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SUMMARY

As air traffic congestion grows, air traffic flow management (ATFM) is be-

coming a great concern. ATFM deals with air traffic and the efficient utilization of

the airport and airspace. Air traffic efficiency is heavily influenced by unanticipated

factors, or uncertainties, which can come from several sources such as mechanical

breakdown; however, weather is the main unavoidable cause of uncertainty. Because

weather is unpredictable, it poses a critical challenge for ATFM in current airport and

airspace operations. Convective weather results in congestion at airports as well as in

airspace sectors. During times of congestion, the decision as how and when to send

aircraft toward an airspace sector in the presence of weather is difficult. To approach

this problem, we first propose a two-stage stochastic integer program by emphasizing

a given single sector. By considering ground delay, cancellation, and cruise speed

for each flight on the ground in the first stage, as well as air holding and diversion

recourse actions for each flight in the air in the second stage, our model determines

how aircraft are sent toward a sector under the uncertainty of weather. However, due

to the large number of weather scenarios, the model is intractable in practice. To

overcome the intractability, we suggest a rolling horizon method to solve the problem

to near optimal. Lagrangian relaxation and subgradient method are used to justify

the rolling horizon method. Since the rolling horizon method can be solved in real

time, we can apply it to actual aircraft schedules to reduce the costs incurred on the

ground as well as in airspace. We then extend our two-stage model to a multistage

stochastic program, which increases the number of possible weather realizations and

results a more efficient schedule in terms of costs. The rolling horizon method as

well as Lagrangian relaxation and subgradient method are applied to this multistage

x



model. An overall comparison among the previously described methodologies are

presented.
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CHAPTER I

INTRODUCTION

Most real life decisions involve uncertainty. To incorporate the uncertain factors

into mathematical programming models, stochastic programming (SP) is a sound

approach. The idea of SP is first introduced by Dantzig (1955) and is being used

in several fields such as capacity expansion, financial planning, or airline scheduling

problems. The purpose of a stochastic program is to find a decision process that

minimizes or maximizes the expected value over all possible realizations under uncer-

tainties. An important assumption in SP is that the probability distribution of the

uncertain parameter is known. Two-stage SP models are widely studied and can be

readily extended to multistage stochastic programs.

In airline operations, the uncertainties come from several parts such as mechanical

breakdown or the unexpected unavailability of flights or crew. Among these uncertain

factors, weather is an unavoidable one. Air traffic flow management (TFM) under

uncertain weather is an important issue in current airport and airspace operations.

Indeed, convective weather results in congestion at airports as well as in airspace

sectors. Since the weather is uncertain, the issue of how to deal with the aircraft

departures in response to the weather and its corresponding impact on the capacity

availability is a difficult problem. Stochastic programs are often used to solve such

probabilistic problems. In the following sections, we introduce the air traffic flow

management problems that we are facing and the general concepts about stochastic

programs.

1



1.1 Air Traffic Flow Management

Today, air transportation is one of the most convenient transportation tools. Due

to the high demands, airlines provide a variety of flight schedules for passengers to

choose from. However, the large number of flights compete for the capacitated airport

and airspace resources, such as runway facilities and airspace capacities, respectively.

Even worse, convective weather such as thunderstorms or snowstorms play important

uncertain roles in the airline industry. Storms can cause the capacities of the resources

to reduce, however, the strength and the time of the storms are difficult to correctly

predict. The focus of the air traffic flow management is to identify and resolve the

imbalance between demand and supply of the limiting resources.

The United States Congress recognized this problem and established the Joint

Planning and Development Office (JPDO) to coordinate several agencies, which in-

clude National Aeronautics and Space Administration (NASA) and Federal Aviation

Administration (FAA), to develop and implement the Next Generation Air Trans-

portation System (NextGen) to continuously improve the performance of the entire

National Airspace System (NAS). NextGen includes projects involving runway uti-

lization, flights separation, integrated weather prediction, lower-emission aircraft, and

dynamic resource allocation. The air traffic flow management problem we focused here

is one of the projects, and the main purpose of this project is to develop methodolo-

gies for a higher capacity system. One part of our team focus on determining the

capacity of the airspace given the weather forecast, and the other part determines

the number of aircraft to send toward the airspace given the determined capacities.

The goal of this thesis is to develop an optimization algorithm to effectively solve the

TFM problem in the presence of weather uncertainties.

Weather affects the airline operations a lot. According to Bureau of Transporta-

tion Statistics (BTS), in 2006, 64.67 percent of NAS delays in terms of number of

2



operations were due to weather (see Figure 1) and it corresponds to 19,454,394 de-

layed minutes, which accounts for 76 percent of NAS delayed minutes. If we introduce

the delay attributed to air carriers and security, weather still accounts for 44.2 percent

of delay minutes.

Figure 1: Causes of NAS delays in 2006

Current NAS operations under the weather uncertainty depend highly on the air

traffic controller’s past experience. If he is optimistic, aircraft might be departed and

later find no way to pass through a thunderstorm. A diversion decision might be

made which costs the airline a lot. Or if he is pessimistic, aircraft might be sitting in

the airports and later find the storm disappeared which causes the waste of capacities.

Therefore, it is important to develop a dynamic algorithm so that decisions such as

when and how the aircraft should be sent in response to the different weather forecasts

can easily be made.

NAS supports all aircraft operations in the United States. The primary functions

of NAS are to communicate, navigate, and manage flights. Because of its complexity,

which consists of a collection of facilities, procedures, airports, and thousands of

people, NAS is divided into twenty-one Air Route Traffic Control Centers (ARTCC),

or simply centers. A center’s main task is to control and separate flights within a

3



designated airspace, which can range over 100,000 square miles and cover from the

base of the airspace up to 60,000 feet high. Each of the centers is divided into several

air traffic control (ATC) sectors, which range from 50 to 200 miles wide, see Figure 2

for a general idea of the NAS. Air traffic controllers manage flights based on arrival

and departure rates in airports, airport weather conditions, en route congestion, and

en route weather. Since an airspace sector is the fundamental operation unit for the

air traffic control, in this study, we target the problem at sector level.

Figure 2: An illustration of National Airspace System

Weather forecast is notoriously uncertain. Therefore, a deterministic traffic flow

management model might not be able to fully capture the uncertainties which may

leave the capacities unused. The capacity is lost if aircraft are re-routed to a longer

paths while shorter paths are expected to be blocked, but turns out that the weather

is clear enough for the aircraft to fly the shorter paths. Likewise, capacity is lost

4



if the aircraft are delayed on the ground for longer than actually necessary. The

problems of lost of capacities might be reduced if the weather forecast becomes more

reliable. Nevertheless, the uncertainties will not be eliminated such that a deter-

ministic TFM is sufficient. As a result, stochastic programs are used to include the

weather uncertainties.

In Chapter 3 and 4, we will describe in details how we incorporate the weather un-

certainties into the stochastic programming model. However, in the following section,

we will first introduce the general concepts of stochastic programs.

1.2 Stochastic Programming

Stochastic programming techniques are often used when uncertainty involves. In

the following, two-stage and multistage stochastic programs are introduced and the

solution methodologies used to solve the stochastic programs are also presented.

1.2.1 Two-Stage Stochastic Programming Models

In a two-stage SP model with fixed recourse, decisions are made at the current point

knowing only a set of possible outcomes of the uncertain factors while minimizing or

maximizing the overall expected value. The overall expected value contains a deter-

ministic term of first-stage decisions and an expected form of second-stage decisions,

which based on different realizations of the uncertain factors. We say the second-stage

decisions are the recourse actions as one of them will be picked depending on how the

uncertainty is revealed.

A classical two-stage stochastic program can be written as (1). First-stage decision

variables are represented by x and the uncertain factors are denoted by ξ. Based on

different q(ξ), h(ξ), and T (ξ) under uncertainties, a set of second-stage decisions of

5



y(ξ) are projected.

min cTx+ Eξ

[
min q(ξ)Ty(ξ)

]
s.t. Ax = b (1)

T (ξ)x+Wy(ξ) = h(ξ)

x ≥ 0, y(ξ) ≥ 0

If the uncertainties can be interpreted as a discrete probability distribution, that is,

the number of outcome is finite, then we can describe each of the outcome as ω ∈ Ω,

with corresponding probability of pω,
∑

ω∈Ω pω = 1. As a result, the stochastic

program of (1) can be interpreted in a deterministic equivalent form of (2).

min cTx+
∑
ω∈Ω

pωq
T
ω yω

s.t. Ax = b (2)

Tωx+Wyω = hω ∀ω

x ≥ 0

yω ≥ 0 ∀ω

In a real-life problem, if we can discretize the uncertainties into several possibilities

and identify the corresponding probabilities, a stochastic programming model can

easily be constructed by the ideas of deterministic equivalent form. However, if the

number of ω is large, we are not able to solve the problem directly. Instead, decom-

position method might be required to make the problem smaller. We will discuss the

approaches in Section 1.3.

1.2.2 Multistage Stochastic Programming Models

A multistage stochastic program with recourse is an extension of the two-stage SP

model. In a two-stage SP model, a set of decisions are made once and kept forever.

6



However, in a multistage stochastic program, a set of recourse decisions, which con-

stitute a decision process, are made consecutively over time. We call them ”recourse

decisions” because these recourse decisions are made at the time we solve the multi-

stage model, not at the time the decisions are to be executed. The multistage model

is solved based on everything we know or we predict at the time we solve the problem,

including the numerous possibilities.

To solve a multistage stochastic program, we need to construct a set of probabil-

ities corresponding to each stage. A series of decisions that we are about to execute

including recourse actions are made based on the possible outcomes and the corre-

sponding probabilities in the future stages. As time evolves, recourse decisions are

being executed depending on the realizations of the uncertain factors at each stage.

The advantage over two-stage model is that, as we are closer to the time when recourse

decisions are to be executed, we can be more certain about the future. Therefore, the

prediction of the outcomes with corresponding probabilities can be more accurate.

A K-stage stochastic program can be modeled as follows.

min c1x1 + Eξ2

[
min c(ξ2)x(ξ2) + · · ·+ EξK

[
min c(ξK)x(ξK)

]]
s.t. W 1x1 = h1

T (ξ1)x1 +W 2x(ξ2) = h(ξ2)

... (3)

T (ξK−1)x(ξK−1) +WKx(ξK) = h(ξK)

x1 ≥ 0

x(ξk) ≥ 0 k = 2, · · · , K

Here, x1 is the set of first-stage decisions and x(ξk) represent the kth-stage decisions.

Furthermore, x(ξk) can only depend on the information known up to time k, and this

is often referred as nonanticipativity. In stochastic program (3), the nonanticipativity

constraints are implicit in the model since each decision variable represents each node

7



in a tree, see Figure 3 for a three-stage example, which illustrates the idea of node-

based implementation.

Figure 3: Node-based implementation of the nonanticipativity constraints

Another implementation of the nonanticipativity constraints is by scenarios. In a

tree shown in Figure 4(a), the number of leaf nodes represents the number of scenarios,

and the bold lines between nodes illustrate the second scenario, for example. A

scenario here describes a series of decisions that are to be made over time. In addition,

nodes are duplicated in order to match the total number of scenarios, and the idea is

shown in Figure 4(b). The decisions made in the circled nodes need to be identical

since information is known up to that point without future information certainties. In

order to integrate this idea into the model, we need to express the nonanticipativity

constraints explicitly in the stochastic program. A deterministic equivalent form of

multistage stochastic program (3) is described below. Here, constraint (4) ensures

that the decisions made at stage k are the same under different scenarios that have

8



(a) A sequence of decisions (b) Duplicate of nodes

Figure 4: Scenario-based implementation of the nonanticipativity constraints

the same history up to stage k.

min
∑
ω∈Ω

pω
[
c1
ωx

1
ω + c2

ωx
2
ω + · · ·+ cTωx

T
ω

]
s.t. W 1

ωx
1
ω = h1

ω ∀ω ∈ Ω

T 1
ωx

1
ω +W 2

ωx
2
ω = h2

ω ∀ω ∈ Ω

...

TK−1
ω xK−1

ω +WK
ω x

K
ω = hKω ∀ω ∈ Ω

xkω = xkω′ ∀ω, ω′ : ξ[1,k]
ω = ξ

[1,k]
ω′ , (4)

ω, ω′ ∈ Ω, k = 1, · · · , K

xk(ω) ≥ 0 ∀k = 1, · · · , K

Or, if we define the set of scenarios that pass through node n at stage k as Sk(n),

then constraint (4) can be replaced by (5):

xkω = xkω′ ∀Sk(xkω) = Sk(x
k
ω′), ω, ω′ ∈ Ω, k = 1, · · · , K (5)

In (5), the nonanticipativity constraint is the same while the way to specify the nodes

is different. Moreover, the nonanticipativity constraints can be interpreted in several

9



ways (Higle 2005). One of them is to take the expectation and another is to take the

average, which are described in (6) and (7), respectively.

xkω =
∑
ω′∈Ω

xkω′ · pω ∀ω ∈ Ω (6)

xkω =
∑
ω′∈Ω

xkω′ ·
1

‖Ω‖
∀ω ∈ Ω (7)

The nonanticipativity constraint plays an important role in stochastic programs. If

we decompose the stochastic program into subproblems by scenarios, then the nonan-

ticipativity constraint is the only linking constraint among subproblems. As a result,

decomposition is a reasonable technique to approach the stochastic programming

problems. We will discuss in details in the following section, which introduces the

solution methodologies for stochastic programs.

1.3 Approaches to Stochastic Programs

In Section 1.2.1 and 1.2.2, we described the concepts of the two-stage and multistage

stochastic programs. Although it seems not complicated to formulate an SP model,

the difficulty of a stochastic program is its intractability in problem size. Real-life

problems often involve with a large set of choices, therefore, the number of scenarios

can be huge. To give an idea of how large the problem size is, we assume three

possible outcomes at each stage. Then in a ten-stage model, the number of scenarios

will explode to 39 = 19, 683. The amount of scenarios grow exponentially as the

number of stages increase. Due to the enormous size of the problem, several solution

methodologies are suggested to solve the SP problems.

1.3.1 Decomposition Methods

Van Slyke and Wets (1969) proposed an L-shaped method, whose name was de-

rived from the shape of the constraints, to a two-stage stochastic program. They

decomposed the stochastic program into a master problem and subproblems based
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on Benders decomposition, or Dantzig-Wolfe decomposition to its dual. Birge (1985)

extended the L-shaped method to a multistage stochastic program by successively

applying Benders decomposition algorithm which was referred as nested Benders de-

composition method. Birge and Louveaux (1988) suggested a multicut L-shaped

algorithm that allowing several cuts to be added at a time so that the number of

iterations will be reduced.

As introduced in Section 1.2.2, stochastic programs can also be decomposed into

scenarios since the nonanticipativity constraints are the only constraints that link

up the scenarios. Rockafellar and Wets (1991) presented a progressive hedging algo-

rithm that decomposed a stochastic program into admissible scenarios and imposed

the nonanticipativity constraints. Mulvey and Ruszczyński (1995) applied augmented

Lagrangian function to the nonanticipativity constraints and solved it by an inte-

rior point algorithm. Rosa and Ruszczyński (1996) also used augmented Lagrangian

method to multistage stochastic programs and decomposed the problems into ei-

ther scenarios or stages. Pennanen and Kallio (2006) suggested an operator splitting

method to decompose over nodes of a scenario tree.

The literature we just described are for stochastic linear programs. If we impose

integrality or binary requirements on decision variables in (4), the model becomes a

stochastic integer program. The difficulty will increase since the inherent convexity

property in stochastic linear programs is lost. A two-stage stochastic integer program

is constructed such that the objective function is composed of several integer sub-

problems, which are NP-hard. Several studies have focused on the stochastic integer

programs.

Laporte and Louveaux (1993) proposed a branch-and-cut algorithm, or integer L-

shaped, to a two-stage stochastic program with binary first-stage decisions. Carøe and

Tind (1998) extended the L-shaped method to a two-stage stochastic programs with

integer recourse by applying generalized Benders decomposition. Schultz, Stougie,
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and van der Vlerk (1998) used Gröbner basis methods to handle the second-stage in-

teger problems since Gröbner basis does not depend on the right-hand-side coefficient.

Since the difficulty raised in stochastic integer programs is due to the discontinuity of

the objective, Ahmed, Tawarmalani, and Sahinidis (2004) reformulated the two-stage

problem by a special branch-and-bound strategy that led to a special structure of

the value function. Carøe and Schultz (1999) decomposed the multistage stochas-

tic integer programs by scenarios and dualized the nonanticipativity constraints by

Lagrangian relaxation. The optimal value of the Lagrangian dual provides an up-

per bound for a maximizing problem, and a branch-and-bound procedure was then

applied to achieve feasibility. Sen and Sherali (2006) suggested decomposing the two-

stage stochastic mixed-integer programs so that the second-stage subproblems can be

solved by branch-and-cut algorithms.

1.3.2 Statistical Methods

Due to the large number of scenarios in the expected term of the objective, statistical

methods are introduced to handle the stochastic programs so that the expected value

term can be estimated by sampling. Norkin, Pflug, and Ruszczyński (1998) pro-

posed a stochastic branch-and-bound method that used stochastic upper and lower

estimates of the optimal objective value, and the stochastic upper and lower bounds

could be derived from Monte Carlo simulation. Kleywegt, Shapiro, and Homem-de-

mello (2002) studied the Monte Carlo sampling techniques to approach the stochastic

integer programs. A set of random samples were selected and the expected value

form was estimated by a sample average function. The problem was then solved

by a deterministic optimization algorithm, and the procedure was repeated until the

optimality gap becomes sufficiently small. Shapiro (2003) showed that although ran-

dom sampling provided a valid statistical lower bound for the multistage stochastic

programs, conditional sampling procedure would be required to obtain a consistent
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lower bound. An investigation of the quality of solutions derived from sample average

approximations for two-stage stochastic linear programs was discussed by Linderoth,

Shapiro, and Wright (2006), and they showed that the statistical methods provided

good solutions within reasonable computational time.

1.3.3 Stochastic Decomposition

Another method to approach the SP is stochastic decomposition (SD), which com-

bines the decomposition algorithms and statistical approximation methods described

above. SD is first introduced by Higle and Sen (1991). They incorporated sample-

based approximations with Benders decompositions for two-stage stochastic linear

programs. Higle and Sen (1999) furthered their previous study by improving the

approximation methods.

1.4 Thesis Outline

Although an SP model is not difficult to formulate, the intractability of large problem

size makes it hard to solve such problem to optimality. In this thesis, we will utilize the

stochastic programming formulations to model the traffic flow management problem

in the presence of weather uncertainties. The goal is to determine the number of

aircraft to send towards the sector given the weather forecast and sector capacities.

By considering both flights on the ground and in the air, our stochastic programs

determine optimally how and when aircraft should be sent toward the sector for the

flights on the ground and how aircraft can react after the realizations of weather for

flights in the air. Two-stage and three-stage models are presented.

The thesis is organized as the following. In Chapter 2, we review the literature

related to the stochastic TFM problems and list studies applying stochastic program-

ming techniques in other fields. In Chapter 3, we present a two-stage stochastic

integer program to model the TFM problem. Since solving the stochastic program to

optimality is intractable in realistic cases, we propose a solution methodology called
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”rolling horizon method” to approach it. We describe this method and provide the

computational comparisons between the optimal objective values and the solutions

derived from this new method in both solution time and solution qualities. In order

to justify the rolling horizon method, we then apply the Lagrangian relaxation on

the nonanticipativity constraints. Subgradient method is used to find a reasonable

lower bound to the original two-stage problem. In chapter 4, we extend our two-stage

model to a multistage (three-stage) stochastic integer program, which increases the

dynamics to the two-stage model. Finding an efficient way to solve the multistage

model to near-optimality is also a challenging work. Therefore, we apply the rolling

horizon method to the multistage model and the computational results are described.

Lagrangian relaxation and subgradient method are also used in order to find a tight

lower bound. In Chapter 5, we will conclude how our research can be applied to the

real air traffic operations. Possible variations or extensions to our models will also be

addressed.
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CHAPTER II

LITERATURE REVIEW

The flow management problems in air traffic control were first raised by Odoni (1987).

The author described that the congestion can occur in several places such as airport

of origin, en route airways at a waypoint or a sector, and airport of destination.

Various approaches can be done to deal with the congestion problems. Long-term

goals such as increasing the capacity of the NAS through improved technologies can

be costly and time-consuming. Medium-term solutions can be to regulate the rate of

departure and arrival by imposing time-varying fees to encourage off-peak uses. As

for short-term, actions proposed to alleviate the delay were to delay the departure on

the ground, to regulate the aircraft flow rates on the limiting resources, en route re-

routing, en route speed control, and path-stretching maneuvers. The TFM problem

is stochastic and dynamic in nature because it involves with probabilistic weather

forecast and the probabilistic weather forecast evolves over time, respectively.

We have described in section 1.1 that NAS is ultimately divided into sectors, which

are the fundamental operation units in terms of air traffic control. Restrictions on

the number of aircraft in a given sector at a given time can be affected by the ability

that a controller can handle within the time frame, the geographic location, and the

most important factor, the weather conditions. Therefore, we refer our problem as

single-sector TFM problem.

Although TFM under uncertain weather is an important problem to be resolved,

the probabilistic nature of this problem makes it hard to be addressed. Due to the

essential difficulties and the enormous size of the problem, only a few studies are done.

In this chapter, we review different approaches in previous studies that were related
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to the TFM problem under the uncertainty of weather. Most of these studies dealt

with the aircraft departures under constrained uncertain factors. Some substantial

work related to TFM and SP were proposed, however, most of them simplify the

real-life situations by the limiting assumptions.

We describe the literature in two categories. The first category in section 2.1

involves TFM problems. SP as well as other kinds of approaches will be discussed.

Due to the small number of studies done for SP approaches in TFM, we list a few ef-

forts that apply stochastic programs in other industries with other different uncertain

factors in the second category, which is in section 2.2.

2.1 Air Traffic Flow Management Problems

When talking about how to depart the scheduled aircraft under the weather uncer-

tainties, ground holding program (GHP) may first come to mind. GHP determines

the amount of ground delay for aircraft bounding for a given capacitated airport so

that these flights will land at the airport without further holding in the air while the

total expected delay cost is minimized. The main concern of GHP is that, delay in

the air may cause circling which increases the fuel burn. Therefore, it is much more

expensive than delay on the ground, where the aircraft engine is shuting down. Some

general assumptions to SAGHP are listed here.

• Airport is the only capacitated resource in the problem.

• Departure time and flight time are deterministic and known.

• Ground delay and air delay costs are known.

Our single-sector TFM problem is similar to the single-airport GHP (SAGHP) in a

way that both of them involve a single capacitated resource. The constrained location

for single-sector TFM is the airspace sector while for SAGHP is the airport. To our
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best knowledge, SAGHP has been researched since late 80’s, and a good amount of

studies are done to capture the problem.

Andreatta and Romanin-Jacur (1987) were the first to use mathematical pro-

gramming approaches for the SAGHP. They suggested an objective function based

on the aircraft landing priority subject to probabilistic single-period airport capaci-

ties, and proposed a polynomial dynamic programming algorithm to solve the fixed

landing priority case and another optimal decision policy to solve a random priority,

which depends on the chronological order of landing requests, case. Terrab and Odoni

(1993) addressed both deterministic and stochastic models for multi-period SAGHP.

Minimum cost flow algorithm was used to solve the deterministic case and an exact

dynamic program was developed based on Andreatta and Romanin-Jacur’s work to

approach the stochastic case.

Richetta and Odoni (1993) were the first to use SP approaches. The SAGHP was

formulated as a one-stage stochastic linear program with static weather scenarios,

which were not updated as time evolves. However, they reduced the problem sizes by

including only a small number of weather scenarios and aggregating flights into cost

classes, and simplified the problem by assuming a constant air delay cost to achieve a

reasonable solution time. Kept all these assumptions up, Richetta and Odoni (1994)

improved their previous study by providing a partially dynamic multistage stochas-

tic integer programming formulation with recourse actions. By partially dynamic, it

means that ground delay decisions were made at each stage as the weather forecast was

the most up-to-date, but once the ground delays were assigned to aircraft, decisions

were final. Rikfin (1998) further reduced the size of the problem proposed by Richetta

and Odoni (1993) based on an idea that the structural information about the flights

can be recovered under a first-come-first-serve discipline. Hoffman (1997) and Ball

et al. (2003) proposed a stochastic integer program based on a two-state stochastic

network flow model. They proved that the constraint matrix in the stochastic model
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is dual network, implying the matrix is totally unimodular. As a result, the original

stochastic integer program can be solved by network flow techniques or linear pro-

gramming relaxation. Nevertheless, they still treat flights in an aggregate level which

do not account for different cost structures for each individual flight. Mukherjee and

Hansen (2007) proposed a dynamic revisable ground holding model that improved

Richetta and Odoni (1994) in two ways. They assigned ground delays to individual

flights and allowed for revision of the ground delay decisions based on the updated in-

formation for flights that have not yet departed. Liu, Hansen, and Mukherjee (2008)

applied scenario-based approaches to Ball et al. (2003) and Mukherjee and Hansen

(2007) models. Because the scenarios were assumed in previous efforts, they studied

the capacity scenarios based on the historical data and found that the scenarios follow

a tree structure that certain scenarios have similar capacities in the early part of tree

while branch out later on.

Vranas, Bertsimas, and Odoni (1994) extended the SAGHP to a multi-airport

GHP (MAGHP). MAGHP differs from SAGHP in that MAGHP takes into consider-

ation the propagation of delays in the network of airports as aircraft perform consecu-

tive flights. They gave a pure 0-1 integer program for the static deterministic MAGHP

while taking flight cancellation and the propagation of delay into consideration, and

suggested a heuristic based on the feasible solution of the linear programming re-

laxation to approach the problem. They furthered their previous study so that a

MAGHP in a dynamic environment is handled by pure integer programming models

(Vranas, Bertsimas, and Odoni (1994)). Probabilistic features of the weather were

also discussed. A slightly variated version of MAGHP by Navazio and Romanin-Jacur

(1998) was to consider a traffic situation that successive flight can not depart until all

its preceding flights have landed, and a 0-1 integer program was proposed to model

the problem.
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Although GHP seems to be heavily studied and its similarity to our single-sector

TFM problem, the solution methodologies described in previous works can not be

directly applied to our problem due to the essential differences that GHP involves

with destination airport capacities and our problem deals with airspace sector capac-

ities. Sectors are the volume that aircraft can occupy simultaneously within a specific

time frame, while airports require separation procedure that aircraft are landing in

sequence. The differences make us turn our attention to the studies focused on the

airspace sectors.

Landing could be the only activity in SAGHP, while operations inside a sector

are many. Aircraft trajectories and flight levels can be highly affected by the echo

top and precipitation during convective weather, so some re-route decisions can be

made in response to different kinds of weather realization. As a result, the need

for optimization tools to include en route capacities is first addressed in Helme and

Lindsay (1992).

Sector capacities are addressed in some studies when the airport and airspace

are taking into consideration. Helme (1992) was the first to use mathematical pro-

gramming models to account for en route waypoints and airport capacities at the

same time. The author suggested deterministic models for the single- and multi-

destination minimum delay problems, and could be viewed as a minimum cost flow

problem and multicommodity minimum cost flow problem, respectively, so that the

waypoints capacities were constrained by the arcs in a space-time network. Bertsimas

and Stock-Patterson (1998) presented a deterministic integer programming model to

account for en route sectors and airports capacities. Bertsimas and Stock-Patterson

(2000) introduced a dynamic multicommodity integer network flow model with the

consideration of rerouting. The problem was solved by a Lagrangian generation al-

gorithm, which consisted of a series of methodologies. Lagrangian relaxation was

used to generate aggregate flows, which were later decomposed into a set of flight
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paths for each flight using a randomized rounding heuristic. The set of paths were

then used in a packing integer program whose solution generates near-optimal routes

for individual flight. Alonso, Escudero, and Ortuño (2000) furthered Bertsimas and

Stock-Patterson (1998) by including the uncertain factors in airport and airspace.

They provided a 0-1 stochastic program with weather uncertainty modeled by sce-

narios, and a fix-and-relax approach, which considered iteratively the integrality of

the variables, was used to solve the program to near optimal. Hoffman et al. (2007)

modeled a two-stage stochastic program based on a network describing the potential

route options under different weather scenarios, which were constructed by decision

tree. Lulli and Odoni (2007) presented a deterministic optimization model for the

European TFM. Their model could spread delays among aircraft in a way that one

unit of delay to each of two flights instead of two units delay to single flight. They

also argued that assigning airborne delay rather than ground delay could sometimes

be cost efficient in terms of total delay cost. Bertsimas, Lulli, and Odoni (2008)

improved Bertsimas and Stock-Patterson (1998) by providing the rerouting decisions

without adding decision variables but only constraints. They assumed that the min-

imum amount of time to fly through a sector is the same for all flights. Mukherjee

and Hansen (2009) proposed a stochastic model with weather scenarios that made

static ground holding decisions at an early stage while the rerouting decisions were

dynamically established based on updated weather information.

Although stochastic programs are good approaches for the TFM problem, we can

see from the previous paragraph that mathematical programming models for the TFM

problems involving sector capacities are very limited. As a result, a comprehensive

stochastic program is needed to handle this problem. In Table 1, we list a comparison

between our proposed stochastic program and the existing literature applying math-

ematical programming approaches to TFM. And we show that the proposed solution

methodology in this thesis covers all aspects in terms of various flight activities under
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convective weather. Note that a rerouting decision is similar to an air-holding action

when single sector is involved. Therefore, rerouting and air-holding are put in the

same column.

Table 1: Summary of the existing literature applying mathematical programming
approaches to traffic flow management and the proposed methodology
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Helme (1992) X X

Bertsimas and Stock-Patterson (1998) X X

Bertsimas and Stock-Patterson (2000) X X X

Alonso et al. (2000) X X X

Hoffman et al. (2007) X X X

Lulli and Odoni (2007) X X

Bertsimas, Lulli, and Odoni (2008) X X

Mukherjee and Hansen (2009) X X X X

PROPOSED APPROACH X X X X X X X

Besides, methodologies other than mathematical programming are also used to

model the various TFM problems. Wang (1991) defined an alert event corresponding

to the limiting resource and the time of congestion. A shortest path algorithm was

then used to minimize costs. Oussedik and Delahaye (1998) proposed a time-route

assignment problem with objective to minimize the sector workload and used a Ge-

netic Algorithm-based method to simulate each aircraft. Barnier and Brisset (2004)

presented a network of direct routes and vertically separated intersecting flights by

allocating them to different flight levels. The issue turned into a graph coloring min-

imization problem, which was tackled by constraint programming. Robelin et al.

(2006) studied a set of sectors where the flight paths will pass by and derived an
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Eulerian model of the selected airspace. A deterministic integer programming model

was proposed to control the sector aircraft count while the dynamics of the system

appeared in the constraints. Other studies such as van Kemenade, van den Akker,

and Kok (1996), van den Akker, van Kemendae, and Kok (1997), and Baten et al.

(2005) focused on how to reroute aircraft within a sector under the weather instead

of scheduling them beforehand. Hoffman et al. (2005) suggested a collaborative rout-

ing resource allocation tool that assigned NAS resources to each flight based on the

available capacities, traffic classes, and priority hierarchy. In addition to modeling

uncertainty by scenarios, the probabilistic property of the weather can be handled in

other ways. Nilim, El Ghaoui, and Duong (2004) proposed a Markov decision pro-

cess model for multiple flights by assuming that the weather evolved as a stationary

Markov chain.

We have seen various efforts dedicated to the complicated TFM problems. In

chapters 3 and 4, we will present our stochastic integer programs with recourse actions.

They are the most comprehensive models as ground-delay, cancellation, cruise speed,

air-holding, and diversions decisions are included. In addition, the sector capacities

can be updated under real weather forecast in each consecutive time period.

2.2 Stochastic Programming Approaches in Other Fields

Although stochastic programming models to the air traffic management problems are

not many, its wide applicability can be seen in various industries such as transporta-

tion, finance, and manufacturing. To give an idea about how different uncertainties

can be incorporated with SP models, we discuss some SP applications in the following.

Santoso et al. (2005) used a two-stage stochastic program to model a supply chain

network design under the uncertainties of processing/transportation costs, demands,

supplies, and capacities. They proposed a solution methodology, the sample aver-

age approximation scheme with an accelerated Benders decomposition algorithm, to
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approach it. Lium, Crainic, and Wallace (2009) designed a multistage SP model to

approach a service network which determined the services the carrier would operate

to move the forecast demand. SP can also be applied to banking industry. Castro

(2009) modeled the cash management in automatic teller machines (ATMs) and in

the compensation of credit card transaction. The author used stochastic integer pro-

grams to account for future customer demands, which obtained through historical

data. Restaurant revenue management is an interesting topic. Bertsimas and Shioda

(2003) used stochastic integer programs to maximize the revenue in a restaurant in

terms of average customer waiting time and fairness. The model determined when to

seat an incoming party based on customer arrivals, customer exits after service com-

pletion, and the status of customer waiting queue. Maatman et al. (2002) proposed

a two-stage stochastic program to model the decisions made by farmers in response

to uncertain rainfall. The first-stage decisions were for agricultural production and

the second-stage accounted for consumption, storage, selling, and purchasing actions

after the harvest levels realized. Ahmed, King, and Parija (2003) presented a multi-

stage stochastic integer program for capacity expansion under uncertain demand and

costs. A series of reformulation, heuristic, and branch and bound algorithm were

used to solve the problem to global optimal. In addition, Huang and Ahmed (2009)

justified the value of multistage SP approaches in a capacity planning problem.

Similar to the TFM problems, other airline-related problems can also be handled

by SP approaches. Yen and Birge (2006) applied a two-stage stochastic integer pro-

gram to airline crew scheduling problem under uncertain schedule disruptions. They

presented a flight-pair branching algorithm to solve it. Listes and Dekker (2005) pro-

posed a scenario aggregation-based method to solve airline fleet composition problem.

Based on the stochastic nature of passenger demand, their model determined the op-

timal number of aircraft of each type so that it was most profitable for the airline

schedule.
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SP is indeed a good approach to a problem when uncertainties involve, however,

finding an applicable solution methodology is a challenging work. We have described

that a comprehensive stochastic program is needed to capture the possible actions

the aircraft can take under inclement weather and realized that approaches such as

decomposition and heuristic are used to solve the SP models, in the following chapters,

we will provide stochastic integer programming models for the TFM problem and

propose a series of methodologies to solve it.
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CHAPTER III

TWO-STAGE STOCHASTIC PROGRAMMING

APPROACH TO TRAFFIC FLOW MANAGEMENT

PROBLEM

As described in Chapter 2, we understand the necessity of a comprehensive model for

the TFM problem in the presence of inclement weather. By including the probabilistic

forecast of sector capacities, in this chapter, we propose a two-stage stochastic integer

programming model. As an extension of the existing studies, we include five possible

actions for flights in response to the convective weather. During the weather, flights

on the ground have the choices to hold on the ground till weather becomes clear,

to be cancelled if the weather in the future is forecasted to be not good enough to

pass through, or to change the speed of the aircraft so that the flight can avoid the

weather and fly through the sector in an alternative time. Since these actions are for

flights to make before the actual weather becomes known, ground-delay, cancellation,

and speed-change options are the first-stage decisions for the model. Besides, the

departed flights later in the air can find that the actual weather falls into one of the

possible weather forecasts. As a result, these flights can choose to divert to nearby

airports or to hold in the air for a short period of time depending on how good or bad

the weather will be. Since these actions are for flights to make after the weather is

realized, diversion and air-holding actions are the second-stage decisions for the model.

In addition, costs corresponding to each of these decisions are introduced for each

single flight. Then, given the flight schedule with flight time, the probabilistic sector

capacity forecasts, and the cost structures corresponding to each possible action, our

two-stage stochastic integer programming model determines how aircraft are sent
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towards a sector while the overall expected costs are minimized. In Section 3.1.1, we

make general assumptions for modeling the TFM. In Section 3.1.2, we present our

two-stage stochastic integer programming model. We then introduce the proposed

heuristic called ”rolling horizon method” to approach the two-stage stochastic integer

programming model in Section 3.2. Finally, we justify the rolling horizon method by

the Lagrangian relaxation technique in Section 3.3. We also present the computational

results after describing each method in each section.

3.1 Two-Stage Stochastic Integer Programming Model for
Traffic Flow Management Problem

3.1.1 General Assumptions

Air traffic flow system is very complicated not only in its wide 3-dimentional range but

also the time involving. Although the aircraft departures are scheduled in continuous

time horizon in real life, we need to discretize the time in order to have countable

number of periods. A typical implementation is 15-minute, as weather forecast is

updated every 15 minutes. For analysis purposes, we also need to introduce a discrete

probability distribution of sector capacities. Weather is discretized into good and bad

in each time period to generate weather scenarios. Take Figure 5(a) for example, at

time 0, we are about to make the decisions as how to send aircraft into the sector

and the time frame we are looking at is from time t to t+2. Two weather types

are assumed at each time, therefore, a total of eight scenarios are generated. If we

duplicate the nodes to match the number of scenarios, in Figure 5(b), each circle

contains three nodes to represent the weather situations from time t to t+2. We refer

each circle as a scenario.

Flights entering a sector can spend various amounts of time in that sector. We

assume that each flight entering the sector will leave the sector within one period,

that is, 15 minutes. This assumption is for the ease of implementation and can easily

be released without further difficulties. We also assume that the only congested area
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(a) Scenario tree generated by two weather
types

(b) Scenario-based representation

in the whole system is in the sector.

Departure time, cancellation, cruise speed, air-holding, and diversion decisions are

included in our model. Due to aircraft capabilities, cruise speed and air-holding can

be different for each flight. Airline policies may affect the ground-delay and diversion

decisions under different situations. As a result, we set bounds for each of these

decisions so that the model will not produce a solution set that is not implementable.

Cost structures corresponding to the five actions will be discussed in details in Section

3.1.3. Here, we list a summary of general assumptions for easy reference.

• Discrete time interval of 15 minutes, described as time period or period.

• Two levels of sector capacities, either good or bad, are known.

• Single-period occupation in sector for each flight.

• Possible congestion will occur only in a given sector.

• Flight schedule is known for each flight. In addition, the bounds for possible

schedule changes are known.

• Cost parameters corresponding to the five possible actions are known.
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3.1.2 The Two-Stage Stochastic Integer Programming Model

In this section, we first define the decision variables for the stochastic integer pro-

gramming model and their corresponding bound notations and cost parameters, and

then present the model. Although we have five sets of actions to be determined, the

ground-delay and speed-change decisions are incorporated into one set of decisions

variables. Therefore, we have four sets of decision variables, each of them determines

either yes or no to the corresponding questions such as ”Should the flight be departed

at time 1?” or ”Should the pilot divert the flight to a nearby airport?” As a result,

all the decision variables are binary.

xstm =

 1 if flight m is sent at time s and arrives the sector at time t

0 otherwise

ym =

 1 if flight m is cancelled

0 otherwise

qtm(ξ) =

 1 if flight m arrives the sector and diverts at time t under weather ξ

0 otherwise

ptum(ξ) =


1 if flight m arrives the sector at time t and enters the sector at time u

under weather ξ

0 otherwise

Let M be the set of flights and m be the index, as well as S be the set of time

periods and s, t, and u be the indices. Let bm be the scheduled departure period of

flight m and ∆km be the scheduled flight period of flight m from the origin airport to

the sector. As described, several bounds and cost parameters need to be determined.

For a better reference, we list the four sets of bounds and the corresponding costs

into two tables, see Tables 2 and 3, respectively.

Furthermore, the sector capacity and the corresponding probability at time t under

weather ξ are represented as Ct
ξt

and ptξt , respectively. As described in Figure 3.1.1,
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Table 2: List of bounds on possible flight actions

Parameters Description

∆sm Maximum number of periods flight m can be ground-
delayed

∆t+m Maximum number of periods flight m can be scheduled
to arrive early

∆t−m Maximum number of periods flight m can be scheduled
to arrive late

∆hm Maximum number of periods flight m can be air-held

Table 3: List of cost parameters

Parameters Description

gsm Ground delay cost for flight m if it is sent at time s

canm Cancellation cost for flight m

ct−s−∆km
m Speed change cost for flight m if it is sent at time s and

arrived the sector at time t

au−tm Air holding cost for flight m if it arrives the sector at
time t and enters the sector at time u

dm Diversion cost for flight m

we consider a set of consecutive periods at a time. As a result, the probability ps

for each scenario s will be calculated as ps = ptξt × p
t+1
ξt+1
× · · · × pt+nξt+n

, where t and n

depend on how we look at the problem and a series of ξt rely on the specific weather

types in scenario s.
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Two-stage stochastic program for traffic flow management problem:

min
∑
m∈M

{
bm+∆sm∑
s=bm

s+∆km+∆t−m∑
t=s+∆km−∆t+m

[ (
gsm + ct−s−∆km

m

)
· xstm

]
+ canm · ym

+

bm+∆sm+∆km+∆t−m∑
t=bm+∆km−∆t+m

[
dm · E

[
Qt
m (ξ)

]
+

t+∆hm∑
u=t

(
au−tm · E

[
Ptu
m (ξ)

] )]}
(8)

s.t.
∑
m∈M

∑
t

ptum (ξ) ≤ Cu
ξu ∀u, ξ (9)

qtm (ξ) +
t+∆hm∑
u=t

ptum (ξ) =
∑
s

xstm ∀t,m, ξ (10)

ym +
bm+∆sm∑
s=bm

s+∆km+∆t−m∑
t=s+∆km−∆t+m

xstm = 1 ∀m (11)

xstm ∈ {0, 1} ∀s, t,m (12)

ym ∈ {0, 1} ∀m (13)

ptum (ξ) ∈ {0, 1} ∀t, u,m, ξ (14)

qtm (ξ) ∈ {0, 1} ∀t,m, ξ (15)

The objective function (8) is to minimize the ground-delay, speed-change, and cancel-

lation costs plus the expected air-holding and diversion costs. Constraint (9) ensures

that the number of flights in the sector does not exceed sector capacity at every

time period u, the second summation sums t from max{bm + ∆km −∆t+m, u−∆hm}

to min{bm + ∆sm + ∆km + ∆t−m + ∆hm, u}. Constraint (10) ensures that each

sent flight will either divert or enter the sector during its allowed time periods,

the summation on the right-hand side sums s from max{bm, t − ∆km − ∆t−m} to

min{bm + ∆sm, t−∆km + ∆t+m}. Constraint (11) ensures that each flight will be sent

or cancelled exactly once. Constraints (12)-(15) ensure that all variables are binary.

Before presenting the detailed computational results in 3.1.4, we need to introduce

the sources of the defined parameters and the computational environment.
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3.1.3 Experimental Setting

In order to test our model, we need to gather the related information for the de-

fined parameters. We introduce the sources of the input data such as flight schedule,

costs, and sector capacity in this section. The information we gathered will be pro-

cessed based on the assumptions we made. The entire set of parameters will be used

throughout this thesis unless otherwise noted.

3.1.3.1 Flight Schedule

We extract the real flight schedule on June 1, 2007 from Bureau of Transportation

Statistics. Delta Airline and American Airline flights with destination Atlanta are

selected. Based on the assumption of discrete time interval of 15-minute, the flight

schedule will be handled by period instead of exact time. Because the weather is

uncertain and can not be correctly forecasted long beforehand, we include the flights

that are scheduled to arrive the sector within two hours (eight periods) so that the

produced decisions can be effectively used.

3.1.3.2 Cost Parameters

We divide the flights into two sets by aircraft types which are narrow body and wide

body. Narrow body aircraft has only one passenger aisle which includes B-737, B-757,

and MD-88, while wide body aircraft has two passenger aisles which includes B-767,

B-747, and MD-10.

Ground-delay and air-holding costs: Transport Studies Group in University

of Westminster (2004) provided a complete analysis of ”the cost of delay on the ground

and in the air” based on the aircraft types. We take their results and apply some

modifications. The generated two sets of costs are listed in Table 4 and Table 5. We

can see that both costs increase nonlinearly with the length of delay time. This can

be justified by the intuition that as the length of delay increases, the disconnection for

passengers will increase which results the increased costs. Based on these two tables,
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Table 4: Ground-delay costs

Delay period Wide body Narrow body

1 $463 $208

2 $4,569 $2,013

3 $8,906 $4,154

4 $14,276 $6,933

5 $20,680 $10,352

6 $28,116 $14,409

Table 5: Air-holding costs

Delay period Wide body Narrow body

1 $895 $394

2 $5,304 $2,396

3 $10,424 $4,846

4 $16,811 $7,977

5 $24,466 $11,790

6 $33,388 $16,284

we then assign the ground-delay and air-holding costs for each flight in accordance

with the aircraft body type that serves the particular flight.

Speed-change cost: An analysis by Liling Ren in the Air Transportation Labora-

tory at Georgia Tech provided fuel-burn curves for both narrow-body and wide-body

aircraft. The curves are depicted for flights at flight level 37,000 ft (FL370). When

analyzing the costs, we assume zero wind and that the aircraft fly at their optimal

speeds in terms of minimal fuel burn. Based on the optimal speed, we calculate the

increased fuel burn when either increasing or decreasing the aircraft speed for each

flight.

Cancellation cost: We estimate the number of passengers in each flight by mul-

tiplying the load ratio based on the Air Carrier Statistics T-100 Domestic Segment

on the BTS website and the nominal number of seats for each flight. In order to

evaluate the flight cancellation costs, we distinguish the passengers into two groups,
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which are direct passengers and connecting passengers. The destination of each origin-

destination pair is the place the connecting passengers make connections. Although

no regulation is forced to accommodate passengers due to weather, airlines still make

efforts to settle them. We assume that the flight cancellation compensation includes

meal voucher for all passengers and hotel accommodation for connection passengers.

The percentage of connecting passengers is obtained through Hartsfield-Jackson At-

lanta International Airport. Besides, when a flight is cancelled at gate, airlines still

need to pay some mandatory costs such as pilots, crew, and catering. We calculate

these based on the Air Carrier Financial Reports schedule P-52. Compensation to

the passengers and mandatory costs constitute the cancellation cost.

Diversion cost: According to Dr. Clarke’s conversation with American Airline,

the diversion cost is approximated to be around 40,000 US dollars for both aircraft

types.

3.1.3.3 Bounds

Four sets of bounds are constructed in our problem. Ground-delay bounds can be

determined by several factors such as aircraft connections or safety issues. We assume

a random number of periods when implementing the model. Speed-change (increase

and decrease) bounds can be decided by the specifications of the aircraft such as the

maximum speed an aircraft can be operated. We generate the bounds based on the

real flight time and aircraft speed. The air-holding bounds can be affected by not only

the aircraft capabilities but also the remaining fuel in the specific aircraft. Therefore,

a set of randomly chosen air-holding bounds are used.

3.1.3.4 Sector Capacity

Sector capacity estimation is the most difficult part of the input data since weather

can hardly be forecasted especially several hours into future. Since airspace is a

3-dimensional volume, tactical level reactions such as to alter aircraft trajectory or
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height can be taken so that the aircraft can still fly through a sector even if a storm

in within that sector. The flight route and height modifications can heavily rely

upon the meteorological data. To measure different aspects of weather, several kinds

of meteorological equipment are used. Over-flight can be assessed by storm height

metrics such as echo tops and no-fly zones can be established by looking at turbulence

metrics. An integration of data from all kinds of equipment is needed, however, it is

not an easy task to generate a single number to represent the sector capacity for a

period of time.

We have seen several studies trying to estimate the sector capacity in the presence

of inclement weather. Hunter and Ramamoorthy (2005) used route-based approach

to evaluate the reduction of sector capacity, which is proportional to the fraction

of routes that are judged to be unavailable that no alternate routes can avoid the

weather. Zobell, Wanke, and Song (2006) first identified a set of primary traffic flow

patterns based on which sectors the flights are from and to. Probabilistic weather fore-

casts were then used to determine the route blockage probability for each flow type,

which was then subtracted from the overall sector capacity. Based on the Corridor

Integrated Weather System (CIWS), which is operated by MIT Lincoln Laboratory

and provides both echo tops and precipitation data, Chen and Sridhar (2008) used

Weather-Impacted Traffic Index (WITI) to count flights that is affected by weather

within given areas. Martin, Evans, and DeLaura (2006) focused on ten en route sec-

tors that were highly congested and calculated the route blockage probability using

twenty convective weather days based on the algorithm developed by DeLaura and

Allen (2003). Statistical methods were used to generate a model to predict the route

blockage based on the weather forecast. In a recent technical interchange meeting

between Georgia Tech Air Transportation Laboratory and MIT Lincoln Laboratory,

we understand that Lincoln Laboratory has an undergoing project to collect CIWS

and Consolidated Storm Prediction Algorithm (CoSPA) data and translate them into
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a Flow Constrained Area (FCA) Capacity Forecast Matrix. The matrix provides fore-

casted sector capacities for every hour, and the numbers on the diagonal are the real

sector capacity, see Table 6. Nevertheless, single number of sector capacity is still

unavailable at the time we test our model. As a result, we randomly generate the

sector capacities and the corresponding probabilities for both high and low levels of

congestion.

Table 6: An FCA capacity forecast matrix illustration

8 9 10 11 12 13 14 15

8 23 31 34 37 27 22 20 25

9 31 28 34 22 27 23 21

10 30 35 25 12 20 22

11 32 26 14 15 25

12 27 10 13 23

13 8 10 27

14 10 28

15 30

3.1.3.5 Computation Environment

All computational work described in this thesis is performed by C application using

ILOG CPLEX Callable Library. CPLEX 12 is executed on RedHat Enterprise Linux

5 in 64 bit mode on a combination of three sets of systems, which include two 2.33GHz

Intel Xeon E5345 CPUs with 12GB RAM, two 2.66 GHz Intel Xeon E5430 CPUs with

32GB RAM, and two 2.26 GHz Intel Xeon E5520 CPUs with 24GB RAM.

3.1.4 Computational Results

Based on the assumptions made in Section 3.1.1 and the input data information de-

scribed in Section 3.1.3.1 through Section 3.1.3.4, a set of flight schedule is generated.

We then test our model in the environment described in Section 3.1.3.5. The com-

putational results for two-stage stochastic program of (8)-(15) are presented in Table
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7.

Table 7: Computational results for two-stage stochastic integer programming model

Flights
departure
periods

Periods
involved

Number of
scenarios

Number of
flights

Objective
value

Time
(sec)

1-1 4-13 1,024 22 26,230.07 4

1-2 4-13 1,024 27 30,563.07 6

1-3 4-14 2,048 28 30,563.07 15

1-4 4-16 8,192 31 30,708.07 122

1-5 4-17 16,384 35 30,715.07 304

1-6 4-17 16,384 44 30,838.07 341

1-7 4-18 32,768 52 31,015.07 3,880

1-8 4-19 65,536 60 n/a n/a

The first column shows the periods that the flights are scheduled to depart, the

second column describes the periods that the flights are entering the sector, the third

column includes the number of scenarios in this specific example, and the fourth

column depicts the number of flights included. Take the second row for example, ”1-

2” in the first column, ”4-13” in the second column, ”1,024” in the third column, and

27 in the fourth column indicate that in this particular instance, twenty-seven flights

are included and the scheduled departure time for these flights fall into period one

and two, and they are scheduled to enter the sector between time four and thirteen.

The fifth and sixth columns show the optimal value and the computational time.

To present the table in words, 31 flights scheduled to arrive within a 3.25-hour time

horizon case takes about 2 minutes to solve to optimal. A 44-flights case within 3.5-

hour horizon takes about 6 minutes to obtain the optimal schedule. Large amounts

of binary variables and the huge numbers of weather scenarios cause the long solution

time. In particular, the described environment can not solve to optimality for a 60

flights, 4-hour horizon problem due to the lack of memory to store the binary tree.

To understand how big the problems are, we summarize the number of columns and

36



rows for each instance in Table 8. Note that the number of rows does not include

the binary variable constraints. The number of columns and rows basically grow

proportionally as the number of scenarios increase, which are due to the length of

period involved.

Table 8: List of numbers of columns and rows for two-stage model

Flight
count

Number of
scenarios

Number of
columns

Number of
rows

22 1,024 178,294 81,942

27 1,024 221,315 97,307

28 2,048 458,888 204,828

31 8,192 2,064,538 925,727

35 16,384 4,718,770 2,129,955

44 16,384 5,865,690 2,572,332

52 32,768 14,123,271 6,062,132

60 65,536 32,047,412 13,959,228

Figure 5 depicts the cost composition for the instance presented in Table 7 by

different flight counts. We can see that in this particular example, the two-stage

model tends to cancel or ground-delay flights rather than counting on the future

weather uncertainties. Even if the weather turns to be bad, the flights are sent to the

sector so that no flights under inclement weather will be diverted. As a result, the

two-stage model leans to conservatively incur low prices in advance to avoid huge costs

incurred under severe weather. Although the two-stage SIP formulation seems not

too difficult, it takes minutes to solve to optimal. As the number of flights and the

number of periods involved increase, the computational time increases. Therefore,

we understand the importance to find an efficient way to solve the problem. In

the following section, we will present a heuristic to solve the two-stage SIP model

efficiently.
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Figure 5: Cost composition for two-stage model

3.2 Approaches to the Two-Stage Model: The Rolling Hori-
zon Method

In the previous section, we understand that it takes several minutes to solve the

two-stage stochastic integer programming model to optimality which is not ideal for

real-time decision making. After looking into the model, we realize that the main

reason for the long running time is due to the large number of scenarios. If we can

reduce the scenarios in some ways, we can probably efficiently improve the running

time. Here, we propose a heuristic which we refer to as the ”rolling horizon method,”

to approach the problem. The main idea of this heuristic is to reduce the number

of scenarios. As an example shown in Figure 6, the optimization problem includes

periods from four to fifteen which is twelve periods. A three-iteration rolling horizon

method includes three subproblems, each of them includes ten periods.
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Figure 6: An illustration of the rolling horizon method

3.2.1 The Rolling Horizon Method

The rolling horizon method decomposes the two-stage stochastic integer program by

time and solves those subproblems in a rolling fashion. The decomposed subproblems

include fewer periods than the original optimization model, as a result, the number of

scenarios is reduced. Since subproblems are solved in sequence, the sector capacities

need to be updated once the subproblem is solved. The ideas are as following.

Step 1. t = 0

Step 2. Do until all the fights in the original problem are analyzed

2.1 Select a set of fights according to time parameter setting

2.2 Run the modified two-stage stochastic program (16)

2.3 Subtract the capacity used

2.4 t = t + 1. Go to Step 2
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And the modified two-stage stochastic program is described here.

min
∑
m∈M

{
bm+∆sm∑
s=bm

s+∆km+∆t−m∑
t=s+∆km−∆t+m

[ (
gsm + ct−s−∆km

m

)
· xstm

]
+ canm · ym

+

bm+∆sm+∆km+∆t−m∑
t=bm+∆km−∆t+m

[
dm · E

[
Qt
m (ξ)

]
+

t+∆hm∑
u=t

(
au−tm · E

[
Ptu
m (ξ)

] )]}

s.t.
∑
m∈M

∑
t

ptum (ξ) ≤ Cu
ξu −

∑
m∈M

∑
t′

pt
′u
m (ξ) ∀u, ξ (17)

qtm (ξ) +
t+∆hm∑
u=t

ptum (ξ) =
∑
s

xstm ∀t,m, ξ

bm+∆sm∑
s=bm

s+∆km+∆t−m∑
t=s+∆km−∆t+m

xstm = 1 ∀m

xstm ∈ {0, 1} ∀s, t,m

ym ∈ {0, 1} ∀m

ptum (ξ) ∈ {0, 1} ∀t, u,m, ξ

qtm (ξ) ∈ {0, 1} ∀t,m, ξ

The t in (17) sums from max{bm + ∆km−∆t+m, u−∆hm} to min{bm + ∆sm + ∆km +

∆t−m + ∆hm, u}, and the t′ sums the same things but in the previous iteration.

The model presented here is essentially the same as the two-stage stochastic pro-

gramming model except for the first set of constraints (17). The rolling horizon

method solves the two-stage model in a rolling sense, which solves the problem by

dividing it into several smaller problems and solve by sequence. Therefore, the sector

capacity is updated using the previous iteration’s solutions, thus comes the first set

of constraints. To be more precise, the rolling horizon method chooses some flights in

the first iteration and solves it to optimal. Before going to the second iteration, the

sector capacity is updated according to the first iteration solutions. It then chooses

another set of flights with possibly repeated flights from the first iteration. The rolling

horizon method keeps solving the modified two-stage stochastic program until all the
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flights in the original problem are considered.

3.2.2 Computational Experiments

Besides the setting we already described in Section 3.1.3, we need further clarifications

on the parameter setting for the rolling horizon method. In 2.1 of (16), we mentioned

that we choose flights using additional criteria. We introduce two additional time

parameters. The first one of ”PD” is the number of periods that we mainly focus on

which describes the periods that flights are scheduled to enter the sector while the

second one of ”fuPD” is the number of periods that we deem as buffer periods that

only flights with modified schedule can enter the sector. For the ease of understanding,

we describe the flight schedule in Table 9. Different sets of flights are included when

different PDs are used. For example, if we set PD=9, then three iterations will be

involved. The first iteration includes flight 1, 2, 3, and 4, the second includes flight 3

and 4, and finally the third includes only flight 5. If we set PD=10, then two iterations

are involved. The first iteration includes flight 1, 2, 3, and 4, and the second iteration

includes flight 3, 4, and 5. And finally if we set PD=11, then only one iteration is

involved which includes all five flights. We keep the buffer periods defined by fuPD

small in order to obtain solutions within reasonable computational time. However,

a small fuPD such as two will not tolerate flight 2 to enter the sector in period

thirteen if we set PD=10, while the original two-stage model will. This is the trade-

off between computational time and solution quality. In the following computational

results tables, we implement different PDs to include different numbers of flights in

each iteration while keeping fuPD the same as two.

In addition to the PD and fuPD parameters, several important concepts during

the implementation are described below. Since we solve the rolling horizon method

every single period, some flights might be considered several times. Therefore, we

include the latest results from the rolling horizon method for those flights that are
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Table 9: Example of how flights are chosen in the rolling horizon method

m bm ∆km ∆t+m ∆t−m ∆sm ∆hm

1 1 6 0 1 1 1

2 1 8 0 3 1 0

3 2 4 0 1 0 0

4 2 7 0 2 1 1

5 3 8 0 1 0 0

Table 10: Solution format for the rolling horizon method

iteration 1 iteration 2 iteration 3

x1,10
1

x1,9
2

x1,10
3

x2,6
4 x2,6

4

x2,8
5 x2,10

5

x2,8
6 x3,10

6

x2,10
7 x2,11

7

x3,11
8 x3,11

8

x4,8
9 x4,8

9 x4,8
9

x4,11
10 x4,11

10

x4,12
11

repeated considered. The solution format of the rolling horizon method is shown in

Table 10 and the final departure decisions we will enventually execute are listed in

Table 11.

Each of the final departure decisions has different recourse actions based on the

weather realized. Suppose the solutions in the first column in Table 10 are optimized

under 16 weather scenarios, then each of the solutions in the first column will have 16

possible recourse-action solutions. Take the solution x1,9
2 for flight two for example,

the recourse-action solutions are listed in Table 12. The solutions tell us that under

weather scenarios 1, 2, 3, 9, 11, and 13, flight two will arrive and enter the sector at
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Table 11: Final solutions for the rolling horizon method

Final Departure Decisions

x1,10
1

x1,9
2

x1,10
3

x2,6
4

x2,10
5

x3,10
6

x2,11
7

x3,11
8

x4,8
9

x4,11
10

x4,12
11

time 9. Under weather scenarios 4, 7, 8, 10, and 14, flight two will arrive the sector

at time 9 and enter the sector at time 10. Under weather scenario 12, the flight will

circle around for 2 periods and enter the sector at time 11. Finally, when weather

scenarios 5, 6, 15, and 16 are realized, the flight will divert enventually.

Table 12: Second-stage solution format

p9,9
2 (1) q9

2(5) p9,9
2 (9) p9,9

2 (13)

p9,9
2 (2) q9

2(6) p9,10
2 (10) p9,10

2 (14)

p9,9
2 (3) p9,10

2 (7) p9,9
2 (11) q9

2(15)

p9,10
2 (4) p9,10

2 (8) p9,11
2 (12) q9

2(16)

Now, we present the computational results for comparisons between optimal ob-

jective values and the solutions obtained from the rolling horizon method in the

following three tables, each of them describes the ”modified objective value” from the

rolling horizon method under different PDs. We describe the optimality gap in the

last column.

From Table 13, 14, and 15, we can see that the rolling horizon method works very

well for the described set of flights. In one second or two, we have a set of reasonable
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Table 13: Computational results for two-stage rolling horizon method - PD=9

Solve to Optimality Rolling Horizon Method

Flights
depart

in
period

# of
flight

Objective
value

Time
(sec)

Period
Modified
objective

Time
(sec)

# of
iter-
ation

% from
optimal

1-1 22 26,230.07 4 4-13 26,230.07 1 1 0.00%

1-2 27 30,563.07 6 4-13 30,563.07 1 1 0.00%

1-3 28 30,563.07 15 4-14 30,628.07 1 3 0.21%

1-4 31 30,708.07 122 4-16 30,817.12 1 4 0.36%

1-5 35 30,715.07 304 4-17 30,825.11 1 5 0.36%

1-6 44 30,838.07 341 4-17 30,956.00 2 6 0.38%

1-7 52 31,015.07 3,880 4-18 31,140.08 3 6 0.40%

decisions that the overall expected costs are within 0.4 percent of optimal. Or, by

spending about 30 seconds, we can have the optimal decisions. Different PDs can be

chosen depending on how soon the controller needs the decisions.

3.2.3 Justification of the Rolling Horizon Method

In order to see if the rolling horizon method does provide good solutions to various

weather forecasts, in this section, different sets of examples will be tested.

As described in Section 3.1.3 that the bounds for ground-delay and air-holding and

the sector capacities with their corresponding probabilities are randomly generated

data, we produce another nine sets of random parameters to cover the deficiency as

well as to justify that the rolling horizon method is a good approach for the two-stage

stochastic program. Note that since we use the same set of flights, the number of

iterations for the rolling horizon method, which are shown in Table 13-15, do not

change.

Tables 16-20 give us an idea about how the rolling horizon method works. For

smaller flight counts such as 22, 27, and 28, a choice of PD=11 can give us the optimal

solution in about a minute while the original two-stage stochastic program can take
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Table 14: Computational results for two-stage rolling horizon method - PD=10

Solve to Optimality Rolling Horizon Method

Flights
depart

in
period

# of
flight

Objective
value

Time
(sec)

Period
Modified
objective

Time
(sec)

# of
iter-
ation

% from
optimal

1-1 22 26,230.07 4 4-13 26,230.07 2 1 0.00%

1-2 27 30,563.07 6 4-13 30,563.07 2 1 0.00%

1-3 28 30,563.07 15 4-14 30,628.07 2 2 0.21%

1-4 31 30,708.07 122 4-16 30,781.96 2 3 0.24%

1-5 35 30,715.07 304 4-17 30,789.32 2 4 0.24%

1-6 44 30,838.07 341 4-17 30,839.26 5 5 0.00%

1-7 52 31,015.07 3,880 4-18 31,020.73 8 5 0.02%

up to twenty minutes. For larger flight counts such as 31 and 35, a choice of PD=12

can provide solutions within 2 percent of the optimal in about a minute while the

original stochastic program can take up to hours. We do not list the comparison for

instances with larger flight counts since we could not obtain the optimal value for

most of them. In conclusion, the rolling horizon method provides good results within

reasonable computational time.

As we can see from Tables 7 that the computational systems are not able to

produce optimal solutions for the 60-flight case, we can not judge directly how the

rolling horizon method works. In order to obtain a reasonable conclusion about the

presented rolling horizon method, we will next implement the Lagrangian relaxation

methodology.

3.3 Lagrangian Relaxation

Lagrangian relaxation techniques usually provide high-quality bounds within a few

iterations for linear programs. We introduce the Lagrangian relaxation here since

we are trying to justify that the rolling horizon method gives a good estimate of

the original problem. In our cost-minimizing problem, the Lagrangian relaxation is
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Table 15: Computational results for two-stage rolling horizon method - PD=11

Solve to Optimality Rolling Horizon Method

Flights
depart

in
period

# of
flight

Objective
value

Time
(sec)

Period
Modified
objective

Time
(sec)

# of
iter-
ation

% from
optimal

1-1 22 26,230.07 4 4-13 26,230.07 4 1 0.00%

1-2 27 30,563.07 6 4-13 30,563.07 6 1 0.00%

1-3 28 30,563.07 15 4-14 30,563.07 6 1 0.00%

1-4 31 30,708.07 122 4-16 30,708.81 7 2 0.00%

1-5 35 30,715.07 304 4-17 30,715.29 9 3 0.00%

1-6 44 30,838.07 341 4-17 30,838.40 16 4 0.00%

1-7 52 31,015.07 3,880 4-18 31,017.81 23 4 0.01%

to produce a lower bound, which is obtained by relaxing one of the constraints in a

Lagrangian fashion. A penalty corresponding to the relaxed constraint is added to the

original objective function. Subgradient method is then used to find the maximum

possible lower bounds.

Although we can not see exactly the nonanticipativity constraints in the original

two-stage model, the constraints are actually implicitly included in the model. That

is because we only introduce one first-stage decision variable which corresponds to all

the second-stage scenarios. If we add additional first-stage decision variables so that

each of them corresponds to each of the second-stage scenario,

xstm ⇒ xstm (ξ) ∀ξ, and

ym ⇒ ym (ξ) ∀ξ,

then we need to add the explicit nonanticipativity constraints of

xstm (1) = xstm (ξ) ∀ξ 6= 1, and (18)

ym (1) = ym (ξ) ∀ξ 6= 1, (19)

to the original model.
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The nonanticipativity constraints of (18) and (19) are the only constraints that link

among scenarios. We can see this fact by ignoring the nonanticipativity constraints,

and find out that the problem can be decomposed by scenarios. As a result, the

nonanticipativity constraints are the constraints that we are going to relax. Lagrange

multipliers of λstm (ξ) ,∀ξ 6= 1 are introduced for not satisfying constraint (18) and

θm (ξ) ,∀ξ 6= 1 are placed for not satisfying constraint (19). Therefore,

λstm (ξ)
[
xstm (1)− xstm (ξ)

]
∀m, s, t, ξ 6= 1, and (20)

θm (ξ) [ym (1)− ym (ξ)] ∀m, ξ 6= 1 (21)

are added to the objective of the original two-stage model. We then form the La-

grangian relaxation problem as follows.

min
∑
m

{∑
s

∑
t

[
(g + c) · E

[
Xst
m (ξ)

]]
+ can · E

[
Ym (ξ)

]
+
∑
t

[
d · E

[
Qt
m (ξ)

]
+
∑
u

(
a · E

[
Ptu
m (ξ)

] )]}
(22)

+
∑
m

∑
s

∑
t

∑
ξ 6=1

λstm (ξ)
[
xstm (1)− xstm (ξ)

]
+
∑
m

∑
ξ 6=1

θm (ξ)
[
ym (1)− ym (ξ)

]
s.t.

∑
m

∑
t

ptum (ξ) ≤ Cu
ξu ∀u, ξ (23)

qtm (ξ) +
∑
u

ptum (ξ) =
∑
s

xstm (ξ) ∀t,m, ξ (24)

ym (ξ) +
∑
s

∑
t

xstm (ξ) = 1 ∀m, ξ (25)

xstm (ξ) ∈ {0, 1} ∀s, t,m, ξ (26)

ym (ξ) ∈ {0, 1} ∀m, ξ (27)

ptum (ξ) ∈ {0, 1} ∀t, u,m, ξ (28)

qtm (ξ) ∈ {0, 1} ∀t,m, ξ (29)

Let L(x, y, p, q) be the objective of the above described Lagrangian relaxation prob-

lem, then the problem can be decomposed by scenarios and the objective function
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can be presented as

L(x, y, p, q) =
∑
ξ∈Ξ

Lξ(x(ξ), y(ξ), p(ξ), q(ξ)), (30)

where L1(x(1), y(1), p(1), q(1))

=
∑
m

{∑
s

∑
t

[
(g + c) · p1 +

∑
ξ 6=1

λstm(ξ)
]
· xstm (1) +

[
can · p1 +

∑
ξ 6=1

θm(ξ)
]
· ym (1)

+
∑
t

[
d · qtm(1) +

∑
u

a · ptum(1)
]
· p1

}
, and

Lξ(x(ξ), y(ξ), p(ξ), q(ξ))

=
∑
m

{∑
s

∑
t

[
(g + c) · pξ − λstm(ξ)

]
· xstm (ξ) +

[
can · pξ − θm(ξ)

]
· ym (ξ)

+
∑
t

[
d · qtm(ξ) +

∑
u

a · ptum(ξ)
]
· pξ

}
, ∀ξ 6= 1.

The problem (22)-(29) provides a lower bound for the original two-stage stochastic

program. Let the optimal value of problem (22)-(29) be Z2(LR), then we introduce

the Lagrangian dual problem as

max Z2(LR) (31)

in order to obtain a tighter lower bound. Here, since the nonanticipativity constraints

we relaxed are equalities, the corresponding Lagrange multipliers are unrestricted in

sign. As a result, problem (31) subjects to nothing.

3.3.1 Computational Results

Problem (31) is a nondifferentiable optimization issue which can be solved by the

subgradient method (Fisher (1981)). It solves problem (31) sequentially by updating

several parameters. Given initial values of defined λ0(ξ) and θ0(ξ), ξ 6= 1, sets of

λk(ξ) and θk(ξ), ξ 6= 1 can be updated by

λk+1(ξ) = λk(ξ) + αk ·
[
xk (1)− xk (ξ)

]
∀ξ 6= 1, and (32)

θk+1(ξ) = θk(ξ) + βk ·
[
yk (1)− yk (ξ)

]
∀ξ 6= 1, (33)
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respectively. αk and βk are called the stepsizes at iteration k, while xk (ξ) and yk (ξ)

are the optimal solutions for the decomposed-by-scenario problems of (22)-(29). The

initial values of λ0 and θ0 can be chosen randomly, here, we set them to zeros.

Choice of stepsizes is important so that a good lower bound can be reached within

reasonable computational time. Rules to update the stepsizes include

αk =
1

k
, (34)

αk = α0 · ρk, 0 < ρ < 1, and (35)

αk =
Ẑ(LR)− Z(LR)k

‖sk‖2 ρk, (36)

where 0 < ρ < 1, s is the subgradient, and Ẑ(LR) is an estimate of the optimal value

of problem (31). Although these rules are common in the existing studies, we find

that the subgradient method with these rules does not provide good bounds for our

two-stage model. As a result, alternative stepsize rules of

α0 ∈ R+, αk+1 =
αk

κ
and (37)

β0 ∈ R+, βk+1 =
βk

ν
, (38)

are used, where κ and ν are small numbers to make
{
αk
}

and
{
βk
}

converge, re-

spectively. Note that big numbers of κ and ν can cause the series of
{
αk
}

and
{
βk
}

,

respectively, to converge quickly but to a bad lower bound. However, it is not an easy

task to find a reasonable combination of α0, β0, κ and ν. Several sets of parameters

need to be tested by trial-and-error.

We first present the comparison among different sets of parameters used in the

subgradient method for the twenty-two-flight case. Table 21 lists the parameter values

and their corresponding best lower bound produced by running for 2,000 iterations.

The paths of the objective calculations of two selected sets of parameters are depicted

in Figure 7. Each point on the plot represents a lower bound calculated by the

subgradient method. The points in the α = β = 0.06 curve do not zigzag very much
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compared to the α = β = 1 curve. As a result, the α = β = 0.06 curve converges to

the optimal value quicker than the α = β = 1 curve. By both Table 21 and Figure 7,

we can see that the choice of the stepsizes plays an important role in the subgradient

method.

Table 21: List of different parameters in subgradient method for two-stage model,
flight count=22

α0 κ β0 ν lower bound

0.01 1.001 0.01 1.001 25,383.74

0.05 1.001 0.05 1.001 26,180.40

0.10 1.001 0.10 1.001 26,206.51

0.15 1.001 0.15 1.001 26,186.64

0.20 1.001 0.20 1.001 26,160.95

0.30 1.001 0.30 1.001 26,089.61

0.40 1.001 0.40 1.001 25,873.78

0.50 1.001 0.50 1.001 25,817.04

1.00 1.001 1.00 1.001 25,122.88

The subgradient method implementations with stepsize rules (37) and (38) run-

ning for 6,000 iterations together with the optimization model and the rolling horizon

method are presented in Table 22 for a complete comparison. RHM stands for the

rolling horizon method and LR represents the Lagrangian relaxation method using

subgradient method implementation. Note that the gap presented in the last column

is calculated by the ratio of OPT−LR
OPT

× 100% if the optimal value exists and by the

ratio of RHM−LR
RHM

×100% if the optimal value can not be obtained. We can see that the

Lagrangian relaxation with subgradient method implementation does provide good

lower bounds for the original two-stage problem.

The subgradient method produces good lower bounds for each case, however, the

time to obtain the lower bound can heavily depend on the number of iterations we

run which affects the solution quality a lot. To give an idea about the time we
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Figure 7: Comparison of paths between two parameters for two-stage model, flight
count=22

spent in order to obtain the lower bound shown in Table 22, we list the detailed

computational time in Table 23. In addition to the long computational time to

obtain lower bounds, we need to set different sets of parameters in order to avoid

early convergence and obtain a reasonable bound which has been discussed earlier. In

conclusion, subgradient method provides good lower bounds, but the computational

work is cumbersome.

It is worth noting that, at the very beginning, we implement the subgradient

method by writing the subproblem formulation to a .LP file. CPLEX reads the

file and solves it. But the computational time for doing so is lengthy. Later, we

construct the coefficient matrix and store it in the memory so that only right-hand-

side of constraint (23) and the objective coefficient need to be updated in different

scenarios ξ. Indeed, this technique improves the computational time by eight times

which makes the subgradient method implementation possible.
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Table 22: Computational comparison among optimality, rolling horizon method,
and Lagrangian relaxation for two-stage model

flight OPT RHM LR % from

count value (UB) (LB) optimal/UB

22 26,230.07 26,230.07 26,229.85 0.00%

27 30,563.07 30,563.07 30,562.60 0.00%

28 30,563.07 30,563.07 30,562.25 0.00%

31 30,708.07 30,708.81 30,706.19 0.01%

35 30,715.07 30,715.29 30,713.26 0.01%

44 30,838.07 30,838.40 30,836.32 0.01%

52 31,015.07 31,017.81 31,011.56 0.01%

60 n/a 32,138.21 31,997.71 0.44%

Among different sets of parameters we tested, one of them produces the best lower

bound which is listed in Table 24. In accordance with these parameters, we plot the

objective calculation paths for different flight counts in Figure 8-15. Note that except

for sixty-flight case that the horizontal line is depicted by the objective produced by

the rolling horizon method, other cases are by the optimal objective value. We can see

from these figures that although we run the subgradient method for 6,000 iterations,

the method can actually produce a reasonable lower bound in about 2,000 iterations.

Therefore, to implement the subgradient method, we need to leverage between the

computational quality and computational time.
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Table 23: Computational time of the subgradient method for two-stage model

flight
count

number of
scenario

# of
iteration

total
time
(sec)

second/
iteration

second
/scenario

22 1,024 6,000 8,444 1.41 0.001374

27 1,024 6,000 9,915 1.65 0.001614

28 2,048 6,000 21,507 3.58 0.001750

31 8,192 6,000 90,418 15.07 0.001840

35 16,384 6,000 198,809 33.13 0.002022

44 16,384 6,000 277,844 46.31 0.002826

52 32,768 6,000 605,600 100.93 0.003080

60 65,536 6,000 1,433,090 238.85 0.003645

Table 24: List of parameters in subgradient method producing the best lower bounds
for two-stage model

flight
count

α0 κ β0 ν

22 0.06 1.001 0.06 1.001

27 0.08 1.001 0.08 1.001

28 0.08 1.001 0.08 1.001

31 0.03 1.001 0.03 1.001

35 0.02 1.001 0.20 1.001

44 0.015 1.001 0.30 1.001

52 0.01 1.001 0.40 1.001

60 0.015 1.001 0.015 1.001
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Figure 8: Path of subgradient method for two-stage model, flight count=22

Figure 9: Path of subgradient method for two-stage model, flight count=27
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Figure 10: Path of subgradient method for two-stage model, flight count=28

Figure 11: Path of subgradient method for two-stage model, flight count=31
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Figure 12: Path of subgradient method for two-stage model, flight count=35

Figure 13: Path of subgradient method for two-stage model, flight count=44
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Figure 14: Path of subgradient method for two-stage model, flight count=52

Figure 15: Path of subgradient method for two-stage model, flight count=60
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CHAPTER IV

MULTISTAGE STOCHASTIC PROGRAMMING

APPROACH TO

TRAFFIC FLOW MANAGEMENT PROBLEM

We have introduced the two-stage stochastic programming approach in previous chap-

ter. The next idea is to extend the two-stage model to a multistage stochastic pro-

gram. As described in Section 1.2.2, multistage stochastic programs can further the

two-stage models by introducing additional decision points. These additional decision

points may benefit the whole decision process by providing more accurate forecast

for the future and give better solutions in terms of overall expected costs. In this

chapter, we will explain how multistage stochastic models can be incorporated into

the traffic flow management problem.

The problem description follows Chapter 3, that is, we want to decide how aircraft

are sent under convective weather. Airspace sector is the only constrained place.

Five possible flight actions are included in the problem and weather is modeled by

different scenarios. For flights on the ground, decisions such as when the flights will

be departing, what their cruise speeds are, or if we should cancel the flights are made.

After the weather becomes known and one of the weather scenarios is realized, for

aircraft already in the air, they can be accepted into the sector, be held in the air for

a short period of time, or be diverted to nearby airports. These decisions are made

consecutively in a multistage TFM problem, which is illustrated in Figure 16.

A multistage problem is different from a two-stage problem solving by rolling

horizon method. Suppose we have n periods in a problem. A two-stage model distin-

guishes the n periods so that decisions made before and after the realized uncertain
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Figure 16: An illustration of multistage problem in traffic flow management

factors are separated into two different stages. The rolling horizon method solves n

periods in sequence based on the same realization of the uncertainty. However, a

multistage problem defines the n periods into several stages while several realizations

of the uncertain factors are taking place. A stochastic program including all these

realizations is solved at a time. Therefore, a multistage model is bigger in size and

harder to solve, compared with the two-stage stochastic program.

The idea of a multistage model is described, however, in order to implement a

multistage stochastic program, we need to set up a number for the number of stages.

In the following, we will introduce a three-stage stochastic program for the traffic

flow management problem. Further implementations of four-stage, five-stage, and

so on are possible, but the problems might be too big resulting unreasonable long

computational time.

In Section 4.1, we introduce the three-stage stochastic integer programming model.

Then the rolling horizon method is tested on the multistage model in Section 4.2.
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Finally, Lagrangian relaxation technique is applied to the multistage model in Section

4.3. We will present the computational results corresponding to the methods we

introduced in each section.

4.1 Three-Stage Stochastic Integer Programming Model for
Traffic Flow Management Problem

General assumptions such as discrete time and weather are fully described in Section

3.1.1. In addition, we introduce the concepts that will be used in the three-stage

model. Assume we are at time 0 and are about to make decisions as how aircraft

are sent toward the sector. In a three-stage model, we introduce additional deci-

sion point, which can be determined by when the weather forecast is going to be

updated. Let it be time one, representing that the forecast is updated quarter-hour

later. Suppose at time one, we can be more certain about weather in the future

which is the case if the forecast improves over time. Therefore, by including both the

current weather forecast at time zero and the predicted weather forecast at time, a

three-stage stochastic programming model can be constructed. In Figure 17(a), we

can see that by assuming two different types of weather realizations at time one, the

tree grows from eight scenarios into sixteen scenarios, compared with Figure 5(a). We

will implement the three-stage model as depicted in Figure 17(a) as it involves with

fewer decision variables and constraints. Figure 17(b) describes the scenario-based

implementation for three-stage model.

Without loss of generality, the second decision point can be set at any time.

That is, we can update the future weather when it is predicted to become available.

However, in order for the additional decision point to be valuable, we need to set it

up so that it falls before the last period that the flights enter the sector. Moreover,

for the additional decision point to benefit the most, we want it to be set between

current period and the first period that the flights enter the sector. Take schedule

presented in Table 9 for example, second decision point can be set between period
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(a) Scenario tree generated by two weather
types

(b) Scenario-based representation

Figure 17: Implementations of three-stage stochastic programming model

zero and period thirteen (max{bm + ∆km + ∆t−m + ∆sm + ∆hm} = 13). But if we set

it between current period and period six (min{bm + ∆km} = 6), all possible weather

realizations and flight schedule will be included so that the three-stage model will

perform the best.

4.1.1 The Three-Stage Stochastic Integer Programming Model

Except for the decisions variables, notations such as bounds and cost parameters

are follow as introduced in Table 2 and 3, respectively. In order to distinguish the

decisions made in different stages in the three-stage model, we disregard the decision
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variables described in previous chapter and define sets of new decision variables here.

The superscript n, n = 1, 2, or 3 on each variable represents that the specific variable

is the decision made in the nth stage. All the decision variables are binary as they are

corresponding to yes-no questions. For n = 1, we have only x1 and y1 representing

the departure decisions.

xst1m =


1 if flight m is sent at time s and reaches the sector at time t in first

stage

0 otherwise

y1
m =

 1 if flight m is cancelled in first stage

0 otherwise

Based on the first weather realization, in the second stage, we have recourse actions

q2(ξ1) and p2(ξ1) corresponding to the first-stage decisions. In addition, second-

stage departure decisions of x2(ξ1) and y2(ξ1) are made according to the first weather

realization as well.

qt2m (ξ1) =


1 if flight m reaches the sector and diverts at time t under

weather ξ1 in second stage

0 otherwise

ptu2
m (ξ1) =


1 if flight m reaches the sector at time t and enters the sector

at time u under weather ξ1 in second stage

0 otherwise

xst2m (ξ1) =


1 if flight m is sent at time s and reaches the sector at time t under

weather ξ1 in second stage

0 otherwise

y2
m (ξ1) =

 1 if flight m is cancelled under weather ξ1 in second stage

0 otherwise

Finally, after the second weather realization, recourse actions of q3(ξ2) and p3(ξ2)
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corresponding to the second-stage departure decisions are made in the third stage.

qt3m (ξ2) =


1 if flight m reaches the sector and diverts at time t under

weather ξ2 in third stage

0 otherwise

ptu3
m (ξ2) =


1 if flight m reaches the sector at time t and enters the sector

at time u under weather ξ2 in third stage

0 otherwise

In addition, the probability ps for each scenario s will be calculated that ps =

pi× ptξt × p
t+1
ξt+1
× · · · × pt+nξt+n

, where pi represents the probability that the weather will

be realized as type i, i = 1, 2 in the second stage, t and n depend on how we look at

the problem, and a series of ξt rely on the specific weather types in scenario s.

68



Three-stage stochastic program for traffic flow management problem:

min
∑
m∈M

{∑
s

∑
t

[ (
gsm + ct−s−∆km

m

)
· xst1m

]
+ canm · y1

m

+
∑
t

[
dm · E

[
Qt2
m (ξ1)

]
+

t+∆hm∑
u=t

(
au−tm · E

[
Ptu2
m (ξ1)

] )]
+
∑
s

∑
t

[ (
gsm + ct−s−∆km

m

)
· E
[
Xst2
m (ξ1)

]]
+ canm · E

[
Y2
m (ξ1)

]
+
∑
t

[
dm · E

[
Qt3
m (ξ2)

]
+

t+∆hm∑
u=t

(
au−tm · E

[
Ptu3
m (ξ2)

] )]}
(39)

s.t.
∑
m∈M

∑
t

[
ptu2
m (ξ1) + ptu3

m (ξ2)
]
≤ Cu

ξu ∀u, ξ1, ξ2 (40)

qt2m (ξ1) +
t+∆hm∑
u=t

ptu2
m (ξ1) =

∑
s

xst1m ∀t,m, ξ1 (41)

qt3m (ξ2) +
t+∆hm∑
u=t

ptu3
m (ξ2) =

∑
s

xst2m (ξ1) ∀t,m, ξ1, ξ2 (42)

bm+∆sm∑
s=bm

s+∆km+∆t−m∑
t=s+∆km−∆t+m

[
xst1m + xst2m (ξ1)

]
+ y1

m + y2
m (ξ1) = 1 ∀m, ξ1 (43)

xst1m ∈ {0, 1} ∀s, t,m (44)

xst2m (ξ1) ∈ {0, 1} ∀s, t,m, ξ1 (45)

y1
m ∈ {0, 1} ∀m (46)

y2
m (ξ1) ∈ {0, 1} ∀m, ξ1 (47)

ptu2
m (ξ1) ∈ {0, 1} ∀t, u,m, ξ1 (48)

ptu3
m (ξ2) ∈ {0, 1} ∀t, u,m, ξ2 (49)

qt2m (ξ1) ∈ {0, 1} ∀t,m, ξ1 (50)

qt3m (ξ2) ∈ {0, 1} ∀t,m, ξ2 (51)

Due to the typesetting, we comment some of the summations in words. In the

first and third lines of the objective function, the s sums from bm to bm + ∆sm while

the t sums from s+ ∆km −∆t+m to s+ ∆km + ∆t−m. The t in the second and fourth

lines sums from bm + ∆km −∆t+m to bm + ∆sm + ∆km + ∆t−m.
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The objective function (39) contains four lines. The first line is the summation

of the ground-delay, speed-change, and cancellation costs in the first stage while the

second line contains the expected air-holding and diversion costs in the second stage.

The third line of the objective function includes the second-stage expected ground-

delay, speed-change, and cancellation costs while the fourth line sums the expected

air-holding and diversion costs in the third stage. Constraint (40) ensures that the

number of flights in the sector does not exceed the sector capacity. Constraints (41)

and (42) ensure that each sent flight will either be diverted or be accepted by the

sector in second and third stages, respectively. Constraint (43) ensures that every

flight in the problem will be sent or cancelled exactly once either in the first or

second stages. Constraints (44)-(51) ensure that all the decision variables are binary.

4.1.2 Experimental Setting

The experimental setting follows the descriptions in Section 3.1.3. In addition, in

three-stage model, we need to define pi, i = 1, 2, which are the probabilities for the

weather realizations at the second decision point. As a result, we need two sets of

sector capacities and corresponding probabilities. In the following implementations,

we will utilize the weather forecast as used in two-stage model for i = 1, and generate

another weather forecast for i = 2. Per the difficulties described in Section 3.1.3.4,

here, we will randomly generate the second set of weather forecast.

4.1.3 Computational Results

Based on the computational setting described in the previous section, we test our

three-stage model in the environment introduced in Section 3.1.3.5. The computa-

tional results for the three-stage model are presented in Table 25. We can see that due

to the increased number of scenarios, the capabilities to produce optimal solutions

for the three-stage model decrease.

Compared with Table 7, we can see that the three-stage model indeed improves the
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Table 25: Computational results for three-stage stochastic integer programming
model

Flights
departure
periods

Periods
involved

Number of
scenarios

Number of
flights

Objective
value

Time
(sec)

1-1 4-13 2,048 22 23,916.18 55

1-2 4-13 2,048 27 29,402.30 79

1-3 4-14 4,096 28 29,404.99 182

1-4 4-16 16,384 31 30,008.38 4,783

1-5 4-17 32,768 35 30,050.45 9,996

1-6 4-17 32,768 44 n/a n/a

objective value. We plot the objective values in Figure 18 for a comparison between

two- and three- stage models.

Figure 18: Comparison between 2- and 3-stage models

To compare how big the problems are with two-stage model, we summarize the

number of columns and rows for each instance in Table 26. The number of constraints

does not include the binary variables. The number of columns and rows basically

doubled compared with two-stage model which is due to the additional stage.
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Table 26: List of numbers of columns and rows for three-stage model

Flight
count

Number of
scenarios

Number of
columns

Number of
rows

22 2,048 357,024 164,024

27 2,048 443,193 194,784

28 4,096 918,360 409,834

31 16,384 4,129,734 1,851,654

35 32,768 9,438,294 4,260,142

44 32,768 11,732,314 5,144,950

Figure 19 depicts the cost composition for the instance presented in Table 25

by different flight counts. We can see that for this particular example, similar to

the two-stage model, the three-stage model tends to cancel or ground-delay flights

rather than sending out them, which will face future weather uncertainties. In those

scenarios that the weather turns to be bad, the flights are sent to the sector so that

only a few flights under inclement weather will be diverted. As a result, we say that

the three-stage model leans to conservatively incur low prices before the realizations

of uncertainties to avoid huge costs resulted in severe weather.

It is interesting to see that almost all costs incurred in the three-stage model come

from the decisions made in the second decision point. The only cost results in the

first decision is the speed-change cost. See Figure 20 for the comparison. We can

draw conclusion for this specific example that the three-stage model tends to make

decisions when more weather information is available.

The example above shows that it takes almost three hours to solve a 35-flight case,

which is inapplicable to real-time problem-solving. We have seen in Section 3.2 about

the successful implementations of the rolling horizon method, here, we will test the

rolling horizon method again on the three-stage model.
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Figure 19: Cost composition for three-stage model

4.2 Approaches to the Three-Stage Model: The Rolling
Horizon Method

The ideas and techniques used in the two-stage rolling horizon method remain the

same as described previously. And as the assumption made in the three-stage model

that the second decision point is at time one, the three-stage rolling horizon method

still keeps it.

4.2.1 The Rolling Horizon Method

The steps for three-stage rolling horizon method follow (16) and the modified three-

stage stochastic program is described as (39)-(51) except that (40) should be replaced

as follows.

∑
m∈M

∑
t

[
ptum (ξ1) + ptum (ξ2)

]
≤ Cu

ξu −
∑
m∈M

∑
t′

[
ptum (ξ1) + ptum (ξ2)

]
∀u, ξ1, ξ2 (52)

The t in the left-hand side of (52) sums from max{bm + ∆km − ∆t+m, u − ∆hm} to

min{bm + ∆sm + ∆km + ∆t−m + ∆hm, u}, and the t′ in the right-hand side sums the
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Figure 20: Comparison of speed-change costs in different stages

same things but in the previous iteration. The sector capacity is updated to account

for the capacities used by aircraft in the previous iteration.

4.2.2 Computational Experiments

The comparison between the solutions from the three-stage stochastic program and

the rolling horizon method is presented in Table (27)-(29). The ideas of PD and fuPD

are the same as defined in Section 3.2.2. PD indicates the number of periods that we

mainly focus on so that the flights scheduled to reach the sector during these periods

will be included, while fuPD is the buffer periods that only flights with modified

schedule can enter the sector during these periods. Table (27), (28), and (29) show

the computational results for PD=9, 10, and 11, while the fuPD is set to two in all

instances.

The rolling horizon method gives good results within reasonable time. For an

extreme large instance that takes about three hours to solve optimally, the rolling
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Table 27: Computational results for three-stage rolling horizon method - PD=9

Solve to Optimality Rolling Horizon Method

Flights
depart

in
period

# of
flight

Objective
value

Time
(sec)

Period
Modified
objective

Time
(sec)

# of
iter-
ation

% from
optimal

1-1 22 23,916.18 55 4-13 24,437.46 3 1 2.18%

1-2 27 29,402.30 79 4-13 30,359.27 4 1 3.25%

1-3 28 29,404.99 182 4-14 30,360.07 5 3 3.25%

1-4 31 30,008.38 4,783 4-16 31,050.15 4 4 3.47%

1-5 35 30,050.45 9,996 4-17 31,061.90 4 5 3.37%

1-6 44 n/a n/a 4-17 31,702.18 8 6 n/a

Table 28: Computational results for three-stage rolling horizon method - PD=10

Solve to Optimality Rolling Horizon Method

Flights
depart

in
period

# of
flight

Objective
value

Time
(sec)

Period
Modified
objective

Time
(sec)

# of
iter-
ation

% from
optimal

1-1 22 23,916.18 55 4-13 23,916.18 22 1 0.00%

1-2 27 29,402.30 79 4-13 29,402.30 12 1 0.00%

1-3 28 29,404.99 182 4-14 29,408.72 13 2 0.01%

1-4 31 30,008.38 4,783 4-16 30,075.74 14 3 0.22%

1-5 35 30,050.45 9,996 4-17 30,122.08 16 4 0.24%

1-6 44 n/a n/a 4-17 30,746.53 70 5 n/a

horizon method produces an modified objective that is within 0.01 percent of the op-

timal value in less than one minute. To approach a real-life flight schedule, the rolling

horizon method does really good by providing near-optimal solutions in seconds.

4.3 Lagrangian Relaxation

In order to justify the rolling horizon method for those cases without optimal solu-

tions, we apply the Lagrangian relaxation technique to approach the optimal objective
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Table 29: Computational results for three-stage rolling horizon method - PD=11

Solve to Optimality Rolling Horizon Method

Flights
depart

in
period

# of
flight

Objective
value

Time
(sec)

Period
Modified
objective

Time
(sec)

# of
iter-
ation

% from
optimal

1-1 22 23,916.18 55 4-13 23,916.18 55 1 0.00%

1-2 27 29,402.30 79 4-13 29,402.30 36 1 0.00%

1-3 28 29,404.99 182 4-14 29,404.99 40 1 0.00%

1-4 31 30,008.38 4,783 4-16 30,011.09 46 2 0.01%

1-5 35 30,050.45 9,996 4-17 30,054.24 49 3 0.01%

1-6 44 n/a n/a 4-17 30,663.20 88 4 n/a

value. Similar to the Lagrangian relaxation method done for the two-stage stochas-

tic program, we are going to relax the nonanticipativity constraints in Lagrangian

fashion. However, our decision variables are defined so that no explicit nonanticipa-

tivity constraints are listed in problem (39)-(51), see Figure 17(a) for illustration. As

a result, we need to add decision variables to first and second stages so that each

variable corresponds to each of the third-stage scenarios. Decision variables added

for first-stage variables are

xst1m ⇒ xst1m (ξ2) ∀ξ2, and (53)

y1
m ⇒ y1

m (ξ2) ∀ξ2, (54)

and for second-stage variables are

qt2m(ξ1)⇒ qt2m (ξ2) ∀ξ2, (55)

ptu2
m (ξ1)⇒ ptu2

m (ξ2) ∀ξ2, (56)

xst2m (ξ1)⇒ xst2m (ξ2) ∀ξ2, and (57)

y2
m(ξ1)⇒ y2

m (ξ2) ∀ξ2. (58)

If we let Ω2 be the set of possible weather realizations in the third stage, each of (53)

and (54) expands the number of first-stage decision variables from one to ‖Ω2‖ while
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each of (55)-(58) expands the number of second-stage decision variables from two to

‖Ω2‖. Note that all variables we constructed in (53)-(58) are also binary.

The next step is to add explicitly the nonanticipativity constraints to the (39)-(51)

model. For (53) and (54), the values of all the replicas should be the same. Therefore,

nonanticipativity constraints can be described by (59) and (60).

xst1m (1) = xst1m (ξ2) ∀ξ2 6= 1 (59)

y1
m (1) = y1

m (ξ2) ∀ξ2 6= 1 (60)

For (55)-(58), it is a little tricky to add the nonanticipativity constraints. Note

that each of the right-hand side of (55)-(58) is duplicated from two second-stage

variables. As a result, not all of the duplicated variables are equal. Instead, they can

be distinguished by two sets, which correspond to two different decisions made in the

second-stage. If we let Ξa be the set of ξ2 such that 1 < ξ2 ≤ ‖Ω2‖
2

, Ξb be the set

of ξ2 such that ‖Ω2‖
2

+ 1 < ξ2 ≤ ‖Ω2‖, and k = ‖Ω2‖
2

+ 1, then the nonanticipativity

constraints correspond to (55)-(58) can be described by (61)-(68), which are described

in details in the following.

constraint (55)⇒ qt2m(1) = qt2m (ξ2) ∀ξ2 ∈ Ξa (61)

constraint (55)⇒ qt2m(k) = qt2m (ξ2) ∀ξ2 ∈ Ξb (62)

constraint (56)⇒ ptu2
m (1) = ptu2

m (ξ2) ∀ξ2 ∈ Ξa (63)

constraint (56)⇒ ptu2
m (k) = ptu2

m (ξ2) ∀ξ2 ∈ Ξb (64)

constraint (57)⇒ xst2m (1) = xst2m (ξ2) ∀ξ2 ∈ Ξa (65)

constraint (57)⇒ xst2m (k) = xst2m (ξ2) ∀ξ2 ∈ Ξb (66)

constraint (58)⇒ y2
m(1) = y2

m (ξ2) ∀ξ2 ∈ Ξa (67)

constraint (58)⇒ y2
m(k) = y2

m (ξ2) ∀ξ2 ∈ Ξb (68)

If we replace decision variables by (53)-(58) and add constraints (59)-(68) to stochastic

program (39)-(51), then the nonanticipativity constraint (59)-(68) are the only linking
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constraints among scenarios. Therefore, the three-stage model can be decomposed

by scenario ξ2 if we relax the nonanticipativity constraints. Lagrangian multipliers of

λst1m (ξ2), ∀ξ2 6= 1 is introduced for not satisfying constraint (59) and θ1
m(ξ2), ∀ξ2 6= 1

is placed for not satisfying constraint (60). In addition, for all ξ2 ∈ Ξa, π
t2a
m (ξ2),

µtu2a
m (ξ2), λst2am (ξ2), and θ2a

m (ξ2) are the Lagrange multipliers introduced for not sat-

isfying constraints (61), (63), (65), and (67), respectively. For all ξ2 ∈ Ξb, π
t2b
m (ξ2),

µtu2b
m (ξ2), λst2bm (ξ2), and θ2b

m(ξ2) are the Lagrange multipliers introduced for not satis-

fying constraints (62), (64), (66), and (68), respectively. Note that the constraints

(59)-(68) we relaxed are equalities, therefore, the corresponding Lagrange multipliers

are unrestricted in sign. Furthermore, (69)-(78) are added to the objective function

of the three-stage model.

λst1m (ξ2)
[
xst1m (1)− xst1m (ξ2)

]
∀ξ2 6= 1 (69)

θ1
m(ξ2)

[
y1
m (1)− y1

m (ξ2)
]

∀ξ2 6= 1 (70)

πt2am (ξ2)
[
qt2m(1)− qt2m (ξ2)

]
∀ξ2 ∈ Ξa (71)

πt2bm (ξ2)
[
qt2m(k)− qt2m (ξ2)

]
∀ξ2 ∈ Ξb (72)

µtu2a
m (ξ2)

[
ptu2
m (1)− ptu2

m (ξ2)
]

∀ξ2 ∈ Ξa (73)

µtu2b
m (ξ2)

[
ptu2
m (k)− ptu2

m (ξ2)
]

∀ξ2 ∈ Ξb (74)

λst2am (ξ2)
[
xst2m (1)− xst2m (ξ2)

]
∀ξ2 ∈ Ξa (75)

λst2bm (ξ2)
[
xst2m (k)− xst2m (ξ2)

]
∀ξ2 ∈ Ξb (76)

θ2a
m (ξ2)

[
y2
m(1)− y2

m (ξ2)
]

∀ξ2 ∈ Ξa (77)

θ2b
m(ξ2)

[
y2
m(k)− y2

m (ξ2)
]

∀ξ2 ∈ Ξb (78)
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Let L(x1, y1, q2, p2, x2, y2, q3, p3) be the resulting objective in the Lagrangian relax-

ation problem, then the relaxed problem can be decomposed by scenarios so that

L(x1, y1, q2, p2, x2, y2, q3, p3)

=
∑
ξ2∈Ξ

Lξ(x
1(ξ2), y1(ξ2), q2(ξ2), p2(ξ2), x2(ξ2), y2(ξ2), q3(ξ2), p3(ξ2)), (79)
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where L(x1(1), y1(1), q2(1), p2(1), x2(1), y2(1), q3(1), p3(1))

=
∑
m

{∑
s

∑
t

[
(g + c) · p1 +

∑
ξ2 6=1

λst1m (ξ2)
]
· xst1m (1) +

[
can · p1 +

∑
ξ2 6=1

θ1
m(ξ2)

]
· y1

m (1)

+
∑
t

[
d · p1 +

∑
ξ2∈Ξa

πt2am (ξ2)
]
· qt2m(1) +

∑
t

∑
u

[
a · p1 +

∑
ξ2∈Ξa

µtu2a
m (ξ2)

]
· ptu2

m (1)

+
∑
s

∑
t

[
(g + c) · p1 +

∑
ξ2∈Ξa

λst2am (ξ2)
]
· xst2m (1) +

[
can · p1 +

∑
ξ2∈Ξa

θ2a
m (ξ2)

]
· y2

m (1)

+
∑
t

[
d · qt3m(1) +

∑
u

a · ptu3
m (1)

]
· p1

}
,

Lξ(x1(ξ2), y1(ξ2), q2(ξ2), p2(ξ2), x2(ξ2), y2(ξ2), q3(ξ2), p3(ξ2))

=
∑
m

{∑
s

∑
t

[
(g + c) · pξ2 − λst1m (ξ2)

]
· xst1m (1) +

[
can · pξ2 − θ1

m(ξ2)
]
· y1

m (ξ2)

+
∑
t

[
d · pξ2 − πt2am (ξ2)

]
· qt2m(ξ2) +

∑
t

∑
u

[
a · pξ2 − µtu2a

m (ξ2)
]
· ptu2

m (ξ2)

+
∑
s

∑
t

[
(g + c) · pξ2 − λst2am (ξ2)

]
· xst2m (ξ2) +

[
can · pξ2 − θ2

m(ξ2)
]
· y2a

m (ξ2)

+
∑
t

[
d · qt3m(ξ2) +

∑
u

a · ptu3
m (ξ2)

]
· pξ2

}
, ∀ξ2 ∈ Ξa,

L(x1(k), y1(k), q2(k), p2(k), x2(k), y2(k), q3(k), p3(k))

=
∑
m

{∑
s

∑
t

[
(g + c) · pk − λst1m (k)

]
· xst1m (k) +

[
can · pk − θ1

m(k)
]
· y1

m (k)

+
∑
t

[
d · pk +

∑
ξ2∈Ξb

πt2bm (ξ2)
]
· qt2m(k) +

∑
t

∑
u

[
a · pk +

∑
ξ2∈Ξb

µtu2b
m (ξ2)

]
· ptu2

m (k)

+
∑
s

∑
t

[
(g + c) · pk +

∑
ξ2∈Ξb

λst2bm (ξ2)
]
· xst2m (k) +

[
can · pk +

∑
ξ2∈Ξb

θ2b
m(ξ2)

]
· y2

m (k)

+
∑
t

[
d · qt3m(k) +

∑
u

a · ptu3
m (k)

]
· pk

}
,

Lξ(x1(ξ2), y1(ξ2), q2(ξ2), p2(ξ2), x2(ξ2), y2(ξ2), q3(ξ2), p3(ξ2))

=
∑
m

{∑
s

∑
t

[
(g + c) · pξ2 − λst1m (ξ2)

]
· xst1m (1) +

[
can · pξ2 − θ1

m(ξ2)
]
· y1

m (ξ2)

+
∑
t

[
d · pξ2 − πt2bm (ξ2)

]
· qt2m(ξ2) +

∑
t

∑
u

[
a · pξ2 − µtu2b

m (ξ2)
]
· ptu2

m (ξ2)

+
∑
s

∑
t

[
(g + c) · pξ2 − λst2bm (ξ2)

]
· xst2m (ξ2) +

[
can · pξ2 − θ2b

m(ξ2)
]
· y2

m (ξ2)

+
∑
t

[
d · qt3m(ξ2) +

∑
u

a · ptu3
m (ξ2)

]
· pξ2

}
, ∀ξ2 ∈ Ξb.
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The Lagrangian relaxation problem of the three-stage model can now be described as

objective function (79) subjects to (80)-(91), which are described below.

min (79)

s.t.
∑
m

∑
t

[
ptu2
m (ξ2) + ptu3

m (ξ2)
]
≤ Cu

ξu ∀u, ξ2 (80)

qt2m (ξ2) +
t+∆hm∑
u=t

ptu2
m (ξ2) =

∑
s

xst1m (ξ2) ∀t,m, ξ2 (81)

qt3m (ξ2) +
t+∆hm∑
u=t

ptu3
m (ξ2) =

∑
s

xst2m (ξ2) ∀t,m, ξ2 (82)

bm+∆sm∑
s=bm

s+∆km+∆t−m∑
t=s+∆km−∆t+m

[
xst1m (ξ2) + xst2m (ξ2)

]
+y1

m(ξ2) + y2
m(ξ2) = 1 ∀m, ξ1 (83)

xst1m (ξ2) ∈ {0, 1} ∀s, t,m, ξ2 (84)

xst2m (ξ2) ∈ {0, 1} ∀s, t,m, ξ2 (85)

y1
m(ξ2) ∈ {0, 1} ∀m, ξ2 (86)

y2
m(ξ2) ∈ {0, 1} ∀m, ξ2 (87)

ptu2
m (ξ2) ∈ {0, 1} ∀t, u,m, ξ2 (88)

ptu3
m (ξ2) ∈ {0, 1} ∀t, u,m, ξ2 (89)

qt2m(ξ2) ∈ {0, 1} ∀t,m, ξ2 (90)

qt3m(ξ2) ∈ {0, 1} ∀t,m, ξ2 (91)

Problem (79)-(91) provides lower bounds for the three-stage model (39)-(51). If

we let the optimal value of (79)-(91) be Z3(LR), then we form the Lagrangian dual

problem as

max Z3(LR) (92)

to obtain a tighter lower bound. Since the Lagrange multiplies are unrestricted in

sign, problem (92) subjects to nothing.
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4.3.1 Computational Results

We solve the Lagrangian dual problem (92) by subgradient method. Given initial

values of λ1,0, θ1,0, π2a,0, π2b,0, µ2a,0, µ2b,0, λ2a,0, λ2b,0, θ2a,0, and θ2b,0, a set of λ1,s,

θ1,s, π2a,s, π2b,s, µ2a,s, µ2b,s, λ2a,s, λ2b,s, θ2a,s, and θ2b,s can be updated by (93)-(102),

respectively.

λ1,s+1(ξ2) = λ1,s(ξ2) + α1,s · [x1,s(1)− x1,s(ξ2)], ∀ξ 6= 1, (93)

θ1,s+1(ξ2) = θ1,s(ξ2) + β1,s · [y1,s(1)− y1,s(ξ2)], ∀ξ 6= 1, (94)

π2a,s+1(ξ2) = π2a,s(ξ2) + γ2a,s · [q2,s(1)− q2,s(ξ2)], ∀ξ ∈ Ξa, (95)

π2b,s+1(ξ2) = π2b,s(ξ2) + γ2b,s · [q2,s(k)− q2,s(ξ2)], ∀ξ ∈ Ξb, (96)

µ2a,s+1(ξ2) = µ2a,s(ξ2) + η2a,s · [p2,s(1)− p2,s(ξ2)], ∀ξ ∈ Ξa, (97)

µ2b,s+1(ξ2) = µ2b,s(ξ2) + η2b,s · [p2,s(k)− p2,s(ξ2)], ∀ξ ∈ Ξb, (98)

λ2a,s+1(ξ2) = λ2a,s(ξ2) + α2a,s · [x2,s(1)− x2,s(ξ2)], ∀ξ ∈ Ξa, (99)

λ2b,s+1(ξ2) = λ2b,s(ξ2) + α2b,s · [x2,s(k)− x2,s(ξ2)], ∀ξ ∈ Ξb, (100)

θ2a,s+1(ξ2) = θ2a,s(ξ2) + β2a,s · [y2,s(1)− y2,s(ξ2)], ∀ξ ∈ Ξa, and (101)

θ2b,s+1(ξ2) = θ2b,s(ξ2) + β2b,s · [y2,s(k)− y2,s(ξ2)], ∀ξ ∈ Ξb. (102)

α1,s, β1,s, γ2a,s, γ2b,s, η2a,s, η2b,s, α2a,s, α2b,s, β2a,s, and β2b,s are the stepsizes at

iteration s, while x1,s(ξ2), y1,s(ξ2), q2,s(ξ2), p2,s(ξ2), x2,s(ξ2), and y2,s(ξ2) are the

optimal solutions for the decomposed-by-scenario problems of (79)-(91). The initial

values of λ1,0, θ1,0, π2a,0, π2b,0, µ2a,0, µ2b,0, λ2a,0, λ2b,0, θ2a,0, and θ2b,0 are set to be

zeros.

As we did for the two-stage cases, the stepsize rules of (103)-(112) are used. Note

that κ1, ν1, τ 2a, τ 2b, υ2a, υ2b, κ2a, κ2b, ν2a, and ν2b are small numbers so that series
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of (103)-(112) converge.

α1,0 ∈ R+, α1,k+1 =
α1,k

κ1
(103)

β1,0 ∈ R+, β1,k+1 =
β1,k

ν1
(104)

γ2a,0 ∈ R+, γ2a,k+1 =
γ2a,k

τ 2a
(105)

γ2b,0 ∈ R+, γ2b,k+1 =
γ2b,k

τ 2b
(106)

η2a,0 ∈ R+, γ2a,k+1 =
η2a,k

υ2a
(107)

η2b,0 ∈ R+, γ2b,k+1 =
η2b,k

υ2b
(108)

α2a,0 ∈ R+, α2a,k+1 =
α2a,k

κ2a
(109)

α2b,0 ∈ R+, α2b,k+1 =
α2b,k

κ2b
(110)

β2a,0 ∈ R+, β2a,k+1 =
β2a,k

ν2a
(111)

β2b,0 ∈ R+, β2b,k+1 =
β2b,k

ν2b
(112)

The number of combinations to set the initial values of stepsizes and the de-

nominators to update the stepsizes are huge. Therefore, in the implementations of

subgradient method, all the initial stepsizes are set the same and the denominators

are set to a single number. It is reasonable to do this since our goal is to obtain a

good lower bound in order to justify the rolling horizon method.

Table 30 lists the different sets of parameters tested for the subgradient method

for 22-flight case running for 6,000 iterations. In order to obtain good lower bounds

for the three-stage stochastic programming model, the selection of parameters is very

important. Large denominators for updating the stepsizes can result faster conver-

gence but possibly to a bad lower bound. Moreover, large stepsizes do not guarantee

good lower bounds. Take Figure 21 for example, it is worthy noting that the 0.01-

curve produces better lower bound in the beginning, but 0.09-curve outperforms the

0.01-curve later on while producing better overall lower bound, which approaches the
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optimal value.

Table 30: List of different parameters in subgradient method for three-stage model,
flight count=22

stepsizes denominators lower bound

0.01 1.001 22,897.19

0.05 1.001 23,851.87

0.10 1.001 23,907.96

0.15 1.001 23,905.93

0.20 1.001 23,903.51

0.30 1.001 23,899.04

0.40 1.001 23,893.78

0.50 1.001 23,889.69

1.00 1.001 23,867.60

The subgradient method implementations with stepsize rules (103)-(112) are pre-

sented in Table 31, with optimal objective values directly from three-stage model and

the solutions derived from rolling horizon method for comparison.

Table 31: Computational comparison among optimality, rolling horizon method,
and Lagrangian relaxation for three-stage model

flight OPT RHM LR % from

count value (UB) (LB) optimal/UB

22 23,916.18 23,916.18 23,908.31 0.03%

27 29,402.30 29,402.30 29,389.69 0.04%

28 29,404.99 29,404.99 29,391.43 0.05%

31 30,008.38 30,011.09 29,979.71 0.10%

35 30,050.45 30,054.24 29,970.43 0.27%

44 n/a 30,663.20 30,490.59 0.56%

The subgradient method produces good lower bounds for each case, but it is time-

consuming to obtain these bounds. The length of the computational time heavily

depends on the number of iterations we run - longer time produces better bounds.
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Figure 21: Comparison of paths between two parameters for three-stage model,
flight count=22

The computational time spent to obtain the lower bounds shown in Table 31 are

presented in Table 32.

Table 32: Computational time of the subgradient method for three-stage model

flight
count

number of
scenario

# of
iteration

total
time
(sec)

second/
iteration

second
/scenario

22 2,048 6,000 27,844 4.64 0.002266

27 2,048 6,000 31,687 5.28 0.002579

28 4,096 6,000 65,186 10.86 0.002652

31 16,384 6,000 300,277 50.05 0.003055

35 32,768 6,000 735,994 122.67 0.003743

44 32,768 6,000 916,770 152.80 0.004663

Table 33 lists the parameters that produce the best lower bounds for the three-

stage model. We also plot the lower bound calculation paths for subgradient method

associated with different flight counts in Figure 22-27. Note that except for forty-

four-flight case that the horizontal line is depicted by the objective produced by the
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rolling horizon method, other cases are illustrated by the optimal objective value.

Table 33: List of parameters in subgradient method producing the best lower bounds
for three-stage model

flight
count

stepsizes denominators

22 0.09 1.001

27 0.22 1.001

28 0.11 1.001

31 0.03 1.001

35 0.02 1.001

44 0.02 1.001

Figure 22: Path of subgradient method for three-stage model, flight count=22
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Figure 23: Path of subgradient method for three-stage model, flight count=27

Figure 24: Path of subgradient method for three-stage model, flight count=28
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Figure 25: Path of subgradient method for three-stage model, flight count=31

Figure 26: Path of subgradient method for three-stage model, flight count=35
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Figure 27: Path of subgradient method for three-stage model, flight count=44
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CHAPTER V

CONCLUSION AND FUTURE WORK

In this study, we have introduced stochastic programming approaches to the air traffic

flow management problems. As uncertainties involve, the question as how aircraft are

sent toward a sector and what their cruise speeds are during the inclement weather has

been studied through two- and three-stage stochastic integer programming models. To

the best of our knowledge, this problem has not yet been extensively studied and the

models described in this thesis are the most comprehensive ones that involve several

flight activities during inclement weather. In this chapter, we draw the conclusions

and contributions of this study, and discuss the possible extensions in the area of air

traffic flow management.

5.1 Conclusion

Stochastic programming technique has been applied to various areas when uncertain-

ties involve. Likewise, in the area of traffic flow management while weather is a major

concern, stochastic programs are proposed to approach the problems. In this study,

we considered the only limiting resource in the airspace. For analysis purpose, we

then divide the airspace into airspace sectors so that we can focus on a particular

sector with aircraft coming from nationwide airports. We first introduce a two-stage

stochastic programming model so that the ground-delay, cancellation, and the cruise

speed decisions are made in the first stage, while air-holding and diversion decisions

are made after the weather realizations in the second-stage. Different from studies

in the ground holding program or other more general efforts in the air traffic flow

management problems that dealt with only ground-delay and air-holding, our model

is the most comprehensive one that handles additional cancellation, cruise speed, and
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diversion decisions.

Due to the intractability of the presented stochastic program, a heuristic we re-

ferred as ”rolling horizon method” has been introduced to approach the model. The

rolling horizon method solves the presented two-stage model in a rolling fashion so

that all the involved flights are considered at least once. If some flights are considered

more than once, then the most present decisions dominate. We find that the rolling

horizon method provides near-optimal solutions as the optimization model does, and

we justify the rolling horizon method by testing flight schedule with ten sets of dif-

ferent parameters. The performance of this heuristic is excellent in solution quality

as well as in the computational time. Within one minute, the rolling horizon method

can solve the optimization model, which can take up to one hour to solve.

As the optimization model can not always solve the problem due to computational

issues, we are not able to judge the performance of the rolling horizon method in some

cases. We then apply the Lagrangian relaxation techniques so that the nonanticipa-

tivity constraints are relaxed in Lagrangian fashion. We implement the Lagrangian

relaxation by subgradient method. In the two-stage stochastic program, the subgradi-

ent method provides nice lower bounds, which are within 0.01% of the optimal value

produced by the optimization model. For the case which the optimal value is not

available, the gap between the upper bound produces by the rolling horizon method

and the lower bound generated by the subgradient method is only 0.44%. Therefore,

we believe that the success of the rolling horizon method can lead it to be applied

to dynamic solution procedures which generate great decisions in terms of minimal

costs in real time.

Multi-stage stochastic programs can easily be extended by two-stage stochastic

models. However, the number of decision variables and constraints can be huge if the

number of stages increase which will cause long computational time. As a result, we

start the multi-stage models by looking at three stages.
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A three-stage stochastic programming model has additional decision point com-

pared with a two-stage stochastic program. The additional decision point at time k

is constructed between current time we run the model (time zero) and future time

the flights are scheduled to enter the sector. As time evolves, the weather forecast

is more accurate at time k compared with time zero. The decisions can depend on

weather forecast at either time zero or time k. Therefore, the additional decision

point at time k provides opportunities to see future weather more clearly. The three-

stage model is constructed so that the ground-delay, cancellation, and speed-change

decisions are made before any realizations in the first-stage. Then in the second-

stage, after the first weather realization, the recourse actions including diversion and

air-holding decisions corresponding to the first-stage decisions, as well as the ground-

delay, cancellation, and speed-change decisions for those flights that are waiting to see

the updated weather forecast, are made. Finally, after the second weather realization,

the diversion and air-holding decisions corresponding to the second-stage departure

decisions are made in the third stage.

Solving the three-stage model to optimality takes more time than the two-stage

program because it generates more than doubled decision variables and constraints.

Nevertheless, it provides better solutions in terms of lower costs. We see the benefits

by adding the additional stage, however, to leverage between better decisions and the

computational time is an important issue.

Since the rolling horizon method performs well for the two-stage model, we test

it to the three-stage stochastic program as well. Although the computational time is

longer that is reasonable because the number of variables and constraints increase,

the rolling horizon method does provide near-optimal solutions within 1.5 minutes.

For the case that the optimization model is not able to provide optimal solution,

we can not see how rolling horizon method performs. Therefore, we apply the La-

grangian relaxation techniques on the nonanticipativity constraints. Implemented by
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subgradient method, lower bounds are obtained within 0.27% of optimal. For the case

which the optimal value is not available, the gap between the upper bound produces

by the rolling horizon method and the lower bound generated by the subgradient

method is only 0.56%.

To conclude, the rolling horizon method can be applied to either two- or three-

stage stochastic integer programming models and the method can produce near-

optimal solutions within reasonable computational time. The performance of the

rolling horizon method is excellent so that we can apply it as a dynamic algorithm

which can deal with the problem as how aircraft are sent towards an airspace sector

under inclement weather, in real time.

5.2 Future Work

Several possible extensions of our models can be made. In this study, we focus on

the sector capacities under the inclement weather. As studied in the ground holding

program, airport capacities can also be one of the limiting resources. Incorporating

airport capacities into the model can make the model even more comprehensive.

Another possibility is to extend the model from single-sector to multi-sectors or NAS-

wide which can be challenging as inter-sector activities need to be included. Extension

to four-stage, five-stage, and so on is also possible. The overall objective value can

be expected to be better (lower) than the two- and three- stage models presented in

this study. However, as the number of stages increase, the problem will become even

more intractable.

Reduction of the number of scenarios can be a reasonable modification. In our

testing example, we assume that the number of weather types is two at each period.

Weather can be so bad that the sector capacity in a particular period is determined to

be zero. Under this situation, we do not need to distinguish good and bad weather,

which can decrease the number of scenarios by a factor of two. If ”G” and ”B”
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represent good and bad weather, respectively, weather forecast such as ”G-B-G-B-G-

B-G-B” in some consecutive periods is unlikely. The purpose to reduce the number

of scenarios is to shrink the problem size and therefore decrease the computational

time.

Another issue can be the justification of our presented two- and three-stage mod-

els. As described in the content of this study, the sector capacities are randomly

generated data. In the near future as the sector information is available to public in a

readable form, testing models by the real sector capacities can make the construction

of mathematical programming models more valuable as a comparison between the

objective value from a theoretical model and the real-incurred costs from a practical

experience can become available.
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method for stochastic global optimization,” Mathematical Programming, vol. 83,
pp. 425–450, 1998.

[52] Odoni, A. R., “The flow management problem in air traffic control,” in Flow
control of congested networks (Odoni, A. R., Bianco, L., and Szegö, G.,
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basis reductions,” Mathematical Programming, vol. 83, pp. 229–252, 1998.

[64] Sen, S. and Sherali, H. D., “Decomposition with branch-and-cut approaches
for two-stage stochastic mixed-integer programming,” Mathematical Program-
ming, vol. 106, pp. 203–223, 2006.

[65] Shapiro, A., “Inference of statistical bounds for multistage stochastic program-
ming problems,” Mathematical Methods of Operations Research, vol. 58, pp. 57–
68, 2003.

[66] Terrab, M. and Odoni, A. R., “Strategic flow management for air traffic
control,” Operations Research, vol. 41, no. 1, pp. 138–152, 1993.

99



[67] van den Akker, J., van Kemenade, C., , and Kok, J., “Evolutionary 3D-air
traffic flow management,” in Handbook of evolutoinary computation, 1997.

[68] van Kemenade, C., van den Akker, J., and Kok, J., “Evolutionary air
traffic flow management for large 3D-problems,” tech. rep., Parallel Problem
solving from nature IV, 1996.

[69] Van Slyke, R. and Wets, R., “L-shaped linear programs with applications to
optimal control and stochastic programming,” SIAM Journal on Applied Math-
ematics, vol. 17, no. 4, pp. 638–663, 1969.

[70] Vranas, P. B., Bertsimas, D. J., and Odoni, A. R., “Dynamic ground-
holding policies for a network of airports,” Transportation Science, vol. 28, no. 4,
pp. 275–291, 1994.

[71] Vranas, P. B., Bertsimas, D. J., and Odoni, A. R., “The multi-airport
ground-holding problem in air traffic control,” Operations Research, vol. 42, no. 2,
pp. 249–261, 1994.

[72] Wang, H., “A dynamic programming framework for the global flow control
problem in air traffic management,” Transportation Science, vol. 25, no. 4,
pp. 308–313, 1991.

[73] Yen, J. W. and Birge, J. R., “A stochastic programming approach to the
airline crew scheduling problem,” Transportation Science, vol. 40, no. 1, pp. 3–
14, 2006.

[74] Zobell, S., Wanke, C., and Song, L., “Probabilistic airspace congestion
management,” in 12th Conference on Aviation Range and Aerospace Meteorology,
2006.

100


