
MAHLER’S CONJECTURE IN CONVEX GEOMETRY:
A SUMMARY AND FURTHER NUMERICAL ANALYSIS

A Thesis
Presented to

The Academic Faculty

by

Philipp Hupp

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
School of Mathematics

Georgia Institute of Technology
December 2010



MAHLER’S CONJECTURE IN CONVEX GEOMETRY:
A SUMMARY AND FURTHER NUMERICAL ANALYSIS

Approved by:

Professor Evans Harrell, Advisor
School of Mathematics
Georgia Institute of Technology

Professor Mohammad Ghomi
School of Mathematics
Georgia Institute of Technology

Professor Michael Loss
School of Mathematics
Georgia Institute of Technology

Date Approved: July 23, 2010



ACKNOWLEDGEMENTS

My deepest appreciation to my supervisor, Prof. Evans Harrell, for his encourage-

ment and guidance during my studies. I feel fortunate to have him as my advisor. His

original mind, his keen insight in approaching hard problems, and his vast knowledge

have served as an inspiration for me throughout this thesis. I am particularly thank-

ful to him for introducing me to the subjects of convex and differential geometry. He

taught these subjects in an effortless manner and just that allowed me to accomplish

this thesis.

A special thanks goes to Prof. Mohammad Ghomi for sharing his expertise on

Mahler’s conjecture with me and I would like to express my gratitude to him and

Prof. Michael Loss as the members of my committee.

Furthermore I like to thank Michael Music who shared Prof. Harrell’s working semi-

nar with me. It was fun working with you Michael and all the best for your graduate

studies.

iii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II MAHLER’S CONJECTURE AND CONVEXITY . . . . . . . . . . . . . 4

2.1 Mahler’s Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Interpretation of Mahler’s conjecture . . . . . . . . . . . . . . . . . 6

2.3 The support and the gauge function of a convex set . . . . . . . . . 7

2.4 The Hausdorff and the L2 distace for the set of convex bodies . . . 16

2.5 The (generalized) Legendre transformation and duality . . . . . . . 18

III KNOWN RESULTS ON MAHLER’S CONJECTURE . . . . . . . . . . 23
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SUMMARY

In this thesis we study Mahler’s conjecture in convex geometry, give a short

summary about its history, gather and explain different approaches that have been

used to attack the conjecture, deduce formulas to calculate the Mahler volume and

perform numerical analysis on it.

The conjecture states that the Mahler volume of any symmetric convex body, i.e.

the product of the volume of the symmetric convex body and the volume of its dual

body, is minimized by the (hyper-)cube. The conjecture was stated and solved in 1938

for the 2-dimensional case by Kurt Mahler. While the maximizer for this problem

is known (it is the ball), the conjecture about the minimizer is still open for all

dimensions greater than 2.

A lot of effort has benn made to solve this conjecture, and many different ways to

attack the conjecture, from simple geometric attempts to ones using sophisticated

results from functional analysis, have all been tried unsuccesfully. We will present

and discuss the most important approaches.

Given the support function of the body, we will then introduce several formulas for

the volume of the dual and the original body and hence for the Mahler volume.

These formulas are tested for their effectiveness and used to perform numerical work

on the conjecture. We examine the conjectured minimizers of the Mahler volume by

approximating them in different ways. First the spherical harmonic expansion of their

support functions is calculated and then the bodies are analyzed with respect to the

length of that expansion. Afterwards the cube is further examined by approximating

its principal radii of curvature functions, which involve Dirac δ functions.

ix



CHAPTER I

INTRODUCTION

The Mahler volume, or volume product, first introduced by Kurt Mahler in 1939 [16],

describes the volume of a convex body times the volume of its dual body. This thesis

examines the Mahler volume in detail, gives the neccessary background in convex

geometry to understand the functional, summarizes known results about the volume

product, derives formulas to calculate it and performs numerical work using these

formulas. The experiments focus on the open conjecture about the Mahler volume:

Mahler suspected the cube to be one minimizer of the volume product in any dimen-

sion n [15]. So far this conjecture has only been proved for the 2 dimensional case by

Mahler himself, just a few months after he stated the conjecture.

This work begins by introducing the volume product and the necesssary background

in convex geometry. As we are looking at convex bodies, two useful ways to describe

them, the support and the gauge function, are introduced. The volume product is

closely related to duality, since its definition directly contains the dual body. So the

relationship between the support function of a body and the gauge function of the

dual body is emphasized. We further introduce the (generalized) Legendre transform

and show how it links the support function of a body to its gauge function. Therefore

we get a complete correlation between the gauge and support functions of a con-

vex body and the support and gauge functions of the dual body. As we later want

to approximate the conjectured minimizers of the Mahler volume, we will introduce

metrics for the family of convex bodies. This allows to judge the quality of the ap-

proximation.

We continue with summarizing known results about the volume product. In contrast
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to the lower bound, the upper bound of the Mahler volume is completely understood.

The ball has been proved to be the maximizer of the volume product by Blaschke

and Santaló [3, 4, 23]. Although we do not know if the cube minimizes the volume

product, there are partial results on this conjecture. For certain families of convex

bodies, the cube was succesfully proved to minimize the volume product. Asymptotic

lower bounds on the Mahler volume are as well known and have been improved re-

cently. Results about the structure of the minimizers are rare, and just one necessary

condition about the boundary of the minimizers is known.

After the background of Mahler’s conjecture is discussed, we derive formulas to cal-

culate it given the support function of the body. We will often work in spherical

coordinates, as the support and gauge function are homogeneous of degree 1 and

hence allow us to make that restriction without loss of information. Formulas for the

volume of the dual body are more straightforward to derive, if we have the support

function in hand. So we begin with them. For the volume of the original body either

the (generalized) Legendre transform, discussed earlier, can be used, or the principal

radii of curvature play an important role in these formulas.

To test the performance of the just derived formulas, we carry out the numerical ex-

periments. These experiments focus on 3 dimensions, as this is the easiest open case.

After evaluating the different formulas, we approximate the conjectured minimizer in

two different ways, to see, if a body of lower volume product can be generated like

that. First, both conjectured minimizers, the cube and the cross polytope, are ap-

proximated by the spherical harmonic expansion of their support function. Although

these bodies will be very close to the conjectured minimizers, their volume product

stays within several percent of the conjectured value. Furthermore we determine that

the approximations are not convex. The second approximation works on the principal

radii of curvature of the cube. These functions are Dirac δ functions and we approx-

imate them. Having the principal curvatures we can deduce the according support
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function and hence have the body on hand.

We conclude the thesis by summarizing the experimental results giving future re-

search ideas. In particular the numerical algorithms using the Legendre transform

can be improved. Furthermore we give partial differential equations whose solution

is the support function of the cube, when we approximate the Dirac δ functions in

its radii of curvature by Gaussians. The numerical experiments suggest that the

corresponding body may have a smaller volume product than the cube.
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CHAPTER II

MAHLER’S CONJECTURE AND CONVEXITY

2.1 Mahler’s Conjecture

Mahler’s conjecture addresses convex bodies and their polar duals in Rn. So before

discussing the conjecture itself, we provide a brief review of the necessary definitions.

A set S ∈ Rn is said to be convex if for all x, y ∈ S and all λ ∈ [0, 1] the line between

x and y,
{
z = λx + (1 − λ)y : x, y ∈ S, λ ∈ [0, 1]

}
, is in S as well. The convex

set is a convex body, if it is in addition compact, i.e. closed and bounded, and has

non-empty interior. For this thesis Kn will denote the family of all convex bodies in

Rn. A set S ∈ Rn is said to be symmetric (with respect to the origin) if −S = S, i.e.

if x ∈ S ⇒ −x ∈ S.

Given K ∈ Kn the polar dual or dual body K◦ of K is defined as

K◦ = {x ∈ Rn : 〈x, y〉 ≤ 1 ∀ y ∈ K} . (1)

Here 〈·, ·〉 denotes the euclidean scalar product of Rn.

Two easily verified facts about the polar body are: If K is a symmetric convex body

in Rn then so is K◦; and if K,L are convex bodies such that K ⊂ L, then L◦ ⊂ K◦.

Flats of the original body correspond to vertices of the dual body and vice versa. If

the original body is scaled the dual body will scale by the inverse factor. Smooth

areas of the original body correspond to smooth areas of the dual body and the dual

of a ball of radius λ is the ball of radius 1
λ
.

The Minkowski sum of two sets S, T ∈ Rn is defined as S + T :=
{
s + t ∈ Rn : s ∈

S, t ∈ T
}

and for λ > 0 we define similarly λ · S :=
{
λs ∈ Rn : s ∈ S

}
. It is now

easily checked that the set of convex bodies Kn is a cone itself, i.e. it is closed under

the Minkowski sum and under non-negative scalar multiplication.
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With these definitions on hand we can introduce the Mahler volume and state the

conjecture:

Definition 2.1.1 (Mahler volume):

Given a symmetric convex body K ∈ Kn, its Mahler volume M(K) is defined to be

the quantity

M(K) := Vn(K)Vn(K◦) , (2)

where Vn(K) denotes the n-dimensional Lebesgue measure of K.

This definition yields several properties of the Mahler volume.

Proposition 2.1.2 (Basic properties of the Mahler volume [27]):

The Mahler volume M(K) of a symmetric convex body K ∈ Kn has the following

properties:

• Duality: (K◦)◦ = K implies that M(K) = M(K◦).

• Affine invariance: If T : Rn → Rn is any invertible linear transformation, then

(TK)◦ = (T ∗)−1K◦ and hence M(TK) = M(K).

Conjecture 2.1.3 (By Mahler 1939 [16]):

For a symmetric convex body K ∈ Kn the following inequalities hold

4n

n!
≤M(K) ≤ πn

Γ
(
n
2

+ 1
)2 , (3)

where Γ(·) denotes the Gamma Function, given by Γ(x) =
∫∞

0
esxs−1 ds for x > 0.

The lower bound is achieved by the dual pair of cube and cross-polytope and the

upper bound by the ball.

Note that the dual body of the unit ball Bn is the unit ball itself, the cube in Rn is

given by In :=
{

(x1, . . . , xn) ∈ Rn : |xi| ≤ 1 ∀ i ∈ {1, . . . , n}
}

and the cross-polytope

by On :=
{

(x1, . . . , xn) ∈ Rn :
∑n

i=1 |xi| ≤ 1
}

. In R3 the cross-polytope is often called
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octahedron as well.

Since the Mahler volume is invariant under affine transformations, there are not just

these extreme bodies but families consisting of all bodies that can be generated out

of the specific ones by affine transformations. In fact, Mahler used the the general

wording when he stated the extreme cases of the conjecture. He did not claim that

these bodies are the unique extreme cases for the volume product. But it is now

known that the ball and its affine transformations are the unique maximizers of it.

While checking that the given bodies take the conjectured lower and upper bounds

is easy, proving the bounds is very difficult. The upper bound has been proved by

Blaschke (for the 2-dimensional case) and Santaló (in full generality), and the result

is known as Santaló’s Inequality.

The lower bound is open except for the case when n = 2, which was proved by Mahler

one month after he stated the conjecture [15]. We will discuss these results in more

detail later when the history and results about the conjecture are reviewed.

Symmetry is not required for either the polar dual or the Mahler volume. If the

symmetry constraint is dropped, it may instead be assumed that the origin is in the

interior of the body, so that the dual body behaves nicely. Now the similar question,

which convex bodies containing the origin in their interior minimize the Mahler vol-

ume, can be asked. In this case the conjectured minimum is the simplex.

2.2 Interpretation of Mahler’s conjecture

Having the functional Mahler volume in hand it would be nice to have an intuition

what it measures. There are two main approaches:

• Volume Approach: The Mahler volume functional indeed describes the vol-

ume of a specific body. Given a symmetric convex body K ∈ Kn we can look

at K ×K◦ ∈ Rn × Rn. Then M(K) = V2n(K ×K◦).

6



Figure 1: K ×K◦ as body in R2n

• Pointedness Approach [26]: Having the conjectured extreme cases of the

Mahler volume in mind, the cube and the ball, one may think of the Mahler

volume as capturing the ”roundness” of a body. The ball is the roundest body

one can think of and cubes and cross-polytopes are the pointiest symmetric

ones. While we have a lot of tools and a good intuition to describe the ball as

the roundest body, there is nothing comparable to say about the pointiness of a

body. This is the weakness of this interpretation, since it does not make precise

what it means for a body to be pointy.

While both approaches give a rough idea about what the Mahler volume is cap-

turing, they do not provide a rigorous understanding of the functional.

2.3 The support and the gauge function of a convex set

For dealing with Mahler’s conjecture we need to represent and describe convex bodies.

In particular we are interested in a representation of the bodies that makes it easy

to identify the body, get an intuition about how it looks, calculate metric quantities

easily (in particular the volume of the body and its dual) and are able to modify it.

In convexity two concepts have mainly proved useful for that: The support and the

gauge functions of a convex body. Both concepts will be introduced now and shown
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how they are related through the concept of duality and the Legendre transformation.

Since all the concepts presented in this section are well known results in convexity

the discussion will be brief. For an entire discussion including detailed proofs of all

statements we refer to [28].

Definition 2.3.1 (Support and gauge function):

Given a convex body K ∈ Kn we define the support function hK(x) of K

hK(x) = sup
{
〈x, k〉 : k ∈ K

}
(4)

for x ∈ Rn. If additionally the origin is an interior point of K we define

gK(x) = inf
{
λ ≥ 0 : x ∈ λA

}
(5)

as its gauge function gK(x). The subscripts of the support and gauge function will

be dropped when it is obvious to which body they refer to.

Both functions are well defined. Since K is non-empty and bounded so is
{
〈x, k〉 :

k ∈ K
}

for any x ∈ Rn, since the inner product is continuous. Furthermore the

bilinearity of the inner product implies that this supremum does not change if we

restrict the points k to be in the boundary of K.

h(x) = sup
{
〈x, k〉 : k ∈ K

}
= sup

{
〈x, k〉 : k ∈ ∂K

}
, (6)

where ∂K denotes the boundary of K. In the case of the gauge function, the origin

being an the interior of K ensures that we can find an open ball Bε(0) centered at

the origin that is inside K. Then x ∈
( ||x||

ε
+ 1
)
Bε(0) ⊂

( ||x||
ε

+ 1
)
K, and so g takes

finite values for any x ∈ Rn.

For an intuition about the support function consider any u ∈ Rn\{0} and any α ∈ R

and look at the hyperplane with normal u that is given by Hα =
{
x ∈ Rn : 〈u, x〉 = α

}
and at the half space defined by H−α =

{
x ∈ Rn : 〈u, x〉 ≤ α

}
. Different α result in a

family of hyperplanes that are all parallel. For any closed convex body K there will

8



be two cases where Hα supports K. But in only one of these cases it is additionally

true that K ⊂ H−α . Obviously we have K ⊂ H−α if and only if 〈u, k〉 ≤ α ∀ k ∈ K,

i.e. if and only if

sup
{
〈u, k〉 : k ∈ K

}
≤ α .

If we also require that Hα supports K, we need some point k0 ∈ K s.t. 〈u, k0〉 = α.

This yields that Hα is the support hyperplane according to the normal u such that

K ⊂ H−α if and only if

sup
{
〈u, k〉 : k ∈ K

}
= α .

Furthermore, if u is a unit vector, i.e. if ||u|| = 1, then h(u) gives the distance to

the origin of the support hyperplane with normal u such that K ⊂ H−α .

Figure 2: Supporting hyperplanes for a convex body

For an intuition about the gauge function consider the set

S =
{
x ∈ Rn : g(x) ≤ 1

}
.

9



It is clear that x ∈ K ⇒ g(x) ≤ 1 and x /∈ K ⇒ g(x) > 1. So K can be thought

of as the level set S of g at the value 1. Additionally
{
x ∈ Rn : g(x) = 1

}
describes

the boundary of K. Let us embed K in Rn+1 by K × {1} and take the convex hull

of K × {1} and the origin. If we then intersect this construction with a hyperplanes

with normal
( n 0’s︷ ︸︸ ︷

0, . . . , 0, 1
)

and distance 0 ≤ α ≤ 1 from the origin we gain copies of

K scaled by α given by
{
x ∈ Rn : g(x) ≤ α

}
.

Figure 3: The gauge function of a convex set K

We will call a convex body K ∈ Kn smooth, if every point x on its boundary has

a unique support plane, i.e. if it has a unique outward normal u [24].

Definition 2.3.2 (Convex and positive homogeneous functions and the epi-

graph of f):

A function f : X → R defined on a non-empty convex set X ⊂ Rn is said to be

convex if

f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y) ∀ x, y ∈ X and ∀ λ ∈ [0, 1] . (7)
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The convexity of X ensures that λx+ (1− λ)y is always in X as well.

Associated with any function f : X → R defined on a non-empty compact set X is a

subset of Rn+1, its epigraph,{
(x1, . . . , xn, x) : (x1, . . . , xn) ∈ X, x ≥ f(x1, . . . , xn)

}
. (8)

It is easily checked that f is convex if and only if its epigraph is a convex subset of

Rn+1.

A function f : C → R defined on a convex cone C ⊂ Rn is said to be positively

homogeneous if

f(λx) = λf(x) ∀ x ∈ C and ∀ λ ≥ 0 . (9)

Theorem 2.3.3 (Properties of the support function):

The support function h of any convex body K ∈ Kn is positively homogeneous and

convex. Furthermore any positively homogeneous and convex function h gives rise to

a convex body K ∈ Kn defined by

K =
{
x ∈ Rn : 〈u, x〉 ≤ h(u) ∀ u ∈ Rn

}
. (10)

When K is given by (10) it has support function h.

The theorem states that there is a bijection between the positively homogeneous,

convex functions and the convex bodies. A similar result is true for the gauge function.

Theorem 2.3.4 (Properties of the gauge function):

The gauge function g of closed convex set K ∈ Kn that contains the origin in its

interior is non-negative, positively homogeneous and convex. Furthermore any non-

negative, positively homogeneous and convex function g(x) gives rise to a convex

body K ∈ Kn defined by

K =
{
x ∈ Rn : g(x) ≤ 1

}
. (11)

When K is given by (11) it has gauge function g(x) and it is obvious that the origin

is an interior point of K.
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If a function f : Rn → R is positively homogeneous it may simply be regarded

as a function of the unit sphere Sn−1 =
{
x ∈ Rn : ||x|| = 1

}
without loss of any

information. If f : Sn−1 → R is defined, then it is easily extended to all x ∈ Rn by

f(x) = f
(
x ||x||||x||

)
= ||x||f

(
x
||x||

)
. Hence we will often refer to the support and gauge

function as defined on the unit sphere.

It is well known that convex functions have nice properties and so have the support

and gauge function of convex sets. We will use that convex functions defined on a

set X are continuous on X. Furthermore a convex function possesses all its one sided

partial derivatives for any point x in the interior of X.

Theorem 2.3.5 (Support and gauge function and the dual body):

Let h be the support and g be the the gauge function of a convex body K ∈ Kn that

has the origin as an interior point. Then the support and the gauge function of the

dual body K◦ are g and h respectively.

Proof. If u ∈ K◦ then 〈u, k〉 ≤ 1 ∀ k ∈ K this means h(u) ≤ 1. Conversly if

h(u) ≤ 1 then 〈u, k〉 ≤ 1 and so u ∈ K◦. So we have

K◦ =
{
u ∈ Rn : h(u) ≤ 1

}
.

Since the origin is an interior point of K, the support function h is non-negative.

Therefore h is a non-negative, positively homogeneous, convex function such that

equation (11) holds. Hence h is the support function of K◦. From this we can also

conclude that the support function of K◦ is the gauge function of K.

To illustrate the above concepts we will discuss some examples of convex bodies

and will calculate their support and gauge functions explicitly.

Example 2.3.6 (The support and gauge function of the ball):

Given the ball with radius λ > 0 centered at the origin Bλ(0), we first determine

12



its support function. Therefore consider any u ∈ Sn−1. Both support planes with

normal u have distance λ from the origin for any u ∈ Sn−1. So h ≡ λ. Since

Bλ(0)◦ = B 1
λ
(0)

the gauge function is g ≡ 1
λ

as the support function of the dual body.

Example 2.3.7 (The support and gauge functions of the cube and the

cross-polytope):

Recall the definitions for the cube In and the cross-polytope On

In =
{

(x1, . . . , xn) ∈ Rn : |xi| ≤ 1 ∀ i ∈ {1, . . . , n}
}
, (12)

On =
{

(x1, . . . , xn) ∈ Rn :
n∑
i=1

|xi| ≤ 1
}
, (13)

respectively. We first determine the support function of the cube. Again consider any

u ∈ Sn−1 and look at the support plane with normal u such that In is in the negative

half-space corresponding to that hyperplane. The support hyperplane has to touch

In at at least one point. Now recall that given a point x0 in the hyperplane and the

normal vector of the hyperplane u it can be represented by

{
x ∈ Rn : 〈u, x〉 = 〈u, x0〉

}
, (14)

and if u has norm one the distance of that hyperplane from the origin is given by

〈u, x0〉. Going back to the cube we see that at least one of the points of contact

has to be one of the vertices of the cube. These vertices are given by
( n times︷ ︸︸ ︷
±1, . . . ,±1

)
.

At which of these vertices does the plane support the cube? It is the vertex of the

orthant1 in which the normal is pointing (if there are several, i.e. the normal is

parallel to at least one of the coordinate axis, we just choose any of the appropriate

1Orthant is the generalization of quadrant (in 2 dimensions) and octant (in 3 dimensions) to
arbitrary dimensions.
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vertices). So the vertex has the same sign as the normal vector for each coordinate.

Hence the support function of the cube is given by

hIn(u) =
n∑
i=1

|ui| . (15)

Similarly, we get the support function of the cross-polytope. The vertices of the

cross-polytope are given by
( k times︷ ︸︸ ︷

0, . . . 0,±1,

n−k−1 times︷ ︸︸ ︷
0, . . . , 0

)
for 0 ≤ k ≤ n − 1. So just one

coordinate of the normal will determine the support function. The vertex the plane

supports the cross-polytope at has to be the vertex for which |ui| takes its largest

value. Since again u points in the direction of that vertex the signs of the according

coordinates are the same and the support function is given by

hOn(u) = max
1≤i≤n

|ui| . (16)

Using Theorem 2.3.5 we also know the gauge functions of both bodies. Observe that

equations (15) and (16) are just the l1 and l∞ norms of the normal vector u for the

cube and the cross-polytope respectively.

Example 2.3.8 (The support function of the cylinder):

Let us look at a cylinder whose rotation axis is the x3-axis of the coordinate system.

Let its total height be 2 and the radius of its base be 1. When we evaluate the support

function at (x, y, z) we need the coordinates of the point where this vector supports

the body. For z > 0 the contact point will be at the upper base, for z < 0 at the

lower base, and for z = 0 in the x1x2-plane. The exact point of contact is further

determined by the x and y coordinates of the vector. It will be at the unit direction

corresponding to x and y, and hence the support point is
x√
x2+y2

y√
x2+y2

sgn(z)

 ,
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where

sgn(x) =


1, for x > 0,

0, for x = 0,

−1, for x < 0

denotes the signum function. Hence the value of the support function, given by the

inner product of the normal with the corresponding support point, is

h(x, y, z) =

〈
x

y

z

 ,


x√
x2+y2

y√
x2+y2

sgn(z)


〉

=
√
x2 + y2 + |z| . (17)

Figure 4: The cube, the cross polytope, the ball and the cylinder in R3

Theorem 2.3.9 (The Minkowski sum and the support function):

For K,L ∈ Kn and λ > 0 it is true that

hK+L ≡ hK + hL and (18)

hλK ≡ λhK . (19)

Proof. Consider any x ∈ Sn−1. We then have

hK+L(x) = sup
{
〈x, k + l〉 : k + l ∈ K + L

}
= sup

{
〈x, k〉+ 〈x, l〉 : k ∈ K, l ∈ L

}
=

= sup
{
〈x, k〉 : k ∈ K

}
+ sup

{
〈x, l〉 : l ∈ L

}
= hK(x) + hL(x) .
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Analogously it is true that

hλK(x) = sup
{
〈x, λk〉 : λk ∈ λK

}
= sup

{
λ〈x, k〉 : k ∈ K

}
=

= λ sup
{
〈x, k〉 : k ∈ K

}
= λhK(x) .

Beside the nice aspect that the support and gauge function of a body coincide

with the gauge and support function of the dual body respectively, there is another

relation between these functions involving the Legendre transformation. Before we

introduce this concept, let us discuss how convex bodies can be said to distinct from

or close to another.

2.4 The Hausdorff and the L2 distace for the set of convex
bodies

To examine Mahler’s conjecture we want to build bodies that are similar, in some

sense, to the conjectured minimizers. For the family of sets in Rn the most common

distance function is the Hausdorff distance. For the set of convex bodies with the

origin in the interior this concept can be extended to lead to all Lp distances. Our

discussion of the different metrics in this chapter follows the corresponding chapter

in [9].

First let us introduce the parallel body. Having a convex body K ∈ Kn and some

r ≥ 0 the parallel body of K at distance r is defined to be

K(r) = K + r ·Bn , (20)

and is another convex body. From Theorem 2.3.9 about the Minkowski sum and

support function we get hK(r)
= hK + r. For smooth parts of the body K the parallel

body can as well be constructed by flowing each boundary point outward in its normal

direction at a constant rate.
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Figure 5: The parallel body K(r) of the rectangle K

Definition 2.4.1 (The Hausdorff distance):

For any K,L ∈ Kn the Hausdorff distance δ(K,L) of K and L is defined as

δ(K,L) = inf{r : K ⊂ L(r), L ⊂ K(r)} . (21)

Since K and L are bounded this infimum is always finite. We can also rewrite the

definition of the Hausdorff distance in terms of the support function and get

δ(K,L) = sup{|hK(ω)− hl(ω)| : ω ∈ Sn−1} . (22)

Looking at the Banach space of continuous functions over Sn−1 this equation becomes

δ(K,L) = ||hK − hL||∞ . (23)

With that formula it is easily checked that the Hausdorff distance is a well defined

metric since all properties follow immediately from the corresponding facts about the

metric || · ||∞. While the Hausdorff distance gives a good intuition about closeness of

two bodies, using the parallel body, other distances are sometimes easier to deal with.

Similar to equation (23) we can use the Lp metrics for p ≥ 1 on the space of square

integrable functions over Sn−1 to get metrics for the set of convex bodies, namely

δp(K,L) = ||hK − hL||p . (24)
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In particular the L2 distance

δ2(K,L) = ||hK − hL||2 =
(∫

Sn−1

(
hK(ω)− hL(ω)

)2
dω
)1/2

(25)

is often used as it captures the same structure as the underlying Banach space. It

can be shown, using regularity properties of convex functions, that the L2 and the

Hausdorff distance, which should be called L∞ in this context, generate the same

topology for the set of convex bodies.

2.5 The (generalized) Legendre transformation and duality

The Legendre transformation is a tool classically used in thermodynamics and me-

chanics, and for solving partial differential equations. Here we will link it to convexity

and duality generalizing a proof given in [7]. The discussion of this transform in the

literature is rather brief. References can be found in [21], [7], and [2]. For our discus-

sion we will choose an approach similar to [6] and require that the function of interest

is convex and superlinear.

Definition 2.5.1 (Superlinearity):

A convex function f : Rn → R is said to be superlinear if

lim
||x||→∞

f(x)

||x||
= +∞ (26)

Definition 2.5.2 (The Legendre transformation):

Given a function f : Rn → R the Legendre transform L of f at a point y ∈ Rn is

defined by

L[f ](y) = sup
x∈Rn

{
〈y, x〉 − f(x)

}
. (27)

If the function to which we apply the Legendre transform is convex and superlinear

we know that the supremum is in fact taken for some x0. Convexity of f ensures

continuity of 〈y, ·〉 − f(·) for all y and superlinearity implies that the maximum of

〈y, ·〉 − f(·) is finite for all y.
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Figure 6: Calculating the Legendre Transform L[f ](y)

We can as well view 〈y, x〉 − f(x) as a function of x given a particular y. If we

require that f is differentiable, we get the following necessary condition for an x0

that maximizes this expression.

df(x0) = y .

When we apply the Legendre transform to the support or the gauge function we do

not have the properties required above, since none of these functions is superlinear.

But if a function is positive and positively homogeneous of degree one, then its square

is superlinear:

f(x)2

||x||
=
f(||x||x0)2

||x||
=
||x||2f(x0)2

||x||
= ||x||f(x0)2 →∞ for ||x|| → ∞ ,

where x0 = x
||x|| . This discussion prepares the generalized Legendre transformation

as introduced in [7]. For a function f : Rn → R such that f is positive, convex

and positively homogeneous of degree one, the generalized Legendre transform of f

is given by

L
[f 2

2

]
(y) = sup

x∈Rn

{
〈y, x〉 − f(x)2

2

}
. (28)
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The supremum in equation (28) is always attained for some point xy ∈ Rn.

The following result that connects the Legendre transform to the principle of

duality first appears in [7] with unnecessary conditions on the smoothness of the

function of interest. Harrell generalized it to hold for support and gauge functions of

arbitrary convex bodies and the proof was first published in [29] with reference to his

work.

Theorem 2.5.3 (The generalized Legendre transform and duality):

Given a convex body K ∈ Kn that contains the origin in its interior, we denote by

h and g its support and gauge functions, respectively. Then the following equality

holds:

L
[g2

2

]
=
h2

2
. (29)

Proof. We begin with showing L
[
g2

2

]
≥ h2

2
. First give any y ∈ Rn. The convexity of

g ensures its continuity and so {x ∈ Rn : g(x) = 1} = ∂K is a compact set. Hence

there has to be some x0 ∈ ∂K, i.e. g(x0) = 1, such that

h(y) = sup
x∈∂K

{
〈y, x〉

}
= 〈y, x0〉 .

Hence for any λ > 0,

L
[g2

2

]
(y) = sup

x∈Rn
{〈y, x〉 − g(x)2

2
} ≥ 〈y, λx0〉 −

g(λx0)2

2
=

= λ〈y, x0〉 −
λ2

2
g(x0) = λh(y)− λ2

2
.

Setting λ = h(y), this yields

L
[g2

2

]
(y) ≥ λh(y)− h(y)2

2
=
h(y)2

2
.

Let us now prove the reverse inequality, L
[
g2

2

]
≤ f2

2
. Again we consider an arbitrary

y ∈ Rn. The convexity and positive homogeneity of g ensure that we can find a x0

such that

L
[g2

2

]
(y) = sup

x∈Rn

{
〈y, x〉 − g(x)2

2

}
= 〈y, x0〉 −

g(x0)2

2
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We distinguish between two cases: If g(x0) = 0 this implies x0 = 0, since K is a

bounded set. But x0 = 0 would yield L
[
g2

2

]
(y) = 0 ≤ h(y)2

2
, since the origin is in the

interior of K, and the proof is finished. Therefore assume that g(x0) 6= 0. Consider

the function p of one real variable defined by

p(λ) = 〈y, λx0〉 −
g(λx0)2

2
= λ〈y, x0〉 − λ2 g(x0)2

2
.

This quadratic function in λ obviously takes its maximum for λ0 = 〈y,x0〉
g(x0)2

. This

expression is well defined since we excluded the case g(x0) = 0, and furthermore from

g(x0) 6= 0 and 〈y, x0〉 − g(x0)2

2
= supx∈Rn{〈y, x〉 −

g(x)2

2
} ≥ 〈y, 0〉 − g(0)2

2
= 0, we can

conclude that

〈y, x0〉 ≥
g(x0)2

2
≥ 0 .

Hence we can deduce that λ0 ≥ 0, and finally get

L
[g2

2

]
(y) = 〈y, 1 · x0〉 −

g(1 · x0)2

2
≤ 〈y, λ0x0〉 −

g(λ0x0)2

2
=

= λ0〈y, x0〉 −
λ2

0g(x0)2

2
=
〈y, x0〉
g(x0)2

〈y, x0〉 −
〈y, x0〉2

g(x0)4

g(x0)2

2
=

=
〈y, x0〉2

2g(x0)2
=

1

2

〈
y,

x0

g(x0)

〉2

.

The observation that g
(

x0

g(x0)

)
= 1 yields that x0

g(x0)
∈ ∂K, and hence

L
[g2

2

]
(y) ≤ 1

2

〈
y,

x0

g(x0)

〉2

≤ 1

2
sup
x∈∂K
〈y, x〉2 =

h(y)2

2
.

The last inequality finishes the proof.

Let us emphasize that Equation (29) does not relate only the support and gauge

function of a convex body via the generalized Legendre Transform. Combining the

Theorems 2.5.3 and 2.3.5, the support and gauge function of the body and its dual

are all related. Given a convex body K ∈ Kn that contains the origin in its interior,

let us denote with h, g its support and gauge function, K◦ its dual body, and with

h◦, g◦ the support and gauge function of the dual body, respectively. We then get

L
[h2

2

]
= L

[(g◦)2

2

]
=

(
h◦
)2

2
=
g2

2
. (30)
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This yields that the generalized Legendre transform is an involution for the set of

support and gauge functions of convex bodies that contain the origin in their interior.

So knowing one of the functions h, g, h◦ and g◦ we know all others. This relationship

is summarized in figure 7.

Figure 7: The generalized Legendre transform relates the original and dual support
and gauge functions
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CHAPTER III

KNOWN RESULTS ON MAHLER’S CONJECTURE

While the upper bound for the Mahler volume has been proved and is known as

the Blaschke-Santaló inquality, the lower bound is still open. Nevertheless there are

partial results on the lower bound, which can be categorized into three classes.

• Lower bounds for the Mahler volume have been proved with factors depending

on the dimension n.

• For certain families of convex bodies Mahler’s conjecture has been proved

successfully.

• Some necessary conditions for the minimizer of the Mahler volume are known.

The most important results on the Mahler volume for symmetric convex bodies

are presented in table (1) and will be discussed in this chapter.

3.1 The Blaschke Santaló Inequality

The upper bound for the Mahler volume is known to be

M(K) ≤ π
n
2

Γ
(
n
2

+ 1
) = M(Bn) ∀K ∈ Kn , (31)

and has been proved by Blaschke for the 3 dimensional case [4] and in generality

by Santaló [23]. Under certain smoothness assumptions on the convex body the

latter also includes equality statements for the above bound. It has been proved by

Saint-Raymond [22] without further restrictions on the symmetric convex body that

equality in (31) is obtained only for ellipsoids. These results are commonly known as

the Blaschke Santaló Inequality.
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Table 1: Known results on Mahler’s Conjecture

Result By Year Reference

Upper bounds
M(Bn) ∀K ∈ K3 Blaschke 1917, 1923 [3],[4]
M(Bn) ∀K ∈ Kn ∀n ∈ N Santaló 1949 [23]
equality above only for ellipsoids Saint-Raymond 1980 [22]

Lower bounds
42

Γ(2+1) for all polygons in R2 Mahler 1939 [15]
cnM(Bn) for some constant c > 0 Bourgain, Milman 1987 [5](
π
4

)n−1 4n

Γ(n+1) ∀K ∈ Kn ∀n ∈ N Kupperberg 2006 [13]

Families of bodies
unit balls of Rn with 1-unconditional basis Saint-Raymond 1980 [22]
Zonoids Reisner 1985 [18]

Necessary conditions
boundary of body cannot be of class C2

+ Stancu 2009 [25]

A quite simple proof for it using Steiner symmetrizations is presented by Tao [27] and

will be sketched here.

Sketch of the proof for the Blaschke-Santaló inequality. Given a set K ∈ Rn, we de-

fine the Steiner symmetrization S0(K) of K with respect to 0 to be the set

S0(K) :=
1

2
· (K −K) =

{
x− y

2
: x, y ∈ K

}
. (32)

In general, if π : Rn → Rn is any orthogonal projection to a subspace of Rn, the

Steiner symmetral Sπ(K) of K with respect to π is defined to be the set

Sπ(K) :=
⋃

z∈π(K)

z + S0(K ∩ π−1(z)) =

{
x− y

2
+ z : x, y ∈ K; z = π(x) = π(y)

}
.

(33)

The inradius r(K) > 0 and circumradius R(K) > 0 of a convex body are defined

to be the biggest and respectively lowest quantities such that

r(K) ·Bn ⊂ K ⊂ R(K) ·Bn , (34)
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and the eccentricity of K is defined as

e(K) :=
R(K)

r(K)
. (35)

The only body with eccentricity 1 is obviously the ball. It can be shown that Steiner

symmetrizations do not increase the eccentricity of a convex body, while they also

do not decrease the Mahler volume. Given the inclusion (34) and the monotonocity

when taking the polar body we see that

e(K)−n ·M(Bn) ≤M(K) ≤ e(K)n ·M(Bn) . (36)

Hence it suffices to show that for any given convex body we can find a series of

Steiner symmetrizations K0 = K, K1 = Sπ1(K0), K2 = Sπ2(K1), . . . , such that the

eccentricity of the convex bodies converges to 1. This can be done in several ways;

see for example [27] and [10].

The proof uses that the maximizer of the Mahler volume is uniquely the ball (up to

affine transformations), and that we can transform every convex body into a ball with

a sequence of Steiner symmetrizations. Giving a similar argument for the minimizer of

the Mahler volume is very difficult, since the structure of the conjectured minimizing

shapes is more complex. In higher dimensions there are shapes that are not affine

transformations of the cube but apparently also minimize the Mahler volume [22].

Nevertheless similar approaches, i.e. given a convex body we modify it nicely so that

it satisfies the properties we wish, have been used to obtain weaker lower bounds and

necessary conditions on the boundary of a convex body.

3.2 Lower bounds for the Mahler volume

Lower bounds for the Mahler volume have been continuously improved in history and

we give here a broader review as sketched in Table (1). One of the first bounds was

obtained using John’s theorem [11]. The theorem states that every symmetric convex
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body K ∈ Kn contains a unique ellipsoid E of maximal volume. John furthermore

proves that

E ⊂ K ⊂
√
nE (37)

if K is symmetric. Since we can tansform every ellipsoid into a ball with an invertible

affine transformation and the Mahler volume does not change under these transfor-

mations, we can assume without loss of generality that the eccentricity of any given

symmetric convex body is less or equal to
√
n. Combining this with equation (36)

yields the simple bounds

n−
n
2M(Bn) ≤M(K) ≤ n

n
2M(Bn) . (38)

In [12] Kuperberg proves that

M(K) ≥ M(Bn)

(log2 n)n
=

π
n
2 Γ(n+ 1)

(log2 n)nΓ(n
2

+ 1)4n
4n

Γ(n+ 1)
(39)

for every symmetric convex body K ∈ Kn. This proof of Kuperberg uses mainly

geometric arguments and a procedure to create a series of convex bodies. Roughly

speaking, the proof follows an idea similar to the proof of the Blaschke-Santaló in-

equality with Steiner symmetrizations.

Bourgain and Milman [5] proved that there exists a constant c > 0 independent of n

such that

M(K) ≥ cnM(Bn) ∀ n ∈ N . (40)

Although the proof constructs the constant c > 0 explicitly, no good value for it is

known. The proof is involved and uses some strong results from functional analysis.

The last and best result until now is again due to Kuperberg [13]. Kuperberg provides

the constant c = 1
2

for equality (40) using a different approach to the problem. His

final result is

M(K) ≥
(π

4

)n−1 4n

Γ(n+ 1)
(41)
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for any symmetric convex body K ∈ Kn. For his analysis he connects the Mahler

volume to the bottleneck conjecture. The bottleneck conjecture deals with a set

K3 ⊂ K×K◦ and states that the K3 is minimized over the set of centrally symmetric

convex bodies when K is an ellipsoid. For the definition of K3 we need the subsets

K± =
{

(x, y) ∈ K × K◦ : x · y = ±1
}

. The geometric join A ∗ B of two sets

A,B ∈ Rn is defined as the union of all line segments that connect a point in A and

a point in B. If M ⊂ Rn is a closed manifold of codimension 1, the filling M of M is

the compact region in Rn that is enclosed by M . If A ∗B is such a manifold, we call

A ∗B the filled join of A and B. K3 is defined to be the filled join of the two sets

K+ and K−. A lower bound for K3 together with the subset relation K3 ⊂ K ×K◦

reveals a lower bound for the Mahler volume.

3.3 Families for which the Mahler’s conjecture is proved

There are two families of bodies for which the conjecture has been proved succesfully.

Saint-Raymond [22] proves the conjecture for unit balls of Banach spaces with a 1-

unconditional basis and Reisner [18] for Zonoids.

That the convex body is a unit ball of a Banach space is not a strict restriction.

Having any convex body in Rn we can realize the corresponding Banach space as

Rn equipped with the gauge function of the body as norm. The body we started

with is now the unit ball in the new Banach space. That the Banach space has a

1-unconditional basis means that there is a basis
{
xi
}n
i=1

such that∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

αixi

∣∣∣∣∣
∣∣∣∣∣
g(x)

=

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

εiαixi

∣∣∣∣∣
∣∣∣∣∣
g(x)

(42)

holds for all scalars {αi}ni=1 and all signs {εi}ni=1, εi = ±1 [20]. In geometric terms

this says that the body has to be symmetric to all coordinate hyperplanes [26].

Zonoids are limits of zonotopes in the Hausdorff topology and zonotopes themselves

are Minkowski sums of intervals. The first proof that Reisner gives [18] as well as

the paper were he states the cases in which equality is obtained [19] use probabilistic
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arguments involving random hyperplanes. Equality is proved to be obtained if and

only if the zonoid is a parallelotope. There is also a simplified version of the proof by

Gordon, Meyer and Reisner [8] that uses mainly geometric arguments.

3.4 Necessary conditions on the minimizer of the Mahler
volume

Not much is known about the minimizer of the Mahler volume. Stancu [25] shows

that the minimizer cannot have a boundary of class C2 with everywhere positive

Gauss curvature. The proof shows that for sufficient small values of modification the

floating and illumination body of a convex body of class C2
+ have smaller, respective

bigger, Mahler volume than the original body. Furthermore the inequalities are sharp

if the original body is not an ellipsoid.
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CHAPTER IV

CALCULATING THE MAHLER VOLUME

To examine Mahler’s conjecture about the volume product we need formulas to cal-

culate the volume of a given symmetric convex body K ∈ Kn and its dual. We like

to represent the body with its support function hK . We fix that notation and in

the whole chapter K will be a convex body and h its support function. Additionally

we want to be able to modify a given support function with small pertubations to

determine if the starting body is a local minimum of the Mahler volume. For these

purposes the formulas have to be numerically efficient to calculate.

Note that choosing the gauge function gK as representation of the body would yield

the same results since this function is the support function of the dual body K◦ and

by Proposition 2.1.2 M(K) = M(K◦). Having the support function on hand it is

easier to calculate the volume of the dual body. So this chapter is organized as fol-

lows: We first introduce some further notation followed by formulas to calculate the

volume of the dual body. We then give formulas for the volume of the original body.

We will derive the formulas for Rn whenever possible but our numerical calculations

will focus on the first open case n = 3. So the formulas will be specialized for that

case to make it easier to reproduce the numeric calculations.

4.1 Usage of spherical corrdinates

We will use spherical coordinates and for R3 these coordinates are set to correspond

to the radial distance r, the colatitude θ from 0 to π and the longitude ϕ ranging from

0 to 2π. For R3 we hence have the standard cartesian coordinates x, y, z expressed in

spherical coordinates as x = r cos(ϕ) sin(θ), y = r sin(ϕ) sin(θ), z = r cos(θ).

As the support and the gauge function can be viewed as functions on the unit sphere
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Figure 8: The spherical coordinate system in R3

we will often refer to them as functions of a unit vector ω and in the case of 3

dimensions as functions of the angles θ and ϕ and write h(ω) and h(θ, ϕ) respectively.

Sometimes we want to use spherical coordinates but need the functions to be defined

on the whole space. With the positive homogeneity of degree 1 the functions are

easily extended and will be written as h(r, ω) = r h(ω) and h(rθ, ϕ) = r h(θ, ϕ) for

Rn and R3 respectively.

We will use the transformation from cartesian to spherical coordinates which has as

inverse of the determinant of the Jacobian matrix rn−1 when performed in Rn. The

standard Lebesgue measure will be denoted dV and the spherical Lebesgue measure

dω in arbitrary dimensions. So the transformation between these two measure can

be written as

dV = rn−1 dω (43)

with

dω = sin(θ)dθdϕ (44)
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in R3. The unit sphere in Rn is denoted by Sn−1.

4.2 Calculating the volume of the dual body

4.2.1 The basic formula for the volume of the dual body

Theorem 4.2.1 (The basic formula for the volume of the dual body):

Given a convex body K and its support function h the volume of its dual body is

given by

V (K◦) =
1

n

∫
ω∈Sn−1

h(ω)−ndω; . (45)

This equation becomes

V (K◦) =
1

3

∫ 2π

0

∫ π

0

h−3(θ, ϕ) sin(θ) dθ dphi (46)

in R3.

Proof. The support function of the body is the gauge function of the dual body. So

we can look at K◦ as K◦ =
{
x ∈ Rn : h(x) ≤ 1

}
and its boundary is defined by

∂K◦ =
{
x ∈ Rn : h(x) = 1

}
. So for any ω ∈ Sn−1 we get that ω

h(ω)
∈ ∂K◦, since

h
(

ω
h(ω)

)
= h(ω)

h(ω)
= 1. This justifies the boundaries of integration for transformation

from cartesian to spherical coordinates:

Vn(K◦) =

∫
K◦
dV =

∫
ω∈Sn−1

∫ 1
h(ω)

0

rn−1dr dω =

=

∫
ω∈Sn−1

[
rn

n

]r= 1
h(ω)

r=0

dω =
1

n

∫
ω∈Sn−1

h(ω)−ndω .

Specializing this equation to R3 we get

V3(K◦) =
1

3

∫
ω∈S2

h(ω)−3dω =

∫ 2π

0

∫ π

0

h−3(θ, ϕ) sin(θ)dθ dϕ .

4.2.2 A family of formulas for the volume of the dual body

Equation (45) can as well be used to derive a family of formulas for the volume

of the dual body. Therefore we will use the following coordinate transformation T
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from spherical coordinates (r, ω) to coordinates given by
(
h(r, ω), ω

)
for ω ∈ Sn−1.

To calculate the Jacobian JT of this transformation we introduce another function

R(ω) := 1
h(1,ω)

. With that notation we can use the positive homogeneity of degree 1

of h to rewrite

h(r, ω) =
r

R(ω)
. (47)

Now the Jacobian JT is given by

JT =

∂h(r,ω)
∂r

∂h(r,ω)
∂ω

∂ω
∂r

∂ω
∂ω

 =

 1
R(ω)

− r
R2(ω)

∂R(ω)
∂ω

0 1

 ,

and the inverse of the determinant of the Jacobian is

det(J)−1 = R(ω) . (48)

With this transformation and using equations (47) and (43) the standard Lebesgue

measure dV becomes

dV = rn−1dr dω =
(
h(r, ω)R(ω)

)n−1
R(ω)dh dω = hn−1(r, ω)Rn(ω)dh dω . (49)

This discussion prepares the following theorem.

Theorem 4.2.2 (A family of formulas for the volume of the dual body):

Given a convex body K and its support function h, assume F is a function such that

the integral
∫

Rn F (h)dV exists. Then the following equation holds

V (K◦) =
1

n

∫
Rn F (h)dV∫∞

0
F (h)hn−1dh

, (50)

and in particular for F (·) = e
1
2

(·)2 we get

V (K◦) =
1

n

1

2n/2−1

1

Γ
(
n
2

) ∫
Rn
e−

1
2
h2

dV . (51)

This equation becomes

V (K◦) =
1

3

√
2

π

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

e−
1
2
h2(x,y,z)dx dy dz (52)
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when performed in R3 with cartesian coordinates and

V (K◦) =
1

3

√
2

π

∫ ∞
0

∫ 2π

0

∫ π

0

e−
1
2
r2h2(θ,ϕ)r2 sin(θ) dθ dϕ dr (53)

with spherical coordinates.

Proof. Knowing that the first integral exists we use the transform in (49) to get∫
Rn
F (h)dV =

∫
Sn−1

∫ ∞
0

F (h)hn−1R(ω)dh dω =

=
1

n

∫
Sn−1

Rn(ω)dω · n
∫ ∞

0

F (h)hn−1dh .

By equations (47) and (45) the first integral equals V (K◦) and so equation (50)

follows. For equation (51) use the variable transformation 1
2
h2 = t ⇒ h =

√
2t ⇒

dh
dt

= 1√
2t

, to calculate∫ ∞
0

e
1
2
h2

hn−1dh =

∫ ∞
0

e−t
(√

2t
)n−1 1√

2t
dt = 2n/2−1

∫ ∞
0

e−ttn/2−1 = 2n/2−1 · Γ
(n

2

)
.

The equations for R3 simply follow by using Γ
(

3
2

)
=
√
π

2
and the definitions for the

lebesgue measure in the corresponding coordinates.

4.3 Calculating the volume of the original body

To calculate the volume of the original body there are mainly two distinct approaches.

We could either use formulas that directly involve the support function or use The-

orem 2.5.3 and the generalized Legendre transform to map the support function of

the body to its gauge function. We are then able to use the formulas introduced in

Theorem 4.2.1 as the gauge function is the support function of the dual body.

4.3.1 Using the Legendre transform to calculate the volume of the origi-
nal body

Let us first look at the generalized Legendre transform and how it can be used to

calculate the volume of the the body K. Combining Theorem 2.5.3 with equation 45

33



yields

Vn(K) =
1

n

∫
ω∈Sn−1

(√
2L
[h2

2

]
(ω)

)−n
dω =

=
1

n

∫
ω∈Sn−1

(
2 max
x∈Rn

{
〈ω, x〉 − 1

2
h2(x)

})−n/2
dω . (54)

Note that the generalized Legendre transform needs to maximize over all of Rn and

not just over the unit sphere Sn−1. Looking at that formula one weakness of the ap-

proach using the generalized Legendre transform is obvious. The integral is indirectly

defined and one either needs to find a closed form for the maximum involved in the

calculation or the maximum always has to be evaluated numerically. This calculation

will be time consuming. Nevertheless in R3 we can simplify equation (54) using spher-

ical coordinates and the positive homogeneity of the support function. We use the

notation u(θ, ϕ) =


cos(ϕ) sin(θ)

sin(ϕ) sin(θ)

cos(θ)

 as abbreviation of the unit vector corresponding

to the angles θ and ϕ. With this shortcut we get

V3(K) =
1

3

∫
ω∈S2

(
2 max

0≤r, 0≤θ≤π, 0≤ϕ≤2π

{〈
ω, ru(θ, ϕ)

〉
− 1

2
r2h2(θ, ϕ)

})−3/2

dω =

=
1

3

∫
ω∈S2

(
2 max

0≤r, 0≤θ≤π, 0≤ϕ≤2π

{
r
〈
ω, u(θ, ϕ)

〉
− 1

2
r2h2(θ, ϕ)

})−3/2

dω . (55)

Hereby the function r
〈
ω, u(θ, ϕ)

〉
− 1

2
r2h2(θ, ϕ) over which the maximization is done

is a quadratic function in r and for any fixed pair of (θ, ϕ) and any fixed ω ∈ Sn−1

it is easily checked that it takes its maximum for r = 〈ω,u(θ,ϕ)〉
h2(θ,ϕ)

. So we substitute that
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expression to get

V3(K) =
1

3

∫
ω∈S2

(
2 max

0≤θ≤π, 0≤ϕ≤2π

{
〈ω, u(θ, ϕ)〉
h2(θ, ϕ)

〈
ω, u(θ, ϕ)

〉
−

− 1

2

(
〈ω, u(θ, ϕ)〉
h2(θ, ϕ)

)2

h2(θ, ϕ)

})−3/2

dω =

=
1

3

∫
ω∈S2

(
2 max

0≤θ≤π, 0≤ϕ≤2π

{
1

2

〈ω, u(θ, ϕ)〉2

h2(θ, ϕ)

})−3/2

dω =

=
1

3

∫
ω∈S2

(
max

0≤θ≤π, 0≤ϕ≤2π

{
〈ω, u(θ, ϕ)〉
h(θ, ϕ)

})−3

dω . (56)

This expression is still implicit but it reduces the domain over which the maximization

is done by 1 dimension.

Formulas to directly calculate the volume of a body given its support function are

more involved than those for the dual body. To introduce them we need more theory

from differential geometry which will now be introduced briefly.

4.3.2 Some background in differential geometry and the divergence the-
orem

To derive direct formulas for the volume of a convex body given its support function

we need to know about the divergence theorem, the principal radii of curvature, an

equation by Weingarten and the Gauss map. The divergence theorem, often called

Gauss’s theorem, is a standard result from vector calculus and can e.g. be found in

[17] and for the latter three, we refer to [24] for a more rigorous discussion.

The Gauss map G maps a surface M in Rn continuously to the unit sphere Sn−1. A

point p on the surface is mapped to its unit normal vector. The Gauss map can be

defined globally if and only if the surface is smooth and orientable. For a convex body

the Gauss map is defined on ∂K if the body is smooth. The tangent space at the

point p is parallel to the tangent space at the image point on the sphere and so the

differential dG can be considered as a map of the tangent space at p into itself. The

Jacobian of the Gauss map, also called shape operator or Weingarten map, has as its

determinant the Gaussian curvature which is the product of the principal curvatures.
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The trace of the shape operator is the sum of the principal curvatures. The idea of

the principal of curvatures will now be introduced.

Definition 4.3.1 (Curvature of a curve in R2):

The (extrinsic) curvature κ of a curve γ in R2 is given by

κ =
dθ

ds
, (57)

where s is the arc length of the curve and θ the tangential angle.

So the curvature measures how much a curve bends at a certain point. The change

Figure 9: Cuvature measures the change of the tangential angle with respect to arc
length

in the angle of the tangential vector t is measured with respect to the change in the

arc length of the curve.

The inverse of the curvature is called the radius of curvature

R :=
1

κ
=
ds

dθ
. (58)

The radius of curvature can be seen as the radius of the osculating circle to the curve

at a given point p. The osculating circle is the tangential circle on the inside of the

curve which approximates the curve ”most tightly” at the given point. The curvature

of the osculating circle, i.e. the inverse of its radius, is the curvature of the curve at

that point.
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Figure 10: The osculating circle of a curve

To define curvature and the principal radii of curvature in higher dimensions we use

the definition of curvature of a curve in R2. Having a smooth surface M in R3 and

a given point p on that surface there is a unique outward unit normal vector at that

point. This vector gives rise to a family of normal planes, which are all planes that

contain this unit normal vector. Each of the normal planes contains a unique tangent

vector and therefore the normal plan intersects the surface in a plane curve. This

curve has a curvature as defined in Definition 4.3.1.

In general this curvature is different for different normal planes intersecting the sur-

face. The principal curvatures of the surface are the maximum and minimum curva-

tures corresponding to the different normal planes. The principal directions are the

normal vectors of the corresponding normal planes.

It is known that the principal directions are the eigenvectors and the principal curva-

tures are the eigenvalues of the shape operator, also called Weingarten map, which is

the differential of the Gauss map. Therefore we know that the planes for which the

curvature is maximized and minimized are orthogonal to each other and always exist.
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This approach can as well be used to define principal curvatures and directions. In

higher dimensions we define the principal curvatures and principal directions to be

the eigenvalues and eigenvectors of the shape operator, respectively.

For the Hessian in spherical coordinates the change of variables yields the following

formula:

H =

 ∂2

∂θ2
∂
∂θ

1
sin(θ)

∂
∂ϕ

∂
∂θ

1
sin(θ)

∂
∂ϕ

cos(θ)
sin(θ)

∂
∂θ

+ 1
sin2(θ)

∂2

∂ϕ2

 . (59)

This spherical Hessian is closely related to the shape operator. We get that (H+1)(h)

is equivalent to the inverse of the shape operator and hence it has the principal radii of

curvature as eigenvalues. So we get for the product of the principal radii of curvature

R1 ·R2 = det
(
(H + 1)h

)
, (60)

where 1 denotes the identity matrix. Furthermore we can derive the Laplacian ∆ in

spherical coordinates, which is the trace of H(h),

(∆ + 2)h = tr
(
(H + 1)h

)
= R1 +R2 . (61)

The explicit form for the Laplacian in spherical coordinates is

∆ =
∂2

∂θ2
+

cos(θ)

sin(θ)

∂

∂θ
+

1

sin2(θ)

∂2

∂ϕ2
. (62)

We know go back to R2 to relate the support function and its derivatives to the radius

of curvature.

Theorem 4.3.2 (An equation by Weingarten):

For a smooth convex body K ⊂ R2 and its support function h(θ) the following

equation holds

h(θ) + h′′(θ) = R(θ) , (63)

with R(θ) as the curvature at the point, where the support line with normal angle θ

touches the body.
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Proof. At any angle θ we have h(θ) = 〈xcontact, n̂(θ)〉 with n̂(θ) =

cos(θ)

sin(θ)

 the

normal with respect to θ in cartesian coordinates and xcontact the point where the

support line of normal n̂(θ) touches the body. Therefore we get

h′(θ) =
h(θ)

dθ
=
〈x, n̂〉
dθ

=

〈
dx

dθ
, n̂

〉
+

〈
x,
dn̂

dθ

〉
=

=

〈
dx

ds

ds

dθ
, n̂

〉
+ 〈x, t̂〉 =

〈
t̂
ds

dθ
, n̂

〉
+ 〈x, t̂〉 = 〈x, t̂〉 ,

with t̂(θ) =

− sin(θ)

cos(θ)

 = dn̂
dθ

the unit tangent vector corresponding to xcontact.

Another differentiation yields

h′′(θ) =
〈x, t̂〉
dθ

=

〈
dx

dθ
, t̂

〉
+

〈
x,
dt̂

dθ

〉
=

〈
dx

ds

ds

dθ
, t̂

〉
+ 〈x,−n̂〉 =

= 〈t̂R, t̂〉 − 〈x, n̂〉 = R ||t̂||2 − h(θ) = R− h(θ)

The last fact we pull from differential geometry is the divergence theorem.

Theorem 4.3.3 (Divergence Theorem):

For any subset V ⊂ Rn that is compact and has a piecewise smooth boundary and

any vector field F which is continuously differentiable on a neighborhood of V , the

equation ∫
V

〈∇, F 〉dV =

∫
∂V

〈F, n̂〉da (64)

holds. da hereby stands for the surface area measure and n̂ for the unit outward

normal corresponding to the point on the surface over which we integrate.

Note further that the divergence of the identity vector field in n dimensions equals

n, i.e.

〈∇, x〉 = n . (65)

We are now ready to introduce direct formulas for the volume of the original body.
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4.3.3 Direct formulas for the volume of the original body

Theorem 4.3.4 (A direct formula for the volume of the original body):

Given a smooth convex body K ∈ Kn by its support function h its volume is given

by

V (K) =
1

n

∫
Sn−1

h(ω)
n−1∏
i=1

Ri(ω) dω , (66)

where Ri denote the n− 1 principal radii of curvature.

With the spherical Hessian this formula becomes

V (K) =
1

3

∫ 2π

0

∫ π

0

h(θ, ϕ) det
[
H(h(θ, ϕ)) + 1(h(θ, ϕ))

]
sin(θ) dθ dϕ (67)

in R3.

Proof. While n denotes the dimension, n̂ is the outward unit normal corresponding

to the point x on the surface of K. With that we get

V (K) =
1

n

∫
K

〈∇, x〉 dV =
1

n

∫
∂K

〈x, n̂〉 da =
1

n

∫
∂K

ĥ(x) da =

=
1

n

∫
Sn−1

h(ω)
n−1∏
i=1

Ri(ω) dω ,

where the first equal sign is due to equation (65) and for the second one we apply the

divergence theorem. ĥ(x) introduces another parametrization of the support function.

ĥ(x) is the support function evaluated at the angle ωx = n̂x which corresponds to

the outward unit normal at the point x. Hence he have ĥ(x) = h(ωx) = 〈x, n̂〉. The

last equal sign uses the transformation given by the Gauss map to change the area of

integration from ∂K to the unit sphere. The determinant of the inverse of the Gauss

map equals the product of the principal radii of curvature. The formula using the

spherical Hessian now follows from equation (60).
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CHAPTER V

EXPERIMENTAL RESULTS

In this chapter we discuss the experiments performed and the results we got. All

experiments are done in R3 and so the discussion focuses on that case. First the

different formulas to calculate the volume of the body and its dual introduced in Sec-

tions 4.3 and 4.2 are evaluated for the cube, the cross polytope and the ball. Their

performance will be compared and advantages and disadvantages of the different for-

mulas will be discussed. Before continuing with the actual experiments we introduce

formulas to visualize the body and its dual given the support function. Then the

spherical harmonics, which form a basis for the set of square integrable functions over

S2, are presented. This discussion prepares the further experiments. The cube and

the cross polytope are approximated by their spherical harmonic expansion and the

performance of this approximation is rated. We finish this section with another ap-

proximation of the cube. Its radii of curvature functions, which are Dirac-δ functions,

are approximated and so a body similar to the cube is generated.

The calculations in that chapter are performed in Mathematica [30] and the notebook

including the calculations is attached in the appendix. By evaluating the notebook

all results and graphics are be generated and are available for in depth analysis.

5.1 Performance tests of the formulas for the Mahler vol-
ume

In this section we test the different formulas introduced in Chapter 4 to calculate the

volume of a body and its dual given the support function of the body. We begin by

testing the formulas for the dual body and then discuss the formulas for the original

body.
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5.1.1 Testing the formulas for the volume of the dual body

We begin with testing the formulas for the volume of the dual body introduced in

Section 4.2. These formulas are:

• (46): Basic Spher. Coord.: 1
3

∫ 2π

0

∫ π
0
h−3(θ, ϕ) sin(θ) dθ dϕ

• (53): Exp. Spher. Coord.: 1
3

√
2
π

∫∞
0

∫ 2π

0

∫ π
0
e−

1
2
r2h2(θ,ϕ)r2 sin(θ) dθ dϕ dr

• (52): Exp. Cart. Coord.: 1
6

√
2
π

∫∞
−∞

∫∞
−∞

∫∞
−∞ e

− 1
2
h2(x,y,z)dx dy dz

To benchmark the different formulas we will evaluate them on calculating the volumes

of the conjectured extreme cases of the Mahler volume, the cube, the cross polytope

and the sphere. Additionally we perform two different kinds of calculations: First we

ask Mathematica to calculate the corresponding integral symbolically. Secondly the

integral should be evaluated numerically. The results obtained as well as the running

times for both calculations are summarized in Tables 2 and 3, respectively. In the

columns the calculated volumes of the dual bodies are grouped with the running

time for that body and algorithm. Hereby I3 stands for the cube, O3 for the cross

polytope, in three dimensions called octahedron, and B3 for the ball. Note that the

we calculate the volume of the dual body, and so we get V ((I3)◦) = 4
3

and not 8. The

calculations were performed on a 2 GHz proecssor.

Table 2: Comparing the exact results of the different formulas for the volume of the
dual body

Formula V ((I3)◦) time [s] V ((O3)◦) time [s] V ((B3)◦) time [s]

exact value 4
3 n.a. 8 n.a. 4

3π n.a.

basic spher. cord. 4
3 25.1 8 592 4

3π 0.047
exp. spher. cord. n.a. n.a. n.a. n.a. 4

3π 0.20
exp. cart. cord. 4

3 16.3 8 14.4 4
3π 0.52
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Table 3: Comparing the numeric results of the different formulas for the volume of
the dual body

Formula V ((I3)◦) time [s] V ((O3)◦) time [s] V ((B3)◦) time [s]

exact value 4
3 n.a. 8 n.a. ≈ 4.188790 n.a.

basic spher. cord. 1.33333 1.139 8 5.039 4.18879 10−17

exp. spher. cord. 1.33333 5.584 8 7.753 4.18879 0.031
exp. cart. cord. 1.33333 0.218 8 0.344 4.18879 0.546

Looking at the results we first notice that all calculated results are correct. Nev-

ertheless not all calculations terminated. The exponential formula using spherical

coordinates was neither able to calculate the exact volume of the ball nor of the cross

polytope. Staying with the exact calculations we see that the exponential formula

in cartesian coordinates beats the basic formula in spherical coordinates in terms of

running time. For the cube the basic formula needs 1.7 and for the cross polytope

even over 40 times the running time of the exponential formula with cartesian coor-

dinates. For the ball the basic formula is faster by a factor 10, which is evidently

because the integals are just evaluated over a constant function.

Looking at the numerical calculations the results are similar. The exponential formula

with cartesian coordinates beats the basic formula in spherical coordinates by a factor

of 5 and 15 in running time for the cube and cross polytope, respectively. For the

ball the basic formula using spherical coordinates is again superior since it just has

to evaluate a constant integral. The exponential formula using spherical coordinates

is able to produce numeric results, but it is slower than the basic formula in the same

coordinate system.

In conclusion we see that the exponential formula in cartesian coordinates is in gen-

eral faster than the basic formula in spherical coordinates. So if we have the choice

between the support function in cartesian and spherical coordinates we should stick

with the cartesian coordinate system and use the exponential formula. If we do not
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have the choice of the coordinate system and have to stick with spherical coordinates,

we should take advantage of the basic formula.

5.1.2 Testing the formulas for the volume of the original body

The formulas for the volume of the original body have been introduced in Section 4.3

and are:

• (54): Leg. Cart. Coord.: 1
3

∫
ω∈S2

(
2 maxx∈Rn

{
〈ω, x〉 − 1

2
h2(x)

})−3/2

dω

• (55): Leg. Spher. Coord.: 1
3

∫
ω∈S2

(
2 max0≤r, 0≤θ≤π, 0≤ϕ≤2π

{
r〈ω, u(θ, ϕ)〉 −

− 1
2
r2h2(θ, ϕ)

})−3/2

dω

• (56): Simply. Leg. Spher. Coord.: 1
3

∫
ω∈S2

(
max0≤θ≤π, 0≤ϕ≤2π

{ 〈ω,u(θ,ϕ)〉
h(θ,ϕ)

})−3

dω

• (67): Spher. Hess.: 1
3

∫
S2 h(ω) det

[
H(h(ω)) + 1(h(ω))

]
dω

The formula using the spherical Hessian requires the body to be smooth. One the one

hand this is required by the techniques used to deduce it, by the divergence theorem

and the Gauss map. On the other side the radii of curvature are infinity for a flat

side of the body and 0 for corners. For the cube and the cross polytope the corners

correspond to almost every angle of the support plane normals. So the integrals in-

volved evaluate to 0. Consequently the formula using the Spherical Hessian is not

suitable to calculate the volume of the cube or the cross polytope.

The three formulas using the Legendre transform encounter another problem. In no

version of this formula we are able to find a closed expression for the maximum in-

volved in these formulas and so all integrals have to be evaluated numerically. But

this means that for each sampling point of the numeric integration this maximum

has to be evaluated numerically. To be exact the numeric integration needs many

sample points and so this maximum has to be calculated very often. The formula

using the Legendre transformation in Cartesian coordinates is able to calculate the

volume of the ball in 19 seconds but it takes 3 days and 3.5 hours to calculate the
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volume of the cube with a 3 digit accuracy. The calculations for the cross polytope

did not finish. The Legendre transform of the ball is again the identity, so that this

calculation finishes fast. Taking more than 3 days to calculate the volume of the

cube, this formulas is not useful for testing a lot of random guesses for potential min-

imizers. The formulas using the Legendre transform in spherical coordinates were not

able to calculate any of the requested volumes correctly. Presumably they are having

problems to evaluate the maximum for the sample points of the numeric integration.

In short the formulas using the Legendre transform are not efficient enough for nu-

meric integration and the formula with the spherical Hessian requires a smooth body.

So for all smooth bodies we have a way to calculate the volume of the original body.

This formula also proves efficient, as we will see when we calculate the Mahler volume

of the cube and cross polytope approximated by their spherical harmonic expansion.

Nevertheless the formula using the Legendre transform in Cartesian coordinates can

still be used to calculate the Mahler volume. Although it is not suitable to test a lot

of bodies, it can be used if we have a good guess about which body should have a

smaller Mahler volume than the cube. Before we start with approximating the cube

and the cross polytope with their spherical harmonic expansion we first introduce

some useful formulas and further background.

5.2 Formulas to visualize K and K◦

Having the support function of a body it would be nice to know how the body looks.

The support function h(θ, ϕ) describes the distance of the support line of normal

u(θ, ϕ) =


cos(ϕ) sin(θ)

sin(ϕ) sin(θ)

cos(θ)

 to the origin. The angles θ and ϕ must not be mixed with

the polar angles of the point xcontact where the plane supports the body. Although the

support function does not directly describe the position of this point, we can relate

it to the contact point.
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Theorem 5.2.1 (Coordinates of the contact point corresponding to the

plane with normal u(θ, ϕ)):

For any smooth K ∈ K3 and its support function h the point xcontact(θ, ϕ) where the

support plane with normal u(θ, ϕ) touches the body is given by

xcontact(θ, ϕ) =


h(θ, ϕ) cos(ϕ) sin(θ) + ∂h(θ,ϕ)

∂θ
cos(ϕ) cos(θ)− ∂h(θ,ϕ)

∂ϕ
sin(ϕ)
sin(θ)

h(θ, ϕ) sin(ϕ) sin(θ) + ∂h(θ,ϕ)
∂θ

sin(ϕ) cos(θ)− ∂h(θ,ϕ)
∂ϕ

cos(ϕ)
sin(θ)

h(θ, ϕ) cos(θ)− ∂h(θ,ϕ)
∂θ

sin(θ)

 . (68)

Proof. Having the normal u(θ, ϕ) =


cos(ϕ) sin(θ)

sin(ϕ) sin(θ)

cos(θ)

 we get an orthonormal basis of

R3 when adding the two vectors

t1(θ, ϕ) =


cos(ϕ) cos(θ)

sin(ϕ) cos(θ)

− sin(θ)

 , t2 =


− sin(ϕ)

cos(ϕ)

0

 .

It is easily checked that ∂u(θ,ϕ)
∂θ

= t1(θ, ϕ) and ∂u(θ,ϕ)
∂ϕ

= sin(θ)t2(θ, ϕ). Additionally the

partial differentials ∂h(θ,ϕ)
∂(θ)

and ∂h(θ,ϕ)
∂ϕ

yield vectors in the tangent space of the contact

point, which are thus orthogonal to the normal u(θ, ϕ). In fact these differentials

are given by the above introduced tangent vectors t1 and t2. As in the proof of the

equation by Weingarten in Theorem 4.3.2, we calculate the derivates of h(θ, ϕ) with

respect to θ and ϕ:

∂h(θ, ϕ)

∂θ
=

∂

∂θ

〈
xcontact(θ, ϕ), u(θ, ϕ)

〉
=

=
〈 ∂
∂θ
xcontact(θ, ϕ), u(θ, ϕ)

〉
+
〈
xcontact(θ, ϕ),

∂

∂θ
u(θ, ϕ)

〉
=

= 0 + 〈xcontact(θ, ϕ), t1(θ, ϕ)〉 = 〈xcontact(θ, ϕ), t1(θ, ϕ)〉
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∂h(θ, ϕ)

∂ϕ
=

∂

∂ϕ

〈
xcontact(θ, ϕ), u(θ, ϕ)

〉
=

=
〈 ∂
∂ϕ

xcontact(θ, ϕ), u(θ, ϕ)
〉

+
〈
xcontact(θ, ϕ),

∂

∂ϕ
u(θ, ϕ)

〉
=

= 0 + 〈xcontact(θ, ϕ), sin(θ)t2(θ, ϕ)〉 = 〈xcontact(θ, ϕ), sin(θ)t2(θ, ϕ)〉

With u, t1, t2 as on orthonormal basis of R3 we can decompose the point of contact

as

xcontact = 〈xcontact, u〉u+ 〈xcontact, t1〉t1 + 〈xcontact, t2〉t2 =

= h · u+
∂h

θ
· t1 +

∂h

ϕ

1

sin(θ)
· t2 .

The desired result now follows when plugging in the values of u(θ, ϕ), t1(θ, ϕ) and

t2(θ, ϕ).

With the just introduced formula for the point of contact we have a representation

of ∂K in spherical coordinates. This can easily be utilized to plot the body.

Visualizing the dual body is easier since the angles (θ, ϕ) used in the gauge function

directly describe the angles of the corresponding boundary point.

Theorem 5.2.2:

For any K ∈ K3 and its support function h we can represent ∂(K◦) in spherical

coordinates as

k◦(θ, ϕ) =


1

h(u(θ,ϕ))
cos(ϕ) sin(θ)

1
h(u(θ,ϕ))

sin(ϕ) sin(θ)

1
h(u(θ,ϕ))

cos(θ)

 , (69)

where k◦(θ, ϕ) denotes the boundary point of K◦ in direction u(θ, ϕ).

Proof. From the positive homogenity of degree 1 of the support function it follows

that h
(

u(θ,ϕ)
h(u(θ,ϕ))

)
= 1. Theorem 2.3.5 states that h is the gauge function of K◦ and

hence u(θ,ϕ)
h(u(θ,ϕ))

∈ ∂K◦. On the other hand it is obvious that u(θ,ϕ)
h(u(θ,ϕ))

describes the

whole boundary of K◦ since u(θ, ϕ) covers all of S2 as θ and ϕ vary.
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5.3 Spherical harmonics and the expansion of the support
and gauge function

Similar to the functions
{
einx
}n=∞
n=−∞, which are an orthonormal basis for the square in-

tegrable functions over S1 and build the basis for the Fourier series, we now introduce

an orthonormal basis for square integrable functions over S2.

Definition 5.3.1 (Spherical harmonics [1]):

For n ∈ N the Legendre polynomials Pn are defined by Rodrigues’ Formula as

Pn(x) =
1

2nn!

dn

dxn

[
(x2 − 1)n

]
.

With that the associated Legendre polynomials Pm
` for ` ∈ N and m ∈ {0, 1, 2, . . . , `}

are

Pm
` (x) = (−1)m(1− x2)m/2

dm

dxm
(
P`(x)

)
,

and we get negative m by the formula

P−m` (x) = (−1)m
(`−m)!

(`+m)!
Pm
` (x), m ∈ N .

Finally we can define the spherical harmonics Y m
` for ` ∈ N and m ∈ {−`, . . . , `} as

Y m
` (θ, ϕ) =

√
2`+ 1

4π

(`−m)!

(`+m)!
Pm
` (cos θ) eimϕ . (70)

Theorem 5.3.2 (The spherical harmonics as an orthonormal basis [9]):

The spherical harmnonics Y m
` are orthonormal, i.e.∫

S2

Y m
` Y

m′

`′ dω = δll′δmm′ (71)

where δij stands for the Kronecker delta.

Furthermore the spherical harmonics
{
{Y m

` }m=`
m=−`

}`=∞
`=0

are complete in the Hilbert

space of square integrable functions over the unit sphere S2 with the usual inner

product 〈f, g〉 =
∫
S2 f · g dω. Here (·) stands for the complex conjugate. Hence Y m

`
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form a basis of that Hilbert space. This means we can write any square integrable

function f over S2 as

f(θ, ϕ) =
∞∑
`=0

∑̀
m=−`

cm` Y
m
` (θ, ϕ) (72)

where

cm` =

∫ 2π

0

∫ π

0

f(θ, ϕ)Y m
` (θ, ϕ) sin(θ) dθ dϕ . (73)

The expansion given in equation (72) holds in the sense of that Hilbert space, i.e. in

the L2 sense.

It is known that the spherical harmonics are eigenfunctions of Laplace operator

in spherical coordinates and the eigenvalues are given by

∆Y m
` = −`(`+ 1)Y m

` . (74)

Having the expansion in spherical harmonics of the support function h and of both

radii of curvature functions R1 and R2 we can use equations (61) and (74) to relate

their coefficients. Assuming h =
∑∞

`=0

∑`
m=−` h

m
` Y

m
` , R1 =

∑∞
`=0

∑`
m=−`(r1)m` Y

m
`

and R2 =
∑∞

`=0

∑`
m=−`(r2)m` Y

m
` , we get

hm` =
(r1)m` + (r2)m`
2− `(`+ 1)

, l 6= 1 . (75)

The functions used for the spherical harmonics expansion oscillate faster and faster

as the coefficients increase. A higher ` results in a higher order cos term which

is equivalent to a linear combination of cos terms with shorter periods. Increasing

m results in a faster oscillating eimϕ term. As we need to combine these functions

the spherical harmonic expansion will indeed be a smooth function but one whose

behavior is kind of wild even for small neighborhoods. Therefore we expect that the

numeric calculations will just be efficient up to a certain amount of coefficients and

spherical harmonics used. After that the numeric precision used may not be good

enough to capture the wild behavior of the function and the results obtained may no

longer make sense.
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With this warning in mind, we calculate the coefficients of the spherical harmonic

expansion of the cube and the cross polytope support functions and evaluate them

for different amounts of coefficients used.

5.4 Approximating the cube and the cross polytope by their
spherical harmonic expansions

The cube and cross polytope support functions were introduced in equations (12) and

(13) and their spherical harmonic coefficients are calculated up to ` = 60 for all m and

the results up to ` = 12 are summarized in Table 4. For the cube the coefficients were

calculated exactly but for the cross polytope exact calculations were not successful.

The maximum involved in the definition of the cross support function makes a closed

integration more difficult. Instead the coefficients were approximated by a numeric

integration.

50



T
a
b
le

4
:

T
h
e

fi
rs

t
co

effi
ci

en
ts

of
th

e
cu

b
e

an
d

cr
os

s
p

ol
y
to

p
e

su
p
p

or
t

fu
n
ct

io
n
s

in
sp

h
er

ic
al

h
ar

m
on

ic
ex

p
an

si
on

C
o
effi

ci
en

ts
of

th
e

cu
b

e
su

p
p

or
t

fu
n

ct
io

n
ca

lc
u

la
te

d
ex

ac
tl

y

m
=
−

1
2

m
=
−

8
m

=
−

4
m

=
0

m
=

4
m

=
8

m
=

1
2

l
=

3
√
π

0
0

0
l
=

2
0

0
0

0
0

0
0

0
0

0
0

0

l
=

4
−

1 3
2

√ 3
5

π 2
0

0
0

−
7
√

π
3
2

0
0

0
−

1 3
2

√ 3
5

π 2
0

0
0

0
0

0
0

0
0

0
0

l
=

6
0

0
−

3
5
1
2

√ 9
1

π 2
0

0
0

3
√

1
3

π
5
1
2

0
0

0
−

3
5
1
2

√ 9
1

π 2
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

l
=

8
−

3
√ 1

2
1
5
5

π
2

8
1
9
2

0
0

0
−

3
√ 1

3
0
9

π
2

4
0
9
6

0
0

0
−

9
9
√

1
7

π
8
1
9
2

0
0

0
−

3
√ 1

3
0
9

π
2

4
0
9
6

0
0

0
−

3
√ 1

2
1
5
5

π
2

8
1
9
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

l
=

1
0

0
0

−
7
√ 8

5
0
8
5

π
6

6
5
5
3
6

0
0

0
−

7
√ 5

0
0
5

π
2

3
2
7
6
8

0
0

4
5
5
√ 7

π 3
6
5
5
3
6

0
0

0
−

7
√ 5

0
0
5

π
2

3
2
7
6
8

0
0

0
−

7
√ 8

5
0
8
5

π
6

6
5
5
3
6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

l
=

1
2
−

1
5
√

6
7
6
0
3
9

π
1
0
4
8
5
7
6

0
0

0
−

1
5
√ 1

3
8
5
6
7

π
2

5
2
4
2
8
8

0
0

0
−

2
2
5
√

1
0
0
1

π
1
0
4
8
5
7
6

0
0

0
−

1
1
1
4
5
√

π
5
2
4
2
8
8

0
0

0
−

2
2
5
√

1
0
0
1

π
1
0
4
8
5
7
6

0
0

0
−

1
5
√ 1

3
8
5
6
7

π
2

5
2
4
2
8
8

0
0

0
−

1
5
√

6
7
6
0
3
9

π
1
0
4
8
5
7
6

C
o
effi

ci
en

ts
of

th
e

cr
os

s
p

ol
y
to

p
e

su
p

p
or

t
fu

n
ct

io
n

ca
lc

u
la

te
d

n
u

m
er

ic
al

ly

m
=
−

1
2

m
=
−

8
m

=
−

4
m

=
0

m
=

4
m

=
8

m
=

1
2

l
=

0
2
.9

4
6
4
9

0
0

0
l
=

2
0

0
0

0
0

0
0

0
0

0
0

0
l
=

4
0
.1

5
5
0
2
5

0
0

0
0
.2

5
9
4
0
6

0
0

0
0
.1

5
5
0
2
5

0
0

0
0

0
0

0
0

0
0

0
l
=

6
0

0
0
.0

1
3
9
4

0
0

0
−

0
.0

0
7
4
5
1
4
3

0
0

0
0
.0

1
3
9
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
l
=

8
−

0
.0

3
4
8
1
2
8

0
0

0
−

0
.0

2
2
8
4
8
7

0
0

0
−

0
.0

6
0
7
5
9
5

0
0

0
−

0
.0

2
2
8
4
8
7

0
0

0
−

0
.0

3
4
8
1
2
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
l
=

1
0

0
0

−
0
.0

1
0
0
8
2
5

0
0

0
−

0
.0

0
8
4
7
0
9
7

0
0

0
0
.0

0
8
4
0
6
5
5

0
0

0
−

0
.0

0
8
4
7
0
9
7

0
0

0
−

0
.0

1
0
0
8
2
5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
l
=

1
2

0
.0

1
4
5
6
9
7

0
0

0
0
.0

0
2
6
0
7
6
1

0
0

0
0
.0

1
1
6
4
0
9

0
0

0
0
.0

2
3
8
0
4
3

0
0

0
0
.0

1
1
6
4
0
9

0
0

0
0
.0

0
2
6
0
7
6
1

0
0

0
0
.0

1
4
5
6
9
7

51



Looking at that table we note that all coefficients corresponding to odd `’s are

0. Spherical harmonics for odd ` correspond to odd functions, these are functions

that change the sign when the argument is reflected at the origin. The Y m
` for even

` correspond to symmetric functions, that is they stay the same if the argument is

reflected at the origin. As both the cube and the cross polytope are symmetric with

respect to the origin, this result was expected. Furthermore just for m = 4n, n ∈ Z

we get cm` 6= 0. This result seems to capture more about the symmetric structure of

both bodies. Effort was made to find a closed form for the coefficients of the cube but

no results were obtained. The implicit definition of the spherical harmonics indicate

that these coefficients have a complicated structure.

5.4.1 Approximating the cube by its spherical harmonic expansion

Let us now look at the cube and how we can approximate it by its spherical harmonic

expansion. Having its support function we use the coefficients given by equation

(73) to get an approximation of the support function via equation (72). We then

use equations (68) and (69) to plot the body and its dual defined by the spherical

harmonic expansion using all coefficients up to ` = 0, 4, 8, 12, 16, 20, 30, 40, 50, 60.

The corresponding plots are presented in Figures 11 and 12.

Let us first look at the pictures for the dual body. For small values of ` we can see

that the bodies are nonconvex. The flats and edges have some parts that are pressed

inwards and are concave. As ` goes up these dents become smaller and the body

straightens out. Another feature that can be examined is that the corners and edges

are smooth for small ` and become sharper as ` increases. While the appearance of

the body changes a lot as ` increases from 0 to 20, using more coefficients results in

almost no noticeable change of the body.

Examining the plots of the original body we first see the irregularities at the edges.

It seems that the flats continue onward from the point of their intersection. These
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Figure 11: Approximation of the cube by its spherical harmonic expansion for
coefficients up to ` = 0, 4, 8, 12, 16, 20, 30, 40, 50, 60

overlaps of the flats become smaller as the number of coefficients increases. Further-

more the first approximating bodies have rounded flats but curvature decreases as `

increases. For ` = 20 the flats have almost straightened out and the overlap of the

flats has reduced to a small size. Again adding coefficients for ` > 20 does not change

the body a lot. When we are using all coefficients up to ` = 60 the result obtained is a

numeric artifact. Although we have a lot of zero coefficients in the spherical harmonic

expansion as seen in Table 4 we still add up 480 spherical harmonic functions. So

presumably the picture generated is a numeric error. Already the picture for ` = 50

shows numeric problems as the overlap of the flats increases and the corners look

worse as for smaller `.

To summarize we can say that we have to be careful with approximating the cube

with its spherical harmonic expansion. The approximated body itself shows an over-

lap of the flats and the dual body is nonconvex. But it can as well be seen that these

irregularities become smaller as the number of coefficients increases and already for

` = 20 we get results for the approximated cube and its dual that look very similar

to the exact bodies.
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Figure 12: Approximation of the cross polytope as dual of the cube and its spherical
harmonic expansion for coefficients up to ` = 0, 4, 8, 12, 16, 20, 30, 40, 50, 60

The spherical harmonics Y m
` are in general nonconvex functions and so a linear com-

bination of them is not likely to be a convex function. But for a function to be the

support function of a convex body this function has to be convex. Therefore the finite

spherical harmonic expansion of the cube does not correspond to a convex body, but

it becomes close to it already for small `. The family of convex bodies forms a cone,

as described in section 2.1, and the cube lies in the boundary of this cone. When we

take any point on the inside of any of the flat sides of the cube and flow this point

inward an infinitesimal small distance the resulting body would no longer be convex.

As a boundary body in the family of convex sets the cube is hence vulnerable to have

a nonconvex expansion in spherical harmonics and the same argument is true for the

cross polytope.

Having a visual idea about the approximation of the cube by its spherical harmonic

expansion we now want to look at the Hausdorff and L2 distance between the support

function of the cube and its approximation. The results with respect to the summa-

tion index ` are presented in figure 13. Looking at the left graph corresponding to

the Hausdorff distance, we see that the Hausdorff distance drops down and reaches

54



Figure 13: Distance between the cube and its spherical harmonic expansion with
respect to the summation index ` - Left: Hausdorff distance, Right: L2 distance

its minimum at ` = 16 and then increases slightly and stays almost constant up to

` = 44. After that the Hausdorff distances blows up and reaches values over 1000.

The minimum obtained is 0.018 and after that the Hausdorff distance stays at about

0.03.

Compared to that, the L2 distance, presented in the right graph, decreases monoton-

ically until it blows up for ` > 46. The minimum obtained is 0.009. The blow up is

not as extreme as for the Hausdorff distance but it goes up to several hundreds as

well.

We can conclude mainly two phenomena from this. First of all the L2 distance seems

to be more stable with regard to the numeric irregularities and nonconvex parts the

finite spherical harmonic expansion has. The difference between the exact support

function of the cube and its approximation are averaged out. In contrast the Haus-

dorff distance just takes into account the worst discrepancy between the exact and

approximated support function and is hence more prone to numeric errors. The sec-

ond phenomena is the blow up in both distances as the number of coefficients grows.

Similar to the case where we plotted the bodies, it looks like the spherical harmonic

expansion is too complicated to be handled and hence absurd results are produced.
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Let us now look at the Mahler volume with respect to the summation index `. To cal-

culate it we use the basic formula in spherical coordinates (equation (46)) to calculate

the volume of the dual body and the formula with the spherical Hessian (equation

(67)) for the volume of the original body. Since the approximated support function

is a smooth function, as a linear combination of smooth functions, the formula using

the spherical Hessian can be applied successfully. The results of these calculations are

summarized in Figure 14. With increasing ` the Mahler volume drops down, while

Figure 14: The Mahler volume of the spherical harmonic expansion of the cube with
respect to the summation index `

oscillating, to a value of 11.26 for ` = 26. The Mahler volume of the cube in R3 is

8 · 4
3

= 102
3
, so the Mahler volume of the approximation is about 0.6 or 5.6% higher

than the conjectured value. For ` ≥ 28 the results obtained are again compromised

by numerical errors. The Mahler volume first drops down to a negative value and

then stays at 0 for large `.

5.4.2 Approximating the cross polytope by its spherical harmonic expan-
sion

Now let us perform the same analysis for the approximation of the cross polytope.

Whenever the results are similar to the approximation of the cube, the discussion
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will be brief. For the cross polytope the coefficients have been calculated numerically

in contrast to the exact coefficients of the cube. So there is an additional source

for numerical errors by inexact coefficients cml . The plots of the approximated cross

polytope and its dual are summarized in Figures 15 and 16 for the values ` = 0, 4, 8,

12, 16, 20, 30, 40, 50, 60.

Figure 15: Approximation of the cross polytope by its spherical harmonic expansion
for coefficients up to ` = 0, 4, 8, 12, 16, 20, 30, 40, 50, 60

Looking at the visualizations of the approximated cross polytope we see similar

results as for the cube. The flat sides overlap and are curved for small `. As `

increases the flats straighten up and their overlaps become smaller. For ` = 20 the

approximation looks good again. The numeric errors in the coefficients do not seem

to affect the approximation until ` = 40. The only indicator of their errors is that

already the approximation using coefficients up to ` = 50 is a numeric artifact.

The dual body of this approximation behaves similarly to the dual body of the cube

approximation. For small ` it has rounded corners and edges and dents on the flat

sides which make the body nonconvex. Having a closer look at the body one can see
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Figure 16: Approximation of the cube as dual of the cross polytope and its spherical
harmonic expansion for coefficients up to ` = 0, 4, 8, 12, 16, 20, 30, 40, 50, 60

that these rounded corners and dents in the flats stay up to ` = 30. Just for ` = 40 the

corners look sharp and the flats straightened out. As for the original approximation

we just get numerical artifacts when using coefficients up to l = 50.

Let us now look at the Hausdorff and L2 distance between the cross polytope and its

approximation with respect to the summation index `. These results are summarized

in Figure 17. The Hausdorff distances decreases as ` goes up until we get a blow up

Figure 17: Distance between the cross polytope and its spherical harmonic expan-
sion with respect to the summation index ` - Left: Hausdorff distance, Right: L2

distance

58



at ` = 48. The minimal value is obtained for ` = 38 and is 0.0024. Similar to the

approximation of the cube the decrease is not monotonic, and we observe bumps at

` = 10, 18, 22 and 42.

The L2 distances decreases monotonically again. It drops down to 0.0065 at ` = 44.

After that a blow up occurs. The L2 distance seems to be more stable than the

Hausdorff distance since it is able to average out numerical inaccuracies that just

appear in small neighborhoods.

Finally let us look at the Mahler volume of the approximated cross polytope with

respect to the summation index `. The results are given in Figure 18 and this figure

Figure 18: The Mahler volume of the spherical harmonic expansion of the cross
polytope with respect to the summation index `

shows that the Mahler volume decreases monotonically down to a value of 11.56 for

` = 24 and then it increases for the next two approximations until it does not yield

any more useful results for ` ≥ 30. So the approxmation of the cube produces slightly

better results than the approximation of the cross polytope since the lowest Mahler

volume calculated for the approximated cube is 11.26. Altogether the results for the

two approximations are very similar.
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5.5 Approximating the cube by approximating its radii of
curvature

Another approach to approximate the cube is to approximate its radii of curvature.

We know that the radii of curvature are related by the spherical Hessian and the

Laplacian in spherical coordinates to the support functions by equations (60) and (61).

Hence having the support function we can deduce a formula for the radii of curvature.

For the cube we will see that these functions consist of Dirac δ functions. As the

next step the Dirac δ functions, which are generalized functions, are approximated

by ordinary functions. For that we use Gaussian functions with a small standard

deviation and characteristic functions over a small interval. After replacing the Dirac δ

functions with our approximations we can calculate the expansion of these functions in

spherical harmonics. Using equation (75) we have the support function corresponding

to the approximated radii of curvature. Now the volume product can be calculated

using the basic formula in spherical coordinates for the volume of the dual body,

equation (46), and the formula directly involving the radii of curvature, equation

(66).

5.5.1 Deriving the radii of curvature for the cube and the cylinder

To derive the functions for the radii of curvature, we need to derive functions that

involve absolute values. The absolute values can be rewritten using indicator or step

functions XS, where S is a measurable set and they are defined as

XS(x) =


1, for x ∈ S

0, for x /∈ S
.

Dirac δ functions can be seen as derivative of these step functions

d

dx
X(0,∞)(x) = δ(x) . (76)
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In the language of the fundamental theorem of calculus this becomes∫ x

−∞
δ(a) da = X(0,∞)(x) . (77)

Properties of the Dirac δ function include

δ(x− a) = 0 for x 6= a . (78)

In other terms it is zero everywhere except for the single point 0. This discussion

prepares the formalism we need to deduce the radii of curvature.

Theorem 5.5.1 (The radii of curvature of the cube):

The mean and the product of the radii of curvature of the cube in spherical coordiantes

are given by

R1(θ, ϕ) +R2(θ, ϕ) =

= 2δ
(
θ − π

2

)
+

2

sin(θ)

[
δ
(
ϕ
)

+ δ
(
ϕ− π

2

)
+ δ
(
ϕ− π

)
+ δ
(
ϕ− 3

2
π
)]

(79)

and

R1(θ, ϕ) ·R2(θ, ϕ) =

= 2δ
(
θ − π

2

)
· 2

sin(θ)

[
δ
(
ϕ
)

+ δ
(
ϕ− π

2

)
+ δ
(
ϕ− π

)
+ δ
(
ϕ− 3

2
π
)]
. (80)

Proof. Recall the support function of the cube as given in equation (12). In spherical

coordinates it becomes

h(θ, ϕ) = | cos(ϕ) sin(θ)|+ | sin(ϕ) sin(θ)|+ | cos(θ)| . (81)

We will replace the absolute values by multiplying the functions with characteristic

functions that mirror the change of the sign of the functions. These characteris-

tic functions will depend on the angle with respect to which we derive. Note that

ϕ ∈ [0, 2π) can be thought of as a periodic angle, but not θ ∈ [0, π]. As a consequence

| sin(θ)| = sin(θ), but | sin(ϕ)| = sin(ϕ)(2X(0, π](ϕ)− 1) has a characteristic functions
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with two jump points, namely ϕ = 0 and ϕ = π.

We calculate, step by step, the Hessian and the Laplacian in spherical coordinates,

as given in equations (60) and (61), of this support function. Let us start the book-

keeping. First calculate the derivatives with respect to θ:

∂

∂θ
| cos(ϕ) sin(θ)| = ∂

∂θ
| cos(ϕ)| sin(θ) = | cos(ϕ)| cos(θ)

∂2

∂θ2
| cos(ϕ) sin(θ)| = −| cos(ϕ)| sin(θ)

∂

∂θ
| sin(ϕ) sin(θ)| = ∂

∂θ
| sin(ϕ)| sin(θ) = | sin(ϕ)| cos(ϕ)

∂2

∂θ2
| sin(ϕ) sin(θ)| = −| sin(ϕ)| sin(θ)

∂

∂θ
| cos(θ)| = ∂

∂θ
cos(θ)

(
2X[0, π/2](θ)− 1

)
=

= − sin(θ)
(
2X[0, π/2](θ)− 1

)
+ cos(θ)

(
− 2δ(θ − π/2)

)
=

= − sin(θ)
(
2X[0, π/2](θ)− 1

)
, as cos(π/2) = 0 .

∂2

∂θ2
| cos(θ)| = − cos(θ)

(
2X[0, π/2](θ)− 1

)
− sin(θ)

(
− 2δ(θ − π/2)

)
=

= −| cos(θ)|+ 2δ(θ − π/2)
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We then calculate the derivatives with respect to ϕ:

∂

∂ϕ
| cos(ϕ) sin(θ)| = ∂

∂ϕ
cos(ϕ)

(
2X(0, π/2](ϕ) + 2X(3π/2, 2π](ϕ)− 1

)
sin(θ) =

= − sin(ϕ)
(
2X(0, π/2](ϕ) + 2X(3π/2, 2π](ϕ)− 1

)
sin(θ)+

+ cos(ϕ)
(
− 2δ(ϕ− π/2) + 2δ(ϕ− 3π/2)

)
sin(θ) =

= − sin(ϕ)
(
2X(0, π/2](ϕ) + 2X(3π/2, 2π](ϕ)− 1

)
sin(θ)

∂2

∂ϕ2
| cos(ϕ) sin(θ)| = − cos(ϕ)

(
2X(0, π/2](ϕ) + 2X(3π/2, 2π](ϕ)− 1

)
sin(θ)−

− sin(ϕ)
(
− 2δ(ϕ− π/2) + 2δ(ϕ− 3π/2)

)
sin(θ) =

= −|cos(ϕ)| sin(θ) +
(
2δ(ϕ− π/2) + 2δ(ϕ− 3π/2)

)
sin(θ)

∂

∂ϕ
| sin(ϕ) sin(θ)| = ∂

∂ϕ
sin(ϕ)

(
2X(0, π](ϕ)− 1

)
sin(θ) =

= cos(ϕ)
(
2X(0, π](ϕ)− 1

)
sin(θ)+

+ sin(ϕ)
(
2δ(ϕ)− 2δ(ϕ− π)

)
sin(θ) =

= cos(ϕ)(2X(0, π](ϕ)− 1) sin(θ)

∂2

∂ϕ2
| sin(ϕ) sin(θ)| = − sin(ϕ)

(
2X(0, π](ϕ)− 1

)
sin(θ)+

+ cos(ϕ)
(
2δ(ϕ)− 2δ(ϕ− π)

)
sin(θ) =

= −| sin(ϕ)| sin(θ) +
(
2δ(ϕ) + 2δ(ϕ− π)

)
sin(θ)

∂

∂ϕ
|cos(θ)| = 0

∂2

∂ϕ2
|cos(θ)| = 0

Now let us plug these into the formula for the Laplacian in spherical coordinates.
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First calculate
(
∂2

∂θ2
+ 1
)
h and then

(
cos(θ)
sin(θ)

∂
∂θ

+ 1
sin2(θ)

∂2

∂ϕ2 + 1
)
h:(

∂2

∂θ2
+ 1

)
h(θ, ϕ) =

= −| cos(ϕ)| sin(θ)− | sin(ϕ)| sin(θ)− | cos(θ)|+ 2δ(θ − π/2)+

+ | cos(ϕ)| sin(θ) + | sin(ϕ)| sin(ϕ) + | cos(θ)| =

= 2δ(θ − π/2)

(
cos(θ)

sin(θ)

∂

∂θ
+

1

sin2(θ)

∂2

∂ϕ2
+ 1

)
h(θ, ϕ) =

=
cos(θ)

sin(θ)

[
| cos(ϕ)| cos(θ) + |sin(ϕ)| cos(ϕ)− sin(θ)

(
2X[0, π/2](θ)− 1

)]
+

+
1

sin2(θ)

[
− |cos(ϕ)| sin(θ) +

(
2δ(ϕ− π/2) + 2δ(ϕ− 3π/2)

)
sin(θ)−

− | sin(ϕ)| sin(θ) +
(
2δ(ϕ) + 2δ(ϕ− π)

)
sin(θ) + 0

]
+

+ | cos(ϕ)| sin(θ) + |sin(ϕ)| sin(ϕ) + | cos(θ)| =

=

[
(1− sin2(θ))

( | cos(ϕ)|
sin(θ)

+
| sin(ϕ)|
sin(θ)

)
+ cos(θ)

(
2X[0, π/2](θ)− 1

)]
+

+
[ 1

sin(θ)

(
− | cos(ϕ)| − | sin(ϕ)|

+ 2δ(ϕ− π/2) + 2δ(ϕ− 3π/2) + 2δ(ϕ) + 2δ(ϕ− π)
)]

+

+ | cos(ϕ)| sin(θ) + |sin(ϕ)| sin(ϕ) + | cos(θ)| =

=
2

sin(θ)

(
δ(ϕ) + δ(ϕ− π/2) + δ(ϕ− π) + δ(ϕ− 3π/2)

)
So finally we get by equation (61)

R1(θ, ϕ)+R2(θ, ϕ) = 2δ(θ−π/2)+
2

sin(θ)

(
δ(ϕ)+δ(ϕ−π/2)+δ(ϕ−π)+δ(ϕ−3π/2)

)
.

64



For the Hessian in spherical coordinates we need to calculate mixed derivatives:

∂

∂θ

1

sin(θ)

∂

∂ϕ
| cos(ϕ) sin(θ)| =

=
∂

∂θ

1

sin(θ)

(
− sin(ϕ)

(
2X(0, π/2](ϕ) + 2X(3π/2, 2π](ϕ)− 1

)
sin(θ)

)
= 0

∂

∂θ

1

sin(θ)

∂

∂ϕ
| sin(ϕ) sin(θ)| = ∂

∂θ

1

sin(θ)
cos(ϕ)

(
2X(0, π](ϕ)− 1

)
sin(θ) = 0

∂

∂θ

1

sin(θ)

∂

∂ϕ
| cos(θ)| = 0

So we get ∂
∂θ

1
sin(θ)

∂
∂ϕ
h(θ, ϕ) = 0 and hence by equation (60)

R1(θ, ϕ)·R2(θ, ϕ) =
(
2δ(θ−π/2)

)
· 2

sin(θ)

[
δ(ϕ)+δ(ϕ−π/2)+δ(ϕ−π)+δ(ϕ−3π/2)

]
.

Theorem 5.5.2 (The radii of curvature of the cylinder):

The mean and the product of the principal radii of curvature of the cylinder are given

by

R1(θ, ϕ) +R2(θ, ϕ) = 2δ(θ − π/2) +
1

sin(θ)
and (82)

R1(θ, ϕ) ·R2(θ, ϕ) = 2δ(θ − π/2) · 1

sin(θ)
. (83)

Proof. The proof will be similar to the derivation of the mean and product of the

principal radii of curvature for the cube. Let us first recall the support function of

the cylinder as given in equation (17). In spherical coordinates it becomes

h(θ, ϕ) = sin(θ) + | cos(θ)| . (84)
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Again, let us start the bookkeeping. First calculate the derivatives with respect to θ:

∂

∂θ

(
sin(θ) + | cos(θ)|

)
=

∂

∂θ
sin(θ) + cos(θ)

(
2X[0, π/2)(θ)− 1

)
=

= cos(θ)− sin(θ)
(
2X[0, π/2)(θ)− 1

)
+

+ cos(θ)
(
− 2δ(θ − π/2)

)
=

= cos(θ)− sin(θ)
(
2X[0, π/2)(θ)− 1

)
∂2

∂θ2

(
sin(θ) + | cos(θ)|

)
= − sin(θ)− cos(θ)

(
2X[0, π/2)(θ)− 1

)
−

− sin(θ)
(
− 2δ(θ − π/2)

)
=

= − sin(θ)− | cos(θ)|+ 2δ(θ − π/2)

Since the body is rotationally symmetric with respect to the x3-axis, the support

function is independent of ϕ, and hence all derivatives with respect to ϕ, including

the mixed derivatives, are 0.

So let us calculate the spherical Laplacian (61) to get

R1(θ, ϕ) +R2(θ, ϕ) =
( ∂2

∂θ2
+

cos(θ)

sin(θ)

∂

∂θ
+

1

sin2(θ)

∂2

∂ϕ2
+ 2
)
h(θ, ϕ) =

= − sin(θ)− | cos(θ)|+ 2δ(θ − π/2)+

+
cos(θ

sin(θ)

[
cos(θ)− sin(θ)

(
2X[0, π/2)(θ)− 1

)]
+

+ 0 + 2
[
sin(θ) + | cos(θ)|

]
=

= 2δ(θ − π/2) +
1− sin2(θ)

sin(θ)
− | cos(θ)|+ sin(θ) + | cos(θ)| =

= 2δ(θ − π/2) +
1

sin(θ)
.

66



Similarly we get for the Hessian in spherical coordinates, as given in equation (60),

R1(θ, ϕ) ·R2(θ, ϕ) =

[(( ∂2

∂θ2
+ 1
)
h(θ, ϕ)

)
·

·
((cos(θ)

sin(θ)

∂

∂θ
+

1

sin2(θ)

∂2

∂ϕ2
+ 1
)
h(θ, ϕ)

)]
−

−
[( ∂
∂θ

1

sin(θ)

∂

∂ϕ

)
h(θ, ϕ)

]2

=

=
(
− sin(θ)− | cos(θ)|+ 2δ(θ − π/2) + sin(θ) + | cos(θ)|

)
·

·
( cos(θ

sin(θ)

[
cos(θ)− sin(θ)

(
2X[0, π/2)(θ)− 1

)]
+

+ sin(θ) + | cos(θ)|
)
− 0 =

= 2δ(θ − π/2) · 1

sin(θ)
; .

5.5.2 Approximating the radii of curvature of the cube

Given the sum of the radii of curvature of the cube, as in equation (79), we see that

it consists of Dirac δ functions. These are now approximated. First we use Gaussians

given by 1
σ
√

2π
e−

(x−µ0)2

2σ2 with mean µ and standard deviation σ. For each Gaussian

we set the mean to the point were the blow-up of the corresponding Dirac δ function

occurs. For δ(ϕ) we use that ϕ is a periodic angle and let the corresponding Gaussian

decay on both sides of the interval [0, 2π). The standard deviation σ is set to a small

value so that the peak of the Gaussian is high and it decays fast.

Calculating the spherical harmonics coefficients of the sum of the radii of curvature

yields that they have same structure as the coefficients of the support function of the

cube, which were given in Table 4. Equation (75) relates all coefficients for ` 6= 1 of

the mean curvature to the coefficients of the support function. The coefficients cm1

for m = −1, 0, 1 are determined by the so called Steiner point. If this point is at

the origin, these coefficients are 0. As we have seen in the expansion of the support

function of the cube, its Steiner point is at the origin. The coefficients of the sum of
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the radii of curvature corresponding to ` = 1 are 0 as well, so this poses no problem.

First, let us again have a look at the bodies created in that way. The approximated

Figure 19: Approximation of the cube by approximating its radii of curvature for
` = 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Figure 20: Approximation of the cross polytope as dual body of the cube with
approximated radii of curvature for ` = 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

body and its dual are presented in Figures 19 and 20 for different values of the sum-

maton index `, respectively. Here σ = 0.1 was choosen for the Gaussians.

Looking at the plots, the approximated cube looks similar to the direct approximation
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of the cube support function in spherical harmonics. The same overlap of the flats

occur. These flats are bend for small ` but this bending decreases as ` increases. The

overlap of the flats decreases as well for larger `. From ` = 10 on we observe that the

approximation of the cube looks like it is sliced along the x− and y−axes on the top

face. For ` = 18 and 20 this slicing continues down the sides.

The dual body also behaves similarly to the dual body of the support function ap-

proximation. For small ` it looks nonconvex at the flats and the edges but it has

rounded corners. As ` increases the nonconvex parts become straight and the edges

and corners become sharp.

Altogether the bodies look very similar to the first set of experiments, where the sup-

port function of the body was approximated. But calculating their Mahler volume

yields an interesting result. The calculated values for the volume product are given in

Figure 21 for ` up to 50. Blue are the values calculated for the approximation of the

cube and the red and yellow lines indicate the volume product of the cube and the

ball respectively. The volume product is first oscillating and then seems to converge.

Figure 21: The Mahler volume of the body generated by approximating the radii
of curvature of the cube with respect to the summation index ` of the expansion

It stays almost constant at about 8.5 unti ` = 42. It then blows up over 20, which is
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more than the proved upper bound for the volume product, and finally drops down

to 0 for ` = 50. The blow up and decay to 0 are concluded to be numerical errors.

For the direct approximation of the cube and the cross polytope the numerical errors

started to appear for similar `. But for small ` the volume product of the approxi-

mations is smaller than the conjectured value. That the volume product is not just

slightly smaller but several units below the Mahler volume even for large ` is very

interesting. This means that we can create bodies, that are close, for example in the

L2 sense, to the cube but they have a significant smaller volume product. In the

limit, as ` goes to infinity, the bodies would actually become convex. If the volume

product stays at the value to which it seems to converge for small `, this body would

contradict Mahler’s conjecture. Nevertheless we are not able to verify this, since the

calculations encounter numerical problems for ` > 42. That the bodies are nonconvex

is verified by a closer look at the radii of curvature. Both take negative values and

hence the body cannot be convex. This phenomenon appears for all ` up to 50 and

the lowest value the radii of curvature take stays somewhere near −2.

That the radii of curvature are negative and hence the bodies not convex has dras-

tic impacts on the experiments. Formula (68) to visualize the original body is just

valid for convex bodies and so is equation (69) to visualize the dual. Furthermore

the support is defined only for convex bodies and the formulas used to calculate the

volume product involve these formulas as well as they require convexity of the body.

Nevertheless Figure 19 suggests that the volume product of the approximation is con-

verging to some value smaller than the conjectured minimal Mahler volume. Having

the Gaussians as approximations of the Dirac δ functions and not their approximation

in spherical harmonics, the radii of curvature have to be positive, since we just add

positive quantities. Hence the resulting body is very likely to be convex, and if the

volume product of the approximations is converging to some number, it should be

the volume product of that body. So this body, having Gaussians instead of Dirac δ
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functions in the radii of curvature, would be very interesting to examine. But without

the spherical harmonics we have no tool to examine it, since we are missing the link

to the support function.

Besides this one experiment where σ was set to 0.1, experiments with different val-

ues for the standard deviation, namely 0.05 and 0.01 were run. The results are very

similar. The Mahler volume of the approximation looks like it converges to some

number smaller than the conjectured value and it is smaller for smaller σ. The radii

of curvature are negative for any size of the summation, except for the trivial case

` = 0.

Experiments with characteristic functions over a small set of support instead of Gaus-

sians as approximations of the Dirac δ functions were run as well. The results con-

cerning the Mahler volume and the radii of curvature are similar.

To show that the issues we encounter with this approximation are not because of

Mahler’s conjecture and the problem itself but a weakness of the approach used, the

cylinder and its support function are approximated in the same way. The Mahler

volume of this approximation shows the same oscillating behavior and the values

taken are several units below the volume product of the cube. The radii of curva-

ture are again negative which explains the lower value calculated with the volume

product. As the cylinder is known not to be a candidate to minimize the Mahler

volume, its volume product is 4
3
π2 ≈ 13.16 > 102

3
, this shows that we have to be

very careful when calculating the spherical harmonic expansion of the approximate

delta functions. It is easily the case that this expansion makes the radii of curvature

negative and the body nonconvex. And furthermore this shows that the problems

we encounter are not directly related to the problem we want to solve, but to the

method used. Although that may be a good result it also shows the small volume

product we encounter for the approximations of the cube may not be related to a

body who is actually a counterexample to Mahler’s conjecture. The approximations

71



of the cylinder are not likely to have a smaller volume product than the cube, since

the volume product of the cylinder is almost 2 units bigger than that of the cube.

Hence the small volume products we encounter for both approximations, of the cube

and the cylinder, are likely to be related to the used methods as well. Nevertheless it

may be worthwhile to derive the support function of the cube with Gaussians instead

of Dirac δ to check the results encountered.

Let us conclude this chapter with a short discussion about why the radii of curvature

take negative values. The approximate delta functions take very small values almost

everywhere until they shoot up at certain points. To capture this rapid increase

and the maximum value taken by the approximate deltas a finite approximation in

spherical harmonics has to decrease below the actual value of the approximate delta

before and after the blow up. As these values are already close to 0 the finite expan-

sion is likely to overshoot and to take a negative value and hence the resulting body

will no longer be convex. There are mainly two ways to resolve this problem: One

could either use a spherical harmonic expansion up to a very high order or set some

threshold below the approximate deltas are not allowed to drop. The first attempt

will encounter numerical problems as the spherical harmonics oscillate highly as their

indices grow. The second approach will result in a rounder body, which is less like to

beat the cube in terms of the volume product. The best way would be to stay with

the approximated delta functions, e.g. Gaussians, directly but this hides the support

function of the body, which is necessary for the volume product calculations. Using

a different orthonormal basis as the spherical harmonics does not solve the problem

of overshooting and negative radii of curvature. Any complete orthonormal set will

encounter this problem for sufficiently small σ.
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CHAPTER VI

CONCLUSIONS

For smooth convex bodies in R3 we showed an efficient way to calculate the Mahler

volume using the Hessian in spherical coordiantes. Having the support function makes

it easier to calculate the volume of the dual body and the formula for the dual volume

also applies efficiently in the nonconvex case and to higher dimensions.

The volume of the original body is harder to calculate but the Legendre transform

in Cartesian coordinates relates the support function with the gauge function of the

body. Therefore we can use it to calculate the volume of the body if it is nonconvex

and in arbitrary dimensions. Although this gives a general formula, the experiments

have shown, that this approach is not efficient, even in 3 dimensions. Each time the

Legendre transform is evaluated, a maximization is performed. To do that, we used a

standard maximization algorithm taking no advantage of the special structure of the

problem. We know, for example, that the support function is convex, which makes

the maximization problem much easier to solve.

Furthermore we can use the structure of the Legendre transform to speed up its cal-

culation instead of using a generic maximization algorithm. In [14] a linear time

algorithm to compute the Legendre transform is introduced. It could be exploited to

speed up the computations making the formula using the Legendre transform suitable

to calculate the volume of a convex body in the nonsmooth case and for arbitrary

dimensions. If the improvement in terms of running time is high enough, this would

yield an efficient way to calculate the Mahler volume for all convex body in all di-

mensions.

Approximating the conjectured minimizers of the volume product by their spherical
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harmonic expansion encountered several difficulties. The bodies created are noncon-

vex and the volume product calculated stays several percent above the conjectured

minimum. We have seen that numerical calculations involving spherical harmonics

are not stable if the expansion gets too large. While plotting the bodies and calculat-

ing their distances yielded good results up to ` ≥ 40, calculating the Mahler volume

encountered problems earlier, below ` = 30. When comparing the approximation of

the cube and the cross polytope with the original bodies, we have seen that the L2

distance more suitable for this purpose than the Hausdorff distance. It is more stable

in terms of numerical errors in the support functions which appear in a large spherical

harmonic expansion, as it averages them out.

The final set of experiments showed interesting results. Approximating the radii of

curvature of the cube by Gaussians suggested that a body created in that way may

have smaller volume product than the cube. As we were only able to approximate

these Gaussians by their spherical harmonics expansion, the radii of curvature always

take negative values, and hence the resulting bodies are nonconvex. The problem is to

deduce the support function of the body having the radii of curvature. Without using

spherical harmonics the support function is given as a solution to partial differential

equations using the Hessian or Laplacian in spherical coordinates. In our case these

partial differential equations become

2h(θ, ϕ)
∂2

∂θ2
h(θ, ϕ) +

cos(θ)

sin(θ)

∂

∂θ
h(θ, ϕ) +

1

sin2(θ)

∂2

∂ϕ2
h(θ, ϕ)−

− 2

σ
√

2π

(
e−

(θ−π/2)2

2σ2 +
1

sin(θ)

(
e−

(ϕ)2

2σ2 + e−
(ϕ−π/2)2

2σ2 + e−
(ϕ−π)2

2σ2 + e−
(ϕ−3π/2)2

2σ2

))
= 0

(85)
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and(( ∂2

∂θ2
h(θ, ϕ) + h(θ, ϕ)

)
·
(cos(θ)

sin(θ)

∂

∂θ
h(θ, ϕ) +

1

sin2(θ)

∂2

∂ϕ2
h(θ, ϕ) + h(θ, ϕ)

))
−

−
( ∂
∂θ

1

sin(θ)

∂

∂ϕ
h(θ, ϕ)

)2

−

− 4e−
(θ−π/2)2

2σ2

σ2π sin(θ)

(
e−

(ϕ)2

2σ2 + e−
(ϕ−π/2)2

2σ2 + e−
(ϕ−π)2

2σ2 + e−
(ϕ−3π/2)2

2σ2

)
= 0 (86)

for some σ > 0 and Dirichlet boundary conditions. Since scaling of the body does

not matter we can set h(0, 0) = 1. We then get h(0, π) = h(0, 0) by symmetry of the

body and h(2π, 0) = h(0, 0) and h(2π, π) = h(0, π) by periodicity of the angle ϕ.

The same approximation of the cylinder, whose support function would be given

by similar partial differential equations, also results in a smaller calculated volume

product. Since the cylinder is not a candidate to minimize the Mahler volume, this

makes the cube with Gaussians in the radii of curvature less likely to have smaller

volume product than the cube. Nevertheless, the partial differential equation given by

equation (85) looks worth trying to derive the support function of the approximated

cube. One could either try to find a closed form for the solution or solve this partial

differential equation with numerical methods.
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APPENDIX A

MATHEMATICA NOTEBOOK: MAHLER VOLUME

COMPUTATIONS
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