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SUMMARY

This century is surely the century of data (Donoho, 2000). Data analysis

has been an emerging activity over the last few decades. High dimensional data is

in particular more and more pervasive with the advance of massive data collection

system, such as microarrays, satellite imagery, and financial data. However, analysis

of high dimensional data is of challenge with the so called curse of dimensionality

(Bellman 1961). This research dissertation presents several methodologies in the

application of high dimensional data analysis.

The first part discusses a joint analysis of multiple microarray gene expressions.

Microarray analysis dates back to Golub et al. (1999). It draws much attention af-

ter that. One common goal of microarray analysis is to determine which genes are

differentially expressed. These genes behave significantly differently between groups

of individuals.However, in microarray analysis, there are thousand of genes but few

arrays (samples, individuals) and thus relatively low reproducibility remains. It is

natural to consider joint analyses that could combine microarrays from different ex-

periments effectively in order to achieve improved accuracy. In particular, we present

a model-based approach for better identification of differentially expressed genes by

incorporating data from different studies. The model can accommodate in a seam-

less fashion a wide range of studies including those performed at different platforms,

and/or under different but overlapping biological conditions. Model-based inferences

can be done in an empirical Bayes fashion. Because of the information sharing among

studies, the joint analysis dramatically improves inferences based on individual anal-

ysis. Simulation studies and real data examples are presented to demonstrate the

effectiveness of the proposed approach under a variety of complications that often

xii



arise in practice.

The second part is about covariance matrix estimation in high dimensional data.

First, we propose a penalised likelihood estimator for high dimensional t-distribution.

The student t-distribution is of increasing interest in mathematical finance, education

and many other applications. However, the application in t-distribution is limited by

the difficulty in the parameter estimation of the covariance matrix for high dimen-

sional data. We show that by imposing `1 penalty on the Cholesky factors of the

covariance matrix, EM algorithm can efficiently compute the estimator and it per-

forms much better than other popular estimators.

Secondly, we propose an estimator for high dimensional Gaussian mixture mod-

els. Finite Gaussian mixture models are widely used in statistics thanks to its great

flexibility. However, parameter estimation for Gaussian mixture models with high

dimensionality can be rather challenging because of the huge number of parameters

that need to be estimated. For such purposes, we propose a penalized likelihood esti-

mator to specifically address such difficulties. The `1 type penalty we impose on the

inverse covariance matrices encourages sparsity on its entries and therefore helps re-

ducing the dimensionality of the problem. We show that the proposed estimator can

be efficiently computed via an Expectation-Maximization algorithm. To illustrate the

practical merits of the proposed method, we consider its application in model-based

clustering and mixture discriminant analysis. Numerical experiments with both sim-

ulated and real data show that the new method is a valuable tool in handling high

dimensional data.

Finally, we present structured estimators for high dimensional Gaussian mixture

models. The graphical representation of every cluster in Gaussian mixture models

may have the same or similar structure, which is an important feature in many ap-

plications, such as image processing, speech recognition and gene network analysis.

Failure to consider the sharing structure would deteriorate the estimation accuracy.

xiii



To address such issues, we propose two structured estimators, hierarchical Lasso esti-

mator and group Lasso estimator. An EM algorithm can be applied to conveniently

solve the estimation problem. We show that when clusters share similar structures,

the proposed estimator perform much better than the separate Lasso estimator.

xiv



CHAPTER I

AN EMPIRICAL BAYES APPROACH TO JOINT

ANALYSIS OF MULTIPLE MICROARRAY GENE

EXPRESSION STUDIES

1.1 Introduction

Microarray technology has presented unprecedented opportunities in genomic studies

of complex diseases. It allows researchers to simultaneously monitor thousands of

transcripts and discover novel bio-markers and genes. Despite their successes, these

studies are often hampered by their relatively low reproducibility. This deficiency

is often attributed to the high variability of gene expression measurements. Sources

of distortion and noise are involved in almost every step along the process of taking

gene expression measurements. It has long been recognized (e.g., Lee et al., 2000;

Mukherjee et al., 2003) that such problem could be alleviated through increased

sample size. However, experiments with limited sample sizes remain common due

to economic considerations. The recent explosion of popularity of high-throughput

gene expression studies offers a more cost-effective alternative to this problem. With

studies of the same diseases carried out independently by different research groups,

it is natural to consider efficient ways of combining these data and jointly analyzing

them. Through information sharing across studies, the accuracy of inferences could

be greatly improved.

Because of its great potential, joint analysis of multiple experiments has attracted

much attention in recent years. It is most commonly done through cross-experiment

data normalization and transformation, which aims at translating and normalizing

measurements from different sources on a common scale to allow for integration. Jiang

1



et al. (2004) present a gene shaving method based on random forests (Breiman, 2001)

and Fisher’s linear discrimination analysis. Warnat et al. (2005) and Shabalin et

al. (2008) also discuss different ways of integrating data through cross-experiment

transformation. And Parmigiani et al. (2002), Shen et al. (2004), Choi et al. (2007)

translated all the observations into a probability of expression (poe) as a new scale.

In general, however, it is difficult to integrate data without information loss and this

would heavily bias each study. For example, van’t Veer et al. (2002) and Wang et

al. (2005) ended up with different predictive gene subsets with only three genes in

common. and there is no clear guidelines as to how it can be performed efficiently.

Alternatively, one can also combine individual analysis results summarized by t-

statistic, p-value, scored gene list and so on (e.g., Choi et al., 2003; Rhodes et al.,

2002; Garrett-Mayer, 2007; Ghosh et al., 2003; Pyne et al., 2006). In particular,

Choi et al., (2003) propose to combine the effect size of genes from each study and

conduct a permutation test to determine the significance level. Rhodes et al. (2002)

and Pyne et al. (2006) consider ways of combining p-values of each study. Due to

the small sample size of each study, the summary statistics obtained inevitably have

high variations and subsequently these methods are subject to loss of efficiency in

information sharing. This happens such as the studies of van’t Veer et al. (2002)

and Wang et al. (2005) mentioned above. It is also demonstrated by Mah et al.

(2004) that detected genes on different platforms could have poor overlap. See Hong

et al. (2008) for a comparison of methods and Rhodes et al. (2004), Parmigiani et

al. (2004) for other approaches discussions.

There are also several major practical hurdles to joint analysis. In particular, there

is no general consensus on how gene expression experiments should be conducted. As

a result, the choice of sample cohorts (e.g., age, ethnicity, and phase of disease),

experiment platforms (e.g., cDNA or oligonucleotide), and processing facilities may

all be different, and the scale of observations may not be comparable. These variations

2



among experiments prohibit us from treating them as if they were simple replicates

from a single study. In particular, a recent study in Kuo et al. (2002) compared

Affymetrix and spotted cDNA and it was claimed that the correlation between the

measurements from the two platforms was fairly low so it was unlikely that the two

types of data could be transformed or normalized into a common standardized index.

In practice, integrating multiple studies can be further complicated by missing data,

gene set mismatch and some times, mismatch in biological conditions. The concepts

of missing data and gene set mismatch are the same when combining all data from

the studies. Specifically, we define missing data as incomplete observations for one

gene present in the study. Gene set mismatch happens when there is no observations

for one gene in the study when combining the studies.

Consider, for illustration purpose, the study of prostate cancer, the most diag-

nosed cancer in men. There are a host of gene expression studies of prostate cancer.

To motivate our work, Microarray data were collected from four publicly available

prostate cancer gene expression datasets generated independently by Dhanasekaran

et al. (2001), Luo et al. (2001), Magee et al. (2001) and Welsh et al. (2001) re-

spectively. One of the goals common to all four studies is in determining which genes

are differentially expressed between locally advanced prostate cancer and benign tis-

sue. The experiments, however, are done with different technologies, Dhanasekaran

et al. (2001) and Luo et al. (2001) studies used spotted cDNA microarrays (Schena,

2000); while the other two experiments utilized Affymetrix technology (Lipshutz et

al. 1999) to focus on RNA and cRNA gene chip respectively. Furthermore, these

studies were performed on different but overlapping sets of genes. To overcome this

problem, existing methods (see, e.g., Rhodes et al., 2002; Ghosh et al., 2003; Warnat

et al., 2005) focus only on genes that are present in all studies. As we shall see in

Section 4, such practice may result in more than 75% of the genes being discarded

in some studies. Moreover, the remaining 25% of genes contain missing data, i.e.,

3



not all genes have complete observations from the samples tested. If the methods

applied can not allow missing data, this will reduce to only 1 gene (satisfying both

intersection and complete data). This is clearly not an effective way of using the data.

Another complication in combining the four experiments is the mismatch in biological

conditions. Although all four studies include comparisons between locally advanced

prostate cancer and benign prostate, Dhanasekaran et al. (2001) and Magee et al.

(2001) also included a third biological condition: metastatic prostate cancer. Earlier

attempts to combine these studies have either chosen to discard data collected from

this condition or combining it with locally advanced cancer to form a new hypothesis.

These aforementioned limitations prompt us to develop a new technique. In this

chapter, we propose a model-based method to integrate information from multiple ex-

periments for the purpose of identifying differentially expressed genes among multiple

biological conditions. Following Newton et al. (2001) and Kendziorski et al. (2003),

we model the data from each individual study by a parametric empirical Bayes model

to share information across transcripts. These separate models are flexible to be ap-

plicable to different platforms and multiple biological conditions. Latent variables are

then introduced to model the pattern of expression for a particular transcript and to

share information across experiments. The modeling framework is fairly flexible and

can handle a variety of practical issues including those mentioned above with ease.

Within this framework, all data present in every study can be used for analysis, not

only intersection genes. Without loss of generality, let us assume that the genes into

analysis are concordant. For disconcordant genes in the union data, apply methods

discussed in Garrett-Mayer et al. (2007) to remove them.

In the next sections, we introduce first the joint analysis methods in literature.

Then we present general modeling framework and show how statistical inferences

can be efficiently conducted. Section 4 presents simulation studies to demonstrate

the merits and versatility of the proposed method. We revisit the prostate cancer

4



examples in Section 5 as well as another real data example of liver cancer before

concluding with some remarks and discussions in Section 6.

1.2 Overview of Joint Analysis Methods

1.2.1 Data Normalization Methods

Probability of Expression (POE) is the measure proposed by Shen et al.(2004) to

integrate multiple data into one set. It is computed based on a Bayesian mixture

modeling approach. For any gene, there are three possibilities: over expressed, under

expressed and normally expressed. Then, given the j-th gene expression xij in the

i-th data, POE is calculated as

p∗(xij) = p+(xij)− p−(xij),

where p+ and p− are defined as

p+(xij) = Pr(eij = 1) = Pr(gene j is over expressed in sample i),

p−(xij) = Pr(eij = −1) = Pr(gene j is under expressed in sample i).

and they satisfy the constraint

p+(xij) + p−(xij) + p0(xij) = 1,

where

p0(xij) = Pr(eij = 0) = Pr(gene j is normally expressed in sample i),

and eij represents the latent categories where the raw expression xij falls into. Then

p∗(xij) is a signed probability of differential expression for gene j in sample i. As it

ranges in [−1, 1], whatever the scale of the gene expression is, POE provides a unified

measure across studies.

Then, the expression of gene j arises from a mixture of three distributions:

(xij|eij = 1) ∼ f1,j(·), (xij|eij = 0) ∼ f0,j(·), and(xij|eij = −1) ∼ f−1,j(·),
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with mixture probabilities π+
j , π0

j , and π−1
j (π+

j + π0
j + π−1

j = 1). f1,j, f0,j and f−1,j

are assumed to be the following density functions

f1,j = U(αi + µj, αi + µj + κ+
j ),

f0,j = N(αi + µj, σ
2
j ),

f−1,j = U(αi + µj − κ−j , αi + µj).

The latent probabilities can be derived by Bayes Rule:

P+
ij (eij = 1|xij) =

π+
j f1,j(xij)

π+
j f1,j(xij) + π−j f−1,j(xij) + (1− π+

j − π−j )f0,j(xij)

P−
ij (eij = 1|xij) =

π−j f−1,j(xij)

π+
j f1,j(xij) + π−j f−1,j(xij) + (1− π+

j − π−j )f0,j(xij)

To combine the information from multiple data sets, the parameters (µj, σ2
j , κ+

j , κ−j ,

π+
j , π−j ) in the distributions are set to follow some common prior distributions. The

posterior distribution of the parameters are approximated by Metropolitan Hastings

(MCMC) algorithm and Choi et. al (2007) proposed a faster EM algorithm.

This method is only applicable to cases when all studies have the same conditions.

For the prostate cancer example discussed before, some studies have two conditions

and others have three. It is not clear how to apply this method.

Warnat et al. (2005) propose Median Rank Scores (MRS, Toedling and Spang,

2003) and Quantile discretization (QD) to change the microarray expressions into a

common scale. It replaces the expression by the median rank scores to make the

multiple data sets comparable to each other. One data set is picked as the reference

and the median expression for every gene is calculated. Usually the largest data set

is selected as the reference set unless the data quality is poor. This method keeps

only the expression order for the non-reference data set. Also, it is not clear whether

the selection of reference set will lead to different results.

Shabalin et al. (2008) discuss a cross platform normalization based on a block

linear model. The expression value of gene g of replicate sample r in study s, is
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decomposed by

xsgr = Aα∗(g),β∗s (r),s × bgs + cgs + σgsεsgr,

where α∗ : {1, . . . , G} 7−→ {1, . . . , K} maps a total of G genes into K clusters;

β∗s : {1, . . . , ns} 7−→ {1, . . . , L}, s = 1, . . . , S defines groups of sample replicates for

study s(s = 1, . . . , S). Aijs is the block mean; bgs and cgs capture sensitivity and

offset effect, respectively, associated with gene and platform; εsgr is the independent

standard normal noise term. The estimate of the decomposition equation is done by

a two step procedure.

1.2.2 Methods of Combining Individual Results

Choi et al. (2003) propose to combine the effect size of genes from each study and

conduct a permutation test to determine the significance level. A hierarchical model

is used to quantify the effect size for every gene in the studies

ygs = θs + εs, εs ∼ N(0, σ2
s),

θs = µ + δs δs ∼ N(0, τ 2),

where ygs is the effect size of gene g in study s; µ is the overall mean, representing

the average differential expression across the datasets for each gene; σ2
s measures the

within-study variation of the gene expression; τ 2 is the between-study variation.

Given microarrays in each study, ygs and σ2
s are calculated respectively as

ygs =
x̄gt − x̄gn

sp

,

σ2
s = (n−1

t + n−1
n ) + y2

gs(2(nt + nn))−1,

where x̄gt and x̄gn are the sample mean over the tumor and normal group respectively;

sp is the pooled standard deviation estimated.

Under this framework, a fixed-effect model interprets that the variation of effect

size comes from sampling error only. And random-effects model assumes that the
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effect size follows a distribution whose mean parameter θs is randomly drawn from

another distribution N(0, τ 2). The test of τ 2 = 0 is applied to decide which model

fits the data sets better. For each gene, a z-score of the average effect size is obtained

to evaluate whether the gene is significantly differentially expressed or not. The

threshold of z-score is determined by repeatedly calculating the z-scores based on the

permutation within each study.

Rhodes et al. 2002 consider combining p-values of the studies. For each study, the

gene specific actual t-statistic is calculated. A permutation is conducted to randomly

assign the sample labels to the gene expressions, such that the t-statistic can be

calculated many times, which is called random t-statistic. p-value is calculated as

the fraction of the random t-statistic greater than or equal to the actual t-statistic.

Such summary statistics is computed for every gene present in all studies and the

corresponding p-value is estimated by a permutation to get the random summary

statistics. Although this method integrates the result of individual studies, it is

difficult to control false negatives. Due to high variation in the experimental process

studies, the obtained p-values are noisy. One single poor p-value may deteriorate the

combined statistic. The combined statistic is not a robust summary to the p-values.

As a result, the test will lead to a contrary conclusion.

To jointly consider combining individual results while keeping False Discovery

Rate (FDR) under control, Pyne et al. 2006 propose to combine only those good

p-values which clear their respective experiment-specific false discovery thresholds.

As the quality of all experiments is not homogenous, experiments should contribute

differently to the integrated statistic. A weighting scheme is presented to combine

the individual results. How to select the threshold to screen the good p-values is also

discussed.
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1.3 Model and Inference

1.3.1 Parametric Empirical Bayes Model for A Single Study

We begin with modeling gene expression data from a single study. Various methods

have been developed for such purposes. Interested readers are referred to Parmigiani

et al. (2003), Allison et al. (2006) and Do et al. (2006) for recent surveys. Here

we adopt a parametric empirical Bayes approach introduced by Newton et al. (2001)

and Kendziorski et al. (2003).

Let xgcr be the gene expression measurement taken from the rth replicate under

condition c for gene g. Take the data from Dhanasekaran et al. (2001) as an example,

three biological conditions (c = 1, 2, or 3), namely benign prostate, localized prostate

cancer or metastatic prostate cancer; 4,839 genes (g = 1, 2, . . . , 4839) are considered.

A total of 14 replicates (r = 1, 2, . . . , 14) are obtained for benign prostate; 14 for

localized and 20 for metastatic prostate cancer respectively.

To fix ideas, we focus on two conditions (c = 1 or 2) in what follows. Sensible ex-

pression patterns concerning the comparison between two conditions for a particular

gene include equivalent expression and differential expression. This can be formulated

through latent variables µgc representing a population level of expression for gene g

under biological condition c. Equivalent expression means that µg1 = µg2 whereas dif-

ferential expression indicates µg1 6= µg2. Our goal is therefore to infer such expression

patterns from xg1· = (xg11, xg12, . . . , xg1n1) and xg2· = (xg21, xg22, . . . , xg2n2) where n1

and n2 are the number of replicates obtained under each condition respectively. It is

not hard to see that the marginal distribution of (xg1·,xg2·)

f (xg1·,xg2·) = P (µg1 = µg2)f
(
xg1·,xg2·

∣∣µg1 = µg2

)
(1)

+P (µg1 6= µg2)f
(
xg1·,xg2·

∣∣µg1 6= µg2

)
(2)

where we use f to denote a generic density function, marginal or conditional; and

P (µg1 = µg2) + P (µg1 6= µg2) = 1. The two conditional distributions can be modeled
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through a two level hierarchical model:

f
(
xg1·,xg2·

∣∣µg1 = µg2

)
=

∫ (
n1∏

k=1

f
(
xg1k

∣∣µg1 = µ; θ
)
)(

n2∏

k=1

f
(
xg2k

∣∣µg2 = µ; θ
)
)

f(µ; τ)dµ;

f
(
xg1·,xg2·

∣∣µg1 6= µg2

)
=

∫ (
n1∏

k=1

f
(
xg1k

∣∣µg1; θ
)
)
×

×
(

n2∏

k=1

f
(
xg2k

∣∣µg2; θ
)
)

f(µg1; τ)f(µg2; τ)dµg1dµg2,

where θ and τ are parameters shared by all genes and determined by the experiment

characteristics.

Two particular choices of f(·|µ; θ) and f(·; τ) are advocated, often referred to

the lognormal-normal (LNN) model and Gamma-Gamma (GG) model. In the LNN

model, f(·|µ; θ) is a lognormal distribution, i.e.,

f(x|µ; θ) =
1√
2πθ

exp

(
−(ln x− µ)2

2θ

)
; (3)

whereas f(·; τ) is also a normal distribution with τ = (τ1, τ2)
′ represents the mean

and variance parameter respectively. Alternatively for the GG model, f(·|µ; θ) is a

Gamma distribution, i.e.,

f (x|µ; θ) =
λθ

Γ(θ)
xθ−1 exp {−λx} (4)

where the shape parameter is given by λ = θ/µ. f(·; τ) is chosen such that λ also

follows a Gamma distribution

f(λ; τ1, τ2) =
τ2

τ1

Γ(τ1)
λτ1−1

g exp {−τ2λ} . (5)

Closed form expression are available for f
(
xg1·,xg2·

∣∣µg1 = µg2

)
and f

(
xg1·,xg2·

∣∣µg1 6= µg2

)

with both LNN and GG models. The readers are referred to Kendziorski et al. (2003)

for further details.

1.3.2 Joint Modeling with Multiple Studies

We now consider multiple studies. For brevity, we shall first assume that in each study,

the same set of genes (g = 1, 2, . . . , G) and the same set of conditions (c = 1, 2, . . . , C)
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are considered. This assumption will later be relaxed. With slight abuse of notation,

let Xs := {xsgcr : g = 1, . . . , G; c = 1, . . . , C; r = 1, . . . , nsc} be the gene expression

measurements obtained in the sth study (s = 1, 2, . . . , S) where nsc is the number

of replicates under condition c in the study. Clearly Xs can be modeled using the

parametric empirical Bayes model discussed before. The hierarchical modeling can

be summarized by the diagram below:

expression pattern (DE or EE)

↓

latent expression level {µsgc}

↓

expression measurements {xsgcr}

The latent expression levels are determined stochastically by the expression pat-

tern through distribution f(µ; τ) whereas the expression measurement by the latent

levels through conditional distribution f(x|µ; θ). Both parameters θ and τ reflects

the variation of an experimental data and therefore should be experiment-dependent,

which conveniently addresses the issue that microarrays may come from different

platforms. To this end, we shall write θs and τs in what follows to emphasize the

dependence between these parameters and the study. On the other hand, given that

the same biological process is studied, a gene’s differential expression pattern should

remain the same across all studies. Let x·gc· = {xsgcr : s = 1, . . . , S; r = 1, . . . , nsc}
be the collection of all expression measurements obtained from all studies on gene g

and condition c. Then the conditional distribution of these measurements under the
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two differential expression patterns can be given by

f
(
x·g1·,x·g2·

∣∣DE
)

=
S∏

s=1

f
(
xsg1·,xsg2·

∣∣DE
)
; (6)

f
(
x·g1·,x·g2·

∣∣EE
)

=
S∏

s=1

f
(
xsg1·,xsg2·

∣∣EE
)
, (7)

where the experiment specific conditional distributions are given in the previous sub-

section.

1.3.3 Empirical Bayes Inference

If the experiment specific parameters θs and τs, s = 1, . . . , S are known, inference on

a gene’s expression pattern can be conducted through their posterior probabilities,

i.e.,

f
(
DE

∣∣x·g1·,x·g2·
)

=
πf

(
x·g1·,x·g2·

∣∣DE
)

πf
(
x·g1·,x·g2·

∣∣DE
)

+ (1− π)f
(
x·g1·,x·g2·

∣∣EE
) (8)

where π = P (DE) is the probability that a randomly selected gene is differentially

expressed. According to Bayes rule, we classify a gene as differentially expressed if

the posterior probability of differential expression is greater than 50% and equiva-

lent expression otherwise. These posterior probabilities provide a natural means of

inferring differential expression by integrating multiple studies.

Following Efron et al. (2001) and Newton et al. (2001), parameters {θs, τs : s =

1, . . . , S} as well as π can be estimated in an empirical Bayes fashion. Note that these

parameters are shared by all genes. The log-likelihood for all data can then be given

by

` (x··1·,x··2·) =
G∑

g=1

` (x·g1·,x·g2·)

where

` (x·g1·,x·g2·) = log
(
(1− π)f

(
x·g1·,x·g2·

∣∣EE
)

+ πf
(
x·g1·,x·g2·

∣∣DE
))

,
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The maximum likelihood estimator of all parameters θs and τs, s = 1, . . . , S and

π can be efficiently computed using EM algorithm by treating a gene’s differential

expression pattern (i.e, EE or DE) as missing.

Instead of imposing a hierarchical model specifying the hyper parameters for the

study-based parameters, the proposed modeling scheme fits a separate EB model for

each study. It allows flexibility of accommodating different chip types. And it also

encourages information sharing from every study based on the fact that each gene

follows one particular pattern, which is common across all studies.

1.3.4 Gene Set Mismatch and Missing Data

As mentioned in Section 1, one of the most common difficulties associated with joint

analysis is the mismatch of gene sets. Due to various limitation of the technology and

quality control, valid measurements obtained in one data set may not be available

for another data set. In practice, only those genes with valid measurement across

all experiments are included in the joint analysis. This can be a significant loss of

information as we shall see in the prostate cancer data in Section 4 where 30% to 75%

of the data from each experiment are wasted if this approach is taken. In contrast, the

problem of gene set mismatch can be conveniently addressed within our framework.

Rather than considering only genes that are present in all experiment, we include all

genes that appears in at least one experiment. If a particular gene is not present in

an experiment, we treat it as missing data. In particular,if one gene is missing in one

study, it does not contribute to the likelihood (2) and as a result (6) and (7) only

collects contributions from the studies with the gene present.

1.3.5 Multiple Conditions and Condition Mismatch

The proposed framework for joint analysis can be easily extended to handle more

than two conditions. Consider, for example, the data taken from Dhanasekaran et

al. (2001) where three biological conditions are investigated. For each condition, we
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introduce a latent gene expression level, µsgc, c = 1, 2 or 3. When comparing these

conditions for gene g, we have the following equality or inequality conditions that

may hold:

Pattern 1 : µsg1 = µsg2 = µsg3,

Pattern 2 : µsg1 = µsg2 6= µsg3,

Pattern 3 : µsg1 6= µsg2 = µsg3,

Pattern 4 : µsg1 = µsg3 6= µsg2,

Pattern 5 : µsg1 6= µsg2 6= µsg3. (9)

Similar to before, these latent expression level can be modeled by an experiment-

specific distribution f(µ; τs) where under Pattern 1, all three latent expression levels

are obtained as a single sample from f(·; τs); under Pattern 2, µsg1 = µsg2 and µsg3

are two independent samples from f(·; τs) and so on. Similar formula as before can

therefore be derived for f(x·gc·|Pattern k):

f
(
x·g1·,x·g2·,x·g3·

∣∣Pattern k
)

=
S∏

s=1

f
(
xsg1·,xsg2·,x·g3·

∣∣Pattern k
)
,

where the conditional densities can be computed and the inferences can also be con-

ducted in a similar fashion as before.

A practical challenge that often arises with multiple biological conditions is the

possible condition mismatch. Different experiments are designed to address and com-

pare different but overlapping conditions. The overlap in biological conditions makes

information sharing possible but the difference in biological conditions makes the in-

formation sharing difficult. For example, among the four prostate cancer studies we

discussed earlier in the introduction, Dhanasekaran et al. (2001) considered three con-

ditions including benign prostate, localized prostate cancer and metastatic prostate

cancer; whereas Luo et al. (2001), only investigated the first two conditions. A com-

mon practice is to ignore data obtained under the third condition from Dhanasekaran
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et al. (2001) and compare the first condition through a joint analysis. Although a

convenient and sensible solution, it is clearly not the most efficient way of using data.

In general, following this practice, when including multiple studies, we can only use

those conditions that are present in all studies. Furthermore, as we shall demonstrate

by simulations in the next section, doing so may result in loss of efficiency as well.

The problem of condition mismatch can be handled conveniently within our pro-

posed framework of joint analysis. For illustration purpose, we assume the one study

has three conditions but the other one missed the third condition. As shown in (9),

we can see that the joint of the first two ”sub-patterns” is exactly EE pattern between

condition one and two, and we call them sub-pattern of EE; and similarly the last

three is DE sub-pattern for the two conditions. For the study with only first two con-

ditions, it can get the posterior probability of EE and DE as discussed before. Then

it estimates the posterior probability of the two EE sub-patterns by equally dividing

the EE probability and similarly evenly divides the DE probability to estimate the

probability for the three DE sub-patterns.

1.4 Simulation Studies

1.4.1 Benefit of Joint Analysis

To demonstrate the effectiveness of the proposed method, we first conducted several

sets of simulation studies. To demonstrate the benefit of joint analysis, we begin

with a simple setting: two biological conditions, and no gene set mismatch. A total

of G = 5, 000 genes and S = 4 experiments were simulated. For each experiment,

nsc = 3 replicates were simulated under each condition. The gene expression data were

simulated from LNN or GG model. Due to their similarity in performance, we report

here only the results from LNN models. The simulation settings for each experiment

are similar to those previously employed by Kendziorski et al. (2003) to mimic the

real gene expression data and represent different experimental variations in practice.

15



Denote η = (τ1, log(τ2), log(θ)) the parameters associated with the LNN model. The

parameters of the four experiments are set at η1 = (2, 0.52, 0.152), η2 = (5, 0.62, 0.252),

η3 = (15, 12, 0.352), η4 = (30, 1.22, 0.452) respectively. τ2 controls the variation of the

latent mean of the gene expression levels. Larger τ2 corresponds to DE genes better

separated between conditions. And this parameter setting has an average effect size

of 1.62, 1.8, 2.64 and 3.23 (calculated as the median of the effect sizes of differential

expressions) for the four studies respectively. A randomly chosen π = 10% genes

are set to be differentially expressed. We compare the performance of the proposed

method with two joint analysis methods, Choi et al. (2003) and Choi et al. (2007),

and separate analysis based on the area under curves (AUC). We also compare the

our results and the separate analysis with the criteria of sensitivity, specificity and

FDR.

The performance of the four separate analyses are combined to compare with the

joint analysis based on the rule that every DE gene claimed by any one separate

analysis is regarded as DE genes. And in the separate analysis, each experiment is

analyzed separately using the empirical Bayes approach of Kendziorski et al. (2003),

referred to as EBarrays. We also compare sensitivity, specificity and false discovery

rate (FDR) with separate analysis. Note that these measures are calculated based

on a natural threshold of 0.5 by Bayes rule in the EB framework but they can not

be evaluated at the same stage in Choi et al. (2003) and Choi et al. (2007) because

they require an arbitrary confidence level α, which is not equivalent to the Bayes

rule threshold. The operating characteristics based upon 100 runs are summarized in

Table 1.

We observe that joint analysis can significantly improve the performance. Al-

though four separate analyses have high AUC, they have high false discovery rate as

reported in Table (1). Among the four experiments, Experiment 4 has the strongest

signal to noise ratio, also reflected by its largest effect size of differential expressions.
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Table 1: Operating characteristics of joint analysis and separate analysis. The
results are summarized from 100 runs. All units are in percentages and (·) represents
standard error.

AUC Sensitivity Specificity FDR
Joint EB 99.97 (0) 99.38 (0.03) 99.99 (0) 0.12 (0.02)

Separate EB 99.74 (0.01) 93.92 (0.13) 99.99 (0) 0.07 (0.01)
Choi et al. (2003) 58.74 (0.14)
Choi et al. (2007) 57.74 (0.47)

A possible misconception is that it is fruitless to combine such a good-quality exper-

iment with others with relatively poor quality. Our result clearly suggests otherwise.

It indicates that joint analysis can greatly improve even the experiment with the best

quality.

To evaluate the robustness of the proposed method, we consider a more complex

simulation setup where the experimental data were generated as follows:

Experiment 1: The latent gene expression levels were simulated from an inverse Gamma

distribution with shape parameter 2 and location parameter 10. Then the gene

expression measurement were simulated from a Gamma distribution with the

latent means and shape parameter 20.

Experiment 2: The latent means were simulated so that A := log((µ2g1µ2g2)
1/2) fol-

lows a uniform distribution between 5 and 11; and M = log(µ2g1/µ2g2) follows a

uniform distribution between −1 and 1 for differentially expressed genes and 0 for

equivalently expressed genes. Then the observed gene expression measurements

were simulated from Gamma distribution with shape parameter 15.

Experiment 3: Similar to Experiment 2 except that now M follows a uniform distri-

bution between −2 and 2 and the expression measurements were simulated with

shape parameter 25.

Experiment 4: Data were simulated from a LNN model with parameter θ = exp(0.3)

and τ = (2.3, exp(1.39)).
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The other setting are similar as before. The effect sizes of the four studies are

2.09, 1.65, 2.71 and 7.69 respectively. To gain further insights, we also consider three

different percentages of differential expression: π = 5%, 10% and 20%. Figure 1 sum-

marizes the results, again averaged over 100 runs. Joint four analysis has much lower

false discovery rate (0.2%) than the combined separate analysis (10%). The sensitiv-

ity and specificity of joint analysis (93%, 99%) are similar to the combined separate

analysis (95%, 97%). AUC of the proposed method, combined separate analysis, Choi

et al. (2003) and Choi et al. (2007) are not sensitive to π and is similar to Table 1.

It is evident that the joint analysis significantly outperforms all others.

Table 2: Operating characteristics of joint analysis and separate analysis with differ-
ential probability fixed at 0.05, 0.1 and 0.2 respectively. The results are summarized
from 100 runs. All units are in percentages and (·) represents standard error.

π = 0.05 AUC Sensitivity Specificity FDR
Joint EB 99.63 (0.02) 92.33 (0.16) 99.99 (0) 0.25 (0.03)

Separate EB 98.56 (0.04) 94.17 (0.16) 99.46 (0.01) 9.69 (0.2)
Choi et al. (2003) 61.42 (0.19)
Choi et al. (2007) 57.94 (0.24)

π = 0.1 AUC Sensitivity Specificity FDR
Joint EB 99.61 (0.02) 93.05 (0.11) 99.98 (0) 0.24 (0.02)

Separate EB 98.48 (0.03) 95.51 (0.09) 98.72 (0.02) 10.75 (0.15)
Choi et al. (2003) 61.11 (0.14)
Choi et al. (2007) 58.86 (0.16)

π = 0.2 AUC Sensitivity Specificity FDR
Joint EB 99.59 (0.01) 93.96 (0.07) 99.95 (0) 0.2 (0.01)

Separate EB 98.49 (0.02) 96.89 (0.06) 96.74 (0.04) 11.88 (0.12)
Choi et al. (2003) 60.92 (0.12)
Choi et al. (2007) 60.15 (0.13)

1.4.2 Gene Set Mismatch and Missing Data

We now consider the problem of gene set mismatch and missing data. To this end,

we consider the following simulation scheme with a total of G = 5, 000 genes at two

conditions. The proportion of DE genes is 5%. Similar to before, three replicates were

simulated at every condition. Because of the robustness of the method, we focus here
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Figure 1: Performance of joint and separate analyses, the y-axis in each sub-figure
is false discovery rate, sensitivity and specificity respectively.

only on the LNN model with the parameters given before. The difference is now each

experiment only involves a subset of the genes. In particular, Experiment 1 includes

4, 500 randomly selected genes; and each of the remaining three experiments has 80%

overlap with the first experiment and the set of overlapping genes is drawn randomly.

In addition, Experiments 2 and 3 each has 250 new genes randomly selected from

the 500 genes not included in Experiment 1. Experiment 4 covers all 500 genes not

available in Experiment 1. As a result, Experiments 2 and 3 each has 3850 genes

whereas Experiments comprises of 4100 genes. To mimic missing data for all studies,

we randomly incorporate 10% of genes with missing data. In particular, those genes

have a mild missing data issue, i.e., they evenly have 1, 2, 3, 4, 5 observations missing

and the scheme is done randomly.

As we can see from Table 3 based on 100 simulation runs, when the data quality

is okay, the new method beats others over almost all performance characteristics.
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Table 3: Performance comparison among joint, combined separate analysis and two
meta analyses Choi et al. (2003) and Choi et al. (2007), when there are mild gene set
mismatch and missing observations. All units are in percentages and (·) represents
the standard error.

AUC Sensitivity Specificity FDR
Joint EB 98.92 (0.04) 87.42 (0.24) 99.9 (0) 2.01 (0.1)

Separate EB 93.07 (0.12) 55.23 (0.32) 100 (0) 0.02 (0.01)
Choi et al. (2003) 60.77 (0.34)
Choi et al. (2007) 60.02 (0.36)

1.4.3 Condition Mismatch

Our final simulation study is designed to illustrate the effect of condition mismatch.

We adopt a similar simulation set as before, with 5000 genes and four experiments.

There are a total of three biological conditions but one condition is missing at each

of the first three experiments. Specifically, the first experiment has three replicates

under the first condition, three under the second condition, none under the third

condition. The second experiment has three replicates under each of the first and

third condition, but none under the second condition. The third experiment features

three replicates under each of the second an third condition, and none under the first

condition. The last experiment has three replicates under each of the three conditions.

As we pointed out earlier, such condition mismatch is a direct consequence of different

biological hypothesis of interest. In Experiment 1, our interest is in comparing the

first two conditions. The goal is therefore to determine genes that are differentially

expressed between these two conditions. Similarly, in Experiment 2, we want to

identify genes that are differentially expressed between the first and third condition;

and Experiment 3, between the second and third condition. In the last experiment,

there are five possible patterns as we discussed before, all patterns except for Pattern

1 can be identified as differential expression.

Given the different hypotheses, the natural question is whether or not a joint

analysis of all four experiments can be beneficial. For example, for the “investigators”
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of the first experiment, combining with data on the first two conditions from the last

experiment might be helpful, but it is not immediately clearly whether or not it helps

if we include all four experiments. To illustrate the merits of the proposed joint

analysis of all experiments, we apply three different strategies here: separate analysis

of the first experiment; joint analysis of the first experiment and the last experiment

with data from the third condition discarded; and the proposed method of joint

analysis of all four experiments with missing conditions handled as missing data as

we discussed before. Since joint analysis of other methods cannot handle condition

mismatch and their analysis based on throwing the unmatch condition reduces to the

situation evaluated before, we do not compare with them in this setting.

Table 4 summarizes the operating characteristics of all three methods averaged

over 100 runs. It is clear that both joint analyses improve upon the separate analysis

with the proposed method outperforms the joint analysis with only two experiments.

Similar comparisons were conducted from the angles of the “investigators” of Exper-

iments 2 and 3 and the results remain similar. Now consider the last experiment

where the goal is identify differentially expressed genes among all three conditions.

We compare the joint analysis that uses data from all four experiments and the in-

dividual analysis that only uses data from the last experiment. The results are also

given in Table 4, which suggests that joint analysis gives superior performance.

1.5 Real Examples

To further illustrate the merits of the proposed method, we now return to the prostate

cancer examples discussed before. As mentioned earlier, four public microarray

datasets generated independently by Dhanasekaran et al. (2001), Luo et al. (2001),

Magee et al. (2001) and Welsh et al. (2001) were collected to determine genes that

are differentially expressed between benign prostate and cancer tumors. As stated

before, the data were generated with different platforms: Dhanasekaran et al. (2001)
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and Luo et al. (2001) employed spotted cDNA microarrays whereas the other two

experiments utilized Affymetrix technology. All four studies include comparisons be-

tween locally advanced prostate cancer and benign prostate. Dhanasekaran et al.

(2001) and Magee et al. (2001) also included a third biological condition: metastatic

prostate cancer. A total of 13, 474 unique genes are present in at least one of the ex-

periment. There is, however, a severe gene set mismatch among the four experiments

with less than 10% (1, 322) of the genes presented in all four experiments. Among the

1,322 intersection genes, only one gene does not have missing observations. Methods

such as Choi et al. (2003) and Choi et al. (2007) applicable to complete data do not

work in this case. So we only compare joint and combined separate analyses. Ta-

ble 5 summarizes some basic information of the data and gives the number of genes

overlapped between the four experiments.

Table 5: Basic information of the four prostate cancer datasets. D – data from
Dhanasekaran et al. (2001); L – data from Luo et al. (2001); M – data from Magee
et al. (2001); and W – data from Welsh et al. (2001).

Array Number of Replicates Pairwise Overlap Genes
Type Benign Local PCA Metastatic PCA D L M W

D cDNA 14 14 20 4, 839 2, 642 1, 596 2, 126
L cDNA 9 16 0 6, 109 2, 895 3, 574
M Affy 4 8 3 5, 228 4, 963
W Affy 9 23 0 9, 071

We ran the joint analysis both with the LNN and GG model and the results are

similar. Therefore, we focus here on the results from the LNN model. Similar to

the simulation study conducted before, there are two primary hypotheses concerning

differential expression. The goal is to identify genes that are differentially expressed

between either cancer tumor and benign prostate. In other words, among the five

expression patterns given in (9), we are interested in identifying genes in Patterns 2,

3, 4 and 5 as opposed to Pattern 1. Hereafter, we shall refer to genes with Pattern
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1 equivalently expressed genes; and the genes with other patterns differentially ex-

pressed genes. Similar to earlier studies (see,e.g., Choi et al., 2003), a large number of

genes demonstrate significant difference between prostate cancer and benign prostate.

To fix idea, we focus on the top one hundred genes identified to follow Patterns 2, 3,

4 or 5 by joint analysis. All of these genes have posterior probabilities of differential

expression greater than 99%. Among these genes, 31 genes are not identified by any

studies; 69 are identified to be differentially expression with posterior probability at

least 95% in at least one of the fours studies when analyzing the four datasets sepa-

rately; 34 in at least two studies; 7 in three studies; and 0 in all four studies. For the

top 100 genes found by joint analysis, venn diagram in Figure 2 shows the availability

in each of the individual analysis. In particular, for the 31 genes not identified by all

separate studies, they are partly available at least two conditions in each data set (2

genes in Dhanasekaran et al. (2001), 7 genes in Luo et al. (2001), 17 genes in Magee

et al. (2001), and 31 genes in Welsh et al. (2001)). The median effect size of the

available genes in each study is 1.28, 1.19, 2.77, and 4.55 respectively. The effect size

is calculated as the largest effect size of each pair conditions.

Joint analysis reveals significant genes agreed across studies more than would be

expected by chance. Also, it improves sensitivity. Genes that are not identified by

individual analysis can be discovered by joint analysis. We examine the 31 genes

among the one hundred Table 6 is the information of the 31 genes identified by joint

analysis but not to be differentially expressed in individual analysis. In particular,

Hs.296638, is a known prostate differentiation factor.

A second example we consider here is the four liver cancer datasets from Choi et

al. (2003). All data were generated at two biological conditions: normal and tumor

tissues. The goal is to identify genes differentially expressed in normal and tumor

tissues. The datasets are of relatively poor quality when compared with the prostate

datasets and have been used earlier in Choi et al. (2003) primarily to demonstrate
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Figure 2: Venn diagram of the prostate cancer: 100 genes are selected as DE genes
by joint analysis. Among them, 69 genes are detected as DE genes by any individual
analysis and the intersection is the DE genes agreed by individual studies.
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Table 6: In prostate cancer, list of 31 genes identified as differential expressed in
joint analysis but not identified by any one study.

Unigene name
Hs.34114 ATPase, Na+/K+ transporting, alpha 2 (+) polypeptide
Hs.296638 prostate differentiation factor
Hs.352107 trefoil factor 3 (intestinal)
Hs.334688 phytanoyl-CoA hydroxylase interacting protein
Hs.162209 claudin 8
Hs.118127 actin, alpha, cardiac muscle
Hs.54435 Human dystrobrevin (DTN) gene
Hs.2388 apolipoprotein F
Hs.56966 KIAA0906 protein
Hs.355723 aldehyde oxidase 1
Hs.34853 inhibitor of DNA binding 4, dominant negative helix-loop-helix protein
Hs.334703 hypothetical protein FLJ14529
Hs.20166 prostate stem cell antigen
Hs.173571 KIAA1053 protein
Hs.372612 for protein disulfide isomerase-related
Hs.49998 LIM domain binding 3
Hs.27695 midline 1 (Opitz/BBB syndrome)
Hs.237506 DnaJ (Hsp40) homolog, subfamily B, member 5
Hs.242271 KIAA0471 gene product
Hs.139336 ATP-binding cassette, sub-family C (CFTR/MRP), member 4
Hs.119498 thyroid hormone receptor interactor 6
Hs.194765 H.sapiens GENX-5624 mRNA, 3’ UTR
Hs.348994 nidogen (enactin)
Hs.55279 serine (or cysteine) proteinase inhibitor, clade B (ovalbumin), member 5
Hs.278581 fibroblast growth factor receptor 2
Hs.153322 phospholipase C-like 1
Hs.167531 methylcrotonoyl-Coenzyme A carboxylase 2 (beta)
Hs.103839 erythrocyte membrane protein band 4.1-like 3
Hs.149098 smoothelin
Hs.153179 fatty acid binding protein 5 (psoriasis-associated)
Hs.114346 cytochrome c oxidase subunit VIIa polypeptide 1 (muscle)
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the necessity of a joint analysis. Table 7 is some basic information of the data and

gives the number of genes overlapped between the four experiments.

Table 7: Basic information of the four liver cancer datasets.
Number of Replicates Pairwise Overlap Genes
Normal Tumor D L M W

D1 16 16 10314 10289 10194 9921
D2 23 23 10311 10202 9906
D3 29 5 10216 9815
D4 12 9 9931

Similarly, the analysis is based on the LNN model. In joint analysis, top 18 genes

have posterior probability of differential equation greater than 90%. We evaluate the

information of these genes and exclude genes of unknown functions. Then we get 10

genes. In particular, 9 out of 10 are identified by the combined separate analysis and

1 is failed to be selected. Table 8 shows the information of these genes. The median

effect size of the 10 genes in every study is 2.09, 1.86, 1.78, and 1.9 respectively and

Figure 3 displays the venn diagram.

Note that Choi et al. (2003) analyzed this data by joint analysis but the result

there is not comparable to our result at the same stage because it evaluates DE genes

by confidence level but our method is by posterior probability. So we can only compare

the joint analysis and combined separate analysis under EB framework. Table (8)

displays the gene list, where 9 out of 10 genes are identified by only one study. The

first gene in Table (8) is not identified by any studies.

1.6 Conclusions

With the explosion of popularity of microarray experiments, it becomes a necessity

to develop statistical methods that can effectively integrate data from multiple stud-

ies. Meta-analysis of multiple experiments can alleviate the low sample size and

high variability problem that is often faced in individual studies. At the same time,

meta-analysis also presents an unprecedented opportunity for comparative analyses
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Table 8: In liver cancer, list of 10 genes identified as differential expressed in joint
analysis but identified by at most one study. The first gene is failed to be selected by
all studies.
Tissue name
21.2.D.1 TATA box binding protein(TBP),mRNA
15.2.F.4 AL564975 cDNA
15.2.H.9 IL3-CT0219-271099-022-C02 cDNA
16.1.C.4 KIAA0107 gene product(KIAA0107),mRNA
19.4.D.12 KIAA0304 gene product(KIAA0304),mRNA
2.2.D.2 thioredoxin reductase 1(TXNRD1),mRNA
20.2.A.9 triosephosphate isomerase 1(TPI1),mRNA
22.3.A.4 ribosomal protein L13a(RPL13A),mRNA
23.3.A.4 CD24 antigen (small cell lung carcinoma cluster 4 antigen) (CD24), mRNA
7.1.E.7 hepatocyte growth factor regulated tyrosine kinase substrate (HGS), mRNA
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Figure 3: Venn diagram of the liver cancer: 10 genes are selected by joint analysis.
In particular, 9 genes are found by any individual analysis and no common genes
between individual studies.
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of broad scope. In this paper, we propose a model-based joint analysis of gene expres-

sion data from multiple studies to determine differentially expressed genes between

multiple biological conditions. The proposed method shares information both among

genes within one study and across studies without data transformation. The method

is flexible to handle various practical complications such as gene set mismatch and

condition mismatch. Simulation studies and real data examples show that the accu-

racy of the statistical inferences can be drastically improved when using the proposed

approach to combine multiple studies.
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CHAPTER II

HIGH DIMENSIONAL COVARIANCE MATRIX

ESTIMATION

2.1 Introduction

Covariance matrix or its inverse matrix is widely used in many statistical tools such

as principal component analysis, classification of linear and quadratic discriminant

analysis (LDA, QDA), multivariate normal studies, correlation inference in the graph-

ical models. In particular, high dimensional covariance and inverse matrix have many

applications in the actual world. For example, in financial data analysis, there are

many stocks. To study the stock returns, the inverse matrix is needed to get the

optimal portfolio and the covariance matrix is a measure to assess the risk returns.

Other examples include gene analysis, image, climate data etc..

The usual sample covariance matrix, is not a good estimator when p is large.

When p is moderately large, the sample covariance is ill conditioned and the inverse

will amplify the error dramatically. If p is greater than the sample size n, it is not even

invertible. Moreover, the eigenvalues of the sample covariance are more dispersed than

the true covariance matrix (Ledoit and Wolfe, 2004). All these facts call an urgent

demand for alternative estimators of the covariance matrix or its inverse.

There has been an abundance of existing literatures discussing various types of

covariance matrix estimator. Some of them work on the estimator of covariance

matrix and others study the inverse matrix directly, depending on the application

purposes. Loosely speaking, these methods can be broadly divided into two categories.

One is the estimators based on the sample covariance estimate. And the other class

works on the likelihood function and they are penalised likelihood estimators. In this
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chapter, we briefly review the main ideas of those alternative estimators.

2.2 Sample Covariance Based Estimators

Ledoit and Wolfe (2004) propose one estimator as a linear combination of the sample

covariance matrix S and the identity matrix Σ̂LW = ρ1I + ρ2S. The coefficients are

decided by the the optimization problem:

min
ρ1,ρ2

= E‖Σ̂LW − Σ‖2

subject to Σ̂LW = ρ1I + ρ2S;

It turns out ρ1 and ρ2 are non-random numbers and the optimal solution is

Σ̂LW =
b2
n

d2
n

mnIn +
a2

n

d2
n

S

where

mn = trace(S)/p, d2
n = ‖S−mnI‖2

F,

b2
n = min

{
d2

n,
1

n

n∑
i=1

‖(yi − ȳ)(yi − ȳ)′‖2
F

}
,

a2
n = b2

n − d2
n, ‖ · ‖F is the Frobenius norm.

This approach only imposes shrinkage on the eigenvalues, not on eigenvectors.

And the eigenvectors of sample covariance are not consistent when p increases (John-

stone and Lu, 2004).

Thresholding (Bickel and Levina 2008a, El Karoui 2008a) of the sample covariance

matrix is defined by,

Ts(Σ̂) = σ̂ijI(|σij| ≥ s) (10)

Banding the sample covariance matrix (Bickel and Levina 2008b) is based on

the fact that components far apart in the ordering have weak correlation. Denote

Σ̂ = (σ̂ij) as the MLE of the covariance matrix Σ, define

Bk(Σ̂) = σ̂ijI(|i− j| ≤ k) (11)
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as the banded estimate. It is ideal when the truth is σij = 0, if |i − j| > k. One

example of this situation is that y(1), . . . , y(p) are moving average process of order k,

i.e., y(t) = θt,t−1ε1 + . . . + θt,t−kεk and ε1, . . . , εk are i.i.d. variables with mean 0.

Banding can not preserve the positive definiteness of the covariance matrix. Fur-

rer and Bengtsson (2007) claim that Σ̂ ∗ R is a suitable estimator of Σ if R = [rij]

is symmetric and positive definite, where * is Schur (coordinate-wise) matrix multi-

plication. Banding is simply taking rij = I(|i − j| ≤ k), which is not nonnegative

definite. They also present examples of positive definite symmetric R’s.

The thresholding and banding parameters can be chosen by cross validation to

minimize the empirical risk.

2.3 Penalised Likelihood Estimators

Banerjee et al. (2006), Yuan and Lin (2007) propose a penalised estimator for Gaus-

sian distribution, using different semi-definite programming algorithms. Friedman et

al. (2008) propose a faster algorithm. With `1 penalty on the off-diagonal elements

of the inverse covariance matrix, the Lasso-type estimator is

− log |C|+ tr(CA), subject to
∑

i6=j

|Cij| ≤ M (12)

where A = 1
n

∑n
i=1(xi − x̄)(xi − x̄)′.

Lam and Fan (2009) extend the Lasso penalty to nonconvex penalty functions

on the covariance matrix, the inverse matrix and the Cholesky factor matrix. They

show that for Lasso penalised estimator, only if the number of nonzero elements is

O(p), can the estimator achieve sparsistency and optimal convergence rate. Other

estimators such as hard thresholding and SCAD (Fan and Li, 2001) do not have this

constraint.

When an initial estimate of C̃ is available, Yuan and Lin (2007) present a non-

negative garrote estimator, Cij = dijCij, where D = (dij) is a symmetric matrix,
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determined by

− log |C|+ tr(CA), subject to
∑

i6=j

dij ≤ M, dij ≥ 0.

When there is a natural ordering among the variables, for example, longitudinal data,

Huang et al. (2006) discuss the regularization of covariance matrix in the context of

the modified Cholesky decomposition. The coordinates are assumed to have the

following regression relationship,

yk =
k−1∑
j=1

φk,jyj + εk, (13)

where 1 < k ≤ p; εk is uncorrelated and Cov(ε) = diag(σ2
1, . . . , σ

2
p). It corresponds to

the matrix form

ε = Ty, (14)

where T is a unit lower triangular matrix with −φt,j in the (t, j) position for 2 ≤ t ≤ p

and 1 ≤ j ≤ t−1. Then the covariance of y has the modified Cholesky decomposition

TΣT ′ = D, (15)

where

D = Cov(ε) = diag(σ2
1, . . . , σ

2
p) (16)

. The `1 or `2 penalty is put on the Cholesky factors φk,j

λ

k−1∑
j=1

|φk,j| (17)

The solution can be derived by the procedure in regularized regression. Smith and

Kohn (2002) also penalise the Cholesky factors T and their approach is based on a

hierarchical prior.

The approach to shrink Cholesky factors is more flexible than banding. However,

it is not invariant to the variable permutations. And the sparsity of the T matrix does

not necessary lead to the sparsity of the inverse matrix. Wong et al. (2003) use a prior
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to allow the the inverse matrix to have zero entries. Rothman et al. (2008) propose

an algorithm based the modified Cholesky decomposition to solve (12) to make the

estimator invariant to the permutation of the variables. Levina et al. (2008) apply a

nested Lasso penalty

λ

(
|φk,k−1|+ φk,k−2

φk,k−1

+
φk,k−3

φk,k−2

+ . . . +
φk,1

φk,2

)
. (18)

to preserve sparsity in the estimated inverse matrix. With scaling parameter 1/|φk,l|
in the penalty, we can see that if φk,l = 0, then its preceding Cholesky factors will be

shrinked to be zero, φk,t = 0(t < l).

Other examples of covariance matrix estimate are Wu and Pourahmadi (2003),

Fan et al. (2008) of factor analysis, D’Aspremont et al. (2008) of first order condition,

Yuan (2008), Deng and Yuan (2009), among others.
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CHAPTER III

PARAMETER ESTIMATION IN HIGH DIMENSIONAL

T -DISTRIBUTION

3.1 Introduction

The student t-distribution is of increasing interest in mathematical finance, educa-

tion (Jones, 2002; Nevzorov et al 2003) and other applications. In particular, the

tail dependence of t-distribution has been widely established in risk management to

model dependent risks (Wang, 1997; Daul et al., 2003; Embrechts et al., 2002; Frey

et al., 2001; Schloegl and OKane, 2005). The dependence between financial instru-

ments is usually captured by correlation. For example, in The Capital Asset Pricing

Model (CAPM) and the Arbitrage Pricing Theory (APT) (Campbell et al. 1997),

such dependence is studied to derive an optimal portfolio selection. Usually, those

studies are based on the assumption of multivariate normally distribution. With the

increasing complexity of financial products, however, actuarial world has presented

different phenomena. For instance, insurance claim data has typical skewness and

heavy-tailedness (Embrechts et al. 2002). And Frey et al. (2001) showed that the

normal dependence and t-dependence are different although they have the same cor-

relation; The index returns have positive excess kurtosis (Mandelbrot, 1963; Fama,

1965). Ferguson and Platen (2006) suggest that the t-distribution with degrees of

freedom ν = 4 is a good model.

Although quite useful, the application in t-distribution is limited by the difficulty

in the parameter estimation of high dimensional data. The challenge arises with the

estimation of the covariance matrix. Let y = (y(1), . . . , y(p)) be a random vector from

a p-dimensional multivariate t-distribution with ν degrees of freedom, the density
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function is

f(y|µ, Ψ) =
Γ(p+ν

2
)|Ψ|−1/2

(πν)p/2Γ(ν/2)[1 + 1
ν
(y − µ)′Ψ−1(y − µ)](p+ν)/2

, (19)

where µ and Ψ are referred as mean and scale matrix. It is equivalent to the covariance

matrix up to a constant (Σ = ν
ν−2

Ψ). The covariance matrix has an order of p2

parameters and it needs to be positive definite. The usual estimator of t-distribution

is MLE and it can be efficiently calculated by EM algorithm (Liu and Rubin, 1995).

But EM algorithm is notoriously instable with the increase of dimensionality and the

positive definiteness of the covariance matrix can not be guaranteed.

These facts prompts us to construct a new estimator for high dimensional t-

distribution. In this chapter, we propose on penalised likelihood estimator of the

inverse covariance matrix. They are naturally related to the success of parameter

estimation in high dimensional multivariate Gaussian distributions (Ledoit and Wolf,

2004; Huang et al., 2006; Yuan and Lin, 2007; Friedman et al. 2008 among others).

Yuan and Lin (2007) proposed an `1 penalised likelihood estimator. The problem is

a maxdet algorithm (Vandenberghe et al. 1998) and can be efficiently solved with

the interior algorithm. Friedman et al. 2008 presented a faster algorithm to solve

the problem. Huang et al. (2006) imposed `1 and `2 penalty on the Cholesky factors

of the covariance matrix and the covariance matrix selection problem is reduced to

the variable selection in regression. Although the regularization estimate for gaus-

sian distribution is receiving most of the attention, few discussion has been done on

multivariate t distribution. As we discuss before, the applications of t-distribution

can not be replaced by Gaussian. In this chapter, we introduce an `1 penalised like-

lihood estimator. The penalty on the off-diagonal encourages sparsity of the inverse

covariance matrix. Also, we discuss the alternative estimator based on the modified

Cholesky decomposition of the covariance matrix.

This chapter is organized as follows. We derive the algorithm in the next section

and show that the parameters can be estimated through EM algorithm efficiently. To
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show the merits of the new estimator, in section three, we compare the performance

with a good candidate LWE (Ledoit and Wolf, 2004), the popular MLE and sample

covariance in simulations. Conclusion will be given in section four.

3.2 Methodology

Given independent samples y1, . . . , yn from t-distribution with ν degrees of freedom,

denote Θ = (µ,C), where C−1 = ν
ν−2

Ψ, the likelihood of Θ is

`(Θ; y) = −
n∑

i=1

log f(yi|Θ), (20)

where f(·) is the density function in (19). Sample covariance matrix is one common

estimator S = 1
n

∑n
i=1(yi − ȳ)(yi − ȳ)′. MLE is another alterative solved by EM

algorithm. And the inverse covariance matrix can be estimated by the inverse of

them. But they are not stable for a moderate size of p and not sparse either.

We propose a penalised likelihood estimator based on a modified Cholesky de-

composition of the covariance matrix. As discussed in the previous chapter, penalty

is imposed on the Cholesky factors and the penalised likelihood function is

`(Θ; y) = −
n∑

i=1

log f(yi|Θ) + λ

p∑

k=2

k−1∑
j=1

|φkj|, (21)

Formulation (21) does not lead to a close form of C. Similar to the algorithm of

MLE, we adapt one property of t-distribution that it is a scaled mixture of normals:

if y|τ ∼ Np(µ, Ψ/τ) and τ ∼ χ2
ν/ν, then y ∼ tp(µ, Ψ, ν). We augment the data by

introducing a hidden variable τi to each observation yi. Given τi, the alternative

negative likelihood function of (20) can be formulated by the multivariate Gaussian

distribution of (yi|τi), which is

p

n

n∑
i=1

log τi + log |Ψ|+ 1

n

n∑
i=1

τi(yi − µ)′Ψ−1(yi − µ), (22)

Note that Ψ = ν−2
ν

Σ and |T | = 1, (22) is equivalent to

log |D|+ ν

n(ν − 2)

n∑
i=1

τi(Tyi)
′D−1(Tyi) + λ

p∑

k=2

k−1∑
j=1

|φkj|. (23)
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By (14) and (16), (23) is simplified as

p∑

k=1

log σ2
k +

ν

n(ν − 2)

n∑
i=1

τi

p∑

k=1

ε2
ik

σ2
k

+ λ

p∑

k=2

k−1∑
j=1

|φkj|

=

{
log σ2

1 +
ν

n(ν − 2)

n∑
i=1

τi
ε2
i1

σ2
1

}
+

p∑

k=2

{
log σ2

k +
ν

n(ν − 2)

n∑
i=1

τi
ε2
ik

σ2
k

+ λ

k−1∑
j=1

|φkj|
}

(24)

Minimization of (24) is decomposed by p individual problems

min
σ2
1

log σ2
1 +

ν

n(ν − 2)

n∑
i=1

τi
ε2
i1

σ2
1

(25)

and

min
σ2

k,φkj ,j=1,...,k−1
log σ2

k +
ν

n(ν − 2)

n∑
i=1

τi
ε2
ik

σ2
k

+ λ

k−1∑
j=1

|φkj|, k = 2, . . . , p (26)

It is clear to see that the minimizer of (25) is

σ2
1 =

ν

n(ν − 2)

n∑
i=1

τiε
2
i1 =

ν

n(ν − 2)

n∑
i=1

τiy
2
i1. (27)

For each k, 2 ≤ k ≤ p, the minimization of (26) is determined by the alterative

minimization over σ2
k and φkj, j = 1, . . . , k − 1:

Given φkj, j = 1, . . . , k − 1, the optimal σ2
k is given by

σ2
k =

ν

n(ν − 2)

n∑
i=1

τi(yik −
k−1∑
j=1

φkjyij)
2; (28)

Given σk, k = 2, . . . , p, the optimal φkj, j = 1, . . . , k − 1 is determined by the

following `1 regression problem

n∑
i=1

τi

σ2
t

(yik −
k−1∑
j=1

φkjyij)
2 + λ

k−1∑
j=1

|φkj| (29)

which can be conveniently computed by the lasso subroutine.

So far we have discussed the algorithm based on known τi. When τi is missing,

EM algorithm (Dempster, Laird, and Rubin, 1977) can be applied to compute the

parameters. Since τi is hidden and unknown, we replace it with its expectation
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E[τi|yi, θ]. The expectation of τ can be calculated if parameters are given. So EM

algorithm works iteratively: in E-step, calculate E[τi|yi, θ] given parameters; in M-

step, we estimate parameters as discussed before given τ = E[τi|yi, θ].

In particular, E[τi|yi, θ] is derived as follows

E[τi|yi, θ] =

∫
τif(τi|θ, yi)dτi =

∫
τi

f(τi, yi|θ)
f(yi|θ) dτi =

∫
τif(yi|θ, τi)f(τi)dτi∫
f(yi|θ, τi)f(τi)dτi

=
p + ν

di + ν
,

(30)

where di is defined as

di = (yi − µ)′Ψ−1(yi − µ) (31)

The denominator in (32) is derived as

∫
f(yi|θ, τi)f(τi)dτi =

∫
(2π)−0.5p(τi)

0.5p|Ψ|−0.5 exp {−0.5τidi}
{

2−0.5ν

νΓ(0.5ν)
τ 0.5ν−1
i exp(−0.5τi)

}
dτi

= (2π)−0.5p|Ψ|−0.5 2−0.5ν

νΓ(0.5ν)

∫
(τi)

0.5(p+ν)−1 exp{−0.5(di+ν)τi} dτi

= (2π)−0.5p|Ψ|−0.5 2−0.5ν

νΓ(0.5ν)

∫ (
2zi

di + ν

)0.5(p+ν)−1

exp−zi
2

di + ν
dzi

= (2π)−0.5p|Ψ|−0.5

(
2

di + ν

)0.5(p+ν)

Γ (0.5(p + ν)) (32)

where the third equal sign is based on the transformation zi = 0.5(di + 1)τi.

Similarly, the numerator is

∫
f(yi|θ, τi)f(τi)dτi = (2π)−0.5p|Ψ|−0.5

(
2zi

di + ν

)0.5(p+ν)+1

Γ (0.5(p + ν) + 1) . (33)

To sum up, the algorithm goes as follows:

Initialize θ(t) = θ(0), begin iteration;

E step: Impute τi by (30);

M step: For k = 1, . . . , p, update σ2
1 by (27); given φkj, update σ2

k by (28),

given σ2
k, update φkj by solving (29).

Iteration continues until converges.

39



Similar to the argument in Dempster et al. (1977), the objective functions of

the two estimators decrease in every iteration and the algorithm converges. The

algorithm discussed so far is based on the fact that the tuning parameter λ is given.

For unknown λ, we can use cross validation(CV) and BIC criterion to do a grid search.

3.3 Simulation

In this section, we investigate the performance of the proposed penalized likelihood

estimate (PLE) with finite samples. Three covariance models are considered.

Model 1 : AR(1) model, σij = 0.4|i−j|.

Model 2 : AR(2) model, T (i + 1, i) = −0.4, T (i + 2, i) = 0.4, D = diag(p, . . . , 1).

Model 3 : For the lower triangular matrix T , for any row i, randomly draw two entries

with probability 0.5 such that the entry is −0.4, D = diag1, . . . , p.

For each model, n = 50 observations are simulated from a p = 20, 30, 50 dimensional

t distribution of with µ = 0 and degrees of freedom ν = 3, ν = 5 and ν = 8 respec-

tively. The performance of the proposed penalised likelihood estimator is compared

with three other popular estimates, sample covariance matrix (Sample), maximum

likelihood estimate (MLE), and Ledoit and Wolfe (2004;LWE) under three loss crite-

rion.

SL = ‖Σ̂−1 − Σ−1‖ (34)

where ‖A‖ is the largest singular value of matrix A; the Frobenius norm of the

difference

FL = ‖Σ̂−1
k − Σ−1

k ‖F =

√∑
i,j

(Σ̂−1(i, j)− Σ−1(i, j))2; (35)

and Kullback-Leibler(KL) loss

KL = tr
(
ΣΣ̂−1

)
− log

∣∣∣ΣΣ̂−1
∣∣∣− p. (36)
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The experiment is repeated 100 times and the tuning parameter is selected by BIC

and Cross Validation (CV). All the simulation results are listed in Table (9)- Table

(11). Figure 4 - 12 display the boxplot comparison of SL, FL, KL loss of LWE and

the proposed method with CV tuning.
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Figure 4: Boxplot of 100 runs: y-axis is the Largest Singular Value Loss (SL) of
Model I with Cross Validation Tuning.
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Figure 5: Boxplot of 100 runs: y-axis is the Largest Singular Value Loss (SL) of
Model II with Cross Validation Tuning.
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Figure 6: Boxplot of 100 runs: y-axis is the Largest Singular Value Loss (SL) of
Model III with Cross Validation Tuning.
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Figure 7: Boxplot of 100 runs: y-axis is the Frobenius Norm Loss (FL) of Model I
with Cross Validation Tuning.
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Figure 8: Boxplot of 100 runs: y-axis is the Frobenius Norm Loss (FL) of Model II
with Cross Validation Tuning.
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Figure 9: Boxplot of 100 runs: y-axis is the Frobenius Norm Loss (FL) of Model III
with Cross Validation Tuning.
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Figure 10: Boxplot of 100 runs: y-axis is the Kullback-Leibler (KL) Loss of Model
I with Cross Validation Tuning.
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Figure 11: Boxplot of 100 runs: y-axis is the Kullback-Leibler (KL) Loss of Model
II with Cross Validation Tuning.
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Figure 12: Boxplot of 100 runs: y-axis is the Kullback-Leibler (KL) Loss of Model
III with Cross Validation Tuning.
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3.4 Conclusion

In this chapter, we proposed a penalised likelihood estimator for multivariate t-

distribution. It has been shown that EM algorithm can efficiently compute the

estimators. Numerical studies demonstrated that the new estimators perform well

compared with three other alternative methods.
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CHAPTER IV

REGULARIZED PARAMETER ESTIMATION IN HIGH

DIMENSIONAL GAUSSIAN MIXTURE MODELS

4.1 Introduction

In finite Gaussian mixture models, a p-dimensional random vector X = (X(1), . . . , X(p))

is assumed to come from a mixture distribution

π1N (µ1, Σ1) + π2N (µ2, Σ2) + . . . + πMN (µM , ΣM) (37)

where N (µ, Σ) is a multivariate normal distribution with mean vector µ and covari-

ance matrix Σ, and πks are nonnegative proportions such that π1 + . . . + πM = 1.

Gaussian mixture models are among the most popular statistical modeling tools and

are routinely used for density estimation, clustering, discriminant analysis among

others (see, e.g., Fraley and Raftery, 2002; McLachlan and Peel, 2000).

Despite its great flexibility, the practical use of Gaussian mixture models in mod-

eling high dimensional data is often hampered by the difficulty in parameter estima-

tion. The number of parameters required to specify a covariance matrix quickly grows

with the dimensionality. The problem is exacerbated in mixture models where multi-

ple covariance matrices are to be estimated. Without any parameter restriction, each

cluster must have at least (p+1) observations to ensure the existence of the maximum

likelihood estimate (Symons 1981). As a result, it is well known that the usual MLE

can be notoriously unstable if well-defined at all when the data is of moderate or high

dimensionality when compared with the sample size. To address this issue, a variety

of parameter reduction techniques have been developed. In particular, Banfield and

Raftery (1993) suggest to reparametrize Σk through its eigenvalue decomposition and

assume through this parametrization that some parameters are shared across clusters.
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Extensive studies within the same framework can also be found in Celeux and Govaert

(1995). It has been demonstrated in both articles and studies later on that through

parameter sharing across clusters, the problem of estimating a large number of pa-

rameters can be alleviated for data of moderate dimensions. The challenge, however,

persists for high dimensional data, as the number of parameters remains of the order

of p2 even if a common covariance matrix is assumed for all clusters. In this paper,

we propose a new technique to specifically address this challenge. Built upon recent

advances in estimating covariance matrices of high dimensional multivariate Gaussian

distributions, we propose a penalized likelihood estimate for high dimensional Gaus-

sian mixture models. The `1 type of penalty we employ encourages sparsity of the

inverse covariance matrices and therefore can help reduce the effective dimensionality

of the problem. We show that the proposed estimate can be conveniently computed

using an EM algorithm. Moreover, a BIC type of criterion is introduced to select

the tuning parameter as well as the number of clusters. Numerical experiments, both

simulated and real data examples, are also presented to demonstrate the merits of

the proposed method.

Our method could prove useful for a variety of statistical problems. For illustration

purpose, we consider in particular model-based clustering (Fraley and Raftery, 2002)

and mixture discriminant analysis (Hastie and Tibshirani, 1996), two notable methods

that take advantage of the flexibility of finite Gaussian mixture models in clustering

and classification respectively. We demonstrate that with the proposed `1 penalized

estimator, both approaches can be substantially improved when dealing with high

dimensional problems.

Our investigation here is naturally related to recent studies on parameter estima-

tion in high dimensional multivariate Gaussian distribution which can also be viewed

as a special case of finite Gaussian mixture models (37) with M = 1. A number
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of methods have been introduced in the past several years to estimate the covari-

ances matrix with high dimensional data (Ledoit and Wolf, 2004; Huang et al., 2006;

Yuan and Lin, 2007; Banerjee, El Ghaoui and d’Aspremont, 2008; Bickel and Lev-

ina, 2008a,b; Rothman et al., 2008; d’Aspremont, Banerjee and El Ghaoui, 2008; El

Karoui, 2008; Fan, Fan and Lv, 2008; Friedman, Hastie and Tibshirani, 2008; Lam

and Fan, 2008; Levina, Rothman and Zhu, 2008; Rothman et al., 2008; Yuan, 2008;

Deng and Yuan, 2009; and Rothman, Levina and Zhu, 2009 among others). A com-

mon strategy there is to work with the sample covariance matrix which is readily

computable regardless of the dimensionality (see, e.g., Bickel and Levina, 2008). For

the more general finite Gaussian mixture model, we no longer have the luxury of such

an initial estimate and regularization as employed here becomes critical. For our pur-

pose, we adopt the idea of penalized likelihood estimate from Yuan and Lin (2007)

and apply an `1 type penalty on the off-diagonal entries of the inverse covariance

matrices.

The rest of the paper is organized as follows. In the next two sections, we intro-

duce the proposed penalized likelihood estimator and discuss how it can be efficiently

computed in practice. Section 4 presents numerical studies to demonstrate the prac-

tical merits of the proposed method. Applications of the new method to model-based

clustering and mixture discriminant analysis are discussed in Sections 5. We conclude

with some comments and discussions in Section 6.

4.2 Methodology

To fix ideas, we start with the case when the number of clusters, M , is known apriori.

In this case, the log-likelihood for a sample X1, . . . , Xn of n independent copies of X

is given by

L(data|Θ) =
n∑

i=1

log

(
M∑

k=1

πkφ(Xi|µk, Σk)

)
(38)
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where Θ = {(πk, µk, Σk) : k = 1, . . . , M} is the collection of all unknown parameters,

and φ(·|µ, Σ) is the density function of a multivariate Gaussian distribution with mean

vector µk and covariance matrix Σk.

The usual maximum likelihood estimator can be computed by maximizing L(data|Θ)

with respect to Θ. Without any constraints on the parameter, Θ includes a total of

Mp(p + 1)/2 free parameters, which can be prohibitive from both statistical and

computational points of view when p is moderate or large when compared with the

sample size n. To address this problem, we suggest to exploit potential sparsity in

the covariance matrix. Sparsity can be found in multiple ways for covariance matrix

estimation. In particular, we consider sparsity on the entries of the inverse covari-

ance matrix. In the case of multivariate Gaussian distribution, the inverse covariance

matrix collects all the partial correlations and a zero entry of the inverse covariance

matrix corresponds to conditional independence between the corresponding variables

given the remaining ones. Such relationship naturally connects with the so-called

Gaussian graphical models (Whittaker, 1990; Lauritzen, 1996) and makes this type

of sparsity particularly suitable for a lot of applications. Similar interpretation can

also be given to the Gaussian mixture models where each cluster can be viewed as

instances of a particular Gaussian graphical model. For such purpose, we suggest to

use the following penalized likelihood estimate for Gaussian mixture models:

Θ̂ := argminµk,ΣkÂ0

{
−

n∑
i=1

log

(
M∑

k=1

πkφ(Xi|µk, Σk)

)
+ λ

M∑

k=1

‖Σ−1
k ‖`1

}
, (39)

where Σ Â 0 indicates that Σ is a symmetric and positive definite matrix, λ ≥ 0 is

a tuning parameter, and ‖A‖`1 =
∑

i 6=j |aij|. Obviously, when M = 1 the estimate

defined above reduces to the so-called graphLasso estimate of Yuan and Lin (2007).

The single tuning parameter λ puts equal penalty on the inverse matrix, which is

not unreasonable for clusters have comparable scales. Multiple tuning parameters

allow different penalties but it dramatically increases the computational burden. A

more general adaptive Lasso (Zou 2006) penalty can be extended to replace the Lasso
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penalty in (39), which has not been studied in this paper yet.

Thus far, we have treated the number of clusters M and the tuning parameter λ

as fixed. In practice, their choice is critical in determining the performance of our

method. A commonly used strategy to choose these parameters is the multi-fold cross

validation(CV). In CV, the data are first split into training and testing sets. For each

pair of tuning parameters (M,λ), we compute the penalized likelihood estimate on

the training data and then evaluate its performance on the testing data. Such split,

estimation and evaluation are repeated many times to obtain a score for each pair

of tuning parameters. The pair associated with the optimal score is then used for

computing the final estimate based on all data. Despite its general applicability and

competitive performance, a major drawback of CV is the intensive computation it

requires. To overcome this problem, we suggest here a BIC type of criterion as an

alternative to the CV score.

Following Yuan and Lin (2007), the degrees of freedom for each estimated covari-

ance matrix using the `1 type of regularization can be approximated by the number

of nonzero entries in the upper half of the inverse covariance matrix. Therefore, the

total number of degrees of freedom can be approximated by

df(M,λ) =
M∑

k=1

(
p +

∑
i≤j

I((Ĉk)ij 6= 0)

)
, (40)

where p represents the degrees of freedom associated with the unknown mean and Σ̂k

is the penalized likelihood estimate associated with tuning parameters (M,λ). Now

for each pair of (M, λ), the corresponding BIC score function is defined as

BIC(M,λ) = −L(X|Θ̂(M, λ)) + log(n)df(M,λ). (41)

Let (M̂, λ̂) be the pair with the smallest BIC score, we shall let Θ̂(M̂, λ̂) be our final

estimate.
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4.3 Computation

Direct computation of Θ̂ as defined by (39) can be quite complicated because the

objective function is non-convex and the optimization problem is of rather high di-

mensionality. Fortunately, we show here that it can be efficiently done using an EM

algorithm (Dempster et al., 1977). To this end, we consider the following “missing

data” formulation. Let τ be a random variable indicating which cluster X comes

from such that

X|τ = k ∼ N (µk, Σk) (42)

and

P (τ = k) = πk, k = 1, . . . , M. (43)

If we can observe the “complete data” (Xi, τi), i = 1, . . . , n, we can follow the

same strategy as before and estimate Θ by the `1 penalized log-likelihood can be

given by

PL(Θ) =
n∑

i=1

log (f(Xi|τi)P (τi)) + λ

M∑

k=1

‖Σ−1
k ‖`1

=
n∑

i=1

log (φ(Xi|µτi
, Στi

)πτi
) + λ

M∑

k=1

‖Σ−1
k ‖`1 . (44)

Now that we can only observe Xis, we may treat τis as missing data and the following

EM algorithm can therefore be employed. We proceed in an iterative fashion. Each

iteration consists of two steps, often referred to as the E step and M step respectively.

Let Θ(t) be the estimate of Θ at the tth iteration. In the E step, we compute the

conditional expectation of τi given Xi and the current estimate of Θ. In particular,

from Bayes rule,

γ
(t)
ik := P (τi = k|Xi; Θ

(t)) =
π

(t)
k φ(Xi|µ(t)

k , Σ
(t)
k )∑M

l=1 π
(t)
l φ(Xi|µ(t)

l , Σ
(t)
l )

(45)
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This leads to the construction of the so-called Q function

Q(Θ, Θ(t)) =
M∑

k=1

{
n∑

i=1

log(πk)γ
(t)
ik +

n∑
i=1

log(φ(Xi|µ(t)
k , Σ

(t)
k ))γ

(t)
ik + λ‖Σ−1

k ‖`1

}

=:
M∑

k=1

Qk(Θk, Θ
(t)
k ),

where Θk = {πk, µk, Σk} and Θ(t) is defined in a similar manner.

In the so-called M step, we update the estimate of Θ by maximizing the Q function,

which can be done by maximizing Qk with respect to Θk separately. More specifically,

the updated value of Θk can be given by

π
(t+1)
k =

1

n

n∑
i=1

γ
(t)
ik , (46)

and

µ
(t+1)
k =

∑n
i=1 γ

(t)
ik Xi∑n

i=1 γ
(t)
ik

. (47)

Moreover,

Σ
(t+1)
k = argminΣk

{
log |Σk|+ tr(Σ−1

k A
(t)
k ) + λ‖Σ−1

k ‖`1

}
(48)

where

A
(t)
k =

n∑
i=1

(
γ

(t)
ik∑n

j=1 γ
(t)
jk

)
(Xi − µ

(t+1)
k )(Xi − µ

(t+1)
k )′.

The optimization problem of (48) are in a similar form as the graphLasso of Yuan

and Lin (2007) and can be computed efficiently using a newly developed algorithm

by Friedman et al. (2008).

This algorithm starts with an initial value Θ(0) of the parameter. It can be decided

either by the method of Banfield and Raftery, or we can randomly draw 1/M samples

to estimate the mean and covariance for the clusters and set a equal proportion of

clusters. To sum up, we have the following algorithm to compute Θ̂ as defined by

(39).

Step 1: Initialize Θ(0).
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Step 2: For each iteration, update the estimate for each mixture component individ-

ually.

• E step: Calculate the distribution of unknown variables by (45).

• M step: update parameters by (47), (48), and (46).

Step 3: Go back to Step 2 until a certain convergence criterion is met.

Following the same argument as that of Dempster et al. (1977), it is not hard to

see that in each iteration, the objective function of (39) decreases. Furthermore, the

algorithm converges and converges to its minimizer, i.e., Θ̂.

4.4 Simulation Studies

To assess the finite sample performance of the proposed method, we now conduct

several sets of simulation studies.

We begin with the case where the number of clusters is known in advance. In

particular, we fix M = 2 in the first set of simulations. The sample size is set to be

small at 100 whereas the dimension p is set to be 30, 50, 100, or 300. To evaluate

the performance under larger sample size settings, we also fix p at 100 and set the

sample size to be 200 and 400. The tuning parameter λ is determined either by 5-

fold CV or the BIC criterion defined by (41). For simplicity, we fix the mean vector

of each mixture component to be 0p and three different covariance structures are

considered.

Model 1 : In this case, the covariance matrix for both clusters follows an AR(1)

model:

Σ1(i, j) = 0.4|i−j|; Σ2(i, j) = 0.5× 0.8|i−j|. (49)

Model 2 : In this model, both covariance matrices are diagonal

Σ1(j, j) = log (j + 1); Σ2(j, j) = log (p + 2− j). (50)
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Model 3 : In the last model, the two covariance matrices follow AR(1) and AR(2)

model respectively:

Σ−1
1 (i, j) =





1 if i = j

0.2 if |i− j| = 1

0 otherwise

; (51)

and

Σ−1
2 (i, j) =





2 if i = j

0.25 if |i− j| = 1

0.2 if |i− j| = 2

0 otherwise

. (52)

We compare the proposed estimate with the method of Banfield and Raftery

(1993) and MLE if applicable. The method of Banfield and Raftery has been imple-

mented in the R package mclust and the MLE can be computed using EM algorithm

(see, e.g., McLachlan and Peel, 2000). We examine these estimate through several

criteria. The averaged spectral norm of the difference between the estimating inverse

covariance matrix and the truth

SL =
1

M

M∑

k=1

‖Σ̂−1
k − Σ−1

k ‖ (53)

where ‖A‖ is the largest singular value of matrix A; the averaged Frobenius norm of

the difference

FL =
1

M

M∑

k=1

‖Σ̂−1
k − Σ−1

k ‖F =
1

M

M∑

k=1

√∑
i,j

(Σ̂−1
k (i, j)− Σ−1

k (i, j))2; (54)

and report the average Kullback-Leibler(KL) loss

KL =
1

M

M∑

k=1

KL(Σk, Σ̂k), (55)

where

KL(Σ, Σ̂) = tr
(
ΣΣ̂−1

)
− log

∣∣∣ΣΣ̂−1
∣∣∣− p. (56)

62



The results, averaged over one hundred runs for each case, are reported in Table

17, 18 and 14 for the the three models respectively. It is clear from these results that

the proposed method outperforms the other two methods for all three models. The

superiority becomes more evident when the dimension increases. We also note the

similar behavior of the penalized likelihood estimates tuned with either CV or BIC.

This observation is of great practical importance because BIC is much more efficient

to compute than the CV. For this reason, we shall use BIC as the tuning criterion in

the rest of the paper unless otherwise indicated.

Table (15) shows how sparse the estimated matrix is in each cluster for all models.

We now consider a more complicated setting where the number of clusters also needs

to be selected. We consider the true number of clusters, M to be either 2 or 3. The

sample size n is fixed at 100 whereas the dimension p is set to be 50. When M = 2,

we used Model III as our data generating mechanism. When M = 3, the last cluster

has the same covariance matrix as the first cluster in Model II. The experiment was

repeated 100 times for each value of M . The proposed method with BIC as the tuning

criterion correctly identifies the number of clusters in all runs. On the other hand,

for the one hundred runs with two clusters, Mclust only identifies the correct M 47

out of 100 runs. When M = 3 it identified the correct number of clusters 56 out of

100 times. This information is summarized in Table (16). To gain further insight, we

give in Figure 4.4 the smallest BIC scores for each value of the number of clusters for

one typical simulated dataset with M = 2 and M = 3 respectively.

4.5 Applications

The proposed method for estimating high dimensional Gaussian mixture models could

be useful for a variety of applications. For illustration purpose, we consider here in

particular model-based clustering and the mixture discriminant analysis.
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Table 16: Frequency of correctly identified number of clusters over 100 runs. Sample
size n is set at 100 and p 50.

Number of Clusters
Methods 2 3

PLE 100 100
Mclust 47 56
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Figure 13: BIC score vs the number of clusters.
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4.5.1 Model-based Clustering

As described previously, Gaussian mixture models have been one of the more popular

tools for clustering (Fraley and Raftery, 2002). It provides a principled statistical ap-

proach to the practical questions arising in clustering. To demonstrate the potential

of our method in clustering high dimensional inputs, we apply it to the handwritten

digit data (LeCun et al., 1990). The data set consists of scanned digits from hand-

written zip code on envelopes and was collected by the United States Postal Service.

Every handwritten digit image has been digitalized to a 16× 16 image with intensity

value of each pixel normalized to range from -1 and 1. To fix idea, we focus on digits

6 and 9. There are a total of 834 images of digit 6 and 821 of digit 9. We fit for each

digit a Gaussian mixture model using the proposed method with both the number of

clusters and the tuning parameter λ jointly chosen by minimizing the BIC score as

discussed earlier. The minimal BIC score associated with each value of the number of

clusters is given in Figure 4.5.1, which suggests that there are four clusters for digit 6

whereas only two for digit 9. To gain further insight, we give in Figure 4.5.1 typical

examples from each cluster which shows that the clustering based on our method is

indeed meaningful.

4.5.2 Mixture Discriminant Analysis

We now turn our attention to classification where the mixture discriminant analysis

(MDA) introduced by Hastie and Tibshirani (1996) provides a much more flexible al-

ternative to linear or quadratic discriminant analysis. The basic idea here is to model

each class distribution using a Gaussian mixture model and then classify an instance

according to Bayes rule. Unlike the usual linear or quadratic discriminant analysis,

MDA is able to produce more general nonlinear classification boundaries. The main

difficulty of using MDA in classification with high dimensional inputs remains how to

fit high dimensional Gaussian mixture models where our method could be a valuable
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Figure 14: Selecting the number of clusters for handwritten digit data.
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Figure 15: Clustering of digit 6 and 9: images from each column are randomly
chosen from a particular cluster, i.e., the first four columns correspond to the four
selected clusters of digit 6 and the last two correspond to digit 9.
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tool. To demonstrate the merit of such practice, we now apply this strategy to the

handwritten digit data. Similar to before, we focus on digits 6 and 9 and investigate

automatic classification between these two classes. For evaluation purpose, we ran-

domly select 80% of combined images as the training set and use the remaining 20%

as testing set. Gaussian mixture models were fit with tuning parameters determined

by BIC for digit 6 and 9 respectively on the training set and the resulting classifier is

applied on the testing data to obtain a test error. This procedure was repeated, i.e.,

splitting the data, fitting the mixture model and evaluating the test error, for one

hundred times. With the proposed method, the average test error rate is 0.26% with

a standard error 0.029%. Note that direct maximum likelihood estimate as employed

in the original mixture discriminant analysis is rather unstable for this example due

to its high dimensionality. Generalization with the proposals of Banfied and Raftery

(1993) has been investigated by Fraley and Raftery (2002; 2007) and implemented

in R. For comparison purpose, we ran similar analysis using this method as well. It

yields an error rate of 0.42% with a standard error 0.03%.

For illustration purpose of how sparse the inverse matrix is, we evaluate the per-

centage of zeros in every cluster. The experiment is based on one run of 80% samples.

The four clusters of digit 6 has (68%, 30%, 78%, 66%) zeros respectively and digit

9 has (72%, 33%), which confirm the image display in Figure 4.5.1.

4.6 Discussions

In this paper, we have developed a penalized likelihood estimator for high dimensional

Gaussian graphical models. By imposing an `1 penalty on the inverse covariance

matrices, the proposed estimator encourages sparsity and therefore could be useful

for high dimensional cases. We show that the estimate can be efficiently computed

by an EM algorithm. Simulation studies show that the method is quite promising in

extending the scope of Gaussian mixture model in handling high dimensional data.
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Its usefulness is further assessed in the context of model based clustering and mixture

discriminant analysis.
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CHAPTER V

HIGH DIMENSIONAL STRUCTURED GAUSSIAN

MIXTURE MODELS

5.1 Introduction

As discussed in the previous chapter, Gaussian mixture models has attracted a lot

of attention in a variety of applications with its flexibility. The k-th (k = 1, . . . ,M)

cluster in the GMMs corresponds to a Gaussian graphical model (GGM), which rep-

resents a network of the coordinates in a random vector X. Essentially, each network

is an undirected graph G = (V, E), where V = {1, 2, . . . , p} is a vertex set of the

variables (X(1), . . . , X(p)); E = (eij)1≤i<j≤p is an edge set describing the conditional

independence among the variables. The absent edge between vertices X(i) and X(j)

indicates that they are conditional independent given all other vertices and corre-

sponds to Cijk = 0 (Whittaker, 1990; Lauritzen, 1996).

The graphical presentation of every cluster may have the same or similar structure,

which is an important feature in many applications. For example, in image processing,

the pixels in a grey-scale image exhibit a conditional local correlation. Usually, two

pixels with large distance are believed to be non-correlated given all other pixels,

while nearby pixels are more likely to be correlated given others. Such conditional

correlation is a network in GGMs and it may be shared by similar images. Figure

5.1 displays two images of the handwritten digits of 6, where the large overlap of

the pixel areas is a strong evidence of the common structures. A second example is

in speech signals, where filter banks discretizes continuous signals into overlap bins

from the low frequency to high frequency. Because of the overlap, there is a strong

local correlation between the energies in neighboring filter banks. A third example
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is genetic pathways. Individual genes are presented as nodes or vertices. An edge

between two genes refers to the informational interactions. Such gene network may

be shared by different cells.
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Figure 16: Display of two images of hand written digit 6. The over lap area of the
pixels indicate sharing structures of the two images

The estimate of similar graphs among clusters is equivalent to estimate the inverse

matrices Cijk with similar structures. To our knowledge, there has been no such

discussions in the context of GMMs. Instead, estimation to impose geometric features

(shape, volume, orientation) of the clusters, are proposed in Banfield and Raftery

(1993). Celeux and Govaert (1995) enumerate extensive models within the framework.

Flury et al. (1994) also discuss the similar idea in discriminant analysis. In particular,

Celeux and Govaert (1995) consider several forms of parametrization on the covariance

matrix Σk. One is eigenvalue decomposition

Σk = λkDkAkD
′
k

where λk = |Σk|1/p controls the volume of the kth cluster; Dk is the eigenvector

matrix of Σk representing the orientation; Ak(|Ak| = 1) is a diagonal matrix with the

normalized eigenvalues in a descending order, determining its shape. The second way

is

Σk = λkBk,
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where |Bk| = 1. And the last one assumes spherical shapes,

Σk = λkI.

However, in high dimensional cases, such parametrization can not remedy the chal-

lenge of parameter estimation. For moderate restrictions allowing some of the quan-

tities to vary or be equal among clusters, the parameter size is still in the order of

p2 or p, which is a concern for large p as discussed in the previous chapter. For ex-

treme restriction of the third case, although the parameter size is reduced a lot, no

flexibilities persists in the clusters, which deteriorates the accuracy of the estimators.

We have proposed a Lasso-type estimator proposed in the previous chapter to impose

sparsity on the concentration matrix. It has been shown to work well in the high

dimensional settings but it does not encourage structure sharing of the clusters.

This necessity prompts us to consider new estimators. The philosophy of the

proposed structured estimators is related to the parameter estimation in regression

(Yuan and Lin 2006; Huang et al. 2009; Zhou and Zhu 2010), and multivariate

graphical models (Guo et al. 2009). Variables within the same group are either zero

or nonzero in the discussion of Yuan and Lin (2006). Huang et al. (2009) and Zhou

and Zhu (2010) propose that even if the group is identified as significant, variables in

the same group can also be regularized to be zero. Guo et al. (2009) consider a joint

estimator with similar structures of the inverse matrices for independent Gaussian

samples. For our purpose, we propose two estimators, a hierarchical Lasso estimator

and a group Lasso estimator with different penalties imposed on the inverse matrix.

This research is still ongoing and currently we focus more on the introduction of the

methodology and we show part of the simulations in section three. Future work and

conclusions are presented in the end.
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5.2 Methodology

Suppose Y1, . . . , Yn are n independent and identically distributed samples from a

p-dimensional Gaussian mixture distribution with M mixtures. The k-th (k =

1, . . . , M) mixture follows a Gaussian distribution with mean µk and inverse covari-

ance matrix Ck. The log-likelihood is given by

L(data|Θ) =
n∑

m=1

log

(
M∑

k=1

πkφ(Ym|µk, Ck)

)
(57)

where φ(·|µ,C) is the Gaussian density function.

Denote Θ = {(πk, µk, Ck) : k = 1, . . . , M} as the set of all unknown parameters.

The usual maximum likelihood is computed by maximizing L(data|Θ) with respect

to Θ, which is of size Mp(p + 1)/2 in optimization. Compared with the sample size

n, when p is moderate or large compared, the computation of the parameter estimate

is infeasible.

In the previous chapter, we have shown the benefit of a sparse estimator with an

`1 penalty. In that approach, the maximizing of (57) is decomposed by individually

maximizing the likelihood of each mixture. In such a way, the parameters in every

mixture are estimated separately. We call this approach as separate Lasso estimator

and use it as a benchmark to compare with the new estimator.

5.2.1 Hierarchical Lasso Estimator

When the mixture graphical models may share common structures and keep their

unique structures at the same time, the separate estimator is not efficient to capture

the underlying structure. With the success of hierarchical estimator in variable selec-

tion of regression (Zhou and Zhu, 2010), we propose the following hierarchical Lasso
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estimator for the inverse matrices

min
µk,CkÂ0,1≤k≤M

−
n∑

m=1

log

(
M∑

k=1

πkφ(Ym|µk, Ck)

)
+ λ1

∑

i6=j

θij + λ2

∑

i6=j

M∑

k=1

|ωijk|,

subject to Cijk = θijωijk, θij > 0, 1 ≤ i, j ≤ p,

θij = θji, ωijk = ωjik, 1 ≤ i 6= j ≤ p; 1 ≤ k ≤ M,

θjj = 1, ωjjk = cjjk, 1 ≤ j ≤ p; 1 ≤ k ≤ M, (58)

where Ck Â 0 requires that Ck is positive definite, λ1 ≥ 0 and λ2 ≥ 0 are tuning

parameters. λ1 controls the sparsity of the common shrinkage factor θij’s. If θij = 0,

then there is no link between node i and j for all precision matrices. Given θij > 0, λ2

governs the sparsity of ωijk and a zero ωijk leads to Cijk = 0. This double penalties

allow the mixtures to have similar and different structures.

In the previous chapter, we have shown that an EM algorithm can conveniently

solve the problem by introducing hidden variables τm, where τm is a random vari-

able indicating the cluster label of Ym. Then incomplete data is expanded into the

“complete data” (Ym, τm), m = 1, . . . , n. Suppose the distribution of τm is

P (τm = k) = πk, k = 1, . . . , M. (59)

Now the complete log-likelihood is

PL(Θ) = −
n∑

m=1

log (f(Ym|τm)P (τm)) + λ1

∑

i6=j

θij + λ2

∑

i6=j

M∑

k=1

|ωijk|

= −
n∑

m=1

log (φ(Ym|µτm , Cτm)πτm) + λ1

∑

i6=j

θij + λ2

∑

i6=j

M∑

k=1

|ωijk|. (60)

Here, we do not repeat the constraints in (58) for brevity and we will omit it

everywhere necessary in the rest of this chapter. Denote Θ(t) as the estimate at the

t-th iteration, we apply EM algorithm to estimate the parameters. In the E step, we

compute the conditional expectation of τm given Ym and Θ(t), i.e., the so-called Q

function. By Bayes rule,

γ
(t)
mk := P (τm = k|Ym; Θ(t)) =

π
(t)
k φ(Ym|µ(t)

k , C
(t)
k )∑M

l=1 π
(t)
l φ(Ym|µ(t)

l , C
(t)
l )

(61)
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And the Q function is

Q(Θ, Θ(t)) = −
M∑

k=1

{
n∑

m=1

log(πk)γ
(t)
mk +

n∑
m=1

log(φ(Ym|µ(t)
k , C

(t)
k ))γ

(t)
mk

}

+ λ1

∑

i 6=j

θij + λ2

∑

i6=j

M∑

k=1

|ωijk| (62)

In M step, we update the estimate of Θ by minimizing the Q function. It can be

shown that the update of πk and µk is defined by

π
(t+1)
k =

1

n

n∑
m=1

γ
(t)
mk, (63)

and

µ
(t+1)
k =

∑n
m=1 γ

(t)
mkYm∑n

m=1 γ
(t)
mk

, (64)

respectively. And the update of Ck, k = 1, . . . ,M is

min
CkÂ0,k=1,...,M

M∑

k=1

{
−γ̄

(t)
k log |Ck|+ tr(CkA

(t)
k )

}
+ λ1

∑

i6=j

θij + λ2

∑

i6=j

M∑

k=1

|ωijk| (65)

where

γ̄
(t)
k =

1

n

n∑
m=1

γ
(t)
mk,

and

A
(t)
k =

n∑
m=1

1

n

{
γ

(t)
mk(Ym − µ

(t+1)
k )(Ym − µ

(t+1)
k )′

}
.

The double tuning in (65) requires comprehensive computation. Fortunately, it can

be shown that (65) can be replaced to a single tuning optimization where λ = λ1λ2

min
CkÂ0,k=1,...,M

M∑

k=1

{
−γ̄

(t)
k log |Ck|+ tr(CkA

(t)
k )

}
+

∑

i 6=j

θij + λ
∑

i6=j

M∑

k=1

|ωijk|

subject to Cijk = θijωijk, θij > 0, 1 ≤ i, j ≤ p,

θij = θji, ωijk = ωjik, 1 ≤ i 6= j ≤ p; 1 ≤ k ≤ M

θjj = 1, ωjjk = cjjk, 1 ≤ j ≤ p; 1 ≤ k ≤ M, (66)

Moreover, (66) has a more convenient computational form

min
CkÂ0,k=1,...,M

M∑

k=1

{
−γ̄

(t)
k log |Ck|+ tr(CkA

(t)
k )

}
+ λ

∑

i 6=j

√√√√
M∑

k=1

|Cijk| (67)
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However, the update of Ck is complicated due to the nonlinearity of the penalty term.

We approximate the penalty by the following local linear approximation (LLA) (Zou

and Li, 2008) √√√√
M∑

k=1

|Cijk| ≈
∑M

k=1 |Cijk|√∑M
k=1 |C(t)

ijk|
. (68)

Now the update of Ck’s can be decomposed into the individual update of each Ck

C
(t+1)
k = argminCk



− log |Ck|+ tr

(
Ck

A
(t)
k

γ̄
(t)
k

)
+ λ

∑
i<j

|Cijk|
γ̄

(t)
k

√∑M
k=1 |C(t)

ijk|



 (69)

Note that (69) is the nonnegative garrote-type estimator in the graphLasso of Yuan

and Lin (2007) and can be solved by the algorithm in Friedman et al. (2008).

As a summary, the algorithm to compute Θ̂ defined by (58) is

Step 1: Initialize Θ(0).

Step 2: For each iteration, update the estimate for each mixture component individ-

ually.

• E step: Calculate the distribution of unknown variables by (61).

• M step: update parameters by (64), (69), and (63).

Step 3: Go back to Step 2 until a certain convergence criterion is met.

5.2.2 Group Lasso Estimator

If the clusters share a same structure, a group Lasso estimator of the covariance

matrices can be formulated to return an estimator with the same structure for all

clusters. The idea of group lasso is discussed in the context of regression (Yuan and

Lin, 2006). Similarly, a group lasso estimator of the inverse matrix is defined as

Θ̂ := argminµk,CkÂ0 −
n∑

m=1

log

(
M∑

k=1

πkφ(Ym|µk, Ck)

)
+ λ

∑
i<j

(
M∑

k=1

MC2
ijk

) 1
2

, (70)
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Similar to before, the update of πk and µk is defined by (63) and (64). And the

update of Ck, k = 1, . . . , M is determined by

min
CkÂ0,k=1,...,M

M∑

k=1

{
−γ̄

(t)
k log |Ck|+ tr(CkA

(t)
k )

}
+ λ

∑
i<j

(
M∑

k=1

MC2
ijk

) 1
2

, (71)

Clearly, there is no close form estimate and one computational algorithm should

show how the constraint is satisfied. Let’s consider a subproblem where every Ck is

known up to its j-th column/row. By changing row and column, without loss of gen-

erality, we can always assume that the unknown column/row is the last column/row.

Thus Ck can be represented as follows

Ck =




C−p,−p,k C−p,p,k

CT
−p,p,k Cp,p,k




where C−p,−p,k is known. Suppose C−p,−p,k is positive definite, then Ck is positive

definite if and only if

Cp,p,k − CT
−p,p,kC

−1
−p,−p,kC−p,p,k > 0

Therefore the positive definiteness of each Ck is guaranteed if we update the jth

column/row one a time. And the semidefinite program of (71) reduces to the following

optimization problem

min
C.p.

M∑

k=1

{
−γ̄

(t)
k log |Ck|+ tr(CkA

(t)
k )

}
+ λ

∑
i<j

(
M∑

k=1

MC2
ijk

) 1
2

,

subject to Cp,p,k − CT
−p,p,kC

−1
−p,−p,kC−p,p,k > 0, for any k = 1, . . . ,M, (72)

where C.p. = Cp.. is the pth column/row in all Cks.

Note that

|Ck| = |C−p,−p,k|(Cp,p,k − CT
−p,p,kC

−1
−p,−p,kC−p,p,k) (73)

tr(CkA
(t)
k ) = tr(C−p,−p,kA

(t)
−p,−p,k) + 2CT

−p,p,kA
(t)
−p,p,k + Cp,p,kA

(t)
p,p,k (74)

Plug (73) and (74) into (72) and we denote the derived objective function as h, take

a first order condition for Cp,p,k, we have

Cp,p,k =
γ̄k

Ap,p,k

+ CT
−p,p,kC

−1
−p,−p,kC−p,pk (75)
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Taking (75) back into h and remove the constant terms, C−p,p,k minimizes

1

2

M∑

k=1

CT
−p,p,k

(
Ap,p,kC

−1
−p,−p,k

)
C−p,p,k +

M∑

k=1

CT
−p,p,kA−p,p,k +λ

∑
i<p

(
M∑

k=1

MC2
i,p,k

) 1
2

(76)

With the nonlinearity of the penalty term, (76) is not straightforward to get C−p,p,k.

Consider a subproblem of (76), where C−p,p,k is known except its i-th row. Denote

xi = (Ci,p,1, . . . , Ci,p,M)T and x−i = (C−(i,p),p,1, . . . , C−(i,p),p,M)T , where C−(i,p),p,k is the

p-th column without the i- and p-th rows. Then C−p,p,ks can be represented by a long

vector (xi, x−i) and the first two terms in (76) can be rewritten as the vector form

1

2

[
xT

i , xT
−i

]



α11 α12

αT
12 α22







xi

x−i


 + [xT

i , xT
−i]




β1

β2


 ,

Up to a constant not depending on xi, the subproblem of (76) reduces to

min
xi

1

2
xT

i α11xi +
(
xT
−iα

T
12 + βT

1

)
xi + λ

√
MxT

i xi, (77)

A direct consequence of the KarushKuhnTucker (KKT) condition indicates that a

necessary and sufficient condition for xi to be a solution to expression (77) is

xi =

(
α11 +

λ
√

MIM

‖xi‖

)−1

si, xi 6= 0, (78)

xi = 0, (79)

where α11 is an M ×M diagonal matrix whose (k, k) entry is

α11(k, k) = Ap,p,k[C
−1
−p,−p,k](i, i). (80)

si = −(α12x−i + β1)

= Ap,p,k[C
−1
−p,−p,k](i,−i)C−(i,p),p,k + Ai,p,k. (81)

‖xi‖ is the root of

1 =
M∑

k=1

S2
ik

(α11k‖Xi‖+ λ
√

M)2
(82)

when (82) has no valid root, (79) is the solution.

To sum up, the group Lasso estimate can be obtained by the iterative algorithm
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Step 1: Initialize Θ(0).

Step 2: For each iteration,

• E step: Calculate the distribution of unknown variables by (61).

• M step:

– update the mean parameters by (64);

– for j = 1, . . . , p, update the j-th column for all Ck’s;

∗ for i = 1, . . . , p− 1, update Ci,p,k by (78) or (79).

∗ update Cp,p,k by (75);

Step 3: Go back to Step 2 until a certain convergence criterion is met.

So far, we have discussed the algorithm based on a fixed tuning parameter λ. The

tuning parameter choice is critical to the performance. We adapt the commonly used

multi-fold cross validation(CV) and BIC criterion as discussed before.

5.3 Simulation Studies

We now conduct simulation studies to assess the performance of the proposed esti-

mator. We compare the performance of the hierarchical Lasso (HLasso) estimator

with separate Lasso (SLasso) estimator and Banfield and Raftery (1993) (Mclust).

We treat the number of mixtures as known.

5.3.1 Common Structures

Suppose M = 2 is known and the sample size is set to be 100 where the dimension

p is set to be 30, 50 and 100. The tuning parameter λ is determined either by BIC

criterion defined by (41) or cross validation. For simplicity, we fix the mean vector

of each mixture component to be 0p. First, we consider the case when the inverse

matrices of all clusters have common structures.
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Model 1 : AR(1) model:

C1(i, i) = 1.36; C1(i, i + 1) = C1(i + 1, i) = −0.6; C1(i, j) = 0, |j − i| > 1;

C2(i, i) = 1.81; C2(i, i + 1) = C2(i + 1, i) = −0.9; C2(i, j) = 0, |j − i| > 1.

Model 2 : AR(2) model:

C1(i, i) = 1.32; C1(i, i + 1) = C1(i + 1, i) = −0.56;

C1(i, i + 2) = C1(i + 2, i) = 0.4; C1(i, j) = 0, |j − i| > 2;

C2(i, i) = 4.56; C2(i, i + 1) = C2(i + 1, i) = −2.88;

C2(i, i + 2) = C2(i + 2, i) = 1.6; C2(i, j) = 0, |j − i| > 2.

We examine these estimates through the criteria defined before as SL, FL and KL.

To show that the penalised estimator can capture the structure of the concentration

matrix, we also report the percentage of correctly identified nonzeros (TP) and zeros

(TN).

The results, averaged over one hundred runs for each case, are reported in Table

17 and 18 respectively. It is clear from these results that the proposed method out-

performs the other two methods. The superiority becomes more evident when the

dimension increases. We also note the similar behavior of the penalized likelihood

estimates tuned with either CV or BIC. This observation is of great practical impor-

tance because BIC is much more efficient to compute than the CV. For this reason,

we shall use BIC as the tuning criterion in the rest of the paper unless otherwise

indicated.

5.3.2 With individual Structures

Now we contaminate the inverse matrices of model I and II by putting one or two

individual edges for each of the cluster respectively.

Model I.1 : Model I with 1 individual edge added.

C1(j, j + 2) = C1(j + 2, j) 6= 0, C2(j, j + 3) = C2(j + 3, j) 6= 0;
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Model I.2 : Model I with 2 individual edges added.

C1(j, j + 2) = C1(j + 2, j) 6= 0, C1(j, j + 4) = C1(j + 4, j) 6= 0,

C2(j, j + 3) = C2(j + 3, j) 6= 0, C1(j, j + 5) = C1(j + 5, j) 6= 0;

Model II.1 : Model II with 1 individual edge added.

C1(j, j + 3) = C1(j + 3, j) 6= 0, C2(j, j + 4) = C2(j + 4, j) 6= 0;

Model II.2 : Model II with 2 individual edges added.

C1(j, j + 3) = C1(j + 3, j) 6= 0, C1(j, j + 5) = C1(j + 5, j) 6= 0,

C2(j, j + 4) = C2(j + 4, j) 6= 0, C2(j, j + 6) = C2(j + 6, j) 6= 0;

where the conditional correlation of the added edge is fined selected to ensure the

matrix is positive definite.

5.4 Future Work

In this chapter, we have proposed two structured estimators to capture sharing infor-

mation in clusters of the high dimensional Gaussian mixture models. The performance

of the new estimators has been shown superior over separate Lasso estimator when

then concentration matrices share common structures and/or uncommon structures.

We will continue studying properties of the proposed methods in more applications.
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