in the gap data,

the W; cannot be removed from the equation of Sy, (t). Thus, n — 1 subjects are

considered as sample data to estimate the first true event time for the i'® subjects,

that is, the unobserved value W ; is estimated based on 7' ;, j #14, j =1,---,n.

Therefore, the new estimate S vpec(t) is defined as

Swpmalt) = >0 - n(n;—l) > ; I(Th; > t, Tr, € (Biymin(E,, 1)),
J#

The details of each relationship and of the new estimate are as follows.

First, I(W; < t) can be written in terms of other variables as

Wy <t) = I(Ty < t)+ (B < W, < min(E, t))I(T) > t). (7)

](Tlgt) = ](TlSt)I(WlEG)+](T1§t)](W1€G)
(W, < DI(Wh € G) + I(Wh < (W ¢ G)
Wy it W) € G

.le
W, LifW, ¢G

— I(Wa <O)I(Wy € G) + I(W, < t){1 — I(W; € G)}
= IW <t) —IWy € G){I(Wr <t) —I(W2 < 1)}
= I(Wy <t)— I(Wy € G)I(Wy < t < W)
1 LW, <t & Wy >t

0 , otherwise

= I(Wy <t)—I(B<W; <min(E,t))I(Wy > t)
 I(Wh € GYI(WL < t) = I(B < Wy < EY[(W, < t)
=1(B <W; <min(E,t))

= (Wi <t)—I(B < W, <min(E,t)I(T > 1)
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Now,

Ty =Waif Wy e Gl ]

SW1 (t) = ST1 (t) — P(T1 > t, B<W; < min(E,t)) (8)

— Sn(H){1—P(B<W, <min(E,t) | T, > 1)} 9)

is shown based on Equation (7).

Proof: Since Sy, (t) =1 — P(W; <t) and Sp,(t) = 1 — P(T1 < t), the following

relationship between P(W; < t) and P(T7 < t) is driven by taking the expectation

of Equation (7).

Py <t) = E{I(Ty <)}

Therefore,

SWl (t)

or

_ EB{I(W, <) = I(B < Wi < min(E,)I(T, > 1)}
= P(W, <t)—-E{I(B< W, <min(E,t), T} > t)}

= P(Wy<t)-P(Ti >t)- P(B<W, <min(E,?) [Ty >1). (11)

1-P(W; <t)
1-P(Ty <t)— P(B< W, <min(E,t), T} > t) from (10)

Sr(t) — P(Ty > t, B < W, < min(E, 1))

1-P(Ty <t)—P(Ty >t)- P(B<W; <min(E,t) | T} >t) from (11)
ST1 (t) — ST1 (t) : P(B <W; < Hliﬂ(E, t) ‘ T > t)

Sr (){1 — P(B < W, < min(E,t) | T > )}. 0
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Based on the above relationship and Equation (8), the new estimate is defined as

Snppa(t) = S, (t) — ﬁ Y S 1Ty > t, Thy € (Bymin(E; 1)), (12)

where

N

and

i=1 j=1
J#

R 1 —
Sn(t) = -~ > (T > 1),
=1

1~ -
P(Ty>t, B<W; <min(E,t) = — E P(T\; >t, B; < Wy; <min(E;, t)),
n
i=1

~

P(Tl,i > t, Bz < Wl,i < rmn(EZ,t))
P(Ty; > t, Ty, for any j is located in (B;, min(E;, t)])

"~ W is not observable, so use T} ;’s from n — 1 subjects

P(Ty; > t, Ty, € (B;, min(E;, t)])

gLy
\H\IIM:

=1
7

- Ty ,;’s are independent & T3 ; ¢ (B;, min(E;,t)] C G, for j =1
1 ¢ :
— JZI (T, > t, Th; € (B, min(E;,1))).

i

Remarks: The estimate S ~pEG(t) is a nonparametric estimate of the survival function

of the first true event time Wj. SNPE(;(O) =0 and ngEg(t) — 0ast — oo.

2.3.1 Example

This section uses a numerical example introduced in ([38]) to illustrate the NPEG

and IEE estimates. The dataset contains eight subjects, where each observation

consists of gap information and the observed first event time. The observed data and

their ordered data are given in Table 16.

The new estimate S ~peg(t) is calculated first. Fix the value of censoring time

t before calculating SNpEg(t). For 0 <t <10, t;;, >t for any ¢ = 1,--- ,8 and
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Table 16: Example introduced in Yang’s thesis up to one gap.

Original data Ordered data
i gi=(bie] |t || () | 90 = by, e@] |t
1 (21,52] 57 || 1 (3,5] 10
2 (12,26] 31 || 2 (7,16] 20
3 (17,25] 63 | 3 (12,26] 31
4 (3,5 10 || 4 (00, 0] 35
5 (29,37] A7 || 5 (13 24] 45
6 (00, 09| 35| 6 (29,37 47
7 (7,16] 20| 7 (21,52] 57
8 (13,24] 45 || 8 (17,25] 63

t1; ¢ (bi,min(e;,t)] for any 4,5 = 1,---,8, i # j. Therefore, Snpea(t) = 1. For
10 < t < 20, the subject 4 should be ignored because ¢;4 < t. For the adjusted

gaps (b;, min(e;, t)], only the adjusted gap of the subject 7 contains the observed
. 7 1
first event time of the subject 4. Therefore, Sypra(t) = 3”78~ 0.8571.For

20 <t < 31, the subjects 4 and 7 are ignored because t;; < ¢ for ¢ = 4 and 7. For a
fixed 7 # 4 or 7, only three adjusted gaps for the subjects 2, 3, and 8 contain other

observed first event times. That is, for ¢ = 2, 3, or 8, t;7 = 20 € (b;, min(e;, t)].
A 6 3
Consequently, Sypea(t) = s 78" 0.6964. For 31 <t < 35,71 =2, 4and 7

are ignored. For ¢ = 1, the adjusted gap (21,¢] contains ¢;5 = 31. When ¢ = 3,
the adjusted gap (17,25] contains ¢, 7; = 20. When ¢ = 5, the adjusted gap (29, 1]

contains t; o = 31. For i = 8, the adjusted gap (13, 24] contains ¢; 7 = 20. Therefore,
A 5 4
Snpec(t) = i = 0.5536. Similarly, the rest SNpEg( ) values can be calculated.

For 35 < t < 45, only half of the subjects are considered with ¢ = 1, 3, 5 and 8. The

adjusted gap (by, min(ey,t)] = (21,¢] contains t;5 = 31 and ¢, = 35, the adjusted

gap (bs, min(es, t)] = (17,25] contains ¢;; = 20, the adjusted gap (bs, min(es,t)] =

(29, min(37,¢)] contains ¢, » = 31 and t; ¢ = 35, and the adjusted gap (bs, min(eg, t)] =
4 6

(13,24] contains t1; = 20. Thus, Syppa(t) = 3 78" 0.3929. For 45 < t < 47,

only three subjects with i = 1, 3, or 5 are considered. ?; 2, t1 6 and ¢, g fall in the adjust
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gap (b, min(ey,t)] = (21,¢]. t17 is in (bs, min(es, t)] = (17,25]. 15 and ¢, ¢ are falling
- 3 6
into the adjust gap (b5, min(es,t)] = (29,37]. Thus, Sypra(t) = 3 T8 0.2679.

For 47 < t < 57, only two subjects with ¢ = 1 and 3 are considered. The adjusted gap

(b1, min(ey, t)] = (21, min(52, )] contains ¢; ; for j = 2, 5, 6 or 8 and the adjusted gap
- 2 5
(b3, min(es, t)] = (17,25] contains t; 7 = 20. Thus, Snpra(t) = 3 TR 0.1607.

For 57 <t < 63, only one subject with 7 = 3 is considered. Its adjusted gap becomes

(b3, min(es,t)] = (17,25] where ¢, falls into. The estimated S, (t) is calculated
A 1 1
as Snprg(t) = it 0.1071. Finally, for ¢ > 63, there is no subject to be

considered. Therefore, S vpec(t) = g = (0. Table 18 provides the estimated survival
function based on the NPEG, S ~pec(t) for a given censoring time t.

Since Yang ([38]) provided a numerical calculation with its original algorithm, the
calculation with the simplified form is provided below. First, calculate p(i) for each
ordered subject . With the first ordered subject with #; ) = 10, the estimate for
p(1) is one as defined. Then, for the next ordered subject with ¢; 2y = 20, hi12 = 1 and
ny = 1, because t; (1) € g2y and only the second ordered gap covers ¢ (). Therefore,
p(2)=1-— :Tli =1- 8%1 = 0.8571. For the third ordered subjects with ¢, (3) = 31,
the gap g@) = (12,26] of the third ordered subject does not cover t; ;) = 10 but
cover ty,(3) = 20. Therefore, h13 = 0 and hg3 = 1. Since the third, fifth and eighth
ordered gaps cover ty (9), no =3, p(3) =1 — :1—1? — }Tln_gz = 0.8286. The fourth ordered
subject with ¢1 (4 has no gap, so hyy = 0, i = 1,2, or 3 and p(4) = 0. For the fifth
ordered subject with ¢, (5), p(5) = 0.8286 because ng = 2, 1y = 2, hi5 = hgs = has =0
and hgs = 1. The gap of the next ordered subject contains #; 3y and #; 4y and its
observed first event ¢, () is falling in the gap g(7y. Therefore, the estimate of p(6) is
p(6) =1-— }Tln_lf — % — };1—32 — }T;—le — %f = 0.6952. For the seventh ordered subject,
hir = har = 0, hsy = hyr = hsy = her = 1 and ng = 1. So p(7) = 0.4776. Finally,

since the eighth ordered subject” gap contains only #; (2, hes becomes one and other

h;; values are zero and p(8) = 0.8286. These calculation procedures are summarized
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Table 17: Procedure to calculate the IEE with the simplified formulation.

(Z> gG) = [b(i)7 6(1‘)) l1,3) hi; hoy  hsi ha hsg he  he | ny ﬁ(l)
1 (3,5] 10 1|1

2 (7,16] 20 1 3 1 0.8571
3 (12,26] 31 0 1 2 | 0.8286
4 (00, 00] 3 10 0 0 2 |1

5) (13,24] 45 0 1 0 0 1 | 0.8286
6 (29,37 47 10 0 1 1 0 1 |0.6952
7 (21,52] o7 0 0 1 1 1 1 0 ]0.4776
8 (17,25] 63 0 1 0 0 0 0 0 0 | 0.8286

Table 18: The IEE and NPEG estimates on the example dataset in Table 16.

t Stee(t) | Svrea(t)

0<t<10 |1 1
10 <t <20 | 0.8571 0.8571
20 <t < 31| 0.6857 | 0.6964
31 <t<35|0.5476 | 0.5536
35 <t<45|0.3810 | 0.3929
45 <t <47 | 0.2626 | 0.2679
47 <t <571 0.1633 | 0.1607
57 <t <63 |0.1036 | 0.1071

63 <t 0 0

in Table 17. Table 18 also provides the estimated survival function based on the IEE
method, ngE(t) for a given censoring time ¢.

Figure 14 is drawn to compare the NPEG with IEE and traditional empirical
survival function Sp, (t) Z I(Ty; > t), denoted as S3. The NPEG (solid black
line) is very similar with the IEE (dashed red line), but both estimates are smaller
than the traditional nonparametric method Ss (dotted blue line). The simulation
studies in the later section also show that S; overestimates because the first observed

event time 7 may correspond to the second true event time W for records with gaps.
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Figure 14: The estimated survival functions based on the IEE and NPEG. The
dotted blue line represents the traditional empirical survival function ng based on
the observed first event times when ignoring the gaps. The dashed red line represents
the estimated survival function based on the IEE method, and the solid black line
represents the estimated survival function for the first true event time W; based on
the NPEG.
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2.3.2 Basic Statistics and Properties
2.3.2.1 Expectation and Bias of SNpEg(t)

The expectation of S Npec(t) is

ESNPE(;(t) = SWl(t) + P(Tl >, B<W < mln(E,t))

_E(B,E) [PTI (TLl > t, TLQ € (B,min(E, t)])]

Proof:

n n

ESvpec(t) = E|Sp(t)— ﬁ ZZ](TM >t, T ; € (B;, min(E;, t)])

i=1 j=1

n n

N 1 .
= ESTl (t) —E m E E ](Tlﬂ' > t, Tl,j € (Bi,Hlln(Ei,i)D
i=1 j=1
JF#i

n

A 1
Note that E[Sp, (t)] = — Z P(Ty; >t) = P(Ty; > t) = Sp,(t), because T} ; are i.i.d..
n
i=1
And note that

E[I(Tlﬂ > t, Tl,j S (Bz,mln(E“t)])]
= EE[(Ty; >t, Ty, € (B;,min(E;, t)]) | (B, E;)]
= EpgPr(Tiy >t Ty € (B,min(Ey, )] (0 (13))

= E(B,E) [PTl (T171 > 1, Tl,g - (B,min(E,t)])},
because

E[I(Tlﬂ > t, Tl,j € (B,L,mll’l<El,t)]) | (Bu Ez) = (bl, 61)]
= E[[(Tl,l > 1, Tl,j € (bz, min(ei, t)]]
= P<T1,i > t, T177;/ € (bi,min(ei,t)], 7:/ 7é i, 1 S 'i, S n) ( TLZ"S ZZd)

= PT1 (Tl,l > t, TLQ € (bl,min(el,t)]). (13)
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Therefore,

R 1 n n .
ESxpea(t) = STl(t)—mZZE[I(TM>t, Ty; € (B, min(E;, 1)])]
i=1 j=1

J#

) > EwplPr(Tia >t Tia € (B,min(E,t)])]
i=1 j=1

7
= STl (t) — E(B,E) [PT1 (T171 > t, TLQ - (B, min(E, t)])}

1
n(n—1

= ST1 (t) -
= Sw,(t)+P(Th > t, B<W; <min(FE,1))

_E(B,E) [PJT1 (Tl,l > i, TLQ S (B,min(E, t)])] (fl"OHl (8)) ]

Therefore, its bias is calculated as

Bi&S[S’NpEg(t)] = ]ESNPEG(t) _SW1<t)
= P(Ty >t, Wy € (B,min(E, t)))
_E(B,E') [PTI (T171 > t7 T1,2 € (valn(Evt>])]

2.3.2.2 Investigation on the Bias of the NPEG

The bias of the NPEG and its properties are studied in this section.

1. If E — B = Glengen, is small, then IB%ias[SNpEG] is small.

When | G | is small, P(W; € (B, min(E,t)]) is also small, resulting in small
Bias[g ~vpec)- The simulation results with Setting 6 show that the curve for
S NpEG 1S very close to the curve for S; and hence small bias is obtained, when

the expectation of the gap length is small.

2. If T} and W, are close, then IB%ias[S' NPEG) 1s small.

If Wy = Ty, Equation (9) becomes Sy, (t) = Sp,(t), because P(B < W; <
min(E,t) | Ty > t) = 0. Therefore, the bias of the NPEG becomes zero. When

the value of W is close to the value of T}, P(B < W) < min(E,t), T} > t)
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will be also small, and Sy, () is almost the same as Sz, (¢). From Equation (8),

small bias of the NPEG is obtained in this case.

The simulation studies also support this. For all the settings except for Settings
4 and 7 with high portion of T}’s, which are not actually the first true ones (at
least 26%), the new estimate NPEG works well regardless of the size of n. As
| G | gets smaller, the chance of 77 = W increases from Equation (5) in Section
2.2. As studied in the simulations, many 77 values can be exactly the same as

W1 even with gaps.

. In the gap data, the first true event time W; and the observed first event time
T, are dependent from Equation (5). The dependency is inevitably caused by
the incomplete knowledge of whether Wy has happened before T} due to the
existence of missing interval, gaps . Naturally, the bias of the NPEG also
depend on the relationship between G, W; and Tj, and the bias cannot be
removed without the knowledge on the relationship. Appendix E studies the
relationship between P(T} > t) and P(W; > t) based on the relationship among
Ty, Wy, Wy and G using the GLF ([14, 15]). Unless the true distributions of
Wi, Wy and G are known, the differences between P(T7 > t) and P(W; > t)
cannot be calculated. In practice, the true distributions of 77, W; and W, are
expected to be unknown and only the first event time 77, which can be either W
or Wj, is observable. This study based on the GLF also supports that the lack
of knowledge described above makes the handling of the bias difficult and out-
of-control in empirical studies. Note that the value of the difference calculated

in Appendix E can be large if the underlying distributions are misspecified.

. The bias of the NPEG does not depend on the sample size n. Therefore, even

if n is increased, the bias under certain situations may not be removed.

In the simulation studies, experiments with a large sample of 500 are conducted,
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but their results are very similar with those even with n = 20. It shows that

the bias is not removed even if n increases.

5. For censoring time ¢t < B, (B, min(F,t)] = () and the bias of the NPEG is zero.

If the censoring time ¢ is large enough to be P(T} > t) = 0, then P(T} > t, W, €

(B,min(E,t)]) < P(T; > t) = 0 and hence the bias of the NPEG becomes zero.

So the proposed estimate works well for small or large censoring time t. On

the other hand, the IEE tends to be underestimated for such censoring times

as seen in the simulation studies.

2.8.2.3 Standard Deviation

The variance of S Npec(t) is

Var[Sxrec(t)] = E[SXppa(t)] — {E[Sypec(t)]}’ = F(T1, B, E,n),

where

F(Ty,B,E,n)

1
n

{57, (t)(1 = Smy ()
2n—3

St () EB,g)[Pr, (T € (B, min(E, t)])]

+— ?STI ()Ep.5)[{ Pry (T € (B, min(E, £)])}?
"2 s ()
X, Pr (T1 € (B min(Ey, 0)] (\(Ba, min (B, 1))
2n

=S (0 B [P (T € (B,min(E,0)Y |

Proof: First, consider E[S% ppa(t) | (B, E) = (b, e))].

E[g]z\/PEG(t) ’ (B>E) = (b> 6)]

n n

n(n —1)

=1 j=

1 & 1
= E ﬁ Z[(Tl’z > t) - Z Z I(Tl’i > t, Tl,j € (bz, min(ei,t)])
i=1 i—1 j=1

i
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= o(1).

MSE(Sxpec(t)) = Var(Sypea(t)) + {Bias(Sypea(t))}? cannot go to zero even

though the sample size goes to infinity, because its bias does not go to zero.
2.3.2.4  Other Properties

For the consistency of Sy prc(t), consider the following:

P (’ S'NPEG(If) — Sw, (t) |> e)
P (I Swrpa(t) = ElSyrea®)] |2 5 ) + P (| ElSyrec(t)] = Sw (1) 2 5)

Var[Svrec(®)] | (Bias[Sxpec(®)])’
28 (e/2)?

_ (Bias[Snpra(t)])?

= oWy

Remarks: If Bias[SNpEg(t)] —0asn— oo, S’NpEg(t) becomes consistent. How-

IA

IA

(by Chebyshev’s inequality)

ever, as discussed in Section 2.3.2.1, the bias of the NPEG is not o(1) and thus SNPEG
may not be consistent. Since the NPEG is a biased estimate, it is not meaningful to

study its asymptotic distribution.

2.4 Simulation Study

A simulation study is conducted to evaluate the quality of the proposed esti-
mate. The new estimate, NPEG is compared with the following values obtained from

existing nonparametric estimation methods:

e S; defined as the underlying true survival function Sy, (t) of the first true event

time W} in each simulation setting.

. A 1

e S5 defined as the classical empirical survival function Sy, (t) = — Z I(Wy,; >t)
n

based on the first true event time W in each simulation setting. Note that these

values cannot be observable in real experiments.
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e S5 defined as the empirical survival function Sg, (t) = %ZI (Ty; > t) based
on the observed first event time 77 which might or might not be the first true
event time W7 in a simulation data. Note that the gg becomes the traditional
empirical survival function based on the observed first event time 77, when the

gaps are ignored. We call this method as the ignoring-gap method.

o S 1eE introduced in Section 2.2. If each simulation uses repetition, the mean of

results is used as the IEE.

For each simulation setting, each sample subject will consist of four independent
random variables (Gpegins Giengths W1, Weiapse) to generate. Let a random variable
Gegin be the starting time of gap, and a random variable Gjengin, be the length of gap.
Then, the ending time of gap, Genq becomes Gpegin, + Gliengtn- Let random variable
W, be the first true event time, and a random variable W,,se be the elapsed time
between the first true event time 1/ and the second true event time W5. Thus, the W5
becomes Wi + Weigpse. Two sets of simulation experiments are studied based on two
different underlying distributions (exponential and Weibull distributions) for the four
random variables. The reason to consider only exponential and Weibull distributions
is just that they are commonly used in lifetime data analysis. The details of their
parameter values are given in Tables 19 and 20. In each set of simulation experiments,
two situations (small samples (n = 20) and large samples (n = 500)) are considered.
When n is small, the same setting is repeated r = 300 times to compare the mean of all
the candidate estimates described in the first paragraph. With the large sample size,
only r = 3 simulation replications are conducted due to the computational burden to
examine the property of large sample consistency of the estimates.

An exponential distribution is defined with a parameter called the rate parame-
ter, while a Weibull distribution is defined with two parameters, the shape parameter

and the scale parameter. Note that the Weibull distribution is related to exponential
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Table 19: Parameter values of the four random variables introduced in Yang’s thesis

after correction.

Random Variables | Distribution | Parameter | Distribution | Parameter
Ghegin Exp(6,) |0,=5 Weibull(2, M) | \; = 5.64
Glength Exp(fy) | 60y=15 Weibull(2, \s) | Ay = 15.93
Wi Exp(ay) a; =55 Weibull(2,61) | 01 = 65.06
Wetapse Exp(as) agy = 54.99 | Weibull(2,d;) | 62 = 62.05

distribution, when its shape parameter value is set to 1. Here the shape parameter
value of Weibull distributions is set to 2 for comparison with the settings using Expo-
nential distributions. The parameter values used in Yang’s thesis ([38]) are displayed
in Table 19. Yang generated the random variables Gegin, Giength, Wi, and Wepgpse
with their expectation 5, 15, 55, and 54.99, respectively. Note that Yang used wrong
parameter values for Weibull distributions, so their values are corrected here. These
settings Yang provided are used as the baseline in this section. Each parameter value
is changed at each time for comparisons. All settings studied are described in Table
20.

In the gap analysis study, it is assumed that the probability of two events hap-
pening in the gap is negligible. Since parameters should be selected to satisfy this
assumption, the selected parameter values are evaluated based on the following three

probabilities:
e P, = Pr(a gap occurs) = 1 — Pr(W; < Ghegin),
e P, = Pr(the observed first event time is not the first true event time)
= Pr(Ty # Wy, Ty = W)
= Pr(W; is in the gap G and W, is outside of the gap)
= Pr(Gpegin < Wi < Gepg, Wa > Gena)

= PT(Gbegin S Wl < Gbegin + Glength S Wl + Welapse)a and
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Table 20: Parameter values of the four random variables for each simulation setting.

Exp
Parameter Expectation Variance

91 92 a1 a9 91 (92 a1 a9 91 92 a1 (6%
1 5 15 55  54.49 5 15 55 54.49 25 225 3025 2969.16
2 5 15 55 5 5 15 55 5 25 225 3025 25
3 5 15 55 100 5 15 55 100 25 225 3025 10000
4 5 15 5 54.49 5 15 5 54.49 25 225 25 2969.16
5 5 15 100 54.49 5 15 100 54.49 25 225 10000 2969.16
6 5 5 55 54.49 5 5 55 54.49 25 25 3025 2969.16
7 5 45 55  54.49 5 45 55 54.49 25 2025 3025 2969.16
8 2 15 55 54.49 2 15 55 54.49 4 225 3025 2969.16
9112.5 15 55 54.49112.5 15 55 54.49|156.25 225 3025 2969.16

Weibull
Parameter Expectation Variance

)\1 )\2 51 52 )\1 )\2 51 52 )\1 )\2 51 (52
1] 5.64 1693 62.06 62.05 5 15 55 54.49 6.83 61.51 826.53 826.26
2| 5.64 16.93 62.06 5.64 5 15 55 5 6.83 61.51 826.53 6.83
3] 5.64 16.93 62.06 112.84 5 15 55 100 6.83 61.51 826.53 2732.50
4| 5.64 16.93 5.64 62.05 5 15 5 54.49 6.83 61.51 6.83 826.26
5| 5.64 16.93 112.84 62.05 5 15 100 54.49 6.83 61.51 2732.50 826.26
6| 5.64 5.64 62.06 62.05 5 5 55 54.49 6.83 6.83 826.53 826.26
7] 5.64 50.78 62.06 62.05 5 45 55 54.49 6.83 553.37 826.53  826.26
812.26 16.93 62.06 62.05 2 15 55 54.49| 1.10 61.51 826.53 826.26
9/14.1 16.93 62.06 62.05|/12.5 15 55 54.49| 42.66 61.51 826.53 826.26
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e P; = Pr(two true events fall in the gap)
= PT(Gbegin <SWI<W; < Gend)
= PT(Gbegin S Wl S Wl + Welapse < Gbegin + Glength)-

These probabilities and the distributions of the four random variables affect the esti-
mates of the survival function, their unbiasness, as well as their consistency. The sim-
ulation studies explore how all these factors affect the performance of the estimates.
Moreover, they also explore the behaviors of the NPEG biaseness and consistency, by
studying the knowledge on the relationship between the first true event time and the
observed first event time.

The parameter values for each setting but with different underlying distribution
are adjusted to have the same means of the four random variables to compare the
effect of distributions and the effect of variances of the random variables. From
the 9 simulation settings for fixed underlying distributions, the effects of changing
parameter values for the four random variables and three probabilities P, — P35 are
compared. By studying Settings 2-1-3, the expectation of Wejepse increases. Thus,
the expectation of W5y increases so that the values of W; and W5 become further,
and the probability P, becomes higher but P; smaller. Therefore, the effect of P
and P5 can be studied by comparing Settings 1, 2 and 3. Similarly, the expectation
of W1 increases from Settings 4-1-5. Although the expectation of W; increases, the
parameters of Gpegin and Gienger, do not change at all. Therefore, it is expected to
have bigger P, and lower P;. By examining Settings 6-1-7, the expectation of Giengn
increases and hence more wider gaps are generated. Therefore, the chance P; of W}
and W falling into (Giegin, Giengtn] increases. The expectation of Gpegin increases from
Settings 8-1-9 while keeping other expectations same. Thus, P; definitely decreases.
The empirical probabilities 151, 152, and P; for each simulation setting are in Table
21. These empirical probabilities have the same patterns as the parameter values are

changed.
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Each sample data is generated as follows:

1. Generate the four random variables, (Gpegin, Giength, W1, and Weapse) accord-
ing to a given distribution, their parameter values, sample size n and r for

repetitions.

2. Examine the generated data to exclude subjects that do not satisfy the as-
sumptions described in Section 2.2. That is, remove the data points from the
simulation dataset, if two values Wy and W; 4+ Wegpse fall into the correspond-
ing gap (Gregin, Gegin + Giengtn]. Those deleted data points are not used for

simplicity, when calculating 33, S 1er and S NPEG-
3. Find out the observed first event time of each subject as follows.

o If the first true event time W is observed before the gap (i.e., Wi < Gpegin)
or if the gap has zero length (i.e.,Giengen, = 0), then it is a no-gap case and

the observed first event time T} is exactly the first true event time Wj.

o If the first true event time W falls in the gap (i.e., Gpegin < Wi < Gepa)
and the second true event time W5 happens after the gap (i.e., W > Gepna),

then 77 becomes Ws.

e If the first true event time happens after the gap (i.e., Wi > Geng), then
T, becomes Wj.

For the NPEG and IEE, it is assumed that the probability of two events falling
into the gap is negligible. So if the first and second true event times of a subject
are in the gap (i.e., Goegin < W1, Wa < Gepa), then the subject is ignored in

the calculations.

4. Calculate each estimate (51, 5'2, Ss, Sipp or S'NPE(;). For the IEE, the data
should be ordered properly by the observed first event time T before the cal-

culation.
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Table 21: Empirical probabilities fjl, ]52, Py for all simulation settings.

Exp
(n,r) = (20, 300) (n,r) = (500, 3)
Setting P, P, ]53 P, P, ]53
1 91.2356 16.1474  4.1167 | 91.2986 15.1998  3.4667
2 89.6977  5.2253 15.2167 | 89.7139  5.8016 13.8000
3 91.8239 17.5033  2.3000 | 92.3402 18.2596  2.5333
4 46.4843 33.3631  8.0833 | 48.3864 31.9450  9.2000
5 95.1179  9.3985  2.8333 | 95.2059  9.3102  2.6000
6 91.4214  7.0468  0.7500 | 91.4832  7.1762  0.6000
7 90.5368 26.7245 18.5833 | 89.4033 26.8294 20.7333
8 96.5172 16.8289  4.2500 | 96.6526 17.0075  4.4000
9 80.7292 13.8457  3.9500 | 80.6317 14.5460  3.2667
Weibull
(n,r) = (20, 300) (n,r) = (500, 3)
Settlng pl pg pg pl pg pg

1 99.0632  9.9518  0.2500 | 99.0640  9.0881  0.2667
99.2266  3.6016  6.4500 | 99.0044  4.2115  6.6000
99.2491 10.3597  0.0667 | 99.6663  9.8061  0.0667
48.5916 46.2262  2.6667 | 47.6304 44.6166  2.7333
99.7483  3.0684  0.1667 | 99.7333  2.6667  0.0000
99.3667  2.5000  0.0167 | 99.0667  1.7333  0.0000
99.1214 40.1576  8.6500 | 99.3387 39.9848  9.4667
99.9167  8.1500  0.2000 | 99.7996  7.2812  0.2000
94.7867 13.0162  0.5500 | 94.9551 13.8493  0.8667

© 00 J O U = W o

5. Plot all the estimated survival functions along with the true survival curve for

S,

Each plot of Figures 15-26 contains a total of five curves. One is for S; (dashed
red line) which is the underlying true survival function. With the values given in
Table 20, the curve for S; can be drawn. Another curve is for S, (dotted blue line),
the average value of r empirical survival functions for the first true event time Wj.
The empirical estimate based on the first true event W, is known as the Uniformly
Minimum Variance Unbiased Estimate (UMVUE) ([27]). Therefore, the curve for S,

in each simulation setting is expected to be close to the curve for S;. Each plot also
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contains the curve for S (dotted and dashed green line), which is the average value
of r empirical survival functions ng based on the observed first event times 7. The
observed first event time might not be the first true event times but the second true
event times due to the possible gaps. Thus, the simulation studies apparently obtain
overestimated Sy,. Moreover, if more observed first event times are not the first true
event times, the difference between Sy and S increases. Another curve is for the IEE
(dashed orange line). The last curve is for the proposed method, NPEG (solid black
line). From the definition of the NPEG, Equation (12), Sypra is definitely smaller
than 5’3.

The probability P is calculated to see how many subjects contain gaps. All sim-
ulation settings except Setting 4’s have at least 80% chance to have gaps. However,
a lower chance of having gaps does not mean having better information on the re-
lationship between the first true event time and the observed first event time which
can be amounted by Ps.

The probability P, provide information about how many observed first events
are not the first true ones. As P, becomes larger, more observed first events T;
are not the first true ones W; but the second true ones W5. Therefore, when Ps is
large, the empirical survival function Ss based on T} trivially do not work well as
an estimated survival function for Wi, because many T)’s are not W; but Ws. Since
more information about W; is obtained from T; as P, decreases, the performances
of the NPEG and IEE are expected to be improved. All simulation settings except
Settings 4 and 7 demonstrate both curves for the NPEG and IEE are very close to the
true survival curve even with the small sample size and closer to the true value than
the curve for S, nonetheless their Py’s are not small (at most 18.26%). But with a
little higher P, values (about 25 to 40%) for Setting 7’s (with the high expectation
of the gap length), the IEE works better than the NPEG and both work better than

the ignoring-gap method.
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Figure 15: Comparison of the estimated survival functions based on the NPEG, IEE,
S, and S5 for the settings 1 - 3 with all exponential distributions, n = 20 and r = 300.
S, is the true survival function.
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Figure 16: Comparison of the estimated survival functions based on the NPEG, IEE,
S, and S5 for the settings 4 - 6 with all exponential distributions, n = 20 and r = 300.
S, is the true survival function.
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Figure 17: Comparison of the estimated survival functions based on the NPEG, IEE,
S, and S5 for the settings 7 - 9 with all exponential distributions, n = 20 and r = 300.
S, is the true survival function.
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Figure 18: Comparison of the estimated survival functions based on the NPEG, IEE,
S, and S3 for the settings 1 - 3 with all exponential distributions, n = 500 and r = 3.
S, is the true survival function.
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Figure 19: Comparison of the estimated survival functions based on the NPEG, IEE,
S, and S3 for the settings 4 - 6 with all exponential distributions, n = 500 and r = 3.
S, is the true survival function.
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Figure 20: Comparison of the estimated survival functions based on the NPEG, IEE,
S, and S3 for the settings 7 - 9 with all exponential distributions, n = 500 and r = 3.
S, is the true survival function.
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Figure 21: Comparison of the estimated survival functions based on the NPEG, IEE,
52 and 53 for the settings 1 - 3 with all Weibull distributions, n = 20 and r = 300.
S, is the true survival function.
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Figure 22: Comparison of the estimated survival functions based on the NPEG, IEE,
52 and 53 for the settings 4 - 6 with all Weibull distributions, n = 20 and r = 300.
S, is the true survival function.
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Figure 23: Comparison of the estimated survival functions based on the NPEG, IEE,
52 and 53 for the settings 7 - 9 with all Weibull distributions, n = 20 and r = 300.
S, is the true survival function.
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Figure 24: Comparison of the estimated survival functions based on the NPEG, IEE,
52 and 53 for the settings 1 - 3 with all Weibull distributions, n = 500 and r» = 3. S
is the true survival function.
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Figure 25: Comparison of the estimated survival functions based on the NPEG, IEE,
S, and S5 for the settings 4 - 6 with all Weibull distributions, n = 500 and r = 3. S
is the true survival function.

96



1.0

Survival Probability

04

0.2

0.0
I

0 50 100 150 200

Days since beginning

(a) Setting 7

1.0

Survival Probability
06 08
L L

04

0.2

0.0
I

T T T T
0 50 100 150

Days since beginning

(b) Setting 8

1.0

Survival Probability
06 08
L L

04

0.2

T T T T
0 50 100 150

Days since beginning

(c) Setting 9

Figure 26: Comparison of the estimated survival functions based on the NPEG, IEE,
S, and S5 for the settings 7 - 9 with all Weibull distributions, n = 500 and r = 3. S
is the true survival function.
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The probability P; informs how many subjects will not be considered, because
they do not satisfy the assumption described in Section 2.2. Since it is assumed that
the chance to have more than one event in a gap is ignored, Pj is expected to be small.
Most of simulation settings have quite small empirical probabilities Py. With large n,
the setting having Py = 20.73% does not become a problem, because 396 subjects are
used on average when calculating the estimates §3, S e and S NpEG- With only 20
subjects, P; values for Settings 2 and 7 with all exponential distributions are 15.22
% and 18.58 %, respectively. Thus, only 15 subjects are used on average to calculate
5'3, S 1EE and S ~NpEG. But, in the other settings, 16 subjects are kept on average for
the calculation. Even if only small number of subjects are used, Ps is not a problem
when comparing the simulation results, because each simulation setting is repeated
300 times and the estimates 5’3, S}EE and SNPEG are the averages of 300 estimated
values.

The TEE underestimates for small or large censoring time ¢, but overestimates for
middle value of censoring time ¢, as mentioned in Yang’s ([38]): the IEE and true
survival curves almost merge together in the area where the sample points are very
dense, because less information can be provided with the fewer sample points. The
simulation results show that the NPEG works better than the IEE with fewer sample
data points. The NPEG estimated curve changes slower than the IEE estimated
curve for small or large censoring time t.

The simulation results from Settings 7-1-6 give smaller bias by decreasing the
expected length of the gap as discussed in Section 2.3.2.2. If P, becomes bigger, T}
which are not W; should be detected more frequently. We can see the curves for
S ~vprEc and S 1Eg are above the curves for S; and gg with middle values of censoring
time t. It means that the NPEG and IEE overestimate. However, the curves are

below the curve for the empirical estimate Ss.
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To examine the consistency of the NPEG, simulation settings are conducted with
a large sample of 500. Due to high computational burden, each setting is repeated
only three times. If the results having n = 500 are compared with those having only
n = 20, the consistencies of the NPEG and IEE are not achieved by the increments
of the subject sizes because their results are not different as we discussed in Section
2.3.2.2. Although Yang mentioned the IEE is always robust, the simulation results
show that its variance may not go away even if the sample size increases. As remarked
in Section 2.3.2.4, the NPEG would be a consistent estimate if its bias is zero or if
its bias goes to zero as the sample size increases.

In these simulation studies, two different underlying distributions of the four ran-
dom variables having same expectations are used. Table 20 shows that the variances
of the four variables with the exponential distributions are much larger than those
with the Weibull distributions, even though the four variables have the same expec-
tations. A smaller variance means that the corresponding variable is more stable.
That is, variables generated based on the Weibull distributions are more stable than
those based on the exponential distributions. As the variance of the random variable
Giengtn increases, there is a less chance to have overlapping gaps. When gap overlap-
ping happens more frequently, more common missing time periods are obtained. As
more subjects have the same missing periods, more information is lost. In an extreme
case that all the subjects have the same gap G, all information for the time period G
is missed and thus S ~vrEc and S 1EE become 5'3, the empirical survival function when
the gaps are ignored. By comparing Settings 6-1-7, the effect of missing intervals due
to the variances of the gap length can be checked. Since the settings with the expo-
nential distributions have larger variances than those with the Weibull distributions,
the estimates from the settings with the exponential distributions overestimate more

than those from the settings with the Weibull distribution as the plots show.

99



In order to evaluate the performance of the NPEG, IEE and the ignoring-gap
method, their estimated Mean Square Errors (MSE’s) and biases are computed. All
the settings use only n = 500 and the Weibull distributions for this evaluation. To
obtain the estimates of the MSE and bias for several percentiles, p = 5, 25, 50, 75
and 95, every simulation setting is repeated 10 times. The estimates considered here
are all discrete stepwise functions, even if n is large. Therefore, estimating p might
sometimes be impossible because the stepwise function does not have its inverse value.
In this case, the following approximation is used to calculate the inverse value: if there
is no inverse value for a given p, find out the generated sample point x that makes
the difference between p and the estimated value S(x) less than 0.01 (1%). This
approximated percentile is treated as an estimated percentile p.

Tables 22 and 23 present the estimated bias and MSE of the NPEG, IEE and
ignoring-gap method. See Table 20 for the underlying distributions used to generate
data. The values in Tables 22 and 23 are rounded to two decimal places for simplicity.
The simulation error is calculated by repeating each simulation 5 times to check
whether those values can be rounded. Table 24 shows the simulation errors for each
percentile. It shows that the simulation error is small enough to round the estimated
values without losing accuracy. The small SE enables us to compare the MSE and
bias of different estimates. Tables 22 and 23 show that the NPEG estimated values
tend to have smaller Bias and MSE than the IEE and ignoring-gap method for all
the simulation settings except Settings 4 and 7. It is detected in this bias study
that the IEE underestimates for small or large censoring time ¢ but overestimates
for middle ranged time ¢ as discussed earlier. Table 23 shows that the MSE values
of the NPEG and IEE become larger as their corresponding biases become greater.
Therefore, when the biases of the NPEG and IEE are not small, consistent estimates
cannot be obtained. This comparison on the Bias and MSE values provides a strong

evidence that the NPEG is reliable and robust if the proportion of the observed first
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Table 22: Estimated biases of the NPEG, IEE and ignoring-gap methods for p =
5, 25, 50, 75 and 95.

Setting 1 Setting 2 Setting 3

ignoring ignoring ignoring
p | NPEG | IEE gap | NPEG | TEE gap | NPEG | IEE gap
) 2.13| 0.81 4.05| -0.25(-0.48 1.96| 16.93]13.35 20.51
25 1.18] 3.10 4.42 0.10| 1.66 3.58 2.75| 8.10 9.78
50 1.29| 3.68 5.72 0.92] 4.42 147 3.35| 6.13 8.45
75 0.09] 4.02 759 0.53] 4.80 2.58 1.77| 5.24 7.75
95| 4.08] 1.12 733 0.34]-243 5.43 1.39| 6.33 9.26
Setting 4 Setting 5 Setting 6
ignoring ignoring ignoring
p | NPEG | IEE gap | NPEG | IEE gap | NPEG | IEE gap
5| 82.66 |78.66 88.14| -3.30(-4.92 -4.96 | -2.56| -3.32 -3.32
25| 33.29]12.53 20.26 | -1.81(-2.01 -3.16| -0.38| -0.87 -0.92
20 0.49] 0.18 288 0.27] 145 2.25 0.85| 1.39 1.81
75| -0.081]-0.10 0.14 1.12| 2.73 3.76 0.36| 0.92 1.97
95| -0.03]-0.03 -0.01 0.89| 2.42 9.12 0.46| 1.38 2.82
Setting 7 Setting 8 Setting 9
ignoring ignoring ignoring
NPEG | IEE gap | NPEG | IEE gap | NPEG | IEE gap
21.30|11.30 33.26 296 | 1.38 4171 269 3.53 5.602
25| 17.47| 4.12 29.60| -0.28] 1.30 2.23 2.38| 3.94 6.870
50| 15.64| 1.69 26.41| -0.44| 0.72 2.13 1.39| 4.44 7.560
75| 17.26| -1.49 25.15 0.42] 2.56 4.48 1.29| 4.76 9.229
95| 13.03] 0.46 19.89 245\ 5.54 7.98 291 1.00 5.623

U3

events that are not actually the first true first events is moderate.

2.5 Real Data Study

This section studies the NPEG to analyze a real life data from the medical study
at the Duke Medical School mentioned in Section 2.1. The original data contains 404
patients (subjects). Only 129 subjects among them satisfy the assumptions described
in Section 2.2, because those patients do not contain more than one gap before the
observed first event time. Although we tried to get access to the original data, we did

not get the permission to publish the analysis of the actual medical data. However,
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Table 23: Estimated biases of the NPEG, IEE and ignoring-gap methods for p =
5, 25, 50, 75 and 95.

Setting 1 Setting 2 Setting 3

ignoring ignoring ignoring
p | NPEG | IEE gap | NPEG | IEE gap | NPEG | IEE gap
51 1329 4.70 2847 17.68|18.00 14.75| 293.52 (192.30 | 422.49
25 3.15| 11.55 21.80 0.92]| 2.89 14.13| 40.78| 73.15| 105.00
50 1.96| 13.82 33.49 1.46 | 26.14 2.23| 17.86| 49.79 75.62
75 0.43| 17.29 08.49 4.48146.30 7.74 6.61| 28.46 61.75
95| 17.22| 3.57 53.95 3.24111.46 33.91| 10.33| 42.40 89.04
Setting 4 Setting 5 Setting 6
ignoring ignoring ignoring
p | NPEG | IEE gap | NPEG | IEE gap | NPEG | IEE gap
5] 453.86|129.19| 1111.25| 34.37|14.91 52.46 9.72| 17.07 33.28
25| 312.12| 20.36| 877.54 3.16| 3.74 7.97 7.38] 17.60 49.26
50| 249.13| 11.72| 700.38 1.95| 1.91 6.73 4.67| 20.22 59.36
75| 301.75| 13.87| 633.88 0.73] 7.01 21.68 243 22.75 85.59
95| 188.37| 4.71| 404.52 6.73]45.12 64.00 | 10.04| 2.69 32.20
Setting 7 Setting 8 Setting 9
ignoring ignoring ignoring
p | NPEG | IEE gap | NPEG | IEE gap | NPEG | IEE gap
5] 128.06 | 455.19 | 1111.25| 27.46|21.81 52.46 9.72] 17.07| 33.280
25| 23.78308.76| 877.54 3.15| 3.74 7.97 7.38| 17.60| 49.259
50 7.331253.53| 700.38 1.95| 1.90 6.72 4.66 | 20.22| 59.360
75 2.791309.83| 633.87| 0.73] 7.00 21.68 243 22.775| 85.590
95| 18.80|174.28 | 404.52 6.73]45.12 64.00 2.56| 10.16| 32.198
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Table 24: Simulation errors for each percentile p.

NPEG

Settings

p

4

5

5
25
50
75
95

0.004
0.005
0.002
0.002
0.006

0.003
0.004
0.005
0.002
0.002

0.000
0.001
0.002
0.001
0.001

0.010
0.009
0.008
0.009
0.005

0.005
0.003
0.005
0.002
0.006

0.005
0.003
0.002
0.002
0.006

0.004
0.005
0.003
0.002
0.004

0.002
0.004
0.003
0.002
0.002

0.005
0.003
0.005
0.002
0.006

IEE

Settings

p

5

5
25
20
75
95

0.008
0.001
0.003
0.004
0.003

0.003
0.004
0.004
0.002
0.002

0.001
0.001
0.002
0.004
0.002

0.009
0.008
0.009
0.007
0.007

0.005
0.005
0.006
0.003
0.002

0.003
0.003
0.006
0.005
0.002

0.006
0.001
0.003
0.004
0.003

0.003
0.004
0.004
0.002
0.006

0.003
0.004
0.006
0.005
0.002

ignoring-gap

Settings

p

5

6

5
25
20
75
95

0.004
0.000
0.001
0.002
0.006

0.008
0.003
0.003
0.005
0.004

0.006
0.020
0.003
0.004
0.003

0.008
0.006
0.007
0.007
0.005

0.006
0.005
0.003
0.004
0.006

0.005
0.004
0.003
0.004
0.006

0.004
0.000
0.001
0.002
0.005

0.005
0.003
0.004
0.005
0.004

0.005
0.004
0.003
0.003
0.007
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Table 25: First ten subjects of a real life data from Duke Medical School using hour

as the unit.

{ b ; €1, t1;

1 | 0.825824 | 24.341285 | 37.917731
2 10.547296 | 5.503642 23.694427
3 1 0.548477 | 80.330046 | 91.634539
4 | 2.308849 | 109.117011 | 133.634564
5 10.523838 | 55.938910 | 58.304398
6 00 00 13.693960
7 12365197 | 16.691791 21.470155
8 10.730642 | 4.498762 47.635809
9 | 2361725 | 7.914084 21.470155
10 | 1.729372 | 10.680830 14.917731

Yang’s thesis provides the first 10 subjects and thus the small data is studied in this
section. Table 25 provides the beginning and ending of the gap, and the observed
first event time for each patient. Only one patient has no gap, thus the observed first
event time for the patient is the first true event time.

The estimated survival functions of the first true event time are drawn in Figure
27 for the NPEG and IEE. The solid black line represents the estimated survival
function of the first true event time based on the NPEG, the dashed blue line repre-
sents the estimate of the survival function based on the IEE method, the dotted green
line represents the traditional empirical survival function S5 which ignores all gaps,
and the solid red line represents a survival function whose underlying distribution
is Weibull(a, B) with the estimated parameter values @ = 1 and B = 53.4 by the
GLF ([14, 15]). Since the GLF estimated the parameter « as 1, the distribution of
the first true event time becomes an exponential distribution with A\ = B Similarly,
Yang mentioned that the estimated IEE survival function seems to follow exponen-
tial distribution based on Figure 2.12 in ([38]). However, with only 10 subjects, the
distribution of the first true event time does not seem to follow an exponential dis-

tribution. The estimated functions based on both the NPEG and IEE are a little bit

104



farther from the estimated GLF survival function.

2.6 Discussion and Summary

In this chapter, we studied an estimation method for analyzing time-to-event
data called a gap data, when missing time intervals can possibly happen prior to
the first observed event. We have proposed a nonparametric estimate NPEG, which
estimates the survival function of the first true event time up to one gap. We stud-
ied analytical properties of the proposed estimate. We show that, the new estimate
NPEG is almost unbiased under some situations discussed in Section 2.3.2.1, and that
it is less biased than the existing nonparametric method IEE. The simulation studies
demonstrated that the NPEG is powerful and robust in certain circumstances. Addi-
tionally, the simulation studies showed that the NPEG is superior over the traditional
nonparametric method based on the observed first events when ignoring gaps.

This gap data study raises the following open topics which we consider as potential
future works. First, the proposed method can be extended to the multiple gaps as
the GLF method and the IEE which is extended in Appendix C. We can extend the
NPEG, the IEE and the GLF with the weaker assumption that the two true events
can fall into a gap. Additionally, we can also extend them to study the second, third,
.-+, k'™ true event times. Finally, we can use a bayesian approach to get a unbiased
estimate. Using a bayesian formulation, better knowledge on the relationship between
the first true event and the second true event can be attained, and the knowledge can

help obtain a unbiased estimate for the gap data.

2.7 Summary of Contributions

This thesis research is motivated by a special type of time-to-event data with
missing data called the gap data which was encountered in a heart disease study
conducted at the Duke University Medical Center. This type of data consists of

multiple event time observations. For example, the event time for the medical data

105



‘C_|’- — -~ S3 Empirical Survival function based on the observed 1st event time
- Yang's IEE
—— Soyoun’s estimated Survival function of W1
—— Green’s estimated survival function
@
o
2 9o |
E o
[
Qo
<l
o
©
2
<
5 <
wn o
N
o
o
o

0 50 100 150

Days since beginning

Figure 27: The estimated survival functions based on the NPEG and IEE. The
dotted green line represents the traditional empirical survival function S’Tl based on
the observed first event times when ignoring the gaps. The dashed blue line represents
the estimated survival function based on the IEE method, and the solid black line
represents the estimated survival function for the first true event time W, based on the
NPEG. The solid red line represents the survival function S; where the distribution
of Wy is Weibull(&,ﬁ) with the estimated parameter values & = 1 and 3 = 53.4 by
the GLF.
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is the time that the ST-segment amplitude has fallen to 50% of the peak deviation.
However, the observations may have one or more missing time periods called gaps
before observing the first events. Therefore, the observed first event may or may
not be the first true event due to the possibility that the first true event may have
happened in one of the gaps. Here, we focused on such dataset up to one gap for
simplicity.

As we discussed in Section 2.1, this type of data cannot be handled with methods
for the right/left censored data. There are few studies done on this type of data
([14, 15, 38]). An existing parametric method, GLF ([14, 15]) estimates the param-
eters for the distribution of the true event time with multiple gaps by maximizing
the gap likelihood function. Yang ([38]) proposed a nonparametric method called the
IEE for the gap data up to one gap. The IEE has a limitation in deriving its ana-
lytical property due to its complicated formula. We introduced a new nonparametric
method, NPEG, which is well defined and simple.

We have studied a new nonparametric method to estimate the survival function of
the first true event time in the gap data up to one possible gap. As we illustrated with
a simple example in Section 2.3.1, the calculation is simply and easy to understand.
Several analytical works for the proposed estimate are finished and their properties
are studied in Section 2.3.2. In the simulation studies, the proposed method is shown
to be robust and powerful. We also extended the IEE to the case with multiple gaps

in Appendix C.
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APPENDIX A

INVESTIGATION OF THE CLUSTERING GENERATION
PROCEDURE IN THE PR-SGR ALGORITHM

We conduct a simulation study to evaluate the clustering generation procedure
used in the PR-SGR Algorithm described in Section 1.2.4.1. A cluster is generated

as following: for a predictor X; and a given p,
Ci=Ci(p)=1{j : Corr(X;, X;) =| X[ X, |> p, Vj € AU {i}, foric A.

The active set A contains all the predictors contained in the clusters that are con-
structed so far. Therefore, there is no information about a cluster that can contain
Xy, for k ¢ A.

We use the same setting as in Example 11, in Section 1.3 and repeat 100 times to
evaluate the clustering generation procedure. In Example 11, a cluster C; consists of
three predictors X7, X5 and X3 having their pairwise correlations at least 0.9, and
the other cluster Cy consists of two predictors X, and X5 having their correlation at
least 0.8. Additionally, the predictors which are not in the same cluster are generated
independently, and thus their pairwise correlation should be small. We use the PR-
SGR with the MAX representative selection rule in this appendix.

For p = 0.9, we always obtain a cluster containing all the predictors in C;, when-
ever one of the predictors in C; is selected in the model. As Cy consists of two
predictors having at least 0.8 correlation, there is a low chance of generating a cluster
that contains both X, and X5 with p = 0.9. Empirically, we have only 3% chance of
obtaining a cluster that contains X, and X5. As p decreases down to 0.8, the chance

of obtaining a cluster consisting of X, and X5 increases. For p = 0.8, we always
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have two clusters which are identical to C; and Cy whenever their representatives are
selected in the model. However, if p decreases, there is more chance of generating
different clusters from the clusters C; and Cy. For example, for p = 0.5, we have 45
cases among 100 repetitions in which the generated clusters are different from C; and
C, (e.g., a generated cluster contains only X; and X3 and another cluster contains X,
and some other predictors). In this thesis, we focus on the case that there are spuri-
ously highly correlated predictors. Therefore, considering high p values (for example,
p = 0.9) is reasonable. As we discussed in Section 1.2.3, the tuning parameter p in
the simulation and real-life example studies is selected from relatively large values
(0.99, 0.98, ---, 0.91, 0.90, 0.85, 0.80, 0.70, 0.60). All the representative selection

rules result in similar conclusion in this investigation.
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APPENDIX B

PR-SGR WITH INDEPENDENT PREDICTORS

A simulation study is carried out to evaluate the performance of the PR-SGR
Algorithm when all the predictors are assumed to be independent and when there is
no group of highly correlated predictors. We keep the same simulation setting used
in Section 1.3, but generate n independent predictors.

Table 26 summarizes the prediction results in terms of median MSE values for
various p values. The results in the first two rows are based on the p value selected by
10—CV and the results in other rows are based on fixed p values (0.9, 0.8, 0.7, 0.6
and 0.5). When there are only independent predictors, the Elastic-Net performs
poorly among all the methods. The PR-SGR with various representative selection
rules for most p values performs better than the Lasso/Lars and Elastic-Net, and in
particular, the performance of the PR-SGR is the best when the p value is selected
by 10—CV. Although there is no group of highly correlated predictors, the PR-SGR
builds a cluster of some predictors and uses a representative of the cluster in the
model. Therefore, the PR-SGR loses the information contained in the predictors that
are not selected as representatives. The cluster built for p = 0.5 tends to include more
predictors than for higher p values, and thus the PR-SGR with the MIN, RAN or
CRT representative selection rules performs worse than the Lasso/Lars and the PR-
SGR with other representative selection rules. The MAX and MED representative

selection rules give relatively stable MSE values.
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Table 26: Statistics of MSE and model complexity for the Lasso/Lars, Elastic-Net,
and PR-SGR with 5 representative selection rules.

PR-SGR
p MSE | Lasso/Lars Elastic | MAX MIN MED RAN CRT
10—CV | Median 69.96 109.75| 60.94 62.75 62.96 65.28 62.09
s.e 13.25 1214 9.76 991 9.18 948 9.95
0.90 | Median 79.79 103.54| 63.76 65.12 66.03 68.11 62.21
s.e 12.77  11.70 | 10.75 9.47 9.78 9.87 10.03
0.80 | Median 79.44 108.93| 67.19 69.47 68.95 70.00 69.27
s.e 11.02  11.05| 9.79 888 9.03 8.67 9.59
0.70 | Median 69.10 103.37| 67.21 65.80 66.73 68.36 72.17
s.e 11.22  10.10| 8.66 8.67 8.57 9.69 9.02
0.60 | Median 73.44 105.80| 63.90 70.71 63.71 70.00 70.67
s.e 11.18  12.07| 9.96 11.36 9.95 9.34 10.93
0.50 | Median 73.49 106.55 | 66.08 79.66 67.17 76.16 76.66
s.e 16.13  11.32| 9.97 10.16 9.66 11.79 13.11
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APPENDIX C

EXTENSION OF THE IEE WITH MULTIPLE GAPS

Yang ([38]) proposed the IEE to estimate the first true event time W; when up
to one gap is detected. This appendix extend the idea of the IEE with multiple gaps.
To present this extension, start with the simplified IEE formulation driven in Section
2.2. The IEE calculates the survival function of the first true event time W; up to

one gap as

A Awa Z
Sree(t) = 1- Z L p(n?

. n —
vty <t
p(i)
= 11—
2
vty <t
= 11— zn: ﬁu)](h (i) < t),
im1 i o

i-1 p.. n

Where ﬁ(Z) =1-— Z lﬁ(]), m; =n—n; =N — Z hij, and hij = [(tl,(l) € G(J))
=11 j=i+1

Note that p(7) is the probability that the first true event time W is at the observed

first event time T} ;). Its estimated probability is interpreted in a different way as

follows:

p(i) = Pr{W is at the observed time point Ty}

= 1 — Pr{WW, is not at the observed time point Th6)}

n

= 1- Z pr{Wl is at the observed time point T} ;) and T ) € G}
J=1, j#i

n

= 1- Z ISr(TL(j) € Gu) Pr{Wl is at the observed time point 77 (;)}

J=1, j#i
n

= 1= Z Pr(Ty ) € Gu) p(j)

J=1, j#
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i—1

1= Pr(Tig € Gw) () (o {Tug € Gu} =0 for j > i)
j=1
i—1 )
I(Tvjy € Gw) ..
1 N |
Z n—n p(j) where n; Z hin
- k=j+1
i1
1— ; m—J; p(j) where hy; = I(Th ;) € G»)) and m; =n —n;.

Using the same arguments, p(i) can be estimated with two gaps Gp; and Gsy;

with a new assumption that the chance to have more than one event in each gap is

negligible. The p(i) can be written as:

p(i)

Pr{Wl is at the observed time point 77 ()}
1— ﬁr{Wl is not at the observed time point 77 (;}

1— Z Pr{W, is at the observed time point T} ;)
=1, j#i
and Ty(j) € G, U Ga)}

n

1— Z PT(TL(J') € G1,i) U Ga )
j=1, j#i
X Pr{Wl is at the observed time point Tl,(j)}

1— Z Pr(Ty ) € G U Gay) D))

J=1, j#i
i—1

1= Pr(Tyg) € Gie UGam) b))
j=1

(. {Th,) € Gr,a) U Gay} =0 for j > i)

1—1 n
I(Thyy) € G YUGaw) .

1— ! ’ ) A h C— hs
Z n—n, p(j) where n; _Z ik
g=1 k=j+1
i1

L= £ p(j) where hj; = I(T1,j) € Gi) U Gayp) and m; =n —n;.
j=1 "
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Similarly, the IEE of Sy, (¢) with m gaps G1, Go,- -+ ,G,, can be written as:

SIEE C C <t),
Zt1<z)<t Z
k—1 h.
where ﬁ(k’) = 1- m—Zkﬁ(Z), hji = I<T1,(j) < Gl,(i) U G27(i) u---u Gm,(z)) =
i=1 "
I Ty EUGk(l andmj=n—n;=n— > hj.
k=j+1

The followmg numerical example is displayed in Table 27, which is modified from
the example used in Section 2.3.1 as an illustration to describe the IEE method with
multiple gaps. First, calculate p(i) for each ordered subject i. With the first ordered
subject with t; 1y = 10, our estimate for p(1) becomes one as defined. Then, at
the next ordered subject with £y = 20, hig = 1, hyy = 1 and n; = 2 because

t1,(1) € 91,2) U g2,¢2) and the second and fourth ordered gaps cover t; ;). Therefore,

h 1

pR)=1-——2=1— 33— = 0.8333. Now, let’s move to the third ordered subjects
ma —

with ¢1,3) = 31. The gaps g1,3) = (12,26] and go,3) = (17,19] of the third ordered

subject does not cover t; ;) = 10 but cover t; 2y = 20, so =3 = 0 and hyy = 1.
Since the third, fourth, fifth and eighth ordered gaps cover t; (2), no = 4, p(3) =1 —
% — % = 0.7917. The fourth ordered subject with ¢; 4y has one gap go 1) = (6, 21]
WhllCh co2vers t1,(1) and ty (9), so hiy = hi5 = 1. Because t; (3 falls into the gaps of
the fifth, sixth, and seventh, ng = 3 and hence p(4) = 0.6250. For the fifth ordered
subject with 1 (5), p(5) = 0.6333 with ny = 2,h15 = hys = 0 and hos = hgs = 1.
The gap of the next ordered subject contains ty 3y, 1,4y, t1,5) and 1) and its
observed first event ¢, () is falling in the gap g, (7). Therefore, the estimate of p(6) is

p(6) =1— fus _ has _ @ _ fus _ hs = 0.7375. For the seventh ordered subject,
hi7 = hoy = 0, hgy = hyy = hsy = her = 1 and ng = 2. So p(7) = 0.5090. Finally,
because the eighth ordered subject’ gap contains ¢, 5y and ¢ ), and hog = hsg = hes

are one, p(8) = 0.5632. These calculation procedures are summarized in Table 28.

Table 29 provides the IEE estimated survival function S'IEE(t) up to two gaps,
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Table 27: Modified example from Table 16 up to two gaps.

Original data Ordered data
{ g1,i 9o.i ti || (2) 91,(i) 92,(3) 1,6)
(b1, €14]) | (b2, €2,]) (01, er,0)]) | ((bo,a), €2.0)])

1 (21,52] (00, 00| 57 || 1 (3,5] (8,10] 10

2 (12,26] (28,29] 31 | 2 (7,16] (17,19] 20

3 (17,25] (40,52] 63 || 3 (12,26] (28,29] 31

4 (3,5] (8,10] 10 | 4 (6,21] (00, 00| 35

5 (29,37] (00, 00| 47 | 5 (13,24] (30,32] 45

6 (6,21] (00, 00| 351 6 (29,37] (00, 00| 47

7 (7,16] (17,19] 20 || 7 (21,52] (00, 00| 57

8 (13,24] (30,32] 45 || 8 (17,25] (40,52] 63

Table 28: Procedure to calculate the IEE up to two gaps.

(’l) 91,(7) 392,(7) tl,(i) Py hoi hai ha hsg hei hy | 1y 15(2)
1 (3,5] (8,10] 10 2 11

2 | (7,16] | (17,19] | 20 1 4 | 0.8333
3 | (12,26] | (28,29] | 31 0 1 3 | 0.7917
4 | (6,21] | (00, 0] | 35 1 1 0 2 1 0.6250
5 | (13,24] | (30,32] | 45 0 1 1 0 2 10.6333
6 | (29,37] | (00, 00] | 47 0 0 1 1 0 2 10.7375
7 1 (21,52] | (00,00] | 57 0 0 1 1 1 1 0 | 0.5090
8 | (17,25] | (40,52] | 63 0 1 0 0 1 1 0 | 0 |0.5632
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Table 29: The estimated survival funqtion S 1eE up to two gaps with the modified
example in Table 27. For comparison, S;gr up to one gap with the original example
in Table 16 is displayed in the last column.

t Sree(t) Sree(t)
up to two gaps | up to one gap

0<t<10 1 1
10 <t <20 0.8333 0.8571
20<t <31 0.6250 0.6857
31 <t <35 0.4667 0.5476
35 <t <45 0.3625 0.3810
45 <t < A7 0.2569 0.2626
AT <t <57 0.1340 0.1633
57 <t <63 0.0704 0.1036

63 <t 0 0

for a given censoring time ¢. To compare the IEE up to one gap, another column is
added to display the estimated survival function based on the example introduced in
Section 2.3.1. Figure 28 is drawn to compare the IEE methods up to two gaps (solid
black line) and up to one gap (dashed red line) with the traditional empirical survival
function St (t), denoted as S5 (dotted blue line). As the number of gaps per subject
increases, there are more chances to have other subjects falling in the gaps and more

chances to underestimate for a given censoring time.
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Figure 28: The estimated survival function based on the IEE method with multiple
gaps in an example up to two gaps. The dotted blue line represents the traditional
empirical survival function S’Tl (t) based on the observed first event times when ignor-
ing the gaps. The dashed red line represents the estimated survival function based
on the IEE method when considering only up to one gap, which is the case using the
example introduced in Section 2.3.1. The solid black line represents the estimated
survival function for the first true event time W) based on the IEE with multiple

gaps.
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APPENDIX D
EXPECTATION OF THE IEE AND ITS BIAS

It is shown that the IEE estimate is simplified as

n

Sipp(t) = 1- Z };\(j’)I(TL(z’) <t),

i

i=1
1—1 H n
where P(i) = 1 — 21 i (), M; =n— Y Hy and Hy = I(Ty3) € G(;)). This
j j=i+1
appendix studies its expectation and bias. First, consider the conditional expectation
of Z ]\(4> I(Ty,;) <t) given H;j = hyj, i =1,--- ,n. Since H;; = h;;s are given, P(i)
and ]\/[Z become known values p(i) and m;, respectively. The conditional expectation
satisfies
P ~ ()
T < t = T < t
=[S 2 <of = BElrmss
_ Zzp WCi{P(Ty < )V {1 — P(Ty < t)}"™
=1 j=1
(. P(T() < t) = P(at least ¢ of the n T}’s are < t)
= SO o rpr < 31— P(T < )
my;
n n—1 A()
YD B CHPM <Y {1 = P(T < )}
i=1 j=i mi
n n—1 ﬁ(l) '
< PRS0+ 33 ERC (1= Sn(O) (50}
i=1 j=i
P <t)<1& Zn:ﬁ(i) =1
- im1 Tl
Therefore,

ESipp(t) = EE[Sipp(t) | Hy
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> 1-P(Ty<t)—E S0 p(i)an {1 = Sp, (1) {Sry (1)}

B — M,
=1 j=1
= -5 |PD] 61— snoy (snmy
= T1 M, n-j T1 Ui
=1 j=1

The bias of glEE(t) is calculated as

Bias[Size(t)] = ESips(t) — Sw,(t)

> Sn(0- 38 (20 0y {1 - sn (0 {5,601 - S0
= P(Ty > t,z B]<1W1 < mm(E'7 t))
| P o sy ss oy @)

Note that BiaS[SNpEg(t)] = P(TI > t, B < W < IIliIl(E, t)) — E(B,E)[PTl (Tl,l >
t, T\ o € (B,min(F,t)])] is shown in Section 2.3.2.
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APPENDIX E

RELATIONSHIP BETWEEN P(T;, > T) AND P(W; > T)
FROM GREEN’S APPROACH

This appendix considers a general form of the bias of a gap estimate based on
the GLF ([14, 15]). Since a gap data only up to one gap has been studied in Chapter
2, Equation (6) is considered. With this relationship, the difference between the
survival function of the observed first event time and the true survival function for the
observed first event time can be calculated as below. Note that the survival function
P(Ty > t) for a gap data is the expectation of E[I(Ty > ¢ | (B, E))]. Therefore,
consider E[I(T} >t | (b, e))] first:

E[I(T; >t | (b,e))]
= P(Ty > t|(be))

= / frijme (T

[ fw, (z)da L, 0<t<b
ftoo fw, (2)dx + ftoo fbe fwn (@ —y) fw, (y)dydz | e <t < 0

Therefore, P(T > t) is calculated as
E[P(Ty > 1] (B, E))]
= [ [ meo@definn.odibe)
(B,E) Jt

I fw (@)de = P(W, > t) L 0<t<b
= P(W; >t)

+ f(B,E) ﬁoo fbe Jws (@ — ) fwi (¥) fB,£) (b, €)dydxd(b,e) , e <t < oo
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For 0 <t < b, the difference becomes
P(Ty >t)— P(W;>t) = 0.

This is obvious, because 77 = W;. On the other hand, the difference for e < t < 0o

is calculated as follows:
P(Tl (Wl > t)

:L@E/Q/Ma ) firs () f . (b, €)dydz (b, )
:(@E/ /fm ) i (9) i) (b, ) dadyd (b, )
—&Lﬂllgmmwmwm@wmmwwa

Note that ft fw,(z) > 0 and the difference P(T} > t) — P(W; > t) is positive,
unless ¢ is large enough to have ft fw,(z) = 0. Since the distributions of Wy, Wy
and (B, E) are unknown in practice and cannot be estimated completely, one cannot
reduce the amount of the difference between the observed ones and the unobservable
true ones. If all the distributions of Wy, Wy and (B, E) are known, the difference
and evaluate the bias of the parametric method, GLF, can be calculated.

Consider a case in which the distributions for B, E, W; and W, are given as
B ~ Exp(01), E = B+ Giegin, Goegin ~ Exp(0s), Wi ~ Exp(ey) and Wy = Wy +
Wetapse, Weiapse ~ Exp(as), similar to a set in the simulation studies. Then, the

difference is

P<T1>t W1>t)

— /(BE)/b / Jw,(x)dz fw, (y)dy fiB,E) (D, e)d(b, e)
.

fW1 T — Z)-fWelapse( )d'z dme1( )dy f(B E)(b e)d(b 6)
0

/
- /0 boo{ :/t y/ Jwi (& = 2) fwoiapee (2)dz dx fiv, (y)dy }fE(e)de f5(b)db
AL

b /mq [mWUMMM@@}mmwwm
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where fg(e) = /e IBle = 2) fGyuym (2)dz.
0

This integral should be calculated for each of the 4 possible cases: (1) a3 = ay = «
and 61 = 0y = 0, (2) 1 = ap = a and 01 # 0y, (3) g # ay and 0; = Oy = 0,
and (4) a3 # ag and 0; # 0y. The details are omitted here. For the parametric
approach with a gap data, this difference can be large if the underlying distributions

are misspecified.
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