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L A B E L I N G  T H E  W O R L D

D uring a trip to a department 
store, you purchase a robot and 
a roll of standard labels: “dish,” 
“dish washer,” “clothing,” 
“washing machine,” “toy,” and 

“storage bin.” You return home, apply the labels 
as directed, unbox the robot, and turn it on. 
Instantly, the robot can operate in the labeled 
world—loading the dishwasher with labeled 
dishes, putting away labeled toys, and washing 
labeled clothing. Additional functionality, such 

as delivering medicine, is just a 
few labels away.

This is a compelling vi-
sion, especially for the motor- 
impaired patients we work 
with in collaboration with the 
Emory ALS (Amyotrophic 
Lateral Sclerosis) Center. To 
help realize this vision, we 
developed EL-E (pronounced 
“Ellie”), a prototype assistive 

robot that uses novel RFID-based methods to 
perform tasks with ultrahigh-frequency (UHF) 
RFID-labeled objects (see Figure 1).

Exploiting UHF RFID Tags
Passive UHF RFID tags are well matched 
to robots’ needs (see the “Related Work in 
RFID-Guided Robotics” sidebar). Unlike low- 
frequency (LF) and high-frequency (HF) RFID 
tags, passive UHF RFID tags are readable from 
across a room, enabling a mobile robot to ef-

!ciently discover and locate them. Because they 
don’t have onboard batteries to wear out, their 
lifetime is virtually unlimited. And unlike bar 
codes and other visual tags, RFID tags are 
readable when they’re visually occluded. For 
less than $0.25 per tag, users can apply self- 
adhesive UHF RFID tags throughout their 
home. Because tags are thin and compact, they 
could also be embedded in objects.

EL-E’s two body-mounted long-range anten-
nas and four !nger-mounted short-range ce-
ramic microstrip antennas exploit two valuable 
UHF RFID tag properties:

• Unique identi!ers. For most perceptual mo-
dalities, the object’s identity is the culmi-
nation of extensive low-level sensory pro-
cessing and comes with high uncertainty. 
RFID, on the other hand, provides an object 
a unique ID with extremely small uncer-
tainty, whose location is inferred by lower-
level sensory processing. Generation 2 UHF 
RFID tags use a challenge-response protocol 
to provide a globally unique ID with a virtu-
ally zero false-positive rate. Speci!cally, they 
provide a unique 96-bit ID at ranges of more 
than 5 meters indoors. A continuously oper-
ating reader at Duke University has received 
zero false-positive IDs in more than 60 days, 
for a false-positive rate of less than 1 × 10-6.
EL-E can read tags rapidly (500 per sec-
ond) and in large groups (more than 200 
at a time)1 and, given a tag’s ID, can access 

Using tags’ unique IDs, a semantic database, and RF perception via 
actuated antennas, a robot can reliably interact with people and 
manipulate labeled objects.
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arbitrary associated data. For exam-
ple, EL-E can use an ID to access a 
database with information about the 
tagged object such as its name and 
a photo, actions that EL-E can per-
form with it, and the actions’ icons.

• RF perception. By perceiving the 
presence and strength of RF signals 
emanating from a tag, EL-E can es-
timate its location. If EL-E detects 
a tag with its long-range antennas, 
the tag is likely in the room. If EL-E 
detects the tag with its short-range 
antennas, the tag is likely close to 
its hand. EL-E’s antennas are also 
directionally sensitive. If an antenna 

receives a strong signal from a tag 
when pointing in one direction but 
a weak signal from that tag when 
pointing in another direction, the 
tag will more likely be in the stron-
ger signal’s direction.

Interacting with People
EL-E’s !rst goal is to discover which 
actions it can perform in a room. EL-E 
!rst scans the room for tags by pan-
ning its long-range antennas. It then 
uses each tag’s unique ID to query a 
database and automatically populate 
a remote user interface (UI; see Fig-
ure 2). From this UI, users can select 

an object and action for the robot to 
perform. Future systems might offer 
more complex interface options that 
exploit groups of tags. For example, 
a cooking UI could present dinner op-
tions with various types of cuisine, 
followed by particular dishes that the 
robot can produce with the available 
tagged ingredients.

Reliably Reading Tags
For these interfaces to work, EL-E 
must ef!ciently and reliably read tags 
from a variety of positions in the en-
vironment. So, we tested EL-E’s abil-
ity to read 37 tags on a shelf from 
36 different locations evenly spaced 
throughout a 3.7  7.3 m room (see 
Figure 3a). At each location, a com-
plete scan took approximately 13 sec-
onds and consisted of panning each 
long-range antenna back and forth, 
one at a time.

On average, EL-E read 23.75 tags at 
each location with a standard devia-
tion of 4.03 tags. As Figure 3b shows, 
read reliability decreased with dis-
tance. For example, the two closest 
locations had the most reads (31 tags), 
whereas the farthest locations had the 
fewest (15 tags).

As Figure 3c indicates, EL-E read 
some tags more reliably than others. 
This variation relates to the tagged ob-
ject, how we applied the tag, and the 
tag’s pose relative to the antennas. For 
example, the two unread tags were a 
tag on a metallic toothpaste tube (the 
tags we used typically don’t work on 
metal) and a misapplied tag on a medi-
cation bottle (the tag was wrapped 
around itself instead of in a nonover-
lapping spiral). EL-E’s reads of tags on 
objects containing electronics, such 
as the cell phone, cordless phone, and  

Downward-facing laser range !nder

In-hand camera

Short-range RFID antennas

Long-range RFID antennas

Tilting laser range !nder

 High-resolution camera

Mobile base

Katana arm

ID: TV remote

Figure 1. EL-E, an autonomous mobile 
robot. EL-E uses its two body-mounted 
long-range ultrahigh-frequency (UHF) 
RFID antennas and four !nger-mounted 
short-range ceramic microstrip UHF RFID 
antennas to detect tags.

Figure 2. EL-E’s user interface (UI). On the basis of RFID-tagged objects it senses 
nearby, EL-E generates a context-aware remote UI on-the-"y. From this UI, users 
select an object and action for the robot to perform.
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remote control, were also less reliable. 
We can mitigate these issues by using 
multiple tags at different orientations 
and newly developed tags designed for 
use on metal.

Delivering and Receiving Objects
As Figure 4 shows, EL-E can deliver 
an object to someone wearing a tagged 
wristband and receive an object from 
that person. When EL-E receives a 
tagged object, its !nger antennas iden-
tify it, which could facilitate future  
context-aware behaviors.

To evaluate EL-E’s ability to deliver 
tagged objects, we performed 10 tri-
als with a TV remote and medication 
bottle as test objects. Starting approxi-
mately 2 meters from the tagged per-
son, EL-E tried to deliver one of the 
objects. EL-E released the object if 
its !ngers detected forces and torques 
above a threshold. The person then 
handed back either the delivered object 
or another object.

We considered the trial successful if

• the person received the object while 
remaining seated and

• EL-E correctly identi!ed the object 
that the person handed it.

EL-E succeeded in all 10 trials.

Approaching a Tagged Object
To deliver and receive objects and 
perform relevant tasks, EL-E must be 
able to approach the tagged objects. 
UHF RFID helps EL-E do this in sev-
eral ways. With a long-range antenna, 
RF perception orients EL-E toward a 
tagged object and estimates its posi-
tion. In addition, a database indexed 
by a tag’s unique ID could provide 
information about the object’s usual 
location, use history, and expected 
appearance.

Once EL-E decides to approach a 
tag, it specializes its queries to this tag 
alone. This process, called singulation 
(defined in the Generation 2 speci-
!cation1) lets EL-E quickly perform 
RFID reads for a speci!c tag ID, even 

R esearchers frequently discuss robots and ultrahigh-frequency (UHF) RFID tags 
as components of pervasive infrastructures.1,2 Yet few researchers have used 

RFID sensing as an integral part of their robots. Because of factors such as reader cost 
and availability, research has often focused on the more mature low-frequency (LF) 
RFID at 125 kHz and high-frequency (HF) RFID at 13.56 MHz. Using these technolo-
gies, researchers have created robotic systems for waypoint navigation and object or 
person detection.3 These technologies have also proven useful in nonrobotic systems 
for activity recognition.4

More relevant to the research reported in the main article, researchers have dem-
onstrated that distributed HF RFID readers in ubiquitous sensing environments can in-
form mobile robots that manipulate objects.5 Because LF and HF RFID have short read 
ranges (below 20 cm), they require both distributed readers and tags to emulate the 
capabilities we describe in the main article—an often impractical proposition.

An alternative to short-range LF and HF RFID is long-range UHF RFID. Research-
ers have demonstrated read ranges exceeding 50 m using active (battery-powered) 
tags,6 but fully passive UHF RFID tags operating at 915 MHz cost less and are simpler 
to implement. To date, most UHF RFID tag research has focused on simultaneous 
localization and mapping (SLAM) techniques that map static tags’ locations, often 
to subsequently localize the robot.7–9 In contrast, we’ve taken a more object-centric 
approach to UHF RFID, in which long-range antennas help the robot !nd a tagged ob-
ject from afar. Once the robot is closer to the tagged object, specialized short-range 
antennas provide capabilities analogous to LF and HF RFID, using the same UHF tag.
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in densely tagged environments. Most 
sensing techniques we describe here use 
this process.

To approach a tag, EL-E uses re-
ceived signal strength indicator (RSSI), 
a scalar quantity describing a tag’s re-
sponse strength as seen by an RFID 

reader’s antenna. First, EL-E pans its 
two long-range antennas to estimate 
the tag’s bearing, smoothing the re-
sulting RSSI values to !lter out noise. 
It then selects the orientation with the 
maximum value and rotates toward 
this bearing.

Second, EL-E keeps its antennas at 
!xed orientations and “servos” toward 
the tag’s position until its downward-
facing laser range !nder detects an ob-
ject in its path. EL-E moves forward 
at a constant velocity (0.2 m/sec.) and 
rotates at an angular velocity propor-
tional to the difference in the RSSI 
values received by its left and right 
antennas. Because of the long-range 
antennas’ directional sensitivity (ap-
proximately 100-degree beamwidths), 
obtaining a higher RSSI is likely when 
the antennas are pointing in the tag’s 
direction. So, if the right antenna re-
ceives a stronger signal, EL-E rotates 
right; if the left antenna receives a 
stronger signal, EL-E rotates left.

Finally, EL-E again estimates the tag’s 
bearing and orients itself accordingly.

This method is ef!cient and effec-
tive. We evaluated EL-E’s ability to 
approach a tagged object on a book-
shelf from a grid of 36 distinct starting 
locations (see Figure 5). At each loca-
tion, we initially oriented EL-E so that 
it faced the bookshelf. We considered 
a trial successful if EL-E stopped less 
than 1 meter from the tagged object 
and that object was fully visible from 
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Figure 3. EL-E’s read reliability. (a) The experimental setup. The top photo shows 37 uniquely tagged objects on the bookshelf; 
the bottom photo shows the bookshelf’s position in the room. (b) The number of tags read at each test location in the room. 
(c) The number of times EL-E read each tag, demonstrating the variability in tag response due to object type, tag position and 
orientation, and material composition.

Figure 4. EL-E delivers a tagged medication bottle to a person wearing a tagged 
wristband. Tagging people and objects facilitates human-robot interaction and 
provides identities with high con!dence, which is crucial for applications like 
delivering medicine.
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its camera. This de!nition of success is 
well matched to the close-range meth-
ods we developed for EL-E.

This approaching behavior is a valu-
able foundation but has limitations. 
The current servoing method requires 
open space because EL-E stops when 
its range !nder detects a potential col-
lision and because large metal objects 
can significantly influence its path. 
Also, EL-E doesn’t maintain an ex-
plicit representation of the tag’s loca-
tion and doesn’t exploit other sensory 
modalities, such as vision. To address 
these issues, we developed two meth-
ods that we plan to incorporate in 
EL-E—a particle !lter with an inte-
grated multipath model and RSSI tag 
perception.

Estimating Tag Position   
with a Particle Filter
We’ve demonstrated probabilistic 
methods to estimate a tag’s position 
on the basis of many sensor readings 
over time. We tested a particle !lter ap-
proach that probabilistically estimates 
a tag’s location in the sensor array’s en-
vironment using readings from a circu-
lar array of antennas.2 This approach 
incorporates motion to estimate the 
tagged object’s likeliest location as the 
array moves through the environment.

Figure 6 shows how the tag’s loca-

tion estimate improves as the array ap-
proaches a stationary tag. The coarse 
estimates’ mean error was 0.4 m (! = 
0.2 m) in range and 5.1 degrees (! = 3.6 
degrees) in bearing. During this test, 
the reader was 1 to 4 meters from the 
tag in an of!ce environment. We could 
potentially run this type of estimation 
in parallel with servoing to inform 
higher-level navigation methods.

Perceiving the Tag   
with RSSI Images
We’ve also developed a mode of per-
ception that produces RSSI spatial- 
distribution images for each tagged ob-
ject by mechanically panning and tilt-
ing the long-range antennas. Each pix-
el’s intensity in the RSSI image is the 
interpolated and smoothed RF signal 
strength for a singulated tag in the cor-
responding direction. Figure 7 shows 
EL-E using RSSI images to track an 

object moving across the scene in cor-
responding camera images.3

RSSI images have three main bene-
!ts. First, they provide an intuitive vi-
sualization of a tag and antenna’s RF 
properties in a given environment—in 
essence, showing what the RF signal 
looks like—which is helpful for devel-
opment and debugging. Second, you 
can use them to estimate a tag’s bearing 
in both azimuth and elevation. Third, 
you can fuse RSSI images with other 
sensor modalities, including camera 

Results of approaching tagged object

Distance (m)
0 1 2 3

Di
st

an
ce

 (m
)

3

2

1

0

–1

–2

–3

(b) (c)(a)
–8

14

12

10

8

6

4

2

0
–6 –4 –2 40 6 82

Gl
ob

al
 y

-c
oo

rd
in

at
es

 (m
et

er
s)

Global x-coordinates (meters)
–8

14

12

10

8

6

4

2

0
–6 –4 –2 40 6 82

Gl
ob

al
 y

-c
oo

rd
in

at
es

 (m
et

er
s)

Global x-coordinates (meters)
–8

14

12

10

8

6

4

2

0
–6 –4 –2 40 6 82

Gl
ob

al
 y

-c
oo

rd
in

at
es

 (m
et

er
s)

Global x-coordinates (meters)

Figure 5. Results for EL-E approaching 
a tagged object (the red circle). White 
circles indicate success; black circles 
indicate failure. The object is the blue 
medicine box at the center of the 
bookshelf in Figure 3a. Approaching 
tagged objects is a generally useful and 
foundational capability for other, more 
complex tasks.

Figure 6. A particle !lter can be used to estimate a tag’s position. (a) The particle !lter is initialized when reading a tag. It outputs 
a position estimate (the pink circle) of the true tag position (the green circle) as an antenna array (the red circle) moves. (b) The 
estimate improves as the antenna array approaches the stationary tag. (c) The estimate approaches the tag’s true position.
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images and lidar (light detection and 
ranging).

Our previous research showed an 11 
percent improvement in object localiza-

tion using an RSSI image in conjunc-
tion with a camera image and lidar (17 
out of 18 trials) rather than a camera 
image and lidar alone (15 out of 18 tri-

als). We also performed tests in which 
EL-E fetched tagged objects by fusing 
these three sensing methods. Figure 
8 shows a color histogram associated 
with the tag’s ID that helped EL-E vi-
sually detect the object. EL-E success-
fully approached and grasped a selected 
object in each of three trials. These re-
sults suggest that RSSI images provide 
sensing that’s complementary to vision 
and lidar.3

Antenna design is a big challenge for 
RSSI imaging. If the line-of-sight sig-
nal strength dominates signal strength 
from alternate paths (multipath inter-
ference), the bearing with the largest 
value will directly correspond to the 
tag’s bearing. Highly directive anten-
nas with a narrow angle of sensitiv-
ity can reject multipath interference 
and produce easy-to-use RSSI images, 
but such antennas can be quite large.  
EL-E’s current antennas, which are  

(b)

(a)

Camera
image

RSSI
image

Object moves from left to right

Tilting laser
range !nder

RSSI
image

Camera
image

Raw data
Model from
database

RGB color
histogram

RSSI
histogram

3D laser
point features

Fusion result

3D location
of tagged object
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Requested tagged object:
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Figure 7. EL-E can use received signal strength indicator (RSSI) to track moving 
objects. (a) Camera images and (b) RSSI images show an RFID-tagged bottle  
(in the red square) moving from left to right, as captured by an early antenna rig. 
This technique can help EL-E locate tags in the environment. 

Figure 8. Sensor fusion using UHF RFID. (a) Raw data from three sensors. The desired tagged object is in the red square in the 
camera image. (b) EL-E loads sensor-speci!c probabilistic feature models from a semantic and perceptual database indexed by 
the tag’s ID. (c) EL-E calculates and multiplicatively combines probabilities for each feature. (d) The sensor fusion results in the 3D 
location of the object.
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relatively compact (13 13 cm) and 
have 100-degree half-power beam-
widths, don’t perform as well as EL-E’s 
previous antennas, which were large  
(26 26 cm) and had 65-degree half-
power beamwidths.

Manipulating a Tagged Object
When EL-E is within 1 meter of an 
object, RFID plays a different role in 
EL-E’s mobile manipulation. High- 
precision localization becomes impor-
tant, as does semantic information re-
lated to object manipulation.

Short-Range RF Perception
Because EL-E’s long-range antennas 
aren’t discriminative at short ranges, 
we developed !nger-mounted anten-
nas, which read the same UHF tags at 
a range of approximately 20 cm. These 
antennas excite UHF RFID tags in the 
magnetostatic near-!eld regime and al-
low EL-E to verify that the correct ob-
ject is being manipulated. EL-E reads 
each antenna twice, checking the tag ID 
associated with the read possessing the 
largest RSSI value. EL-E uses the same 
method to identify an object someone 
places in its hand. Before performing 
the eight reads (two for each antenna), 
EL-E moves its hand up, away from po-
tentially distracting tags.

We plan to integrate several other 
uses for these antennas by adapting our 
long-range-perception techniques to 
contactless short-range perception. For 
example, we servoed EL-E’s arm on the 
basis of differential RSSI readings such 
that the end effector centered on a se-
lected RFID-tagged object. EL-E could 
also distinguish and localize a particu-
lar tagged object among visually iden-
tical objects by monitoring RSSI values 
while its arm executed a trajectory that 
passed a short-range wrist-mounted an-
tenna in front of objects. By correlating 
the RSSI values with lidar-provided 3D 
points, EL-E could locate and grasp a 
desired medication bottle next to visu-
ally identical bottles.4

Our results indicate that future  
!nger-mounted antennas could help 

!nely position EL-E’s hand with respect 
to tagged objects. In addition, close-
range RFID sensing could complement 
our current lidar- and camera-based 
methods.

Semantic Databases   
for Physical Interaction
One particularly interesting use of the 
database at this range is to provide 
physically grounded semantics related 
to manipulation. We examined tags 
employing a more general class of en-
vironmental augmentation for task- 
relevant locations.5 These tags helped 
EL-E physically interact with a loca-
tion, perceive it, and understand its se-
mantics. We call them PPS (physical, 
perceptual, and semantic) tags. Figure 
9 shows three PPS tags, each of which 

combines easy-to-manipulate compli-
ant material with easy-to-perceive color 
and a UHF RFID tag.

The RFID tag provides a unique ID 
that indexes into a database storing in-
formation such as which actions EL-E 
can perform at the location, how EL-E 
can perform these actions, and which 
state changes EL-E should observe on 
task success. Figure 10 shows a sample 
top-level database entry for a rocker-
type light switch.

Each database entry contains three 
main components. Properties store 
information about the tagged object 
not speci!c to any particular action. 
Actions map user-friendly names to 
the associated behaviors. An entry for 
each behavior relevant to the tagged 
object stores parameters, such as  

Figure 9. Physical, perceptual, and semantic (PPS) tags combine compliant and 
colorful materials with a UHF RFID tag to assist EL-E with physical manipulation, 
perception, and semantic understanding. (a) We af!xed a PPS tag to a "ip-type 
light switch, rocker-type light switch, and cabinet drawer. (b) EL-E manipulates the 
corresponding PPS tags.
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EL-E’s hand con!guration when per-
forming the action and the forces to 
expect. For example, in Figure 10, the 
properties, actions, and behaviors are 
as follows.

Properties. type stores the object class, 
such as ada light switch (ada stands for 
Americans with Disabilities Act). name 
stores a name speci!c to this particu-
lar object. pps_tag de!nes the physically 
helpful material used, such as dycem (a 
high-friction rubber sheet). change de-
scribes the state change when EL-E uses 
the object successfully, such as using the 
camera to detect overall brightness changes 
in lighting. direction tells EL-E where to 
look to observe this state change, such 
as up for the light switches. ele contains a 

table with information speci!c to EL-E. 
In this case, it holds the color boundar-
ies that segment the PPS tag’s red color 
with EL-E’s camera.

Actions and behaviors. For ada light switch, 
the two associated actions are turning 
the light on and off, which map to the 
push_top and push_bottom behaviors, re-
spectively. Each behavior also has an 
entry that stores parameters important 
to performing the behavior. For exam-
ple, push_bottom holds information criti-
cal to pushing the bottom of the rocker 
switch to turn the light off. It has two 
entries. force_threshold, with a value of 3 
Newtons, describes the force to apply 
when pushing. height_offset, with a value 
of 0.02 m, describes how far below 

the PPS tag’s center to push. The ele en-
try for push_bottom speci!es the opening 
angle that EL-E’s gripper should use 
when performing this action. Five de-
grees places the gripper in a pinching 
con!guration useful for pushing the 
switch.

Evaluating Manipulation
We evaluated EL-E using the three PPS 
tags in Figure 9. For each tagged object, 
we conducted 10 trials with !ve initial 
locations evenly spaced by 35 cm along 
a line 1.7 m from the tagged object, 
running parallel to the wall.

EL-E initially faced the wall. In each 
trial, it tried to generate the UI, ap-
proach the user-selected tag, and ma-
nipulate the tag. Manipulation involved 
turning a #ip light switch on or off, 
turning a rocker light switch on or off, 
or opening or closing a drawer.

EL-E performed successfully in nine 
of the trials for each tag, so its over-
all success rate was 27 out of 30—90 
percent. In all 30 trials, EL-E correctly 
veri!ed the tag ID before manipulation, 
using its !nger-mounted antennas. It 
also correctly determined task success 
or failure (such as observing whether 
the lighting changed), using informa-
tion from the database. So, EL-E could 
have tried again after its three recog-
nized failures.

U HF RFID is a promising 
way to create useful ro-
bots in the near future. 
However, numerous chal-

lenges remain. Foremost is the need to 
test UHF RFID-guided robots in di-
verse real-world environments, such 
as homes and healthcare facilities. So 
far, we’ve tested EL-E only in a lab en-
vironment with limited clutter. The 
ability to read a tag and estimate its 
location depends on the object, the 
tag’s pose relative to the antenna, and 
the environment’s RF properties. How 
these factors affect real-world tasks re-
mains an open question; serious con-
siderations, such as antenna design, re-

{
 ‘properties’: {’type’: ’ada light switch’,
  ‘name’: ’A D A light switch 1’,
  ’pps_tag’: ’dycem’,
  ‘change’: ’overall brightness’,
  ‘switch_travel’: 0.02,
  ‘height’: 1.22,
  ‘on_plane’: True,
  ‘direction’: ’up’,
  ‘ele’: {’color_segmentation’:
   [[34, 255], [157, 255],
   [0, 11]]},
  },

 ‘actions’:  {’off’: ’push_bottom’,
  ‘on’: ’push_top’},

 ‘push_bottom’: {’force_threshold’: 3.0,
  ‘height_offset’: -0.02
  ‘ele’: { ’gripper’: 5}
  },

 ‘push_top’: {’force_threshold’: 3.0,
  ‘height_offset’: 0.02,
  ‘ele’: {’gripper’: 5} 
  } 

}

Figure 10. A semantic database entry for operating a rocker-type light switch. The 
current database is written in Python. The semantic database, indexed by a tag ID, 
facilitates robotic manipulation of tagged objects and locations.
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quire further investigation. Likewise, 
we must study many usability issues, 
such as the ease of tagging objects, 
long-term tag reliability as tags are 
handled by people and by EL-E, and 
tagged objects’ usability.

By circumventing long-standing 
object recognition problems, labeling 
the environment with UHF RFID tags 
opens up new avenues for robotics re-
search. Robots could learn from their 
interactions with tagged objects over 
a long time period. The investigation 
of knowledge representations for ma-
nipulation changes from a somewhat 
esoteric subject to an area of imme-
diate practical concern. A common 
sense knowledge repository with stan-
dardized labels for robots could be on 
the horizon, with robots of varying 
capabilities sharing their knowledge. 
We can imagine a smarter sensor-rich 
robot traveling through the environ-
ment, tagging locations, and record-
ing relevant information for use by less 
sophisticated robots.

Although we ultimately hope to 
develop robots that don’t require en-
vironment modi!cation, we believe 
labeling the world with UHF RFID 
tags offers signi!cant advantages at 
this time. This modest form of in-
frastructure could accelerate robot 
deployment in real-world applica-
tions, which could directly benefit 
society, make robots more afford-
able, and provide valuable research  
opportunities.
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