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from Microsoft research and Rómer Rosales, Harald Steck and Le Lu from Siemens.

iii



John is the most knowledgeable person I have ever met. He is always a source of
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SUMMARY

This thesis identifies three major issues in incorporating domain knowledge

into supervised learning and discusses tentative attempts to solve them.

Domain knowledge is usually provided in a certain form that is not necessarily

compatible with the supervised learning algorithm. In statistical modeling, it is a

common practice to assume that data are generated iid from some distribution pθ pa-

rameterized by θ ∈ R
n. Learning algorithms then try to identify the true parameter

θtrue given a set of examples. It is therefore natural to expect that domain knowl-

edge should directly relate to the parameters θ for it to be useful. However, users

tend to specify their knowledge in the form of probabilities of certain events rather

than parameter value constraints, and it is not so obvious how to convert between

them, especially for conditional models such as conditional random fields (CRFs).

To overcome the difficulty, Chapter 3 developed a systematic way to obtain domain-

dependent priors through probability elicitation and to incorporate them through

parameter space regularization for conditional models. This leads to isotonic CRFs

which are variants of CRFs with isotonic constraints over the parameter space. Chap-

ter 3 applied isotonic CRFs to sentiment prediction and information extraction, and

demonstrated their promising usage in modelling local sentiment flow, analyzing au-

thor’s writing style and summarizing document content.

Domain knowledge provided by humans often holds with some degree of uncer-

tainty. The uncertainty may arise when the knowledge set of an expert changes. This

has already been demonstrated in a recent study showing that the ratings in the Net-

flix dataset are strongly affected by the time the ratings were provided by users. The

uncertainty can be even more pronounced when the domain knowledge is obtained

xiv



implicitly by interpreting user feedback such as clicks. It is not hard to imagine that

a click on a search result does not necessarily mean the result is relevant to the query.

The click can be random. In view of this, Chapter 4 proposes to explicitly model do-

main knowledge uncertainty by specifying the probability the knowledge is expected

to hold, and aggregate both domain knowledge and its uncertainty into the learning

process within a hierarchical Bayes framework. In contrast to hard parameter con-

straints, the approach is effective even when the domain knowledge is inaccurate and

generally results in superior modelling accuracy. It therefore enables us to incorporate

other non-traditional types of knowledge, such as information from trained classifiers

whose usage has been severely limited due to its accuracy.

Standard approaches of incorporating domain knowledge admit information only

at the initial stage and no user feedback is allowed afterwards. This contrasts with

the belief that users may provide better knowledge if they are informed of interme-

diate learning results. For example in web search, one may build a webpage ranking

model based on users’ click feedback. When the model is in operation, new click

feedback will be collected and the model should be refined accordingly. Therefore it

is essential to provide users with a visual summary of the available information, and

allow them to provide valuable feedback in real-time. This requires both an efficient

learning procedure and the ability to support effective user interactions. Chapter 5

addressed this problem in the context of metric learning for text documents where

users specify word similarity information on the fly. The problem is approached via

learning techniques such as online update and Bregman projection. The effort leads

to an improved metric for documents, and fosters better visual understanding of text

corpus.

xv



CHAPTER I

INTRODUCTION

During the years of 1952–1962, Arthur Samuel wrote the first program for computer

checkers. Samuel’s program tried to teach computers to play checkers, and is con-

sidered the world’s first self-learning program. Since then more than half a century

has passed, and the field of machine learning has experienced substantial growth in

terms of theories, algorithms and applications. In fact, machine learning techniques

are considered the-state-of-the-art in quite a few areas such as information retrieval,

natural language processing, computer vision and speech processing.

The early history of machine learning draws inspirations from psychology and

biology, where people had focused on developing complicated models that mimic the

human learning behavior. An example is the neural network, where complicated tasks

are accomplished by interactions between simple building blocks such as perceptrons.

With the advance in data acquisition techniques and the popularity of sharing the

data through internet, machine learning now is more concerned with analyzing the

data, by seeking a (possibly simple) model that both explains the data and generalizes

well.

In this thesis, we focus on supervised learning, though there exist many other

problem settings such as unsupervised learning or semi-supervised learning. Briefly

speaking, given a set of m training examples D = {(x(1), y(1)), . . . , (x(m), y(m))} where

x(i) ∈ X ⊆ R
n is some observation with corresponding label y(i) ∈ Y ⊆ R, the goal of

supervised learning is to seek some function f : X → Y from a function class F such

that f not only captures the relationship between X and Y that has been encoded

by the dataset D, but also generalizes well on unseen data. The function f is usually

1



chosen by means of empirical risk minimization or structural risk minimization.

For supervised learning, we need training data to be fully labeled. While it may be

relatively easy to obtain a collection of unlabeled data, there can be a considerable

amount of difficulty in getting the labels due to either a limit on the budget in

hiring labeling person or difficulty in getting competent labeling person. For example,

Reuters hired around a dozen people working full time to handle the coding of RCV1

dataset [64], which consists over 800,000 news stories produced during the years 1996

and 1997 by Reuters. On the other side, how many news stories are posted every

year on http://news.google.com? The answer is obvious, way more than 800,000. In

fact, there is a branch of machine learning called active learning that discusses means

of selecting examples to label under various resource constraints such as cost [110].

This thesis considers the case of limited labeled data for supervised learning, and

presents a general approach to select a model f ∈ F that explains the dataset D.

Our high-level description of the approach is to use domain knowledge. To be more

concrete, let us first examine the following two questions.

Question 1 : What kind of domain knowledge can we leverage?

Under the restrictive setting of supervised learning, domain knowledge can be

roughly categorized according to the target it describes. Domain knowledge

about observations in X is often referred to as feature engineering, i.e., selecting

a set of features that best describe the objects. For example, color, texture

and SIFT (scale-invariant feature transform) features are considered effective

in describing an image object, and TF–IDF (term frequency–inverse document

frequecy) representation has been widely used to represent a document.

Domain knowledge about labels in Y in general is concerned with the co-

occurrence relationship among a subset of labels. An example is image an-

notation where an image is assigned multiple labels each describing one aspect

2



of the image. If we know a priori that a region of the image has been tagged

with the label computer, it is unlikely that another region from the same image

will be tagged with the label park.

Finally, we have domain knowledge that is expressed in terms of the relationship

between X and Y . Domain knowledge falling into this category exhibits more

degrees of freedom. For example, given two observations, one may ask whether

they belong to the same class or not. This type of knowledge has been used

extensively in metric learning and constrained clustering. On the other hand,

users may wish to express for some observation x how likely it will be labeled

as y. This has been commonly practiced in natural language processing appli-

cations. An example is the name entity recognition where capitalized words are

likely to be the names of persons or organizations.

Question 2 : To what extent can we rely on domain knowledge?

Domain knowledge is uncertain in nature. There are many ways that uncer-

tainty is introduced. The data collection procedure is not error free. An example

is to build a digital library by first scanning books and then applying OCR (op-

tical character recognition) techniques to translate them into text. Errors may

be introduced during the translation.

The labels can be uncertain. For example, it is difficult to justify why a movie

should be rated 8 instead of 7 (1–10 scales). Even if the labeling task is un-

ambiguous, labels may be obtained from sources that are either incompetent

or with little dedication. This is usually the case with outsourcing, see e.g.

the Amazon Mechanical Turk (https://www.mturk.com/). This phenomenon

is even more pronounced when the labels are obtained by implicit user feedback,

such as the clickthrough data collected from user browsing behavior.

The relationship between observations and labels can also be uncertain. For
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example, in sentiment prediction, the presence of the word good corresponds

usually, but not always to a positive sentiment.

Uncertainty may be reduced by choosing appropriate questions to ask. For the

task of rating movies, though it is different to determine the score to be assigned

to a movie, it is relatively easy to identify from two movies which one should

receive a higher score. Similar strategy has been practiced in [56] where the

clicked URLs are assumed to be more relevant to the query than the unclicked

URLs. However, the uncertainty can not be eliminated. For example, the click

can be random in the above example.

In this thesis we consider function class F is parameterized by θ and domain

knowledge about the relationship between X and Y is expressed as constraints over

parameter space. Such type of knowledge is inspired from the following two lines of

work:

• Parameter constraints have shown to be extremely helpful for generative mod-

els where parameters directly relate to the probabilities of generating the data.

For example, consider using the unigram language model to model documents

annotated as computer. The parameter associated with a word is simply the

probability that this word appears in a document from computer category. It

is therefore natural to expect that parameters associated with word c++ or

compiler are large even if such words may not appear frequently in the train-

ing dataset. Parameter constraints have also been widely employed in Bayesian

networks. One type of constraint is parameter sharing which constrains param-

eters to have the same value [76]. More general types of parameter constraints

such as inequality constraints or constraints on sums of parameter values have

been considered in [77].
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• Isotonic regression [2, 99] is an important method in constrained statistical infer-

ence. It can be traced back to the problem of maximizing the likelihood of uni-

variate normal distributions subject to an ordered restriction on the means. The

term isotonic is interpreted as order-preserving: for a finite set S = {1, · · · , n}

on which a full order ≤ is defined, a real vector (β1, · · · , βn) is isotonic if i, j ∈ S,

i ≤ j imply βi ≤ βj. Given real vector (x1, · · · , xn) with weights (w1, · · · , wn),

the isotonic regression takes the form of a weighted least square fitting which

minimizes
n∑

i=1

wi(xi−βi)
2 subject to the constraint that (β1, . . . , βn) is isotonic.

Various extensions have been proposed for isotonic regression. Some of them

consider relationships other than a full order. Examples include the tree order

β1 ≤ β2, . . . , β1 ≤ βn, and the umbrella order β1 ≤ . . . ≤ βi ≥ . . . ≥ βn for some

fixed i. Most similar to our work is the ordering constraint proposed in [52] for

normal means from a two-way layout experiment

βi+1,j+1 − βi+1,j − βi,j+1 + βi,j ≥ 0 i = 1, . . . , m− 1, j = 1, . . . , n− 1

which states that the differences βi′j − βij grow as the level j increases for any

i′ > i.

The same motivation is shared by fused lasso [109] where features are ordered in

some meaningful way. The fused lasso penalizes the L1-norm of both the coeffi-

cients and their successive differences. It encourages sparsity in the coefficients,

and also sparsity in their differences, i.e. the coefficients are locally constant.

Chapter 3 considers in the case of conditional models, how parameter constraints

are related to domain knowledge expressed as probability constraints. We develop

isotonic CRFs which are variants of CRFs with isotonic constraints over the param-

eter space, and provide a way to obtain domain-dependent constraints through their

probability counterparts. We apply the model to sentiment prediction and informa-

tion extraction, and demonstrate its promising usage in modeling local sentiment
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flow, analyzing author’s writing style and summarizing document content.

Domain knowledge provided by humans often holds with some degree of uncer-

tainty. In view of this, Chapter 4 proposes to explicitly model domain knowledge

uncertainty by specifying the probability the knowledge is expected to hold, and ag-

gregate both domain knowledge and its uncertainty into the learning process within

a hierarchical Bayes framework. In contrast to hard parameter constraints, the ap-

proach is effective even when the domain knowledge is inaccurate and generally re-

sults in superior modelling accuracy. It therefore enables us to incorporate other

non-traditional types of knowledge, such as information from trained classifier whose

usage has been severely limited due to its accuracy.

Standard approaches of incorporating domain knowledge admit information only

at the initial stage. This contrasts with the belief that users may provide better

knowledge if they are informed of intermediate learning results. Therefore it is essen-

tial to provide users with a visual summary of the available information, and allow

them to provide valuable feedback in real-time. Chapter 5 addresses this problem

in the context of metric learning and text visualization, and demonstrates how to

modify the geometry of model space by explicit domain knowledge from experts and

general linguistic resources.

Chapter 3 is based on the work published in NIPS 2006 [69] and Machine Learn-

ing 2009 [71]. Chapter 4 draws significantly from the work published in UAI 2009

[70]. The work of Chapter 5 were published in COLING 2010 [67], coauthored with

Krishnakumar Balasubramanian and Guy Lebanon. Krishnakumar Balasubramanian

created the word hierarchy for the 20 newsgroup dataset (Figure 14) and did exper-

iments described in Section 5.2.5. Some results in this thesis were also presented in

ICML workshop on Learning in Structured Output Spaces 2006.
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CHAPTER II

RELATED WORK

In this chapter, different types of domain knowledge are summarized and their usage in

modifying supervised learning models is discussed. We also provide some background

information about several natural language processing tasks on which the experiments

are conducted.

2.1 Domain Knowledge for Supervised Learning

Incorporating domain knowledge into the learning process can substantially improve

modeling accuracy, especially when the training data is scarce. In some cases the

knowledge may be incorporated by modifying the underlying statistical model. In

other cases standard off-the-shelf models are used such as logistic regression, SVM,

mixture of Gaussians, etc., and the domain knowledge is integrated into the training

process of these models by constraining the parameters to a certain region.

2.1.1 Knowledge about Observations

Domain knowledge about observations in X is often referred to as feature engineering,

i.e., selecting a set of features that best describe the objects. For example, color,

texture and SIFT features are considered effective in describing an image object, and

TF–IDF representation has been widely used to represent document.

Since this type of knowledge varies from application to application, it is not the

focus of this thesis. However, it is worth noticing that this type of knowledge is of

crucial importance for the success of solving an engineering problem. In fact, domain

knowledge is equivalent to feature engineering in some circumstances.
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2.1.2 Knowledge about Labels

Domain knowledge about labels in general is concerned with the co-occurrence rela-

tionship among a subset of labels. It arises naturally in the problems of multiple label

classification or structural prediction. An example is object detection which assigns

a label to each object within an image. If we know a priori an object is very likely

to be computer, it is then less likely that another object from the same image will

be labeled as park. This observation has motivated a couple of algorithms in com-

puter vision which incorporate contextual information to augment object detection,

including the work of [39] and [111].

In natural language processing, Roth and Yih [91] consider non-local and non-

sequential constraints over the output sequence and propose a novel inference proce-

dure based on integer linear programming (ILP) which extends the CRFs to naturally

support such constraints. They demonstrated their algorithm for the problem of se-

mantic role labeling which, given an input sentence, attempts to identify semantic

arguments for each verb in the sentence, and assign role for each argument. The

constraints that have been considered include “no duplicated argument labels”, i.e.

a verb cannot have two arguments of the same type, and “at least one argument”

which means that each verb must have at least one core argument.

Recently developed Markov logic networks (MLNs) [88] naturally combine first-

order logic and probabilistic graphical models. MLNs allow easy integration of domain

knowledge expressed in terms of logic clauses. For example, when applying MLNs

to segment bibliographic citations, Poon and Domingos [83] consider the following

mutual exclusivity constraint which states that a token can only be part of at most

one field. It would be straightforward to add more constraints to MLNs. One of them

might be that a Venue token cannot appear right after an Author token.
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2.1.3 Knowledge about Models

Domain knowledge about supervised learning models can be roughly categorized as

either explicit knowledge of the model parameters, or implicit knowledge via the

associations between observations and their corresponding labels.

2.1.3.1 Knowledge from Domain Expert and its Elicitation

In a statistical framework, the expert’s knowledge has to be in probabilistic form

for it to be used. However, unless the expert is a statistician, or is very familiar

with statistical concepts, efforts have to be made to formulate the expert’s knowledge

and beliefs in probabilistic terms. This is done through elicitation [41, 78] in the

statistical literature. Psychological literature suggests that people are prone to certain

heuristics and biases in the way they respond to situations involving uncertainty. As

a result, elicitation is conducted in a principled way where stages involving eliciting

summaries, fitting a distribution and testing adequacy may repeat several times before

a faithful elicitation is reached. The usefulness of elicitation has been demonstrated in

statistical literature where most work concentrates on eliciting univariate probability

distributions. Multivariate elicitation is largely unexplored due to the complexity of

formulating variable interactions.

2.1.3.2 Prior and Regularization

Perhaps the most widely used Bayesian approach is to impose a univariate Gaussian

prior with mean zero and variance σ2
i on each parameter θi

p(θi) ∼ N (0, σ2
i ) =

1√
2πσi

exp

(

− θ2
i

2σ2
i

)

. (1)

By specifying a mean of zero for each Gaussian, we encode our prior belief that the

parameter θi will be near zero. The larger the value of σ2
i , the less the confidence in

the prior belief. In the simplest case we let σ2
i equal the same σ2 for all i. Assuming

θi are independent of each other, the overall prior for θ is then the product of the
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priors for each θi, and the maximum a posterior (MAP) estimate of θ is

θ̂MAP = arg min
θ
−ℓ(θ|D) + c‖θ‖22 (2)

where ℓ(θ|D) is data likelihood and c = 1
2σ2 . The term ‖θ‖22 is called the ridge

penalty, and c controls the tradeoff between loss and penalty, with the loss function

being the log loss in (2). As stated above, the ridge penalty shrinks the parameters

θ towards zero. This shrinkage has the effect of reducing the variances of θ, hence

possibly improves the model prediction accuracy, especially when there are many

highly correlated features [46].

Double-exponential prior is another popular prior distribution given by

p(θi) ∼
αi

2
exp(−αi|θi|). (3)

Again, we assume the independence among θi. If we let αi equal the same α for all i,

the MAP estimate of θ is

θ̂MAP = arg min
θ
−ℓ(θ|D) + α‖θ‖1 (4)

where ‖θ‖1 is called the lasso penalty. Similar to the ridge penalty, the lasso penalty

also shrinks the parameters θ towards zero. In addition, the lasso penalty does a

kind of continuous feature selection, causing some parameters θi to be zero when α is

sufficiently large. This property, which leads to a sparse solution in a high dimensional

space, comes from the L1 nature of the lasso penalty and does not hold for the ridge

penalty.

Figure 1 shows that the double-exponential density has heavier tails than the

Gaussian density. This indicates that the lasso penalty is more likely to produce

some large fitted parameters and leaves others at zero, especially in high dimensions.

2.1.3.3 Knowledge of Label-Feature Association

In some cases experts’ knowledge is formulated as the association between label y and

feature fi (or instance x(i)). As an example, in the part-of-speech tagging, we may
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Figure 1: Plots of the Gaussian density with σ = 2, and the double-exponential
density with α = .5.

estimate that with 90% probability a word is a noun if it ends with “-ion”. Similarly,

in the named-entity recognition, we may estimate that 50% of capitalized words

are named entities. This type of knowledge is usually in the form of a probability

distribution on labels y conditioned on either some feature fi or instance x(i). Relative

entropy [22] is often used to measure the fit between the model and the prior. Because

of the nature of such knowledge, it can be easily exploited to work with a semi-

supervised learning algorithm.

Schapire et al. [93] consider the prior knowledge of mapping each training instance

x(i) to an estimated conditional probability distribution π(·|x(i)) over possible label

values. Their approach is based on the boosting-style algorithm for logistic regression.

For each training example x(i), relative entropy is used to measure the fit between the

prior π(·|x(i)) and the model pθ(·|x(i)). Prior knowledge is incorporated via adding a

penalty term during the model fitting. Wu and Srihari [113] explore the same prior

for semi-supervised learning using support vector machines (SVMs). They modify

SVMs to allow weighted input samples, and formulate the problem as maximizing

weighted margin. Prior knowledge π(·|x) is specified for a subset of testing examples,

and π(y|x) is considered as the weight for sample (x, y).

Jin and Liu [55] use label distribution over the testing set as prior to handle the
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case where the class distribution of the training data is not representative of the

true class distribution. They provide an iterative algorithm: in the first step of each

iteration, the conditional model is trained using both training and testing data, with

class distribution estimated for each test example being fixed; in the second step,

the model is fixed and the per-instance class distribution is re-estimated to minimize

the divergence from model prediction subject to the constraint that the overall class

distribution matches the prior.

Mann and McCallum [66] introduce expectation regularization for semi-supervised

learning. The idea is similar to that of [93] with the prior knowledge being replaced

by π(·|fi), the conditional probability distribution of labels given feature fi. A special

case of expectation regularization called label regularization is examined in [66] where

the feature is activated for every instance. More realistic feature-class associations

are discussed in [74].

Feature-class association has also been considered for structured output models.

Chang et al. [15] specify the prior knowledge as a set of constraints to be satisfied

by the input/output sequences. They use an expectation maximization (EM) like

algorithm to incorporate the prior knowledge into semi-supervised learning. In the

E-step, the inference procedure produces N best outputs for an unannotated sequence

according to a score function which considers both data likelihood and penalties for

violating constraints. In the M-step, the N best assignments are used to re-estimate

the model parameters. Haghighi and Klein [45] define prototype to be some canonical

examples (e.g. words) of each target annotation label (e.g. part-of-speech). Their

idea is based on distributional similarity, and is implemented through the use of

prototypes as additional features in learning a log-linear model.

A generative model type of prior is introduced in [37] to work with a discrimi-

native classifier such as support vector machines. The prior is a parametric family

of distributions p(x|y). A bilevel program is formulated such that the bottom layer,
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given p(x|y), selects the Bayesian optimal decision rule; and the top layer learns p(x|y)

which has a high probability of occuring and at the same time forces the bottom layer

to select the decision rule that minimizes the discriminative error on the training set.

Prior knowledge is also useful when learning a generative model. Niculescu et al

[77] provide a comprehensive summary of various types of knowledge to be used in

a Bayesian network. The knowledge can be conveniently transformed into parameter

constraints to be satisfied during model fitting. Graça et al. [43] describe an approach

to add a-priori information about latent variables in graphical models without making

the models overly complex or intractable. They modify the EM algorithm where, in

the E-step, the algorithm finds a distribution that minimizes the KullbackLeibler

(KL) divergence from model prediction subject to a set of constraints from prior

knowledge. The constraints are specified by bounding expectations of given functions

describing instance-label associations. Note, taking expectation with respect to a

conditional probability distribution results in per-instance constraints on the output

variables.

For problems that no probabilistic models are involved, knowledge is usually ex-

pressed implicitly via the relationship between observations and their corresponding

labels. For example, in distance metric learning, we may consider whether a pair of

observations belong to the same class (must-link) or not (must-not-link) [114, 96].

Alternatively, we may restrict a pair from the same class to have a small distance

value while assign a large distance value to a pair from different classes [30]. Instead

of dealing with absolute distance values, we may use triplets and relative comparisons

such as i and j are more similar to each other than i and k [56, 94, 17].

2.1.3.4 Learning an Informative Prior

Instead of specifying the functional form of the prior directly, one may cast the prob-

lem of finding an informative prior as a learning task. The prior may be estimated
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from an auxiliary problem in a separate procedure, or is an integrated part of the

whole learning problem and subject to a joint estimation with model parameters.

Learning an informative prior may have the following benefits: (1) it introduces a

systematic approach to derive a prior where any advance in machine learning may

lead to a better solution for it; (2) the auxiliary problems are often related problems

(e.g. the same model on different datasets, or different models on the same dataset)

and modeling the similarities among related tasks is reasonable and often effective,

resulting in an improved modeling accuracy; (3) the procedure of learning a prior is

often informative, and helps better understand the problem.

Learning an informative prior through auxiliary problems usually appears in the

literature of transfer learning. In the most general case, knowledge at any level of

abstraction, including data representation, distance metric, and model parameters,

may be transferred from auxiliary tasks to the primary task. Closely related to our

problem is the transfer of model parameters, where parameters learned from auxiliary

tasks serve as a prior in learning the target model. The target model can be thought

of as a posterior obtained by updating the prior with examples from the target task.

Marx et al. [72] compute the mean and variance of a Gaussian prior for Bayesian

logistic regression from the parameters of the same model learned from other datasets.

Raina et al. [86] present an algorithm for automatically constructing a multivariate

Gaussian prior with a full covariance matrix for a given supervised learning task. The

algorithm first estimates the covariance for pairs of individual parameters empirically,

and then uses a semi-definite program to combine these estimates and learn a good

prior for target task. Zhang [116] combines Rocchio algorithm with logistic regression

via a Gaussian prior to yield a low-variance model for adaptive filtering. Fei-fei et al.

[38] implement the Bayesian prior in more sophisticated models for learning visual

models of object categories.

Unlike in transfer learning where the knowledge transfer is unidirectional (from
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auxiliary tasks to target task), in multi-task learning the knowledge transfer is mu-

tual and between any related tasks. A natural choice for representing the relatedness

among tasks is a hierarchical Bayes model, where hyper-parameters are shared among

multiple tasks. The use of hierarchical Bayes models for multi-task learning is first

discussed in [3] and analysis is given from a Bayesian/information theoretical point of

view. Heskes [51] presents a model for multi-task learning by assuming that response

variable of each task follows a normal distribution. The mean of the normal distri-

bution is learned using a two-layer neural network, and the variance is composed of

a task specific term and a task independent term. Bakker and Heskes [1] implement

a hierarchical Bayes model using neural network with the input-to-hidden weights

shared among all tasks. Task clustering is introduced for differentiating similarities

among tasks and is implemented through designing prior distributions capable of dis-

criminating between tasks. Teh et al. [107] propose a semi-parametric model for

multi-task learning. They make use of a set of Gaussian processes that are linearly

mixed to capture existing dependencies among tasks. Yu et al. [115] assume that

multiple tasks are drawn independently from the same Gaussian process (GP) prior,

and learn a model via an EM-based algorithm. The work of Lawrence and Platt [61]

makes the same assumption, but fits a model with the informative vector machine.

In [63], the prior is learned as part of a single coherent objective, which encompasses

both data likelihood and prior, and is jointly optimized for both parameters and

hyperparameters.

2.2 Uncertainty in Domain Knowledge

Prior work on incorporating uncertainties into the learning process is naturally divided

to data uncertainty, label uncertainty and parameter uncertainty.
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2.2.1 Data Uncertainty

Data uncertainty has been addressed by robust linear programming [8], robust lin-

ear discrimination [60], total support vector machine [5] and second order cone pro-

gramming for SVM [98]. It has also been applied to query expansion [21]. They

differ slightly in their assumptions about how data is distributed. For example,

[8, 60, 98, 21] assume data is distributed as a Gaussian with given mean and co-

variance matrix, while [60, 98] also assume that data may come from some arbitrary

distribution with fixed first and second order moments. The assumption made in [5]

is that true data is uniformly distributed over a disk centered at the observed value.

2.2.2 Label Uncertainty

There has been recent interest to use outsourcing websites such as Amazon Mechanical

Turk as a cheap and fast way to collect annotations from non-experts over the web

[102, 14]. For example, high agreement between non-expert annotations and existing

gold standard labels is reported in [102] on five natural language processing tasks.

The annotations from non-experts can be noisy, due to expertise, competence and

dedication of the annotators. Sheng et al. [97] show that when labeling is not perfect,

selective acquisition of multiple labels is a strategy to perform. Different variants of

the strategy may be considered. Among them the simplest approach is to label each

example multiple times, and measure the inter-annotator agreement. In fact, repeated

labeling is commonly practiced in learning with uncertain labels [65, 100, 101, 87].

A more realistic setting has been considered in [32, 31] where the crowd is large

and each annotator only labels a couple of examples. For example, we may think

of each user of a search engine as an annotator, and each click as a label. While

there can be a huge amount of annotators, most of the links either are not clicked

or are clicked just once. The click-patterns of most users are informative, while the

click-patterns of others contain noise. Algorithms that can handle noisy labels but
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without resorting to repeated labeling are of crucial importance in this case.

2.2.3 Parameter Uncertainty

In the machine learning community, parameter uncertainty has been addressed by

a variety of techniques, many of which are algorithmic in nature. Related research

on incorporating parameter uncertainty are [34, 24] which consider a linear classifier

with a Gaussian prior over the model parameter, and update the hyperparameters

online using probabilistic parameter constraints. Extension to multi-class classifica-

tion has been considered in [25], while extension to learning across multiple domains

is addressed in [35]. The uncertainty principle has also been applied in [26] and is

viewed as a probabilistic version of the geometric large-margin principle there.

2.3 Natural Language Processing Applications

In this section, we briefly review the following natural language processing problems:

sentiment prediction, readability prediction and information extraction. Experiments

concerning those tasks will be presented in later chapters.

2.3.1 Sentiment Prediction

The World Wide Web and other textual databases provide a convenient platform

for exchanging opinions. Many documents, such as reviews and blogs, are written

with the purpose of conveying a particular opinion or sentiment. Other documents

may not be written with the purpose of conveying an opinion, but nevertheless they

contain one. Opinions, or sentiments, may be considered in several ways, the simplest

of which is varying from positive opinion, through neutral, to negative opinion.

Most of the research in information retrieval has focused on predicting the topic

of a document, or its relevance with respect to a query. Predicting the document’s

sentiment would allow matching the sentiment, as well as the topic, with the user’s
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interests. It would also assist in document summarization and visualization. Sen-

timent prediction was first formulated as a binary classification problem to answer

questions such as: “What is the review’s polarity, positive or negative?” Pang et al.

[82] demonstrated the difficulties in sentiment prediction using solely the empirical

rules (a subset of adjectives), which motivates the use of statistical learning tech-

niques. The task was then refined to allow multiple sentiment levels, facilitating the

use of standard text categorization techniques [81].

Various statistical learning techniques have been suggested for sentiment predic-

tion, treating the data either as categorial (naive Bayes, maximum entropy and sup-

port vector machine [82, 81]) or as ordinal (support vector regression and metric

labeling [81]). Although most methods report over 90% accuracy on text categoriza-

tion, their performance degrades drastically when applied to sentiment prediction.

Indeed, sentiment prediction is a much harder task than topic classification tasks

such as Reuters or WebKB. It is different from traditional text categorization: (1) in

contrast to the categorical nature of topics, sentiments are ordinal variables; (2) sev-

eral contradicting opinions might co-exist, which interact with each other to produce

the global document sentiment; (3) context plays a vital role in determining the sen-

timent. In view of this, Mao and Lebanon [69] suggest to model local sentiment flow

in documents rather than predicting the sentiment of the entire document directly.

The idea is further exploited in [75] where the sentiments of text at varying levels of

granularity are jointly classified.

2.3.2 Readability Prediction

We focus on corpus-based statistical models for readability prediction. One example

is the popular Lexile measure [105] which uses word frequency statistics from a large

English corpus. Collins-Thompson and Callan [20] introduced a new approach based

on statistical language modeling, treating a document as a mixture of language models
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for individual grades. Recent advances in methods for readability prediction include

using machine learning techniques such as support vector machines [95], log-linear

models [50], k-NN classifiers and combining semantic and grammatical features [49].

2.3.3 Information Extraction

Information extraction involves identifying instances of a particular class of events

or relationships in a natural language text, extracting the relevant arguments of the

event or relationship, and creating structured representation of extracted arguments.

It has received wide attention over the last decade through the series of Message

Understanding Conferences1. One example is the name entity recognition (NER)

that locates and classifies words and phrases in text into predefined categories such

as names of persons, organizations, locations, etc. Another example is a relationship

extraction task, such as identifying the source of opinion [18].

Much research has been done to improve the extraction performance. Hidden

Markov models (HMM) [85], maximum entropy Markov models (MEMM) [73] and

conditional random fields [59] are three most popular tagging models up to date.

HMM model the joint probability of the observation sequence and the label sequence.

It is a generative model that makes a strong independence assumption about obser-

vations to ensure inference tractability. This assumption is often inappropriate for

real applications, where we believe that the representation should consist of many

overlapping features. MEMM remove the assumption by modeling the conditional

probability of the next state given the current state and the current observation.

Since they use per-state exponential models, MEMM potentially suffer from the label

bias problem. CRFs combine the advantages of two previous models by introducing

a single exponential model for the joint probability of the entire label sequence given

1http://en.wikipedia.org/wiki/Message Understanding Conference
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the observation sequence, and report superior experimental results. The state-of-the-

art results of information extraction are reported on conditional random fields [59].

The generalized perceptron proposed by Collins [19] is another widely used model

which is closely related to the CRFs.
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CHAPTER III

GENERALIZED ISOTONIC CONDITIONAL RANDOM

FIELDS

The most common technique of estimating a distribution pθ(x), x ∈ X , θ ∈ Θ based

on iid samples x(1), . . . , x(n) ∼ pθ0
is to maximize the loglikelihood function ℓ(θ) =

1
n

∑n
i=1 log pθ(x

(i)) i.e.,

θ̂mle(x(1), . . . , x(n)) = arg max
θ∈Θ

ℓ(θ). (5)

The maximum likelihood estimator (MLE) θ̂mle enjoys many nice theoretical proper-

ties. In particular it is strongly consistent i.e. it converges to the true distribution

θ̂mle(x(1), . . . , x(n)) → θ0 with probability 1 as n → ∞. It is also asymptotically effi-

cient which indicates that its asymptotic variance is the inverse Fisher information -

the lowest possible variance according to the Cramer-Rao lower bound. These the-

oretical motivations, together with ample experimental evidence have solidified the

role of the maximum likelihood estimate as the method of choice in many situations.

In some cases, additional information concerning the domain X is available which

renders some parametric values N ⊂ Θ unrealistic. In the presence of this extra

information the unrestricted maximum likelihood estimator (5) loses its appeal in

favor of the constrained MLE

θ̂cmle(x(1), . . . , x(n)) = arg max
θ∈Θ\N

ℓ(θ). (6)

The constrained maximum likelihood (6) achieves a lower asymptotic error since its

parameteric set is smaller (assuming its underlying assumption θ0 6∈ N is correct).

Though it is defendable on frequentist grounds the constrained MLE is often given a
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Bayesian interpretation as the maximizer of the posterior under a prior assigning 0

probability to N and a uniform distribution over Θ \N .

The process of obtaining the set Θ \N may rely on either domain knowledge or

auxiliary dataset. In either case it is important to relate the constrained parametric

subset Θ \N to the corresponding set of possible probabilities

P(Θ \N) = {pθ(x) : θ ∈ Θ \N} .

Identifying pθ as vectors of probabilities (p1, . . . , p|X |) ∈ R
|X | we have that the con-

strained set of probabilities is a subset of the probability simplex P(Θ \ N) ⊂ PX

where

PX =







(
p1, . . . , p|X |

)
: pi ≥ 0 ,

|X |
∑

i=1

pi = 1






.

Above, we assume that the space X is finite turning the simplex PX of all possible

distributions over X into a subset of a finite dimensional vector space. We maintain

this assumption, which is standard in many structured prediction tasks, throughout

the chapter in order to simplify the notation.

Expressing the constraints as a parametric subset Θ \ N is essential for deriving

the constrained MLE estimator (6). Nevertheless, it is important to consider the

corresponding subset of probabilities P(Θ\N) since it is much more interpretable for

a domain expert and easy to test based on auxiliary data. In other words, it is much

easier for a domain expert to specify constraints on the probabilities assigned by the

model P(Θ\N) than constraints on abstract parameters Θ\N . The framework that

we propose is thus to first specify the constrained probability set P(Θ \ N) based

on domain knowledge or auxiliary data, and then to convert it to Θ \ N in order to

derive effective optimization schemes for the problem (6).

In many cases, the derivation of the set Θ \ N corresponding to P(Θ \ N) is

straightforward. For example in the case of the following simple exponential family
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model

pθ(x) = Z−1(θ) exp

(
∑

i

θixi

)

x, θ ∈ R
d,

we have

pθ(x) > pθ(x
′) ⇔ θ⊤(x− x′) > 0. (7)

In other cases, however, the conversion P(Θ \N)⇒ Θ \N is highly non-trivial. This

is also the case with conditional random fields which is the focus of this chapter.

We thus consider, in this chapter, the following problems in the context of condi-

tional random fields

• Specifying a set of probability constraints P(Θ\N) based on domain knowledge

or auxiliary data.

• Deriving the equivalent set of parametric constraints Θ \N .

• Deriving efficient algorithms for obtaining the constrained MLE.

• Experimental investigation of the benefit arising from the added constraints in

the context of the structured prediction tasks of local sentiment analysis and

information extraction.

3.1 Structured Prediction and Conditional Random Fields

Structured prediction is the task of associating a sequence of labels y = (y1, . . . , yn), yi

∈ Y with a sequence of observed values x = (x1, . . . , xn), xi ∈ X . Two examples are

NLP tagging where xi are words and yi are morphological or syntactic tags, and

image processing where xi are the pixel brightness values and yi indicate the segment

or object the pixel belongs to.

Conditional random fields (CRF) [59] are parametric families of conditional distri-

butions pθ(y|x) that correspond to joint Markov random fields p(y,x) distributions

pθ(y|x) =
p(y,x)

∑

y
p(x,y)

=

∏

C∈C φC(x|C ,y|C)

Z(x, θ)
. (8)
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Above, C is the set of cliques in a graph over X×Y and x|C and y|C are the restriction

of x and y to variables representing nodes in the clique C ∈ C. The functions φC are

arbitrary positive-valued functions called clique potentials and Z(θ,x) represents the

conditional normalization term ensuring
∑

y
pθ(y|x) = 1 for all x, θ.

It is generally assumed that φC are exponential functions of features fC modulated

by decay parameters θC i.e.

φC(x|C ,y|C) = exp

(
∑

k

θC,kfC,k(x|C,y|C)

)

leading to the parametric family of conditional distributions

pθ(y|x) = Z−1(x, θ) exp

(
∑

C∈C

∑

k

θC,kfC,k(x|C ,y|C)

)

θC,k ∈ R. (9)

CRF models have been frequently applied to sequence annotation, where x =

(x1, . . . , xn) is a sequence of words and y = (y1, . . . , yn) is a sequence of labels

annotating the words. The standard graphical structure in this case is a chain

structure on y1, . . . , yn with noisy observations x leading to the clique structure

C = {{yi−1, yi}, {yi,x} : i = 1, . . . , n} (see Figure 6, left). Note that this graphi-

cal structure is more general than the original chain CRF [59] and includes it as a

special case.

Together with the standard choice of feature functions this leads to the CRF model

pθ(y|x) =
1

Z(x, θ)
· (10)

exp

(
n∑

i=1

∑

σ,τ∈Y
λ〈σ,τ〉f〈σ,τ〉(yi−1, yi) +

n∑

i=1

∑

σ∈Y

l∑

k=1

µ〈σ,Ak〉g〈σ,Ak〉(yi,x, i)

)

where θ = (λ, µ) is the parameter vector and

f〈σ,τ〉(yi−1, yi) = 1{yi−1=σ}1{yi=τ} σ, τ ∈ Y (11)

g〈σ,Ak〉(yi,x, i) = 1{yi=σ}Ak(x, i) σ ∈ Y . (12)

The values σ, τ correspond to arbitrary values of labels in Y and Ak corresponds to

binary functions of both observation x and some position i in the sequence. The choice
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of Ak is problem dependent. A common practice of choosing Ak(x, i) = 1{xi=wk}, k =

1, . . . , |X | reduces the CRF model to its most traditional form measuring appearances

of individual words in a vocabulary. More complex patterns of Ak may consider xi as

well as its neighbors xi−1 and xi+1 (e.g. Ak(x, i) = 1{xi=w,xi−1=w′} for some w,w′ ∈ X ),

or consider properties other than word appearance (e.g. Ak(x, i) = 1{xi is capitalized}).

The flexibility in the specification of Ak is the key advantage of CRF over generative

sequential models such as hidden Markov models (HMMs). In particular, it enables

the modeling of sequences of sentences rather than words as is the case of local

sentiment prediction [69].

In the above formulation, we have |Y|2 feature functions f〈σ,τ〉 measuring the

transitions between successive label values and |Y| · l feature functions {g〈σ,Ak〉 : k =

1, . . . , l, σ ∈ Y} describing observations x associated with label σ and function Ak. For

the case of an m-order CRF where m is finite, it is possible to write the probabilistic

model in the form of (10) by constructing Yi = (yi, . . . , yi+m−1), the ordered m-tuple

of yi values. Note, however, that not all transitions between states Yi and Yj are

allowed for the m-order CRF.

Given a set of iid training samples D = {(x(i),y(i)) : i = 1, . . . , m} the parameters

θ = (λ, µ) are typically estimated by maximizing the regularized conditional likelihood

ℓ(θ|D) =
1

m

m∑

i=1

log pθ(y
(i)|x(i)) + C‖θ‖22 (13)

which corresponds to the posterior under a Gaussian prior over θ. The maximum

likelihood estimation is usually carried out using standard numeric techniques such

as iterative scaling, conjugate gradient, or quasi-Newton. Other popular approaches

of learning a CRF model include maximum margin Markov networks [106] where the

model is trained discriminatively using a margin-based optimization problem, and

Searn [27], an algorithm that decomposes a structured prediction problem into a set

of classification problems solved by standard classification methods.
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Unlike the situation in Markov random fields (Equation 7), the relationship be-

tween parameter and probability constraints in CRF is highly complicated. In par-

ticular, constraints over the probability vectors pθ(y|x) ∈ [α − ǫ, α + ǫ] or pθ(y|x) ≥

pθ(y
′|x′) are not easily converted to the corresponding parametric constraints on θ.

We explore in the next section several types of probability constraints that are in-

tuitive and interpretable and yet correspond to simple ordering constraints on the

parameters θ.

3.2 Ordered Domain Knowledge and Generalized Isotonic

Constraints

In this section, we define a taxonomy of probability ordering constraints for CRF

models based on probability ratios. These ordering constraints are intuitive and

interpretable, and are easily specified using domain knowledge or auxiliary data.

We derive the corresponding parameter constraints which we refer to as generalized

isotonic constraints due to the similarity with the parameter constraints in the isotonic

regression model [2].

Directly constraining the probability values assigned by the model

pθ(y|x) ∈ S (14)

is impractical due to the large variability in the sequences x,y. It is difficult to

imagine being able to ascertain probabilities of a large set of sequences x,y.

Another important difficulty in expressing direct probability constraints as in (14)

is that it is hard to express domain knowledge in terms of absolute probabilities.

Humans are notoriously bad at making statements concerning the probability of ob-

serving a particular event.

In this chapter, we propose a novel set of probability constraints which eliminates

the two difficulties mentioned above, and have a simple corresponding parameter

26



constraints. We resolve the first difficulty by dealing with constraints involving vari-

ability in a local region of the graph. For example, in the sentiment prediction task

[69] we consider the effect an appearance of a particular word such as superb has on

the probability of it conveying positive sentiment. We resolve the second difficulty by

constraining probabilities ratios involving a text sequence x and a locally perturbed

version of it. As we shall see, such constraints depend only on the perturbed variables

and are independent of the values of x on the remainder of the graph.

Formally, we define the probability constraints in terms of a probability ratio

pθ(y|x)/pθ(y|x′) where x′ is identical to x, except on a small graph neighborhood.

Thus, instead of specifying the precise probability value, we specify whether the per-

turbation x 7→ x′ increases or decreases the conditional probability of y. Surprisingly,

we show that constraining probability ratios corresponds to simple partial order con-

straints on the parameters or parameter differences.

In the case of linear chain CRF, if we restrict ourselves to perturbations x 7→ x′

that modify only the j-component of x in a simple way, the choices of {y1, . . . , yi−1,

yi+1, . . . , yn} and {x1, . . . , xi−1, xi+1, . . . , xn} are immaterial making the probability

ratio especially easy to assert and interpret.

We start with Proposition 1 below which relates the probability ratio to expecta-

tion over the parameters.

Proposition 1. Let x be an arbitrary sequence over X and x′ be identical to x except

that Av(x
′, j) = 1 whereas Av(x, j) = 0. Then, for a linear chain CRF pθ(y|x) as in

(10) we have

∀y pθ(y|x)

pθ(y|x′)
= Epθ(y′|x) exp

(

µ〈y′
j ,Av〉 − µ〈yj ,Av〉

)

. (15)
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Proof.

pθ(y|x)

pθ(y|x′)
=
Z(x′, θ)

Z(x, θ)

exp
(
∑

i,σ,τ λ〈σ,τ〉f〈σ,τ〉(yi−1, yi) +
∑

i,σ,k µ〈σ,Ak〉g〈σ,Ak〉(yi,x, i)
)

exp
(
∑

i,σ,τ λ〈σ,τ〉f〈σ,τ〉(yi−1, yi) +
∑

i,σ,k µ〈σ,Ak〉g〈σ,Ak〉(yi,x′, i)
)

=
Z(x′, θ)

Z(x, θ)
exp

(
−µ〈yj ,Av〉

)
= exp

(
−µ〈yj ,Av〉

)

·
∑

y′ exp
(
∑

i,σ,τ λ〈σ,τ〉f〈σ,τ〉(y
′
i−1, y

′
i) +

∑

i,σ,k µ〈σ,Ak〉g〈σ,Ak〉(y
′
i,x

′, i)
)

∑

y′ exp
(
∑

i,σ,τ λ〈σ,τ〉f〈σ,τ〉(y
′
i−1, y

′
i) +

∑

i,σ,k µ〈σ,Ak〉g〈σ,Ak〉(y
′
i,x, i)

)

= exp
(
−µ〈yj ,Av〉

)
∑

r∈Y αr(x) exp
(
µ〈r,Av〉

)

∑

r∈Y αr(x)

=
∑

r∈Y

αr(x)
∑

r′∈Y αr′(x)
exp

(
µ〈r,Av〉 − µ〈yj ,Av〉

)

=
∑

y′

pθ(y
′|x) exp

(

µ〈y′
j ,Av〉 − µ〈yj ,Av〉

)

where

αr(x) =
∑

y′:y′

j
=r

exp




∑

i,σ,τ

λ〈σ,τ〉f〈σ,τ〉(y
′
i−1

, y′
i) +

∑

i,σ,k

µ〈σ,Ak〉g〈σ,Ak〉(y
′
i,x, i)



 .

Proposition 1 is used below to derive two types of probability ordering constraints

and their corresponding parametric constraints.

3.2.1 One-way Ordering

In one way ordering the probability ratios defined in Proposition 1 are constrained to

follow a partial order. This results in a simple ordering between the corresponding

parameters.

Proposition 2. Let pθ(y|x),x,x′ be as in Proposition 1. For all label sequences s, t,

we have

pθ(s|x)

pθ(s|x′)
≥ pθ(t|x)

pθ(t|x′)
⇐⇒ µ〈tj ,Av〉 ≥ µ〈sj ,Av〉. (16)
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Proof. By Proposition 1 we have

log
pθ(s|x)

pθ(s|x′)
− log

pθ(t|x)

pθ(t|x′)
= µ〈tj ,Av〉 − µ〈sj ,Av〉.

Since pθ(·|x), pθ(·|x′) are strictly positive, Equation (16) follows.

Surprisingly, the probability ratio inequality in Proposition 2 is equivalent to an

ordering of only two parameters µ〈tj ,Av〉 ≥ µ〈sj ,Av〉. What makes this remarkable is

that only the j-components of the sequences t, s,x matter making the remaining com-

ponents immaterial. In particular, we can consider s, t that are identical except for

their j-components. In this case the interpretation of the probability ratio constraint

in Proposition 2 is as follows: the perturbation x 7→ x′ increases the probability

of sj more than it does the probability of tj . Since s, t and x,x′ differ in only the

j-components such probability ratio constraints are relatively easy to specify and

interpret.

Given a set of probability ratio constraints as in Proposition 2, we obtain a partial

order on the parameters {µ〈τ,Aj〉 : τ ∈ Y , j = 1, . . . , l} which corresponds to a partial

order on the pairs {〈τ, Aj〉 : τ ∈ Y , j = 1, . . . , l} i.e.,

〈τ, Aj〉 ≥ 〈σ,Ak〉 if µ〈τ,Aj〉 ≥ µ〈σ,Ak〉. (17)

In particular fixing a certain Av we get a partial order on Y corresponding to the

ordering of {µ〈τ,Av〉 : τ ∈ Y}. In the case of sentiment prediction, the elements of

Y correspond to opinions such as very negative, negative, objective, positive, very

positive, associated with the standard order. A complete specification of probability

ratio constraints would result in a full ordering over {µ〈τ,Av〉 : τ ∈ Y} for some v.

In this case, assuming that Av measures the presence of word v, we have that if v

corresponds to a positive word (e.g. superb) we obtain the ordering

µ〈τ1,Av〉 ≥ · · · ≥ µ〈τ|Y|,Av〉 where τ1 ≥ · · · ≥ τ|Y| (18)
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and the reverse ordering if v corresponds to a negative word (e.g. horrible)

µ〈τ1,Av〉 ≤ · · · ≤ µ〈τ|Y|,Av〉 where τ1 ≥ · · · ≥ τ|Y|. (19)

3.2.2 Two-way Ordering

Two-way ordering is similar to one-way ordering but, in addition to the activation

of a certain feature, it involves the deactivation of a second feature. The following

proposition describes the probability constraints more formally and derives the cor-

responding parameter constraints. The proof is similar to that of Proposition 2 and

is omitted.

Proposition 3. Let x be a sequence over X in which Av(x, j) = 1 and Aw(x, j) = 0

and x′ be identical to x except that Av(x
′, j) = 0 and Aw(x′, j) = 1. Then for a linear

chain CRF pθ(y|x) as in (10) we have that for all s, t,

pθ(s|x)

pθ(s|x′)
≥ pθ(t|x)

pθ(t|x′)
⇔ µ〈tj ,Aw〉 − µ〈sj ,Aw〉 ≥ µ〈tj ,Av〉 − µ〈sj ,Av〉. (20)

In a similar way to the one-way ordering, the parameter constraint depends only

on the j-components of s, t and thus to aid the interpretation we can select s, t that

are identical except for sj, tj . The probability ratio constraint then measures whether

perturbing x 7→ x′ increases the probability of sj more than that of tj. However, in

contrast to the one-way ordering the perturbation x 7→ x′ involves deactivating the

feature Av and activating Aw. For example in the case of sentiment prediction these

features could correspond to the replacement of word v in the j-position with word

w.

In contrast to the one-way ordering, a collection of probability ratio constraints in

Proposition 3 do not correspond to full or partial ordering on the model parameters.

Instead they correspond to a full or partial order on the set of all pairwise differences

between the model parameters.
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One-way and two-way probability ratio constraints are complimentary in nature

and they are likely to be useful in a wide variety of situations. In the case of elicitation

from domain knowledge they provide a general framework for asserting statements

that are immediately translatable to parameter constraints.

We conclude this section with the following observations regarding possible gen-

eralizations of the one-way and two-way constraints

(1) The definition of f〈σ,τ〉 in (11) may be extended to a more general form f〈σ,τ,Bk〉(yi−1,

yi,x, i) = 1{yi−1=σ}1{yi=τ}Bk(x, i) where Bk are some binary functions of obser-

vation x. Without loss of generality, we assume that the set {Ak} and {Bk}

are disjoint. Otherwise, they can be made disjoint by defining a set of new

parameters λσ,τ,Bk
← λσ,τ,Bk

+ µτ,Bk
corresponding to fσ,τ,Bk

← fσ,τ,Bk
+ gτ,Bk

for functions that appear in both {Ak} and {Bk}. It is then straightforward to

modify Proposition 1 - 3 with respect to parameters λσ,τ,Bk
.

(2) The simple form of parameter constraints on the right hand side of(16) and (20)

results from the fact that only the j-components of the sequences matter in

computing the probability ratio (15). For perturbations x 7→ x′ involving labels

from multiple positions in the sequence, the probability ratio constraints become

linear parameter constraints with coefficients 1 or -1. These linear constraints

are still considered simple, but they lose the intuitive ordering interpretation

and are not the focus of this work.

3.3 Algorithms and Optimization

Conceptually, the parameter estimates for generalized isotonic CRF may be found by

maximizing the likelihood or posterior subject to a collection of constraints of type

(16) or (20). Since the constraints form a convex feasible set, the constrained MLE be-

comes a convex optimization problem with a unique global optimum. Unfortunately,

due to the large number of possible constraints, a direct incorporation of them into a
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numerical maximizer is a relatively difficult task. We propose a re-parameterization

of the CRF model that simplifies the constraints and converts the problem to a sub-

stantially easier constrained optimization problem. The re-parameterization, in the

case of fully ordered parameter constraints is relatively straightforward. In the more

general case of constraints forming a partially ordered set we need the mechanism of

Möbius inversions on finite partially ordered sets.

The re-parameterization is based on the partial order on pairs {〈τ, Aj〉 : τ ∈

Y , j = 1, . . . , l} defined in (17). Instead of enforcing the constraints on the original

parameters µ〈τ,Aj〉, we reparameterize the model by introducing a new set of features

{g∗〈σ,Ak〉 : σ ∈ Y , k = 1, . . . , l} defined as

g∗〈σ,Ak〉(yi, xi) =
∑

〈τ,Aj〉:〈τ,Aj〉≥〈σ,Ak〉
g〈τ,Aj〉(yi, xi) (21)

and a new set of corresponding parameters µ∗
〈σ,Ak〉 satisfying the equality

∑

σ,k

µ〈σ,Ak〉g〈σ,Ak〉 =
∑

σ,k

µ∗
〈σ,Ak〉g

∗
〈σ,Ak〉 (22)

and leading to the re-parameterized CRF

pθ(y|x) =
1

Z(x, θ)
· (23)

exp

(
∑

i

∑

σ,τ

λ〈σ,τ〉f〈σ,τ〉(yi−1, yi) +
∑

i

∑

σ,k

µ∗
〈σ,Ak〉g

∗
〈σ,Ak〉(yi, xi)

)

.

Obtaining the maximum likelihood for the reparameterized model (23) instead of

the original model has the benefit of converting the complex partial orders in (17)

to simple non-negativity constraints µ∗
〈σ,Ak〉 ≥ 0 for a subset of the new parameters

{µ∗
〈σ,Ak〉 : σ ∈ Y , k = 1, . . . , l}. As a result, solving the constrained MLE problem

on the reparameterized model (23) is substantially simpler to implement and is more

efficient computationally. The constrained MLE can be computed in practice using

a trivial adaptation of gradient based methods such as conjugate gradient or quasi-

Newton.
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The parameters µ∗
〈σ,Ak〉 may be obtained from the original parameters by convolv-

ing µ〈σ,Ak〉 with the Möbius function of the partially ordered set (17). The reparame-

terization (23) is justified by the Möbius inversion theorem which states that µ∗
〈σ,Ak〉

satisfy

µ〈σ,Ak〉 =
∑

〈τ,Aj〉:〈τ,Aj〉≤〈σ,Ak〉
µ∗
〈τ,Aj〉. (24)

In the case of two-way ordering, we have ordering on parameter differences rather

than the parameters themselves. The mechanism of Möbius inversions can still be

applied, but over a transformed feature space instead of the original feature space.

In particular, for (tj , sj, Aw, Av) that satisfy (20), we apply the re-parameterization

described in (21) - (23) to the feature functions g̃ defined by

g̃〈tj ,Av〉 = g〈tj ,Av〉 g̃〈sj ,Av〉 = g〈sj ,Av〉 + g〈tj ,Av〉

g̃〈tj ,Aw〉 = g〈tj ,Aw〉 g̃〈sj ,Aw〉 = g〈sj ,Aw〉 + g〈tj ,Aw〉

and parameters µ̃ defined by

µ̃〈sj ,Av〉 = µ〈sj ,Av〉 µ̃〈tj ,Av〉 = µ〈tj ,Av〉 − µ〈sj ,Av〉

µ̃〈sj ,Aw〉 = µ〈sj ,Aw〉 µ̃〈tj ,Aw〉 = µ〈tj ,Aw〉 − µ〈sj ,Aw〉.

More information concerning the Möbius inversion theorem for partially ordered sets

may be found in standard textbooks on combinatorics, for example [104].

3.4 Elicitation of Constraints

There are two ways in which probability constraints such as the ones in Propositions

2 and 3 can be elicited. The first is by eliciting domain knowledge from experts. This

is similar to prior elicitation in subjective Bayesian analysis, but has the advantage

that the knowledge is specified in terms of probability ratios, rather than model

parameters.
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The second way to elicit probability constraints is by relying on auxiliary data.

The auxiliary data should be related to the domain on which inference is conducted,

but does not have to have the same distribution as the training data. Automatic

elicitation results in probability ratios satisfying inequalities or more generally having

values in some sets. As such, some amount of inconsistency between the auxiliary

data and the train and test data is permissible. For example, in sentiment prediction

modeling of a particular author, we may have auxiliary data written by another

author. In information extraction we may have a secondary corpus from a different

source whose label taxonomy is related to the primary dataset.

Inferring probability constraints concerning the full conditionals pθ(y|x) from data

is difficult due to the fact that each sequence x or y appears only once or a small

number of times. The approach below makes some conditional independence assump-

tions which will simplify the elicitation to the problem of ordering probability ratios

of univariate conditional distributions p(Av|tj)/p(Aw|tj).

Proposition 4. Let x,x′ be as in Proposition 1 and p(x,y) = p(x)pθ(y|x) where

pθ(y|x) is a CRF model and p(xj |yj) is being modeled by1 p (∩k∈IAk | yj), I = {k ∈

{1, . . . , l} : xj ∈ Ak}, satisfying the following conditional independencies

p

(
⋂

k∈I

Ak | yj

)

=
∏

k∈I

p (Ak | yj) . (25)

If the CRF model satisfies (16) then

p(Av|tj) ≥ p(Av|sj). (26)

1We implicitly assume here that sequences x are identified by their feature signature i.e. the

feature functions constitute a 1-1 mapping. In some cases this does not hold and some correction

term is necessary.
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Proof. We have

LHS of (16) ⇒ pθ(s|x)

pθ(t|x)
≥ pθ(s|x′)

pθ(t|x′)
⇒

∑

s

pθ(s|x)

pθ(t|x)
≥
∑

s

pθ(s|x′)

pθ(t|x′)

⇒
∑

t

pθ(t|x)
∑

s
pθ(s|x)

≤
∑

t

pθ(t|x′)
∑

s
pθ(s|x′)

⇒ αtj (x)

αsj
(x)
≤ αtj (x

′)

αsj
(x′)

(27)

where the summations are over all label sequences s, t having fixed j-components

sj, tj . See Proposition 1 for a definition of αtj , αsj
.

Due to the conditional independencies expressed in the graphical structure of

CRF, the αr functions satisfy

αr(x)/Z(x) =
∑

y:yj=r

pθ(y|x) =
∑

y:yj=r

p(y,x)

p(x)
=
∑

y−j

p(y−j, yj = r,x)

p(x)

=
p(yj = r, xj , x−j)

p(x)
=
p(xj |yj = r)p(yj = r|x−j)p(x−j)

p(x)
(28)

where y−j = {y1, . . . , yn} \ {yj} and x−j = {x1, . . . , xn} \ {xj}.

Substituting (28) in (27) and using the fact that for all r ∈ Y , p(yj = r|x−j) =

p(yj = r|x′−j) we get

(27) ⇒ p(xj |tj)
p(xj |sj)

≤ p(x′j|tj)
p(x′j |sj)

⇒ p(xj |tj)
p(x′j |tj)

≤ p(xj |sj)

p(x′j |sj)

⇒ p (∩k∈IAk|tj)
p ((∩k∈IAk) ∩Av|tj)

≤ p (∩k∈IAk|sj)

p ((∩k∈IAk) ∩Av|sj)

⇒ p(Av|tj) ≥ p(Av|sj)

where the last implication comes from the conditional independence assumption (25).

A similar result holds for two-way ordering whose proof is omitted.

Proposition 5. Under the same conditions as Proposition 4, if the CRF model sat-

isfies (20) then

p(Av|tj)
p(Aw|tj)

≤ p(Av|sj)

p(Aw|sj)
⇒ p(tj |Av)

p(tj|Aw)
≤ p(sj|Av)

p(sj |Aw)
. (29)
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Constraints such as (26) or the equivalent (but sometimes easier to estimate)

p(tj |Av)

p(tj)
≥ p(sj|Av)

p(sj)
(30)

can be obtained from auxiliary data based on hypothesis tests. More specifically,

Equations (29),(30) can be written as ψ ≥ 1, where ψ is estimated by the odds ratio

of a 2×2 continency table obtained from the co-occurrence of a label (sj or tj) and a

set (Av or Aw). This can be achieved by a test of independence in a 2× 2 table, such

as an asymptotic test based on the test statistic (log ψ̂ − logψ)/se(log ψ̂) ≈ N (0, 1)

where se is the standard error [99].

For a large number of constraints, a collection of hypothesis tests can be performed

offline. Ideally, we would like to control the familywise error rate (FWER). One way

to retain a prescribed FWER is to test each hypothesis at a higher significant level,

as is done in the Bonferroni correction for multiple hypothesis testing. However, the

number of hypotheses considered in our case is hundreds or even thousands, while

the field of multiple hypothesis testing for this problem size is still largely under

development. Therefore we resort to single hypothesis testing and adopt a heuristic

approach, i.e. selecting a certain value as threshold we order the hypothesis by their

p-values and select the ones whose p-values are less than the threshold.

The derivations above are based on the conditional independence assumption (25)

which may be too restrictive for arbitrary feature sets. However, in our experiments

we found that the constraints identified automatically by hypothesis tests normally

overlap with those returned by domain experts. Moreover, even if domain experts are

available and human elicitation is taking place, the automatic elicitation described

above can substantially reduce human intervention as it can be used to pre-filter a

large set of unnecessary features.

Conflicting constraints are rare, but possible. In general, we expect the probability

of observing conflict will be low for high dimensional problems where the number of

constraints are relatively small compared with the number of features. Detecting
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conflicting constraints for one-way ordering is relatively easy. Note in this case the

problem can be decomposed into a collection of subproblems each detecting conflicts

for some feature Av. In particular, we construct a directed graph for each feature Av

as follows: let the vertices of the graph correspond to labels from Y . For identified

constraint µ〈tj ,Av〉 ≥ µ〈sj ,Av〉, we add an edge to the graph that points from sj to tj .

Once all constraints that relate to Av have been enumerated, we may detect whether

any conflict exists by cycle detection algorithms such as a modification of depth-first

search.

The case for two-way ordering is more complicated. Fix a pair of labels or a

pair of observations, the problem is reduced to the one-way ordering case. To see

this, for fixed label pair (tj , sj) we may construct a directed graph with each vertex

corresponding to a feature Av. Each identified constraint µ〈tj ,Aw〉−µ〈sj ,Aw〉 ≥ µ〈tj ,Av〉−

µ〈sj ,Av〉 is therefore represented as an edge in the graph that points from Av to Aw.

Alternatively, when fixing features Aw and Av, the constraint is equivalent to µ〈tj ,Aw〉−

µ〈tj ,Av〉 ≥ µ〈sj ,Aw〉 − µ〈sj ,Av〉 which can be represented by an edge pointing from sj to

tj . We may repeat the procedure by alternating between label pairs and observation

pairs. The resulting constraint set is very unlikely to contain conflicting constraints,

though still possible.

Whether the two-way ordering constraint set is contradiction free or not may also

be answered by the following linear programming problem

min
l∑

i=1

ξi

s.t. µ〈tij ,A
wi 〉 − µ〈si

j ,A
wi 〉 − µ〈tij ,A

vi〉 + µ〈si
j ,A

vi〉 + ξi ≥ 0

ξi ≥ 0, i = 1, . . . , l

where l is the number of constraints and ξi is the slack variable introduced for the i-th

constraint. The statement that the constraint set is contradiction free is equivalent

to the condition where the optimal value for ξi are all zero. The size of the problem is
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proportional to the number of constraints, which in general varies from hundreds to

thousands. The linear programming can be solved rather efficiently for this problem

size. Moreover, this approach is quite general and applies to arbitrary linear constraint

set, such as a mixture of one-way and two-way ordering constraints.

3.5 Sentiment Prediction

Many documents, such as reviews and blogs, are written with the purpose of conveying

a particular opinion or sentiment. Other documents may not be written with the

purpose of conveying an opinion, but nevertheless they contain one. Opinions, or

sentiments, may be considered in several ways, the simplest of which is varying from

positive opinion, through neutral, to negative opinion.

We distinguish between the tasks of global sentiment prediction and local senti-

ment prediction. Global sentiment prediction is the task of predicting the sentiment

of the document based on the word sequence. Local sentiment prediction [69] is the

task of predicting a sequence of sentiments y = (y1, . . . , yn), yi ∈ Y based on a se-

quence of sentences x = (x1, . . . , xn). In this case, each sentiment measures the local

sentiment of the sentence xi in the document.

Previous research on sentiment prediction has generally focused on predicting

the sentiment of the entire document. A commonly used application is the task of

predicting the number of stars assigned to a movie, based on a review text. Typically,

the problem is considered as standard multiclass classification or regression using the

bag of words representation.

In addition to the sentiment of the entire document, which we call global senti-

ment, we define the concept of local sentiment as the sentiment associated with a

particular part of the text. It is reasonable to assume that the global sentiment of

a document is a function of the local sentiment and that estimating the local senti-

ment is a key step in predicting the global sentiment. Moreover, the concept of local
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sentiment is useful in a wide range of text analysis applications including document

summarization and visualization.

Formally, we view local sentiment as a function on the sentences in a document

taking values in a finite partially ordered set, or a poset, (Y ,≤). To determine the

local sentiment at a particular word, it is necessary to take context into account. For

example, due to context the local sentiment at each of the following words this is

a horrible product is low. Since sentences are natural components for segmenting

document semantics, we view local sentiment as a piecewise constant function on

sentences. Occasionally we encounter a sentence that violates this rule and conveys

opposing sentiments in two different parts. In this situation we break the sentence into

two parts and consider them as two sentences. We therefore formalize the problem

as predicting a sequence of sentiments y = (y1, . . . , yn), yi ∈ Y based on a sequence

of sentences x = (x1, . . . , xn) where we consider each sentence as a bag of words

xi = {wi1, . . . , wili}.

We examine the performance of the CRF model in the local sentiment task and

the benefit arising from incorporating parameter constraints through auxiliary data

and domain knowledge. The CRF is based on Equation (10) with the feature func-

tions Ak(x, i) = 1{wk∈xi} that measure the appearance of vocabulary words in each

sentence. The dataset that we use contains 249 movie reviews, randomly selected

from the Cornell sentence polarity dataset v1.02, all written by the same author. The

local sentiment labeling was performed manually by the author by associating with

each sentence one of the following sentiment values Y = {−2,−1, 0, 1, 2} where 2

corresponds to highly praised, 1 corresponds to something good, 0 corresponds to

objective description, −1 corresponds to something that needs improvement, and −2

corresponds to strong aversion.

2Available at http://www.cs.cornell.edu/People/pabo/movie-review-data
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3.5.1 Sentence Level Sentiment Prediction

Figure 2 displays the testing accuracy of local sentiment prediction both as a function

of the training data size and as a function of the number of constrained words averaged

over 40 train-test splits. In all cases, limited memory BFGS was used to train the

CRF. The constraints were enforced using the barrier method. The objective function

was the regularized MLE with a Gaussian prior on θ with variance 10.

The dataset presents one particular difficulty where more than 75% of the sen-

tences are labeled objective (or 0). As a result, the prediction accuracy for objective

sentences is over-emphasized. To correct for this fact, we report our results by aver-

aging the test-set performance for each individual label. Note that since there are 5

labels, random guessing yields a baseline of 0.2 accuracy.

As described in Section 3.4, for one-way ordering, we obtained 500 words from

an auxiliary data set that received the smallest p values in a test of (30) to set the

constraints (16). The auxiliary data set is the additional 201 movie reviews from a

second author described in 3.5.3. Table 1 displays the top 15 positive and negative

words. The constraint set is contradiction free when positive and negative words form

two disjoint sets.

Similarly, we may apply a test of (29) on the auxiliary data set to get pairs of

words for setting constraints of (20). Figure 3 shows a portion of the graph by

connecting a pair of ordered words with a line where the arrow points to the higher

ordered word. Detecting conflicting constraints is equivalent to detecting cycles in

this directed graph. A total of 400 pairs of words are selected for two-way ordering

constraints in Figure 2 (bottom left).

The results in Figure 2 indicate that by incorporating either one-way or two-way

ordering information, the generalized isotonic CRF perform consistently better than

regular CRF. The advantage of incorporating sequential information in sentiment
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Figure 2: Balanced test accuracy for local sentiment prediction both as a function
of training size (left column) and as a function of number of constrained words (right
column). 500 words that received the smallest p values in a test of (30) are subject to
one-way ordering (top row). 400 pairs of words that received the smallest p values in
a test of (29) are subject to two-way ordering (bottom row). Blue lines in the right
column are obtained by smoothing the data (represented by black circles). In this
case, the training size is fixed to be 150.

great

bad

emotperfect

bore annoi clich supposdumbwors ridicul lame

power rare present

stupid

complex importoscar

Figure 3: Ordering of stemmed words with respect to the positive sentiment. The
words with higher order are drawn at the top.
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Table 1: Lists of first 15 positive or negative stemmed words with the smallest p
values.

great perfect power love complex
import emot present fascin rare
oscar true simpl polit beauti
bad suppos bore stupid wors
dumb minut tediou annoi wrong
bland ridicul worst lifeless lame

prediction has already been demonstrated in [69] and we therefore omit results com-

paring CRF and isotonic CRF with non-sequential models such as naive Bayes or

SVM here.

We note that the information provided by one-way and two-way ordering are

somewhat overlapping. For example, setting the words great and bad for one-way

ordering automatically implies that the word pair (great, bad) satisfies the two-

way ordering. We therefore avoid considering generalized isotonic CRF with mixed

constraint types.

3.5.2 Global Sentiment Prediction

We also evaluated the contribution of the local sentiment analysis in helping to predict

the global sentiment of documents. The sentence-based definition of sentiment flow

is problematic when we want to fit a model that uses sentiment flows from multiple

documents. Different documents have different number of sentences and it is not

clear how to compare them or how to build a model from a collection of discrete

flows of different lengths. We therefore convert the sentence-based flow to a smooth

length-normalized flow that can meaningfully relate to other flows.

In order to account for different lengths, we consider the sentiment flow as a func-

tion h : [0, 1]→ Y ⊂ R that is piecewise constant on the intervals [0, l), [l, 2l), . . . , [(k−

1)l, 1] where k is the number of sentences in the document and l = 1/k. Each of the
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Figure 4: Sentiment flow and its smoothed curve representation. The blue circles
indicate the labeled sentiment of each sentence. The blue solid curve and red dashed
curve are smoothed representations of the labeled and predicted sentiment flows.
Only non-objective labels are kept in generating the two curves. The numberings
correspond to sentences displayed in Section 3.5.4.

intervals represents a sentence and the function value on it is its sentiment.

To create a more robust representation we smooth out the discontinuous function

by convolving it with a smoothing kernel. The resulting sentiment flow is a smooth

curve f : [0, 1] → R that can be easily related or compared to similar sentiment

flows of other documents (see Figure 4 for an example). We can then define natural

distances between two flows, for example the Lp distance

dp(f1, f2) =

(∫ 1

0

|f1(r)− f2(r)|p dr
)1/p

(31)

for use in a distance based classifier that predicts the global sentiment.

We compared a nearest neighbor classifier for the global sentiment, where the rep-

resentation varied from bag of words to smoothed length-normalized local sentiment

representation (with and without objective sentences). The smoothing kernel was a

bounded Gaussian density (truncated and renormalized) with σ2 = 0.2. Figure 4

displays discrete and smoothed local sentiment labels, and the smoothed sentiment

flow predicted by isotonic CRF.

Figure 5 and Table 2 display test-set accuracy of global sentiment prediction

as a function of the train set size. The distance in the nearest neighbor classifier

was either L1 or L2 for the bag of words representation or their continuous version
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Figure 5: Accuracy of global sentiment prediction (4-class labeling) as a function of
train set size.

Table 2: Accuracy results and relative improvement when training size equals 175.

L1 L2

vocabulary 0.3095 0.3068
sentiment flow with objective sentences 0.3189 3.0% 0.3128 1.95%
sentiment flow without objective sentences 0.3736 20.7% 0.3655 19.1%

(31) for the smoothed sentiment curve representation. The results indicate that the

classification performance of the local sentiment representation is better than the

bag of words representation. In accordance with the conclusion of [80], removing

objective sentences (that correspond to sentiment 0) increased the local sentiment

analysis performance by 20.7%. We can thus conclude that for the purpose of global

sentiment prediction, the local sentiment flow of the non-objective sentences holds

most of the relevant information.

3.5.3 Measuring the rate of sentiment change

Thus far, we have ignored the dependency of the labeling model pθ(y|x) on the au-

thor, denoted here by the variable a. We now turn to account for different sentiment-

authoring styles by incorporating this variable into the model. The word emissions
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Figure 6: Graphical models corresponding to CRF (left) and author-dependent CRF
(right).

yi → wi in the CRF structure are not expected to vary much across different au-

thors. The sentiment transitions yi−1 → yi, on the other hand, typically vary across

different authors as a consequence of their individual styles. For example, the review

of an author who sticks to a list of self-ranked evaluation criteria is prone to strong

sentiment variations. In contrast, the review of an author who likes to enumerate

pros before he gets to cons (or vice versa) is likely to exhibit more local homogeneity

in sentiment.

Accounting for author-specific sentiment transition style leads to the graphical

model in Figure 6.

The corresponding author-dependent CRF model

pθ(y|x, a) =
1

Z(x, a)
exp

(
∑

i,a′

∑

σ,τ

(
λ〈σ,τ〉 + λ〈σ,τ,a′〉

)
f〈σ,τ,a′〉(yi−1, yi, a)

+
∑

i

∑

σ,k

µ〈σ,Ak〉g〈σ,Ak〉(yi,x, i)

)

uses features f〈σ,τ,a′〉(yi−1, yi, a) = f〈σ,τ〉(yi−1, yi)δa,a′ and transition parameters that

are author-dependent λ〈σ,τ,a〉 as well as author-independent λ〈σ,τ〉. Setting λ〈σ,τ,a〉 = 0

reduces the model to the standard CRF model. The author-independent parameters

λ〈σ,τ〉 allow parameter sharing across multiple authors in case the training data is too

scarce for proper estimation of λ〈σ,τ,a〉. For simplicity, the above ideas are described
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in the context of non-isotonic CRF. However, it is straightforward to combine author-

specific models with generalized isotonic restrictions.

We examine the rate of sentiment change as a characterization of the author’s writ-

ing style using the isotonic author-dependent model. We assume that the CRF process

is a discrete sampling of a corresponding continuous time Markov jump process. A

consequence of this assumption is that the time T the author stays in sentiment σ

before leaving is modeled by the exponential distribution pσ(T > t) = e−qσ(t−1), t > 1.

Here, we assume T > 1 and qσ is interpreted as the rate of change of the sentiment

σ ∈ Y : the larger the value, the more likely the author will switch to other sentiments

in the near future.

To estimate the rate of change qσ of an author we need to compute pσ(T > t)

based on the marginal probabilities p(s|a) of sentiment sequences s of length l. The

probability p(s|a) may be approximated by

p(s|a) =
∑

x

p(x|a)pθ(s|x, a) ≈
∑

x

p̃′(x|a)
n− l + 1

×
(
∑

i

αi(s1|x, a)
∏i+(l−1)

j=i+1 Mj(sj−i, sj−i+1|x, a)βi+(l−1)(sl|x, a)
Z(x, a)

)

where p̃′ is the empirical probability function p̃′(x|a) = 1
|C|
∑

x′∈C δx,x′ for the set C

of documents written by author a of length no less than l. α,M, β are the forward,

transition and backward probabilities analogous to the dynamic programming method

in [59].

Using the model p(s|a) we can compute pσ(T > t) for different authors at integer

values of t which would lead to the quantity qσ associated with each author. However,

since (32) is based on an approximation, the calculated values of pσ(T > t) will be

noisy resulting in slightly different values of qσ for different time points t and cross

validation iterations. A linear regression fit for qσ based on the approximated values

of pσ(T > t) for two authors using 10-fold cross validation is displayed in Figure 7.

The data was the 249 movie reviews from the previous experiments written by one
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author, and additional 201 movie reviews from a second author. Interestingly, the

author associated with the red dashed line has a consistent lower qσ value in all those

figures, and thus is considered as more “static” and less prone to quick sentiment

variations.
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Figure 7: Linear regression fit for qσ, σ = 2, 1,−1,−2 (left to right) based on
approximated values of pσ(T > t) for two different authors. X-axis: time t; Y-axis:
negative log-probability of T > t.

3.5.4 Text Summarization

We demonstrate the potential usage of sentiment flow for text summarization with

a very simple example. The text below shows the result of summarizing the movie

review in Figure 4 by keeping only sentences associated with the start, the end, the
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top, and the bottom of the predicted sentiment curve. The number before each

sentence relates to the circled number in Figure 4.

1 What makes this film mesmerizing, is not the plot, but the virtuoso performance of Lucy

Berliner (Ally Sheedy), as a wily photographer, retired from her professional duties for the last ten

years and living with a has-been German actress, Greta (Clarkson). 2 The less interesting story line

involves the ambitions of an attractive, baby-faced assistant editor at the magazine, Syd (Radha

Mitchell), who lives with a boyfriend (Mann) in an emotionally chilling relationship. 3 We just lost

interest in the characters, the film began to look like a commercial for a magazine that wouldn’t

stop and get to the main article. 4 Which left the film only somewhat satisfying; it did create a

proper atmosphere for us to view these lost characters, and it did have something to say about how

their lives are being emotionally torn apart. 5 It would have been wiser to develop more depth for

the main characters and show them to be more than the superficial beings they seemed to be on

screen.

3.5.5 Elicitation of Constraints from Domain Experts

In all previous experiments, the probability ordering constraints are obtained by test-

ing hypotheses such as (30) or (29) on the auxiliary data set. We now demonstrate

that we may achieve similar or even better results by eliciting constraints from domain

experts.

During the experiment, one of the authors was presented with the vocabulary of

the sentiment data set, and was asked to pick a subset of words from it which they

thought would indicate either positive or negative sentiment. A total of 402 words

were picked, and a subset of them starting with ‘a’ are listed in Table 3.

This set of words are then used to define one-way ordering constraints for CRF

corresponding to a full ordering on the labels Y . Figure 8 shows the test-set perfor-

mance as a function of training size averaged over 40 cross validations. Compared

with Figure 2 (top left), applying domain knowledge directly achieves similar, or even
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Table 3: Stemmed words starting with ‘a’ that are chosen manually to conveying
positive or negative sentiment.

acclaim activ admir ador aesthet
aliv allure amaz amus appeal

appreci apt artfully artifice astonish
attract authent awe award

abruptly absurd adolesc ambigu annoy
arrog awkward arti
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Figure 8: Balanced test-set accuracy (left) and distance of predicted sentiment from
true sentiment (right) as a function of training size average over 40 cross validations.
One-way ordering constraints are elicited from a domain expert without the use of
auxiliary data set.

higher accuracy. This demonstrates the flexibility of our framework in the sense that

domain knowledge may come from multiple sources, including domain experts and

auxiliary data sets.

3.6 Information Extraction

The idea of generalized isotonic CRF can also be applied to information extraction

in natural language processing. In contrast to the case of local sentiment prediction,

the set of labels Y in information extraction is categorical and there is no natural

order on it. The sequences x corresponds to a sentence or a document with xi being
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vocabulary words.

We use a CRF model (10) with a set of features A = {Av(x, i) = 1{xi=v}} that

measure the appearance of word v at the current position. We consider isotonic

constraints that define a partial order on the µ〈σ,Av〉 as follows. For each word v, we

determine the most likely tag σ ∈ Y and if deemed significant we enforce

µ〈σ,Av〉 ≥ µ〈τ,Av〉 ∀τ ∈ Y , τ 6= σ. (32)

We conducted our experiments on the advertisements data for apartment rentals3

which contains 302 documents labeled with 12 fields, including size, rent,

restrictions, etc. During each iteration, 100 documents are randomly selected for

testing and the remaining documents are used for training. As previously noted,

we use limited memory BFGS for L2 regularized likelihood with the barrier method

enforcing constraints.

As before, one of the authors was presented with the vocabulary of the advertise-

ments data, and was asked to pick a subset of words from it which he thought would

be indicative of some field. As a part of the elicitation, he was allowed to observe a

few labeled documents (≤ 5) from the data set before the actual selection of words.

Table 4 lists the picked words and the field column gives the highest ranked label σ

for each word v on the right.

We also use features that model the local context, including

B = {B−
v (x, i) = 1{xi−1=v}, B

+
v (x, i) = 1{xi+1=v}}

which consider words appearing before and after the current position, and

C = {C−
u,v(x, i) = 1{xi−1=u}1{xi=v}, C

+
u,v(x, i) = 1{xi=u}1{xi+1=v}}

which consider bigrams containing the current word. Table 5 lists a set of bigrams

that are deemed indicative of some field. Since each word or bigram appears only

once in Table 4 and 5, the constraint set is contradiction free.

3Available at: http://nlp.stanford.edu/∼grenager/data/unsupie.tgz
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Table 4: Words selected for one-way ordering in generalized isotonic CRF. The label
on the left is determined to be the most likely label corresponding to the words on the
right. Words between two asterisks, e.g. *EMAIL*, represent tokens that match the
given regular expressions. Words with parentheses denote a group of similar words,
e.g. image(s) is used to represent both image and images.

Field Words

*EMAIL* *PHONE* *TIME* today monday tuesday wednesday
friday sat saturday sunday weekend(s) am pm appointment visit
reply contact email fax tel schedule questions information details

contact

interested @
size ft feet sq sqft

airport restaurant(s) safeway school(s) shop(s) shopping store(s)
station(s) theater(s) transit transportation freeway(s) grocery
hwy(s) highway(s) expressway near nearby close mall park banks

neighborhood

churches bars cafes
*MONEY* term(s) yearly yr lease(s) contract deposit year

rent
month

available immediately available june july aug august
restrictions smoke smoker(s) smoking pet(s) cat(s) dog(s) preferred

address ave avenue blvd
backyard balcony(-ies) basement dishwasher(s) dryer(s) furniture
fridge garage(s) jacuzzi kitchen(s) kitchenette laundry lndry
oven(s) parking pool(s) refrig refrigerator(s) sauna(s) sink(s) spa

features

storage stove(s) swimming tub(s) washer(s) lobby
photos image(s) photo(s) picture(s)
utilities utility utilities utils electricity pays

roommates roommate student
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Table 5: Bigrams selected for one-way ordering in generalized isotonic CRF. The
label on the left is determined to be the most likely label corresponding to the bigrams
on the right.

Field Words

single-family *NUMBER*-story *NUMBER*-bedroom(s)
one-bedroom one-bath *NUMBER*-bath(s) one-bathroom
two-bedroom(s) *NUMBER*-bathroom *NUMBER*-br

size

square-feet sq-feet sq-ft
walking-distance easy-access convenient-to close-to access-to

neighborhood distance-to block(s)-to away-from located-near block(s)-from
block(s)-away minutes-to(away,from) mile-from

features lots-of plenty-of living-room dining-room gas-stove street-parking
contact open-house set-up stop-by

*NUMBER*-month application-fee security-deposit per-month
rent

/-month /-mo a(one,first,last)-month
address located-at

restrictions at-least may-be

Table 6: Labeling accuracy and macro-averaged F1.0 for various training size N .
Models are trained using the set of features A (left) as well as A ∪ B (right) subject
to one-way ordering induced by Table 4. An asterisk (*) indicates that the difference
is not statistically significant according to the paired t test at the 0.05 level.

accuracy F1.0 accuracy F1.0N
CRF iso-CRF CRF iso-CRF CRF iso-CRF CRF iso-CRF

10 0.5765 0.5862* 0.2804 0.3264 0.5942 0.6255 0.3153 0.3923
15 0.6265 0.6578 0.3479 0.4002 0.6294 0.6614 0.3703 0.4503
20 0.6354 0.6750 0.3760 0.4433 0.6553 0.6931 0.4110 0.5090
25 0.6760 0.6968 0.4257 0.4687 0.6712 0.7100 0.4412 0.5320
50 0.7062 0.7491 0.5064 0.5734 0.7187 0.7409 0.5226 0.5818
75 0.7533 0.7658 0.5716 0.6038 0.7391 0.7528 0.5594 0.6061
100 0.7696 0.7814 0.5992 0.6287 0.7514 0.7628 0.5857 0.6256
200 0.7910 0.8012* 0.6348 0.6691 0.7810 0.7859 0.6294 0.6540
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Table 7: Labeling accuracy and macro-averaged F1.0 for various training size N .
Models are trained using the set of features A ∪ B ∪ C subject to one-way ordering
induced by both Table 4 and 5. We omit the results for one-way ordering induced by
Table 4 only, which are almost identical to those reported for iso-CRF. An asterisk
(*) indicates that the difference is not statistically significant according to the paired
t test at the 0.05 level.

accuracy F1.0

CRF iso-CRF CRF iso-CRF

10 0.5760 0.5902 0.2745 0.2954*
15 0.6146 0.6322 0.3310 0.3560
20 0.6439 0.6508 0.3685 0.3880
25 0.6610 0.6883 0.4043 0.4495
50 0.7190 0.7370 0.5043 0.5503
75 0.7428 0.7576 0.5488 0.5902
100 0.7615 0.7727 0.5796 0.6122
200 0.7921 0.7999 0.6405 0.6667

Table 6 and 7 display the prediction accuracy (which equals micro-averaged F1.0)

and macro-averaged F1.0 for test data subject to one-way ordering induced by Table

4 and 5. The results are averaged over 20 cross-validation iterations. In all cases,

generalized isotonic CRFs consistently outperform the CRF.

3.7 Discussion

Regularized maximum likelihood estimation is one of the most popular estimation

techniques in statistical learning. A natural way to incorporate domain knowledge

into this framework is through the use of an informative or subjective prior. Assuming

the prior is uniform over an admissible area the maximum posterior estimate becomes

the constrained version of the maximum likelihood.

An informative prior or frequentist constraints are usually specified on the pa-

rameter space Θ. Unfortunately, it is highly non-trivial to obtain a statistical inter-

pretation of the informative prior in terms of the underlying probabilities. This is

especially true for conditional random fields which is perhaps the most popular model
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for structured prediction.

We argue that domain knowledge, whether elicited from a domain expert or from

auxiliary data, is best specified directly in terms of probability constraints. Such

constraints have a clear interpretation in terms of probability of certain events. We

define several types of probability constraints that lead directly to simple parameter

constraints thereby facilitating their use as a subjective prior in the statistical learning

process. Moreover, the probability constraints can be described in terms of simple

queries corresponding to the increase of the probability of a label tj as a result of a

local perturbation of the input sequence x 7→ x′. The increase in probability is then

compared to the increase in probability of another label sj . Since it incorporates

relative judgement corresponding to an ordering of probability ratios, it is more likely

to be accurately elicited than specific probability values.

We present a general framework for incorporating several types of constraints into

a simple informative prior consisting of partial ordering constraints on the model pa-

rameters. The framework applies to a wide range of applications and leads to efficient

computational procedure for solving the constrained regularized maximum likelihood.

We demonstrate its applicability to the problems of local sentiment analysis and pre-

dicting syntactic and morphological tags in natural language processing.

Our experiments indicate that incorporating the constraints leads to a consistent

improvement in prediction accuracy over the regularized CRF model which is con-

sidered the state-of-the-art for sentiment prediction and information extraction. In

our experiments we study both elicitation from a domain expert and from auxiliary

data. In the latter case, we develop an effective mechanism for automatically deriving

constraints based on hypothesis testing.

The developed framework applies directly to CRF but could be modified to other

structured prediction models such as max-margin discriminative networks. With some

simple modifications it applies also to other conditional models such as multinomial
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logistic regression and in general other forms of conditional graphical models.

Ideally, as the number of constraints increases, we expect the performance first

increases, then decreases after some point. If we view the procedure of adding con-

straints as progressively restricting the feasible set of parameters, the reduced para-

metric set θ \N usually leads to an improved model before it becomes too restrictive

for the problem.

It is interesting to relate the effective number of constraints (defined as the max-

imum number of constraints added before the performance drops) with the number

of features. Assume the ideal case where there is no overfitting, and each feature is

useful. The feasible set θ \N formed from the effective number of constraints in low

dimensional space may not be considered restrictive in high dimensional space, which

results from adding more features to the original feature space. As a consequence,

we expect the effective number of constraints to be higher for the high dimensional

case than for the low dimensional one. That is to say, the number of parameters to

be considered is a roughly monotonic function of the number of features.

Following the same argument as above, for fixed number of parameter constraints,

we expect as the number of features increases, the performance curve also increases,

before it flattens (again we assume no overfitting). This makes our framework attrac-

tive especially in the case of high dimensional data.
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CHAPTER IV

DOMAIN KNOWLEDGE UNCERTAINTY AND

PROBABILISTIC PARAMETER CONSTRAINTS

A fundamental difficulty with incorporating domain knowledge is that as it is provided

by humans, it often holds with some degree of uncertainty. For example in sentiment

prediction, the presence of the word good corresponds usually, but not always to a

positive opinion. While this difficulty applies to explicitly formulated domain knowl-

edge, it is even more pronounced when the domain knowledge is obtained implicitly

by interpreting user feedback. For example in web search, clickthrough data or the

time a user spent in a site are usually interpreted as indicating high relevance. This

interpretation is correct in many but not all cases.

In this chapter, we propose to explicitly model domain knowledge uncertainty by

specifying the probability with which it is expected to hold. Specifically, we consider

the case of a hierarchical prior over the parameter space with additional parameter

constraints holding with certain probabilities. Thus in the case of x ∼ p(·|θ), θ ∼

p(·|α) we enforce probabilistic parameter constraint P (θ ∈ A) ≥ η where A is a

set corresponding to the domain knowledge and η corresponds to the uncertainty

or confidence level. We derive an equivalence between the probabilistic constraint

P (θ ∈ A) ≥ η and certain hard constraint over the hyperparameters α. Inference can

then proceed on the equivalent model using standard techniques such as empirical

Bayes or maximum posterior estimate.

Our proposed framework applies to a large class of practical models. We focus

on generative and conditional modeling where the parameters are assigned a Dirich-

let or Gaussian prior. This includes the popular cases of ridge regression, mixture
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of Gaussians, regularized logistic regression, naive Bayes and smoothed n-gram es-

timation. We show that in these cases the framework translates into well defined

and computable hyperparameter constraints and discuss computational schemes for

performing Bayesian inference.

From a Bayesian perspective, our framework derives a prior consistent with un-

certain domain knowledge and thus may be considered a form of prior elicitation.

Its practical significance is that it enables the use of a large quantity of somewhat

inaccurate knowledge which is otherwise problematic to use.

4.1 Probabilistic Constraints in Hierarchical Bayes

We consider situations in which the model is a hierarchical Bayes model

z ∼ f(·|θ) θ ∈ R
n

θ ∼ g(·|α) (33)

α ∼ h(·)

where f, g are distributions parameterized by θ, α and h is a hyperprior for α. Abus-

ing notation slightly, we consider the distribution f to be over z = x in the generative

case i.e., f(x|θ), or a conditional model over z = y|x in a discriminative setting i.e.,

f(y|x, θ). Model (33) is fairly standard and contains a wide variety of popular gener-

ative and conditional models such as regularized logistic regression, ridge regression

and lasso, mixture of Gaussians, etc. In some cases the distribution h(α) is uniform

or an uninformative prior. In other cases it is replaced with a fixed value altogether.

We introduce domain knowledge into the model by identifying sets Ai, i = 1, . . . , l

which are expected to contain the parameters θ ∈ Ai with some degree of confidence.

A simple case is linear constraints

Ai = {θ : a⊤i θ ≤ bi} ai ∈ R
n, bi ∈ R (34)
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which despite its simplicity is general enough to account for many practical situations.

Some useful special cases that are achievable using (34) are

θπ(1) ≤ · · · ≤ θπ(k) (35)

b ≤ θi ≤ c (36)

b ≤ |θi − θj | ≤ c (37)

b ≤
∑

θi ≤ c. (38)

Equation (35) represents a case where we know some parameters are likely to be

larger than others (π is a permutation over n letters and k < n). Equation (36) repre-

sents a case where we know the parameter values are bounded, for example in logistic

regression we might know that some parameters are positive θi ≥ 0 (contributing

to positive class label) and some are negative θi ≤ 0 (contributing to negative class

label). Equation (37) represents knowledge that two parameters are similar in value

and Equation (38) determines that the total parameter value is somehow bounded.

The constraints θ ∈ Ai are assigned confidence values ηi and incorporated into

the model by pairing (33) with

∫

Ai

g(θ|α) dθ ≥ ηi i = 1, . . . , l. (39)

It is important to note that the constraints (39) may or may not be satisfied depending

on the value of α. If α is a fixed parameter the constrained problem is trivial - either

(39) is satisfied or not. In the former case we can proceed with normal Bayesian

inference and in the latter case we need to modify either the constraints (39) or the

model (33). However, the situation gets more interesting when α is a random variable.

In this case, standard Bayesian inference is modified to account for the constraints,

effectively introducing the domain knowledge into the modeling process.

Proposition 6. The model (33) subject to the constraints (39) is equivalent to the
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θ ∈ R

α ∈ R

θ θ̄

α ᾱ

g(·|α) g(·|ᾱ)

Figure 9: Illustration of proof for Proposition 6. Ai is chosen to be [θ, θ̄]. For
α ∈ [α, ᾱ],

∫

Ai
g(θ|α) dθ ≥ ηi, which implies Bi = [α, ᾱ]. Solid lines represent g(·|α)

for α ∈ Bi while dashed lines represent α 6∈ Bi.

following Bayes model

z ∼ f(·|θ)

θ ∼ g(·|α) (40)

α ∼ c h(·) 1{α∈B1∩···∩Bl}

where c ensures normalization and

Bi =

{

α :

∫

Ai

g(θ|α) dθ ≥ ηi

}

.

Proof. The equivalence follows from considering separately the cases when the con-

straints are satisfied and when they are not (see Figure 4.1).

The equivalence derived in Proposition 6 is useful as (40) is an unconstrained

Bayesian model on which inference can proceed as usual, assuming the sets B1, . . . , Bl

are determined and ∩iBi 6= ∅. Specifically, assuming a dataset D = {z(1), . . . , z(m)},

the full Bayesian treatment suggests integrating over the posterior to obtain expec-

tations of interest. We focus on two alternatives due to computational consideration:

empirical Bayes and maximum posterior.

In the case of empirical Bayes (EB) we obtain a point estimate for α by maximizing
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the posterior p(α|D)

α∗ =arg max
α

h(α)

∫

f(D|θ)g(θ|α) dθ

subject to α ∈ B1 ∩ · · · ∩ Bl (41)

and use α∗ to compute probabilities of interest. For example, we can classify a

new example x by maximizing the predictive distribution implied by the posterior

distribution [90] defined as

ŷ = arg max
y

∫

θ

f(y|x, θ)p(θ|D, α∗) dθ (42)

where p(θ|D, α∗) is the posterior distribution over θ given by

p(θ|D, α∗) ∝ f(D|θ)g(θ|α∗).

A second alternative that may be used when the integration (41) is computation-

ally intractable is maximum posterior (MAP) where p(α, θ|D) is maximized to obtain

point estimates for both α, θ

(α∗, θ∗) = arg max
α,θ

f(D|θ)g(θ|α)h(α)

subject to α ∈ B1 ∩ · · · ∩ Bl. (43)

In this case new examples may be classified as

ŷ = arg max
y

f(y|x, θ∗).

In general, it is often hard to invert the constraints (39) and obtain the sets

B1, . . . , Bl in Proposition 6. In the next two sections we derive the inversion for the

case of linear constraints with either a Dirichlet or a Gaussian prior. The maximiza-

tion problems (41), (43) may be solved using standard interior point optimization.
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4.2 Dirichlet Prior

Dirichlet prior g(θ|α) applies to a variety of models f(z|θ) whose parameters take

values in the simplex

θ ∈ Pn−1 =
{

θ ∈ R
n : θi ≥ 0,

∑

θi = 1
}

. (44)

In particular, it is often used in conjunction with a multinomial f(z|θ) modeling

the appearance of words or short phrases called n-grams. The MAP estimate for

f(z|θ) = Mult(θ), g(θ|α) = Dir(α) modifies the observed word counts by adding αi

to the count of word i in the text and re-normalizing the modified count vector to

form a probability distribution. Such models serve a key role in a wide variety of text

processing tasks including language modeling, topic analysis, text classification, and

syntactic parsing.

Since each dimension in the parameter vector θ corresponds directly to the proba-

bility that a certain word or phrase appears, it is easy to construct constraints θ ∈ Ai

that correspond to linguistic knowledge. In the generative case, such knowledge may

correspond to the identification of words that are more popular than others. For

example, the following constraint may correspond to plausible linguistic knowledge

θi ≥ θj if word i is much shorter than word j. (45)

Such a statement may often hold as very long words tend to be uncommon and very

short words tend to be common. However, as (45) is not always true it is best to

enforce it with some confidence ηi < 1 in order to prevent poor estimation quality.

As a second example consider the conditional case where different multinomial

models with Dirichlet priors are built separately for different class labels y. In this case

domain knowledge may reflect the relationship between the class label and the words,

in addition to the relationship among the words as in (45). For example, consider

the case where the label y corresponds to spam or not spam. It is relatively easy to
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come up with a list of keywords affiliated with spam emails (free, information,

$) and constrain the corresponding θi to be large if the label y equals spam and

small otherwise. Such domain knowledge, while plausible, may not hold always and

enforcing it categorically may result in poor estimation quality. On the other hand,

enforcing the constraints with confidence ηi < 1 will allow the model to use the

constraints when they apply and avoid them when they do not.

As mentioned in the previous section we focus in this work on linear constraints

(34). Such constraints are relatively flexible and they are able to capture ordered and

axis aligned constraints (35)-(36) which include the two examples presented above as

well as additional special cases such as (37)-(38).

The key to inverting the linear constraints (39) and identifying the sets Bi in the

case of a Dirichlet prior is the observation that if Xj ∼ χ2
dj
, j = 1, . . . , n (χ2

dj
represent

independent chi-squared variables with dj degrees of freedom) then

(
X1
∑
Xi
, . . . ,

Xn
∑
Xi

)

∼ Dir

(
d1

2
, . . . ,

dn

2

)

.

It follows that if θ ∼ Dir (α1, . . . , αn), we may construct independent random variables

Yj ∼ χ2
2αj

so that

P

(
n∑

j=1

ajθj ≤ b

)

= P

(∑

j ajYj
∑

j Yj
≤ b

)

= P

(
∑

j

(
aj − b

)
Yj ≤ 0

)

. (46)

If λ1, . . . , λu are u distinct non-zero values of aj − b, j = 1, . . . , n, and Tk ∼ χ2
rk

with rk
def

= 2
∑

j αjδ(aj − b, λk), k = 1, . . . , u, (46) becomes equivalent to

P

(
u∑

k=1

λkTk ≤ 0

)

=
1

2
− 1

π

∫ ∞

0

sin
(

1
2

∑u
k=1 rk tan−1 (λkt)

)

t
∏u

k=1 (1 + λ2
kt

2)
rk/4

dt (47)

which is a function of r1, . . . , ru and thus of α [84].

Solving (47) is a difficult problem since it involves integration over a complex

expression of rk which in turn depend on α. We suggest to use the Edgeworth

expansion to approximate (47). The Edgeworth expansion states that ifX is a random
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variable with finite moments, mean zero and variance one, then its density function

f can be approximated as either (48) or (49)

f(x)

φ(x)
≈ 1 +H3(x)

κ3

6
(48)

f(x)

φ(x)
≈ 1 +H3(x)

κ3

6
+H4(x)

κ4

24
+H6(x)

κ2
3

72
. (49)

Above, κj is the j-th order cumulant, φ(x) is the pdf of a standard normal distribution,

and Hk are the Hermite polynomials defined as

H3(x) = x3 − 3x

H4(x) = x4 − 6x2 + 3

H6(x) = x6 − 15x4 + 45x2 − 15.

Note for arbitrary random variable Y , we can always define X to be Y −E[Y ]√
V ar[Y ]

so that

Edgeworth expansion can be applied. See Appendix A or [23] for more details on the

Edgeworth expansion.

The first four cumulants for the random variable
∑u

k=1 λkTk in (47) can be com-

puted rather easily. Since Tk ∼ χ2
rk

, k = 1, . . . , u we have

κ1 = E

[
u∑

k=1

λkTk

]

=

u∑

k=1

λkrk

κ2 = Var

[
u∑

k=1

λkTk

]

=

u∑

k=1

λ2
kVar [Tk] =

u∑

k=1

2λ2
krk

κ3 =
u∑

k=1

8λ3
krk

κ4 =
u∑

k=1

48λ4
krk.

The use of the approximation (48) leads to the following inversion of the proba-

bilistic constraint P (a⊤θ ≤ b) ≥ η

B =

{

α : Φ

(−κ1√
κ2

)

− κ3

6
H2

(−κ1√
κ2

)

φ

(−κ1√
κ2

)

≥ η

}
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where Φ is the cumulative density function (cdf) of a standard normal distribution.

The derivation follows from the fact that φ(n)(x) = (−1)nHn(x)φ(x).

In theory, function (47) can be approximated to arbitrary precision by using higher

order cumulants in the Edgeworth expansion. For random variable
∑u

k=1 λkTk in

(47), its higher order cumulants have simple forms which again depend on r1, . . . , ru.

This implies that the set B can be approximated arbitrarily closely at very little

computational cost. In practice, approximations such as (48) and (49) that use only

the first four cumulants are often considered adequate and usually work well.

4.3 Gaussian Prior

The most popular prior for continuous unbounded parameters θ ∈ R
n is the Gaussian

distribution. It is often used in conjunction with a Gaussian model f(z|θ) = N (θ,Υ),

g(θ|µ,Σ) = N (µ,Σ) where the posterior p(θ|D) is Gaussian as well. In this case the

posterior and various integrals over it have a close form.

In the conditional or discriminative setting, a Gaussian prior is often used in

conjunction with linear regression

f(y|x, θ) = N (θ⊤x, σ2) y ∈ R (50)

or logistic regression

f(y|x, θ) =
(

1 + e−yθ⊤x
)−1

y ∈ {−1,+1}. (51)

In both cases (50)-(51) a Gaussian prior over θ is the most popular means of intro-

ducing domain knowledge or regularizing the model.

Specifying domain knowledge by constraining θ is relatively easy as θ1, . . . , θn

correspond directly to the expected values of the data dimensions z1, . . . , zn. For

example, consider modeling a physical population quantity using a mixture of Gaus-

sians. There may be reasons to believe that some mixture components correspond to

specific groups in the population, enabling the use of domain knowledge to constrain
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the parameters of the mixture components. If the constraints are uncertain, intro-

ducing probabilistic rather than hard constraints will be more robust in the event of

their failure.

In the conditional case, constraints on θ may reflect the relationship among the

data and the predictor variable y. For example in a logistic regression model for

classifying document topics, we may enforce |θi| ≤ c for some i corresponding to

stop-words or non-content words. The assumption that non-content words such as

the or of do not contribute to the topic is a reasonable one. However, there are cases

in which the constraints may not hold which motivate η < 1.

We turn now to inverting the constraints (34) and identifying the sets B1, . . . , Bn

if θ ∼ N (µ,Σ). We have u
def

= a⊤i θ ∼ N (ū, σ2) where ū = a⊤i µ, σ2 = a⊤i Σai and

P
(
a⊤i θ ≤ bi

)
≥ ηi ⇔ P

(
u− ū
σ
≤ bi − ū

σ

)

≥ ηi

⇔ bi − ū
σ
≥ Φ−1(ηi) (52)

⇔ a⊤i µ+ Φ−1(ηi)
√

a⊤i Σai ≤ bi

(Φ is the standard normal cdf). Further details concerning this derivation may be

found in [8].

Depending on the problem structure, we may assume the hyperparameter α to be

(µ,Σ) or just µ (Σ is considered fixed in this case). One difficulty is that the MAP or

EB optimization problem is specified in terms of Σ−1 while the inverted constraints

(52) are specified in terms of Σ. This difficulty is not substantial if Σ is diagonal as

Σ−1 = diag(1/Σ11, . . . , 1/Σnn).

In situations when Σ is not a diagonal matrix obtaining the EB or MAP esti-

mator subject to the inverted constraints is highly non-trivial from an optimization

perspective. For the problem of obtaining the MAP estimator, we propose instead to

optimize a surrogate objective function based on the method of Bregman divergences.
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We make a standard assumption regarding the hyperprior h(α)

h
(
µ,Σ−1

)
∝ exp

(

−1

2
tr
(
Σ−1Λ

)
)

(53)

(Λ is a positive definite matrix) which is equivalent to stating that Σ−1 ∼Wishartn+1

(Λ−1), µ|Σ−1 is uniform. Note that the techniques introduced below apply to arbitrary

f(·|θ) as no assumptions are made regarding the particular choice of f .

We propose to use an iterative optimization technique, and during the step of

optimizing Σ with fixed θ and µ, maximize instead a surrogate objective function

based on the method of Bregman projection. Specifically, we solve the following

problem to obtain the point estimator for Σ for fixed θ and µ

min
Σ

DLogDet

(

Σ,Λ + (θ − µ)(θ − µ)⊤
)

(54)

s.t. tr
(

Σaia
⊤
i

)

≤
(
bi − a⊤i µ
Φ−1(ηi)

)2

, i = 1, . . . , l.

The divergence above is the LogDet Bregman divergence between matrices [10] (see

also Appendix C for a brief introduction of Bregman divergence). The hyperparam-

eter Σ estimated by (54) is then used when we subsequently optimize over θ or µ.

The problem (54) has the same constraints as the original subproblem but a

different objective function which is originally DLogDet(Λ + (θ − µ)(θ − µ)⊤,Σ). By

switching the arguments of the objective function, we are able to solve the problem

using the method of Bregman projections [10] which achieves the optimal solution

by sequentially projecting to different convex regions defined by the corresponding

constraints.

A useful property of Bregman projection is that it can be used to ensure the

positive definiteness of Σ−1 and Σ when starting from a positive definite matrix

Λ. This results immediately from the fact that each update of Σ−1 by projecting

the matrix divergence onto the convex region defined by tr
(

Σaia
⊤
i

)

≤ zi takes the
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following form

Σ−1 =
(

Λ + (θ − µ)(θ − µ)⊤
)−1

+ νaia
⊤
i

where

ν = max

{

0,
a⊤i (Λ + (θ − µ)(θ − µ)⊤)ai − zi

zia⊤i (Λ + (θ − µ)(θ − µ)⊤)ai)

}

≥ 0.

The problem size that can usually be handled in our framework is limited by the

problem size that can be solved by the quadratic programming solver. In case the

parameter constraints are sparse, i.e. ai are sparse vectors, a couple of thousand pa-

rameters is durable. For extremely large problems, feature selection or dimensionality

reduction is required as a processing step.

4.4 Approximation of Empirical Bayes

In this section, we discuss the case of empirical Bayes (41) when θ ∼ g(·|α) is not a

conjugate prior for the likelihood function. In particular, we consider binary classifi-

cation problems modeled by the generalized linear model

f(y|x, θ) = Φ(yθ⊤x)

where y takes values in {0, 1}, θ is a vector of regression parameters and Φ(·) is

some link function. Two most commonly used link functions are the logistic function

Φ(z) = ez

1+ez and the probit function Φ(z) =
∫ z

−∞
1√
2π
e−x2/2dx. The resulting models

are termed logistic regression and probit regression accordingly.

A common practice is to choose a Guassian prior for the regression parameter θ.

In this case, the integral
∫

θ
f(D|θ)g(θ|µ,Σ)dθ is analytically intractable, and may be

approximated using sampling methods. Alternatively, we consider here techniques

based on an analytical approximation. The idea is to approximate the likelihood

function as an unnormalized Gaussian so that we can compute the integral analyti-

cally. We begin with the following two lemmas which are essential for carrying out

the computation.
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Lemma 1. Let A ∈ R
n×n be a symmetric positive definite matrix and b ∈ R

n is some

arbitrary vector, we have

∫

exp

(

−1

2
x⊤Ax+ x⊤b

)

dnx =

√

(2π)n

det A
exp

(
1

2
b⊤A−1b

)

. (55)

Proof.

∫

exp

(

−1

2
x⊤Ax+ x⊤b

)

dnx

=
(2π)

n
2

|A| 12
exp

(
1

2
b⊤A−1b

)∫
1

(2π)
n
2 |A−1| 12

exp

(

−1

2
(x− A−1b)⊤A(x− A−1b)

)

dnx

=

√

(2π)n

det A
exp

(
1

2
b⊤A−1b

)

where the last equality holds since the function inside the integral is the probability

density function of a multivariate normal distribution with mean A−1b and covariance

matrix A−1.

Lemma 2. The Woodbury matrix identity (see e.g. [42])

(A + CBC⊤)−1 = A−1 −A−1C(B−1 + C⊤A−1C)−1C⊤A−1. (56)

When B is a one-by-one matrix, the Woodbury matrix identity (56) reduces to

the Sherman Morrison inverse formula, which states that

(A+ uv⊤)−1 = A−1 − 1

1 + v⊤A−1u
A−1uv⊤A−1.

Given a set of data D = {(x(1), y(1)), . . . , (x(m), y(m))}, we start by approximating

log f(D|θ) as a quadratic function in θ

log f(D|θ) ∼= −1

2
θ⊤Aθ + θ⊤b + c

where the expressions for A, b and c are given in Appendix D. The integral
∫
f(D|θ)
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g(θ|µ,Σ)dθ is then computed to be

∫

f(D|θ)g(θ|µ,Σ)dθ

=

∫

exp

(

−1

2
θ⊤Aθ + θ⊤b + c

)
1

(2π)
n
2 |Σ| 12

exp

(

−1

2
(θ − µ)⊤Σ−1(θ − µ)

)

dθ

=
1

(2π)
n
2 |Σ| 12

exp

(

c− 1

2
µ⊤Σ−1µ

)∫

exp

(

−1

2
θ⊤
(
A + Σ−1

)
θ + θ⊤

(
b + Σ−1µ

)
)

dθ

=
1

|I + ΣA| 12
exp

(

c− 1

2
µ⊤Σ−1µ+

1

2

(
b + Σ−1µ

)⊤ (
A + Σ−1

)−1 (
b + Σ−1µ

)
)

where the last equality is obtained by applying Lemma 1.

We make a standard assumption regarding the hyperprior h(µ,Σ)

h (µ,Σ) ∝ |Σ| p2 exp

(

−1

2
tr (ΣΛ0)

)

for p ≥ 1 which is equivalent to stating that Σ is distributed as Wishartn+1+p(Λ
−1
0 )

[44] for some positive definite matrix Λ0 and µ|Σ is uniform. The objective function

of (41) now becomes

(
b + Σ−1µ

)⊤ (
A + Σ−1

)−1 (
b + Σ−1µ

)
− µ⊤Σ−1µ− log |I + ΣA| − tr (ΣΛ0) + p log |Σ|.

To solve for optimal hyperparameters, we iteratively optimize over µ and Σ. When

Σ is fixed, the problem (41) reduces to a quadratic programming problem

min
µ

1

2
µ⊤Qµ+ q⊤µ

s.t. a⊤i µ ≤ bi − Φ−1(ηi)
√

a⊤i Σai i = 1, . . . , l

where

Q = Σ−1 − (ΣAΣ + Σ)−1 (a)
= Σ−1 −

(

Σ−1 −
(
A−1 + Σ

)−1
)

= (A−1 + Σ)−1

q = −(AΣ + I)−1b.

Step (a) holds by Lemma 2.

To optimize Σ when µ is fixed, let X = A + Σ−1, y = b− Aµ, we have

Σ−1µ+ b = (X− A)µ+ b = Xµ+ y.

69



Since A is symmetric and Σ is assumed to be symmetric positive definite, matrix X

is therefore symmetric, yielding

(
b + Σ−1µ

)⊤ (
A + Σ−1

)−1 (
b + Σ−1µ

)

= (Xµ+ y)⊤ X−1 (Xµ + y)

= µ⊤XX−1Xµ+ y⊤X−1y + y⊤X−1Xµ+ µ⊤XX−1y

= µ⊤ (A + Σ−1
)
µ+ y⊤X−1y + 2µ⊤y

= µ⊤Σ−1µ+ y⊤X−1y + const.

Without loss of generality, matrix A is assumed to be symmetric positive definite.

Let UDU⊤ be the singular value decomposition of A, we define A
1

2 to be UD
1

2U⊤

where D
1

2 is computed by taking square root of D element-wise, and denote
(

A
1

2

)−1

as A− 1

2 . Let Ω = A
1

2 ΣA
1

2 , Υ = I + Ω, Λ = A− 1

2 Λ0A
− 1

2 , z = A− 1

2 b− A
1

2µ = A− 1

2 y, the

objective function becomes

y⊤(A + Σ−1)−1y − log |I + ΣA| − tr (ΣΛ0) + p log |Σ|
(a)
= y⊤(A + A

1

2 Ω−1A
1

2 )−1y − log |I + A− 1

2 ΩA− 1

2 A| − tr
(

A− 1

2 ΩA− 1

2 Λ0

)

+ p log |A− 1

2 ΩA− 1

2 |

=
(

A− 1

2 y
)⊤

(I + Ω−1)−1
(

A− 1

2 y
)

− log |A− 1

2 ||I + Ω||A 1

2 | − tr
(

ΩA− 1

2 Λ0A
− 1

2

)

+ p log |Ω|+ const

= z⊤(I + Ω−1)−1z− log |I + Ω| − tr (ΩΛ) + p log |Ω|+ const

(b)
= z⊤(I −Υ−1)z− log |Υ| − tr (ΥΛ) + p log |Υ− I|+ const

= − z⊤Υ−1z− log |Υ| − tr (ΥΛ) + p log |Υ− I|+ const

= − J(Υ)

where (a) is based on the fact that Σ = A− 1

2 ΩA− 1

2 and Σ−1 = A
1

2 Ω−1A
1

2 , and (b)

holds since

(I + Ω−1)−1 = (I + (Υ− I)−1)−1 = (Υ− I) (Υ− I + I)−1 = I −Υ−1.
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Instead of minimizing J(Υ) directly, we choose to minimize an upper bound of

J(Υ) which substantially simplifies the optimization problem. Let λi and ui be the

set of eigenvalues and eigenvectors of Υ, i.e. Υ =
∑

i λiuiu
⊤
i . Since Υ ≻ I by

assumption, we have λi > 1 ∀i, and consequently

z⊤Υ−1z =
∑

i

1

λi

(
u⊤

i z
)2 ≤

∑

i

λi

(
u⊤

i z
)2

= z⊤Υz

and

log |Υ| = log
∏

i

λi =
∑

i

log λi ≤
∑

i

(λi − 1) = tr(Υ− I).

This leads to the following upper bound on J(Υ)

J(Υ) ≤ z⊤Υz + tr(Υ− I) + tr (ΥΛ)− p log |Υ− I|+ const

= p

(

1

p
tr
(
(Υ− I)

(
I + Λ + zz⊤

))
− log

∣
∣(Υ− I)

(
I + Λ + zz⊤

)∣
∣

)

+ const

which is essentially proportional to the LogDet divergence between matrices Υ − I

and p(I + Λ + zz⊤)−1.

Since the constraints are simplified to be

Ci =

{

Υ : v⊤i (Υ− I)vi ≤
(
bi − a⊤i µ
Φ−1(ηi)

)2
}

, i = 1, . . . , l

where vi = A− 1

2ai, we can solve for optimal Υ (therefore Σ) by sequential projections

onto each convex set Ci. As with the case of Gaussian prior before, each projection

can be computed efficiently and Υ− I is guaranteed to be positive definite at every

step.

To classify a new example x by (42), we note that it has the same form as the

Bayesian logistic regression or the Bayesian probit regression, but with the prior being

defined by the learned optimal hyperparameters. Following Chapter 4.5 of [6], if we

apply the Laplace approximation to obtain a Gaussian representation for the posterior

distribution p(θ|D, α∗), the decision boundary obtained will be the same as the MAP

value θ∗ = arg maxθ p(θ|D, α∗).
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4.5 Experiments

We demonstrate our framework using experiments on synthetic and real-world data.

The synthetic data experiments test the applicability of the framework to the multi-

nomial, Gaussian, and linear regression cases. The real world experiments test the

applicability of the framework to two NLP tasks: sentiment prediction and readability

prediction, both using linear regression.

4.5.1 Synthetic Data Experiments

We start by evaluating the framework on the problem of estimating multinomial

parameters under ordering constraints. We sampled data from Mult(θ) for θ =
(

1
12
, 1

6
, 1

6
, 1

4
, 1

3

)
and enforced the probabilistic constraints A = {θi ≤ θj , i = 1, 2, 3 and j

= 4, 5} (Figure 10, top left) and B = {θi ≥ θj , i = 1, 2, 3 and j = 4, 5} (Figure 10,

top right). We used in this and other experiments (unless noted otherwise) a confi-

dence value of ηi = 0.95. We assumed a Dirichlet prior for θ ∼ Dir(α), and a uniform

hyperprior for α.

In the Gaussian case we generated data from three normal distributions N (θ1, 1),

N (θ2, 1),N (θ3, 1) for θ = (θ1, θ2, θ3) = (0, 1/2, 1) and enforced the probabilistic

constraints C = {θ1 ≤ θ2, θ2 ≤ θ3, θ1 ≥ 0, θ3 ≤ 1} (Figure 10, middle left) and

D = {θ1 ≥ θ2, θ2 ≥ θ3} (Figure 10, middle right).

In the case of linear regression, the samples were drawn from the model y ∼

N (β⊤x, 1) where β is a 10 dimensional randomly generated vector whose first and

last 5 components are uniformly distributed on (−1, 0) and (0, 1) respectively. We en-

forced the probabilistic constraints E = {{β1, β3, β5} ≤ 0, {β6, β8, β10} ≥ 0, {β2, β4} ≤

{β7, β9}} (Figure 10, bottom left) and F = {{β1, β3, β5} ≥ 0, {β6, β8, β10} ≤ 0, {β2, β4}

≥ {β7, β9}} (Figure 10, bottom right). In this case we applied ridge regularization

to both the MLE and the constrained MLE and report the best results from the

following set of ridge parameters {0.001, 0.01, 0.1, 0.2, 0.5, 1, 2, 5, 10, 100}.
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For logistic regression, the samples were drawn from the following distributions

p(x|y = 1) ∼ N (β+, I) and p(x|y = −1) ∼ N (β−, I) where β+ is a 10 dimensional

vector whose components are set to 0.3, and β− = −β+. The hyperplane that sepa-

rates the positive examples from the negative examples is almost perpendicular to the

line connecting β+ and β−. For regression parameters w, we enforced the probabilis-

tic constraints E = {wi ≥ 0, ∀ i} (Figure 11, top) and F = {wi ≤ 0, ∀ i} (Figure 11,

bottom). As in the case of linear regression, we applied L2 regularization to both the

MLE and the constrained MLE and report the best results from the regularization

parameter set {0.001, 0.01, 0.1, 0.2, 0.5, 1, 2, 5, 10, 100}.

In all four cases we observe similar results. When the constraints are correct in-

corporating them via constrained MLE (hard constraints) or MAP, EB (probabilistic

constraints) provides higher estimation accuracy over the non-constrained MLE.

However, when some of the constraints are inaccurate, incorporating them as hard

constraints hurts performance substantially and results in much poorer estimation

as compared to the unconstrained MLE. This is to be expected as hard inaccurate

constraints force the estimator away from the true parameters. On the other hand,

incorporating inaccurate probabilistic constraints using MAP or EB performs remark-

ably well with almost equal performance to the unconstrained MLE. The inaccurate

constraints don’t hurt the estimator as the constraints are simply ignored due to their

clash with the information embedded in the data. Note that this holds even for high

confidence values such as η = 0.95 (our choice for these experiments).

4.5.2 Sentiment and Readability Prediction

To test the validity of the framework on real world data we experimented with two

NLP tasks: sentiment and readability prediction where the underlying model is linear

regression.

For sentiment prediction, we randomly chose 2 out of 4 movie critics from the
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Cornell sentiment scale datasets, which results in collections of 1027 and 1307 doc-

uments respectively, with 4 sentiment levels ranging from 1 (very bad) to 4 (very

good). For readability prediction, we used the weekly reader dataset, obtained by

crawling the Weekly Reader1 commercial website after receiving special permission.

The readability dataset contains a total of 1780 documents, with 4 readability levels

ranging from 2 to 5 indicating the school grade levels of the intended audience. Pre-

processing includes lower-casing, stop word removal, stemming, and selecting 1000

top features based on document frequency. The predictor variable is also centered for

ease of applying parameter constraints.

The probabilistic constraints for the sentiment prediction experiment were devel-

oped by one of the authors after being presented with the vocabulary of the dataset.

The author was asked to pick two subsets of the vocabulary - one associated with

positive sentiment and one with negative sentiment. A total of 190 and 154 words

were chosen for the two critics. A subset of these words starting with ‘a’ are listed

in Table 8. For words that are deemed indicative of positive sentiment, we enforce

θi ≥ b for some nonnegative number b as the parameter constraints. Similarly, we

enforce θi ≤ −b for the negative words.

In the case of readability prediction, we assume that the appearance of longer

words implies higher readability level than the appearance of shorter words. To this

end, we randomly chose 600 pairs of words of different length, and required that the

parameters corresponding to the longer words have a higher value than the parameters

corresponding to the shorter words. Note that in both the sentiment and readability

cases the constraints represent reasonable domain knowledge but may not be entirely

accurate.

Figure 12 compares ridge regression, constrained ridge regression and MAP with

a full covariance matrix. We chose to use a full rather than a diagonal matrix due to

1www.wrtoolkit.com
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Table 8: Words chosen for parameter constraints for sentiment prediction. Super-
script numbers indicate the movie critic. Italics blue words indicate positive sentiment
while non-italics black words indicate negative sentiment.

appeal1,2 award1,2 accomplish1,2 attract1,2

amus1,2 annoi1,2 appar1 avoid1

adequ1 amaz1 aw1 appreci1

awkward2 absurd2 achiev2 artifici2

art2 arti2 admir2

the correlation between the regression parameters. The ridge parameter was chosen

from the set {0.2, 0.5, 1, 2, 5}. Variance σ2 of the linear regression model (50) is

assumed to lie in {0.5, 1, 2} and Λ in (53) takes the form of τI where τ is chosen from

{0.01, 0.05, 0.1, 0.2, 0.3}. The parameter value bound b in sentiment prediction is set

to be 0.

The results shown in Figure 12 illustrate that the probabilistic constraints help

improve accuracy over the unconstrained MLE. More impressive is the fact that they

result in a substantial improvement in modeling accuracy also over the (hard) con-

strained MLE. This is due to the uncertain nature of the constraints and the fact that

some of the constraints do not hold. This underscores the main point of the chap-

ter that domain knowledge is often uncertain and better enforced using probabilistic

parameter constraints rather than hard ones.

It is worth mentioning that the framework is not sensitive to the choice of η for

a broad region of possible η. For sentiment prediction, we have experimented with

η being equal to 0.75, 0.85 and 0.95, and parameter value bound b being equal to 0,

0.1 and 0.5. For all those combinations of parameters, we found that the graphs are

quite similar to Figure 12 except for individual values of likelihood or accuracy. This

is indeed a desirable property for real-world applications when the confident level

expressed by a domain expert may be subject to uncertainty.

75



4.6 Discussion

Incorporating knowledge into the learning process has been studied extensively by

the statistics community. Frequentists use it to define the model and constrain the

parameter space. Bayesians use it to define the model and the prior over the parameter

space. In the Bayesian case, uncertainty is usually handled by using hierarchical

models with diffuse hyperpriors [4]. Obtaining domain knowledge is addressed by

prior elicitation in the subjective Bayes community [41].

Our work differs from the standard prior elicitation approach in that we do not

elicit the prior directly. Rather we elicit parameter constraints and confidence values

which are used in turn to derive an equivalent prior in a hierarchical Bayes setting

via Proposition 6. Standard Bayesian inference can then proceed on the equivalent

model in the usual manner.

The advantage of doing so is that it is much easier for domain experts to specify

constraints and confidence values. Directly specifying a prior is considerably less

intuitive as it makes it hard to discern the confidence with which specific assertions

are made. Thus, our contribution is in nicely separating the domain assertions and

their confidence values in a simple and intuitive way.

Using experiments on synthetic and real world data we show that uncertain do-

main knowledge can be effectively incorporated in practice. The use of uncertain

constraints leads to high modeling accuracy when the constraints are accurate. In

case the constraints are inaccurate, the uncertainty prevents the model from perform-

ing poorly which stands in contrast to hard constraints that push the parameters away

from their true values.

Specifying domain knowledge in real world situations is sometimes bound to be

inaccurate. Our approach enables the use of a large number of domain statements

without worrying too much about the validity of each specific statement. Our ex-

periments indicate that it works well for natural language problems where domain
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knowledge is relatively easy to specify. It is likely that the framework performs sim-

ilarly well in other areas where domain knowledge is available and the underlying

model has a Dirichlet or Gaussian prior.
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Figure 10: Average test set performance for multinomial (top), Gaussian (middle)
and linear regression (bottom) over 20 random train/test splits. Multinomial param-
eters are estimated by MLE, (hard) constrained MLE, and probabilistic constraint
EB and MAP. Gaussian means and regression parameters are estimated by MLE,
(hard) constrained MLE and probabilistic constraint MAP with either diagonal or
full covariance matrix. Ridge regularization is applied to both MLE and constrained
MLE for linear regression. In all three cases, the left column corresponds to correct
constraints while the right column corresponds to incorrect constraints.
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Figure 11: Average test set performance for logistic regression over 20 random
train/test splits. Parameters are estimated by MLE, (hard) constrained MLE, and
probabilistic constraint EB and MAP with full covariance matrix. L2 regularization
is applied to both MLE and constrained MLE. The top row corresponds to correct
constraints while the bottom row corresponds to incorrect constraints. Average log-
likelihood is not reported for EB since it can only be estimated approximately.
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Figure 12: Test-set mean square error (MSE, left) and accuracy rates (right) over 10
iterations for sentiment prediction (top, middle corresponding to the two critics) and
readability prediction (bottom). Regression parameters are estimated by ridge, (hard)
constrained ridge and probabilistic constraint MAP with full covariance matrix.
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CHAPTER V

LINGUISTIC KNOWLEDGE FOR METRIC LEARNING,

WITH APPLICATION TO TEXT VISUALIZATION

Visual document analysis systems such as IN-SPIRE have demonstrated their appli-

cability in managing large text corpora, identifying topics within a document and

quickly identifying a set of relevant documents by visual exploration. The success

of such systems depends on several factors with the most important one being the

quality of the dimensionality reduction. This is obvious as visual exploration can

be made possible only when the dimensionality reduction preserves the structure of

the original space, i.e., documents that convey similar topics are mapped to nearby

regions in the low dimensional 2D or 3D space.

Standard dimensionality reduction methods such as principal component analysis

(PCA), locally linear embedding (LLE) [92], or t-distributed stochastic neighbor em-

bedding (t-SNE) [112] take as input a set of feature vectors such as bag of words. An

obvious drawback is that such methods ignore the textual nature of documents and

instead consider the vocabulary words v1, . . . , vn as abstract orthogonal dimensions.

In this chapter we introduce a framework for incorporating domain knowledge

into dimensionality reduction for text documents. Our technique does not require

any labeled data, therefore is completely unsupervised. In addition, it applies to a

wide variety of domain knowledge.

We focus on the following type of non-Euclidean geometry where the distance

between document x and y is defined as

dT (x, y) =
√

(x− y)⊤T (x− y). (57)

Here T ∈ R
n×n is a symmetric positive semidefinite matrix, and we assume that
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documents x, y are represented as term-frequency (tf) column vectors. Since T can

always be written as H⊤H for some matrix H ∈ R
n×n, an equivalent but sometimes

more intuitive interpretation of (57) is to compose the mapping x 7→ Hx with the

Euclidean geometry

dT (x, y) = dI(Hx,Hy) = ‖Hx−Hy‖2. (58)

We can view T as encoding the semantic similarity between pairs of words and H as

smoothing the tf vector by mapping observed words to related but unobserved words.

Therefore, the geometry realized by (57) or (58) may be used to derive novel dimen-

sionality reduction methods that are customized to text in general and to specific

text domains in particular. The main challenge is to obtain the matrices H or T that

describe the relationship among vocabulary words appropriately.

We consider three general ways of obtaining H or T using domain knowledge. The

first corresponds to manually specifying H or T based on the semantic relationship

among words (determined by domain expert). The second corresponds to constructing

H or T by analyzing relationships between different words using corpus statistics. The

third is based on knowledge obtained from linguistic resources. Whether to specify

H directly or indirectly by specifying T = H⊤H depends on the knowledge type and

is discussed in detail in Section 5.2.

We investigate the performance of the proposed dimensionality reduction methods

for three text domains: sentiment visualization for movie reviews, topic visualization

for newsgroup discussion articles, and visual exploration of ACL papers. In each

of these domains we evaluate the dimensionality reduction using several different

quantitative measures. All the techniques mentioned in this chapter are unsupervised,

making use of labels only for evaluation purposes.

Our conclusion is that all three approaches mentioned above improves dimension-

ality reduction for text upon standard embedding (H = I). Furthermore, geometries

obtained from corpus statistics are superior to manually constructed geometries and
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to geometries derived from standard linguistic resources such as Word-Net. Combin-

ing heterogenous types of knowledge provides the best results.

5.1 Non-Euclidean Geometries

Dimensionality reduction methods often assume, either explicitly or implicitly, Eu-

clidean geometry. For example, PCA minimizes the reconstruction error for a family

of Euclidean projections. LLE uses the Euclidean geometry as a local metric. t-SNE

is based on a neighborhood structure, determined again by the Euclidean geome-

try. The generic nature of the Euclidean geometry makes it somewhat unsuitable

for visualizing text documents as the relationship between words conflicts with Eu-

clidean orthogonality. We consider in this chapter several alternative geometries of

the form (57) or (58) which are more suited for text and compare their effectiveness

in visualizing documents.

As mentioned before, H smooths the tf vector x by mapping the observed words

into observed and non-observed (but related) words. In case H is nonnegative, it can

be further decomposed into a product of a non-negative column normalized matrix

R ∈ R
n×n and a non-negative diagonal matrix D ∈ R

n×n. The decomposition H =

RD shows that H has two key roles. It smooths related vocabulary words (realized

by R) and it emphasizes some words over others (realized by D). Setting Rij to a

high value if wi, wj are similar and 0 if they are unrelated maps an observed word to

a probability vector over related words in the vocabulary. The value Dii captures the

importance of vi and therefore should be higher for important content words than for

less important words or stop-words1.

It is instructive to examine the matrices R and D in the case where the vocabulary

words cluster in some meaningful way. Figure 13 gives an example where vocabulary

1The nonnegativity assumption of H is useful when constructing H by domain experts such as
the method A in Section 5.2. In general, H needs not to be nonnegative for dimensionality reduction
as in (58).

83











0.8 0.1 0.1 0 0
0.1 0.8 0.1 0 0
0.1 0.1 0.8 0 0
0 0 0 0.9 0.1
0 0 0 0.1 0.9

















5 0 0 0 0
0 5 0 0 0
0 0 5 0 0
0 0 0 3 0
0 0 0 0 3









Figure 13: An example of a decomposition H = RD in the case of two word clusters
{v1, v2, v3}, {v4, v5}. The block diagonal elements in R represent the fact that words
are mostly mapped to themselves, but sometimes are mapped to other words in the
same cluster. The diagonal matrix indicates that the first cluster is more important
than the second cluster for the purposes of dimensionality reduction.

words form two clusters. The matrix R may become block-diagonal with non-zero

elements occupying diagonal blocks representing within-cluster word blending, i.e.,

words within each cluster are interchangeable to some degree. The diagonal matrix

D represents the importance of different clusters. The word clusters are formed with

respect to the visualization task at hand. For example, in the case of visualizing the

sentiment content of reviews we may have word clusters labeled as “positive sentiment

words”, “negative sentiment words” and “objective words”. In the case of visualizing

news stories we may have word clusters representing news topics such as “politics”,

“business” and “science and technology”.

In general, the matrices R,D may be defined based on the language or may be

specific to document domain and visualization purpose. It is reasonable to expect

that the words emphasized for visualizing topics in news stories might be different

than the words emphasized for visualizing writing styles or sentiment content.

Applying the geometry (57) or (58) to dimensionality reduction is easily accom-

plished by first mapping document tf vectors x 7→ Hx and proceeding with standard

dimensionality reduction techniques such as PCA or t-SNE. The resulting dimension-

ality reduction is Euclidean in the transformed space but non-Euclidean in the original

space. In many cases, the vocabulary contains tens of thousands of words or more

making the specification of T or H a complicated and error prone task. We describe
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in the next section several techniques for specifying these matrices in practice.

5.2 Linguistic Knowledge

5.2.1 A: Human Elicitation

In this method, a domain expert manually specifies H = RD by specifying (R,D)

based on the perceived relationship among the vocabulary words. More specifically,

the user first constructs a hierarchical word clustering that may depend on the current

text domain, and then specifies the matrices (R,D) based on the clustering.

Denoting the clusters by C1, . . . , Cr (a partition of {v1, . . . , vn}), R is set to

Rij ∝







ρa, i = j, vi ∈ Ca

ρab, i 6= j, vi ∈ Ca, vj ∈ Cb

.

The values ρab, a 6= b capture the semantic similarity between two clusters and the

value ρaa captures the similarity of two different words within the cluster a. These

values may be set manually by domain expert or automatically computed based on the

clustering hierarchy (for example ρab can be the inverse of the minimal number of tree

edges traversed in moving from a to b). To maintain a probabilistic interpretation,

the matrix R should be normalized so that its columns sum to 1. The diagonal matrix

D is specified by setting the values

Dii = da, vi ∈ Ca

according to the importance of word cluster Ca to the current visualization task.

We emphasize that as with the rest of the methods in this chapter, the manual

specification is done without access to labeled data. Since manual clustering assumes

some form of human intervention, it is reasonable to also consider cases where the

user specifies H or T in an interactive manner. For example, the expert specifies an

initial clustering of words and values for (R,D), views the resulting embeddings and

adjusts the selection interactively until reaching a satisfactory embedding.
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5.2.2 B: Contextual Diffusion

An alternative to manually specifying T = DR⊤RD is to construct it based on simi-

larity between the contextual distributions of the vocabulary words. The contextual

distribution of word v is defined as

qv(w) = p(w appears in x|v appears in x) (59)

where x is a randomly drawn document. In other words qv is the distribution gov-

erning the words appearing in the context of word v.

A natural similarity measure between distributions is the Fisher diffusion kernel

proposed by [58]. Applied to contextual distributions as in [33] we arrive at the

following similarity matrix

T (u, v) = exp

(

−c arccos2

(
∑

w

√

qu(w)qv(w)

))

.

where c > 0. Intuitively, the word u will be diffused into v depending on the geometric

diffusion between the distributions of likely contexts.

We use the following formula to estimate the contextual distribution from a corpus

qv(w) =
∑

x′

p(w, x′|v) =
∑

x′

p(w|x′, v)p(x′|v)

=
∑

x′

tf(w, x′)
tf(v, x′)

∑

x′′ tf(v, x′′)
(60)

=

(
1

∑

x′ tf(v, x′)

)(
∑

x′

tf(w, x′)tf(v, x′)

)

where tf(w, x) is the number of times word w appears in document x divided by the

length of the document x. The contextual distribution qv or diffusion matrix T above

may be computed in an unsupervised manner without labels.

5.2.3 C: Web n-Grams

In method B the contextual distribution is computed using a large external corpus

that is similar to the text being analyzed. An alternative that is especially useful
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when such a corpus is not easily available is to use generic resources to estimate the

contextual distribution (59)-(60). One option is to use the publicly available Google

n-gram dataset [9] which contains n-gram counts (n ≤ 5) obtained from Google based

on processing over a trillion words of running text to estimate T . More specifically,

we compute the contextual distribution by considering the proportion of times two

words appear together within the n-grams e.g., for n = 2 we have

qv(w) =
# of bigrams containing both w and v

# of bigrams containing v
.

5.2.4 D: Word-Net

In the last method, we consider using Word-Net, a standard linguistic resource, to

specify T . This is similar to manual specification (method A) in that it builds upon

experts’ knowledge rather than corpus statistics. In contrast to method A, however,

Word-Net is a carefully built resource containing more accurate and comprehensive

linguistic information such as synonyms, hyponyms and holonyms. On the other

hand, its generality puts it at a disadvantage as method A may be adapted to a

specific text domain.

We follow [11] who compared five similarity measures between words based on

Word-Net. In our experiments we use the measure of [54] (see also [57])

T (u, v) = log
p(u)p(v)

2p(lcs(u, v))

as it was shown to outperform the others. Above, lcs stands for the lowest common

subsumer, i.e., the lowest node in the hierarchy that subsumes (is a hypernym of)

both u and v. The quantity p(u) is the probability that a randomly selected word in

a corpus is an instance of the synonym set that contains word u.
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5.2.5 Convex Combination

In addition to individual methods we also consider their convex combinations

H∗ =
∑

i

αiHi s.t. αi ≥ 0,
∑

i

αi = 1 (61)

where Hi are matrices from methods A-D (obtained implicitly by specifying R and

D for method A and T for methods B-D). Doing so allows us to combine heteroge-

neous types of domain knowledge including experts’ knowledge and corpus statistics,

leverage their diverse nature and potentially achieve better performance than any of

the methods on its own.

5.2.6 Online Update via Bregman Projection

The requirement of creating word clusters in method A is often not an easy task. In

the following, we consider domain knowledge in the form of triplets of words. Each

triplet (u, v, w) states that word u is considered more similar to word v than word

w, or equivalently T (u, v) ≥ T (u, w). We choose the triplet representation since it is

relatively easy to specify, and exhibits less ambiguity than specifying relationship for

a pair of words.

The constraint T (u, v) ≥ T (u, w) can also be motivated from the following ex-

ample of classifying a document according to whether it conveys positive or nega-

tive sentiment with distance being defined by (57). Document A contains one word

excellent, document B contains one word good and document C contains one word

dull. The distance between A and B is computed to be

d2
AB = T (‘excellent’, ‘excellent’) + T (‘good’, ‘good’)−

T (‘excellent’, ‘good’)− T (‘good’, ‘excellent’).
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Similarly, we have

d2
AC = T (‘excellent’, ‘excellent’) + T (‘dull’, ‘dull’)−

T (‘excellent’, ‘dull’)− T (‘dull’, ‘excellent’).

The distance dAB is expected to be no larger than the distance dAC. Since the matrix

T is symmetric, if, in addition, the diagonal elements of T contain the same value, we

have dAB ≤ dAC implies that T (‘excellent’, ‘good’) ≥ T (‘excellent’, ‘dull’).

This matches our intuition that the word excellent is more similar to good than to

dull for the task of sentiment prediction.

The constraint T (u, v) ≤ T (u, w) can be written equivalently as

T (u, v) ≤ T (u, w) ⇐⇒ T (u, v) + T (v, u)− T (u, w)− T (w, u) ≤ 0

⇐⇒ e⊤uKev + e⊤v Keu − e⊤uKew − e⊤wKeu ≤ 0

⇐⇒ tr
[
K
(
eve

⊤
u + eue

⊤
v − ewe

⊤
u − eue

⊤
w

)]
≤ 0 (62)

where eu denotes a unit vector with the u-th element being 1 and 0 otherwise. Note

the rank of matrix A = eu(ev − ew)⊤ + (ev − ew)e⊤u is two.

Given triplets of words, we consider finding a new matrix T so that T satisfies all

constraints and stays close to the initial matrix T0. While there may be several ways

to define closeness between two matrices, we choose to use the LogDet divergence (see

e.g. Appendix C) which can be derived from the differential relative entropy between

two multivariate Gaussians with the same mean vector µ, and covariance matrix T

and T0 respectively. To see this, note that the differential relative entropy is defined

as D(f‖g) =
∫
f log f − f log g. The first term

∫
f log f is simply the negative of the

differential entropy of N (µ, T ), which is computed to be −1
2
log ((2π)n|T |)− n

2
, and
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the second term
∫
f log g is

∫

N(x|µ, T ) logN(x|µ, T0)

=

∫

N(x|µ, T )

(

−1

2
(x− µ)⊤T−1

0 (x− µ)− log
(

(2π)
n
2 |T0|

1

2

))

= − 1

2

∫

N(x|µ, T )tr
(

T−1
0 (x− µ)(x− µ)⊤

)

−
∫

N(x|µ, T ) log
(

(2π)
n
2 |T0|

1

2

)

= − 1

2
tr
(

T−1
0 E

[
(x− µ)(x− µ)⊤

] )

− log
(

(2π)
n
2 |T0|

1

2

)

= − 1

2
tr
(
T−1

0 T
)
− log

(

(2π)
n
2 |T0|

1

2

)

.

Each projection into the convex set (62) defined by the word triplet can be com-

puted in closed form. Detailed derivation is given in Appendix E. Note, the projec-

tion preserves the symmetry of the matrix. While the diagonal elements of T created

from method B – D contain the same value, they no longer remain the same during

projections.

5.3 Experiments

We evaluate the proposed methods by experimenting on two text datasets where

domain knowledge is relatively easy to obtain (especially for method A and B). Pre-

processing includes lower-casing, stop words removal, stemming, and selecting the

most frequent 2000 words for both datasets.

The first is the Cornell sentiment scale dataset of movie reviews from 4 critics

[80]. The visualization in this case focuses on the sentiment quantity of either 1 (very

bad) or 4 (very good) [82]. For method A, we use the General Inquirer resource2 to

partition the vocabulary into three clusters conveying positive, negative or neutral

sentiment. While visualizing documents from one particular author, the rest of the

reviews from other three authors can be used as an estimate of contextual distribution

for method B.

2http://www.wjh.harvard.edu/∼inquirer/
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The second text dataset is the 20 newsgroups. It consists of newsgroup articles

from 20 distinct newsgroups and is meant to demonstrate topic visualization. In this

case one of the authors designed a hierarchical clustering of the vocabulary words

based on general knowledge of English language (see Figure 14 for a partial clustering

hierarchy) without access to labels. The contextual distribution for method B is

estimated from the Reuters RCV1 dataset [64] which consists of news articles from

Reuters.com in the year 1996 and 1997.

Method C uses Google n-gram which provides a massive scale resource for esti-

mating the contextual distribution. In the case of Word-Net (method D) we used

Pedersen’s implementation of Jiang and Conrath’s similarity measure3. Note, for

these two methods, the obtained information is not domain specific but rather repre-

sents general semantic relationships between words.

In our experiments below we focused on two dimensionality reduction methods:

PCA and t-SNE. PCA is a well known classical method while t-SNE [112] is a recent

dimensionality reduction technique for visualization purposes. The use of t-SNE is

motivated by the fact that it was shown to outperform LLE, CCA, MVU, Isomap,

and Laplacian eigenmaps when the dimensionality of the data is reduced to two or

three.

To measure the dimensionality reduction quality, we visualize the data as a scatter

plot with different data groups (topics, sentiments) displayed with different markers

and colors. Our quantitative evaluation of the visualization is based on the fact

that documents belonging to different groups (topics, sentiments) should be spatially

separated in the 2-D space. Specifically, we used the following indices:

(i) The weighted intra-inter criteria is a standard clustering quality index that is

invariant to non-singular linear transformations of the embedded data. It equals

tr(S−1
T SW ) where SW is the within-cluster scatter matrix, ST = SW + SB is the

3http://wn-similarity.sourceforge.net/
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total scatter matrix, and SB is the between-cluster scatter matrix [36].

(ii) The Davies Bouldin index is an alternative to (i) that is similarly based on the

ratio of within-cluster scatter to between-cluster scatter [29].

(iii) Classification error rate of a k-NN classifier that applies to data groups in the

2-D embedded space. Despite the fact that we are not interested in classification

per se (otherwise we would classify in the original high dimensional space), it

is an intuitive and interpretable measure of cluster separation.

(iv) An alternative to (iii) is to project the embedded data onto a line which is

the direction returned by applying Fisher’s linear discriminant analysis to the

embedded data. The projected data from each group is fitted to a Gaussian

whose separation is used as a proxy for visualization quality. In particular, we

summarize the separation of the two Gaussians by measuring the overlap area.

While (iii) corresponds to the performance of a k-NN classifier, method (iv)

corresponds to the performance of Fisher’s LDA classifier.

Labeled data is not used during the dimensionality reduction stage but it is used in

each of the above measures for evaluation purposes.

Figure 15-16 display both qualitative and quantitative evaluation of PCA and

t-SNE for the sentiment and newsgroup domains for H = I (top row), manual spec-

ification (middle row) and contextual distribution (bottom column). In general for

both domains, methods A and B perform better both qualitatively and quantitatively

(indicating by the numbers in the top two rows) than the original dimensionality re-

duction with method B outperforming method A.

Tables 9-10 compare evaluation measures (i) and (iii) for different types of do-

main knowledge. Table 9 corresponds to the sentiment domain where we conducted

separate experiments for four movie critics. Table 10 corresponds to the news-

group domain where two tasks were considered. The first involves three newsgroups
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(a) 0.3284 (b) 0.3008

(c) 0.1794 (d) 0.2295

(e) 0.1385 (f) 0.1093

Figure 15: Qualitative evaluation of dimensionality reduction for the sentiment do-
main. The left column displays PCA reduction while the right column displays t-SNE.
The top row corresponds to no domain knowledge (H = I) reverting PCA and t-SNE
to their original form. The middle row corresponds to manual specification (method
A). The bottom row corresponds to contextual diffusion (method B). Different senti-
ment labels are marked with different colors and marks.
The graphs were rotated such that the direction returned by applying Fisher linear
discriminant onto the projected 2D coordinates aligns with the positive x-axis. The
bell curves are Gaussian distributions fitted from the x-coordinates of the projected
data points (after rotation). The numbers displayed in each sub-figure are computed
from measure (iv).
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Figure 16: Qualitative evaluation of dimensionality reduction for the newsgroup
domain. The left column displays PCA reduction while the right column displays
t-SNE. The top row corresponds to no domain knowledge (H = I) reverting PCA
and t-SNE to their original form. The middle row corresponds to manual specifica-
tion (method A). The bottom row corresponds to contextual diffusion (method B).
Different newsgroup labels are marked with different colors and marks.
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(comp.sys.mac.hardware vs. rec.sports.hockey vs. talk.politics.mideast) and the sec-

ond involves four newsgroups (rec.autos vs. rec.motorcycles vs. rec.sports.baseball

vs. rec.sports.hockey). It is clear from these two tables that the contextual diffusion,

Google n-gram, and Word-Net generally outperform the original H = I matrix. The

best method varies from task to task but the contextual diffusion and Google n-gram

in general result in good performance.

Table 9: Quantitative evaluation of dimensionality reduction for visualization in the
sentiment domain. Each of the four columns corresponds to a different movie critic
from the Cornell dataset (see text). The top five rows correspond to measure (i)
(lower is better) and the bottom five rows correspond to measure (iii) (k = 5, higher
is better). Results were averaged over 40 cross validation iterations. We conclude
that all methods outperform the original H = I with the contextual diffusion and
manual specification generally outperforming the others.

Dennis Schwartz James Berardinelli Scott Renshaw Steve Rhodes
PCA t-SNE PCA t-SNE PCA t-SNE PCA t-SNE

H = I 1.8625 1.8781 1.4704 1.5909 1.8047 1.9453 1.8013 1.8415
A 1.8474 1.7909 1.3292 1.4406 1.6520 1.8166 1.4844 1.6610
B 1.4254 1.5809 1.3140 1.3276 1.5133 1.6097 1.5053 1.6145

C 1.6868 1.7766 1.3813 1.4371 1.7200 1.8605 1.7750 1.7979

H = I 0.6404 0.7465 0.8481 0.8496 0.6559 0.6821 0.6680 0.7410
A 0.6011 0.7779 0.9224 0.8966 0.7424 0.7411 0.8350 0.8513
B 0.8831 0.8554 0.9188 0.9377 0.8215 0.8332 0.8124 0.8324

C 0.7238 0.7981 0.8871 0.9093 0.6897 0.7151 0.6724 0.7726

We also examined convex combinations

α1HA + α2HB + α3HC + α4HD (63)

with
∑
αi = 1 and αi ≥ 0. Table 11 displays quantitative results using evaluation

measures (i), (ii) and (iii) where k is chosen to be 5 for (iii). The first four rows

correspond to method A, B, C and D and the bottom row corresponds to a convex

combination found which minimizes the unsupervised evaluation measure (ii) (i.e.

the search for the optimal combination is based on (ii) that does not require labeled

data). Note that the convex combination also outperforms method A, B, C, and D for
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Table 10: Quantitative evaluation of dimensionality reduction for visualization for
two tasks in the news article domain. The numbers in the top five rows correspond
to measure (i) (lower is better), and the numbers in the bottom five rows correspond
to measure (iii) (k = 5) (higher is better). We conclude that contextual diffusion (B),
Google n-gram (C), and Word-Net (D) tend to outperform the original H = I.

PCA (1) PCA (2) t-SNE (1) t-SNE (2)
H = I 1.5391 1.4085 1.1649 1.1206

B 1.2570 1.3036 1.2182 1.2331
C 1.2023 1.3407 0.7844 1.0723
D 1.4475 1.3352 1.1762 1.1362

PCA (1) PCA (2) t-SNE (1) t-SNE (2)
H = I 0.8461 0.5630 0.9056 0.7281

B 0.7381 0.6815 0.9110 0.6724
C 0.8420 0.5898 0.9323 0.7359
D 0.8532 0.5868 0.9013 0.7728

measure (i) and more impressively for measure (iii) which is a supervised measure that

uses labeled data. In general, by combining heterogeneous types of domain knowledge,

we may further improve the quality of dimensionality reduction for visualization, and

the search for such a combination may be accomplished without the use of labeled

data.

For online update, we experimented with the sentiment datasets, and reported

the accuracy of predicting positive or negative sentiments using k-nearest neighbor

classifier. The constraints are derived by randomly picking triplets of words from

the vocabulary. If two and only two of the words are labeled the same sentiment

according to the General Inquirer resource, we add the triplet to the constraint pool.

The initial matrix is computed from the contextual diffusion which often achieves the

best performance among methods A – D.

Figure 17 reports the classification accuracy for k = 5. The black dotted lines cor-

respond to the Euclidean geometry T = I while the red lines correspond to modifying

the geometry defined by the contextual diffusion with varying number of constraints.

We observe substantial improvement over the contextual diffusion for two out of four
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Table 11: Three evaluation measures (i), (ii), and (iii) (see the beginning of the
section for description) for convex combinations (63) using different values of α. The
first four rows represent methods A, B, C, and D. The bottom row represents a
convex combination whose coefficients were obtained by searching for the minimizer
of measure (ii). Interestingly the minimizer also performs well on measure (i) and
more impressively on the labeled measure (iii).

(α1, α2, α3, α4) (i) (ii) (iii) (k=5)
(1,0,0,0) 0.5756 -3.9334 0.7666
(0,1,0,0) 0.5645 -4.6966 0.7765
(0,0,1,0) 0.5155 -5.0154 0.8146
(0,0,0,1) 0.6035 -3.1154 0.8245

(0.3,0.4,0.1,0.2) 0.4735 -5.1154 0.8976

tasks, while all of them outperform the Euclidean geometry.

Finally, we demonstrate the effect of domain knowledge on a new dataset that

consists of all oral papers appearing in ACL 2001 – 2009. For the purpose of manual

specification, we obtain 1545 unique words from paper titles, and assign for each word

relatedness scores for the following clusters: morphology/phonology, syntax/parsing,

semantics, discourse/dialogue, generation/summarization, machine translation, re-

trieval/categorization and machine learning. The score takes value from 0 to 2, where

2 represents the most relevant. The score information is then used to generate the

transformation matrix R. We also assign for each word an importance value ranging

from 0 to 3 (larger the value, more important the word). This information is used to

generate the diagonal matrix D.

Figure 18 shows the projection of all 2009 papers using t-SNE (papers from 2001

to 2008 are used to estimate contextual diffusion). Using Euclidean geometry H = I

(Figure 18 left) results in a Gaussian like distribution which does not provide much

insight into the data. Using a manually specified H (Figure 18 left) we get two

clear clusters, the smaller containing papers dealing with machine translation and

multilingual tasks. Interestingly, the contextual diffusion results in a one-dimensional
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Figure 17: Sentiment prediction using k nearest neighbor classifier for k = 5. The
black dotted lines correspond to the Euclidean geometry T = I while the red lines
correspond to modifying the geometry defined by the contextual diffusion with varying
number of constraints.

manifold. Investigating the papers along the curve (from bottom to top) we find

that it starts with papers discussing semantics and discourse (south), continues to

structured prediction and segmentation (east), continues to parsing and machine

learning (north), and then moves to sentiment prediction, summarization and IR

(west) before returning to the center. Another interesting insight that we can derive

is the relative discontinuity between the bottom part (semantics and discourse) and

the rest of the curve. It seems spatial separability is higher in that area than in the

other areas where the curve nicely traverses different regions continuously.
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5.4 Discussion

Despite having a long history, dimensionality reduction is still an active research area.

Broadly speaking, dimensionality reduction methods may be classified as projective

or manifold based [12]. The first projects data onto a linear subspace (e.g., PCA and

canonical correlation analysis) while the second traces a low dimensional nonlinear

manifold on which data lies (e.g., multidimensional scaling, isomap, Laplacian eigen-

maps, LLE and t-SNE). The use of dimensionality reduction for text documents is

surveyed by [108] who also describe current homeland security applications.

Dimensionality reduction is closely related to metric learning. [114] is one of the

earliest papers that focus on learning metrics of the form (57). In particular they try

to learn matrix T in an supervised way by expressing relationships between pairs of

samples. A representative paper on unsupervised metric learning for text documents

is [62] which learns a metric on the simplex based on the geometric volume of the

data.

Incorporating domain knowledge into dimensionality reduction is a relatively un-

explored direction. A recent exception is the work by [28] who incorporates domain

knowledge by expressing relationships between pairs of samples. Doing so leads to a

constrained clustering optimization problem. Our contribution, on the other hand,

incorporates domain knowledge into the dimensions of the ambient space with a par-

ticular emphasis on text (where in the case of tf documents the dimensions correspond

to words).

We focus in this chapter on visualizing a corpus of text documents using a 2-D

scatter plot. While this is perhaps the most popular and practical text visualization

technique, other methods such as [103], [48], [47], [79], [7], [68] exist. Techniques

developed in this chapter may be ported to enhance these alternative visualization

methods as well.

We introduce several ways of incorporating domain knowledge into dimensionality
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reduction for visualizing text documents. The proposed methods of manual specifi-

cation, contextual distribution, Google n-grams and Word-Net. All outperform in

general the baseline H = I, which is the one currently used in most text visualization

systems.

The answer to the question of which method is best depends on both the domain

and the task at hand. For small tasks with limited vocabulary, manual specification

could achieve best results. A large vocabulary size makes manual specification less

accurate and effective. In cases where we have access to a large external corpus that is

similar to the one we are interested in visualizing, contextual diffusion is an excellent

choice. Lacking such a domain specific dataset estimating the contextual distribution

using the generic Google n-gram is a good substitute. Word-Net captures relation-

ships (such as synonyms and hyponyms) other than occurrence statistics between

vocabulary words, and could be useful for certain tasks. Finally, the effectiveness

of dimensionality reduction methods can be increased further by carefully combining

different types of domain knowledge ranging from semantic similarity to occurrence

statistics.
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Figure 18: Qualitative evaluation of dimensionality reduction for the ACL dataset
using t-SNE. Left: no domain knowledge (H = I); Middle: manual specification
(method A); Right: contextual diffusion (method B). Each document is labeled by
its assigned id from ACL anthology. See text for more details.
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CHAPTER VI

CONCLUSION

In this thesis, we consider how domain knowledge in the form of probability con-

straints relates to the parameters of a probabilistic model. We address the issue

in the case of conditional random fields, and develop the isotonic CRFs which are

variants of CRFs with isotonic constraints over the parameter space. We apply the

isotonic CRFs to sentiment prediction and information extraction, and show a con-

sistent improvement in prediction accuracy over the regular CRFs.

With the observation that domain knowledge provided by humans often holds with

some degree of uncertainty, we propose to explicitly model domain knowledge uncer-

tainty by specifying the probability the knowledge is expected to hold, and aggregate

both domain knowledge and its uncertainty into the learning process within a hier-

archical Bayes framework. In contrast to hard parameter constraints, the approach

is effective even when the domain knowledge is inaccurate and generally results in

superior modelling accuracy.

Finally, we address the problem of incorporating general linguistic knowledge into

the geometric assumptions made by learning algorithms for metric learning and text

visualization. We show how to obtain knowledge from domain experts and corpus

statistics, and provide a way so that users are not required to make their knowledge

available immediately. We demonstrate the effort leads to an improved metric for

documents, and foster better visual understanding of text corpus.

We identify three areas of future work:

• We are interested in extending the work to web search, online advertising and
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social networks. An example is the static ranking, which produces a query-

independent ordering of web pages, and is of essential importance for problems

such as index selection. Features that have shown to be useful for static rank-

ing include PageRank score, popularity (described by the number of times the

webpage has been visited by users over some period of time) and page statistics

such as the frequency of the most common terms [89]. Therefore, it is natural

to expect that a webpage should receive a higher ranking score than the other

if they have the same feature values except that this one is more popular. In

the case of a linear model, this is equivalent to enforcing the non-negativity

constraint for the parameter corresponding to the popularity feature. However,

modern search engineers usually employ nonlinear models such as decision tree,

and it is not clear what parameter constraints this kind of knowledge corre-

sponds to. An interesting problem therefore is whether we can learn a function

that respects the above isotonic property, without resorting to postprocessing

steps that may involve isotonic regression.

• We briefly address in Chapter 3 how to elicit constraints from some auxiliary

dataset. The auxiliary dataset used there is very similar to the one used for

training, which makes elicitation an easier task to accomplish. The question

that follows consequently is whether we can elicit constraints from datasets

that are dissimilar in nature but still relate to the target problem, and how

uncertainty can be addressed in the case. Some preliminary work has been

done in [16]. They observe that many structured prediction problems have a

companion binary decision problem of predicting whether an input can produce

a good structure or not, and that it is often very easy to obtain the answers for

the companion problem. For example, a companion problem for the part-of-

speech tagging is to ask whether a given sequence of words has a corresponding

legitimate sequence of POS tags. The information from the companion problem
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is formulated as two conditions (or constraints) to be satisfied by the weight to

be learned for the target problem. The condition corresponding to the negative

examples from the companion problem is very similar to the one in [40] which

requires to classify all points in the polyhedral set to the same class.

• We describe the problem of noisy labels in Chapter 2 as a result of the experts’

limitations of expertise or lack of dedication. Repeated labeling has shown

to improve the labeling quality when it can be applied. However, in some

cases we may not have control over the assignment of examples to annotators.

An example is the search engine where users are considered as teachers and

webpage clicks as labels. This has been addressed in [32, 31] under an extreme

assumption that the annotator can be either good or evil. A more realistic

assumption would be that teachers are not perfect, but they are not evil either.

How to remedy the labeling uncertainty in this case remains an open problem,

and is of both theoretical and practical interest.
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APPENDIX A

EDGEWORTH EXPANSION

Edgeworth expansion is a method to approximate a distribution in terms of its cu-

mulants [23]. Consider random variables X, Y with cumulants κn, γn, n ∈ N. The

characteristic functions of X and Y satisfy

E
(
eitX

)
= exp

( ∞∑

n=1

(κn − γn)
(it)n

n!

)

E
(
eitY
)
. (64)

If κ1 = 0, κ2 = 1, and Y ∼ N(0, 1), Equation (64) becomes

E
(
eitX

)
= exp

( ∞∑

n=3

κn
(it)n

n!

)

exp

(

−t
2

2

)

. (65)

We define Pn(u) as the coefficient of zn in the expansion of the following expression

exp

( ∞∑

n=1

κn+2

(n + 2)!
un+2zn

)

= 1 +
∞∑

n=1

Pn(u)zn.

By setting z = 1 and u = it, Equation 65 becomes

E
(
eitX

)
=

(

1 +
∞∑

n=1

Pn(it)

)

exp

(

−t
2

2

)

. (66)

Since the characteristic function is the conjugate of the Fourier transform we may

recover the pdf of X by applying the inverse Fourier transform to both sides of (66)

f(x) =

(

1 +

∞∑

n=1

Pn(−D)

)

φ(x)

where φ(x) is the pdf of a standard normal random variable. The operator D is the

differential operator with respect to x since (it)n exp
(

− t2

2

)

is the Fourier transform

of (−1)nDnφ(x).

The first two and three terms of the expansions

f(x) ≈ φ(x)− κ3

6
φ(3)(x)

f(x) ≈ φ(x)− κ3

6
φ(3)(x) +

κ4

24
φ(4)(x) +

κ2
3

72
φ(6)(x)
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are equivalent to

f(x)

φ(x)
≈ 1 +H3(x)

κ3

6

f(x)

φ(x)
≈ 1 +H3(x)

κ3

6
+H4(x)

κ4

24
+H6(x)

κ2
3

72

since φ(n)(x) = (−1)nHn(x)φ(x) where Hn(x) are the Hermite polynomials.
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APPENDIX B

WISHART AND INVERTED WISHART DISTRIBUTION

The inverted Wishart distribution is the matrix variate generalization of the inverted

gamma distribution defined as follows:

Definition 1. A p × p random symmetric positive definite matrix V is said to be

distributed as inverted Wishart with m (> 2p) degrees of freedom and inverse scale

matrix Ψ, if its pdf is given by

2−
1

2
(m−p−1)p|Ψ| 12 (m−p−1)

Γp

(
1
2
(m− p− 1)

)
|V | 12m

exp

(

−1

2
tr
(
V −1Ψ

)
)

where Ψ is a p × p positive definite matrix, and Γp(·) is the multivariate gamma

function.

This distribution, denoted as IWp(m,Ψ), has been used as a conjugate prior for

the covariance matrix in a normal distribution.

Closely related to inverted Wishart distribution is Wishart distribution, whose

discovery has contributed enormously to the development of multivariate analysis.

Definition 2. A p× p random symmetric positive definite matrix S is said to have

a Wishart distribution Wp(n,Σ) with parameters p, n (≥ p), and Σ (p × p positive

definite matrix), if its pdf is given by

|S| 12 (n−p−1)

2
1

2
npΓp

(
1
2
n
)
|Σ| 12n

exp

(

−1

2
tr
(
Σ−1S

)
)

.

The relation between the Wishart and inverted Wishart distributions is given in

the following theorem. More properties of these two distributions can be found in

[44].

Theorem B.0.1. Let V ∼ IWp(m,Ψ), then V −1 ∼Wp(m− p− 1,Ψ−1).
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APPENDIX C

BREGMAN DIVERGENCE

Bregman divergence generalizes the Euclidean distance. Bregman projection projects

a point onto a convex set with Bregman divergence as distance measure. It includes

the classic metric projections (projections under Euclidean distance) as a special case.

In the following, we give a brief introduction of Bregman divergence and Bregman

projection. More details can be found in [10, 13].

Let S be a nonempty open convex set, such that its closure S̄ is contained in

Λ ⊆ R
n. Function f : Λ → R is assumed to be continuous and strictly convex on S̄,

and has continuous first partial derivatives at every x ∈ S denote by ∇f(x). From

f(x) we construct the function Df : S̄ × S → R defined as

Df(x, y) = f(x)− f(y)− 〈∇f(y), x− y〉.

This function is called Bregman divergence. It may be interpreted as f(x) − h(x)

where h(z) represents the hyperplane that is tangent to the epigraph of f at the

point (y, f(y)). See Figure 19 for an illustration.

Examples of Bregman divergence include the squared Euclidean distance (Df (x, y) =

1
2
‖x−y‖2), relative entropy or Kullback-Leibler cross entropy (Df(x, y) =

∑

i xi log xi

yi
−

∑

i xi +
∑

i yi) and the Itakura-Saito distance (Df(x, y) =
∑

i
xi

yi
− log xi

yi
− 1). They

are generated by functions f(x) = 1
2
‖x‖2, f(x) =

∑

i xi log xi, and f(x) = −∑i log xi

respectively.

Bregman divergence satisfies following properties:

1. Df(x, y) ≥ 0, and equals 0 if and only if x = y;

2. Df(x, y) is strictly convex in its first argument, but in general not convex in the
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xy
z

f(z)

h(z)

epi(f)
}

Df (x, y)

Figure 19: Geometric interpretation of Bregman divergence.

second argument;

3. Df(x, y) is usually not symmetric, i.e. Df(x, y) 6= Df(y, x);

4. Df(x, y) = Df(x, z) +Df(z, y)− (x− z)⊤ (∇f(y)−∇f(z)).

The above definition of Bregman divergence applies to vectors. We can naturally

extend this definition to real, symmetric n × n matrices, denoted by Sn. Given a

strictly convex, differentiable function f : Sn → R, the Bregman matrix divergence

is defined to be

Df(X, Y ) = f(X)− f(Y )− tr
(
∇f(Y )⊤(X − Y )

)

where tr(A) denotes the trace of a matrix A. An example of Bregman matrix diver-

gence is the squared Frobenius norm ‖X−Y ‖2F , generated by function f(X) = ‖X‖2F .

Bregman divergence over positive definite matrices (denoted by Sn
+) can be con-

structed from f which is a function of eigenvalues of a positive definite matrix. Specifi-

cally, let λ1, . . . , λn be eigenvalues ofX and f(X) =
∑

i(λi log λi−λi) with 0 log 0
def

= 0.

The function f(X) may be expressed as tr(X logX − X) where logX denotes the
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matrix logarithm. This results in the von Neumann divergence

DvN(X, Y ) = tr(X logX −X log Y −X + Y )

which is also called quantum relative entropy in quantum information theory. Another

important matrix divergence, called the LogDet divergence

Dld(X, Y ) = tr(XY −1)− log det(XY −1)− n

is generated by function f(X) = −∑i log λi, or equivalently f(X) = − log detX.

Given a closed convex set Ω ⊆ R
n such that Ω ∩ S̄ 6= ∅, and for y ∈ S, Bregman

projection finds a point x ∈ Ω ∩ S̄ such that

Df (x, y) = min
z∈Ω∩S̄

Df(z, y).

The point x is denoted by PΩ(y) and is called a Bregman projection of the point y

onto the set Ω. Projection x exists and is unique.

Ω

x

y

PΩ(y)

Figure 20: Geometric description for Theorem C.0.2.

Bregman projection satisfies the generalized Pythagorean theorem which can be

stated as follows:
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Theorem C.0.2. Let Ω be a closed convex set such that Ω ∩ S̄ 6= ∅. Assume that

y ∈ S implies PΩ(y) ∈ S. Let x ∈ Ω∩ S̄, then for any y ∈ S, the following inequality

holds

Df(x, y) ≥ Df (x,PΩ(y)) +Df (PΩ(y), y).

The theorem is illustrated in Figure 20.
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APPENDIX D

QUADRATIC APPROXIMATION OF LOG-LIKELIHOOD

FUNCTION FOR LOGISTIC AND PROBIT REGRESSION

Logistic regression and probit regression fall into the category of generalized linear

model

f(y|x, θ) = Φ(yθ⊤x)

where y takes values in {−1, 1}, θ is a vector of regression parameters and Φ(·) is a

link function. By choosing the link function Φ(·) as the logistic function Φ(z) = ez

1+ez ,

we get logistic regression. Similarly, probit regression is realized by the probit link

function Φ(z) =
∫ z

−∞
1√
2π
e−x2/2dx.

Given a set of data D = {(x(1), y(1)), . . . , (x(m), y(m))}, our goal is to approximate

the log-likelihood log f(D|θ) as a quadratic function of the regression parameter θ

log f(D|θ) =

m∑

i=1

log Φ
(
y(i)θ⊤x(i)

)
≈

m∑

i=1

ai

(
y(i)θ⊤x(i)

)2
+ bi

(
y(i)θ⊤x(i)

)
+ ci

= θ⊤

(
m∑

i=1

aix
(i)x(i)⊤

)

θ + θ⊤

(
m∑

i=1

biy
(i)x(i)

)

+
m∑

i=1

ci

def

= − 1

2
θ⊤Aθ + θ⊤b + c.

To compute ai, bi and ci, we use Taylor expansion. For simplicity, let z = yθ⊤x and
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z0 = yθ⊤0 x where θ0 is fixed, we have

log Φ(z) ≈ log Φ(z0) +
Φ′(z0)

Φ(z0)
(z − z0) +

1

2

(

Φ′′(z0)

Φ(z0)
−
(

Φ′(z0)

Φ(z0)

)2
)

(z − z0)2

=
1

2

(

Φ′′(z0)

Φ(z0)
−
(

Φ′(z0)

Φ(z0)

)2
)

︸ ︷︷ ︸

ai

z2 +

(

Φ′(z0)

Φ(z0)
−
(

Φ′′(z0)

Φ(z0)
−
(

Φ′(z0)

Φ(z0)

)2
)

z0

)

︸ ︷︷ ︸

bi

z +

log Φ(z0) +
1

2

(

Φ′′(z0)

Φ(z0)
−
(

Φ′(z0)

Φ(z0)

)2
)

z2
0

︸ ︷︷ ︸

ci

.

For logistic link function Φ(z) = ez

1+ez , its first and second derivatives are computed

to be

Φ′(z) =
ez

(1 + ez)2

Φ′′(z) =
ez(1− ez)

(1 + ez)3
.

For probit link function Φ(z) =
∫ z

−∞
1√
2π
e−t2/2dt, we get

Φ′(z) =
1√
2π
e−z2/2

Φ′′(z) =
−z√
2π
e−z2/2.

In practice, θ0 can be chosen as θ0 = arg maxθ log f(D|θ) + λ
2
‖θ‖2, which is the

maximum a posteriori estimate of θ with a prior distribution of θ given by N (0, 1
λ
).
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APPENDIX E

BREGMAN PROJECTION FOR LOGDET DIVERGENCE

WITH RANK TWO CONSTRAINT MATRIX

We consider the following problem

min
X

tr(XX−1
0 )− log det(XX−1

0 )− n (67)

s.t. tr(XA) ≤ 0

where X0 is an n × n positive semi-definite matrix, and A = uv⊤ + vu⊤ for some

u, v ∈ R
n. Note, the objective function of (67) is the LogDet divergence between

matrices X and X0, and the rank of the matrix A is at most 2. Problem (67) is

convex, therefore a local minimum of (67) is also a global minimum.

To solve for (67), we consider the Lagrange function

L(X,α) = tr(XX−1
0 )− log det(XX−1

0 )− n+ αtr(XA)

where the Lagrange multiplier α is constrained to be a non-negative number. At

optimum X, the derivative of L with respect to X is zero, which results in

(
X⊤)−1

= X−1
0 + αA.

Since the inverse of a symmetric matrix is still symmetric, we have X = X⊤ and the

above update rule is simplified to

X−1 = X−1
0 + α

(
uv⊤ + vu⊤

)
. (68)

The Karush-Kuhn-Tucker (KKT) conditions state that the following holds at the

optimum (X,α): (i) αtr(XA) = 0; (ii) α ≥ 0. This implies that if α > 0, then
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tr(XA) = 0. Note

tr(XA) = tr(Xuv⊤) + tr(Xvu⊤) = v⊤Xu+ u⊤Xv.

In the following, we derive a closed form solution of α based on these observations.

Let Y = X−1
0 + αuv⊤, we have

X =
(
X−1

0 + αuv⊤ + αvu⊤
)−1

=
(
Y + αvu⊤

)−1

= Y −1 − α

1 + αu⊤Y −1v
Y −1vu⊤Y −1 (69)

where the second equality is obtained by applying the Sherman-Morrison inverse

formula [53]:

(A+ uv⊤)−1 = A−1 − 1

1 + v⊤A−1u
A−1uv⊤A−1. (70)

To simplify the computation, let

a = u⊤X0u

b = v⊤X0v

c = u⊤X0v = v⊤X0u

β =
α

1 + αc
,

we have

u⊤Y −1u = u⊤
(

X0 −
α

1 + αv⊤X0u
X0uv

⊤X0

)

u = u⊤
(

X0 −
α

1 + αc
X0uv

⊤X0

)

u

= u⊤X0u− βu⊤X0uv
⊤X0u = a− βac

where the first equality is obtained by applying the Sherman-Morrison formula to

Y −1. Similarly,

v⊤Y −1v = b− βbc

u⊤Y −1v = c− βab

v⊤Y −1u = c− βc2.
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Since

u⊤Xv = u⊤
(

Y −1 − α

1 + α(c− βab)Y
−1vu⊤Y −1

)

v

= u⊤Y −1v − 1
1
β
− βabu

⊤Y −1vu⊤Y −1v

= c− βab− 1
1
β
− βab (c− βab)2

v⊤Xu = v⊤
(

Y −1 − α

1 + α(c− βab)Y
−1vu⊤Y −1

)

u

= v⊤Y −1u− 1
1
β
− βabv

⊤Y −1vu⊤Y −1u

= c− βc2 − 1
1
β
− βab (b− βbc) (a− βac) ,

the value of β must satisfy the following equation

u⊤Xv + v⊤Xu = 2c− β(c2 + ab)− 1
1
β
− βab

(
(c− βab)2 + (b− βbc)(a− βac)

)
= 0

which is simplified to a quadratic equation

β2abc− β(ab+ c2) + c = 0.

The roots are given by the quadratic formula

β =
ab+ c2 ±

√

(ab+ c2)2 − 4abc2

2abc
=
ab+ c2 ± |ab− c2|

2abc
.

For α > 0, we have

β =
α

1 + αc
=

1
1
α

+ c
<

1

c
,

therefore β has a unique solution which is c
ab

. Solving for α, we get

α =
c

ab− c2 .

The optimum X is computed as

X = Y −1 − 1
1+αc

α
− α

1+αc
ab
Y −1vu⊤Y −1

= X0 −X0ΛX0
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where

Λ =
1

1+αc
α
− α

1+αc
ab

(

vu⊤ + uv⊤ − αb

1 + αc
uu⊤ − αa

1 + αc
vv⊤

)

and α = max{0, c
ab−c2
}.
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