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SUMMARY 

 

Traditional fMRI utilizes blood oxygenation level dependent (BOLD) contrast to 

map brain activity. BOLD signal is sensitive to the hemodynamic changes associated 

with brain activity, and gives an indirect measure of brain activity. Low frequency 

fluctuations (LFFs) have been observed in the BOLD signal even in the absence of any 

anesthetic agent, and the correlations between the fluctuations from different brain 

regions has been used to map functional connectivity in the brain. Most studies involving 

spontaneous fluctuations in the BOLD signal extract connectivity patterns that show 

relationships between brain areas that are maintained over the length of the scanning 

session.  The research presented in this document investigates the spatiotemporal 

dynamics of the BOLD fluctuations to identify common spatiotemporal patterns within a 

scan, and suggests the presence of multiple contributions to low frequency fluctuations in 

rats as well as humans. First, the presence of a visually detectable spatiotemporal 

propagation pattern is demonstrated by utilizing single-slice data with high spatial and 

temporal resolution. The pattern consists of lateral-medial propagation of BOLD signal, 

demonstrating the presence of time-varying features in spontaneous BOLD fluctuations. 

Further, a novel pattern finding algorithm is developed for detecting repeated 

spatiotemporal patterns in BOLD fMRI data. The algorithm is applied to high temporal 

resolution T2*-weighted multislice images obtained from rats and humans in the absence 

of any task or stimulation. In rats, the primary pattern consists of waves of high signal 



 x

intensity, propagating in a lateral-medial direction across the cortex, replicating the 

results obtained using visual observation. In humans, the most common spatiotemporal 

pattern consisted of an alteration between activation of areas comprising the “default-

mode” (e.g., posterior cingulate and anterior medial prefrontal cortices) and the “task-

positive” (e.g., superior parietal and premotor cortices) networks. Signal propagation 

from focal starting points is also observed. The pattern finding algorithm is shown to be 

reasonably insensitive to the variation in user-defined parameters, and the results are 

consistent within and between subjects.  

This novel approach for probing the spontaneous network activity of the brain has 

implications for the interpretation of conventional functional connectivity studies, and 

may increase the amount of information that can be obtained from neuroimaging data.  
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CHAPTER 1 

INTRODUCTION 

 

Functional MRI (fMRI) 

 There has been steady growth in the popularity of functional MRI (fMRI) since its 

inception about 20 years ago. Its ability to non-invasively localize functionally active 

regions of brain with high spatial resolution (~100 microns to 4-5 mm) and moderate 

temporal resolution (> ~0.1s) makes it an attractive choice for imaging brain function in 

humans as well as animal models. fMRI does not measure the brain activity directly. 

Instead, it is sensitive to hemodynamic changes following brain activity. The most 

common functional imaging method utilizing MRI is BOLD (Blood Oxygenation Level 

Dependent) fMRI (Ogawa, Lee et al. 1990). It relies on hemoglobin as an intrinsic 

contrast agent. Oxygenated hemoglobin is diamagnetic, whereas deoxygenated 

hemoglobin is paramagnetic. Brain activation results in a series of changes involving 

increased blood flow and volume in the area of activation. These changes are needed to 

meet the increased metabolic demands of the activated regions. The increase in supply 

exceeds the demand and the oxygenation level (fraction of oxygenated hemoglobin) in 

the vicinity of the activated area rises. As a result, magnetic field homogeneity near the 

activated area is improved and the signal increases in the activated area. Other methods 

of achieving functional contrast using MRI include cerebral blood flow (CBF) 

(Ostergaard, Weisskoff et al. 1996) and cerebral blood volume (CBV) (Lu, Golay et al. 

2003; Zhao, Wang et al. 2005) weighted imaging. 
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 As stated above, fMRI does not measure brain activity directly. Simultaneous 

acquisition of BOLD and electrical activity of the brain has been used to investigate the 

relationship between the BOLD signal and neural activity. Brinker et al. utilized 

simultaneous recording to demonstrate validity of BOLD fMRI for estimating the 

electrocortical potentials (Brinker, Bock et al. 1999). Somatosensory evoked potentials 

(SEP) and T2* weighted MRI images were recorded simultaneously during 

somatosensory stimulation of rat to investigate the relationship between electrical 

activation of the brain tissue and the signal intensity change. A linear relationship 

between the BOLD signal and SEPs was demonstrated. Logothetis et al. utilized 

simultaneous electrophysiology and fMRI measurements in monkeys in order to 

demonstrate that local field potentials (LFPs) are better predictors for the BOLD signal as 

compared with action potentials during visual stimulation. . These studies support the use 

of fMRI as a valid functional imaging modality. 

The majority of fMRI experiments utilize a task-based paradigm. The subject is 

asked to perform a task involving mental activity, interleaved with periods of rest or a 

control task. The fMRI signal during the task performance is compared with the signal 

during rest (baseline) and activation maps are created. Multiple runs are acquired in order 

to increase signal to noise ratio. Such experiments have been extensively used for 

functional mapping of brain (Cohen, Forman et al. 1993; Sakai, Watanabe et al. 1995; 

Kim, Duong et al. 2000).  

Low Frequency Fluctuations (LFFs) and Functional connectivity 

 The first few years of fMRI research were focused on detecting task-induced 

changes in the BOLD signal, and the fluctuations unrelated to the stimulus were 
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disregarded as noise. Biswal et al (Biswal, Yetkin et al. 1995) demonstrated the presence 

of low frequency fluctuations (f < 0.08 Hz) in the fMRI time-courses acquired in absence 

of any task or stimulus. Strong correlation was observed between the low frequency 

fluctuations in left and right motor cortices. The correlations were hypothesized to reflect 

synchronous spontaneous brain activity between the regions showing high correlation. 

These correlations are referred to as “functional connectivity”, and such studies are called 

“resting state” studies due to absence of any controlled task or stimulus. Since then, there 

has been explosive growth in the research conducted in this area. Conceptually, 

functional connectivity analysis aims at finding areas of the brain with synchronized 

spontaneous fluctuations in the BOLD signal. Those areas are presumed to exhibit 

synchronized modulations in neural activity, and hence are “functionally connected”. 

This may provide a way to look at brain networks comprising the areas working together 

non-invasively and has potential applications in both basic and clinical research. 

 The fcMRI signal is contaminated by scanner noise as well as respiratory and 

cardiac contributions. Most studies utilize relatively low sampling rates, which result in 

aliasing of physiological noise. Although it is not a concern for task-based paradigms as 

averaging can be performed in order to remove the effect of noise, averaging of multiple 

trials cannot be use for functional connectivity analysis because the spontaneous 

fluctuations would average out towards zero in addition to the noise. Therefore, part of 

the correlation observed in functional connectivity maps has non-neural physiological 

contributions. Physiological noise correction can be performed on the data to reduce 

these non-neural contributions (Hu, Le et al. 1995; Glover, Li et al. 2000; Birn, Diamond 

et al. 2006).  



 4

 The simplest method to measure functional connectivity is to obtain the average 

time course from a seed region (for example primary motor cortex) and to obtain cross 

correlation values between the seed regions and all the voxels in the brain. The 

correlation values are displayed as a “functional connectivity map” or FC map. High 

correlation values are interpreted as stronger functional connection. This method for 

mapping functional connectivity is easy to use and implement. However, it requires 

manual selection of the seed region, which can bias the results and makes automatic 

exploratory analysis impossible. Another popular method is based upon independent 

component analysis (ICA). This method aims at finding the independent sources 

contributing to the time-courses corresponding to voxels in the brain. Contributions of the 

independent sources are hypothesized to reflect different functional networks. ICA is data 

driven and therefore does not suffer from the bias due to manual seed selection. Also, it 

provides a way to retrospectively estimate the components due to noise. However, it 

generates a large number of components which are not ranked in any order. Therefore, 

manual inspection of the components and their spatial distributions is necessary in order 

to select the potentially relevant components. Additionally, the correspondence between 

the components generated by ICA and actual sources contributing to BOLD signals is not 

guaranteed. 

 Many studies aim at identifying functional networks in the brain. Networks 

associated with different systems including visual, auditory, default mode, memory, 

language and attention have been identified.  (Cordes, Haughton et al. 2000; Hampson, 

Peterson et al. 2002; Fox, Snyder et al. 2005; Fox, Corbetta et al. 2006). The default 

mode network in particular has been the subject of many studies. 
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Default mode network 

Certain areas of brain (e.g. posterior cingulate and anterior medial prefrontal 

cortices) have been observed to decrease their activity during attention demanding 

cognitive tasks (Raichle, MacLeod et al. 2001). These areas were hypothesized to be 

involved in important activities that may underlie the baseline state of the human brain 

(or the “default mode” of brain function) (Raichle, MacLeod et al. 2001). Interestingly, 

strong correlation exists between LFFs in these areas, and the corresponding network 

with synchronous LFFs was termed as the “default mode network” (Greicius, Krasnow et 

al. 2003; Fox, Snyder et al. 2005).  Additionally, a network anti-correlated with default 

mode network was identified (Fox, Snyder et al. 2005). This network includes areas (e.g. 

superior parietal and premotor cortices) that are active during the performance of a wide 

variety of tasks and that may be related to attention, and is termed as “task positive” or 

“attention” network (Fox, Snyder et al. 2005). These networks have been hypothesized to 

constitute the intrinsic functional architecture of the brain, and have gained immense 

interest in fMRI and neuroscience communities.  

Neural and behavioral significance of LFFs in Humans 

 Many studies focus on the effect of different treatments and pathological 

conditions on functional connectivity and LFFs to see if the results are consistent with a 

neural origin of functional connectivity. Anesthesia, hypercapnia and cocaine 

administration have been reported to disrupt functional connectivity (Biswal, Hudetz et 

al. 1997; Li, Biswal et al. 2000; Peltier, Kerssens et al. 2005). Anesthesia and cocaine 

administration alter neural activity as well as hemodynamics, whereas hypercapnia alters 

hemodynamics only. Therefore, effects on the functional connectivity observed in these 
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studies may not be completely attributed to neural activity or vasculature. Changes in 

functional connectivity have been observed in autism, Alzheimer’s disease, multiple 

sclerosis, depression, schizophrenia, attention deficit hyperactivity disorder, epilepsy and 

blindness (Grady, Furey et al. 2001; Lowe, Phillips et al. 2002; Villalobos, Mizuno et al. 

2005; Garrity, Pearlson et al. 2007; Greicius, Flores et al. 2007; Liu, Yu et al. 2007). As 

noted above, a common confounding factor for these studies is that the aforementioned 

diseases and treatments may alter the neurovascular coupling in addition to neural 

activity.  

 Other studies suggest functional and behavioral significance of LFFs and 

functional connectivity. Correlation between a region in the brain and hippocampus has 

been shown to predict the region’s response to episodic memory (Vincent, Snyder et al. 

2006). Spatial patterns of functional connectivity have been shown to predict individual 

differences in pre-scan anxiety and performance on working memory tasks (Seeley, 

Menon et al. 2007). Seeley et al identified a “salience network” that links dorsal anterior 

cingulate (dACC) and orbital frontoinsular cortices with subcortical and limbic 

structures, and an “executive-control network” that links dorsolateral frontal and parietal 

cortices. Prescan anxiety ratings correlated with functional connectivity of the dACC 

node of the salience network, but with no region in the executive-control network, 

whereas executive task performance correlated with lateral parietal nodes of the 

executive-control network, but with no region in the salience network (Seeley, Menon et 

al. 2007). These studies suggest that LFFs have functional relevance and may reflect 

spontaneous activity of the brain.  
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Other studies provide a more direct evidence of neural basis of LFFs and 

functional connectivity.. Loss of connectivity between hemispheres has been reported 

after complete section of corpus callosum (Johnston, Vaishnavi et al. 2008). Intra-

hemespheric connectivity was preserved, however. This study suggests that functional 

connectivity is likely to reflect actual neural connectivity, instead of synchronization 

between noise contributions. Combined EEG-fMRI studies have been performed in order 

to investigate the neural basis of LFFs and functional connectivity. Goldman et al 

reported negative correlation between BOLD and α band power in multiple cortical 

regions of awake humans using simultaneous acquisition of EEG and fMRI (Goldman, 

Stern et al. 2002). Another simultaneous EEG-fMRI study by Mantini et al (Mantini, 

Perrucci et al. 2007) suggests that multiple frequency bands are related to the LFFs, and 

that the frequency spectra is different for different functional networks. A recently 

published human study by He et al utilizes electrocorticography and fMRI in the patients 

with intractable epilepsy and indirectly suggests that both slow cortical potentials (f < 

4Hz, overlapping with delta band) and gamma  band power are related to LFFs in BOLD 

in wakefulness and rapid-eye-movement sleep (He, Snyder et al. 2008). Only slow 

cortical potentials showed a correlation pattern similar to that of LFFs in other states of 

sleep. In another study, the spatial pattern of correlation between BOLD fluctuations and 

the power of alpha rhythm varied within and between the subjects, suggesting that the 

relationship between LFFs and the EEG signal may vary depending on the current state 

of the subject (Gonçalves, de Munck et al. 2006). These studies suggest the link between 

LFFs in BOLD and electrical activity in the brain. In general, the area of the brain that is 

studied, the relative sensitivity of the electrical recording techniques, and the state of the 
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subject (awake, asleep, or anesthetized) might explain some of the differences in the 

findings. Most experiments on humans are performed without anesthesia. Significant 

inter-subject variability can be expected due to individual differences in mood, 

personality, background thoughts, use of medication / other agents affecting connectivity 

(e.g. caffeine) and scanner anxiety. These studies highlight the need for further research 

addressing the issue of the neural origin of the LFFs in BOLD.  Another issue with these 

studies is the low spectral resolution for BOLD fMRI data due to long TRs (~1.5-3s, 

required for whole brain coverage), as well as small number of repetitions (< 500, needed 

to reduce the time required for data acquisition). There might be different neural origins 

for different sub-bands in the low frequency region and it is impossible to explore those 

relationships in low spectral resolution of BOLD acquired with typical parameters. This 

problem is further confounded by the long repetition time (TR) used for these 

experiments, which results in aliasing of harmonics of physiological rhythms into lower 

frequency components.  

Functional Connectivity in Animal Models 

 To better understand the relationship between neural activity and functional 

connectivity, several groups have recently turned to animal models. Functional networks 

similar to those observed in humans have been observed in monkeys and rats using 

fcMRI. The use of animal models allows for more invasive experimental designs which 

can give deeper insight into the LFFs. Also, more controlled experiments are possible 

when animal models are used. Since animals are kept under the same conditions and are 

anesthetized during the experiments, inter-subject differences are minimized. The 

presence of coherent low frequency BOLD fluctuations has been demonstrated in 
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somatosensory and visual networks in anesthetized rats and monkeys (Williams, Peltier et 

al. 2006; Vincent, Patel et al. 2007; Pawela, Biswal et al. 2008). Additionally, the default 

mode network has been shown to exist in anesthetized monkeys using fcMRI (Vincent, 

Patel et al. 2007). These findings justify the use of these animal models in studies to 

better explore the basis of functional connectivity. Some of these studies have provided 

additional evidence of a link between coordinated neural activity and functional 

connectivity.  Anesthesia-dependent changes in delta power correlation were shown to 

co-vary with changes in functional connectivity in rats, although the measurements were 

not performed simultaneously due to technical limitations (Lu, Zuo et al. 2007). Shmuel 

and Leopold  reported correlations between the band-limited power of gamma rhythm in 

spontaneous neural activity and BOLD fluctuations in the visual cortex of monkeys in the 

absence of any stimulus (Shmuel and Leopold 2008). These results are an extension of 

previous work showing very slow (< 0.1 Hz) coherent oscillations in the band limited 

power of local field potentials obtained from monkey visual cortex (Leopold, Murayama 

et al. 2003).   The envelope of the EEG (f < 30Hz) has also been shown to predict 

fluctuations in cerebral blood flow measured using laser Doppler flowmetry in rats (Liu, 

Zhu et al. 2008). A more recent study suggests that the spontaneous fluctuations in the 

LFPs (especially 40-80 Hz range) measured from a single cortical site in monkeys at rest 

exhibit widespread, positive correlations with fMRI signals over nearly the entire cerebral 

cortex (Schölvinck, Maier et al. 2010).  

  To sum up, LFFs and functional connectivity can be observed in the animal 

models even in the anesthetized state. Invasive multimodality studies performed on the 

animal models shows link between the LFFs in BOLD and electrical activity of the brain. 
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The use of animal models can help us overcome the limitations of human studies and 

therefore provides an attractive alternative for studying properties and significance of 

LFFs and functional connectivity. 

 

Spatiotemporal Dynamics of LFFs 

As stated above, current techniques focus on detecting correlations among 

different brain regions that are assumed to persist over several minutes (Biswal, Yetkin et 

al. 1995; Cordes, Haughton et al. 2002; van de Ven, Formisano et al. 2004).  However, 

EEG and magnetoencephalography (MEG)  studies indicate that transient coordination of 

brain areas occurs on time scales ranging from milliseconds to tens of seconds (de 

Pasquale, Della Penna et al. 2010). Since BOLD signal is correlated with neural activity, 

it is possible that such time-varying features might exist in fMRI data as well.  

In a recent study using high temporal resolution data obtained from rats, we 

demonstrated that frame-by-frame visualization of band-pass filtered BOLD time-courses 

exhibits discrete spatiotemporal events, suggesting that detection of individual events in 

the data is possible (Majeed, Magnuson et al. 2009). Waves of high signal intensity 

propagating from secondary somatosensory cortex (SII) to medial cortical areas were 

observed in α-chloralose anesthetized rats.  These areas are not part of the same network 

when traditional seed-based cross-correlation techniques are used, indicating that the 

conventional methods may not extract all the information that can be obtained from 

functional connectivity data (Williams, Magnuson et al. in press). This opens a new 

avenue for functional connectivity research. The detection of propagating waves of MRI 

signal fluctuations that may reflect slow changes in electrical activity naturally leads to 
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speculation about whether other dynamic neural events can be detected with MRI in 

anesthetized rodents, and whether similar spatiotemporal patterns / events can be found in 

awake humans. In support of that idea, a recent study reports variability in the coherence 

between posterior cingulate cortex and task-positive  network over time (Chang and 

Glover 2009). These studies highlight the need for novel analysis techniques that could 

capture time-varying features in spontaneous BOLD fluctuations. 

An in-depth study of the spatiotemporal patterns in fcMRI data may help to 

elucidate the origin and significance of LFFs. For example, it has been proposed that 

LFFs in different brain regions may be caused by one or more subcortical sources or 

“drivers” (Drew, Duyn et al. 2008).  Identification of sources of the high intensity signal 

can identify possible drivers / regions receiving direct input from the drivers of the LFFs 

in BOLD. Also, if similar spatiotemporal patterns can be detected in humans, it may be 

possible to tie these events to behavioral performance data.  

Our preliminary exploration of the spatiotemporal patterns of spontaneous BOLD 

fluctuations was based purely on visual inspection (Majeed, Magnuson et al. 2009). The 

amplitude of the low frequency BOLD fluctuations is small, typically ~1-2%, and visual 

detection of the patterns is limited by signal to noise ratio (SNR), and thus it is possible 

that patterns may be obscured in the presence of noise. Therefore, it is desirable to have 

an automatic method for the detection of such patterns. The previous study examined 

only single slice data, so that analysis was restricted to a single coronal plane.  Three-

dimensional data is necessary to characterize the true direction of propagation, which 

may contain significant through-plane components.  
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Research presented in this document provides a framework for detecting and 

analyzing dynamic events in BOLD data in absence of any external stimulation. First, the 

presence of visually detectable spatiotemporal patterns in rat data is demonstrated. 

Further, an automatic spatiotemporal pattern detection algorithm is developed and 

characterized.  The algorithm is applied on human and rat data for detecting multiple 

reproducible spatiotemporal patterns. Finally, a method for estimating the contribution of 

the patterns towards LFFs is proposed and applied to human and rat data. This research 

opens a new avenue for the functional connectivity research and is likely to have 

significant impact on interpretation of functional connectivity and LFFs. 
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CHAPTER 2 

VISUAL DETECTION OF SPATIOTEMPORAL PATTERNS IN 

RATS 

 

 In this chapter, the presence of visually detectable spatiotemporal patterns in 

BOLD fluctuations in rats is demonstrated. Most groups utilize TRs that are not short 

enough for separation of respiratory and cardiac cycles in the frequency domain (Lu, Zuo 

et al. 2007; Pawela, Biswal et al. 2008; Zhao, Zhao et al. 2008). Also, longer TRs are 

likely to limit our ability to resolve the dynamic patterns. We describe the acquisition of 

functional connectivity data from the rat with high temporal resolution that allows 

separation of the primary cardiac and respiratory components from the frequencies of 

interest and allows the identification of two low frequency peaks in the data acquired 

from the rat cortex. The low frequency peaks exhibit different functional connectivity 

specificity, suggesting that they might represent different neural/vascular processes. We 

further characterize spatiotemporal characteristics of both peaks and identify patterns of 

LFF propagation which may not be deduced from typical functional connectivity analysis 

methods.  

Materials and Methods 

Animal Preparation 

For this study, all experiments were performed in compliance with guidelines set 

by the National Institutes of Neurological Disorders and Stroke ACUC. Six adult male 

Sprague-Dawley rats (168–234 g) were initially anesthetized with 5% halothane and 
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maintained at 1.5% halothane during the following surgical procedures. Each rat was 

orally intubated and placed on a mechanical ventilator throughout the surgery and the 

experiment. Plastic catheters were inserted into the right femoral artery and vein to allow 

monitoring of arterial blood gases and administration of drugs. Two needle electrodes 

were inserted just under the skin of each forepaw, one between digits 1 and 2, and the 

other between digits 3 and 4. After surgery, the rat was given an i.v. bolus of α-chloralose 

(80 mg/kg) and halothane was discontinued. Anesthesia was maintained with a constant 

α-chloralose infusion (27 mg/kg/hr) (Silva, Lee et al. 1999; Keilholz, Silva et al. 2004).  

The rat was placed on a heated water pad to maintain rectal temperature at ~37°C 

while in the magnet. Each animal was secured in a head holder with ear bars and a bite 

bar to prevent head motion and was strapped to a plastic cradle. End-tidal CO2, rectal 

temperature, tidal pressure of ventilation, heart rate, and arterial blood pressure were 

continuously monitored during the experiment. Arterial blood gas levels were checked 

periodically and corrections were made by adjusting respiratory volume or administering 

sodium bicarbonate to maintain normal levels when required. An i.v. injection of 

pancuronium bromide (4 mg/kg) was given once per hour to prevent motion. 

One of the rats was euthanized at the conclusion of the experiment without being 

removed from the scanner and an additional series of BOLD-weighted images was 

acquired to serve as a control dataset. 

MRI 

All images were acquired with an 11.7 T / 31 cm horizontal bore magnet 

(Magnex, Abingdon, UK), interfaced to an AVANCE console (Bruker, Billerica, MA) 

and equipped with a 9-cm gradient set, capable of providing 30 G/cm with a rise time of 
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65 µs. Shimming was performed with a custom-built shim set and high power shim 

supply (Resonance Research, Billerica, MA). A contoured rectangular surface coil (2 x 3 

cm) that attached to the head holder was used to transmit and receive the MR signal. 

Scout images were acquired in three planes with a fast spin echo sequence to determine 

appropriate positioning for the functional Study. A spin-echo, EPI sequence was used to 

acquire a series of images during forepaw stimulation (2 mA current, 300 μs pulses 

repeated at 3 Hz) in order to locate the slice containing primary somatosensory cortex 

(SI). Setup included shimming, adjustments to echo spacing and symmetry, and B0 

compensation. A single-shot sequence with a 64 × 64 matrix was run with the following 

parameters: effective echo time 30 ms, repetition time 1.0–1.5 sec, bandwidth 200 kHz, 

field of view 1.92 × 1.92 cm. Whole-brain coverage was obtained with 10–11 2-mm thick 

slices, spaced 0.2 mm apart.   The paradigm consisted of 60 images during rest, followed 

by 30 images during forepaw stimulation, and another 60 images during rest.  Functional 

connectivity data were acquired with gradient echo EPI on the slice containing SI with 

following parameters: repetition time 100 ms, echo time 20 ms (15 ms for one rat), field 

of view 1.92 × 1.92 cm, 2mm thick slice, 3600 repetitions.  No stimulation was given 

during these scans. 

Preprocessing 

The area comprising the brain was segmented using an intensity threshold and 

manual removal of remaining voxels outside the brain. The datasets were spatially 

blurred using a 3 × 3 Gaussian filter with σ = 2 pixels All analysis was performed using 

Matlab (MathWorks, Natick, MA) unless otherwise noted.  The first 500 time-points 

were discarded before power spectral analysis and after all the filtering operations 
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described later in order to discard transient effects of data acquisition and filtering. 

Resultant time-courses were de-meaned and quadratic detrending was performed.   

Power Spectral Analysis 

Power spectra were obtained for time-courses from SI and secondary 

somatosensary cortex (SII) using the Welch method (8 sections with 50% overlap, 

Hamming window). Visual inspection suggested the presence of two low frequency 

peaks, LF1 (f < 0.05Hz) and LF2 (0.11Hz < f < 0.18Hz), in three of the datasets obtained 

from live rats (described later in results). Only the lower peak (LF1) was visually 

detectable for the other three datasets from live rats. Peaks due to respiration and cardiac 

noise were also observed. Frequencies of respiratory and cardiac contributions were 

assessed by inspecting the spectra of the signals from the brain regions near the draining 

veins, including sagittal sinus and the surface of the cortex. No specific peaks were 

observed for dead rat.  

Spatial Localization of Spectral Peaks 

Maps were created in order to assess the spatial localization of physiological noise 

and the low frequency peaks. We visually examined the spectra of time-courses obtained 

from different locations in the brain for LF1, LF2 (for the datasets showing LF2), cardiac 

and respiratory peaks, and noted the frequencies of the corresponding peaks for each 

dataset. Band-pass or low-pass filtering (3rd order Butterworth filter) was used to isolate 

the time-courses corresponding to the individual peaks. The filtered time-courses were 

normalized to obtain percentage difference from mean signal intensity of the raw data. 

Maps showing the standard deviation of each contribution were obtained, reflecting 

spatial localization of contribution due to different peaks. Parameters used for one of the 
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live rats (rat 1) were used for processing the data from the dead rat since no visible peaks 

were present. Frequency cutoffs of 0-0.05 and 0.08-0.2 Hz were used for LF1 and LF2 

respectively. Filters for physiological noise had their pass bands centered at respective 

frequencies, with a 3db width of 0.2 Hz. 

Functional Connectivity Analysis 

Six functional connectivity maps were obtained from each dataset using two 

different filters (0-0.05 Hz and 0.08-0.2 Hz) and three different seed locations (SI and SII 

and caudate-putamen (CP)). The seeds’ time-courses were obtained by averaging filtered 

time-courses from a 3 × 3 manually chosen region in the areas of interest. Cross 

correlation between the seed time-course and time-courses from all the voxels in the 

brain was calculated to obtain correlation maps. To estimate localization of connectivity, 

the number of voxels passing an arbitrary cross-correlation threshold of 0.5 was 

calculated for bilateral regions of interest (ROIs) covering SI, SII and CP for each seed 

location.  In addition, average time-courses were obtained for the ROIs defined on left 

and right SI, SII and CP and 6×6 correlation matrix was obtained. 

Spatiotemporal Dynamics 

Image-by-image visualization was used as a primary tool to study spatiotemporal 

dynamics. The preprocessed data was filtered and resulting time-courses were normalized 

individually to unit variance. The resulting data was displayed as a movie for visual 

detection of any spatiotemporal patterns. Using different filters, we were able to observe 

dynamics of LF1, LF2 and physiological contributions. The filters specifications were 

same as described above. 
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Figure 1: Location of seed on EPI image, power spectra of the signal obtained from 
seed location (with time-course normalized to unit variance), and band-limited maps 
of temporal standard deviation for a rat with two clear low frequency peaks (a), a rat 
with a single low frequency peak (b), a dead rat (c), and a rat that exhibited 
significant cardiac and respiratory signal (d).  a) Power spectrum for a cortical seed 
ROI shows two distinct peaks for this rat. Spatial maps for LF1 (column 3) and LF2 
(column 4) contributions demonstrate high cortical specificity for both peaks, with 
highest signal magnitude near the sagittal sinus for LF1. b) Power spectrum from 
another rat exhibits only one clear peak (LF1). The peak map for LF1 contribution 
(column 3) shows high specificity to cortex, again with a focal increase in power 
near the sagittal sinus. The power in the LF2 range is much lower and primarily 
confined to the surface of the brain. c) Power spectrum from a dead rat showing no 
clear peaks. 0-0.05 Hz (column 3) and 0.08-0.2 Hz (column 4) contributions are 
non-specific. d) Power spectrum from a cortical seed placed near the draining veins 
exhibits respiratory and cardiac contributions. Spatial distribution map for cardiac 
contribution (column 3) shows high specificity to the area near draining veins, 
whereas respiratory contribution (column 4) is strongest around the sagittal sinus, 
draining veins and ventricles. 
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Results 

Power Spectral Analysis 

Power spectral analysis of time-series obtained from cortical areas including SI 

and SII revealed two distinct low frequency peaks in the following frequency ranges for 

three rats: below 0.05 Hz (LF1), and between 0.11 and 0.18 Hz (LF2) (Figure 1a, column 

2). Only a single peak was observed in the remaining three datasets, with the most of the 

power in the LF1 range (Figure 1b, column 2). Peaks corresponding to respiratory and 

cardiac noise were also observed (Figure 1d, column 2). The peaks detected at ~1 Hz and 

~4.5 Hz were attributed to respiratory and cardiac cycles respectively, based upon the 

frequencies of the cycles monitored during the experiment (breathing rate: ~60 

breaths/minute, cardiac rate: ~250 beats/minute). No obvious peaks were observed in the 

data obtained from the dead rat (Figure 1c, column 2). 

Spatial Specificity of the Peaks 

Figure 1a (columns 3 and 4) shows standard deviation maps for low frequency 

contributions for one of the datasets showing the two low frequency peaks. The LF2 

appears with high magnitude in the cortex with high specificity, as apparent from the 

standard deviation map.  LF1 contribution is also high in the cortex compared with the 

subcortex. Figure 1b (columns 3 and 4) shows the maps for a dataset without a clear LF2 

peak. The LF1 maps are similar to those seen in rats with two peaks. In contrast, the LF2 

no longer appears in the cortex with high magnitude compared with the subcortex. Peak 

distribution for the dead rat does not show any specific patterns (Figure 1c). The 

strongest respiratory contribution was observed primarily near the sagittal sinus, large 

blood vessels, and ventricles. The contribution from the primary cardiac peak was high 
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near large veins for most rats and occasionally also near the sagittal sinus.  Examples 

from one rat are shown in Figure 1d.   Edges and areas with low coil sensitivity appear 

with high magnitude in many of the standard deviation images, which may be expected 

because percentage difference due to noise factors will be large in those areas due to low 

baseline intensity.  

Cross Correlation Analysis 

The low pass (0-0.05 Hz) filter retained the LF1 peak, whereas the band pass 

(0.08-0.2 Hz) filter retained LF2. Figure 2 shows connectivity maps for a dataset with 

two peaks and a dataset with one peak, each with two different seed locations (SI and 

SII).  The correlation maps for LF1 exhibit low sensitivity to the location of cortical seed 

regions and high correlation (> 0.5) is seen for the whole cortex and some sub-cortical 

areas. We observed this trend for LF1 for most seeds within cortex in all the datasets. In 

the datasets with two peaks, correlation maps based on LF2 exhibit higher specificity 

than the maps based on LF1.  High correlation values are found primarily in the 

contralateral analogue of the seed region for a seeds placed in SI, rather than evenly 

distributed throughout the cortex.  Some bilateral correlation for LF2 is also observed in 

the datasets with one peak (Figure 2b and Figure 3a). The average correlation value in the 

contralateral SI is greater than 0.4 for seeds placed in SI for maps created based on both 

LF1 and LF2 in datasets with both peaks (Figure 3a, rats 1-3).  As expected, in rats with 

only the lower peak, correlation is reduced for LF2 (Figure 3a, rats 4-6).  Figure 3b 

shows the average cross-correlation coefficients between all ROIs for LF1 and LF2.  LF2 

generally exhibits lower cross-correlation values, and strong correlation is mostly 

confined to bilateral cortical areas.   
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Figure 2: Connectivity maps created using time-courses filtered to retain LF1 
(middle column) or LF2 (right column).  The left column shows EPI images 
overlaid with seed ROIs. a) Connectivity maps from a rat with two well-
defined spectral peaks.  The seed locations are SI (first row) and SII (second 
row). Stronger correlation and less specificity is observed for LF1 compared 
with LF2. The correlation maps are less dependent upon the seed location for 
LF1. b) Connectivity maps from a rat with a single spectral peak.  LF1 
connectivity maps show strong correlation throughout the cortex that is 
relatively insensitive to the location of the seed, similar to a. The LF2 peak is 
more specific but less bilateral connectivity is observed than for the dataset 
with two peaks. 
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Figure 3: a) Average correlation in the region of interest (ROI) defined in the contralateral SI for a 
seed placed in SI: Rats 1-3 showed two clear peaks. Stronger correlation is observed for LF1 for all 
the datasets. b)  Correlation matrix for average time-courses for different lcoations:Overall, stronger 
correlation is observed for LF1 c) and d) Number of voxels with correlation coefficient > 0.5 for seeds 
placed in SI and SII: Pixels crossing the threshold are restricted to the somatosensory cortex for LF2, 
whereas pixels crossing the threshold are distributed between SI, SII and CP for LF1. Also, the extent 
of the correlation in cortex and CP does not vary with the cortical seed location for LF1 (maximum 
difference < 2 voxels for seeds placed in SI and SII) e)   Number of voxels with correlation coefficient 
> 0.5 for seed placed CP: No pixels in SI and SII show correlation > 0.5 for LF2, whereas the pixels 
crossing the threshold are distributed between SI, SII and CP for LF1  
Please note that only three datasets showing the two peaks were used for the results shown in figure 3. 
Inclusion of the remaining 3 datasets yields qualitatively similar results. 



 23

 To better quantify the specificity of each peak, the number of voxels with cross-

correlation values of greater than 0.5 were measured in anatomically drawn ROIs in SI, 

SII, and CP.  Figure 3c-d shows that LF1 maps are relatively independent of cortical seed 

location, as compared with LF2. The average number of voxels with cross correlation 

greater than 0.5 in different regions shows much smaller variability for LF1 compared 

with LF2 for seeds placed in SI and SII. The maximum difference between voxels 

crossing the threshold (0.5) for seeds placed in SI and SII is less than 2 voxels for LF1 

and approximately 29 voxels for LF2.  The high magnitude of error bars seen in Figure 

3c-e is due to variability in the number of voxels in different areas across rats because of 

variation in slice orientation. Correlation values observed for LF1 were in general higher 

in comparison with those obtained for LF2 (Figure 3a-b).   

As seen in Figure 3c and d, very few voxels in CP (less than 1, on average) have 

the LF2 cross correlation values above 0.5 for seeds placed in SI and SII. Also, no voxels 

in SI and SII showed LF2 correlation coefficient above 0.5 for seeds placed in CP. In 

contrast, correlation coefficients for both cortical and subcortical pixels crossed this 

threshold for the same seeds for LF1. These observations suggest that LF2 correlation 

maps are more specific to the networks in which the seed is placed, in agreement with 

previous work that identified separate, well-delineated networks in SI and CP (Zhao, 

Zhao et al. 2008) 

Spatiotemporal Dynamics 

Image by image visualization of LF2 signal (from the rats exhibiting two clear 

peaks) revealed consistent, well-organized spatiotemporal patterns.  The most prominent 

pattern, that was observed in all the datasets, is displayed in Figure 4a-b. This pattern 
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looks like a propagating wave, with high signal intensities starting from SII and traveling 

along the cortex. Intensity fluctuations were approximately 2-4%. The waves were 

bilateral in most cases, but unilateral propagation was occasionally observed. The travel 

time of the waves from SII to MI was consistent across rats, based upon visual inspection 

(mean = 4.7s, standard deviation = 0.4, 0.9 and 0.8 respectively). The waves were not 

uniformly distributed in time but tended to occur in clusters (Figure 5). No organized 

patterns were seen when 0.08-0.2 Hz component was visualized in the same way for the 

datasets with one peak only. The most prominent pattern for the LF1 signal, in contrast, 

was a slow change in intensity throughout the whole brain, moving from the surface to 

the center (Figure 4c).  Movies that more clearly show these spatiotemporal dynamics for 

two different rats are available online as supplementary material (Movies 1 and 2). 

Application of the same method to the respiratory and cardiac signals revealed 

different patterns, primarily involving large vessels and areas near the ventricles Figure 

6a-b. No organized patterns were detectable in the datasets obtained from the dead rat 

Figure 6c. Movies showing dynamics of respiratory and cardiac noise are available online 

as supplementary material (Movies 3 and 4). 
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Figure 4: Spatiotemporal dynamics for LF2 and LF1 peaks.  a) Propagating waves were observed in the 
datasets filtered to retain LF2.  A bilateral wave of low signal intensity in SI moves medially as areas of 
high intensity arise in SII (2.5-3 s after the start of the sequence).  The wave of high intensity moves 
medially and the cycle begins again with the appearance of bilateral areas of low intensity in SII (6.5 s).  
b)  Waves observed in the LF2-filtered data in another rat.  The pattern of propagation is similar to a.   
c) LF1 shows completely different propagation patterns.  The most prominent pattern was a slow 
propagation of signal intensity from the surface of the brain inward. The pattern moves through layers 
and does not show functional specificity.  No cortical waves similar to those shown in a and b were 
observed.  
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Summary and Discussion 

Two low frequency peaks (LF1 and LF2) were detected in high spatial and 

temporal resolution rat data. The peaks exhibit different functional connectivity patterns 

and spatiotemporal characteristics. In this experiment, both the spectral resolution and the 

sampling rate were higher than in typical human studies, providing clear separation of the 

low frequency peaks and preventing aliasing of first harmonics of the cardiac or 

respiratory cycles.  

It is interesting to note that LF2 is not observed as a well-separated peak in 3 of 

the datasets. However, some LF2 connectivity is also observed in the datasets with only 

one peak, suggesting presence of some LF2 signal (Figures 2 and 3). This weak presence 

might be reflected as broadening of the LF1 peak (Figure 1b). The short repetition time 

used in this study to avoid aliasing of the primary cardiac component results in a low 

signal-to-noise ratio, which may limit our ability to detect and separate the two peaks.  

 
 
 
Figure 5: Temporal pattern of occurrence of the waves: Plot of the 
occurrence of waves (after filtering the data to retain LF2) for all three rats 
that exhibited a clear LF2 peak is shown. The waves appear to occur in 
groups. Alternate waves are colored differently in order to separate 
consecutive occurrences. The duration of the waves is defined as the time 
required for the high intensity to travel from SII to MI. 
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This study was also limited by the small number of animals (n=6), imaged on a different 

MRI system than the one currently in use.    

 The properties of spatiotemporal events observed in the data, when combined 

with multimodality data and information about different factors contributing to the 

BOLD signal, might provide clues to the origin of the LFFs. In addition, if and when 

neural origin of LFFs is confirmed, such techniques would provide us with a convenient 

and non-invasive method of probing the transient aspects of resting brain under normal 

and pathological conditions. 
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Figure 6: Spatiotemporal dynamics related to physiological or scanner noise.  No patterns of cortical 
waves similar to those shown in 4a and b were observed.  a) Contribution from the primary cardiac 
peak.  The only clear pattern forms around the draining veins along the surface of the cortex (pointed by 
white arrow), which alternately brighten and darken. b) Contribution from the primary respiratory peak.   
Periodic changes in signal intensity are apparent in the draining veins along the surface (white arrow) 
and the areas near the ventricles (red arrow).  Interestingly, these changes are out of phase. c) 
Contribution of LF2 frequency range in the dead rat. No specific patterns can be detected, indicating 
that scanner noise is not the source of the waves. d and e) Time courses for respiratory and cardiac 
contributions. Respiratory contributions from ventricles and draining veins have different phases. The 
time-courses were normalized to unit variance before plotting.
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CHAPTER 3 

AUTOMATIC DETECTION OF SPATIOTEMPORAL PATTERNS 

 

 Our preliminary exploration of the spatiotemporal patterns of spontaneous BOLD 

fluctuations was based purely on visual inspection (Chapter 2). The amplitude of the low 

frequency BOLD fluctuations is small, typically ~1-2%, and visual detection of the 

patterns is limited by signal to noise ratio (SNR), and thus it is possible that patterns may 

be obscured in the presence of noise. A novel approach for detection of repeated 

spatiotemporal patterns is presented in this chapter.  

Preprocessing 

The data is preprocessed prior to the application of the algorithm. The essential 

preprocessing steps include temporal filtering and normalization of each time-course to 

unit variance. Temporal filtering is necessary in order to increase the effective SNR by 

removing the frequency components that might not be of interest (e.g. respiratory and 

cardiac cycles) while retaining the LFFs. The time-courses are normalized to unit 

variance in order to make sure that no patterns are left undetected merely due to low 

amplitude of the fluctuations in a given area. As a side effect of normalization to unit 

variance, intrinsic weighting of the results towards the areas comprising fluctuations with 

high variance is no longer preserved.. Other preprocessing steps (spatial blurring, and 

spatial normalization to a standard image space and removal of nuisance signals 

including motion parameters and signals from whole brain, white matter and CSF ) may 

also be applied, but are not necessary. 



 30

The Algorithm 

To improve on the original approach of visual inspection described in Chapter 2, 

an algorithm was developed to identify recurring spatiotemporal patterns in the data 

without user input, using a random starting location and an iterative, correlation-based 

approach (Figure 7). A template, consisting of several consecutive preprocessed images 

is created with a random starting image (Figure 7a). Sliding correlation of the template 

with the preprocessed image series is obtained in order to locate the segments of images 

in the image series that are similar to the template (Figure 7b-c). The segments are 

averaged to obtain a new template (Figure 7d) and the process is repeated until the further 

iterations do not result in any modification in the template. If a spatiotemporal pattern 

occurs repeatedly and is captured by the initial template, it is possible to obtain high SNR 

approximation of the pattern using this approach. The detailed description of the 

algorithm is given below (summarized in Figure 7):      

  

1. An initial guess about the duration of spatiotemporal patterns to be detected is chosen, 

termed window length (WL). WL can be based upon the duration of events observed 

visually. For example, the initial WL for the rats was chosen based on the duration of the 

patterns seen in our previous work presented in Chapter 2, also reported in (Majeed, 

Magnuson et al. 2009). Alternatively, different experimental values of WL can be used in 

order to explore spatiotemporal events with different time scales in the data. 
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Figure 7: Algorithm for automatic detection of dynamic patterns. a) A chunk of consecutive images 
starting at a random time is selected from the filtered image series to serve as template. b) Sliding 
correlation between the filtered image series and the template is obtained. c) Peaks are detected in the 
thresholded sliding correlation. d) Chunks of images corresponding to the peaks correlation values are 
averaged in order to obtain updated template. Steps b to d are repeated until the template does not 
change for two successive iterations (cc > 0.9999). 

2. A random image in the preprocessed image series is chosen as a starting point for the 

template time-series (Figure 7a). The time location corresponding to the starting point is 

termed q and referred to as the “seed time-point” later in the text. A template is 

essentially a series of consecutive images, with its duration equal to WL 

. 

)1,,,(),,,( −+= qnzyxInzyxT               WLn ≤≤1  

 

3. Sliding correlation r (n) between the preprocessed image series I (x, y, z, k) and 

template T (x, y, z, k) is obtained (Figure 7b) using following equation (Ns represents 

number of voxels in the ROI): 
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r (n) represents sliding correlation at temporal delay equal to n images. S is the set of 

spatial coordinates (x, y, z) belonging to the region of interest (ROI) chosen for 

spatiotemporal analysis. I (x, y, z, k) and T (x, y, z, k) represent intensity values of the 

preprocessed image series and template respectively at spatial location (x, y, z) in the kth 

image of the corresponding image series. 

 

4. Time values corresponding to local maxima of r (n) are obtained (Figure 7c). An array 

v with length p consisting of time-values for which local maxima are greater than a 

correlation threshold, is created.  

 

5. The template is updated by averaging the segments of images corresponding to local 

maxima, using the following expression (Figure 7d): 
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6. Steps 1-5 are repeated until r (n) does not change for two successive iterations (cc 

(correlation coefficient) > 0.9999).  

The value of correlation threshold can be modified during the iterations. For this 

study, lower threshold value (0.1) was chosen for the initial 3 steps, followed by higher 

value (0.2) for the subsequent steps.  
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The final template obtained after convergence is used as the representative 

spatiotemporal pattern, and peaks in the thresholded final sliding correlation time-course 

indicate occurrence times for the pattern. After the convergent correlation time-course is 

obtained, templates with expanded window length (WL’) can be obtained by averaging 

the segments of images centered on the peaks in the thresholded correlation time-course 

in order to visualize any significant averaging outside the window chosen for the 

analysis. Although the voxels outside the ROI are not used for calculating and optimizing 

the sliding correlation, the final template can be obtained by including the whole image in 

the final averaging process (Figure 7d). 

Validation of the Algorithm 

In this section, the algorithm is validated by applying it to 1) data containing 

visually detectable propagating waves, as described in Chapter 2; 2) data from a dead rat. 

It is demonstrated that the algorithm detects the pattern that can be visually observed in 

the data. Further, no functionally specific pattern is observed for data obtained from a 

dead rat. 

Application on Data with a Known Pattern 

As shown in Chapter 2, propagating waves can be visually observed from lateral-

medial direction in the rat cortex. The algorithm for pattern detection was applied to the 

same data (100ms TR, 20ms TR, 3600 repetitions, 0.08-0.2 Hz filter) in order to see if the 

visually observable pattern could be detected using the automatic detection algorithm 

(ROI placed in the cortex). Figure 8 shows eight frames from the template obtained from 

one of the rats (window length = 9s). This demonstrates that the visually observable 

lateral to medial propagation of intensity can be detected using the algorithm. The same 
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pattern was detected for all the rats, based upon visual inspection of the templates. 

Propagation of intensity from lateral to medial areas of the cortex was used as the 

criterion for detecting presence of the pattern. 

Application on Data from a Dead Rat 

The method was applied on the data obtained from a dead rat (100ms TR, 20ms 

TR, 3600 repetitions). As expected, the detected pattern did not show any functional 

specificity and consisted of global changes in intensity (Figure 9).  

 
 
Figure 8: Automatically detected spatiotemporal pattern for an α-chloralose anesthetized rat. The figure 
shows eight frames from the final template obtained using the algorithm for detection of spatiotemporal 
patterns.  Consistent with visually detected pattern reported in the Chapter 2, a wave of high intensity 
originates in SII (0s) and propagates in medial direction.   
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Summary and Discussion 

In this chapter, a novel pattern finding algorithm is presented for detecting 

spatiotemporal patterns in spontaneous BOLD fluctuations. The method generates a high 

SNR approximation of the pattern captured by initial template (a chunk of images starting 

at a random time) by finding its matches throughout the image series and averaging them. 

As reported in Chapter 2, visually detectable propagating waves were observed in filtered 

and normalized data obtained from α-chloralose anesthetized rats. The automatic 

detection algorithm successfully detected the visually observable pattern, demonstrating 

that the method is sensitive to the patterns present in the data, and the final template 

provides a faithful representation of the original pattern present in the data. Additionally, 

no specific patterns were detected in the data obtained from the dead rat, which suggests 

that the propagation pattern detected by the method may not be attributed to the scanner 

noise. The lateral to medial propagation was visually detectable only in 3 out of 6 

 
Figure 9: Automatically detected spatiotemporal pattern for a dead rat. As expected, the pattern 
detected in the data obtained from a dead is not functionally specific and consists of global changes in 
intensity. 
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datasets presented in Chapter 2. LF2 did not appear as a distinct peak in the 3 rats which 

did not show the propagation pattern. We re-analyzed that data using the pattern detection 

approach used in this study (0.08-0.2 Hz filter) and were able to detect the propagation 

pattern in the three datasets for which the pattern was not visually detectable (Movie 5). 

This highlights the improved detection sensitivity achieved by this method, compared 

with visual detection and suggests the presence of some LF2 contribution in those 3 rats, 

even though LF2 peak was not clearly observed visually. Application of the algorithm on 

phase-randomized data did not result in any functionally specific patterns for all the rats. 

As described earlier, the method utilizes two pre-defined parameters, namely 

window length and seed time-point. The effect of variation in those parameters is 

characterized separately for human and rat data in the later sections. Also, the ways in 

which the algorithm can be used for exploratory analysis are also discussed. 
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CHAPTER 4 

AUTOMATIC DETECTION OF SPATIOTEMPORAL PATTERNS 

IN MULTISLICE RAT DATA 

 

The previous study examined only single slice data, so that analysis was restricted 

to a single coronal plane.  Three-dimensional data is necessary to characterize the true 

direction of propagation, which may contain significant through-plane components. A TR 

of 100ms was used in the experiment described in Chapter 2. However, acquisition of 

multislice data requires more frequent switching of gradients between the repetitions, and 

therefore a longer TR is required in order to avoid gradient overheating. In this chapter, 

detection of spatiotemporal patterns in multislice rat data with 500 ms TR is described. 

Also, dependence of results on initial parameters (window length, seed time-point) is 

investigated to estimate the robustness of the method. 

Materials and Methods 

Animal Preparation 

All experiments were performed in compliance with guidelines set by the Emory 

University Institutional Animal Care and Use Committee (IACUC). Eight rats were 

initially anesthetized with 5% isoflurane and maintained at 2% isoflurane during 

preparation for imaging. Two needle electrodes were inserted just under the skin of each 

forepaw, one between digits 1 and 2, and the other between digits 2 and 3. The rat was 

given a bolus of medetomidine (0.05 mg/kg) and isoflurane was discontinued. Anesthesia 

was maintained with a constant medetomidine infusion rate (0.1 mg/kg/hr). The rat was 
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placed on a heated water pad while in the magnet to maintain body temperature at 37º C. 

Each animal was secured in a head holder with ear bars and a bite bar to prevent head 

motion and was strapped to a plastic cradle. Heart rate and blood oxygen level were 

continuously monitored during the experiment. 

Animal Imaging 

All images were acquired with a 9.4T / 20 cm horizontal bore BRUKER magnet, 

interfaced to an AVANCE console (Bruker, Billerica, MA) and equipped with a gradient 

set capable of providing 20 G/cm with a rise time of 120 µs. A two-coil actively 

decoupled imaging setup was used (2 cm diameter surface coil for reception and 7 cm 

diameter volume coil for transmission; Bruker, Billerica, MA) to achieve maximal SNR 

over the cortical areas of interest. Scout images were acquired in three planes with a 

FLASH sequence to determine appropriate positioning for the fMRI study. A gradient-

echo EPI sequence (64 × 64 matrix, echo time (TE) 15-20 ms, repetition time (TR) 1.5 

sec, field of view 2.56 cm × 2.56 cm) was used to acquire a series of images during 

forepaw stimulation in order to locate the slice containing the forepaw region of the 

primary somatosensory cortex (SI). A block design stimulation paradigm was used, 

consisting of alternating rest and stimulation blocks (4 mA current, 300 μs pulses 

repeated at 9 Hz, 30 TRs on, 30 TRs off). The slice containing the forepaw region of SI 

was used as a reference for slice placement for functional connectivity scans. Functional 

connectivity data were acquired with gradient echo EPI with following parameters: TR 

500 ms, TE 20 ms, field of view 1.92 cm × 1.92 cm or 2.56 cm × 2.56 cm, 4 slices with 

2mm thickness, 1200 repetitions. No stimulation was given during functional 

connectivity scans. 
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Data Processing 

Rat datasets were analyzed separately for each subject. Preprocessing steps 

included motion correction, temporal filtering (0.08-0.2 Hz), spatial blurring and 

quadratic detrending. The algorithm described in Chapter 3 was applied on each dataset 

with manually chosen ROIs placed in 1) entire brain, 2) entire cortex, and 3) caudate-

putamen (CP). Group analysis was not performed because inter-subject registration was 

not possible due to limited number of slices. Therefore, qualitative comparison was used 

for assessing reproducibility across the subjects. Consistency of some timing parameters 

(described later) was also evaluated in order to assess the reproducibility.. 

In order to test sensitivity of the algorithm on the pre-defined parameters, the 

algorithm was repeated with 1) different values of window length (WL) and 2) different 

values of seed-time point q. The results with different initial parameters were compared. 

In order to compare the templates, sliding correlation was obtained between the templates 

(WL’ = 3WL, maximum lag = WL) and the maximum value of the sliding correlation 

was used as the similarity measure between the templates (termed as optimal correlation). 

Sliding correlation time-courses were compared using the same approach. In addition, the 

method was applied on phase-randomized data from a living rat. The phase-randomized 

data consisted of time-courses with magnitude spectra identical to those of the data from 

a living rat, but randomized phase spectra. The following procedure was applied to 

individual time-courses from the living rat in order to randomize the phases: 

 
1. The discrete Fourier transformation G  was obtained for a given time-course g , 

where G  and g  have the same length. 
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2. A random time-course h  was generated using MATLAB with its length equal to 

the original time-course, and its discrete Fourier transform H  was obtained. 

3. The Fourier transformation W  of the phase-randomized time-course w  was 

obtained using the following expression: 
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4. The phase randomized time-course w  was obtained by taking the inverse Fourier 

transformation of W . 

                                                 [ ]WFw 1−=  

Results  

 In all rats, forepaw stimulation resulted in activation in the contralateral 

SI. The slice showing maximum activation was used as a reference for slice placement 

for the resting state studies. Figure 10a shows five frames of a typical template obtained 

with the ROI comprising the whole brain from one of the rat datasets. A window length 

of 9 s was used for the rat datasets unless otherwise noted, which is nearly twice the 

propagation time (4.7 s – defined as the time required for the high intensity signal to 

travel from SII to primary motor cortex) for the waves reported in Chapter 2 and 

(Majeed, Magnuson et al. 2009), in order to include the negative part of the cycle. 

Propagation of high intensity from lateral to medial areas is observed in the slices 

containing sensorimotor cortex (two most anterior slices), confirming the result reported  
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Figure 10: Templates and sliding correlation time-courses for one rat. a) Five frames from a 
template obtained with an ROI covering the whole brain are shown. A propagating wave of high 
intensity can be observed in all the slices, followed by a propagating wave of low intensity in the 
same direction. The second frame (1.5 s) shows the onset of the waves, marked by increased 
intensity in the lateral cortical areas. The later frames show the propagation of the high intensity 
towards the medial areas, followed by a wave of low intensity in the same direction. b) The 
propagation pattern with an ROI covering just the cortex is almost identical to that obtained with the 
ROI covering the whole brain. The templates obtained with either ROI are highly correlated (cc = 
0.87±0.11, averaged over all the rats). c) The spatiotemporal pattern obtained with CP-based ROI 
shows alternation of positive and negative signal intensities in CP. The increase in BOLD signal is 
focal in the beginning (0 s) and expands to fill the entire CP. d) Sliding correlation with respective 
templates for 3 different ROIs. Peaks in the sliding correlation time-course occur at nearly identical 
time-points for the ROIs covering whole brain and cortex. The correlation time-courses for CP and 
the other ROIs are sometimes well-aligned, while at other times they are out of phase.   
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in Chapter 2 and (Majeed, Magnuson et al. 2009) with a different type of anesthesia and 

lower field strength. In addition, similar waves with similar durations are observed in 

more posterior slices containing parietal association area and visual cortex. The waves 

can be observed for 7 of 8 rats (Movie 6). Visual inspection of the templates was used to 

determine whether the pattern was present.. The only rat dataset not showing this pattern 

(Rat 5) shows a pattern caused by an imaging artifact (Movie 6). Time-courses from the 

template were obtained from manually drawn ROIs in the most lateral and most medial 

areas in the second most frontal slice, which contains sensorimotor regions. The time gap 

between the transition from negative to positive signal in the most lateral area and 

transition from positive to negative in the most medial area was defined as the 

propagation time of the wave. This time averaged 4.8±0.92 s, which is in agreement with 

the results reported in Chapter 2 and (Majeed, Magnuson et al. 2009). An almost identical 

pattern (average optimal cc between the templates with either ROI = 0.87±0.11) is 

detected when an ROI comprising the cortex rather than the whole brain is used for the 

analysis (Figure 10b, Movie 7). The pattern (defined as visually observable propagation 

of intensity from the lateral to medial direction in the final template) can be reproducibly 

observed for all the rats (Movie 7). Half cycle durations (the time between successive 

positive and negative peaks in the time-course from template for a given region) were 

recorded to be 3.8±0.42 s and 3.44±0.42 s for ROIs drawn in left and right SI 

respectively. The speed of propagation of the peak intensity was also measured in the 

sensorimotor cortex (second most frontal slice). A piecewise linear curve was manually 

drawn through the middle of the cortex, and the length of the curve was divided by the 

time-interval between peak intensities in voxels corresponding to the ends of the curve. 
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The average speed of propagation of the intensity peak was measured to be 4.0±1.34  

mm/s. High variability in the calculated speed can be attributed to long sampling time 

(which reduces temporal precision) as well as inaccuracies in the distance computation 

due to finite voxel size, distortion and manual delineation of the path of travel. 

Figure 10c shows the template obtained from a ROI placed in left and right CP. 

The main feature of this pattern is an alternation between high and low intensities in 

bilateral CP. The durations of the half cycle in left and right CP (time between 

consecutive positive and negative peaks averaged over all the rats for manually defined 

ROIs in CP) were 3.31±0.26 s and 3.38±0.23 s respectively, similar to the length of the 

half cycle in SI. Notably, high signal intensity is observed for some cortical areas even 

though the intensities from the cortex were not used for determining the segments of 

images that were averaged. In some other cases, the cortex shows low intensity in the 

averaged template (Movie 8). The pattern was observed in all 8 datasets, based upon 

visual inspection of the templates (Movie 8).   

The sliding correlation time-course shows multiple peaks crossing the threshold 

(0.2) for all the ROIs, which suggests that the spatiotemporal patterns corresponding to 

their respective template are repeated several times during the length of the scan (Figure 

10d). Average peak-to-peak interval values for the ROIs comprising the whole brain, 

cortex and CP are 10.22±1.45 s, 8.61±1.15 s and 8.02±0.47 s respectively (sub-threshold 

peaks were not included). As shown in Figure 10d, the correlation patterns for the whole 

brain and cortical ROI are almost identical, as expected from the similarity between the 

corresponding templates.  However, the timing of occurrence of the peaks is different for 

the templates with ROIs placed in cortex and CP as shown in Figure 10d. Consequently, 
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the templates obtained with CP-based ROIs show lower optimal correlation with the 

templates based on the other ROIs (whole brain vs. CP: 0.57±0.14, CP vs. cortex: 

0.56±0.13), compared with the correlation between the whole brain and cortex-based 

templates (0.87±0.11).  As can be seen in Figure 10d, the sliding correlation time-courses 

for cortical ROIs and CP ROIs are sometimes well-aligned, while at other times they are 

out of phase.  Our preliminary findings suggest that the low frequency spectrum of the 

signal from CP is shifted towards higher frequency, compared with the cortex 

(unpublished findings). Therefore, it is not surprising to observe inconsistent synchrony 

between the dynamic patterns obtained from these areas. The inconsistent synchrony may 

account for the inclusion of some cortical areas in the CP templates, depending on which 

part of the cortical cycle is most commonly aligned with the CP cycle over the duration 

of the scan. 

 Although it was not possible to register all the brains due to differences in slice 

geometry, three datasets with the most similar orientations were registered together using 

AFNI (Cox 1996), and their templates were aligned in time and displayed as a movie 

(Movie 9). The visual comparison between the three templates demonstrates consistency 

of the results across the rats.  

In order to assess the reproducibility of the method, the results obtained with 

different window lengths and seed time-points were compared. Dependence upon seed 

time-point would suggest either sparseness of the patterns in time, or dominance of 

different patterns at different times. Dependence on window length might suggest 

presence of multiple patterns with different durations in the data. Alternatively, the 

method might be sensitive to the accuracy of the initial guess about the duration of the 
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pattern to be detected, thus making the results dependent upon the window length. Figure 

11a shows the pair-wise optimum correlation between the sliding correlation time-

courses obtained with different window lengths, averaged over all the datasets (ROI 

comprising the cortex). The correlation time-courses were used for comparison instead of 

the templates due to unequal lengths of the templates. The time-courses are very similar 

 
 
 
Figure 11: Sensitivity to the initial parameters for rat data. a) Pairwise optimal 
correlation between the sliding correlation time-courses with different window 
lengths (averaged over 8 rats). The time-courses are very similar for a wide 
range of window lengths as indicated by high correlation values between the 
templates with different window lengths, suggesting that it is not necessary to 
have accurate a priori knowledge of the temporal extent of the patterns to be 
detected. b) Sliding correlation time-courses with different window lengths for 
one rat. Consistent with figure 3a, the time-courses are very similar for a wide 
range of window lengths. 
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for a wide range of WL (cc > 0.7 for the window lengths ranging from 9 to 36 TRs), 

implying that the method is relatively insensitive to the variation in WL. Figure 11b 

shows sliding correlation time-courses for 5 different window lengths for one of the rats. 

The time-courses are very similar for all 5 window lengths. Pairwise correlation values 

(between the templates obtained using an ROI covering the whole brain) at optimum 

delay were obtained for 10 different randomly selected seed time-points for all datasets. 

The average optimal correlation value of 0.86±0.1 (averaged over all the rats and 40 

pairwise comparisons per rat) was obtained, demonstrating the insensitivity of the method 

to the seed time-point for the pattern obtained with an ROI placed in the rat cortex. 

Figure 12shows a template and plot of sliding correlation for phase-randomized 

data with the ROI covering the whole brain. No organized patterns can be seen in the 

template (Figure 12a). The sliding correlation function shows some high peaks in vicinity 

of the seed time-point (Figure 12b). The amplitude of the peaks rapidly decays to values 

close to zero (< 0.1), which suggests that no repeated dynamic patterns are present in the 

phase-randomized data. 

Summary and Discussion 

The propagating waves that we detected in rats are are visually similar to those 

identified previously through visual observation, as described in Chapter 2, suggesting 

that the waves can be detected reproducibly for different field strengths, TRs and at least 

two different anesthesias. Additionally, multislice acquisition used in this study made it 

possible to detect any anterior-posterior component of the wave propagation. Our results 

suggest that the wave propagation takes place primarily in the lateral to medial direction. 

Also, the spatiotemporal pattern involves simultaneous propagation in multiple slices 
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ranging from SI to visual cortex. This observation suggests that the underlying 

neurovascular event for this pattern either involves long range interaction between the 

functional modalities, or is caused by a common source of input or generator (e.g. 

 
 
 
Figure 12: Template and sliding correlation obtained from a phase 
randomized dataset (dataset with same magnitude spectrum as that of a real 
dataset, but randomized phases): a) Five frames from the template. No 
specific patterns can be observed. b) Sliding correlation time-course for the 
phase-randomized data. The time-course shows high peaks at the time-
points only in the vicinity of the seed time-point. Peaks near the seed time-
point are expected because the data is temporally smoothed due to filtering. 
These results suggest that the patterns shown in previous figures are not 
likely to occur by chance. 



 48

thalamus). Further experimentation with disruption of activity in the candidates for the 

possible driver will be needed to make any conclusions in this regard. 

 The work on rats presented in Chapter 2 utilized a 100 ms TR which guaranteed 

separation of respiratory and cardiac noise in frequency domain (Majeed, Magnuson et al. 

2009). A longer TR (500 ms) was used in this study in order to obtain multislice datasets. 

Therefore, the first harmonics of respiratory and cardiac noise are aliased into 0-1 Hz 

range. The typical respiration rate for this study was ~70-80 cycles/minute. However, 

even frequencies as high as 100 cycles/minute are  aliased no lower than 0.33 Hz in the 

sampled signal, suggesting that respiratory noise is mostly removed by the low-pass 

filter. Cardiac noise has a much higher frequency and may be aliased into 0-0.2 Hz range. 

Since the propagation patterns observed in this study are identical to those observed in 

(Majeed, Magnuson et al. 2009), cardiac noise does not seem to limit the detection of this 

particular pattern in the data. This is supported by the fact that the cardiac noise is mainly 

localized to the surface of brains near the draining veins, or base of the brain (Majeed, 

Magnuson et al. 2009; Williams, Magnuson et al. in press).   

The results showed little dependence on initial parameters. Lack of dependence 

on seed time-point may be attributed to frequent occurrences of the patterns. It may also 

be attributed to the presence of only one dominant pattern (with higher SNR or greater 

spatial coverage) in the ROI, which may obscure the less dominant patterns. 

Independence on window length suggests that it is no essential to have accurate a priori 

knowledge about the actual length of the patterns. 
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CHAPTER 5 

AUTOMATIC DETECTION OF SPATIOTEMPORAL PATTERNS 

IN HUMAN DATA  

 

In this chapter, detection of multiple spatiotemporal patterns in human data is 

described. Two patterns with different durations are detected and are likely to correspond 

to two different frequency contributions to LFFs. The dependence of the results on initial 

parameters is also explored. Our results indicate that the patterns of propagating intensity 

are not limited to anesthetized rats, and can be seen in humans without the use of 

anesthesia. 

Methods 

Imaging 

Two groups of human subjects were scanned for this study. The data from the 

first group was acquired with a short TR (300 ms) to minimize the effects of aliasing of 

physiological noise and achieve better temporal resolution, while the data from the 

second group was acquired with long TR (1.5 s) to allow whole brain coverage and inter-

subject registration. Imaging was performed on a 3T Siemens scanner using a birdcage 

head coil. Experiments were conducted according to the Georgia Institute of 

Technology/Emory University Institutional Review Board (IRB) guidelines approval. 

The subjects were asked to lie quietly in the scanner with their eyes closed. Anatomical 

scout scans were acquired in the three orthogonal planes and were used for placement of 

the slices for the functional scans. 
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 Group 1 

 Two runs of EPI image series were acquired from six healthy volunteers (19-22 

year old; 3 male, 3 female) with the following parameters: 300 ms TR, 30 ms TE, 3.44 

mm × 3.44 mm in-plane resolution, 1600 repetitions, four 5 mm thick horizontal slices 

(parallel to the line joining anterior and posterior commissures).  

Group 2  

A single run of EPI image series per subject was acquired with whole brain 

coverage from 14 healthy volunteers (32-66 year old, 3 male, 11 female), using the 

following parameters: 1500 ms TR, 30 ms TE, 3 mm × 3 mm in-plane resolution, 276 

repetitions, 28 horizontal slices with 4 mm thickness. 

Processing 

All analyses were performed using Matlab (MathWorks, Natick, MA) unless 

otherwise noted. The processing steps described below were performed on all the datasets 

unless specified otherwise. Slice-timing correction and motion correction were performed 

on all the datasets using AFNI (Cox 1996). Gray matter, white matter and cerebrospinal 

fluid (CSF) masks were obtained for the human data using Statistical Parametric 

Mapping (SPM8) software (Wellcome Department of Cognitive Neurology, London, 

UK). Group 2 human datasets (TR = 1.5 s, whole-brain coverage) were spatially 

normalized to match the MNI template and resampled to the final voxel size of 3 × 3 × 3 

mm3 using SPM8. A 3D Gaussian kernel (FWHM = 6 mm) was utilized to smooth the 

Group 2 human data using SPM8. In-plane blurring was performed for the rest of the 

datasets with a 3 × 3 Gaussian kernel with σ = 2 pixels.  The time-course from each voxel 
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was band-pass filtered using FIR filters (0.01-0.08 Hz. Transient time-points were 

discarded before and after filtering in order to discard transient effects of data acquisition 

and filtering respectively. Resultant time-courses were mean subtracted, quadratically 

detrended and normalized to unit variance. Signals from whole brain, CSF and white 

matter, as well as motion parameters (translation and rotation in 3 dimensions) were 

regressed out for human data in order to minimize effects of motion, physiological noise 

and scanner noise. 

Group 1 human datasets were analyzed separately for each subject. Human data 

were analyzed using the algorithm for detection of spatiotemporal patterns (described in 

Chapter 3) with an ROI comprising the gray matter mask obtained using SPM8. Group 

analysis was not performed for Group 1. Therefore, qualitative comparison was used for 

assessing reproducibility across the subjects. Also, some timing parameters of the 

patterns (discussed later) were compared.  

Whole-brain coverage allowed for group analysis for the Group 2 human data. In 

order to perform group analysis, the preprocessed image series for all the subjects were 

concatenated together. The template was obtained using the concatenated data (with ROI 

covering the entire cortex), while ignoring the peaks in the correlation time-course that 

may have been influenced by the junction between any two datasets. The resultant 

template was resampled (2 × 2 × 2 mm3). Statistical significance of the template in space 

and time was computed as follows: Intensity values for each spatial location and time 

were obtained from the image segments averaged to give the final template. Two-tailed t-

test was used in order to identify the voxels with intensity values significantly different 

from zero at a given time (p < 0.001). Isolated voxels in the significance map were 
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removed by performing erosion followed by dilation (3 × 3 × 3 kernel consisting of 

ones). 

In order to test sensitivity of the algorithm on the pre-defined parameters, the 

algorithm was repeated with 1) different values of WL and 2) different values of seed-

time point q on the Group 1 human data. The results with different initial parameters 

were compared. In order to compare the templates, sliding correlation was obtained 

between the templates (WL’ = 3WL, maximum lag = WL) and the maximum value of the 

sliding correlation was used as the similarity measure between the templates (termed as 

optimal correlation). Sliding correlation time-courses were compared using the same 

approach. 

Additionally, different frequency sub-bands of the LFFs (0.01-0.04 Hz and 0.04-

0.08 Hz) were analyzed separately to detect any spatiotemporal patterns in the respective 

sub-bands. Details of this analysis are described in the results section. 

Results 

Group 1 

Figure 13a shows five frames for the template obtained for a human dataset (TR = 

300 ms, WL = 67 TRs, or ~20 s). Visual inspection of the template reveals switching 

between the two groups of areas: 1) areas comprising default mode network, and 2) 

including sensory and motor areas that have been referred to as the dorsal attention 

network, or task-positive network. These networks have been reported as consistently 

being anti-correlated in human resting state data (Fox, Snyder et al. 2005; Fransson 2006; 

Buckner, Andrews-Hanna et al. 2008).  
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The pattern occurs several times during the course of the scan, as apparent from 

the peaks in the sliding correlation function (Figure 13b). However the peak to peak 

interval ( 26.41±4.35 s, averaged over all the subjects and sessions) is relatively longer 

compared with the patterns observed in rats.  

The robustness of the method against initial parameters was tested using the 

approach used for rats. Correlation time-courses show very little variability for a wide 

range of window lengths (Figure 14a), although relatively low correlation is observed 

 
 
Figure 13: Spatiotemporal patterns and sliding correlation time-courses obtained from a human 
dataset. a) The pattern shows alteration between the default mode and task-positive/attention networks. 
At t = 2 s, the attention network shows high signal and the signal from default mode network is 
reduced. 3rd frame (9 s) shows an intermediate stage between positive and negative signal intensitiy in 
the attention network marked by reduced signal intensity in the attention network. At t = 13.5 s, 
positive intensity in the default mode network and negative intensity in the attention network are 
observed. The signal intensity returns to baseline after some time, as seen in the last frame (18 s). b) 
The sliding correlation time-course shows multiple peaks which are distributed in time, indicating that 
the pattern occurs repeatedly during the course of scanning 
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between the correlation-time-courses obtained using extreme values of window length (5s 

and 40s). However, in contrast with the results obtained for rats, the templates do not 

always show high correlation for different seed time-points with a fixed window length 

(Figure 14b and c). Therefore the template obtained from a given dataset with a fixed 

window length is not unique, which complicates the comparison of the patterns within 

and between the subjects. In order to resolve this issue, templates were obtained from 25 

different seed time-points for each dataset (window length = 67 TRs or ~20 s). The 

 
 
Figure 14: Sensitivity to the initial parameter for human data. a) Pairwise optimal 
correlation between the sliding correlation time-courses with different window 
lengths (averaged over 12 sessions). Correlation time-course for 20 s window 
length is very similar to those obtained from window lengths ranging from 5 s to 
40 s (cc > 0.8). Therefore it is not necessary to have exact knowledge about length 
of the pattern to be detected. However, relatively low correlation is observed 
between longest and shortest window lengths. b) Correlation matrix representing 
pairwise optimal correlation between the templates obtained using 25 random 
starting points for a human dataset. The templates obtained with different seed 
time-points are highly correlated for this dataset. c) Correlation matrix obtained 
from another human dataset (the data points were re-ordered in order to emphasize 
the clusters of similar templates). For this particular dataset, not all the templates 
with random seed-points show high correlation. b and c suggest that depending 
upon the data set, the seed time-point may or may not have an impact on the 
results. 
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templates were clustered based upon the pairwise optimal correlation values using 

hierarchical clustering. The seed time-point corresponding to the “most central” template 

belonging to the biggest cluster was chosen for within and between subject comparison, 

where the “most central” template is defined as the one with the maximum average 

correlation with rest of the templates belonging to the biggest cluster. The seed time-point 

selected using this method resulted in the templates containing the pattern described 

above. The seed-time point for the template displayed in Figure 13 was chosen using the 

same approach. Qualitative comparison suggests that the pattern shown in Figure 13 

(consisting of switching between default mode and task-positive networks) was obtained 

for 11 out of 12 sessions (Movie 10).  Session 1 for subject 6 is the only session for 

which this pattern was not observed (Movie 10). Based upon qualitative comparison, the 

results are reproducible within the subject for 5 out of 6 subjects (subjects 1-5). The 

average optimal correlation between the templates obtained from the two sessions was 

0.3±0.12. Half cycle times for average signals from ROIs drawn in task-positive and 

default mode were 9.6±1.12 s and 9.95±1.0 s respectively (averaged over the 11 sessions 

with consistent spatiotemporal pattern). Speed of propagation was not calculated for 

humans because the propagation path is not clearly defined due to the convoluted cortex. 

The average switching time (defined as the time between positive peak intensities in the 

default mode and task-positive networks) was 10.5±1.45 s (calculated using manually 

drawn ROIs, 11 sessions exhibiting consistent pattern used). 

Group 2 

In order to perform group analysis, the preprocessed image series for all the 

subjects were concatenated together. Clustering of templates with random seed-points 
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was used to select the seed, as described above. The templates for 50 random seed time-

points were obtained (WL = 13 TRs or ~20 s). The templates thus obtained were 

clustered as described above and the most central seed time-point in the biggest cluster 

was used for rest of the analysis. The statistical significance of the template in space and 

time was computed using a t-test in order to identify voxels that showed statistically 

significant positive / negative intensity at a given time, as described in the methods 

section (p < 0.001). Since the data was acquired with whole brain coverage, it was 

possible to visualize the dynamic pattern for other orientations (Figure 15, Movie 11). 

Visual inspection of the template shows alteration between the default mode and anti-

correlated task-positive networks. Close examination, however, reveals propagation of 

intensity from some focal points, especially in the sagittal plane (indicated on Figure 15a 

using white arrows) over several seconds. The first propagation starts with appearance of 

high intensity in parieto-occipital sulcus and fusiform gyrus (Figure 15a, 0s, columns 5 

and 4 from the left). The high intensity propagates to other areas including precuneus, 

cuneus, and visual cortex. The second propagation starts after the first pattern and is 

marked by propagation of negative signal intensity within the prefrontal cortex towards 

more frontal areas (column 5, 3 s). Propagation of negative intensity from the posterior 

cingulate cortex (PCC) to the adjacent areas is also observed (column 7, 3 s). 

Additionally, propagation of high intensity from premotor cortex to more anterior parts of 

the frontal cortex, and probably posterior cingulate cortex (column 7, 6 s) is observed. 

This template is shown with more time-points and slices in Movie 11. ROIs were drawn 

in the default mode network and task-positive network and the switching time (time 

between maximum signal intensities in default mode network and task-positive network) 
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was calculated. The switching time obtained for the template for group data was 10.5 s. 

 
 
Figure 15: Frames from the template obtained using group analysis in three different planes. The 
color bars represent average z-scores for a given voxel at a given time in the template. Switching 
between the task-positive and default mode networks can be observed in all three orientations (a, b, 
c). Closer inspection reveals propagation of signal from focal points to the other brain areas 
(especially in the sagittal plane). The “sources” of the signal propagation are indicated by white 
arrows on figure 7a. Propagation of positive signal change can be seen starting from fusiform 
gyrus and parieto-occipital sulcus (0 s, columns 4 and 5) as well as medial premotor cortex (6 s, 
column 7). The propagation of negative signal change can be seen from the areas including medial 
prefrontal cortex (column 5, 3 s), posterior cingulate cortex (column 7, 3 s). The propagation can 
continue for more than 10 s (e.g. the propagation of positive signal change from premotor cortex). 
A clearer visualization of these propagation patterns can be seen in Movie 6. More investigation 
into finding the significance of such “sources” can provide us a new insight into the origin of the 
low frequency fluctuation.
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Half cycle times for default and task-positive networks had the same value of 10.5 s 

(measured using the approach described earlier). All these measurements are within one 

standard deviation from those obtained from Group 1 data. 

It was impractical to assess inter-subject reproducibility for Group 2 data because 

high SNR templates could not be obtained for individual datasets due to limited number 

of repetitions per dataset. Instead, reproducibility of the detected pattern was assessed for 

smaller subgroups. The templates were obtained for the following subgroups: subjects 1-

5; subjects 6-10; subjects 10-15; subjects 1, 3, 5, 7, 9; subjects 2, 4, 6, 8, 10; and subjects 

6, 8, 10, 12, 14. Thirty  random seed time-points were used for each subgroup and the 

most central template from the biggest cluster was selected for each subgroup for 

comparison with the template obtained using all 14 subjects. The templates obtained for 

the subgroups showed high optimal correlation (0.64±0.13) with the template obtained 

 
 
Figure 16: Sliding correlation time-course for the template obtained from the 
concatenated data (14 subjects). The occurrence of high peaks is not restricted to a 
small window in time, suggesting that the template obtained from the concatenated 
data represents a pattern that occurs reproducibly across the subjects. 
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from all 14 subjects, suggesting that the pattern detected using group analysis is not 

dependent upon the specific set of subjects selected for the analysis. 

This particular pattern detected for 0.01-0.08 Hz component is referred to as 

pattern 1 later in the text. 

 
 
Figure 17: Signals obtained using different filters for 300ms TR 
human data. 0.04-0.08 Hz shows the faster fluctuations (2nd row) 
which are overwhelmed by the 0.01-0.01 Hz contribution (1st 
row) 
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Spatiotemporal Patterns for Sub-bands in LFFs 

Virtually all functional connectivity studies performed on humans utilize a 

frequency range between 0 and 0.1Hz. However, it is possible that there might be 

different contributions in the LFFs which might be separated in frequency domain, as 

suggested by presence of two low frequency peaks with different characteristics in rat 

data. Figure 17 suggests that this point of view may be valid. The plots show signal from 

 
 
Figure 18: Template obtained for  0.04-0.08 Hz component of LFFs for a 
Group1 human subject.  The pattern consists of switching between default and 
task-positive networks, similar to the pattern obtained for 0.01-0.08 Hz 
component. High intensity in task-positive network is seen between 1.5 and 3 
seconds, whereas high intensity in the default mode network is seen between 6 
and 7.5 seconds from the first frame. However, these changes occur at a much 
smaller time-scale compared with the pattern with 20s window length (0.01-0.08 
Hz filter).  
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PCC after application of different filters. 0.01-0.04 Hz component of the signal (Figure 

17, top) provides a good approximation of the slow variations in the LFFs (0.01-0.08 Hz) 

in PCC. However, there are faster oscillations that are not captured by 0.01-0.04 Hz 

signal (e.g. Figure 17, top, ~175s). 0.05-0.08 Hz component of the signal captures those 

faster oscillations, emphasizing the low amplitude details that are otherwise overwhelmed 

by the 0.01-0.04 Hz component. These results suggest that the patterns detected for 0.01-

0.08 Hz might be caused by 0.01-0.05 Hz component of the signal due to its high relative 

amplitude, and it might be interesting to analyze the two sub-bands separately. Figure 18 

shows the pattern observed in 0.04-0.08 Hz component of the signal (~10s window 

length) for Group 1 human data (300 ms TR). This pattern corresponds to the most 

central template belonging to the biggest cluster obtained after clustering the templates 

with 25 different random seed time-points (as described before). Therefore, it 

corresponds to the most robustly detectable pattern in the 0.04-0.08 Hz component of the 

fluctuations. The pattern shows switching between default mode and task-positive 

networks, consistent with that observed in 0.01-0.08 Hz component of the signal. 

However, the time required for switching between the task positive and default mode 

networks (~6s) is much shorter in comparison.  

Group analysis was applied to the whole-brain data using the 0.04-0.08 Hz filter 

and ~10s window length. Preprocessed image series for all the subjects were 

concatenated. Templates obtained using 50 random seed time-points were clustered. 

Figure 19 shows the pattern corresponding most central template for the biggest cluster. 

Consistent with the pattern obtained from 300ms TR data, switching between default and 

attention mode is observed, with a switching time of 6 seconds (the switching time was 
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computed as described in the previous section). In addition shorter switching time, the 

time required for signal to propagate between the brain areas is much shorter, as 

compared with the pattern obtained for 0.01-0.08 Hz component (based upon visual 

assessment). Interestingly, this pattern shows negligible involvement of the visual cortex, 

as opposed to Pattern 1 (0.01-0.08 Hz, ~20s window length), which shows much greater 

involvement of the visual cortex. 0.01-0.05 Hz component of the signal was analyzed in 

similar way with ~20 s window length. The resultant pattern showed high similarity with 

that obtained using 0.01-0.08 Hz component of the signal (cc = 0.75). 

The pattern detected for 0.01-0.04 Hz component is referred to as pattern 2 later 

in the text. 

 
 
    Figure 19: Pattern obtained with 10s window length and 0.04-0.08 Hz component for Group 2 data. 
Propagation of intensity is not as clearly observable as for the pattern with 20s window length (0.01-0.08 Hz 
range) due to much faster switching (switching time of 6s vs 10.5s for the previous pattern). 
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Summary and Discussion 

The work presented in this chapter demonstrates that multiple spatiotemporal 

patterns can be detected in the LFFs in human fMRI data. The patterns are consistent 

within and between the subjects based upon visual assessment and consistency of the 

timing parameters (half-cycle time and switching time) and can be reliably detected using 

single-subject analysis as well as group analysis. The patterns obtained using short 

(300ms) as well as long (1.5s) show switching between the default and task-positive 

network with similar half-cycle and switching times, suggesting that the patterns are not 

likely to be caused by aliasing of physiological noise. 

 The primary pattern obtained using conventional frequency range (0.01-0.08 Hz) 

shows switching between default and attention networks. The group analysis reveals 

propagation of signal intensities from focal starting points. Analysis using multiple 

frequency bands suggested presence of two sub-bands in the signal. The sub-bands were 

analyzed separately, which resulted in detection of a faster propagation pattern. These 

results suggest that multiple spatiotemporal patterns may be present in the overlapping 

brain regions. Future multimodality research as well as behavioral experiment will help 

in establishing the neural and behavioral significance of the patterns.  

Our results are in agreement with the anti-correlation observed between default 

and task-positive networks, e.g. (Fox, Snyder et al. 2005). Therefore, anti-correlated 

changes in the intensity of these networks can be inferred from traditional functional 

connectivity analysis. However, the propagation of the signal, as reported in this chapter, 

may not be detected using traditional analysis. Also, Group analysis suggests that the 
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observed patterns have a finite duration, before or after which no significant BOLD 

activity is observed. Traditional methods cannot reveal such details. 
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CHAPTER 6 

CONTRIBUTION OF THE PATTERNS TO LFFS 

 

As noted in the previous chapters, multiple spatiotemporal patterns can be 

detected in rat and human data. This raises the question of whether contributions of 

different patterns to LFFs can be estimated. Estimation of these contributions can be 

important for several reasons. First, it is possible that different patterns might correspond 

to different processes/neural rhythms and estimation of their contribution to LFFs might 

provide us with a better understanding of brain function in different conditions. Secondly, 

some patterns might be obscured by stronger patterns, and removal of contribution due to 

the stronger patterns may help us detect the weaker pattern.   

Methods for Estimating Contribution of the Patterns to LFFs 

Two approaches to estimate the contribution of a spatiotemporal pattern are 

described in this section. The spatiotemporal pattern is described by the sliding 

correlation )(0 nr  and the final template ),,,(0 nzyxT . Expanded window length  0WL is 

used to obtain ),,,(0 nzyxT . ),,,( nzyxI  represents the preprocessed image series. 

Method 1 

An intuitive way to obtain the contribution of a specific spatiotemporal pattern to 

LFFs would be to identify the peaks in )(0 nr  and to “place” the pattern at the peak 

locations. Mathematically, this operation can be described as convolution, and computed 

as following:  
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),,,( nzyxI approx  represents an approximation of the component of the original 

time-series that can be explained by a particular pattern.  However, it is likely to have 

temporal discontinuities, which should not be present in otherwise low frequency 

fluctuations. Therefore, ),,,( nzyxIapprox  is temporally filtered with a low-pass filter with 

impulse response )(nh to smooth the time-courses and remove any discontinuities/high 

frequency component, followed by detrending: 

 
Figure 20: Method 1 for estimating the contribution of the patterns to LFFs. The method 
is explained for a pattern consisting of a single time-course for simplicity. x-axis 
represents time in all the plots. First, the pattern is convolved with a single consisting of 
impulses at the peak locations in the sliding correlation. The height of the impulses is the 
same as height of the impulses The result of convolution (labeled as unfiltered estimated 
contribution). A low pass filtered is applied to the unfiltered estimated contribution to 
obtain the estimated contribution. 
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),,,(ˆ nzyxI approx , when appropriately scaled, can be used as the approximation of 

contribution of the pattern to the image series: 
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Method 2 

As mentioned before, the Method 1, when used without smoothing the result of 

convolution contains discontinuities. Although filtering can be used to eliminate the 

discontinuities, the specifications of the filter might affect the results. Also, a priori 

knowledge about the corresponding pattern (such as average distance between the peaks, 

estimated frequency range) is needed to design the filter. Approach 1 can be extended 

such that the template is “placed” at every time point after being weighted by the sliding 

correlation value at a given time point. Mathematically, this represents convolution 

between the sliding time-course )(0 nr  with the template ),,,( nzyxT : 

),,,().(),,,(ˆ
00∑ −=

m
approx mnzyxTmrnzyxI  

This approach is similar to that used when reconstructing the signal from wavelet 

coefficients using inverse wavelet transform. The resultant image series does not have 

discontinuities, therefore no temporal smoothing is required.  
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Comparison between the Methods 

Figure 21 shows percentage reduction in the variance of the LFFs after 

subtracting the approximated contribution of the pattern with whole brain ROI (Iapprox) 

 
 
Figure 21: Percentage reduction in variance of LFFs after removing the contribution of 
the spatiotemporal pattern using two different methods. The spatial pattern of reduction of 
the variance after subtracting the estimated contribution is very similar for both methods. 
However, more variance is reduced when the estimated contribution obtained using 
method 2 is subtracted from the preprocessed  image series.  
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from the original preprocessed image series, I. As apparent from the figure, the pattern of 

reduction of variance is almost identical for relatively more intuitive Method 1, and more 

complicated method 2. Method 1 results in smaller reduction in the variance of the LLFs, 

though. This difference might be caused by relative inaccuracy of the Method 1 due to 

filtering used for removing the discontinuities. Method 2 is used for obtaining the results 

described later because it results in smooth approximation of the image series without 

requiring filtering with manually selected parameters. 

Contribution of the Patterns to the LFFs 

Multislice Rat Data 

 
Figure 22 shows reduction in variance of the time-courses in the image series 

caused by subtraction of the contribution of the templates obtained for different ROIs. As 

seen in the first two rows of the figure, the patterns obtained with cortical and whole-

brain ROI contribute towards the variance of LFFs with identical magnitude. However, 

the pattern obtained with an ROI placed is CP primarily contributes towards the 

fluctuations in CP itself. Average percentage reduction in cortex was observed to be 

25.67±5.88% and 5.6±2.04% after regressing out the contribution of templates with ROIs 

placed in cortex and CP respectively. The corresponding values for CP were 7.51±4.36 

and 34.51±13.93 respectively. 
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Human Data 

As described in Chapter 5, two spatiotemporal patterns (referred to as Pattern 1 

and Pattern 2 henceforth) with different time-scales can be detected in single slice as well 

as multislice data. Pattern 1 is the most robustly detectable pattern obtained from the data 

filtered with 0.01-0.08 Hz range using 20 seconds long window length, whereas Pattern 2 

 
 
Figure 22: Percentage reduction in variance after regressing out the contribution of the 
patterns obtained with ROIs placed in the whole brain, cortex and CP. Regression of the 
patterns obtained with cortical and whole brain ROIs results in reduction in the variance of 
fluctuations in the cortex, consistent (rows 1 and 2). Only CP shows strong reduction in the 
magnitude of LFFs when the pattern obtained with CP-based ROI is regressed out (row 3).  
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is detected after limiting frequency contributions to 0.04-0.08 Hz and using 10 seconds 

window length.  

 

Figure 23 shows percentage reduction in variance after removing the contribution 

due to the patterns (p < 0.01). Visually detectable differences in the spatial distribution of 

variance due either pattern are observed. For example, Pattern 2 has greater contributions 

towards the fluctuations in areas including sensorimotor cortex, inferior part of parietal 

cortex and PCC. Pattern 1 shows much greater contributions towards the fluctuations in 

the visual cortex compared with Pattern 2.  

 
 
Figure 23: Reduction in variance after removing the contribution due to different patterns in human 
data. The spatial distribution of reduction in the variance is pattern dependent. For example, 
significant reduction in the variance of LFFs is observed in the visual cortex (encircled on the left 
figure) when pattern 1 is regressed out, but not pattern 2. Removal of contribution due to pattern 2 
results in greater reduction in the variance of fluctuations in the areas comprising default mode 
network e.g. PCC (encircled on the right figure) 
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Figure 24 shows percentage reduction in absolute value of correlation coefficient 

after removing contribution due to each pattern. The maps show less difference in the 

spatial distribution of reduction in correlation coefficient. However, overall greater 

reduction in correlation coefficient is seen after removal of the contribution of Pattern 2. 

Application: Iterative Approach for detecting New Patterns 

Estimation and removal of the spatiotemporal patterns can be used as part of an 

iterative approach for detecting other patterns. This approach can be especially helpful in 

order to detect multiple patterns in the data that might otherwise not be detectable due to 

sub-optimal ROI selection as well as relative dominance of a pattern over the others. It is 

not always possible to know the spatial extent of the patterns to be detected. Therefore it 

is not always possible to select the optimal ROI for pattern detection. Selection of an ROI 

that comprises area containing multiple patterns can result in detection of only the most 

dominant pattern. For example, only cortical propagation pattern is observed for 

multislice rat data when whole brain is used as an ROI (Figure 10a). However, after 

 
Figure 24: Reduction in cross correlation with PCC after regressing out the contribution due to 
different pattern. Greater reduction in correlation coefficient is observed when the contribution of 
pattern 2 is removed.  
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analyzing CP separately, a spatiotemporal pattern specific to CP can be observed (Figure 

10c). This suggests that the cortical pattern is probably the most dominant pattern, and 

therefore may have a much stronger influence on the peaks in sliding correlation, thus 

obscuring the other patterns. One solution to this problem is to remove the contribution of 

already detected patterns and to detect the patterns in the residual data. This process can 

be repeated iteratively in order to detect the patterns that might otherwise not be detected.  

 
 
Figure 25: Five frames from Secondary spatiotemporal pattern in the rat cortex.  
This was obtained after regressing out the contribution of the previous pattern 
obtained with cortical ROI from the data. The pattern shows changes in intensity in 
SII and anterior somatosensory areas. No propagation occurs in the other cortical 
areas.  
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This approach was applied to the multislice rat data to detect a new pattern in the 

rat cortex. The contribution of the propagating pattern corresponding to the cortex 

(Figure 10b) was removed from the image data and the pattern finding algorithm was 

applied to the residual data using multiple seed time-points. The resultant templates were 

clustered. Figure 25 shows the pattern corresponding to the biggest cluster in the residual 

data. Interestingly, the new pattern is different from the previously detected pattern with 

cortical and whole brain ROIs. This pattern is restricted to more anterior somatosensory 

areas as well as SII, and does not show any involvement of parietal or visual cortices. 

This result demonstrates the utility of the iterative approach described above for detection 

new patterns. 

Summary and Discussion 

An approach for estimating the contribution due to the spatiotemporal patterns is 

described in this Chapter. The approach is used to estimate the contribution of the 

spatiotemporal patterns detected in rats and humans (as described in Chapters 4 and 5). 

For rat data, the estimated contribution due to the spatiotemporal patterns detected for 

cortex and CP-based ROIs were specific to the respective ROIs. Whole brain human data 

(Group 2) were analyzed in the same fashion and the results demonstrate different spatial 

specificity of the contribution due to the two patterns with different time scales.  

Our results indicate that removal of already detected pattern may make it easier to 

detect the otherwise undetected patterns. This approach can be very important for 

developing an exploratory approach for detecting the spatiotemporal patterns without 

accurate prior information about the spatial territories of the individual patterns. 

 



 75

DISCUSSION 

 

The research presented in this thesis demonstrates the presence of repetitive 

spatiotemporal patterns of BOLD fluctuations and presents an approach to detect these 

patterns automatically. The timing of occurrence of the patterns can also be extracted, 

thus preserving spatial as well as temporal information in the data. The patterns were first 

detected in high temporal resolution rat data (100ms). To better characterize the 

dynamics of the BOLD signal, we developed a novel approach to detect repeated 

spatiotemporal patterns in the fMRI data. The method has been tested for robustness to 

changes in initial parameters, and can be applied to multislice human and rat data to 

detect the patterns that are reproducible within and between subjects. The results indicate 

presence of multiple spatiotemporal patterns in the rat and human data at different TR, 

field strengths and anesthetic agents, and suggest the possibility of presence of multiple 

contributions in the LFFs. These contributions might have different neural/non neural 

origins and further research is needed to establish their basis. The presence of multiple 

contributions to the LFFs highlights the importance of analyzing different frequency sub-

bands in the LFFs separately. 

Algorithm for Spatiotemporal Pattern Detection 

Ideally, a functional imaging modality should be able to provide information 

about both spatial and temporal aspects of brain activity. In other words, it should be able 

to provide information about brain function with high spatial and temporal resolution. 

Compared with other functional modalities, fMRI provides excellent spatial and 

moderate temporal resolution. However, the amount of information that can be obtained 
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from fMRI data is limited by several factors, SNR being one of them.  In order to 

overcome this limitation, averaging over time is a method used extensively in fMRI 

studies exploring the response to a task or stimulus. This allows us to identify the areas 

that, on average, show an increase or decrease in activation under the time-window 

representing the stimulus or task. Although this averaging does not preserve trial-to-trial 

variability or ongoing changes in brain activity that might be unrelated to the task, it 

allows us to effectively increase the SNR, and provides some spatial and temporal 

information at the cost of details which are averaged out. This approach relies on 

manipulation of brain activity at known times. (i.e.: blocks or events). Improvement of 

SNR by averaging for functional connectivity data, on the other hand, is non-trivial of the 

fact that the brain activity is not controlled by any external stimuli. As a result, 

conventional functional connectivity analysis techniques rely on detecting a relationship 

between signals from brain regions over the entire length of acquisition.  This approach 

identifies brain areas that show correlated BOLD fluctuations across the session, but 

compromises precise temporal information.  The algorithm developed for the detection of 

spatiotemporal patterns demonstrates that averaging is possible for functional 

connectivity data because the data consists of the repetitive spatiotemporal blocks. We 

can then study when these blocks occur in time, thereby preserving the temporal 

information. 

Although the detected patterns are in agreement with the previous functional 

connectivity studies, additional information (e.g. propagation of BOLD signal, duration 

of the individual patterns) can be obtained using our method. 
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The algorithm developed for detection of spatiotemporal patterns relies on the 

assumption that the patterns occur several times during the course of data acquisition. 

Another assumption is that a chunk of consecutive images starting at a random time 

captures whole or part of a spatiotemporal pattern of interest with fairly high probability. 

Therefore, this approach for detecting spatiotemporal patterns has certain limitations. 

First, it can only be used for reproducible patterns, as sufficient averaging may not be 

achieved for isolated events. However, the validity of isolated events, even if detected, 

would remain questionable due to SNR limitations. Second, the method uses a pre-

specified window length and starting point. Although the examples shown in the later 

sections suggest that the results are not influenced by window length over a wide range of 

values, it is conceivable that some patterns might have significantly different duration 

compared with the window length used, and thus may not be detected. In addition, the 

seed time-point used for the process might influence the final template obtained by the 

method. These problems can be alleviated by using this method as an exploratory 

approach. Templates can be obtained for a wide range of window lengths and seed time-

points. For a given seed time-point, the templates can be clustered into the groups 

representing spatiotemporal patterns with different durations. For a given window length, 

the clusters would represent spatiotemporal patterns with almost the same duration that 

occur at different times. 

The examples presented in this thesis demonstrate different ways in which this 

algorithm can be used as an exploratory method. As described above, one approach is to 

cluster the results obtained with multiple seed time-points and window lengths. Another 

approach would be to utilize different ROIs for analysis. The ROIs can be based upon 
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anatomical sub-divisions in the brain as well as functional networks. The patterns 

obtained for rat data are extracted using this approach. As presented in Chapter 5, 

removal of the contribution of previously detected patterns can reveal new patterns. This 

approach may be helpful in exploring the patterns without perfect knowledge of the 

patterns to be detected. It can also be useful to detect the patterns that might share the 

same anatomical territories, but may have different relative dominance. Finally, as 

reported in Chapter 4, analysis of different sub-bands can be used in order to explore the 

spatiotemporal patterns in the brain. 

Rat Data 

α-chloralose Anesthesia 

The implications of the research performed on α-chloralose anesthetized rats 

(Chapter 2) are two-fold: 1) It identifies visually detectable spatiotemporal patterns in the 

resting state BOLD data that are not revealed by the conventional analysis 2) It 

demonstrates the presence of multiple peaks in the low frequency band, showing different 

spatiotemporal characteristics and functional connectivity. Minimal preprocessing steps 

(temporal filtering, spatial blurring and normalization) are performed prior to the visual 

inspection. Therefore the propagation pattern is not likely to be an artifact introduced by 

the preprocessing. 

Low frequency fluctuations in neural activity, cerebral blood flow, and blood 

oxygenation levels have been observed in both humans and animals (Golanov, 

Yamamoto et al. 1994; Obrig, Neufang et al. 2000; Leopold, Murayama et al. 2003).   

However, the links between these phenomena have barely been explored and the inter-

relations may be complex, particularly in anesthetized animals.  In addition to changes in 
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blood oxygenation level and cerebral blood volume, the signal intensity of the EPI 

images acquired in this study is also highly sensitive to changes in cerebral blood flow, 

due to the short repetition time.  It is possible to envision, then, a situation in which signal 

fluctuations in one frequency range (e.g., LF1) reflect widely coherent oscillations in 

blood flow (possibly due to vasomotion) while signal fluctuations in another range (LF2) 

reflect changes in the oxygenation level of blood, possibly linked with neural activity, 

that are more localized to highly connected cortical areas.  This hypothesis is purely 

speculative because the relationship between neural activity and cerebral blood flow is 

highly dependent upon anesthesia, and no studies measuring electrical activity and blood 

flow have been performed in the α-chloralose anesthetized rat to our knowledge. 

Multimodality studies are needed to test the hypothesis. 

 If the peaks can be attributed to different aspects of the brain’s function, it may 

be that the relative magnitude of the two peaks is highly sensitive to the level of 

anesthesia, accounting for the variability seen in this study.  Previous work has shown 

that functional activation increases with time after anesthesia is changed from halothane 

to α-chloralose, and therefore the extent to which halothane washes out prior to imaging 

might be a factor that determines the relative contribution of LF1 and LF2 (Austin, 

Blamire et al. 2005). Experimentation with  controlled variation in anesthesia depth and 

time after initial dose of the anesthetic agent can be used to investigate this issue. 

Propagation patterns for LF1 seem unlikely to reflect coordinated neural activity 

between areas of the brain because of the lack of functional specificity. The primary 

propagation pattern for LF1 moves inward from the surface of the brain, and high signal 

appears across the entire cortex at once. Simultaneous fMRI-electrophysiology studies 
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with multiple electrodes over the surface of brain will be needed in order to investigate 

this hypothesis. 

The propagation patterns for LF2 are potentially more interesting.  SI, SII and MI 

are all strongly connected anatomically, and the bilateral onset of the waves is suggestive 

of coordinated activity.  Previous studies have reported fluctuations in cerebral blood 

flow at approximately 0.1 Hz, attributed to vasomotion (Golanov, Yamamoto et al. 

1994).  The waves of cerebral blood flow occurred simultaneously in both hemispheres, 

and were relatively high in amplitude (~20% (Golanov, Yamamoto et al. 1994)). Low 

frequency oscillations in neural activity have also been observed (Leopold, Murayama et 

al. 2003) and the close coupling of cerebral blood flow and increases in neural activity 

during stimulation suggests that they are related.  Thus, the propagating waves observed 

in this study may reflect the spatiotemporal dynamics of low frequency oscillations in 

neural activity, although multimodality experimentation is required to prove this point of 

view.  This idea is supported by recent work from Shmuel and Leopold (Shmuel and 

Leopold 2008), which showed that the BOLD signal from the visual cortex in monkeys 

was correlated with band limited power of gamma band using simultaneously recorded 

fMRI and electrophysiological signal.  The correlation was strongest at a lag of 

approximately 6 s, and the pattern of correlation propagated away from the electrode with 

a time scale of seconds.  While the animal preparation used in these studies was very 

different, the similarities between the propagation of correlated BOLD responses and the 

spontaneous waves observed here are striking.   

Other possible explanations for the waves observed here are less convincing.  The 

presence of propagating waves raises the spectre of spreading depression, i.e. spreading 
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depolarization  across the cortex (Leao 1944). However, the waves observed in this study 

occur at a much shorter time scale in comparison, and all animals were physiologically 

stable. 

Our findings suggest that the two low frequency peaks contain different 

information and may have different physiological origins. Both connectivity maps and 

propagation patterns are dependent upon the frequency range chosen for analysis. These 

results motivate in-depth investigation of frequency-band selection for functional 

connectivity studies. In an interesting parallel to these results, Obrig et al. reported the 

presence of two low frequency peaks (~0.04 Hz and ~0.1 Hz) in blood oxygenation level 

measurements made using near infrared spectroscopy in human subjects (Obrig, Neufang 

et al. 2000), suggesting that the phenomenon described in this manuscript may not be 

limited to anesthetized rodents. 

The observed spatiotemporal patterns are also not likely to be due to the aliased 

components of the physiological contributions. First, the high sampling rate resulted in 

alias-free sampling of the primary components of both cardiac and respiratory rhythms. 

Secondly, the power maps for these peaks do not overlap completely with the low 

frequency peaks of interest. Although there is some overlap between the power maps of 

low frequency signals and respiratory contribution, those maps do not look identical and 

there are cortical areas where low frequency peaks can be seen in absence of any 

significant physiological peaks. Neither can these patterns be attributed to scanner noise, 

because they were not observed in the data obtained from the dead rat.  Also, it is 

unlikely that the scanner noise should be restricted to the cortical region only.  
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It is interesting to note that physiological noise does not appear to have a major 

impact on functional connectivity studies in rats.  The connectivity maps with a seed 

placed in were qualitatively similar to those obtained by other groups using longer 

repetition times (Lu, Zuo et al. 2007; Pawela, Biswal et al. 2008; Zhao, Zhao et al. 2008).  

However, localized contributions from respiratory and cardiac noise were observed in our 

data and may be a confounding factor in functional connectivity studies of other brain 

regions, particularly those near large vessels or the ventricles.   

This study utilizes single slice data because the short TR did not allow the 

acquisition of more images. Consequently, our data cannot reveal the full spatiotemporal 

propagation of the traveling waves.  The primary direction of travel of the LF2 waves 

may not be SII to MI, as it appears in this study, because single slice data can capture 

only a projection of the wave motion. Further work on medetomidine anesthetized rats 

(Chapter 3) addresses this issue by using a longer TR (500ms) and acquiring more slices, 

and indicates that the primary direction of the propagation is indeed lateral to medial. 

The presence of the propagating waves has implications in regard to interpretation 

of functional connectivity maps. Although functional connectivity between SI and SII is 

reduced due to time lag (manifested as propagation of intensity from SII to SI), the 

propagation of the signal from SI to SII (and MI) suggests some kind of communication 

or “functional connection”. Observation of such events in the resting state BOLD data is 

expected to have a significant impact on how we interpret functional connectivity.  

The detection of propagating waves of MRI signal fluctuations that may reflect 

slow changes in electrical activity naturally leads to speculation about whether other 

dynamic neural events can be detected with MRI.  While the task-related BOLD response 
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has been shown to reflect changes in neural activity, particularly in local field potentials, 

previous attempts to link functional connectivity measurements with electrophysiology 

have proven hard to interpret. Even recent work in animals has pointed to potentially 

different sources for BOLD signal correlation.  Lu et al presented indirect evidence 

linking LFFs with delta band power in somatosensory cortex of anesthetized rodents, 

while Shmuel and Leopold  recently showed that the MRI signal reflected changes in the 

gamma band power of local field potentials using implanted electrodes in the visual 

cortex of anesthetized monkeys (Shmuel and Leopold 2008).  Studies have also been 

performed in human subjects in order to investigate neural correlate for LFFs and 

functional connectivity. Goldman et al reported negative correlation between BOLD and 

alpha band power in multiple cortical regions of awake humans using simultaneous 

acquisition of EEG and fMRI (Goldman, Stern et al. 2002). Another simultaneous EEG-

fMRI study by Mantini et al (Mantini, Perrucci et al. 2007) suggests that multiple 

frequency bands are related to the LFFs, and that the frequency spectra is different for 

different functional networks. A recently published human study by He et al utilizes 

electrocorticography and fMRI in the patients with intractable epilepsy and indirectly 

suggests that both slow cortical potentials (< 4Hz, overlapping with delta band) and 

gamma  band power are related to LFFs in BOLD in wakefulness and rapid-eye-

movement sleep (He, Snyder et al. 2008). Only slow cortical potentials showed a 

correlation pattern similar to that of LFFs in other states of sleep. In another study, the 

results varied within scans from the same subjects, suggesting that the relationship 

between LFFs and the EEG signal may vary depending on the current state of the subject 

(Gonçalves, de Munck et al. 2006).  In general, the area of the brain that is studied, the 
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relative sensitivity of the electrical recording techniques, and the state of the subject 

(awake, asleep, or anesthetized) might explain some of the differences in the findings. 

These studies highlight the need for further research addressing the issue of the neural 

origin of the LFFs.  Animal studies may provide the missing link.  The ability of MRI to 

distinguish time-varying features such as periods of elevated cortical bursting will be 

limited by the temporal resolution of the imaging technique and the vascular response, 

the relative signal to noise of the signal of interest, the spatial extent of the activity, and 

the amount of time for which the activity persists. 

Medetomidine Anesthesia 

The propagating waves that we detected in rats are qualitatively similar to those 

identified previously through visual observation, as described in Chapter 2 and reported 

in (Majeed, Magnuson et al. 2009). Additionally, multislice acquisition used in this study 

made it possible to detect any anterior-posterior component of the wave propagation. The 

results suggest that the wave propagation takes place primarily in the lateral to medial 

direction. Also, the spatiotemporal pattern involves simultaneous propagation in multiple 

slices ranging from SI to visual cortex. This observation suggests that the underlying 

neurovascular event for this pattern either involves long range interaction between the 

functional modalities, or is caused by a common source of input or generator. 

Although the frequency range of interest for LFF analysis in humans is fairly well 

established (Biswal, Yetkin et al. 1995; Fox, Snyder et al. 2005; Fox, Corbetta et al. 

2006; Vincent, Snyder et al. 2006), different groups have used different frequency ranges 

for the analysis of rat data (Lu, Zuo et al. 2007; Pawela, Biswal et al. 2008; Zhao, Zhao et 

al. 2008; Majeed, Magnuson et al. 2009; Williams, Magnuson et al. in press). Several of 
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these studies have utilized a frequency cutoff of 0.08-0.1 Hz, which matches that used for 

human data analysis (Lu, Zuo et al. 2007; Pawela, Biswal et al. 2008; Zhao, Zhao et al. 

2008). These studies utilized low sampling rates that do not allow detailed analysis of the 

frequency components in the low frequency range. As reported in Chapter 2, short TR 

(100ms) data was utilized for alpha-chloralose anesthetized rats to demonstrate the 

presence of higher frequencies of interest in 0-0.2 Hz range, also reported in (Majeed, 

Magnuson et al. 2009). Two low frequency peaks (LF1: 0.01-0.025 Hz Hz, LF2: 0.12-

0.17 Hz) were detected in the data obtained from α-chloralose anesthetized rats. LF1 

(isolated using a low-pass filter with 0.05 Hz cutoff) showed global connectivity patterns, 

suggesting that it may not contain useful information about functional networks. LF2, 

however, showed specific bilateral connectivity patterns, suggesting that frequency 

components with f > 0.08-0.1 Hz may carry information about the functional connectivity 

networks in rats. Further work in medetomidine anesthetized rats shows that the higher 

frequency fluctuations are not merely a consequence of the α-chloralose anesthesia. First, 

the power spectrum analysis suggests that high power can be seen in 0-0.2 Hz range even 

without aliasing of primary components of repiratory and cardiac noise (Magnuson, 

Majeed et al. 2009; Majeed, Magnuson et al. 2009; Williams, Magnuson et al. in press). 

Bilateral reduction in power in 0-0.2 Hz range is observed as a result of continuous 

unilateral forepaw stimulation, suggesting functional significance of the fluctuations in 0-

0.2 Hz range (Majeed, Magnuson et al. 2009). In contrast with the two distinct peaks seen 

in at least some of the α-chloralose anesthetized rats, a broad low frequency spectrum 

was observed for medetomidine anesthetized rats (Magnuson, Majeed et al. 2009; 

Majeed, Magnuson et al. 2009; Williams, Magnuson et al. in press). This suggests that 
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the use of different anesthetic agents might result in variation in the relative contribution 

of different vascular or neural factors to the LFFs and raises the question of whether the 

band-pass filtered component in the data obtained from medetomidine anesthetized rats is 

equivalent to LF2 peak as observed in α-chloralose anesthetized rats (Majeed, Magnuson 

et al. 2009). We believe that 0.08-0.2 Hz component of LFFs in medetomidine 

anesthetized rats has a dominant LF2 contribution because spatiotemporal properties of 

0.08-0.2 Hz component are same for both types of anesthesia. Additional evidence comes 

from a study showing a peak at ~0.2 Hz in the cerebral blood volume (CBV)-weighted 

functional data obtained from medetomidine anesthetized rats (Magnuson, Majeed et al. 

2009). That clear peak was not observed for BOLD weighted images obtained from the 

same rats. The spatiotemporal properties for the CBV-weighted data were in agreement 

with those reported for α-chloralose anesthetized BOLD data (data not shown). Although 

lower frequency contributions (LF1) were shown to exhibit global correlation for α-

chloralose anesthtiszed rats, it is conceivable that they might contain relevant information 

about the functional networks for a different anesthesia. This point of view is supported 

by the specific connectivity patterns reported for medetomidine anesthetized rats obtained 

with cutoff frequencies of 0.1 Hz or 0.08 Hz (Pawela, Biswal et al. 2008; Zhao, Zhao et 

al. 2008).  We have focused on the analysis of LF2 in this study because it allows direct 

comparison to our previous study (Majeed, Magnuson et al. 2009) and confirms that 

similar spatiotemporal dynamics can be observed at a lower field strength and under a 

different anesthesia. The contribution in the lower frequency range for the medetomidine 

anesthetized rats will be analyzed separately as part of future work. 
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Human Data 

The research performed on human data suggests the presence of multiple 

spatiotemporal patterns in the LFFs. Pattern 1 (Figure 15) was detected using the 

conventional frequency range used for functional connectivity analysis for humans (0.01-

0.08 Hz) and ~20 s window length, whereas Pattern 2 (Figure 18) was detected using a 

window length of ~10 s after filtering the data with 0.05-0.08 Hz filter. The contributions 

of these patterns to the variance in LFFs are differently distributed in space Figure 22.  

Recent work (Seeley et al., 2007) suggests the ventral attention network can be 

further subdivided into two networks based on intrinsic connectivity: a salience network, 

containing dorsal anterior cingulate and frontoinsular cortices, and a right-lateralized 

executive network, comprised of lateral prefrontal cortex and lateral parietal cortex.  This 

subdivision may also be reflected temporally in the Pattern 1, as regions within the 

salience network (Figure 15, 9-13.5 s in red) appear to peak in intensity before those in 

the executive network (Figure 15, 13.5-16.5 s in red).  The temporal relationship between 

these putative sub-networks may speak to the internal connectivity and "drivers" within 

these systems, and should be investigated further.  Examinations such as these further 

highlight the utility of approaches that investigate spatiotemporal dynamics of BOLD 

fluctuations. 

The spatiotemporal patterns detected for the short and long TRs show alteration 

between default and task-positive networks. The switching time between default and 

attention network obtained using both TRs are in excellent agreement. As removal of 

primary components of respiratory and cardiac noise was possible with a TR of 300 ms, it 

can be concluded that the pattern is not caused by aliased components of respiratory or 
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cardiac noise. However, it is possible that physiological noise may alter the spatial spread 

of the pattern, as suggested by the reduction in spatial extent of correlation caused by 

regression of respiratory contribution  (Birn, Diamond et al. 2006). Simultaneous 

acquisition of fMRI and physiological signals will be used in future studies in order to 

study the effect of removal of these cycles on the spatiotemporal pattern. 

While other factors, including vasomotion, can  contribute towards the BOLD 

signal in addition to the local hemodynamics associated with the neural activity, there is 

mounting evidence suggesting neural and behavioral relevance of the LFFs (Goldman, 

Stern et al. 2002; Gonçalves, de Munck et al. 2006; McNamara, Tegenthoff et al. 2007; 

Liu, Zhu et al. 2008). Therefore, it is reasonable to hypothesize a neural basis of the 

patterns presented in this paper. The link between propagation of the BOLD signal and 

possible propagation of neural activity has yet to be established. The difference in 

hemodynamic delays between different brain regions can result in the propagation 

patterns even in the absence of propagating neural activity. A multimodality approach 

involving fMRI and electroencephalography (EEG) will be needed to establish the 

neural/non-neural basis of the propagation patterns. 

Implications for Functional Connectivity and Neuroimaging Research 

This study has several implications for functional connectivity research. The 

approach developed in this study provides a way to detect the underlying spatiotemporal 

patterns that give rise to the LFFs. It would be interesting to explore other patterns in the 

data and find their relative contribution to the LFFs. It has been suggested that LFFs 

might be caused by a “neuronal driver”, sending a common input to “functionally 

connected” areas (Drew et al., 2008). Although this speculation has yet to be confirmed 
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experimentally, our technique to study spatiotemporal propagation provides a promising 

way to identify potential candidates for the driver (or drivers) of LFFs, or the areas 

receiving direct input from the drivers. For example, lateral to medial propagation of the 

signal in rodents might suggest that the lateral areas are either the drivers of the LFFs, or 

they receive the input from the drivers (e.g. thalamus), which further spreads across the 

cortex. If these areas act as the starting points for a slow modulation of neural activity, 

the energy demands of adjacent areas would increase as their activity increased, resulting 

in an increase in BOLD signal that follows the propagation path of the activity. However, 

as discussed earlier, difference in hemodynamic delays can induce propagating patters in 

BOLD signal that may not be related with propagating neural activity. Therefore, further 

investigation with multiple modalities is needed to test this hypothesis. 

This novel approach not only identifies the spatiotemporal patterns, but also given 

information about their occurrence in time. This information can be especially useful for 

behavioral paradigms. For example, future research can be performed in order to identify 

correspondence between occurrence of different patterns and performance on a 

behavioral task. Additionally, correspondence between the relative contribution of 

different patterns and behavior or disease state can be investigated. An advantage of 

using the relative contributions instead of other measures, such cross correlation, is that 

the ratio between the contributions due to different patterns is less likely to be affected by 

different levels of white noise and may provide a measure which may require little 

processing for calibration between sessions and subjects. These future applications are 

purely speculative and further experimentation is required before any strong conclusions 

can be made in this regard. 
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Conclusions 

This work demonstrates that the spatiotemporal patterns of BOLD fluctuations are 

a robust phenomenon, occurring in different species (rats and humans) and detectable at a 

wide range of field strengths and TRs. The presence of multiple spatiotemporal patterns 

is demonstrated using visual detection and a novel pattern detection method. The patterns 

detected using the two approaches are in agreement for rats and persist for different 

anesthetic agents, TRs, contrast mechanisms (CBV and BOLD).  The same patterns are 

observed for TRs short enough for sampling the physiological noise, as well as longer 

TRs for humans as well as rats, suggesting that the physiological noise is not the source 

of these patterns. Our analysis suggests the presence of at least two low frequency 

contributions in rat as well as human data, which has potential implications for the 

analysis and interpretations of the LFFs. Future work is needed in order to establish 

neural and behavioral significance of these findings. 

In conclusion, the work presented in this thesis has the potential of being an 

important contribution towards fMRI research. It not only pushes the limits on the 

information that can be obtained from BOLD fMRI data, but also adds a new dimension 

to analysis of LFF. 
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