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SUMMARY 

A method was developed to precipitate and assemble magnesium hydroxide 

nanostructures on zeolite 4A surfaces at mild conditions. The effects of process variables 

such as precursor concentration, type of base added, and synthesis time on the 

composition, size, and morphology of the resulting Mg(OH)2 / zeolite 4A 

nanocomposites were investigated. It was determined that the presence of a weak base 

such as ammonium hydroxide is essential to the control of the morphology of the 

magnesium hydroxide (Mg(OH)2) nanostructures. 

Properties of the Mg(OH)2 / zeolite 4A nanocomposites such as surface area, pore 

volume and composition were characterized via BET and TGA. Mg(OH)2 / zeolite 4A 

nanocomposites and bare zeolite 4A were dispersed in Ultem® polymer to form a mixed 

matrix films and their thermal and mechanical properties were investigated. It was found 

that the addition of bare zeolites to the polymer led to a decrease in the mechanical 

properties of the polymer composite. However, some of the adverse effects could be 

mitigated if the polymer is loaded with Mg(OH)2 / zeolite 4A nanocomposites. 

 Isotherms for the adsorption of Mg(OH)2 petals on zeolite 4A were measured in 

order to determine optimum conditions for the formation of nanocomposites at ambient 

conditions. The loading of the Mg(OH)2 was determined from the adsorption isotherms. 

It was also found that the adsorption of Mg(OH)2 on zeolite A yields H-type isotherms 

and involves 3 mechanisms: ion exchange, surface adsorption of Mg2+ ions, and surface 

precipitation of Mg(OH)2. H-type isotherms indicate that there may be very strong 

specific interactions between Mg(OH)2 and zeolite 4A. In the absence of a base such as 

ammonium hydroxide, the predominant processes are ion exchange and surface 
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adsorption of Mg2+ ions. In the presence of ammonium hydroxide, Mg(OH)2 crystals are 

precipitated on the surface of zeolite 4A at moderate Mg2+ ions concentration. The 

loading of Mg(OH)2 increases with increasing Mg2+ ions concentration. 

A detailed examination of the interactions between Mg(OH)2 and functional 

groups on the zeolite surface was conducted. Solid-state 29Si, 27Al, and 1H NMR spectra 

were coupled with FTIR measurements, pH and adsorption studies, and 

thermogravimetric analyses to determine the interactions of Mg(OH)2 with surface 

functional groups and to characterize structural changes in the resulting zeolite after 

Mg(OH)2 deposition. It was discovered that acid – base interactions between the weakly 

basic Mg(OH)2 and the acidic bridging hydroxyl protons on zeolite surface represent the 

dominant mechanism for the growth of Mg(OH)2 nanostructures on the zeolite surface. 

This suggests that precipitation combined with self-assembly on specific sites of zeolite 

may be used to make functional hydroxide / zeolite or oxide / zeolite composites for 

applications in catalysis, gas sensing, and membranes.  



CHAPTER 1 

INTRODUCTION 

 Nanoscale metal oxides are technologically important materials because of their 

superior optical, magnetic, electrical, and catalytic properties [1-3]. In the chemical 

industry, nanoscale metal oxides are the functional components of catalysts used in 

processes to convert hydrocarbons to other chemicals [4]. They are also used as electrode 

materials in electrochemical processes [5]. Nanoscale metal oxides are also excellent 

chemical sensors as their electrical conductivity is very sensitive to the composition of 

surrounding gases [3]. Significant advances have also been made in the integration of 

these oxides into functional devices. For example, piezoelectric nanogenerators based on 

zinc oxide nanowrie arrays have recently been fabricated by Wang et al. [6]. The 

performance of these devices depends on the size, shape, and morphology of the particles 

used in making the devices [7], and their long term stability at high temperatures [3]. 

Therefore, methods for controlling the size, shape, morphology, and stability of 

nanoscale metal oxides are of practical interest. 

 Teja and co-workers [1, 5, 8-12] have investigated the synthesis of several 

nanoscale metal oxides using supercritical hydrothermal synthesis. Their studies included 

the development of approaches to control the particle size and agglomeration and showed 

that the polydispersity, size, and crystallinity of iron oxide nanoparticles can be 

effectively controlled with PVA. In another study, they showed that agglomeration of 

iron oxide nanoparticles can be minimized by depositing them in activated carbon [13]. 

However, they did not investigate the interactions of these oxides with the carbon 

supports. Since controlled fabrication of functional devices will undoubtedly involve 
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supporting materials [14], a detailed understanding of growth mechanisms, and 

interactions of the nanostructures with supports, as well as identification of the optimal 

processing parameters is essential. 

 The goals of this work were (1) develop a method for the fabrication of metal 

oxide nanostructures on surfaces; (2) determine optimum conditions for the deposition of 

magnesium hydroxide nanostructures on zeolite 4A; and (3) develop an understanding of 

metal oxide – surface interactions in order to control the deposition and assembly of 

specific nanostructures. Magnesium hydroxide and zeolite 4A were chosen for study 

because of their potential applications in catalysis, adsorbents, and CO2 capture and 

sequestration, and because zeolite 4A offers several sites for acid-base interactions with 

magnesium hydroxide. Due to the basic and acidic nature of the magnesium hydroxide 

and zeolite 4A surface functional groups, it was hypothesized that acid – base interactions 

between the weakly basic magnesium hydroxide and the acidic bridging hydroxyl protons 

on the zeolite surface could be employed for the control of the growth of magnesium 

hydroxide nanostructures on the zeolite surfaces. Background information on the 

synthesis and unique properties of zeolites are detailed in Chapter 2.   

 In Chapter 3, an investigation of the deposition – precipitation method for the 

fabrication of magnesium hydroxide / zeolite 4A nanocomposite is described. The effects 

of the processing parameters such as concentration of precursor, chemical nature of base, 

and synthesis time on the nanocomposite characteristics are investigated. The properties 

of the resultant magnesium hydroxide / zeolite 4A nanocomposite and its effects on the 

mechanical properties of Ultem® polymer are detailed in chapter 4. 
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 In Chapter 5, adsorption isotherms are determined to provide a macroscopic 

understanding of the deposition of magnesium hydroxide on zeolite surfaces. These 

isotherms are coupled with pH studies to identify optimum processing conditions for the 

fabrication of the nanocomposites and to gain insights into the effect of the local 

environment on growth and deposition of the nanostructures. 

 In Chapter 6, microscopy and spectroscopy are used to provide a microscopic 

understanding of the interactions between magnesium hydroxide and zeolite surface 

functional groups. The structural changes of the magnesium hydroxide / zeolite 

nanocomposite are extensively characterized and examined. Adsorption studies are also 

carried out on silica and alumina to deduce the roles of silanol and aluminol sites on the 

adsorption of magnesium hydroxide. The results of these experiments are used to 

postulate the deposition mechanism and to validate the hypothesis of this work.  

 These investigations provide a detailed understanding of the site specific 

interactions and structural changes of a basic metal hydroxide such as Mg(OH)2 in zeolite 

4A. The understanding of the zeolitic guest – hosts relationship and self assembly of 

metal oxides/ hydroxides nanostructures on zeolite will widen the existing application 

fields and open new fields for zeolite application in semiconductor, biochemistry, 

medicine, and chemical sensors.    
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CHAPTER 2 

LITERATURE REVIEW 

2-1 Introduction 

Mg(OH)2 or brucite belongs to the family of divalent metal hydroxides M(OH)2, 

with M = Mg, Ca, Ni, Co, Fe, Mn or Cd, which are isostructural with the layered 

compound CdI2 (space group P3ml). The crystal structure of brucite is shown in Fig. 2.1, 

and consists of a hexagonal close-packed array of OH- ions, in which alternate layers of 

octahedral holes are occupied by Mg2+ ions. The hydroxyl groups (OH), which are 

directed along the threefold axes, are bonded to three M cations. In interlayer spacings, 

they are surrounded by three other (OH) groups belonging to an adjacent layer [2]. Thus 

there is a layered structure of ···HO- Mg2+ OH- OH- Mg2+ OH-··· which can easily be 

cleaved between the similarly-charged OH- layers [3]. It has been reported that such a 

layered crystal structure offers an advantage for platelet-like crystallization of Mg(OH)2 

[4].  

 

Fig. 2.1 Crystal structure of brucite. Adapted from [5]. 
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Magnesium hydroxide (Mg(OH)2) is also a nontoxic, noncorrosive, thermally 

stable, and environment friendly flame retardant which undergoes endothermic 

dehydration under fire conditions and suppressing fumes [6]. Its nanoneedles and 

nanolamellas are good candidates for functional polymeric composites, fiber hybrid 

materials, and as reinforcing agents or halogen-free flame-retardants [7, 8]. In addition, 

magnesium hydroxide is also used as a neutralizer in the treatment of acid wastewater 

and gases rich in sulfuric oxides [9]. It also finds use as an antacid excipient in 

pharmaceuticals [10], and in mixed matrix membranes for natural gas separation [11-13]. 

Magnesium hydroxide is a precursor for the preparation of magnesium oxide and retains 

its crystallite size and morphological features after decomposition to MgO [6]. Thus 

magnesium hydroxide nanorods can be used as precursors for the synthesis of magnesium 

oxide nanorods, which have novel mechanical, catalytic and electronic properties [14, 

15]. Finally, it has recently been demonstrated that magnesium hydroxide can play a key 

role in the mineral sequestration of CO2 [15].  

 Magnesium hydroxide nanostructures have been be prepared by several methods 

including hydrothermal processing [7, 16, 17], ultrasonication [6], microwave-assisted 

synthesis [18], pulse laser induced reaction [14],  coprecipitation [19], and sol-gel 

processing [20]. It has been reported that physical synthesis methods such as 

ultrasonication, microwave-assisted synthesis, and pulse laser induced reaction are 

characterized by relatively low yields, large size distribution, and polydispersity [19]. On 

the other hand, Klabunde et al. [21] were able to prepare ultrahigh surface area Mg(OH)2 

particles of ~5 nm via a sol gel technique followed by a hypercritical drying process. 

However, the need to synthesize and handle costly and hazardous metal-organic 
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precursors in the sol-gel procedure is disadvantages as pointed out by Qian et al. [16]. 

The hydrothermal method offers control of  the size, shape, and structure of Mg(OH)2 

[16] and has been used to prepare rod-like, tube-like, and plate-like Mg(OH)2 

nanocrystallites [7, 16, 17].  

As discussed earlier, magnesium hydroxide is often used as an intermediate for 

the preparation of magnesium oxide (MgO) [22], which has been used as solid base 

catalyst for a variety of organic transformations [23]. For example, MgO is an active 

catalyst for double bond isomerization and displays excellent activity for isomerization of 

1-butene and 1,4-pentadiene, allylamine, and 2-propenyl ethers [23, 24]. Furthermore, 

MgO has also demonstrated marked increase in activity and selectivity to diacetone 

alcohol during aldol condensations [25]. In addition, MgO and Mg(OH)2 have also been 

used in the carbon-oxygen bond formation reactions such as cyanoethylation of methanol 

[26, 27]. The reactivity of these catalysts was related to the acidity of the alcohol and the 

basic strength of the catalyst [23]. It has been shown that the activity of MgO catalyst is 

hardly affected by exposure to air and is tolerant to water and carbon dioxide [23]. This is 

why solid MgO catalyst can be used in a practical process [27].  

The activity of MgO nanoparticles in catalysis is limited by its tendency to 

agglomerate [28] which reduces the total surface area available for catalytic activity. To 

overcome these limitations, MgO if often incorporated into zeolites to create strong basic 

zeolites [29]. Dumitriu et al. [30] has shown that MgO supported on HZSM-5 displayed 

high catalytic activity and selectivity in the synthesis of acrolein. This enhancement was 

attributed to the spatial limitations of the zeolitic structure, and to cooperative effects of 

the basic centers of MgO and the acidic sites of HZSM-5.  However, although zeolites 
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loaded with MgO display strong basic properties, the basic sites on fine MgO 

nanoparticles are not as strong as those of bulk MgO. The ionicity of the Mg – O bond is 

reduced in fine MgO particles when compared to bulk MgO, and therefore the basic 

strength of the O2- ion is reduced [24]. The dependence of the particle size on the strength 

of basic sites has been studied by Itoh el al. [31] who concluded that the larger MgO 

hexagonal platelets exhibit stronger basicity than smaller MgO particles.  

2-2 Zeolites as supports for metal oxides 

Zeolites are crystalline aluminosilicates with a 3- dimensional, open anion 

framework consisting of oxygen-sharing SiO4 and AlO4
- tetrahedra [32-34]. Each silicon 

ion has its +4 charge balanced by four tetrahedral oxygens, and the silica tetrahedra are 

therefore electrically neutral. Each alumina tetrahedron has a residual charge of -1 since 

the trivalent aluminum is bonded to four oxygen anions. Therefore, each alumina 

tetrahedron requires a +1 charge from a cation in the structure to maintain electrical 

neutrality [33]. These cations are usually sodium ions that are present when the zeolite is 

synthesized [35]. The zeolite framework structure contains interconnected voids that can 

be filled with adsorbed molecules or cations which in turn govern the zeolite pore size. 

Zeolite micropore channels have very well-defined diameters that depend on the number 

of tetrahedra in a ring. The silica and alumina tetrahedra are geometrically arranged and 

combined to form the building blocks of the framework zeolite crystal structures. The 

general structural formula of a zeolite is: Mx/n(AlO2)x(SiO2)y where n is the valence of 

cation M which balances the negative charge associated with the framework aluminum 

ions, (x + y) is the total number of tetrahedra per unit cell and y/x is the atomic Si/Al ratio 

that varies from a minimal value of 1 [36].  The structures of aluminosilicate zeolites 
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obey the Löwenstein Rule [36], which states that when two tetrahedra are joined by one 

oxygen bridge, the center of only one of them can be occupied by aluminum; the other 

center must be occupied by silicon or by another small ion of electrovalence 4 or more 

[37]. In addition, whenever two aluminum ions are neighbors to the same oxygen anion, 

at least one of them must have a coordination number larger than 4 towards oxygen [37].  

The zeolite used in this study is known as zeolite A. Zeolite A exhibits the LTA 

(Linde type A) structure [38] which is shown schematically in Fig. 2.2 without cations. 

The structural formula of a fully hydrated LTA is |Na12
+(H2O)27|8[Al12Si12O48]8 [36]. The 

aluminosilicate framework of zeolite A can be described in terms of two types of 

polyhedra; one being a simple cubic arrangement of eight polyhedra (the double 4-rings); 

the other being a truncated octahedron of 24 tetrahedra or β- cage. In LTA, sodalite cages 

are joined via double 4-rings, creating an α- cage in the center of the unit cell. 

Alternatively, the framework can be described as a primitive cubic arrangement of α- 

cages joined through single 8- rings. Zeolite A has a three-dimensional pore system and 

molecules can diffuse in all three directions in space by moving across the 8-ring 

windows of about 0.45 nm diameter that connect the cavities. The size of the pore 

openings depends on the size of the respective cations residing in the zeolites. Normally, 

zeolite A is synthesized in the Na-form which gives it a pore opening of about 0.4 nm. 

The sodium cations can be exchanged with other cations, thereby tuning the size of the 

pore openings.  
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Fig. 2.2 Framework structure of zeolite LTA. The β- cages are connected at the 4- 
membered rings in a simple cubic structure.  Open and closed circles represent Si, Al and 
O atoms, respectively. Adapted from [39]. 

In a typical zeolite, the -1 net negative charge introduced by the alumina 

tetrahedron is balanced by a cation. The presence of cations in the zeolite creates acid 

sites if protons act as counterions. These acid sites are associated with bridging hydroxyl 

groups attached to framework oxygens linking tetrahedral Si and Al atoms: (Al(OH)Si). 

These acid sites are strong Brönsted acids and the oxobridges connecting the Si and Al 

atoms exhibit Lewis base properties [34]. However, the Brönsted acid sites are converted 

to Lewis acid sites when the proton concentration drops below the aluminum 

concentration [35]. The maximum number of protonic sites is equal to the number of 

framework aluminum atoms, but the actual number could be smaller due to cation 

exchange, dehydroxylation and dealumination during activation at high temperatures 

[34]. The number and density of protonic sites can therefore be adjusted either during 

synthesis or during post synthesis treatment of the zeolite. In addition to the bridging 

hydroxyl protons, there are structural hydroxyls like silanol (Si-OH) and aluminol (Al-

OH) groups located on the external surface of the zeolite [40]. These structural hydroxyl 

groups show an ampholytic behavior and can act as an acid or a base – depending on the 

10 
 



solution pH. Therefore, depending on the solution pH, positively or negatively charged 

local sites may exist on the external surface of zeolites [40]. Since all of these different 

types of OH groups can influence the catalytic and adsorptive properties of zeolites, a 

detailed study is essential for deeper understanding of the behavior of zeolites.  

Zeolites are widely used in a variety of industrial applications. One of the most 

prominent applications is in catalysts for organic reactions because the pores of zeolites 

are similar in size to small organic molecules. Zeolite pores have also shown the ability to 

recognize, discriminate, and organize molecules with high precision [41]. Furthermore, 

the catalytic properties of the zeolites can be easily controlled by a variety of synthetic 

and post-synthetic methods. By choosing the appropriate organic template and synthesis 

conditions, the pore size and pore shape (dimensionality, intersections, cages) may be 

directly influenced [32]. Moreover, the acidity of the zeolite may be controlled through 

various methods such as Si/Al ratio, ion-exchange, and calcinations conditions [23]. 

Zeolites may also be used as shape-selective supports for active components. Their high 

thermal stability allows them to be used at high temperatures that often result in higher 

yields and easier heat recovery. All of these characteristics, particularly the control of 

structure and acidity, make zeolites well suited as catalysts or catalyst supports for 

organic reactions.  

Zeolites are inherently acidic due to the the negative charge of the framework [41, 

42]. When all of the cations present inside the zeolite are exchanged with H+, many 

Brönsted acid sites are formed [33]. However, the acidity of the zeolites can be 

neutralized by specific cations for ion-exchange and by manipulating the Si/Al ratio of 

the zeolite framework. Wide variation of acid-base properties can be achieved by ion-
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exchange and ion-addition, while relatively small change in acid-base properties is 

yielded by changing the Si/Al ratio [24]. The basicity of the zeolites can be enhanced by 

introducing alkaline oxides and alkaline earth oxides [43].   

By inclusion of nanoscaled metal oxide or hydroxide guests inside the defined 

void spaces and/ or on the surface of the zeolite, new nanocomposites have been obtained 

with tunable catalytic, optical, magnetic or electrical properties [44]. For example, Dutta 

et al. [45] showed that RuO2/  zeolite composites are efficient in catalyzing the reduction 

of water to hydrogen. Moreover, SnO2/ zeolite NaY composites have also displayed 

excellent detecting sensitivity to hydrogen gas [46]. Also, Cao et al. [47-49] have 

fabricated an asymmetric supercapacitor using Co(OH)2 / USY zeolite composites and the 

hybrid electrochemical capacitor exhibited higher energy and power characteristics. To 

date, zeolites have been shown to be excellent hosts for the synthesis of nanosized 

particles [45, 50-54]. However, guest – host interactions between zeolites and metal 

oxides / hydroxides have not been widely investigated and most studies have focused on 

the interactions between organic molecules and zeolites [43, 55-60].  The properties of 

zeolite – metal oxides / hydroxides nanocomposites depend on the shape, size, location, 

and coordination of the metal oxides / hydroxides [43, 44, 61, 62]. For example, it has 

been shown that the control of dispersed state of metal oxides and porosity of the zeolite 

is important to improve catalytic activities [52]. Therefore, it is important to understand 

guest – host interactions between zeolites and metal oxides / hydroxides and the role of 

such interactions play in determining the properties of the nanocomposites. 
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2-3 Preparation methods for zeolite host-guest composites 

Many of the useful attributes of zeolite nanocomposites depend on the preparation 

method [43, 63-65], and these methods play a key role in determining the particle size, 

shape, size distribution, and surface chemistry. The preparation method also determines 

structural defects and the distribution of such defects in the particles. Many synthesis 

routes have therefore been developed to achieve proper control of particle size, 

polydispersity, shape, crystallinity, and functionality [64, 66-73]. The most commonly 

used methods such as chemical vapor deposition (CVD), sol-gel synthesis, halide/ 

Grignard reaction, ion exchange/ ion impregnation, solvothermal, hydrothermal, and 

deposition-precipitation are reviewed in the following section.  

2-3-1 Chemical vapor deposition (CVD) 

The chemical vapor deposition method for preparing nanomaterials depend on 

thermal decomposition (pyrolysis), reduction, hydrolysis, disproportionation, oxidation, 

or other reactions to precipitate solid products from the gas phase [74]. In the CVD 

process, a carrier gas stream with precursors is delivered continuously by a gas delivery 

system to a reaction chamber maintained under vacuum and temperatures greater than 

900°C [69, 75]. The CVD reactions take place in the heated reaction chamber and the 

products combine to form clusters or nanoparticles. Growth and agglomeration of the 

particles are mitigated via rapid expansion of the two-phase gas stream at the outlet of the 

reaction chamber (Fig. 2.3). Subsequent heat treatment of the synthesized nanopowders 

in various high-purity gas streams allows compositional and structural modifications, 

including particle purification and crystallization, as well as transformation to a desirable 
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size, composition, and morphology [69, 74]. The CVD process has been employed to 

deposit single metal or bimetallic oxide catalysts on various zeolite matrices such as 

borosilicate, ZSM-5, β-zeolite, mordenite, silicalite, and Y-zeolite [76-85].  

 

Fig. 2.3 Schematic diagram of a CVD apparatus (adapted from ref [1]). 

The use of metallo-organics as precursors (in the MOCVD process) allows 

reactions to take place at somewhat lower temperatures (300-800 °C) and at pressures 

varying from less than 1 Torr to ambient [74]. Platinum based aluminosilicate catalysts 

have been prepared by Davis et al. by impregnating platinum acetylacetonates in zeolites 

under vacuum in a sealed tube at 418 K [86]. In addition, other noble metals such as gold 

[87, 88], palladium [89-91], rhodium [92-94], and ruthenium [95, 96] supported on silica, 

titania, zeolite and activated carbon have been prepared using organometallic complexes 

of these metals. Compared to conventional liquid phase methods such as wet 

impregnation or coprecipitation, the absence of any solvent favors diffusion of the 

precursor inside the pores and precludes the drying step during which redistribution of 

the active phase can occur [97]. In addition, the partial embedding of nanoparticles in the 
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bulk of the support can also be avoided [97]. The use of organometallic complexes as 

metal precursors provides an efficient way to produce deposits at relatively low 

temperatures. However, although the chemical vapor deposition methods are able to 

deliver high quality products, the yields are usually low and scale-up of the equipment is 

challenging. Variables such as oxygen concentration, gas phase impurities, and the 

heating time must be controlled precisely to obtain pure products [1]. 

2-3-2 Sol-Gel methods 

 Sol-gel methods generally refer to the hydrolysis and condensation of metal 

alkoxides or alkoxide precursors, leading to dispersions of oxide particles in a “sol”. The 

“sol” is then dried or “gelled” by solvent removal or by chemical reaction.  The solvent is 

generally water, but the precursors can also be hydrolyzed by an acid or base. Basic 

catalysis induces the formation of a colloidal gel, whereas acid catalysis yields a 

polymeric form of the gel [98]. The rates of hydrolysis and condensation are important 

parameters that affect the properties of the final products. Smaller particle sizes are 

obtained at slower and more controlled hydrolysis rates. The particle size also depends on 

the solution composition, pH, and temperature [69]. In the case of nanocomposites 

derived from gels, structural parameters and material porosity are determined by the rate 

of hydrolysis and condensation of the gel precursors and also by other oxidation-

reduction reactions that occur during the gelling and subsequent heat treatment stages 

[69]. 

Iron oxide - silica aerogel composites have been prepared by the sol-gel method 

[99-101] and found to be 2-3 orders of magnitude more reactive than conventional iron 
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oxide [102]. The increase in reactivity was attributed to the large surface area of iron 

oxide nanoparticles supported on the silica aerogel [103, 104]. The sol-gel method has 

also been used to synthesize titanium – silicon binary oxide catalysts [105], transparent 

iron-doped titanium oxide thin films [106], ferroelectromagnetic bismuth iron oxide films 

[107], mixed iron oxides [108-113], and iron oxide-alumina nanocomposites [114]. 

 Disadvantages of the sol-gel methods include contamination from byproducts of 

reactions, and the need for post-treatment of the products [1]. 

2-3-3 Halide / Grignard reaction 

The halide/ Grignard reaction route pioneered by Shu and Hussain [12, 13] has 

been used to modify the external surface of zeolite 4A by deposition of magnesium 

hydroxide nanostructures on the zeolite surface. This treatment was shown to enhance 

adhesion when treated zeolite particles were dispersed in a polymer [12, 115]. In a typical 

halide / Grignard reaction, the zeolite to be treated is first dried under vacuum at 423 K 

for 8-12 h, dispersed in anhydrous toluene and thionyl chloride solution, purged with dry 

nitrogen gas and ultrasonicated in a bath for at least 4 h (up to 24 h). The mixture is then 

heated at 373-383 K to remove the solvent and the remaining dry cake redispersed in 

anhydrous toluene in an ultrasonic bath with a slow dry nitrogen purge. Methyl 

magnesium bromide is then added to the dispersed zeolite, followed by an additional 4 h 

of ultrasonication. Finally, the mixture is placed in an ice bath and quenched with 

anhydrous 2-propanol. Methyl magnesium bromide reacts with 2-propanol and generates 

methane and solid precipitates containing MgBr2 and Mg(OH)2. 
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In reactions involving Grignard reagents, it is important to ensure that no water is 

present since this would cause the reagents to decompose rapidly. Furthermore, it is also 

highly recommended to use fresh reagents when performing sieve treatments because the 

chemicals degrade quickly over time [115]. The halide/ Grignard reaction is time 

consuming, complex, and may result in dealumination of the zeolite [13]. Also, the 

reagents are extremely flammable and corrosive. 

2-3-4  Ion exchange and ion impregnation 

Metal oxide/ hydroxide nanostructures have been prepared in the pores or exterior 

of zeolites by ion exchange or ion impregnation methods followed by in situ post-

treatment [46, 50, 116-127]. The ion exchange process consists of replacing an ion in an 

electrostatic interaction with the surface of a support by another ion species [128]. The 

support containing ions A is added to an excess solution containing ions B. Ions B 

gradually penetrate into the pore space of the support, while ions A pass into the solution 

until equilibrium is established between the solid and solution. Ion impregnation is 

similar in concept to ion exchange, except there is no exchange of ions between the 

support and the solution containing the precursor of the active phase [128]. In both ion 

exchange and impregnation methods, subsequent calcination is required to convert the 

metal cations into metal oxides.  

Ion exchange and ion impregnation are the simplest supported zeolite preparation 

procedures and provide minimal liquid waste generation and easy control of metal 

loading when the solubility of the precursor compound is high [129]. They are therefore 

widely used. However, these methods do not result in the best distribution of metal 
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oxides on zeolites, and often do not provide adequate control of particle shape, size, and 

size distribution [118]. Furthermore, ion exchange in the liquid phase can be limited by 

steric constraints due to the formation of bulky hydration shells of the exchangeable 

cations and the calcination step may result in undesirable changes, such as modification 

of the pore structure and mechanical properties [130]. Multiple impregnation steps are 

necessary when the solubility of the precursor is limited and zeolite composite with high 

loadings of the active compound is to be made [130, 131]. Furthermore, the concentration 

profile of the impregnated compound depends on the mass transfer conditions within the 

pores during impregnation and drying [130]. 

2-3-5  Solvothermal methods 

 Solvothermal methods are relatively mild method for the fabrication of nanoscale 

metal oxides. They involve dissolving inorganic and/ or organometallic precursors in a 

suitable solvent and conducting the reactions in autoclaves normally at temperatures 

above the boiling point of the solvent [132]. The solvothermal methods differ slightly 

from hydrothermal methods in that a non-aqueous solvent is typically used [133].  

Various metal oxides [134-136] and nanocomposites [11, 137, 138]  have been prepared 

by solvothermal reactions. It has been shown that most of the solvothermal products are 

nano- or microparticles with well-defined morphologies, narrow size distribution, and 

monodisperse [139]. When the solvent molecules or additives are preferentially adsorbed 

on a certain surface of the products, growth of the surface is prohibited and therefore 

products with unique morphologies such nanorods, wires, tubes, and sheets may be 

formed by the solvothermal reactions [133]. For example, whisker-like Mg(OH)2 

nanostructures have been deposited on a pure-silica zeolite by Bae et al.[11].  
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2-3-6  Hydrothermal methods 

Hydrothermal methods rely on the ability of water at varying pressures and 

temperatures to hydrolyze and dehydrate metal salts, and the very low solubility of the 

resulting metal oxides in water at these conditions to generate supersaturation [1, 69].  

Often, elevated temperatures favor high dehydration rates, as does the high diffusivity of 

reactants in water at these conditions [140, 141]. Very high supersaturations can be 

achieved in this process because of the very low solubility of metal hydroxides and 

oxides, so that very fine crystals are obtained [98, 140, 142, 143]. Parameters such as 

pressure, temperature, reaction time, and the precursor – product system can be tuned to 

maintain high nucleation rates and to control growth [144, 145]. The process is 

environmentally benign and versatile, since it does not generally involve any organic 

solvents or post-treatments such as calcination [146]. As a result, high pressure 

hydrothermal processes have been widely investigated for the synthesis of metal oxides  

[67, 147-150] as powders, nanoparticles and single crystals [69, 151].  

The hydrothermal synthesis of nanomaterials such as iron oxides can also be 

performed in situ within porous structures. Xu and Teja [71, 152] have successfully 

deposited hematite in the pores of activated carbon pellets using supercritical water. The 

hematite nanoparticles were 16-36 nm in diameter and were uniformly distributed 

throughout the pellets. Moreover, transition metal oxides such as titanium [153, 154] and 

chromium oxides [155, 156] photocatalysts can be designed within the cavities and 

frameworks of various zeolites and mesoporous molecular sieves by hydrothermal 

synthesis [157].  
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2-3-7 Deposition – precipitation 

The deposition – precipitation method is similar to the hydrothermal method in 

which the metal oxides/ hydroxides are precipitated out of the aqueous solution by 

lowering their solubilities. However, this method is usually non-thermal driven and 

typically carried out at ambient conditions. The essence of this method is that small 

crystallites of metal hydroxide or carbonate precipitate from solution, preferably by 

heterogenous nucleation at the interface between the liquid and support [158]. This 

method consists of the conversion of a highly soluble metal precursor into another 

substance of lower solubility, which specifically precipitates onto a support and not in 

solution [159]. The conversion into the low soluble compound (above the saturation 

curve S in Fig. 2.4), and then into the precipitate (above the supersaturation curve SS in 

Fig. 2.4), is usually achieved by raising the pH of the solution. 

To perform the precipitation exclusively on the surface of the support, two conditions 

must be fulfilled [159]: 

1. Interaction between the soluble metal precursor and the surface of the support is 

required. In such a case, the supersaturation curve SS in Fig. 2.4 is shifted towards 

lower concentrations in the presence of the support (curve SSsupport in Fig. 2.4). 

Thus, when the concentration of the precursor increases, this supersaturation 

curve (curve SSsupport ) is encountered before the supersaturation curve (curve SS) . 

2. The concentration of the precursor must be maintained between the 

concentrations of the saturation (curve S) and the supersaturation curves (curve 

SS) to avoid precipitation in solution. 
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Fig. 2.4 Schematic phase diagram for a precipitate in equilibrium with its solution and in 
the presence of the solid support; (S) solubility curve; (SSsupport) supersaturation curve in 
the presence of the support (precipitation on the support); (SS) supersaturation curve in 
liquid (precipitation in liquid). Adapted from [159]. 

According to Hermans and Geus [159], interaction with the support decreases the 

nucleation barrier as long as nucleation at the surface of the support can proceed at a 

concentration between the solubility and the supersaturation curve. Therefore, at 

concentrations between those of the supersaturation curves, SSsupport and SS, the 

compound exclusively precipitates onto the support surface. 

Typically, hydroxides and carbonates are the preferred precipitated intermediates  

using the deposition - precipitation method for the following reasons [160]: 

(1) Solubility of certain salts of alkaline earth metal and transition metals are very 

low. Consequently, very high supersaturations can be achieved, leading to 

very small particle sizes. 

(2) Hydroxides and carbonates are easily decomposed by heat to oxides of high 

area without leaving potential catalyst poisons (for example, the sulfur left 

after sulfate calcinations). 
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(3) Minimum safety and environmental problems resulting from the calcinations 

of hydroxides and carbonates. 

A number of zeolite supported nanomaterials such as gold [161-163], nickel 

[164], and cobalt hydroxides [48, 49] have been prepared using this method. In addition, 

this method has also been used to prepare Ni [165], titania [166], copper oxides [167], 

gold [168] on other matrices such as silica, ceria, and titania.  In principle, the deposition- 

precipitation method enables the deposition of a controlled amount of metal precursor up 

to high loading, and the interaction between the metal precursor and the support leads to 

the formation of highly dispersed active phase after thermal treatment [131, 159]. 
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CHAPTER 3 

SYNTHESIS AND CHARACTERIZATION OF Mg(OH)2/ ZEOLITE 

4A NANOCOMPOSITES 

3-1  Introduction 

This chapter describes a simple deposition-precipitation method to assemble 

magnesium hydroxide nanostructures on zeolite 4A at ambient conditions. The deposition 

– precipitation method is similar to the hydrothermal method in which the metal 

hydroxides/ oxides are precipitated from their metal precursors by tuning their solubility. 

However, solubility change occurs by the addition of alkali and not by heat addition. In 

the deposition – precipitation process, small crystallites of metal hydroxide are 

precipitated by heterogeneous nucleation at the zeolite surface where they interact with 

the surface and assemble into nanostructures [1]. A well-dispersed and homogeneous 

active phase is reached when the OH- groups of the support (for example, the silanols of 

silica) interact directly with the ions present in the solution, thereby also determining the 

nature of the formed phase [2-4]. In principle, the deposition- precipitation method 

enables the deposition of a controlled amount of metal precursor up to high loading [5, 

6]. 

Previously, Teja and co-workers [7-13] investigated the precipitation of metal 

oxides and mixed oxides such as Fe2O3, Co3O4, LiFePO4, and CoFe2O4 via hydrothermal 

synthesis at sub- supercritical water conditions and found that the solubilities and 

morphologies of these materials can be tuned by varying the concentration of the 

precursors, temperature, and pH of the reaction medium.  It was found that in general, the 
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solubility behavior of metals is dependent on the speciation of the metal ions in solution 

at different pH and hydrolysis of the metal ions [14]. In addition, metal ions that exhibit 

high positive charge and low ionic radii will result in increased metal-coordinated water 

interactions with easier proton release and strong tendency to hydrolyze [14]. In some 

cases, hydrolysis results in the formation of hydroxide networks, which are less soluble 

than the cations [14].  

In the present study, the effects of synthesis parameters such as temperature, 

reagent concentration, nature of the base, and synthesis time on the size, morphology, and 

composition of the resulting zeolite nanocomposite were investigated. Based on the 

studies conducted by Teja and co-workers [7-11, 13, 15], it is hypothesized that the 

precipitation of Mg(OH)2 would be more favorable with increasing magnesium precursor 

concentration and temperature because of the increase in the saturation level of 

magnesium ions in the solution. The nature of the precipitant and its alkalinity are 

expected to affect the morphology of Mg(OH)2 since Mg(OH)2 can only be precipitated 

under basic conditions. The use of a strong base should result in rapid nucleation and in 

the formation of tiny Mg(OH)2 particles. A longer synthesis time would be favorable for 

self-assembly and crystal growth of the precipitated particles.  

The magnesium source in the present study was magnesium chloride. Henrist et 

al. [16] have reported that there is no morphological difference when other precursors 

such as magnesium nitrate are used as the magnesium source. However, in the case of 

magnesium sulphate, agglomerated particles were obtained and these agglomerates were 

difficult to separate [16]. Thus magnesium chloride was chosen as the magnesium 

precursor in the present work. A weak base such as ammonium hydroxide and a strong 
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base such as sodium hydroxide were used as precipitants in order to investigate the 

effects of the nature of the base on the formation of Mg(OH)2. According to Wulfsberg 

[17], the predominant magnesium species at low pH is hydrated magnesium ions, 

whereas at high pH magnesium exists predominantly as Mg(OH)2. Therefore, the 

formation of magnesium hydroxide is more favorable at basic conditions.  

3-2  Literature review 

The comprehensive understanding and efficient control of the crystal morphology 

is of practical important, since various macroscopic properties and practical applications 

of the crystal materials strongly depend on their morphology and size [18, 19]. In general, 

the morphology of the crystal is in large extent depends on the intrinsic structure of the 

crystal, pH, and supersaturation level [19]. Some of the more popularly accepted 

crystallization theory to predict the crystal habit are the Bravais, Friedel, Donnay, and 

Harker (BFDH) law [20, 21], the periodic bond chain theory introduced by Hartman and 

Perdok [21-23], and the diffusion-reaction theory [24]. 

The BFDH model assumes that the linear growth rate, Rhkl, of a given crystal face 

is inversely proportional to the corresponding interplanar distance, dhkl, after taking into 

account the extinction conditions of the crystal space group [19, 25]. In other words, the 

slowest growing faces, and hence most prominent, are those in which the interatomic 

spacing is the greatest. The BFDH law only makes use of the framework of the crystal 

lattice and gives no consideration to the atom or bond type or partial charge. Although the 

BFDH model gives in principle a satisfying description of the morphology of crystals, the 

drawback of this law is its purely mathematical character [26]. Neither the real crystal 
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structure, nor the concept of chemical bond, thermodynamics and statistical mechanics of 

interfaces, and crystal growth mechanisms are taken into account [26].  

The BFDH model was refined by Hartman and Perdok by relating the crystal 

morphology to its internal structure on an energy basis [25]. They identified that chains 

of strong intermolecular bonds known as periodic bond chains (PBC) govern the crystal 

morphology [26]. According to the number of PBC inside a slice of thickness, dhkl, the c 

onlyrystal faces can be classified as (i) F-faces (flat), two or more PBC, (ii) S-faces 

(stepped), one PBC, or (iii) K-faces  (kinked), zero PBC [26].The F-faces have low 

growth rates due to the existence of a limited number of kink sites, and they grow by 

lateral extension of the growth layers, whereas the growth of S-faces only needs a 

unidimensional nucleation is faster than that of F-faces. Finally, the growth rate of the K-

faces is the highest because the K-faces have a higher number of kink sites [25]. The 

growth rate of each faces is related to the attachment energy and small attachment energy 

translates into low growth velocity [19, 25]. Subsequently, the F-faces with the lowest 

attachment energy will tend to appear in the crystal morphology more frequently than the 

S- and K-faces which have higher attachment energy and growth rates [19]. Although the 

PBC theory predicted some crystal morphology successfully, its main drawback is that it 

does not account for the environmental factors of crystal growth such as supersaturation 

[27]. 

Among the crystal growth theories in the literature, only the diffusion-reaction 

theory considers the bulk diffusion of the crystallizing species [24]. The diffusion-

reaction theory leads to the two-step crystal growth model. In the diffusion step, the 

building blocks diffuse through a boundary layer between the crystal surface and the bulk 
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solution to arrive at the crystal face, whereas in the reaction step, the building blocks on 

the crystal surface integrate into the crystal lattice [27]. These steps can be expressed 

mathematically as [24]:  

)( idKG σσ −=  bulk diffusion 

r
irKG σ=   surface reaction 

where G is the crystal growth rate, σ is the overall supersaturation, σi is the interfacial 

supersaturation, Kd is the mass transfer coefficient, and Kr is the reaction constant. The 

surface reaction represents one or a combination of the growth steps occurring at the 

crystal-solution interface, including adsorption, surface diffusion, dehydration, and 

intergration [24].  Although the diffusion-reaction theory is popularly accepted, it is not 

easy to use in practice because little is known about the boundary layer [27]. 

It can be observed from the above discussion that crystallization is a very 

complex process and there is no single theory to accurately describe it. Therefore in this 

work some of the concepts from the theories described above will be used to understand 

the formation of magnesium hydroxide.  

3-3  Experimental 

3-3-1  Materials 

Magnesium chloride (MgCl2.6H2O, ACS reagent), ammonium hydroxide 

(NH4OH, 14.8 normality, ACS reagent), ammonium chloride (NH4Cl, ACS reagent), and 

sodium hydroxide (NaOH, ACS reagent) were purchased from Fischer Scientific (NJ, 

USA). ADVERA 401P hydrated sodium zeolite 4A with a characteristic 3 – 6 μm cubic 
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form was purchased from PQ Corporation (PA, USA). Silicon oxide and aluminum oxide 

particles were purchased from Nanomaterials & Amorphous Materials Inc. (TX, USA) 

and Electron Microscopy Sciences (PA, USA) respectively. The average primary particle 

size was 3 μm as reported by the vendors. Deionized water was made in the lab and all 

materials were used without further purification. Cellulose nitrate membrane filters of 

pore size 0.2 μm were purchased from Whatman (NJ, USA). 

3-3-2  Procedure 

Magnesium chloride solution of known concentration was prepared by adding 

deionized water to a known mass of MgCl2.6H2O salt to make 20 mL of solution. 60 mL 

of NH4OH solution (same concentration as MgCl2.6H2O) was prepared by diluting 

appropriate amount of the concentrated NH4OH (14.8 normality). Experiments were then 

carried out as follows: (1) 0.2 g of zeolite 4A were added to 20 mL of the magnesium 

chloride solution of known concentration in a beaker, (2) 60 mL of ammonium hydroxide 

/ NaOH / DI water solution were titrated into the above mixture while stirring, (3) the 

mixture was allowed to sit at ambient conditions for a specified time, after which its pH 

of the solution was measured. The experiment was also carried out at 673 K and 623 K in 

a 250 mL stainless steel autoclave (Parr Instrument Co., IL, USA, Model 4576) equipped 

with a magnetic stirrer. Conditions of all experiments are summarized in Table 3.1. At 

the conclusion of each experiment, the zeolite particles were collected via vacuum 

filtration through a cellulose nitrate membrane filter of pore size 0.2 μm. The collected 

particles were washed with an excess amount of deionized water and dried overnight in a 

vacuum oven at 323 K 
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3-3-3 Characterization techniques 

A small sample of the dried particles from each experiment was examined by 

scanning electron microscopy (SEM), Fourier Transform Infrared (FT-IR), and powder 

X-ray diffraction (XRD). The SEM consisted of a LEO 1530 FEG field-emission 

instrument (Carl Zeiss SMT Inc., Germany) equipped with an energy dispersive X-ray 

spectroscopy (EDS) detector. Fourier Transform Infra Red (FT-IR) analysis was used for 

identification of the final products using a Bruker IFS 66v/S spectrometer (Bruker 

Corporation, USA). The sample was finely ground and diluted to 3 wt % with KBr 

powder before being pressed into a translucent pellet with a hand press. All IR 

measurements were carried out at room temperature under vacuum using a repetition of 

50 scans at a resolution of 4 cm-1 in the absorbance mode. Powder X-ray diffraction 

(XRD) patterns were obtained on a Phillips X’pert diffractometer (PANalytical Inc, 

USA) equipped with X’celerator using Cu Kα radiation. 

 

 

 

 

 

 

 

41 
 



Table 3-1 Summary of experimental conditions for the preparation of magnesium 
hydroxide – zeolite 4A nanocomposites. Equimolar magnesium chloride and ammonium 
hydroxide solutions were added in a 1: 3 volume ratio 

Expt. 

No 

Conc. of MgCl2  

(M) 

Conc. of base (M) Temperature Synthesis 

time 

pH 

A1 0.01 M 0.01 M NH4OH 298 K 24 h 10.81 ± 0.30 

A2 0.04 M 0.04 M NH4OH 298 K 24 h 10.17 ± 0.28 

A3 0.07 M 0.07 M NH4OH 298 K 24 h 10.15 ± 0.25 

A4 0.1 M 0.1 M NH4OH 298 K 24 h 10.06 ± 0.22 

A5 0.01 M 0.01 M NH4OH 298 K 48 h 10.73 ± 0.28 

A6 0.04 M 0.04 M NH4OH 298 K 48 h 10.01 ± 0.26 

A7 0.07 M 0.07 M NH4OH 298 K 48 h 9.96 ± 0.24 

A8 0.1 M 0.1 M NH4OH 298 K 48 h 9.92 ± 0.21 

A9 0.01 M 0.01 M NH4OH 298 K 72 h 10.36 ± 0.32 

A10 0.04 M 0.04 M NH4OH 298 K 72 h 9.89 ± 0.33 

A11 0.07 M 0.07 M NH4OH 298 K 72 h 9.82 ± 0.27 

A12 0.1 M 0.1 M NH4OH 298 K 72 h 9.80 ± 0.23 

B1 0.01 M DI water 298 K 72 h 9.25 ± 0.22 

B2 0.04 M DI water 298 K 72 h 8.27 ± 0.21 

B3 0.07 M DI water 298 K 72 h 8.20 ± 0.16 

B4 0.1 M DI water 298 K 72 h 8.12 ± 0.20 

C1 0.04 M 0.04 M NaOH 298 K 72 h 11.25 ± 0.3 

D1 0.05 M 0.05 M NH4OH 673 K 2 h - 

D2 0.05 M 0.05 M NH4OH 623 K 2 h - 
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3-4 Results  

3-4-1 Identification and characterization of surface nanostructures  

3-4-1-1 Scanning Electron Microscopy (SEM) 

 Figure 3.1 displays the surface morphology of zeolites obtained at different 

magnesium ion concentrations and pH at a synthesis time of 72 h. Petal-like structures 

were obtained at pH between 9-11 whereas tiny particles were obtained at pH > 11. No 

deposition was observed at high concentration of Mg2+ ions and low pH. However, 

nanostructures were deposited on the zeolite at high pH even though the concentration of 

Mg2+ ions was low. At high pH, the amount of deposited material increased with 

increasing concentration of Mg2+ ions. The effects of magnesium ion concentration and 

basicity on the size, shape, and morphology of the surface nanostructures are discussed in 

detail in the following section. 

 

 

 

 

 

 

 



Fig. 3.1 Change in the morphology and deposition of surface nanostructures with respect to pH and 
magnesium ion concentration. 
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3-4-1-2 Energy Dispersive X-ray Spectroscopy (EDS) 

Energy dispersive X-ray spectroscopy was used to determine the elemental 

composition of the surface material deposited on the zeolite surface. The EDS used was 

connected to the LEO 1530 thermally-assisted field emission scanning electron 

microscope (Carl Zeiss SMT Inc., Germany). Figure 3.2 shows the EDS spectra of 

selected zeolite nanocomposites obtained from experiments A10 and A12. The EDS 

spectra show characteristics peaks from magnesium and oxygen in addition to the peaks 

for sodium, silicon, and aluminum, suggesting the presence of Mg(OH)2 in the samples. 
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Fig. 3.2 EDS spectra of treated zeolites obtained from experiments (a) A10, (b) A12. 
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3-4-1-3 X-ray Diffraction (XRD) 

 Powder X-ray diffraction was used to identify the surface nanostructures and 

examine the crystallinity of the nanocomposites. Figure 3.3 displays the XRD patterns of 

virgin zeolite 4A, commercial Mg(OH)2 powder, and selected zeolite nanocomposites. It 

can be seen that the zeolite nanocomposites maintained their crystallinity after treatment. 

Furthermore, the position of the new peaks resulting from the surface nanostructures are 

well matched with tabulated Mg(OH)2 peaks. This confirms the presence of Mg(OH)2 on 

the zeolite. The peaks were relatively weak and broad due to the high crystallinity of the 

large zeolite and the small size of the Mg(OH)2 domains 
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Fig. 3.3 XRD patterns of (a) virgin zeolite 4A, (b) commercial Mg(OH)2 powder, (c, d) 
treated zeolites obtained from experiments A10 and A12, respectively. The zeolite 
structure and crystallinity remained intact after treatment. The peaks from nanocrystals 
created after treatment were well matched with tabulated Mg(OH)2 peaks. 
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3-4-1-4 Fourier Transform Infrared (FTIR) 

 Fourier Transform Infrared analysis was used for additional confirmation of 

Mg(OH)2 in the nanocomposite. Figure 3.4 shows the FTIR spectra of virgin zeolite 4A, 

commercial Mg(OH)2 powder, and zeolite nanocomposite samples obtained from 

experiment A10 and A12. The spectra of the zeolite nanocomposites can be matched with 

the spectrum of the virgin zeolite, with additional peaks detected at ~1400 cm-1 and 3400 

cm-1. These peaks can be attributed to the bending and stretching vibrations of the –OH 

bond in the crystal structure of Mg(OH)2 [28, 29]. This result further confirms the 

presence of Mg(OH)2 in the nanocomposite. 
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Fig. 3.4 FTIR spectra of (a) zeolite 4A, (b) magnesium hydroxide, and (c, d) treated 
zeolites obtained from A10 and A12 respectively. Peaks detected at ~ 1400 cm-1 and 
3400 cm-1 in the treated zeolite 4A can be attributed to the bending and stretching 
vibration of the –OH bond in the crystal structure of Mg(OH)2. 
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3-4-2  Preliminary study of effect of temperature 

 The experiments were carried out at high temperatures (623 K and 673 K) to 

investigate the effect of temperature on nanocomposite. SEM images of virgin zeolite 4A 

and magnesium hydroxide / zeolite 4A nanocomposites obtained from experiment D1 

and D2 are shown in Fig. 3.5. As can be seen from this figure, virgin zeolite 4A (Fig 

3.5a) morphology is cubic whereas the treated zeolites (Fig. 3.5b) were deformed and lost 

their cubic shape. Parts of the treated zeolites were covered with deposited 

nanostructures. However, coverage was not complete. 
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Fig. 3.5 SEM images of a) virgin zeolite 4A, treated zeolites obtained from experiments 
b) D1, c) D2. 
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3-4-3   Influence of magnesium chloride concentration 

Four experiments (A9, A10, A11, A12) were performed to investigate the effects 

of magnesium chloride concentration on the formation of magnesium hydroxide 

nanopetals on zeolite 4A. The magnesium chloride concentrations in these experiments 

were 0.01 M, 0.04 M, 0.07 M, and 0.1 M respectively. From Table 3.1, it can be observed 

that the pH of the zeolite solution decreased as the concentration of magnesium chloride 

increased. Representative SEM images of the magnesium hydroxide / zeolite 4A 

nanocomposites are shown in Fig. 3.6. As can be seen from these images, the average 

size of the magnesium hydroxide nanopetals deposited on the surface increased as the 

concentration of magnesium chloride increased. Furthermore, the loading of Mg(OH)2 in 

the nanocomposite apparently increased with increasing magnesium chloride 

concentration (discussed further in Chapter 4). However, the Mg(OH)2 nanopetals 

showed a tendency towards intergrowth at high magnesium chloride concentration, while 

at lower concentration, single and well-defined platelets were obtained. These results 

show that the composition of magnesium hydroxide in the nanocomposite can be 

controlled by varying the concentration of magnesium chloride.  
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a) b)

c) d)

Fig. 3.6 Representative SEM images of zeolites obtained from experiments (a) A9, (b) 
A10, (c) A11, (d) A12. 
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3-4-4   Influence of the base  

In order to examine the effects of pH on the formation of Mg(OH)2/ zeolite 

nanocomposite, different precipitants including DI water, NaOH (strong base), and 

NH4OH (weak base) were used in the synthesis. No experiments were conducted using 

acids since Mg(OH)2 does not precipitate under acidic conditions in aqueous solution 

[17]. However, when a sol-gel method was used, whisker-like Mg(OH)2 was obtained 

under acidic conditions [30] Experiments B1 – B4 were carried out with DI water as the 

precipitant. Figure 3.7 displays the SEM images of the zeolites obtained in these 

experiments. It can be clearly seen that no Mg(OH)2 nanostructures were formed on the 

surfaces of these zeolites. When a strong base such as sodium hydroxide (NaOH) was 

used as the precipitant, Mg(OH)2 nanoparticles were deposited on the surface of the 

zeolite (as shown in Fig. 3.7 e and f). Petal-like Mg(OH)2 nanocrystals were obtained 

when a weak base such as ammonium hydroxide was used as the precipitant (see  Fig. 

3.8). From SEM images, the Mg(OH)2 nanocrystals on the zeolite surfaces tended to be 

small and very thin, and had relatively high diameter to thickness ratio and surface area 

(see Fig. 3.8). Fig. 3.8 clearly shows that individual petals did not grow randomly but 

were homogeneously distributed on the surface. Furthermore, it can be seen that each 

petal is a thin platelet with defined edges.  
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a) b)

c) d)

f)e) 

Fig. 3.7 Representative SEM images of treated zeolites obtained from experiments (a) 
B1, (b) B2, (c) B3, (d) B4, (e) C1, and (f) magnified image of (e). 

 

53 
 



 

a) 

 

b) 

   Fig. 3.8 Representative SEM images obtained from experiments (a) A3 and (b) A4. 
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3-4-5   Effect of synthesis time 

The effect of synthesis time was investigated by collecting the zeolite particles at 

24 h intervals for 72 h while keeping the temperature constant. From the SEM images 

shown in Fig. 3.9 it can be seen that the size and amount of Mg(OH)2 nanopetals 

deposited on the zeolite increased as the synthesis time increased from 24 h to 48 h. 

However, the size and amount did not vary much when the synthesis time increased from 

48 h to 72 h. Moreover, it can be seen that the magnesium hydroxide precipitated in 24 h 

consists of small imperfect thin plates. It only developed into well defined petal-like 

morphology during aging. The rate of formation and deposition of magnesium hydroxide 

can be obtained from Fig. 3.10. The weight percent of Mg(OH)2 in the nanocomposite 

(discussed in chapter 4) increased from 10.49 % to 11.87 % when the synthesis time 

increased from 24 h to 48 h. However, as the synthesis time increased further to 72 h, the 

total weight percent of Mg(OH)2 in the composite only increased by 0.49 % from 11.87 

% to 12.36 %.  This can also be seen by the change in Mg2+ ion concentration versus time 

as shown in Fig. 3.10.  
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a) b)

c) d)

f)e) 

Fig. 3.9 Representative SEM images of treated zeolites at different magnification scales 
obtained from experiments (a,b) A2, (c,d) A6, and (e,f) A10. 
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3-5  Discussion 

The amount of Mg(OH)2 deposited was expected to depend strongly on the 

concentration of magnesium ions, pH, and synthesis time. Table 3.1 shows that the pH of 

the solution decreased as the concentration of magnesium chloride increased. Mg2+ ions 

are weakly acidic [17] and when magnesium chloride dissolves in water, these ions 

behave as Lewis acids [31]. The positive charge on Mg2+ draws electron density from the 

O-H bond in water. As the unshared electron pairs of the water molecules are pulled 

closer to the Mg2+ ion, the electrons in O-H bond of water move closer to the oxygen to 

compensate for some of its loss of electron density. As a result, the hydrogen of the water 

molecule ends up with an increased positive charge. Eventually the O-H bond may 

dissociate, releasing an aqueous proton and leaving a hydroxide group attached to the 

Mg2+ ion, thus producing an acidic solution. Therefore, the pH of the solution decreases 

with increasing magnesium chloride concentration. 

 As can be seen from Fig. 3.5, Mg(OH)2 / zeolite 4A nanocomposites could be 

obtained using sub- and supercritical water hydrothermal synthesis within 2 h. However, 

the resulting zeolite was deformed and lost its cubic shape. Subcritical water conditions 

are detrimental to the structure of the zeolite. It has been reported that the solubility of 

silica in water increases significantly at elevated temperatures [32]. Also, under 

subcritical to supercritical water conditions, alumina suffers intergranular corrosion at pH 

~ 8 and completely dissolves at pH > 11 [33, 34]. Since zeolite 4A is made up of silica 

and alumina tetrahedra, it is very likely that the structure of zeolite will disintegrate at 

these conditions. Therefore, the sub- and supercritical water hydrothermal methods were 

not used for the synthesis of Mg(OH)2 / zeolite 4A nanocomposites. Instead, the 
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deposition – precipitation method at ambient conditions was used to prepare the 

Mg(OH)2 / zeolite 4A nanocomposites in this study. 

No magnesium hydroxide nanostructures were visible on the zeolite surface at the 

lowest magnesium chloride concentration (Fig. 3.6). As the concentration increased to 

0.04 M, the precipitated magnesium hydroxide consisted of individual particles in the 

form of hexagonal or truncated triangular platelets that were generally around 200 nm or 

less across. The diameter of the platelets increased with concentration, to around 400 nm 

at the highest concentration of 0.1 M used in this study.  

The precipitation of magnesium hydroxide depends on the relation of the product 

[Mg2+] × [OH]2 to the solubility-product Ksp of magnesium hydroxide [35], which is 

reported to be 1.5 x 10-12 [36]. This value corresponds to a solubility of magnesium 

hydroxide of [Mg2+] = 0.72 × 10-4 mol L-1 and [OH-] = 2.07 × 10-4 mol L-1, respectively. 

Therefore, as the concentration of magnesium chloride increases, the heterogeneous 

zeolite solution becomes saturated with Mg2+ ions and the solubility product is exceeded 

[37]. Thus, high supersaturation level of the magnesium hydroxide building blocks 

Mg(OH)6
4- is obtained when ammonium hydroxide is added to the solution, resulting in 

the spontaneous formation of Mg(OH)2 nuclei [38]. Depending on the supersaturation 

level of the solution, these nuclei may redissolve as rapidly as they form [39]. However, 

since the supersaturation level of the building blocks is high at elevated magnesium 

chloride concentration, the building blocks will continue to diffuse to the growing nuclei 

surface from the bulk solution and integrated into the crystal lattice. Therefore, larger 

magnesium hydroxide crystals were formed at higher concentration of magnesium 

chloride.  
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It can be seen from the above experiments that the nature of the base plays a 

significant role in the precipitation and formation of magnesium hydroxide and its 

morphology. Without a base, no visible magnesium hydroxide nanostructures were 

formed on the zeolite surface, although the solution was supersaturated with magnesium 

ions and the conditions were feasible for the precipitation of magnesium hydroxide 

(experiments B1 – B4). The Mg2+ ion is considered to be weakly acidic with a pKa of 

about 11.4 [17]. Weakly acidic cations show enough acidity to precipitate insoluble metal 

hydroxides at pH values over their pKa (i.e., in neutral or just slightly basic solutions). 

However, if the solution is not made basic, hydrated metal ion will be the predominant 

form [17]. Therefore, in experiments B1 – B4, dissolved magnesium ions remained 

predominantly as hydrated magnesium ions and did not form Mg(OH)2 in the absence of 

a base.  

According to previous reports, some significant variables during the growth of 

Mg(OH)2 are the solution pH and nature of the base [38]. When a strong base such as 

NaOH was added to the zeolite solution, tiny particles of magnesium hydroxide were 

found on the surface of the zeolite (as shown in Fig 3.7e and f). A strong base dissolves 

completely in water to give stoichiometric quantities of hydroxide ions. The initial pH in 

the reacting mixture was about ~13 and settled at a pH of about ~11 at the end of 72 h. 

The elevated pH value created a high supersaturation level due to the high OH- 

concentration. This resulted in a very fast nucleation of Mg(OH)6
4- building blocks and 

generated tiny and ill-defined Mg(OH)2 nuclei [40]. In order to decrease the surface 

energy, the small Mg(OH)2 nuclei tend to aggregate, adopting an irregular shape [38]. In 

addition, the isoelectric point of Mg(OH)2 is around 11-12 [38, 41]. Above this value, the 
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growing Mg(OH)2 nuclei are negatively charged. In the case of samples prepared with 

NaOH as the base, the initial pH of the medium was 13. Therefore under this condition, 

the sodium ions are attracted to the negative surfaces of the growing Mg(OH)2 nuclei. 

Due to their high concentration and small hydration sphere in solution, the sodium ions 

probably adsorbed significantly onto all facets of the nuclei, without any selectivity, thus 

hindering the attachment of fresh Mg(OH)6
4- and decrease the growth rate of the nuclei 

[16]. This is also in agreement with the observation that increases in alkalinity tend to 

cause a decrease in particle size of Mg(OH)2 [42]. It has also been reported previously by 

Ivanova et al. [43] that magnesium hydroxide precipitated with a strong base such as 

KOH has a smaller specific surface and size than when ammonia liquor is used. In 

general, when the supersaturation level is too high, the system mainly experiences the 

nucleation process and monodispersed particles will be obtained [27]. 

Petal-like Mg(OH)2 nanocrystals were created on zeolite surfaces when a weak 

base such as ammonium hydroxide was used as the precipitant (as shown in Fig 3.8). The 

possible mechanism of forming such petal-like morphology may be due to the anisotropic 

structure of Mg(OH)2 [44]. Mg(OH)2 has a layered brucite crystal structure [16] and this 

intrinsic crystal property may dominate the shape of the primary Mg(OH)2 particles [45], 

resulting in the formation of the petal-like crystals. A weak base such as ammonium 

hydroxide is only slightly dissociated into ammonium and hydroxide ions in solution, and 

some of it decomposes into ammonia and water [46]. Thus, the concentration of 

hydroxide ions in the zeolite solution increased slowly and allowed the pH to rise 

homogenously throughout the solution. The pH of the suspension when using ammonium 

hydroxide as precipitant was about pH 10 at the start of the experiment (which is very 
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close to the pKa value of Mg2+) [17]. These conditions are favorable for the precipitation 

and growth of Mg(OH)2. Several authors [16, 28, 41, 47, 48] have determined the 

isoelectric point of Mg(OH)2 in water to be about pH 11-12. Therefore, Mg(OH)2 

particles are positively charged when the solution pH is around 10 and the adsorption of 

cations such as ammonium ions is not favored anymore. Moreover, the ammonium cation 

is larger than the sodium ion and is not easily adsorbed on the crystal facets. Furthermore, 

since ammonium hydroxide is only partially dissociated in aqueous solution, the 

supersaturation level is lower compared to that of NaOH. Subsequently, the rate of 

crystal growth is higher than the rate of nucleation when ammonium hydroxide is used as 

the base precipitant. Similar growth mechanism of the petal-like Mg(OH)2 has also been 

reported by Xue and co-workers [44, 49-51]. It was shown that when ammonium 

hydroxide is used as the precipitant, the growth rates of the (001) and (100) planes are the 

slowest and the morphology of Mg(OH)2 is determined by these two planes [49, 51]. 

Structurally, it can be found that both {001} and {100} planes are composed of Mg2+, but 

the atom density of {001} planes is larger than that of {100} planes [51]. During the 

growth process, the amount of dissociated ammonium hydroxide adsorbed on the {001} 

planes is more than the {100} planes, suppressing the growth of the {001} planes [51]. 

Thus, the use of ammonium hydroxide resulted in a low supersaturation level which 

favors edgewise growth of petal-like magnesium hydroxide in directions lying in the 

basal crystallographic plane rather than growth along the c-axis [42, 47]. In addition, 

precipitation of magnesium hydroxide is reversible by the byproduct ammonium chloride 

[46, 52]. A large amount of ammonium chloride in the solution results in the decrease of 

ionization rate of ammonium hydroxide, therefore the formation rate of OH- is decreased 
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[49]. Together these factors contributed to the slow self assembly process of the 

magnesium hydroxide into a petal – like morphology on the zeolite surface.   

As can be seen from Fig. 3.9 and 3.10, the size and total mass of magnesium 

hydroxide in the nanocomposite increased with increasing synthesis time while the 

concentration of magnesium ion in the solution decreased. From the SEM images shown 

in Fig. 3.9 it can be seen that the size and amount of Mg(OH)2 nanopetals deposited on 

the zeolite increased as the synthesis time increased from 24 h to 48 h. However, the size 

and amount did not vary much when the synthesis time increased from 48 h to 72 h. At 

the beginning, large amounts of starting materials dissolved and concentrations of 

magnesium ions in solution were high. This resulted in the initial rapid deposition of 

Mg(OH)2 on the surface as observed from Fig. 3.9a-d and Fig. 3.10. After about 48 h, the 

concentration of Mg2+ ions in the solution approached their equilibrium value which 

retarded the growth of Mg(OH)2 nanopetals. As the synthesis time increased, the amount 

of magnesium ions available for nucleation and formation of magnesium hydroxide 

decreased. Consequently, the rate of magnesium hydroxide formation and deposition 

decreased as well. It may therefore be assumed that increasing the magnesium hydroxide 

concentration increases the size of magnesium hydroxide crystals which decreases the 

concentration of magnesium ions in the solution.  
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3-6  Conclusions 

A facile deposition – precipitation method was developed for the preparation of 

magnesium hydroxide nanostructures on zeolite 4A. The method employed an aqueous 

solution of magnesium chloride and ammonium hydroxide at ambient conditions. The 

size and precipitation of Mg(OH)2 nanostructures increased with increasing magnesium 

chloride concentration. The use of a strong base (NaOH) led to the formation of tiny 

Mg(OH)2 particles, while synthesis driven with a weak base (NH4OH) promoted the 

obtaining of petal- shaped nanostructures. Increasing the synthesis time facilitated the 

crystal growth of Mg(OH)2 nanostructure and composition of Mg(OH)2 in the Mg(OH)2/ 

zeolite nanocomposite. 
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CHAPTER 4  

PROPERTIES OF Mg(OH)2/ ZEOLITE NANOCOMPOSITES 

In this chapter, the surface area, pore volume, and composition of Mg(OH)2/ 

zeolite nanocomposites were measured and membranes were developed by dispersing 

zeolite 4A and Mg(OH)2 / zeolite nanocomposites in a commercially available polymer 

(Ultem®). Ultem®, also known as poly(ether-imide), was selected as the continuous phase 

for all membranes as it is a glassy polymer with high glass transition temperature (Tg) 

and possesses high gas permeability and selectivity as well as high thermal stability and 

solvent resistivity [1, 2]. Hybrid (mixed-matrix) membranes were fabricated by a 

solution-casting method with different loadings of bare zeolite and Mg(OH)2 / zeolite 

nanocomposites. The mechanical and thermal properties of the hybrid membranes were 

evaluated. 

 The equipment and techniques used to measure the properties of the zeolite 

nanocomposites are described in Section 4-1, followed by fabrication of hybrid 

membranes in Section 4-2, and determination of the thermal and mechanical properties of 

the hybrid membranes in Section 4-3. The effects of the magnesium hydroxide 

nanostructures on the interfacial adhesion between zeolites and Ultem® polymer matrix 

are discussed in Section 4-4. 
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4-1 Determination of the properties of zeolite nanocomposites 

4-1-1  Surface area and pore volume by Brunauer-Emmett-Teller (BET) Analysis 

 The surface area and porosity of selected zeolite nanocomposite obtained from 

experiment A10 were obtained using cryogenic oxygen physisorption at 77 K. This 

analysis was carried out using a Micromeritics Instrument Corp. (Norcross, GA) ASAP 

2020 instrument. The external surface area is given as the difference between the BET 

surface area (O2 adsorption) and the micropore surface area determined according to the 

t-plot method [3]. The objective of the porosity measurement was to examine whether 

channels/ pores of the zeolite were plugged by the growth of Mg(OH)2 nanostructures 

during the deposition – precipitation process. A decrease in the pore volume would 

suggest blockage of these channels/ pores. Table 4.1 gives BET surface area and porosity 

characteristics of bare zeolite 4A and the magnesium hydroxide / zeolite nanocomposite 

obtained in experiment A10. It can be seen that the pore volume of selected treated 

zeolite from A10 is larger than the pore volume of virgin zeolite. This suggests that 

magnesium hydroxide nanostructures did not grow inside the zeolite pores and that the 

increase in pore volume is most likely due to replacement of sodium ions in the virgin 

zeolite by magnesium ions during treatment. The magnesium ion has a smaller ionic 

radius than sodium and one magnesium ion could replace two sodium ions. This would 

lead to an increase in the pore volume of the treated zeolite. This indicates that the pores 

of the zeolite nanocomposites prepared using this method are not plugged by the 

nanostructures. In the present study, liquid oxygen was used as the probe molecule for 

BET surface area measurement. Although nitrogen is the usual choice for the probe 

molecule, it is not the best choice for measuring the micropore volume of a zeolite. For 

70 
 



small pore zeolites such as zeolite NaA, nitrogen may not be able to enter the zeolite 

framework [4]. Furthermore, nitrogen isotherms commonly show complex changes in 

packing density leading to hysteresis of the isotherm which may not give a true 

representation of the pore volume [4, 5].   

Table 4-1 External surface area and pore volumes of bare zeolite and treated zeolite 
obtained from experiment A10 

Surface area (m2 g-1) Pore volume (cm3 g-1) Samples 

Virgin zeolite 302.18 0.147 

Treated zeolite from A10 422.18 0.243 

 

4-1-2 Composition of the zeolite nanocomposite via thermogravimetric analysis 

(TGA) 

 Thermogravimetric analysis (TGA) was used to determine the composition and 

thermal behavior of the Mg(OH)2 / zeolite nanocomposite as a function of magnesium 

chloride concentration and synthesis time. From chapter 3, it was hypothesized that the 

composition of Mg(OH)2 in the nanocomposite should increase with increasing 

concentration and synthesis time. At higher concentration, the aqueous solution becomes 

more saturated with magnesium ions which is conducive to the precipitation of Mg(OH)2. 

A longer synthesis time is favorable for the crystal growth of Mg(OH)2. These analyses 

were performed using a Netzsch STA 409 PC Luxx thermobalance (Selb, Germany). A 

N2 gas sweep at a flow rate of 25 ml /min was used during TGA measurements. The 

heating procedure was set up as follows: (1) the temperature was raised from room 

temperature to 443 K at a rate of 2 K/ min, kept at 443 K for 90 minutes, then increased 
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from 440 K to 683 K at a rate of 10 K / min, and kept at 683 K for another 90 min before 

cooling down.  

The weight percent Mg(OH)2 in the nanocomposite was determined from 

differences in the weight loss due to desorption of water molecules and exclusion of 

occluded water molecules from both virgin zeolite 4A and treated zeolite 4A. The TGA 

results of virgin zeolite 4A, and Mg(OH)2 / zeolite 4A nanocomposite obtained at various 

synthesis times (A2, A6, A10) and magnesium chloride concentrations (A9, A11, A12) 

are shown in Fig. 4.1 and Fig 4.2 respectively. The TGA curve of virgin zeolite 4A shows 

weight loss intervals at 443 K and 683 K, corresponding to the exclusion of adsorbed 

water and occluded water molecules. In treated zeolite 4A, the first weight loss stage at 

443 K corresponds to the desorption of physisorbed water from the surface of zeolite and 

Mg(OH)2 nanopetals. All of the treated zeolite 4A obtained from experiments A2, A6, 

A9, A10, A11, and A12 experienced similar weight loss at this stage. It can also be seen 

that treated zeolite 4A suffered a larger weight loss than virgin zeolite 4A during the first 

heating step to 443 K. This could be due to the larger surface area of Mg(OH)2 

nanopetals around the surface of zeolite 4A. Moreover, the treated zeolite 4A also 

suffered greater weight loss than virgin zeolite 4A at 683 K. The weight loss at 683 K is 

most likely due to the exclusion of occluded water molecules and thermal decomposition 

of Mg(OH)2 [6, 7]. In addition, the weight losses from samples A6 (~ 6.18%) and A10 

(~6.32%) are slightly more than sample A2 (~5.81%), indicating that more Mg(OH)2 

nanopetals were deposited at longer synthesis times. On the other hand, it can be seen 

from Fig. 4.2 and Table 4.2 that the weight percent of magnesium hydroxide in the 
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Mg(OH)2 / zeolite nanocomposite increased as the concentration of magnesium chloride 

increased. 

Assuming that the treated zeolite 4A has the same amount of occluded water 

molecules as the virgin zeolite, the weight percent of Mg(OH)2 nanopetals formed on the 

surface of treated zeolite 4A can be calculated as follows: 
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Here w treated, 1 is the weight loss of the treated zeolite 4A at the first heating step 

and wvirgin, 2 is the weight loss of the virgin zeolite 4A at the second heating step. Also w 

treated, end and w virgin, end are the weight percent of the remaining treated and virgin zeolite 

4A at the end of the second heating step. M MgO (= 40.32) and M Mg(OH)2 (= 58.32) are the 

molecular weights of MgO and Mg(OH)2 respectively. From the TGA curve (Fig. 4.1), 

wvirgin, 2 and w virgin, end are 3.09 % and 79.01 % respectively. The values of w treated, end and 

weight percent of magnesium hydroxide in the Mg(OH)2 / zeolite nanocomposite 

obtained from experiments A2, A6, A9, A10, A11, and A12 are displayed in the Table 4-

2.  
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Table 4-2 Values of w treated, end and composition of Mg(OH)2 / zeolite nanocomposite 

w treated, end Weight percent of Mg(OH)2 [wt. %] Expt. no 

A2 73.13 % 10.49 ± 1.25 

A6 72.75 % 11.79 ± 0.07 

A9 74.72 % 4.98 ± 0.44 

A10 72.60% 12.36 ± 0.30 

A11 71.14 % 18.46 ± 0.02 

A12 70.14 % 23.89 ± 0.41 
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Fig. 4.1 TGA results of virgin zeolite 4A (solid line), treated zeolite 4A from A2 (green 
dashed line), A6 (blue dashed line), A10 (red dashed line). 
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Fig. 4.2 TGA results of virgin zeolite 4A (solid line), treated zeolite 4A from A9 (green 
dashed line), A10 (blue dashed line), A11 (red dashed line), A12 (black dashed line). 
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4-1-3 Yield of Mg(OH)2 during the deposition – precipitation process 

 During the synthesis of Mg(OH)2 / zeolite 4A nanocomposites, the deposition of 

Mg(OH)2 nanostructures on the zeolite 4A surfaces is most likely accompanied by the 

precipitation of Mg(OH)2 in the bulk solution. In order to better control the synthesis of 

the nanocomposites, it is of practical interest to determine the yield of Mg(OH)2 during 

the deposition – precipitation process. For example, the yield of Mg(OH)2 in experiment 

A6 can be calculated as follows: 

%100
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M
M
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where WMg(OH)2,zeolite, and WMg(OH)2,bulk are the weight of Mg(OH)2 deposited on the 

zeolite and the weight of Mg(OH)2 precipitated in the bulk solution respectively, in g. 

Wt%Mg(OH)2-zeolite (= 11.79 %) and Wzeolite (= 0.2 g) are the weight percent of Mg(OH)2 in 

the nanocomposites determined by TGA as presented in section 4-1-2 and weight of 

zeolite used in the preparation of the nanocomposite. Wi (= 0.01944 g) and Wf (= 

0.005443 g) are the weight of free magnesium ions in the bulk solution at the beginning 

and at the end of the synthesis process. The weight of the magnesium ions in the 

solutions are determined by using an EDTA titration method (see chapter 5). MMg (= 24.3 

g/mol) and MMg(OH)2 (= 58.3 g/mol) are the molecular weight of magnesium and 
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magnesium hydroxide respectively. The amount of Mg(OH)2 deposited on the zeolite and 

in the bulk solution are 0.0236 g and 0.01 g respectively. Therefore, the percentage yield 

of Mg(OH)2 in experiment A6 is 72 %. Approximately 30 % of the Mg(OH)2 formed are 

precipitated in the bulk solution. This precipitation in the bulk solution may be driven by 

the addition of the zeolite or spontaneous precipitation of Mg(OH)2 when ammonium 

hydroxide is mixed with magnesium chloride solution. 

In order to better account for the effect of zeolite in Mg(OH)2 formation, a zeolite 

free control study was carried out to determine the amount of Mg(OH)2 precipitated by 

mixing only magnesium chloride and ammonium hydroxide solutions. The procedure of 

the control study is described in section 5-3-2-1 where the initial concentration of MgCl2 

is 0.04 M. The percentage yield of Mg(OH)2 can be calculated as follows (assuming all of 

the Mg2+ ions consumed are precipitated as Mg(OH)2): 

  %100
W

)WW(Mg(OH) of yield Percentage
i

fi
2 ×

−
=  

where Wi (= 0.01944 g) and Wf (= 0.0167 g) are the weight of magnesium ions at the 

beginning and at the end of the synthesis process. Thus, the yield of Mg(OH)2 in the 

absence of zeolite is 14 % which is approximately 0.00657 g.  

By taking into consideration the spontaneous precipitation of Mg(OH)2 in the 

zeolite free control study, the net amount of Mg(OH)2 precipitated in the bulk solution 

induced by the zeolite in experiment A6 is roughly 0.00343 g ( = 0.01 g – 0.00657 g), by 

assuming the equilibrium of the precipitation process does not vary much between the 

zeolite free control study and experiment A6. Therefore, approximately 65.7 % of the 
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Mg(OH)2 precipitated in the bulk solution of experiment A6 was due to the spontaneous 

precipitation of Mg(OH)2 caused by the mixing of ammonium hydroxide and magnesium 

chloride solutions. Roughly 7.4 % of the total magnesium ions added in experiment A6 

was precipitated as Mg(OH)2 in the bulk solution by zeolite. It is noted that this value 

may cause discrepancy in the adsorption isotherms presented in chapter 5 and should be 

taken into consideration when discussing the adsorption results. 

4-2 Fabrication of hybrid membranes 

The hybrid membranes were prepared according to the procedure established by 

Dr Koros’s research group. The procedure is as follows: The Ultem® powder was dried 

under vacuum at 323 K for 24 h to remove water.  0.2 g of bare zeolite 4A was added to a 

8 mL glass vial and placed in a vacuum oven. Under vacuum, the zeolites were activated 

overnight (~12 h) at 323 K, after which the oven was allowed to cool and purged with dry 

nitrogen gas. The vial was quickly removed and 4 g of dichloromethane (CH2Cl2) was 

added. The zeolites were then dispersed using a sonication bath (Branson Ultrasonics 

Corp., Danbury, CT) for 2 h. Once the zeolites were dispersed, a small amount of 

previously dried Ultem® powder was added to the vial. This addition, representing 1-3 % 

of the total Ultem® that was added to the polymer solution, served to prime the sieves. 

Priming is known to stabilize the dispersion and to improve membrane formation [8].  

After priming, small amounts of dry Ultem® powder were added to the vial, followed by 

vigorous shaking until the polymer dissolved. This procedure was repeated until the 

required amount of polymer had been added to reach the desired zeolite loading (e.g., 3 

%, 10%, 20 %, and 30% zeolite in Ultem® by weight). Once the required amount of 

Ultem® had been added and dissolved, the vial was placed on an axial roller overnight (12 
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– 24 h) to ensure homogenous mixing. The vial was subsequently removed from the 

roller and allowed to remain static in order to remove entrained air bubbles.  

All membranes were cast in a controlled atmosphere established in a polyethylene 

glove bag. The glove bag was purged several times with dry argon gas to displace 

atmospheric water vapor. Several milliliters of dichloromethane were poured into an open 

glass petri dish which was placed in the glove bag. The glove bag was sealed to allow the 

CH2Cl2 to evaporate in order to saturate the local atmosphere. The membrane dope was 

then slowly poured onto a GlasClad®-treated (Gelest Inc., PA, USA) tempered glass 

plate. The dope was then draw-cast using a Bird film applicator with a gap of 100 μm 

(Elcometer, MI, USA). The membrane was allowed to vitrify in the glove bag for at least 

24 h. At the end of the 24 h period, the membrane was delaminated from the plate and 

kept in a ziplock bag. The ziplock bag was then placed into a vacuum oven unlocked and 

evacuated at ~ -584 Torr at room temperature for at least one hour. The membrane was 

then annealed at 503 K under vacuum for 12 h prior to further characterization. The 

above procedure was repeated for membrane dispersed with magnesium hydroxide / 

zeolite 4A nanocomposite. 
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4-3  Thermal and mechanical properties of the hybrid membranes 

4-3-1 Glass transition temperature by differential scanning calorimetry (DSC) 

Differential scanning calorimetry (DSC) Q200 (TA Instruments, USA) was used 

to estimate the glass transition temperature (Tg) of the hybrid membranes. Approximately 

5 mg of dried sample was transferred to 40 μL aluminum pans, which were hermetically 

sealed with aluminum covers. The samples were initially heated under an inert 

environment from 298 K to 573 K at 10 K/min, kept at 573 K for 5 mins before cooling 

down to 283 K at 20 K/min. During the second run, the temperature was kept at 283 K 

for 1 min before the temperature was raised again to 573 K at 10 K /min. The temperature 

was kept at 573 K for 1 min before cooling down. DSC curves were obtained during the 

second run and the Tg of each sample was obtained from the inflection point of the 

respective DSC curve. The glass transition temperatures of the Ultem® polymer 

composites are listed in Table 4-2. 
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Table 4-3 Glass transition temperature (Tg) of as prepared nanocomposite membranes 

Sample Glass transition temperature Tg (°C) 
Neat Ultem® 216.7 

Ultem®  with 3 wt% bare zeolite 4A 
loading 215.9 

Ultem®  with 10 wt% bare zeolite 4A 
loading 215.1 

Ultem®  with 20 wt% bare zeolite 4A 
loading 216.4 

Ultem®  with 30 wt% bare zeolite 4A 
loading 216.6 

Ultem®  with 3 wt% treated zeolite 4A 
loading 216.0 

Ultem®  with 10 wt% treated zeolite 4A 
loading 216.4 

Ultem®  with 20 wt% treated zeolite 4A 
loading 216.8 

Ultem®  with 30 wt% treated zeolite 4A 
loading 216.8 

 

4-3-2  High-throughput dynamic impact characterization of polymer films   

 The mechanical properties of the hybrid membranes were evaluated using a high-

throughput impact analyzer designed and constructed in-house by Dr. Carson Meredith’s 

research group. The high-throughput impact apparatus is shown in Fig. 4.3. The sample is 

enclosed between two stainless steel plates, perforated by a 10 × 10 grid of holes with a 

diameter of 3 mm and a distance of 1 mm between neighboring holes. The stainless steel 

plate provides uniform pressure on the sample, prevents slippage, and isolates the 100 

individual impact sites during testing. The sample plates are mounted onto a ball bearing 

guide rail and an ultrasonic displacement sensor (Migatron RPS-401A-40, IL, USA) is 

used to measure the position of the sample as a function of time during the impact tests. 

The velocity is determined using a finite difference approximation for the first derivative. 

The samples are slowly lowered from a fixed height onto a hemispherical contact tip that 
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is positioned under the sample plate. The position of the tip is coordinated using an x, y 

translation stage (Newport 443 Series, CA, USA). The tip is embedded in a steep cap that 

is screwed onto a piezoelectric force sensor (Omega DLC101-10, CT, USA), which 

records the force on the tip during tests. The force versus time measurements were 

collected at 50,000 Hz using a data acquisition system (National Instruments, TX, USA). 

The mechanical properties (toughness and strain-at-break) of the Ultem® polymer 

composites are shown in Figs. 4.4 and 4.5 respectively.    

 

Fig. 4.3 Experimental setup of the high-throughput impact apparatus. 
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Fig. 4.4 Effect of bare and treated zeolite 4A loadings on the toughness of Ultem® 
composite. Solid circle (●) and open square (□) represent bare zeolite 4A and treated 
zeolite 4A respectively. 
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Fig. 4.5 Effect of zeolite loadings on the strain at break of Ultem® composite. Solid circle 
(●) and open square (□) represent bare zeolite 4A and treated zeolite 4A respectively. 
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4-4 Effects of the magnesium hydroxide nanostructures on interfacial adhesion  

From above results, it can be seen that the addition of rigid zeolites into a glassy 

polymer such as Ultem® resulted in a decrease in the mechanical properties of the 

polymer. The Tg results suggest that Ultem® polymer loaded with bare zeolite has a 

higher free volume, therefore a lower glass transition temperature. It has been suggested 

that the reduction in Tg is due to non-adhering nanoparticles that act as well-dispersed 

internal void/polymer interfaces that break up the percolating structure of dynamically 

heterogenous domains that are responsible for the Tg reduction in polymer ultrathin films 

[9]. Therefore, it should be possible to prevent the suppression of Tg by surface treating 

the zeolite with Mg(OH)2 nanostructures [2] (as shown in Table 4-2). These 

nanostructures increase the contact area for polymer adhesion [10]. Therefore, increasing 

the fraction of treated zeolite 4A in the polymer composite increases the total surface area 

available for entrapment of the polymer chains, thereby increasing the Tg of the resulting 

polymer composite. However, an increase in the zeolite loading in the polymer composite 

often promotes agglomeration of zeolites. Figure 4.6 shows the SEM images of Ultem® 

polymer composite loaded with 20 wt.% bare zeolite and treated zeolite respectively. It 

can be seen that although treated zeolites have a better interfacial adhesion with the 

polymer, large agglomerate are formed. Subsequently, such agglomerates behave like big 

particles which may cause the formation of interstitial voids between the particles and 

polymer (as shown in Fig. 4.6b). This observation is also corroborated by the toughness 

and strain-at-break values of the Ultem® polymer composite.  

The toughness and strain at break for a pure Ultem® were 9.43 MJ/ m3 and 33.4 

%. Toughness is related to impact strength and indicates the energy that a material can 
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absorb before breaking. It is directly proportional to elongation at break (strain at break) 

[11]. On the other hand, strain at break is governed by the energy required to orient and 

stretch the polymer in the direction of the applied load.  As shown in Figs. 4.4 and 4.5, 

the mechanical properties of the Ultem® polymer composites are lower than those of pure 

Ultem® and in general, Ultem® loaded with treated zeolite 4A has better mechanical 

properties than bare zeolite 4A. Overall, the toughness and strain-at-break of the Ultem® 

polymer composites decreased with increasing zeolite loading. At higher zeolite 

concentrations, toughening was not very efficient, probably because of the agglomeration 

of zeolite particles which caused weak interfacial adhesion. It is well known that strong 

interfacial adhesion leads to greater toughness and strain-at-break in composite matrices 

because of more efficient force distribution [12]. Less energy is dissipated in overcoming 

the intramolecular forces of the rigid polymer and more energy is available to stretch the 

polymer [13]. Because of better interfacial adhesion between the zeolite and polymer in 

the Ultem® polymer composite loaded with treated zeolite 4A, less energy is required to 

re-orient the zeolites in the direction of elongation and more energy is available to stretch 

the polymer before breaking. Therefore, high strain-at-break values were obtained with 

Ultem® polymer composites loaded with treated zeolite 4A. 
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a) 

 

b) 

 

c) 

Fig. 4.6 Representative SEM images of Ultem® polymer nanocomposites loaded with (a) 
20 wt% bare zeolite 4A, (b) 20 wt % treated zeolite 4A, and (c) treated zeolite 4A 
obtained from experiment A10. 
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4-5 Conclusions 

The BET analysis indicates that the pores of the Mg(OH)2 / zeolite nanocomposite 

were not plugged. This suggests that the Mg(OH)2 nanostructures grow mainly on the 

external surface of the zeolite. The TGA measurements show that the composition of the 

nanocomposite can be effectively controlled by varying the concentration of magnesium 

chloride/ ammonium hydroxide and synthesis time. It was found that the glass transition 

temperature, toughness, and strain-at-break properties of the hybrid membranes 

decreased overall with the addition of the zeolites. However, some of the adverse effects 

could be mitigated by depositing Mg(OH)2 nanostructures on the zeolite surface.  
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CHAPTER 5 

ADSORPTION AND SURFACE PRECIPITATION STUDIES OF 

Mg(OH)2 ON ZEOLITE SURFACES 

5-1 Introduction 

In this chapter, the deposition of Mg(OH)2 on zeolite 4A is investigated via 

adsorption isotherms. Zeolite 4A was dispersed into a solution of magnesium chloride 

and ammonium hydroxide of different concentrations (this is termed the magnesium 

hydroxide – zeolite system in this chapter) and the adsorption was measured via an 

EDTA titration method. The adsorption isotherms provide a macroscopic description of 

Mg(OH)2  formation and loading on the zeolite surface. It is hypothesized that, depending 

on the Mg2+ ions concentration and pH of the solution, the deposition of Mg(OH)2 on 

zeolite will involve ion exchange, surface adsorption of Mg2+ ions, and surface 

precipitation of Mg(OH)2.  In order to distinguish between these adsorption mechanisms, 

adsorption on ion-exchanged zeolite and virgin zeolite 4A dispersed in magnesium 

chloride solution were studied. These systems are termed magnesium ion – ion 

exchanged zeolite and magnesium ion – zeolite systems respectively. Ion – exchanged 

zeolite refers to zeolite 4A that was previously treated with 1 M of magnesium chloride 

solution. This was done in order to replace the Na+ ions in the zeolite with Mg2+ ions. 

When most of the Na+ ions in the pores of the zeolite have been replaced by Mg2+ ions, 

the adsorption mechanism should be surface adsorption of Mg2+ ions. On the other hand, 

it is expected that the predominant adsorption mechanism in the magnesium ion – zeolite 

system would be ion exchange and surface adsorption of Mg2+ ions. The pH change in 
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these three systems is closely examined in order to elucidate its effect on the adsorption 

process. 

5-2 Literature review 

Adsorption isotherms can be classified according to their initial slopes. The four 

main classes, which are shown in Fig. 5.1, are named the S, L (“Langmuir” type), H 

(“high affinity”), and C (“constant partition”) isotherms, and the variations in each class 

are divided into sub-groups [1]. Sub-groups for each class are based on the shapes of the 

upper parts of the curves. [1-3]. In an adsorption process, an adsorbate refers to the 

material that accumulates at an interface, and the solid surface on which the adsorbate 

accumulates is referred to as the adsorbent [4]. An adsorptive refers to the molecule or 

ion in solution that has the potential of being adsorbed [4]. 
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Fig. 5.1 Classification of isotherms: S-type, L-type, H-type, and C-type. The 2c subgroup 
indicates microporosity in the substrates, and in the C-class, the second branch of the 
curve in the subgroup 2 may be horizontal, or have a slope of different steepness that the 
main portion, according to the nature of the system. Adapted from [1].  

An S-type isotherm is characterized by an initially small slope that increases with 

adsorptive concentration. This indicates that at low concentration, the affinity of the solid 

substrate for the adsorbate is less than that of the adsorbent solution for the adsorptive. 

The S-type isotherm suggests that the adsorbate-adsorbate  interaction is stronger than 

adsorbate-adsorbent interaction [1, 3]. Therefore, clustering of adsorbate molecules at the 

surface is favored because adsorbate molecules bond more strongly with one another than 

with the surface [1, 2] 

An L-type isotherm is characterized by a concave initial region. It represents 

systems in which there is a relatively high affinity between the adsorbate and the 

adsorbent [1]. The initial slopes show that as more sites in the solid substrate are filled, it 

becomes increasingly difficult for the solute to find a vacant site. 
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An H-type isotherm represents an extreme version of the L-type isotherm and is 

characterized by a large initial slope. The H-type isotherm indicates very strong 

adsorbate-adsorbent interaction, caused either by specific interactions between the solid 

phase and the adsorbate or by significant van der Waals interactions in the adsorption 

process [5]. In this case, the solute has such high affinity that in dilute solutions it is 

completely adsorbed, or at least there is no measurable amount remaining in solution. 

The adsorbed species are often large units such as ionic micelles, or single ions which 

exchange with others of much lower affinity for the surface [3]. Sub-groups 4 and 5 have 

been obtained by Tamamushi et al. [3, 6, 7] and Giles et al. [1-3, 8] respectively. 

Tamamushi et al. [7] reported that the adsorption of sodium dodecyl sulphate on an 

anion-exchange resin Dowex 1, and X-1 gives an H-type sub-group 4 isotherm and the 

adsorption process is considered to be the superposition of the ion-exchange type and the 

van der Waals adsorption type. Similar isotherms were also obtained when birnessite (δ-

MnO1.7) and manganite (γ-MnOOH) were used as adsorbents for lead ions [9]. On the 

other hand, an H-type sub-group 5 isotherm was obtained in the adsorption of cationic 

dyes such as Crystal Violet (C25H30N3Cl,1.5H2O,0.5HCl,0.05NaCl) and Victoria pure 

Blue BO (C33H40N3Cl,HCl) on alumina [8]. The fall in the slope of the isotherm after the 

first inflection is probably due to association of the solute in solution [3]. As the solute 

concentration increases, the solute-solute attraction begins to increase more rapidly than 

the substrate-solute attraction [3]. Thus, the adsorption density decreases at high solute 

concentration.  

The C-type isotherm is characterized by the constant partition of solute between 

solution and substrate, right up to the maximum possible adsorption, where an abrupt 
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change to a horizontal plateau occurs [3]. This type of isotherm is produced either by a 

proportionate increase in the amount of adsorbing surface as the amount adsorbed 

increases or by a constant partitioning of a substance between the interfacial region and 

the solute solution [5]. 

In this chapter, adsorption isotherms for the deposition of magnesium hydroxide 

on zeolite 4A were measured and compared with these four classes of isotherms in order 

to determine the nature of interaction (chemisorption vs physisorption) between 

magnesium hydroxide and zeolite. 

5-3      Experimental 

5-3-1 Materials 

Magnesium chloride (MgCl2.6H2O, ACS reagent), ammonium hydroxide 

(NH4OH, ACS reagent), ammonium chloride (NH4Cl, ACS reagent), and sodium 

hydroxide (NaOH, ACS reagent) were purchased from Fischer Scientific (NJ, USA). 

(Ethylenedinitrilo)tetraacetic (EDTA) disodium salt dihydrate was purchased from J.T. 

Baker (NJ, USA). Calmagite indicator 0.1% (w/ v) aqueous solution was purchased from 

Ricca Chemical Company (TX, USA). ADVERA 401P hydrated sodium zeolite 4A with 

a characteristic 3 – 6 μm cubic form was purchased from PQ Corporation (PA, USA). 

Deionized water was made in the lab and all materials were used without further 

purification. 
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5-3-2 Procedure 

Magnesium chloride and ammonium hydroxide solutions of concentrations 

ranging from 0.01 M to 0.12 M were prepared by adding deionized water to known mass 

of MgCl2.6H2O and NH4OH to make 20 mL and 60 mL of equimolar magnesium 

chloride and ammonium hydroxide solutions respectively. 50 mL of pH 10 buffer was 

prepared by dissolving 3.75 g of NH4Cl to 28.5 mL of concentrated NH4OH, followed by 

addition of 21.5 mL of deionized water. 

5-3-2-1    Control study 

Zeolite 4A is known to hydrolyze in aqueous solution and releases hydroxide 

ions, which may affect the deposition of magnesium hydroxide. The hydrolysis of zeolite 

4A in aqueous solution can be expressed as [10]: 

−+
− +++↔+ OHNaO)(HHAO)(HNaA 1x2x2  

A control study was carried out with a solution of magnesium chloride and 

ammonium hydroxide in the absence of zeolite 4A in order to determine the amount of 

Mg(OH)2 precipitated in the bulk solution. The control study was carried out as follows: 

1) 20 mL of magnesium chloride solution of known concentration (ranging from 0.01 M 

to 0.12 M) was prepared; 2) 60 mL of ammonium hydroxide solution of equivalent 

concentration to that of magnesium chloride prepared was titrated to above magnesium 

chloride solutions with stirring; 3) the solution was allowed to sit at ambient conditions 

for 96 h; 4) a 1-3 mL aliquot was collected from each of the magnesium chloride and 

ammonium hydroxide solution  every 24 h; 5) 0.5 mL of NH3 – NH4Cl buffer and 2 drops 

of Calmagite indicator (red color) were added to each aliquot; 6) 0.001 M of EDTA 
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solution was titrated into the aliquot until the color of the aliquot solution changed from 

red to blue (Note: a 0.0001 M EDTA titrant was used in determining the concentration of 

Mg2+ in the 0.01 M magnesium chloride and 0.01 M ammonium hydroxide solution for 

better accuracy). The amount of Mg(OH)2 precipitated in the magnesium chloride and 

ammonium hydroxide solution was taken into consideration when determining the 

amount of free Mg2+ ions in the batch adsorption experiments. 

5-3-2-2    Batch adsorption experiments 

The batch adsorption experiments were carried out as follows: 1) 20 mL of 

magnesium chloride solution ranging from 0.01 M to 0.12 M was prepared by adding 

deionized water to a known mass of MgCl2.6H2O salt, 2) 0.2 g of zeolite 4A was added to 

each of the magnesium chloride solutions, 3) 60 mL of NH4OH solution of equivalent 

concentration to the magnesium chloride solution prepared was titrated slowly into each 

of the zeolite mixtures whilst stirring, 4) the final mixtures were allowed to sit at ambient 

conditions for 96 h, 5) approximately 1-5 mL aliquot was collected from each mixture at 

every 24 h interval, 6) 0.5 mL of NH3 – NH4Cl buffer solution and 2 drops of Calmagite 

indicator were added to the aliquot, and finally 7) 0.001 M of EDTA solution was titrated 

into the aliquot solution until the color of the aliquot solution changed from red to blue 

(Note: 0.0001 M of EDTA was titrated with the aliquots collected from 0.01 M 

magnesium chloride and ammonium hydroxide solutions for better accuracy).  

5-3-3 Sample analysis 

At the conclusion of the adsorption studies, zeolite particles from selected 

experiments were collected via vacuum filtration through a cellulose nitrate membrane 
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filter of pore size 0.2 μm. The particles were subsequently washed with an excess of 

deionized water and dried overnight in a vacuum oven at 323 K. A small amount of the 

particles was sampled for examination by scanning electron microscopy (SEM). 

The SEM sample was examined using a LEO 1530 FEG field-emission 

instrument (Carl Zeiss SMT Inc., Germany) equipped with an energy dispersive X-ray 

spectroscope (EDS). Powder X-ray diffraction (XRD) patterns were obtained on a Philips 

X’pert diffractometer (PANalytical Inc, USA) equipped with X’celerator using Cu Kα 

radiation. 

5-4 Results and discussion 

5-4-1 Determination of the degree of adsorption  

The magnesium hydroxide precipitated per unit volume of solution in the zeolite 

free control study was calculated using the following equations 

aliquot

EDTAEDTA
Mg V

CVC ×
=  

MgiMgMg(OH) CCC −= ,2
 

where CMg,i and CMg are the concentrations of Mg2+ at the start of the control study and at 

the end of the time interval respectively, in mmol mL-1. VEDTA and Valiquot are the volume 

of EDTA required to change the color of the solution from red to blue, and the volume of 

the aliquot solution titrated with EDTA, respectively, in mL. CMg(OH)2 and CEDTA are the 

amount of magnesium hydroxide precipitated per unit volume of the solution and 

concentration of EDTA respectively, in mmol mL-1. The concentration of EDTA used in 
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this study was 0.001 mmol mL-1 unless stated otherwise. The degree of adsorption in the 

batch experiments was calculated using the following equations 

m
CCC

q fOHMg −−
=

)(
2)(0  

aliquot

EDTAEDTA
f V

CV
C

×
=  

where q is the amount of adsorption (adsorbate per unit mass of adsorbent) in mmol mg-1, 

C0 and Cf are the initial and final magnesium ion concentrations, respectively, in mmol 

mL-1, CMg(OH)2 is the concentration of magnesium hydroxide precipitated in the absence 

of adsorbent (zeolite), in mmol mL-1, and m (= 2.5) is the concentration of adsorbent in 

mg mL-1.     

5-4-2  Adsorption isotherms  

Figure 5.2 depicts the adsorption isotherms of magnesium hydroxide adsorb onto 

zeolite 4A at different contact times. The isotherms exhibit similar trends at different 

contact times and the shapes of the adsorption curves resemble an H-type isotherm (see 

section 5-2). This implies that there may be specific interactions between the adsorbate 

and the adsorbent. Similar isotherms were also obtained by Komárek et al. [11] in the 

retention of Cu in contrasting soil types (Leptosol, Chernozem, and Cambisol). The 

authors reported that the retention mechanisms of Cu on the soils may include specific 

and non-specific adsorption, as well as precipitation of newly formed Cu phases such as 

CuO, Cu(OH)2, Cu2(OH)3NO3, and CuCO3/Cu2(OH)2CO3. It was postulated that at low 

copper concentrations, the retention process is probably controlled by high selectivity 

sorption sites, in which adsorption is the main process [11]. As Cu concentration 
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increases, selective sorption sites become saturated and metal sorption takes place at low 

selectivity cation exchange sites [11]. Finally, at high initial Cu concentrations, the 

precipitation of newly formed Cu compounds on the adsorbent becomes an important 

retention mechanism [11, 12].  

In Fig. 5.2, the adsorption density (q) increased rapidly at low concentrations of 

Mg2+ ions, attained a short plateau, and then increased until another plateau was 

achieved. The adsorption isotherms of zeolite 4A exhibit 4 regions of interest. The first 

region (region I), characterized by a sharp rise in adsorption, indicates that ion exchange 

between magnesium ions and exchangeable sodium ions in the zeolite is likely.  

Depending on the pH and magnesium ion concentration, this ion exchange process is 

likely to be accompanied by precipitation of magnesium ion hydroxide complexes on 

hydroxyl groups of the zeolite surface. Similar results were reported for lead and 

chromium elsewhere [13-16]. Since the initial pH of the zeolite solution was above 10, 

precipitation of magnesium hydroxide is favored [17, 18]. However, only a very small 

amount of magnesium hydroxide was found to precipitate and adsorb on the surface of 

zeolite as shown in Fig. 5.3. In region I, as the contact time increased to 48 h, the 

adsorption density reached saturation and further increase in contact time has no effect on 

the adsorption density. At 24 h, ion exchange and surface adsorption of magnesium ions 

are likely along with very little surface precipitation of magnesium hydroxide.  

The second region (region II) marks the onset of the plateau region where the 

adsorption density (q) remained nearly constant before the onset of the third region. This 

plateau marks the completion of a “monolayer” in which all the hydroxyl groups on 

zeolite 4A are occupied by magnesium hydroxide or magnesium ions. The plateau length 
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decreased as the contact time increased. It is known that adsorption of ionic micelles 

gives isotherms with long plateaus; in this case ionic micelles on the surface repel other 

micelles holding the same charge [1-3]. This might be the case here with the adsorption 

of magnesium ions at 24 h. The adsorbed magnesium ions repel the positively charged 

magnesium ions in the solution resulting in a long plateau. The long plateau implies that a 

high energy barrier has to be overcome before additional adsorption can occur on the next 

site, after the surface has been saturated [3]. Magnesium ions may have higher affinity for 

the solvent, but low affinity for the layer of magnesium ions already adsorbed. A short 

plateau means that the adsorbed solute molecules expose a surface which has nearly the 

same affinity for more solute as the original surface had [1-3]. This could be due to the 

nucleation and growth of magnesium hydroxide crystals on the magnesium hydroxide 

nuclei that were adsorbed on the zeolite surface. It has been reported that the formation of 

a homogenous solid on a surface can occur from a chemisorption-precipitation 

continuum, i.e when adsorption reaches monolayer coverage sorption continues on the 

newly created sites resulting in a precipitate on the surface (multilayer surface coverage) 

[4, 5]. From Fig. 5.2, it can be seen that the adsorption density in region II reached 

equilibrium within 72 h. Therefore, region II could represent the ideal region for the 

formation of magnesium hydroxide on zeolite surfaces without excessive precipitation or 

intergrowth between magnesium hydroxide nanostructures.  

The third region (region III) is characterized by another sharp rise in adsorption 

density. In this region, the surface precipitation of magnesium hydroxide was more 

accentuated due to a higher concentration of magnesium ions. Also, it can be seen that 

the adsorption density in region III increased with increasing contact time implying a 
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continuous growth of magnesium hydroxide crystals over time. As the concentration of 

magnesium ions is increased beyond region III, it is seen that the adsorption isotherm 

reaches a second plateau (region IV).  Within this region, the growth rate of magnesium 

hydroxide nanostructures is independent of the concentration of magnesium ions because 

of a very high supersaturation level of magnesium ions.  

Figure 5.3 displays SEM images of the products obtained from region I through 

IV at 24 h contact time. From this figure, it can be seen that the amount of magnesium 

hydroxide nanostructures deposited on the zeolite surface increased with increasing 

magnesium ion / ammonium hydroxide concentration. Figure 5.4 shows the XRD 

patterns of the zeolites obtained from region I through IV. The zeolite structure and 

crystallinity remained intact after treatment. The peaks from nanocrystals created after 

treatment were well matched with tabulated magnesium hydroxide peaks. The formation 

of a stable precipitate nucleus involved bringing together a sufficient number of 

magnesium hydroxide molecules to form a nucleus of critical size [19]. Therefore, with 

the addition of ammonium hydroxide, a large quantity of magnesium hydroxyl species 

would be generated and would tend to ease the diffusion supply problem, facilitating 

formation of a critical nucleus. This is also supported by SEM images shown in Fig. 5.3. 

At low magnesium ion / ammonium hydroxide concentration, little to no magnesium 

hydroxide nanostructures were formed on the zeolite surface and the quantity of 

deposited magnesium hydroxide nanostructure increased with increasing magnesium ion 

/ ammonium hydroxide concentration (Fig. 5.3a – d).  
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Fig. 5.2 Adsorption isotherms for Mg2+ ions on/in virgin zeolite A in the presence of 
ammonium hydroxide at different contact times: (◘) 24 h, (+) 48 h, (■) 72 h, and (X) 96 
h. 
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b)a) 

c) d)

Fig. 5.3 Adsorption and precipitation of magnesium ions/ hydroxides onto zeolite A at 24 
h obtained at 4 regions of interest: (a) region I, (b) region II, (c) region III, and (d) region 
IV.  
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Fig. 5.4 XRD patterns of zeolites obtained from regions a) I, b) II, c) III, and d) IV. The 
peaks from nanocrystals created after treatment were well matched with tabulated 
Mg(OH)2 peaks. 

 

From the above discussion, it may be summarized that the zeolite is negatively 

charged and exhibits cation adsorption capacity because the solution pH (see Fig 5.6) is 

higher than the zeolite isoelectric point (IEP ~ 8.2) [20]. The first region probably 

represents electrostatic adsorption of the magnesium ions on/ in the zeolite support along 

with ion exchange between magnesium ions and sodium ions. As the amount of 

magnesium ions adsorbed on/ in the zeolite surface increases, adsorption proceeds from 

mononuclear adsorption to surface precipitation (region II). The magnesium hydroxide 

nuclei close to the zeolite surface can react with the zeolite surface hydroxyl groups via 

hydrolytic adsorption [21], which is a heterocondensation reaction between surface 
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hydroxyl Ssurface –OH and Mg –OH and leads to the formation of Ssurface – O – Mg bonds. 

In addition, the magnesium hydroxide complexes can react with each other via an olation 

reaction to form magnesium hydroxide sheets [22, 23].  The surface precipitation of 

magnesium hydroxide becomes more accentuated in region III and subsequently at high 

enough magnesium ion concentration, the growth rate of the precipitated magnesium 

hydroxide became independent of the magnesium ion concentration (region IV). 

It can be concluded that the adsorption / precipitation process is to a large extent 

dependent on the concentration of magnesium ions and the pH of the solution. 

Furthermore, it is deduced that the adsorption process involves three mechanisms: ion 

exchange, surface adsorption of Mg2+ ions, and surface precipitation of Mg(OH)2. The pH 

of the aqueous solution is an important controlling parameter in the adsorption / 

precipitation process and adsorption typically increases with increasing pH values [24]. 

Depending on the pH and metal concentration, Mg2+ ions may form complexes with OH- 

at higher pH values, and as a result Mg-hydroxyl species may participate in the 

adsorption and precipitation onto the zeolite structure [16].  

In order to distinguish between different adsorption mechanisms and the effect of 

ammonium hydroxide on the adsorption and precipitation of Mg(OH)2 on zeolite 

surfaces, adsorption isotherms were measured for the virgin zeolite and also for ion – 

exchanged zeolite (zeolite that was previously treated with 1 M magnesium chloride 

solution) in the absence of ammonium hydroxide. These systems were termed 

magnesium ion – zeolite and magnesium ion – ion exchanged zeolite systems 

respectively and compared with the magnesium hydroxide – zeolite system. It is 

hypothesized that the predominant adsorption mechanism in the magnesium ion – ion 
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exchanged zeolite system is surface adsorption of Mg2+ ions since most of the Na+ ions if 

not all in the zeolite have been replaced by Mg2+ ions during the pretreatment process. On 

the other hand, the predominant adsorption mechanisms in the magnesium ion – zeolite 

system are expected to be ion exchange and surface adsorption of Mg2+ ions. Finally, we 

expect all these processes of ion exchange, surface adsorption of Mg2+, and surface 

precipitation of Mg(OH)2 to be involved in the magnesium hydroxide – zeolite system.  

Figure 5.5 illustrates the adsorption isotherms of magnesium hydroxide – zeolite, 

magnesium ion – zeolite, and magnesium ion – ion exchanged zeolite systems at 72 h. 

The studies described in the previous section identified region II of the adsorption 

isotherm as the ideal region for the formation of magnesium hydroxide on zeolite 

surfaces, and also showed that adsorption reached saturation in 72 h. Therefore, 72 h was 

chosen as the standard contact time for this study.  

From Fig. 5.5, it can be seen that the adsorption isotherms of these three systems 

differ significantly from each other. The adsorption density of the magnesium ion – ion 

exchanged zeolite system was significantly lower than the magnesium hydroxide – 

zeolite and magnesium ion – zeolite systems. This is because in dilute solution of 

magnesium ion, the ion exchanged zeolite hydrolyzed by exchanging magnesium ions for 

hydronium ions from water. The hydrolysis reaction of a zeolite in the magnesium form 

can be written as: 

−++ ++↔+ OHMgAOHO)(H2MgA 2
32 xxx  

where MgA refers to the ion exchanged zeolite. This hydrolysis might produce 

significant amounts of magnesium ions, thereby reducing the adsorption capacity of the 
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magnesium ion – ion exchanged zeolite system and resulted in an apparent negative 

adsorption density at low Mg2+ ions concentration. Similar results have been reported by 

Harjula et al. [25] who showed that greater amount of calcium ions were detected when 

CaY zeolite was added to trace calcium solutions. In dilute solutions, hydrolysis of the 

zeolite essentially controlled the concentration of the ions in solution [25-27]. However, 

as the concentration of the magnesium ion increased, the adsorption density of the 

magnesium ion – ion exchanged zeolite system increased as well. This increase in 

adsorption density may be attributed to surface adsorption of Mg2+ ions. Magnesium ions 

are bonded to the surface functional groups via electrostatic bonding and are free to move 

around. However, this increase in adsorption density was negligible compare to the 

magnesium hydroxide – zeolite and magnesium ion – zeolite systems. 

The pH change in the magnesium hydroxide – zeolite, magnesium ion – zeolite, 

and magnesium ion – ion exchanged zeolite systems were closely examined to determine 

the effect of pH on the adsorption and deposition of Mg2+ ions and Mg(OH)2. Figure 5.6 

shows the pH of magnesium hydroxide – zeolite, magnesium ion – zeolite, and 

magnesium ion – ion exchanged zeolite systems at 72 h. It can be seen from Fig. 5.6 that 

the magnesium ion – zeolite system stabilized at pH values within the basic pH range. It 

has been reported in the literature that the isoelectric point of zeolite NaA is ~ 8 [20], 

therefore, the ≡Si-O- and ≡Al-O- groups of the zeolite A predominated, giving the surface 

a net negative charge which is available to adsorb Mg2+ from solution [24], resulting in a 

higher adsorption capacity than the magnesium ion – ion exchanged zeolite system 

shown in Fig. 5.5. In addition, this process is most likely accompanied by the ion 

exchange process between Mg2+ ions and Na+ ions in the zeolite. On the other hand, the 
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ion exchanged zeolite in magnesium chloride solution stabilized at pH value close to 

neutral (see Fig. 5.6) and thus it is expected to carry less negative surface charge. 

Consequently, the adsorption capacity of the ion exchanged zeolite is lower.  

Figure 5.7 shows SEM images of zeolites obtained from magnesium ion – zeolite 

and magnesium ion – ion exchanged systems at initial magnesium ion concentration of 

0.04 M and 0.1 M respectively. It can be seen from this figure that there is little to no 

formation of magnesium hydroxide nanostructures on the zeolite surface although both 

systems were saturated with magnesium ions. This observation is consistent with the 

hypothesis that the predominant adsorption mechanism in the magnesium ion – ion 

exchanged zeolite is surface adsorption of Mg2+ ions, whereas the predominant 

adsorption mechanisms in the magnesium ion – zeolite system are ion exchange and 

surface adsorption of Mg2+ ions. This also suggests that ammonium hydroxide plays a 

crucial role in inducing the nucleation and growth of magnesium hydroxide crystals on 

the zeolite as noted in the magnesium hydroxide – zeolite system. 

In comparison with the magnesium ion – zeolite and magnesium ion – ion 

exchanged zeolite systems, the magnesium hydroxide – zeolite system displays the 

highest adsorption capacity and a step-wise adsorption behavior.  In the magnesium 

hydroxide – zeolite system, three distinctive processes such as surface adsorption of Mg2+ 

ions, ion exchange between Mg2+ and Na+ ions, as well as surface precipitation of 

Mg(OH)2 may happen simultaneously. At low initial Mg2+ ions concentration, roughly 

the same amount of Mg2+ ions was adsorbed by the magnesium ion – zeolite and 

magnesium hydroxide – zeolite systems. Furthermore, the pH value of both systems was 

the highest when the concentration of Mg2+ ion was the lowest (as shown in Fig. 5.6). 
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This shows that at low Mg2+ ion concentration, ion exchange and hydrolysis of zeolite 

predominate and there is little to no precipitation of Mg(OH)2.  As the initial Mg2+ ion 

concentration increased, the adsorption density of magnesium ion – zeolite system and 

magnesium hydroxide – zeolite system increased by different amounts. At the same time, 

a decrease in the pH can be observed in both systems. The pH decreased as the initial 

Mg2+ ion concentration increased (see Fig. 5.6).  
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Fig. 5.5 Adsorption isotherms for magnesium hydroxide – zeolite system (■), magnesium 
ion –zeolite system (x), and magnesium ion – ion exchanged zeolite system (∆) obtained 
at 72 h. 

Figure 5.6 shows the change in the pH of the magnesium hydroxide – zeolite, 

magnesium ion – zeolite, and magnesium ion – ion exchanged zeolite systems with 

respect to the change in initial magnesium ion concentration. In this figure, it can be 
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observed that the overall pH was highest in the magnesium hydroxide – zeolite system, 

followed by magnesium ion – zeolite system and magnesium ion – ion exchanged zeolite 

system. In all of these systems, the pH was highest when the concentration of Mg2+ ion 

was lowest and it decreased with increasing initial Mg2+ ion concentration. This is 

because when magnesium ions dissolved in the solution, the magnesium ions were 

hydrolyzed according to: 

  
+++ +↔+ H[MgOH]OHMg 2

2

At low concentration of Mg2+ ions, only a small amount of hydronium ions were 

generated. However, the amount of hydronium ions increased as the concentration of 

Mg2+ ions increased, thus reducing the pH. At the same time, the zeolite might be 

hydrolyzed by the hydronium ions especially in dilute cation solution [25, 27-29]. High 

cation concentrations have been shown to decrease the selectivity of the zeolite for 

hydronium ions [28, 29]. Therefore, the pH of these systems was the highest at low 

concentration of Mg2+ ions and decreased as the concentration of Mg2+ ions increased.  

It can also be seen that although the magnesium ion – zeolite and magnesium ion 

– ion exchanged zeolite systems were treated under similar experimental conditions, the 

pH of the magnesium ion – zeolite system is higher than the pH of the magnesium ion – 

ion exchanged zeolite system. This is because in the magnesium ion – ion exchanged 

zeolite system, the Na+ ions in the zeolite were partially, if not completely, exchanged 

with Mg2+ ions. It has been reported that the basic strength of the zeolite increases with 

the electropositivity of the exchangeable cations [30, 31]. Since sodium is more 

electropositive than magnesium [32], the zeolite in the magnesium ion – zeolite system is 

more basic, and the system stabilized at higher pH values. The higher the number of 
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sodium ions present in the zeolite, the more alkaline is the zeolite solution [33]. 

Moreover, according to Lutz et al. [34], A-type zeolites can be considered as salts of a 

heteropoly acid composed of an acidic component (the proton form of the anionic 

framework) and a base (metal hydroxide). In this way, the general zeolites such as NaA 

consist of a weak acid and a strong base. When the Na+ ion is replaced with Mg2+ ion, for 

example, MgA, the zeolite consists of a weak acid and a very weak base.  The stronger 

the base (the more soluble the cation hydroxide), the higher the pH value of the zeolite 

solution. Therefore, the pH value of the magnesium ion –zeolite system is higher than the 

magnesium ion – ion exchanged zeolite system.  

Moreover, it can be observed that the pH value of the magnesium ion – zeolite 

system was close to neutral at high Mg2+ ion concentrations. This could be due to 

hydrolysis of the dissolved Mg2+ ions which generated hydronium ions that decreased the 

pH. In addition, it can be seen from Fig.5.6 that the pH drop in the magnesium hydroxide 

– zeolite system is less drastic than the magnesium ion – zeolite system at high initial 

Mg2+ ion concentration. This is because in the magnesium hydroxide – zeolite system, 

equimolar ammonium hydroxide was added in a 3: 1 ratio with respect to the volume of 

magnesium chloride solution in the system. When ammonium hydroxide is added to a 

solution of magnesium chloride, part of the magnesium is precipitated as magnesium 

hydroxide in accordance with the equation [35, 36] 

 Cl2NHMg(OH)OH2NHMgCl 4242 +→+  

but the precipitation is never complete, for the reverse action occurs simultaneously. 

OHNH2MgClCl2NHMg(OH) 4242 +→+  
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Therefore, at high concentration of magnesium chloride, sufficient ammonium 

chloride was generated which reversed the precipitation of Mg(OH)2 and generated 

ammonium hydroxide that prevented the drastic drop of pH as seen in the magnesium ion 

– zeolite system.   
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Fig. 5.6 pH versus initial magnesium ion concentration at 72 h; magnesium hydroxide – 
zeolite system (dotted line), magnesium ion – zeolite system (dashed line), and 
magnesium ion – ion exchanged zeolite system (solid line).  

These adsorption and pH studies of the magnesium hydroxide – zeolite, 

magnesium ion – zeolite, and magnesium ion – ion exchanged zeolite systems show that 

three adsorption mechanisms (ion exchange, surface adsorption of Mg2+, and surface 

precipitation of Mg(OH)2) are involved in the adsorption of Mg(OH)2. It is also clear that 

ammonium hydroxide induces the nucleation and precipitation of Mg(OH)2 on the 

zeolite. Without ammonium hydroxide, the predominant species in the system is Mg2+ 
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ions [37] and therefore surface adsorption of Mg2+ ions predominates (as seen in the 

magnesium ion – ion exchanged zeolite system. In the magnesium ion – zeolite system, 

the predominant processes are adsorption of Mg2+ ions and ion exchange between Mg2+ 

and Na+ ions in the zeolite.  Little to no surface precipitation of Mg(OH)2 took place in 

these two systems. This is also collaborated by the pH analyses and SEM images shown 

in Fig. 5.6 and 5.7. The pH of these two systems was not favorable for the precipitation 

of Mg(OH)2 and no precipitation of Mg(OH)2 nanostructures can be seen on the surfaces 

of these zeolites.  
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Fig. 5.7 Representative SEM images of zeolites obtained at 72 h from magnesium ion – 
zeolite system at initial magnesium ion concentration: a) 0.04 M, b) 0.1 M; Magnesium 
ion – ion exchanged zeolite systems at initial magnesium ion concentration: c) 0.04 M, d) 
0.1 M.   
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5-5 Conclusions 
 

Isotherms were measured for the adsorption of Mg(OH)2 on zeolite 4A 

(magnesium hydroxide – zeolite system). It was demonstrated that three adsorption 

mechanisms namely ion exchange, surface adsorption of Mg2+ ions, and surface 

precipitation of Mg(OH)2 are involved in the deposition of Mg(OH)2. Analysis of the 

magnesium hydroxide – zeolite system adsorption isotherms showed that the isotherms 

resemble an H-type isotherm, suggestive of specific interactions between Mg(OH)2 and 

zeolite. The adsorption isotherms also indicated four distinct regions of adsorption. In 

region I, ion exchange and surface adsorption of Mg2+ ions were observed. Simultaneous 

Mg2+ ion adsorption and surface precipitation occurred in region II which marks the 

completion of “monolayer” formation. Surface precipitation was predominant in region 

III and the growth rate of the precipitated magnesium hydroxide became independent of 

the Mg2+ ion concentration in region IV. Adsorption isotherms were also measured using 

virgin zeolite 4A and ion-exchanged zeolite 4A in magnesium chloride solution and it 

was determined that the predominant processes in the absence of ammonium hydroxide 

are ion exchange and surface adsorption of Mg2+ ions. Therefore, ammonium hydroxide 

plays a significant role in controlling the pH of the slurries and in inducing nucleation 

and precipitation of Mg(OH)2 on zeolite surfaces. 
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CHAPTER 6 

MECHANISM OF SITE-SPECIFIC DEPOSITION OF MAGNESIUM 

HYDROXIDE ON ZEOLITE 4A – SOLID STATE NMR AND FTIR 

STUDIES 

6-1 Introduction 

 In Chapter 5, it was found that the adsorption of magnesium hydroxide on zeolite 

4A yields H-type isotherms. H-type isotherms indicate that there may be very strong 

adsorbate-adsorbent interactions, caused either by specific interactions between the solid 

phase and the adsorbate or by significant van der Waals interactions in the adsorption 

process [1]. Therefore, it is necessary to determine the nature of these specific 

interactions between magnesium hydroxide and zeolite 4A.  

In this chapter, the mechanism of deposition and growth of Mg(OH)2 

nanostructures on the zeolite surface are explored. There are three possible sites on the 

zeolite where magnesium hydroxide can adsorb. These sites are silanol (Si-OH), aluminol 

(Al-OH), and bridging hydroxyl proton (Si-OH-Al). In principle, the Brönsted acidity of 

these three hydroxyl protons increases in the order of Al-OH < Si-OH < Si-OH-Al, with 

bridging hydroxyl proton being the strongest acid [2-4]. Therefore, it is hypothesized that 

the weakly basic Mg(OH)2 will preferably interact with the most acidic Si-OH-Al via an 

acid-base interaction. In this study, Mg(OH)2 / zeolite 4A nanocomposites were 

synthesized based on the procedure stated in chapter 3 The nanocomposites were also 

prepared  using two other different methods where the sequence of magnesium chloride 

and ammonium hydroxide addition was varied. It is hypothesized that if zeolite is added 
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into the ammonium hydroxide solution first instead of magnesium chloride solution, the 

acidic bridging hydroxyl proton will be neutralized by ammonium hydroxide and there 

will be very little deposition of magnesium hydroxide on the zeolite.  Adsorption studies 

were also carried out on alumina and silica in order to identify specific sites for the 

deposition of Mg(OH)2. It is noted that Al-OH sites are found on alumina and zeolite 4A 

surfaces, Si-OH sites on silica and zeolite 4A surfaces, and bridging hydroxyl proton (Si-

OH-Al) sites only on zeolite 4A surfaces. The Mg(OH)2 / zeolite 4A nanocomposites 

were characterized and examined by solid state 1H, 29Si, and 27Al NMR and FTIR. Solid 

state NMR was used for characterizing the structure of modified zeolites as well as 

interactions between guests and hosts in zeolite complexes. FTIR analysis was used to 

verify the presence of Mg(OH)2 in the nanocomposite and to examine the vibrational 

properties of water confined in the zeolite.  

6-2 Experimental  

6-2-1  Materials 

The following materials were purchased and used as received: Magnesium 

chloride (MgCl2.6H2O, ACS reagent grade) and ammonium hydroxide (NH4OH, ACS 

reagent grade)  from Fischer Scientific (NJ, USA); silicon oxide particles with an average 

primary particle size of 3 μm from Nanomaterials & Amorphous Materials Inc. (TX, 

USA); aluminum oxide particles with an average primary particle size of 3 μm from 

Electron Microscopy Sciences (PA, USA); and magnesium hydroxide powder (Mg(OH)2, 

95 wt %) with a bulk density of 2.36 g/cm3 from Spectrum Chemicals and Laboratory 

Products (CA, USA).  Deionized water was made in the laboratory.  
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6-2-2 Nanocomposite preparation procedures 

The Mg(OH)2 / zeolite 4A nanocomposites were prepared following the procedure 

outlined in chapter 3 (known as method (i) in this chapter) with 0.04 M of magnesium 

chloride and ammonium hydroxide solutions. The same procedure was followed with 

silica and alumina particles except that the concentrations of MgCl2.6H2O and NH4OH 

were increased to 0.1 M. In addition, Mg(OH)2 / zeolite 4A nanocomposites  were also 

prepared using a second method. In method (ii), 0.1 g of zeolite was added to 30 mL of 

0.04 M NH4OH solution followed by titration with 10 mL of 0.04 M of MgCl2.6H2O with 

stirring. The Mg(OH)2 particles were then allowed to diffuse/ grow at ambient conditions 

for 48 h without further stirring, after which nanocomposites were collected and treated 

as described in method (i). In method (iii), 0.1 g of zeolite was added to 10 mL of 

deionized water, followed by simultaneous titration of 10 mL of 0.05 M of MgCl2.6 H2O 

and 30 mL of 0.05 M NH4OH solutions and subsequent diffusion/ growth period of 48 h 

at at ambient conditions without stirring. At the end of 48 h, nanocomposites were 

collected and treated as described in method (i) (see chapter 3). 

6-2-3 Characterizations 

The concentrations of magnesium and sodium in the zeolite solution were 

determined via ICP-OES (Inductively Coupled Plasma - Optical Emission Spectroscopy) 

using a JY- Horiba  Ultima 2C instrument (HORIBA Jobin Yvon, USA). A 2 mL sample 

was collected from the zeolite solution at the end of the 72 h growth period and diluted 

with 3 mL of 2 % nitric acid before performing the analysis. 
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 SEM images of the nanocomposites were obtained with a LEO 1530 TFE 

(thermally-assisted field-emission) scanning electron microscope (Carl Zeiss SMT Inc., 

Germany) equipped with an EDS (energy dispersive X-ray spectroscopy) and thermally 

assisted field emission gun operating at 5 KeV. The samples were sputter-coated with a 

thin layer of gold film before SEM analysis. Powder XRD (X-ray diffraction) patterns 

were obtained on a Philips X’pert diffractometer (PANalytical Inc, USA) equipped with 

X’celerator using Cu Kα radiation. 

 Solid-state MAS NMR spectra were measured with a Bruker DSX 300 

spectrometer (Bruker Corporation, USA) at resonance frequency of 54.6 MHz for 29Si 

nuclei at spinning rate 5 kHz. The measurements for 29Si spectra were performed using a 

90 degree pulse length of 5 μs, and recycle delay of 10 s respectively. 1H and 27Al MAS 

NMR spectra were recorded on a Bruker Avance III spectrometer (Bruker Corporation, 

USA) at resonance frequencies of 400.1 MHz and 104.2 MHz and at spinning rates of 12 

kHz and 10 kHz. The measurements for 1H spectra were performed using a 90 degree 

pulse length of 5 μs and recycle delay of 4 s. The measurements for 27Al were conducted 

using a π/12 pulse length of 0.6 µs and a recycle delay of 0.2 s. 1H, 29Si, and 27Al 

chemical shifts were referred to adamantane at 1.9 ppm, 2 (Trimethylsilyl) -1- 

propanesulfonic acid at 0 ppm, and saturated aqueous solution of AlCl3 at 0 ppm, 

respectively.   

 FTIR spectra were collected under vacuum conditions on a Bruker IFS 66 v/S 

spectrometer (Bruker Corporation, USA). The sample was finely ground and diluted to 3 

wt % with KBr powder before being pressed into a translucent pellet with a hand press. 
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All IR measurements were carried out with a repetition of 50 scans under a resolution of 

4 cm-1 in the absorbance mode at room temperature. 

 The Mg(OH)2 powder, virgin zeolite 4A, and treated zeolite 4A were dried in a 

vacuum oven at 50 ºC for 24 h before analysis. The thermal behavior of the samples was 

analyzed on a Seiko TG/DTA 320 thermogravimetric analyzer (Seiko Instruments, USA). 

A N2 gas sweep at a flow rate of 100 ml /min was used during the TGA measurements. 

Two separate heating procedures were employed: (1) during dynamic TG runs, the 

temperature was raised from room temperature to 550 ºC at a heating rate of 10 ºC 

/minute; (2) based on TG dynamic runs, the temperature was first increased from room 

temperature to 170 ºC at a rate of 2 ºC /min, kept at 170 °C for 90 min,  then increased 

from 170 ºC to 410 ºC at a rate of 10 ºC /min, and kept at 410 °C for another 30 min 

before cooling down.  

6-3  Results 

6-3-1 Characterization and identification of surface nanostructures 

Figure 6.1 shows the surface morphologies of zeolite 4A, aluminum oxide and 

silicon oxide before and/or after treatment. Figure 6.1a confirms that a nanopetal 

structure was created on the outer surfaces of zeolite 4A. Figure 6.1b shows a SEM 

image of commercial Mg(OH)2 powder that is discussed later. Figure 6.1c and d show 

SEM images of treated zeolite 4A at different magnification scales. It can be clearly seen 

that uniform Mg(OH)2  nanopetals are formed on the zeolite 4A surface.  

The treated zeolite 4A, aluminum oxide and silicon oxide samples are compared 

in order to identify specific sites for the deposition of Mg(OH)2. It is noted that Al-OH 
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sites are found on alumina and zeolite 4A surfaces, Si-OH sites on silica and zeolite 4A 

surfaces, and bridging hydroxyl proton (Si-OH-Al) sites only on zeolite 4A surfaces. 

Figure 6.1e and f show SEM images of aluminum oxide and silicon oxide after 

undergoing the same treatment as zeolite 4A. These figures clearly show the smooth 

surfaces of aluminum oxide and silicon oxide, indicating that there is no formation of 

Mg(OH)2 on the surfaces of these samples. This was also confirmed by EDS spectra 

which showed no magnesium on the surfaces of these two oxides (Fig. 6.2b and c). In 

contrast, Fig. 6.2a shows peaks from Na, Al, and Si from the zeolite and Mg from 

Mg(OH)2 on the surface of treated zeolite 4A. The Au peak appears in the image because 

the zeolite sample was coated with gold film to improve resolution of SEM images. 

Figure 6.3 shows XRD patterns of virgin zeolite 4A, commercial Mg(OH)2 powder, and 

treated zeolite 4A. As can be seen from Fig. 6.3c, the zeolite 4A structure and 

crystallinity remained intact after treatment. Peaks from crystalline Mg(OH)2 in the 

treated zeolite 4A prepared via method (i) are relatively weak due to the high crystallinity 

of the zeolite (Fig. 6.3c). 
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a) b) 

d) c) 

 

f) e) 

Fig. 6.1 Representative SEM images of (a) untreated zeolite 4A, (b) Mg(OH)2 powder, 
(c, d) treated zeolite 4A, (e) treated aluminum oxide, and (f) treated silicon oxide.   
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Fig. 6.2 EDS analysis of treated (a) zeolite 4A, (b) aluminum oxide, and (c) silicon 
oxide. 
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Fig. 6.3 XRD patterns of (a) virgin zeolite 4A, (b) commercial Mg(OH)2 powder, (c) 
zeolite treated with 0.04 M MgCl2 / NH4OH.  
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6-3-2 Effect of synthesis procedure on deposition of Mg(OH)2 nanostructures  

The effect of the synthesis procedure was investigated by comparing samples 

prepared using the three procedures described in section 6-2-2 with a growth time of 48 

h. Figure 6.4a and 6.4c show that Mg(OH)2 nanopetals were deposited on the surface of 

the zeolite within 48 h in samples prepared using methods (i) and (iii). Method (i) favors 

homogeneous growth and more uniform distribution of Mg(OH)2 nanopetals than method 

(iii), as indicated in the insets of Fig. 6.4a and c. On the other hand, when method (ii) was 

used to prepare the samples, small irregular Mg(OH)2 platelets were obtained and these 

platelets were nonuniformly distributed on the zeolite surface (Fig. 6.4b). This suggests 

that there are less active sites for the deposition of Mg(OH)2 because the acidic bridging 

hydroxyl protons were neutralized by ammonium hydroxide. The platelets transformed to 

a peony-like shape within 48 h (Fig. 6.4a). With a further increase in growth time (from 

48 h to 72 h), the peony grew larger and became spherical, as shown in Fig. 6.1c and d. It 

is therefore concluded that the shape, size and distribution of Mg(OH)2 nanopetals can be 

controlled via the  experimental procedure.  
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a) 

 

 

b) 

 

c) 

Fig. 6.4 SEM images of treated zeolite 4A obtained using (a) method (i) (b) method (ii), 
and (c) method (iii). The insets are magnified images with a scale bar of 200 nm.  
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6-3-3 Structure of zeolite after surface modification 

Changes in the zeolite structure due to surface modification by Mg(OH)2 were 

investigated using a combination of solid-state 1H, 27Al and 29Si NMR, ICP-OES, TGA, 

and FTIR measurements. Solid state NMR has been extensively used for characterizing 

the structure of modified zeolites as well as interactions between guests and hosts in 

zeolite complexes [5-8]. The 1H spectra of untreated zeolite are shown in Fig. 6.5a and 

reveal a strong peak at 4.8 ppm from physisorbed water in the bulk-like state. In contrast, 

treated zeolite exhibits a broad 1H spectrum consisting of a strong peak at 7.3 ppm, a 

broad peak centered at ~5.5 ppm, and two weak peaks at 1.3 ppm and 0.8 ppm. The broad 

peak at ~5.5 ppm could be due to27  i) dipolar coupling of water molecules which is too 

strong to be averaged out by magic angle spinning (MAS); (ii) outer bulk and surface 

water; (iii) chemical exchange between protons; or to (iv) distribution of chemical shifts 

arising from the different status of water molecules. These factors are not mutually 

exclusive in the treated zeolite 4A. Grey et al. [9] recently reported that layered double 

hydroxide confines interlayer water and hydroxides, as well as neighboring OH groups, 

to the layer surface, leading to very strong 1H homonuclear and 1H–Al heteronuclear 

dipolar coupling [10]. FTIR spectra of the treated nanocomposite (Fig. 6.6) show that the 

amount of tetrahedrally arranged water molecules increased after treatment from 32.9 % 

(I+II) (Fig. 6a) to 53.5 % (Fig. 6.6b). Also, the treated zeolite contained more outer bulk 

water molecules than virgin zeolite 4A as indicated by TGA runs (Fig. 6.7). The 

Mg(OH)2 nanopetals on the surface could also increase the distribution of chemical shifts 

by creating additional defect sites containing water. A chemical shift distribution 

covering the scale from 6 ppm to 2 ppm [10] would then lead to a peak at ~ 5.5 ppm in 
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the 1H spectrum. All these factors could have contributed to a significant broadening of 

the water peak. The high-filed 1H line at 0.8 ppm and 1.3 ppm could originate from the 

existence of MgOH+ [11, 12]. As water is removed during the dehydration process in a 

vacuum oven, the magnesium cation cannot satisfy the framework charge distribution and 

the cation associated electrostatic field causes dissociation of the coordinated water 

molecules, giving rise to the formation of MgOH+ [13]. The deposition of Mg(OH)2 

nanopetals generates a much stronger peak at 7.3 ppm assigned to the disturbed bridging 

OH groups [11, 14]. 

Figure 6.5b illustrates the corresponding 29Si MAS NMR spectra for virgin and 

treated zeolite 4A. The narrow peak at -90.5 ppm (∆υ1/2 = 1.5 ppm) in the untreated 

sample is due to the inherently uniform Si (4Al) framework of zeolite 4A [15, 16].  Such 

narrow peaks (∆υ1/2 ≈ 0.2 - 3 ppm) are obtained for perfectly ordered structures of zeolite 

[17]. The peak becomes broad (∆υ1/2 = 3.1 ppm) after treatment as shown in Fig. 6.5b, 

which implies that the treated zeolite had a well-ordered Si structure (Si(4Al)). Shu et al. 

[17] reported that a new peak at -96 ppm was generated when zeolite 4A was pretreated 

with thionyl chloride to create Mg(OH)2 on the surface. This peak was obtained because 

part of the uniform Si(4Al) framework of their zeolite 4A was converted to Si(3Al) by a 

dealumination reaction. Since our method is non-destructive, it does not produce a peak 

at -96 ppm. On the other hand, the line broadening after treatment in Fig. 6.5b could be 

due to broader distribution of dipolar interactions between 29Si and 1H nuclei, leading to 

distribution of 29Si chemical shifts and lower decoupling efficiency. This observation 

reflects the more diverse local environment between 29Si and 1H after treatment, which is 

in agreement with the 1H spectra discussed above. 
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Figure 6.5c shows 27Al NMR spectra of zeolite 4A before and after the growth of 

Mg(OH)2. The single signal at 58.8 ppm in Fig. 6.5c corresponds to tetrahedrally 

coordinated aluminum (AlIV or AlO4) in the virgin zeolite framework [16, 17]. The 

treated 4A exhibits two peaks at 57.2 ppm and 10.7 ppm attributed to Al in octahedral 

coordination (AlVI or AlO6) [18]. Treatment induces conversion of AlO4 to AlO6. As 

indicated in Fig. 6.5c, part of AlO4 (~ 13 % of the total spectral intensity) has been 

converted to AlO6. The change in the aluminum coordination has been previously 

observed in zeolites. In general, octahedral Al sites are created from tetrahedral Al in the 

zeolite framework by a rigorous dealumination reaction [6, 15, 19, 20]. In this work, 

octahedral aluminum was created in zeolite 4A under mild process conditions. The 29Si 

spectrum (Fig. 6.5b) was unchanged after treatment, indicative of no change in the 

framework structure. It has been reported that framework Al-OH sites can host water 

molecules giving rise to octahedrally coordinated Al species [21]. A small high field 

chemical shift of AlO4 sites after treatment is observed in Fig. 6.5c. This could be due to 

an increase in the Si-O-Al angle when Na+ ions were exchanged for Mg2+. Van Bokhoven 

et al .[6] reported that the lanthanum cation La3+, when exchanged with Na+ in NaY 

zeolite, polarizes the framework Al, distorts the zeolitic framework and generates a high-

field shift of AlO4. It is worth noting that the treated 4A in Fig. 6.5c demonstrates a slight 

broadening of the AlO4 line, the asymmetrical AlO6 line and strong spinning sidebands 

(marked by asterisks) relative to untreated 4A. These changes indicate that the 4A under 

mild treatment has formed distorted AlO4 sites and local Al positions with diverse 

isotropic chemical shifts and larger quadrupolar couplings.  
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The concentrations of Na+ and Mg2+ ions in the mixture containing the zeolites 

were measured after 72 h of treatment with ICP-OES. Approximately 22 mg of Na+ 

(=WNa+) and 4.89 mg of Mg2+ (=W1) ions were detected in 80 mL of the heterogeneous 

liquid mixture, indicating that an ion-exchange process took place during the growth of 

Mg(OH)2. The mass percent of Mg(OH)2 on the surface of the zeolite was estimated from 

the concentration of Mg2+ ions as follows: 
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Here wMg(OH)2 is the mass percent of magnesium hydroxide on the zeolite surface, 

W0 (= 19.2 mg) and W1 (= 4.89 mg) are the initial and final mass of Mg2+ ions in the 

liquid mixture containing the zeolites, W2 is the mass of Mg2+ ions exchanged for Na+ 

ions (assuming that 2 moles of Na+ ions were substituted by 1 mole of Mg2+) and W4A (= 

0.2 g) is the mass of zeolite 4A added to the solution of MgCl2 and NH4OH. MMg(OH)2 (= 

58.32), MMg (=  24.3), and MNa (= 23) are the molecular weights of magnesium 

hydroxide, magnesium, and sodium respectively. From the ICP-OES analysis WNa+ = 

22.91 mg, which translates to W2 = 11.95 mg. Since 0.2 g of zeolite 4A was added to the 

solution, the mass percent of Mg(OH)2 was calculated to be 2.75 %. Without ion 

exchange (W2= 0), the theoretical mass percent of Mg(OH)2 was calculated to be 14.66 

%. 
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The thermal behavior of the nanocomposites and their composition were 

investigated using thermogravimetric analysis. The weight percent of Mg(OH)2 in the 

nanocomposite was determined from differences in the weight loss due to desorption of 

water molecules and exclusion of occluded water molecules from both virgin zeolite 4A 

and treated zeolite 4A, as well as the thermal decomposition of Mg(OH)2. The TGA 

results of Mg(OH)2 powder, virgin zeolite 4A, and Mg(OH)2 / zeolite 4A composite are 

shown in Fig. 6.7. Figure 6.7a shows results of TG dynamic runs and corresponding first-

order derivatives (DTG) obtained using procedure (1). According to the inset of Fig. 6.6a, 

two main weight loss events can be seen for the Mg(OH)2  powder. The loss at about 200 

ºC is due to desorption of water physisorbed on  Mg(OH)2, and the loss at about 300 ºC is 

due to thermal decomposition of Mg(OH)2 [22]. At a temperature of about 450 ºC, virgin 

zeolite 4A shows a completion of weight loss, whereas treated zeolite 4A continues to 

lose weight. The treated zeolite 4A displays a larger weight loss from physisorbed water 

than virgin zeolite 4A before the decomposition of Mg(OH)2 at about 300 ºC. This could 

be due to the larger surface area of Mg(OH)2 nanopetals for physisorption of water 

molecules.  Figure 6.7a also shows the weight loss rate of the samples. From the DTG 

profiles of these samples, a peak centered at about 410 ºC is detected for Mg(OH)2 

powder. The weight loss peak detected before 150 ºC for virgin zeolite 4A and treated 

zeolite 4A samples corresponds to desorption of physically adsorbed water [23-25]. 

Between 250 ºC and 320 ºC, these two zeolite samples demonstrate a close weight loss 

rate which is due to the exclusion of occluded water or water aggregates in the cages, 

cavities, or channels of the zeolite [26]. The peak at 373 ºC for the treated zeolite 4A is ~ 

40 ºC lower than for Mg(OH)2  powder. Moreover, this DTG peak is narrower than that of 
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Mg(OH)2 powder, suggesting uniform growth of Mg(OH)2  nanopetals on the zeolite 4A 

surface, as shown in Fig. 6.1d. This difference could be attributed to the lower thermal 

stability of Mg(OH)2 nanopetals than the microscale Mg(OH)2  powder. These findings 

are similar to those of Pourmortazavi et al. [25] for copper carbonate micro and 

nanoparticles. The decomposition temperature range for copper carbonate nanoparticles 

is smaller than that for microparticles, and the decomposition temperature of the former is 

lower than that of the latter [25].  

TGA curves of the samples and their weight loss during isothermal runs are 

shown in Fig. 6.7b. The isothermal temperatures of 170 ºC and 410 ºC correspond to the 

desorption of physisorbed water and the maximum DTG peak of Mg(OH)2, respectively. 

The three samples examined experienced no weight loss at 170 ºC. The TGA curve of 

virgin zeolite 4A shows weight loss intervals at 170 ºC and 410 ºC, corresponding to the 

exclusion of adsorbed water and occluded water molecules. In the treated zeolite 4A, the 

first weight loss stage at 170 ºC corresponds to the desorption of physisorbed water from 

the surface and from Mg(OH)2 nanopetals.  The treated zeolite suffered a larger weight 

loss (~ 3.30 %) than virgin zeolite 4A during the first heating step to 170 ºC. The weight 

loss of 6.06 % in the treated sample at 410 ºC is most likely due to the exclusion of 

occluded water molecules and thermal decomposition of Mg(OH)2. Assuming that the 

treated zeolite 4A has the same amount of occluded water molecules as the virgin zeolite, 

the weight percent of Mg(OH)2 nanopetals formed on the surface of treated zeolite 4A 

can be calculated as follows: 
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Here w treated, 1 is the weight loss of the treated zeolite during the first heating step 

and wvirgin, 2 is the weight loss of the virgin zeolite during the second heating step. Also w 

treated, end and w virgin, end are the weight percent of the remaining treated and virgin zeolite 

4A at the end of the second heating step. M MgO (= 40.32) and M Mg(OH)2 (= 58.32) are the 

molecular weights of MgO and Mg(OH)2 respectively. As shown in Fig. 7b, wvirgin, 2 = 

3.22 %, and wvirgin, end = 79.60 %; for the treated zeolite, w treated, 1 = 20.51 % and wtreated, end 

= 73.28 %. The weight percent of Mg(OH)2 on the surface of zeolite 4A is calculated to 

be 11.56 % using the above equation. Although the calculation ignores the influence of 

Mg(OH)2 nanopetals as well as the ion exchange process on the exclusion of occluded 

water between 170 oC and 410 oC, this value is within the weight percent range calculated 

from ICP-OES analysis (2.75 % - 14.66 %). This confirms that Na+ ions in the cavities of 

zeolite were exchanged for Mg2+. 

FTIR analysis was used to verify the presence of Mg(OH)2 in the nanocomposite 

and to examine the vibrational properties of water confined in the zeolite. Figure 6.6 

shows the O-H band fitting results for virgin and treated zeolite 4A. The broad O-H band 

can be decomposed into four contributions related to bulk and interfacial water molecules 

[18, 27]. The sub-band ω1 at ~3000 cm-1 is attributed to tetrahedral aggregates involving 

four water molecules coordinated by the extraframework cation. The sub-band ω2 

centered at about 3200 cm-1 describes the tetrahedral arrangement of large clusters of 

water molecules. The sub-band ω3 at ~ 3400 cm-1 corresponds to water molecules that are 
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not fully tetrahedrally bonded and it is ascribed to the partial formation of H bridges that 

generates bifurcated H-bonds (BHB). Finally, the sub-band ω4 centered at ~ 3600 cm-1 is 

associated with H bonded water molecules that are not arranged in a supramolecular 

network. The water molecules may exist as dimers exhibiting linear bonds or as 

interfacial water molecules that are linked to the framework but not connected to any 

other molecule [18, 27]. From Fig. 6.6, it can be observed that the center frequencies of 

treated zeolite 4A sub-bands shifted to lower values than in the case of virgin zeolite 4A. 

Crupi et al. [27] reported that when Na-A zeolites are partially ion-exchanged with Mg2+ 

ions, the frequencies of the O-H stretching bands decrease, which agrees with our 

observations. When virgin zeolite 4A is dispersed in the magnesium chloride solution, the 

monovalent Na+ ions in the zeolite are partially substituted with the Mg2+ bivalent ions. 

The smaller Mg2+ ions are located on the edges of the α cages of zeolite A, leaving the 

access channels to the cavities free, which favors a more regular formation of stable 

water clusters [27]. The validity of the ion exchange process was confirmed by the 

presence of Na+ ions in the solution containing the zeolites after 72 h treatment shown by 

ICP-OES.  It should be added that vibration bands [28] corresponding to Mg(OH)2 can 

also be observed in Fig. 6.6b at 3700 cm-1, and that the bending vibration [29] of the –OH 

bond in Mg(OH)2 at ~1400 cm-1 was also detected but is not shown.  
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Fig. 6.5 Solid state NMR spectra of treated zeolite 4A (top) and untreated zeolite 4A 
(bottom): (a) 1H spectra at 400.1 MHz and spinning rate of 12 kHz; (b) 29Si spectra at 
54.6 MHz and  spinning rate of 5 kHz; (c) 27Al spectra at 104.2 MHz and spinning rate 
of 10 kHz. The numbers denote chemical shifts relative to the peaks, and the insets are 
8 and 4 times magnification of the region from 4 ppm to 0 ppm for treated and 
untreated samples in (a). The spinning sidebands in (c) are marked by asterisks and the 
insets are 16 times magnification of the corresponding regions. 
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Fig. 6.6 FTIR O-H stretching spectra (continuous line ) for  (a) virgin zeolite 4A and 
(b) treated zeolite 4A, together with theoretical best fit (open circles) and the 
deconvolution components (dashed lines). The Gaussian deconvolution was done 
using Orgin 8.0. The subbands (I, II, III and IV) from low frequency to high are 
located at: in (a): (I) 3050.1 (percentage intensity by peak area, 2.9 %),( II) 3250.0 
(30.0 %), (III) 3426.9 (42.5 %), (IV) 3572.7 (24.6 %); in (b), (I) 3059.7 (9.3 %), (II) 
3200.0 (44.2 %), (III) 3417.8  ( 36.2 %), (IV) 3566.8  (10.2 %).   
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Fig. 6.7 TGA results for Mg(OH)2 (solid line), virgin zeolite 4A (dashed line), and 
treated zeolite 4A (dotted line): (a) weight derivative and weight loss (inset) curves 
obtained using procedure (1); (b) weight loss curves obtained using procedure (2).  
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6-4 Deposition mechanism for Mg(OH)2 on zeolite 4A surface 

Many methods have been proposed to create nanostructures of Mg(OH)2 on 

molecular sieves [15, 17, 30]. It has been shown that Mg(OH)2 has a tendency to form 

hexagonal platelets when crystallized from aqueous solutions due to its layer brucite 

crystal structure [23, 24, 31, 32]. It has also been shown that the formation of rod-like 

Mg(OH)2 from aqueous solutions  requires the addition of a polymer dispersant template 

[31]. In addition, the formation of Mg(OH)2 nanowhiskers on the surface of zeolite 4A 

requires a complicated halide / Grignard route or a solvothermal process [17]. Here, a 

simple, high yield, and controllable deposition – precipitation method is developed to 

grow Mg(OH)2 nanopetals on the surface of zeolite 4A from an aqueous solution via the 

following reaction: 

MgCl2 + NH4OH → Mg(OH)2 + NH4Cl 

Nanostructures of Mg(OH)2  (Fig. 6.1c and d) were formed on the surface of 

zeolite 4A (Fig. 6.1a) with petals growing simultaneously on the surface of the zeolite.  In 

this experiment, the starting pH of the aqueous suspension was ~ 11, which is lower than 

the isoelectric point of magnesium hydroxide in water (~ pH 12). This suggests that the 

Mg(OH)2 is positively charged and that the ammonium cation is not easily adsorbed on 

the crystal facets due to its large size [24]. On the other hand, hydroxyl ions are adsorbed 

onto the basal plane of the crystallite and promote the edgewise growth of Mg(OH)2. The 

presence of Mg(OH)2 on the surface of the zeolite is indicated by the FTIR peak centered 

at 3700 cm-1 as shown in Fig.  6.6b. 
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The characteristics of Mg(OH)2 / zeolite 4A nanocomposite were investigated 

using solid state NMR, ICP-OES, TGA, and FTIR. The peak at 0.8 ppm and the red shift 

in the FTIR frequency sub-bands signify that the Na+ ions in the cavities of the zeolite 4A 

were partially substituted by Mg2+ ions during treatment. The substitution of Na+ ions by 

Mg2+ ions was also supported by the ICP-OES analysis. The smaller Mg2+ ions were 

located on the edges of zeolite α cages, thus allowing more water molecules to access the 

zeolite cavities.  This is also indicated by weight loss curves shown in the inset of Fig. 

6.7a which shows that virgin zeolite 4A and treated zeolite 4A display different weight 

loss profiles at temperature above 400 °C. The DTG curve in Fig. 6.7a shows that 

nanopetals on the zeolite surface have a lower decomposition temperature and narrow 

decomposition temperature range which is indicative of uniform and nanosize Mg(OH)2. 

Approximately 12 wt % Mg(OH)2 nanopetals are formed on the surface of zeolite 4A. 

This value is within the range estimated from ICP-OES analysis (~2.75- 14.66 %), and 

further supports an ion exchange process during the precipitation of Mg(OH)2. 

From the proton NMR of the treated sample and virgin zeolite, the new peak at 

7.3 ppm can be attributed to bridging OH groups in Brönsted acid sites (SiOHAl) 

perturbed by adsorbed Mg(OH)2. This broad 7.3 ppm peak infers that there was an 

interaction between Mg(OH)2 and bridging hydroxyl protons. Moreoever, 29Si and 27Al 

NMR spectra of the treated zeolite display a similar change in the chemical environment 

of both Si and Al sites in the presence of Mg(OH)2 nanopetals. Taking these results into 

consideration, it can be concluded that Mg(OH)2  is preferentially adsorbed onto the 

bridging hydroxyl protons (SiOHAl) on the zeolite 4A surface.  
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When magnesium chloride is dissolved in water, the Mg2+ ions become solvated 

by the surrounding water molecules according to [33-35]: 

++ →+ 2
622

2 ])[Mg(OHOH6Mg  

These solvated Mg2+ ions then undergo a hydrolysis reaction when ammonium hydroxide 

is added into the solution, forming a weakly basic Mg(OH)2 which may react with the 

acidic zeolite surface hydroxyl groups. 

OH])[Mg(OH)(OHOH])[Mg(OH 252
2

62 +→+ +−+  

OH5Mg(OH)OH])[Mg(OH)(OH 2252 +→+ −+  

 In principle, the Brönsted acidity of the zeolite 4A surface hydroxyl groups 

increases in the order of AlOH < SiOH < SiOHAl, with bridging hydroxyl proton being 

the strongest acid [2-4, 36]. Therefore, the basic Mg(OH)2 interacts with the bridging 

hydroxyl protons via an acid-base reaction. The acidic bridging hydroxyl group donates a 

proton to Mg(OH)2 forming MgOH+ and water molecules. The resulting MgOH+ will 

then accept a lone pair of electrons from the deprotonated bridging hydroxyl which now 

acts as a Lewis base. The precipitated MgOH groups then undergo condensation with 

each other via oxolation, leading to the formation of a hydroxide network. In the 

oxolation reaction, a nucleophilic substitution takes place with Mg-OH as the nucleophile 

and OH- or H2O as leaving group. Since ammonium hydroxide is used as the precipitant, 

the first step of the oxolation reaction may be catalyzed by the base which enhances the 

nucleophilic attack [34]. In this case, the leaving group is the OH- ions which would 

further propagate the growth of Mg(OH)2 on the zeolite surface. The oxolation 
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mechanism is a slow process [34], therefore a longer synthesis time is more favorable for 

the growth of Mg(OH)2 crystal on the zeolite surface as discussed in chapter 3.  

The deposition mechanism of Mg(OH)2 on the bridging hydroxyl group and the 

oxolation mechanism of the MgOH groups on the zeolite surface are depicted as follows: 

 

OH O-MgOHOHMg 2
- +→+− −  

-OH Mg-O-MgOHMgOMg +→−+− −  

As the acid-base reaction proceeds with time, more hydroxide ions in the solution 

are consumed thereby reducing the pH [37]. This decrease in the pH of the solution with 

time is shown in Fig. 6.8 where it can be seen that the pH of the solution decreases from 

~pH 11 to ~pH 9.8 over 96 h. This proposed mechanism is supported by observations 

from methods (i), (ii), and (iii) at 48 h as shown in Fig. 6.4.  As can be seen from Fig. 

6.4a and c, Mg(OH)2 nanopetals were deposited homogenously on the surface of the 

zeolite. In method (ii), zeolite 4A was dispersed into ammonium hydroxide solution prior 

to the addition of MgCl2. This resulted in less formation and non-uniform distribution of 

Mg(OH)2 on zeolite 4A (Fig. 6.4b) compared to the results obtained from methods (i) and 

(iii) (Fig. 6.4a and c). In method (ii), a majority of the bridging hydroxyl protons reacted 

with NH4OH via an acid-base reaction, exposing deprotonated oxygen at the bridging 

hydroxyl sites. The deprotonated oxygen with a lone pair of electrons could act as a 

Lewis base. However, this would not favor interaction with the basic Mg(OH)2 that is 
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formed upon titration of MgCl2. Therefore, fewer Mg(OH)2 nanopetals are formed on the 

zeolite surface. Figure 6.4a and c imply that the adsorption of Mg(OH)2 on the zeolite 

surface is preceded by formation of Mg(OH)2 in the solution via a hydrolysis reaction 

when MgCl2  is contacted with NH4OH. In comparison with the uniform and well-defined 

Mg(OH)2 nanopetals created by method (i), the inhomogenous nanopetals created by 

method (iii) can be attributed to  the rapid generation of Mg(OH)2. 

The use of pure aluminum oxide and silicon oxide as substrates results in no 

Mg(OH)2 nanopetals on the surfaces. This is also confirmed by EDS spectra (Fig. 6.2). 

There is no Mg on the surfaces of the aluminum oxide and silicon oxide (Fig. 6.2b and c) 

while Mg is present on the treated surface of 4A (Fig. 6.2a). These results suggest that the 

deposition of Mg(OH)2 originates from the Si-OH-Al group on the  zeolite surface 

instead of silanol or alunimol groups.  
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Fig. 6.8 pH of the solution as a function of time. 
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6-5 Conclusions 

TGA and FTIR measurements revealed that the Mg(OH)2 nanopetals deposited on 

zeolite 4A were composed of Mg(OH)2 crystals and approximately 11.56 wt % of the 

nanocomposite consisted of Mg(OH)2. It was shown that the growth of Mg(OH)2  

nanopetals  can be controlled by manipulating the synthesis procedure. Solid-state 29Si 

and 27Al NMR spectra revealed that the precipitation-growth method caused no damage 

to the zeolite framework but converted parts of the tetrahedral Al into octahedral Al. The 

results of adsorption experiments, FTIR measurements, and solid state 1H, 29Si, and 27Al 

NMR analyses indicate that Mg(OH)2 adsorbed only onto bridging hydroxyl protons 

(SiOHAl) on the surface of zeolite 4A and not on silanol or aluminol groups.  Finally, the 

deposition of Mg(OH)2 nanostructures is thought to be the result of an acid-base 

interaction between MgOH+ and bridging hydroxyl protons (SiOHAl).  
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

7-1  Conclusions 

A facile deposition – precipitation method was developed for the deposition of 

magnesium hydroxide nanostructures on zeolite 4A starting an aqueous solution of 

magnesium chloride and ammonium hydroxide at ambient conditions. Lower temperature 

favors the formation of well-defined nanocomposite. The size and precipitation of 

Mg(OH)2 nanostructures increased with increasing magnesium chloride concentration. 

The use of a strong base (NaOH) led to the formation of tiny Mg(OH)2 particles, while 

synthesis driven with a weak base (NH4OH) promoted the obtaining of petal- shaped 

nanostructures. Increasing the synthesis time facilitated the crystal growth of Mg(OH)2 

nanostructure and composition of Mg(OH)2 in the Mg(OH)2/ zeolite nanocomposite. 

BET and TGA measurements indicate that the pores of the Mg(OH)2 / zeolite 

nanocomposite were not plugged and the composition of the nanocomposite could be 

effectively controlled by varying the concentration of magnesium chloride/ ammonium 

hydroxide and synthesis time. The BET results suggested that the growth of Mg(OH)2 

occurred mainly on the external surface of zeolite 4A. It was found that the glass 

transition temperature, toughness, and strain-at-break properties of the Ultem® polymer 

films decreased with the addition of bare zeolites, but less with Mg(OH)2 / zeolite 4A 

nanocomposites.  This is in agreement with observation by Shu et al. [1] that the 

Mg(OH)2 nanostructures was can result in enhanced adhesion between the zeolite and 

polymer matrix.  

151 
 



Adsorption isotherms were measured for the deposition of Mg(OH)2 on zeolite 

4A (magnesium hydroxide – zeolite system). It was demonstrated that 3 adsorption 

mechanisms (ion exchange, surface adsorption of Mg2+ ions, and surface precipitation of 

Mg(OH)2) are involved in the deposition of Mg(OH)2. Analysis of the magnesium 

hydroxide – zeolite system adsorption isotherms indicated four distinct regions of 

adsorption involving different adsorption mechanisms. Adsorption isotherms were also 

measured using virgin zeolite 4A and ion-exchanged zeolite 4A in magnesium chloride 

solution and it was determined that the predominant processes in the absence of 

ammonium hydroxide are ion exchange and surface adsorption of Mg2+ ions. Therefore, 

ammonium hydroxide plays a significant role in controlling the pH of the slurries and in 

inducing nucleation and precipitation of Mg(OH)2 on zeolite surfaces. 

The interactions between Mg(OH)2 and zeolite 4A were characterized and 

determined mainly by solid state MAS NMR. Solid-state 29Si and 27Al NMR spectra 

revealed that the deposition - precipitation method caused no damage to the zeolite 

framework but converted parts of the tetrahedral Al into octahedral Al. The results of 

adsorption experiments conducted on silica and alumina, FTIR measurements, and solid 

state 1H, 29Si, and 27Al NMR analyses indicate that Mg(OH)2 adsorbed only onto bridging 

hydroxyl protons (SiOHAl) on the surface of zeolite 4A and not on silanol or aluminol 

groups.  Finally, the deposition of Mg(OH)2 nanostructures is thought to be the result of 

an acid-base interaction between MgOH+ and bridging hydroxyl protons (SiOHAl). A 

mechanism of Mg(OH)2 deposition on the bridging hydroxyl proton of zeolite 4A was 

postulated based on the studies above. 
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7-2  Recommendations 

7-2-1 Applicability of the deposition – precipitation method for other basic metal 

oxides 

 The efficacy of the fabrication procedure was not investigated for other basic 

metal oxides. A considerable number of metal oxides and zeolites combinations are 

possible for a variety of applications. Transition metal oxides, such as Co, Ni, Ag, Cu, Fe, 

and Zn have shown potential properties in a variety of applications such as 

electrochemical capacitor [2], catalysts [3-5], antibacterial agents [6], Li ion batteries [7], 

resonators and piezoelectric sensors [8, 9]. The hydroxides of these transition metals have 

very low solubility and can be easily precipitated under mild conditions. Moreover, these 

metal hydroxides can also be easily converted to corresponding oxides at relatively low 

calcinations temperature. Therefore, it may be of considerable value to investigate the 

relationship between the basicity of the metal oxides and acidity of the zeolites and 

establish guidelines for the deposition of basic metal oxides on zeolite surfaces. 

7-2-2 Effects of the local environment on the formation of metal oxide 

nanostructures on zeolite surfaces 

 Metal oxides supported on zeolites have attracted considerable attention in a 

variety of industrial applications. The performance of these nanocomposites is dependent 

on the positioning, coordination, size and morphology of the metal oxides as well as the 

structure of zeolites. Therefore, further efforts should be pursued in understanding how 

the local environment on zeolite surfaces such as surface charges, localized concentration 
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gradients, and density of surface functional groups affect the positioning, binding, and 

crystallization of metal oxides in zeolites. 

7-2-3 In-depth characterization of Mg(OH)2 / zeolite composite 

 In this study, the Mg(OH)2 / zeolite composites were extensively characterized 

using microscopy and spectroscopy techniques. Further analysis by X-ray photoelectron 

spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS) may provide 

a more comprehensive understanding of the surface chemistry of the composite. XPS 

may be used to determine the elemental composition and electronic state of each element 

in the surface, further verifying the interaction between Mg(OH)2 and zeolite surface. 

EXAFS would provide more information about the distances between central and 

neighboring atoms, the number of neighboring atoms, the nature of neighboring atoms, 

and changes in central-atom coordination, thereby providing more information on the 

interaction between Mg(OH)2 and zeolite and structural changes of the zeolite. 

7-2-4 Prevention of Mg(OH)2 / zeolite composite agglomeration 

 Agglomeration of bare zeolite and zeolite / Mg(OH)2 composites was often 

encountered when the nanocomposites were dispersed in polymer membranes. Therefore, 

a better method should be developed to disperse the zeolite particles more efficiently in 

the polymer. Agglomeration may be reduced by treating the zeolite particles with 

phosphonic acid. It has been shown that aggregation of barium titanate nanoparticles was 

reduced when the surface of these particles was modified by phosphonic acid [10]. 
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7-2-5 In-depth investigation of the effects of magnesium hydroxide surface area on 

the permeability and selectivity of polymer composite 

It has been shown that the glass transition temperature of the Ultem® polymer 

composite decreased with the introduction of bare zeolite and increased as the surface of 

zeolite was modified with magnesium hydroxide. Experiments have been carried out to 

test the efficacy of the Ultem® polymer composite in gas separation [11, 12]. Further 

efforts should be done to systematically examine how the polymer mobility is affected by 

the magnesium hydroxide total surface area, which in turn may influence the 

permeability or selectivity of the polymer composite. This can be done by dispersing a 

fixed amount of zeolite deposited with different amounts of magnesium hydroxide into 

Ultem® polymer and test the permeability and selectivity of the resulting Ultem® polymer 

composite. 
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