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For autonomous helicopter flight, it is common to separate the flight control problem
into an innerloop that controls attitude and an outerloop that controls the trajectory
of the helicopter. The outerloop generates attitude commands that orient the main ro-
tor forces appropriately to generate required translational accelerations. Recent work
in Neural Network based adaptive flight control may be applied to control a helicopter
where the reference commands include position, velocity, attitude and angular rate. The
outerloop is used to correct the commanded attitude in order to follow position and ve-
locity commands. This however generally requires a model of the translational dynamics
which has some model error. This paper introduces adaptation in the outerloop using
Pseudo Control Hedging in a way that prevents adaptation to the innerloop dynamics.
Additionally, hedging is used in the innerloop to avoid incorrect adaptation while at con-
trol limits. Such an approach along with correct placement of the combined poles of
the linearized system mitigates inner/outer loop interaction problems and allows one to
increase bandwidth in the outerloop, thus, improving tracking performance further.

Nomenclature

⊕ quaternion addition operator
α angular acceleration, rad/s2

a acceleration, ft/s2

∆ function approximation error
δ control vector / actuator deflections
NN neural network
ν pseudo-control vector
ω angular velocity, rad/s
p position, ft
PCH pseudo-control hedging
q attitude quaternion
V,W neural network input, output weights
v velocity, ft/s
x state vector

Subscripts

ad adaptive signal
c commanded
d derivative
des desired
f force
h hedge
m moment
ol outerloop correction
p proportional
r robustifying term
rm reference model
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Introduction

Helicopters are versatile machines that can per-
form aggressive maneuvers. This is evident from the
wide range of acrobatic maneuvers executed by ex-
pert pilots. Helicopters have a distinct advantage over
fixed-wing aircraft especially in an urban environment,
where hover capability is required. There is increased
interest in the deployment of autonomous helicopters
for military and civilian applications. Some of these
include, reconnaissance of an urban area and search
and rescue missions. Autonomous helicopters must
have the capability of planning routes (perhaps op-
timal in some sense) and executing them. In order
to be truly useful, these routes would include high
speed dashes, tight turns around buildings, avoiding
dynamic obstacles and other aggressive maneuvers. In
planning1 these routes however, the tracking capabil-
ity of the flight control system is a limiting factor as
current control systems are still unable to leverage the
full-flight-envelope of small helicopters.

Although stabilization and autonomous flight2 have
been achieved, their performance is modest compared
to a human pilot. This is largely due to assump-
tions made during control design. One such example
is the assumption of time-scale separation3 between
the innerloop attitude control and outerloop trajectory
control systems. Other problems arise when using a
model based robust control approach4 where the model
used is no longer valid during aggressive maneuvers,
effectively reducing the bandwidth of the system. Re-
searchers have tackled this by introducing adaptation
in the innerloop.3 This adaptation however only ad-
dresses tracking performance of the attitude dynamics.

Another significant problem in controlling a small-

1 of 11

American Institute of Aeronautics and Astronautics

AIAA Guidance, Navigation, and Control Conference and Exhibit
5-8 August 2002, Monterey, California

AIAA 2002-4439

Copyright © 2002 by the author(s). Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.



helicopter is the presence of the control rotor or sta-
bilizer bar. At higher bandwidths, the innerloop be-
gins to interact with the control rotor dynamics whose
states are not normally directly measurable. One ap-
proach has been to treat the problem in an output
feedback5 setting that allows high bandwidth control
of the attitude dynamics. Even if the innerloop pro-
vides high bandwidth attitude tracking performance,
an outerloop that can take advantage of this perfor-
mance is necessary.

This paper is concerned with the development of a
combined inner-outer loop adaptive architecture. Neu-
ral Network (NN) based direct adaptive control has re-
cently emerged as an enabling technology for practical
flight control systems. This technology has been suc-
cessfully applied6 to the recent USAF Reconfigurable
Control for Tailless Fighter Aircraft (RESTORE) cul-
minating in a successful flight demonstration7 of the
adaptive controller on the X-36. A combined inner-
outer loop architecture was also applied for guidance
and control of the X-338 and evaluated successfully in
simulation for various failure cases.

In synthesizing a controller (Figure 1), the conven-
tional conceptual separation between inner and outer
loops is made. The inner loop controls the moments
acting on the aircraft by changing the longitudinal
stick, lateral stick and pedal inputs. The outer loop
controls the forces acting on the aircraft by varying
the magnitude of the rotor thrust using the collective
input. The thrust vector is oriented in the desired di-
rection by commanding changes to the attitude of the
helicopter using the inner-loop.

The attitude and translational dynamics are input-
state feedback linearized separately using dynamic in-
version and linear controllers designed for their lin-
earized dynamics. The effect of parametric uncertainty
arising due to approximate inversion is minimized us-
ing an adaptive element. The adaptive element could
be something as simple as an integrator or a neural
network. In this paper, a nonlinearly parameterized
neural network will be used to provide on-line adap-
tation. In introducing an adaptive system however, a
new problem arises by way of unwanted adaptation to
plant input characteristics such as actuator dynamics.

For example, the innerloop sees actuator limits, rate
saturation and associated dynamics. In order to allevi-
ate this problem, Pseudo-Control-Hedging8,9 (PCH),
is used to modify the innerloop reference model dy-
namics in a way that allows continued adaption in the
presence of these system characteristics. This same
technique, PCH, is used to “hedge” the outerloop to
prevent adaptation to innerloop dynamics.

In this paper, the combined inner-outer loop archi-
tecture is first described followed by a description of
the Neural Network and selection of linear compen-
sator gains. The controller is then applied to the
trajectory and attitude control of an unmanned he-
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Fig. 1 Overall Inner and Outerloop with Adapta-
tion and Hedging

licopter. Practical discussions on the choice of pa-
rameters and reference model dynamics are provided.
Finally, simulation and flight test results are presented.

Controller Development
Consider an aerospace vehicle modeled as a nonlin-

ear system of the form

ṗ = v (1)
v̇ = a(p, v, q, ω, δf , δm) (2)
q̇ = q̇(q, ω) (3)
ω̇ = α(p, v, q, ω, δf , δm) (4)

where, q ∈ R4 represents the attitude quaternion,
ω ∈ R3 is the angular velocity, p ∈ R3 is the posi-
tion vector and v ∈ R3 is the velocity of the vehicle.
Eq. (3) represents the quaternion propagation equa-
tions.10 Eq. (4) represents the attitude dynamics and
Eq. (2) represents translational dynamics. The state
vector x may now be defined as x , [p, v, q, ω].

The control vectors are denoted by δf and δm,
where δf denotes the main force generating controls
and δm denotes the main moment generating controls.
The consolidated control vector δ may be defined as
δ = [δf , δm]. This classification of moment and force
generating controls is an artefact of the design strat-
egy. In general, both control inputs δf and δm may
each produce forces and moments.

Approximate feedback linearization of the system
(1) is achieved by introducing the following transfor-
mation

ν =
[
ades

αdes

]
=

[
â(p, v, q, ω, qdes, δm, δfdes

)
α̂(p, v, q, ω, δmdes

, δf )

]
(5)

where, ν is commonly referred to as the pseudo-
control. â, α̂ represent the best available approxima-
tion of a(·) and α(·). Additionally, δfdes

, δmdes
, qdes

are the control inputs and attitude that is expected
to achieve ν. This form assumes that translational
dynamics is coupled strongly with attitude. Hence,
qdes will be used to make corrections to the nominal
commanded attitude qc in order to achieve the desired
translational accelerations. Choosing â and α̂ such
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that they are invertible, the desired control and atti-
tude may be written as

[
δfdes

qdes

]
= â−1(p, v, q, ω, ades, δm)

δmdes
= α̂−1(p, v, q, ω, δf , αdes) (6)

In computing δfdes
, δmdes

and qdes using the approxi-
mate inversion â−1, α̂−1, any dynamics in the actua-
tors are temporarily ignored. If we define the model
error ∆̄ as

∆̄(x, δ, qdes, δdes) =
[
∆̄a

∆̄α

]
=

[
a− â
α− α̂

]
(7)

then, the dynamics in Eq. (1) may be written as

v̇ = ades + ∆̄a

ω̇ = αdes + ∆̄α (8)

The pseudo-controls ades and αdes may now be de-
signed to satisfy closed-loop performance and stability
characteristics. Choosing,

ades = acrm + apd − âad

αdes = αcrm + αpd − α̂ad (9)

where acrm and αcrm are the outputs of reference
models for the translational and attitude dynamics
respectively. apd and αpd are outputs of Proportional-
Derivative (PD) compensators and finally, âad and α̂ad

are the outputs of an adaptive element.

Reference Model and PCH

Normally, the reference model dynamics may be de-
signed as

v̇rm = acrm(prm, vrm, pc, vc)
ω̇rm = αcrm(qrm, ωrm, qc ⊕ qdes, ωc) (10)

where prm and vrm denote the outerloop reference
model states whereas qrm, ωrm, denote the innerloop
reference model states. xc = [pc, vc, qc, ωc] is the exter-
nal command signal. Note that the attitude desired by
the outerloop is now added to the commands for the
innerloop controller. Here, qc⊕qdes denotes quaternion
addition.10

This form however, does not account for actuator
dynamics, nor does it account for the innerloop dy-
namics. If the actuators are saturated, the reference
models will continue to demand tracking as though full
authority were still available. A similar problem exists
when the outerloop demands attitude corrections from
the innerloop without consideration of its dynamics. If
left uncorrected, it may cause incorrect adaptation in
the adaptive element.

Pseudo-Control Hedging is used to prevent the
adaptive element from trying to adapt to selected sys-
tem input characteristics. One way to describe the

PCH method is: move the reference model in the op-
posite direction (hedge) by an estimate of the amount
the plant did not move due to system characteristics
the control designer does not want the adaptive ele-
ment to see.9 This will prevent the characteristic from
appearing in the model tracking error dynamics to be
developed in the sequel.

The reference model dynamics may be redesigned to
include hedging as follows

v̇rm = acrm − ah

ω̇rm = αcrm − αh (11)
acrm = acrm(prm, vrm, pc, vc)
αcrm = αcrm(qrm, ωrm, qc ⊕ qdes, ωc) (12)

where ah and αh are the difference between com-
manded pseudo-control and achieved pseudo-control.

ah = â(x, qdes, δfdes
, δm)− â(x, δf , δm)

= ades − â(x, δf , δm)
αh = α̂(x, δf , δmdes

)− α̂(x, δf , δm)
= αdes − α̂(x, δf , δm) (13)

Note that the hedge signals ah, αh, affect the reference
model output acrm, αcrm, only through changes in the
reference model states. In computing the hedge signal,
knowledge of q, ω, δf and δm is assumed. Although it
is reasonable to assume knowledge of the attitude and
angular rate which may be measured, actuator posi-
tions are not normally available for feedback. Results
that use estimates of actuator positions may be found
in existing work.9,11

Tracking error dynamics

One may define the tracking error vector, e, as

e ,




prm − p
vrm − v

Q̃(qrm, q)
ωrm − ω


 (14)

where, Q̃ : R4 × R4 7→ R3, is a function9 which,
given two quaternions results in an error angle vec-
tor with three components. If error angles angles are
kept small, an expression for Q̃ is given by

Q̃(p, q) = 2sgn(q1p1 + q2p2 + q3p3 + q4p4)×

−q1p2 + q2p1 + q3p4 − q4p3

−q1p3 − q2p4 + q3p1 + q4p2

−q1p4 + q2p3 − q3p2 + q4p1


 (15)

The output of the PD compensators may be written
as [

apd

αpd

]
=

[
Rp Rd 0 0
0 0 Kp Kd

]
e (16)

where, Rp, Rd ∈ R3×3, Kp,Kd ∈ R3×3 are diago-
nal and positive definite matrices. The tracking er-
ror dynamics may be found by directly differentiating
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Eq. (14).

ė =




vrm − v
v̇rm − v̇
ωrm − ω
ω̇rm − ω̇


 (17)

Considering ė2,

ė2 = v̇rm − v̇

= acrm − ah − a(x, δ)
= acrm − ades + â(x, δ)− a(x, δ)
= acrm − apd − acrm + âad + â(x, δ)− a(x, δ)
= −apd − (a(x, δ)− â(x, δ)− âad)
= −apd − (∆a(x, δ)− âad)

(18)

ė4 may be found similarly. Then,

∆(x, δ) ,
[
∆a

∆α

]
=

[
a(x, δ)− â(x, δ)
α(x, δ)− α̂(x, δ)

]
(19)

Hence, the overall tracking error dynamics may now
be expressed as

ė = Ae + B [ν̂ad −∆(x, δ)] (20)

where,

A =




0 I 0 0
−Rp −Rd 0 0

0 0 0 I
0 0 −Kp −Kd


 , B =




0 0
I 0
0 0
0 I




(21)
Now, ν̂ad remains to be designed in order to cancel
the effect of ∆. In order to cancel ∆ using an adaptive
element, it should have the functional form ν̂ad(x, δ).

Remark 1. Note that commands, δmdes
, δfdes

, qdes, do
not appear in the tracking error dynamics. Pseudo-
control hedging allows adaptation to continue when the
actual control signal has been replaced by any arbitrary
signal. If the actuator is considered “ideal” and the
actual position and the commanded position are equal,
addition of the PCH signal ah,αh has no effect on any
system signal.

Remark 2. A departure from previous MRAC work
when PCH is included is the modification of the (sta-
ble) reference model dynamics by ah and αh. Consid-
ering just the attitude dynamics reference model, the
un-hedged reference model dynamics αcrm, represents
the desired response of the system to command track-
ing errors. Taking,

ω̇rm = α∗ad + α̂(p, v, qrm, ωrm, δf , δm)

δmdes
= α̂−1(p, v, qrm, ωrm, δf , αdes)

= α̂−1(p, v, qrm, ωrm, δf , αcrm − α∗ad)
(22)

where, α∗ad is an ideal post adaptation output of the
adaptive element and tracking error is zero, i.e., q =
qrm and ω = ωrm. If adaptation is capable of exactly
cancelling for model error. Then Eq. (22) may be writ-
ten as

ω̇rm = α(p, v, qrm, ωrm, δf , δm)

δmdes
= α−1(p, v, qrm, ωrm, δf , αcrm) (23)

Eq. (23) now becomes the non-adaptive design syn-
thesis problem for selecting αcrm. In this paper, the
reference model dynamics are chosen as

αcrm = KpQ̃(qc, qrm) + Kd(ωc − ωrm) (24)

where Kp and Kd are the same as the PD compen-
sator gains and will achieve the desirable responses for
permissible plant and actuator dynamics. If actuators
and adaptation are perfect, the closed loop attitude sys-
tem will exhibit linear dynamics. A similar argument
may be made for the translational dynamics reference
model.

Adaptive Element

Single hidden layer perceptron Neural Networks
(NNs) are universal approximators.12 Hence, given
a sufficient number of hidden layer neurons and ap-
propriate inputs, it should be possible to train the
network online to cancel model error. Figure 2 shows

v
b

1
in

x

1n
in

x

w
b

1
s

2
n

s

1
ad

n

2
ad

n

nad
n

V W

Fig. 2 Neural Network with one hidden layer

the structure of a single hidden layer network whose
input-output map may be expressed as

νadk
= bwθwk +

n2∑

j=1

wjkσj(zj) (25)

where, k = 1, ..., n3 and,

σj(zj) = σ(bvθvj +
n1∑

i=1

vijxini) (26)

Here, n1, n2 and n3 are the number of inputs, hidden
layer neurons and outputs respectively. xini , i = 1..n1,
denote the inputs to the NN. The scalar σj is a sig-
moidal activation activation function,

σ(z) =
1

1 + e−az
(27)
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where, a is the so called activation potential. For con-
venience, define the following weight matrices

V =




θv,1 · · · θv,n2

v1,1 · · · v1,n2

...
. . .

...
vn1,1 · · · vn1,n2


 (28)

W =




θw,1 · · · θw,n3

w1,1 · · · w1,n3

...
. . .

...
wn2,1 · · · wn2,n3


 (29)

Z =
[
V 0
0 W

]
(30)

Additionally, define the σ(z) vector as

σT (z) =
[
bw σ(z1) · · · σ(zn2)

]
(31)

where bw > 0 allows for the threshold, θw, to be in-
cluded in the weight matrix W . Also, z = V T x̄, where,

x̄T =
[
bv xT

in

]
(32)

where, bv > 0, is an input bias that allows for thresh-
olds θv to be included in the weight matrix V . The
input-output map of the SHL network may now be
written in concise form as

νad = WT σ(V T x̄) (33)

The NN may be used to approximate a nonlinear
function, such as ∆(.). The universal approximation
property12 of NN’s ensures that given an ε̄ > 0, then ∀
x̄ ∈ D, where D is a compact set, ∃ an n̄2 and an ideal
set of weights (V ∗,W ∗), that brings the output of the
NN to within an ε-neighbourhood of the function ap-
proximation error. This ε is bounded by ε̄ which is
defined by

ε̄ = sup
x̄∈D

∥∥WT σ(V T x̄)−∆(x̄)
∥∥ (34)

The weights, (V ∗,W ∗) may be viewed as optimal val-
ues of (V, W ) in the sense that they minimize ε̄ on D.
These values are not necessarily unique. The univer-
sal approximation property thus implies that if the NN
inputs xin are chosen to reflect the functional depen-
dency of ∆(·), then ε̄ may be made arbitrarily small
given a sufficient number of hidden layer neurons, n2.

Associated with the tracking error dynamics given
in Eq. (20), is the Lyapunov function.

AT P + PA + Q = 0 (35)

Choosing9

Q =
[
Q1 0
0 Q2

]
1

1
4n2 + b2

w

(36)

where,

Q1 =
[
RdR

2
p 0

0 RdRp

]
> 0 (37)

Q2 =
[
KdK

2
p 0

0 KdKp

]
> 0 (38)

Making use of the property that Rp, Rd,Kp,Kd > 0
and diagonal, results in a positive definite solution for
P . Hence,

P =
[
P1 0
0 P2

]
1

1
4n2 + b2

w

(39)

where,

P1 =
[
R2

p + 1
2RpR

2
d

1
2RpRd

1
2RpRd Rp

]
> 0 (40)

P2 =
[
K2

p + 1
2KpK

2
d

1
2KpKd

1
2KpKd Kp

]
> 0 (41)

Assumption 1. The norm of the ideal weights
(V ∗,W ∗) is bounded by a known positive value.

0 < ‖Z∗‖F ≤ Z̄ (42)

where, ‖ · ‖F denotes the Frobenius norm.

Assumption 2. The external command xc is
bounded.

‖xc‖ ≤ x̄c (43)

Assumption 3. The states of the reference model,
selected in context of Remark 2 remain bounded for
permissable plant and actuator dynamics.

Assumption 4. Note that, ∆ depends on νad through
ν, whereas νad has to be designed to cancel ∆. Hence
the existence and uniqueness of a fixed-point-solution
for νad = ∆(x, νad) must be assumed. A sufficient con-
dition is to ascertain that the map νad 7→ ∆(x, νad) is
a contraction over the entire input domain of inter-
est, or ‖∂∆/∂νad‖ < 1. This condition is equivalent
to the following condition on f̂ , where f̂ , f,∆, νad, ν, δ
represent the elements corresponding to the angular or
translational dynamics.

∥∥∥∥
∂∆
∂νad

∥∥∥∥ =

∥∥∥∥∥
∂∆
∂δ

∂f̂−1

∂ν

∂ν

∂νad

∥∥∥∥∥

=

∥∥∥∥∥

(
∂f

∂δ
− ∂f̂

∂δ

)
∂f̂−1

∂ν

∥∥∥∥∥

=

∥∥∥∥∥
∂f

∂δ

∂f̂−1

∂ν
− I

∥∥∥∥∥ < 1

(44)

For a SISO system, condition (44) is equivalent to

sgn(∂f/∂δ) = sgn(∂f̂/∂δ) (45)
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and,

|∂f̂/∂δ| > |∂f/∂δ|/2 (46)

Condition (45) states that unmodeled control reversal
is not permissable and (46) places a lower bound on
the estimate of control effectiveness.

Theorem 1. Consider the system given by (1) to-
gether with the inverse law (6) and the above assump-
tions, where,

r = (eT PB)T (47)
ν̂ad = νad + νr (48)

νad = WT σ(V T x̄) (49)
νr = −Kr(‖Z‖F + Z̄)r (50)

with diagonal Kr > 0 ∈ R6×6, and where W,V satisfy
the adaptation laws

Ẇ = − [
(σ − σ′V T x̄)rT + κ‖e‖W ]

ΓW (51)

V̇ = −ΓV

[
x̄(rT WT σ′) + κ‖e‖V ]

(52)

with, ΓW ,ΓV > 0 and κ > 0, guarantees that reference
model tracking error (e) and NN weights (W,V ) are
uniformly ultimately bounded.

Proof. See appendix.

Corollary 1. All plant states [p, v, q, ω] are uniformly
ultimately bounded.

Proof. If the ultimate boundedness e,W, V from The-
orem 1 is taken together with Assumption 3, the
uniform ultimate boundedness of the plant states is im-
mediate following the definition of the reference model
tracking error in Eq. (14).

Application to an Autonomous
Helicopter

Consider the application of the combined inner and
outerloop adaptive architecture to the trajectory con-
trol of a helicopter. The dynamics13–15 of the heli-
copter may be modelled in the same form as Eq. (1).
Most small helicopters include the control rotor (also
known as a Hillier stabilizer bar) which has two main
functions. a) provide lagged rate feedback and b) aid-
ing servos change main rotor blade pitch by providing
additional aerodynamic moment. The nonlinear model
used for simulation included these control rotor dy-
namics. Additionally, blade flapping and other aspects
such as gear and engine dynamics were also modelled.

For a helicopter, the main force effector is the ro-
tor thrust which is controlled by changing main rotor
collective δcoll. Hence δf ∈ R1 = δcoll. There are
three primary moment control surfaces, the longitudi-
nal cyclic δlon, lateral cyclic δlat and tail rotor pitch,
also called the pedal input δped. Hence, δm ∈ R3 =[
δlon δlat δped

]T .

Reference Model

A reasonable choice for the reference model dynam-
ics is given by

acrm = Rp(pc − prm) + Rd(vc − vrm)
v̇rm = acrm − ah (53)

αcrm = Kp(Q̃(qc ⊕ qdes, qrm)) + Kd(ωc − ωrm)
ω̇rm = αcrm − αh (54)

where, Rp, Rd, Kp, Kd can be the same gains used for
the PD compensator. If limits on the angular rate or
translational velocities are to be imposed, then they
may be easily included in the reference model dynam-
ics by modifying acrm and αcrm to the following form

acrm = Rd[vc − vrm + sat(R−1
d Rp(pc − prm), vlim)]

αcrm = Kd[ωc − ωrm + sat(K−1
d KpQ̃, ωlim)] (55)

where the functional dependence of Q̃ has been
dropped for clarity and is the same as in Eq. (54).
The function sat is the saturation function and vlim,
ωlim are the translational and angular rate limits re-
spectively.

Approximate Model

An approximate model for the attitude dynamics of
the helicopter was generated by linearizing the non-
linear model around hover and neglecting coupling
between the attitude and translational dynamics.

αdes = A1




p
q
r


 + A2




u
v
w


 + B







δlat

δlon

δped




︸ ︷︷ ︸
des

−



δlat

δlon

δped




︸ ︷︷ ︸
trim




or,

αdes = A1ωB + A2vB + B(δmdes
− δmtrim) (56)

where, A1 and A2 represent the attitude and trans-
lational dynamics respectively. ωB represents the an-
gular velocity of the body with respect to the earth
expressed in the body frame. vB , is the body veloc-
ity vector with respect to the earth expressed in the
body frame. δmtrim is the trim control vector that is
consistent with the linear model.

Choosing the control matrix B such that it is invert-
ible, the moment controls may be evaluated as

δmdes
= B−1(αdes −A1ωB −A2vB) + δmtrim (57)

The translational dynamics were modelled as a point
mass with a thrust vector that may be oriented in a
given direction as illustrated in Figure 3.

ades =




0
0

Zδcoll


 (δcolldes

− δcolltrim) + Lbvg (58)

6 of 11

American Institute of Aeronautics and Astronautics



fD

initialBy

initialBz

3
Bg

sff

2
desa

finalBy

finalBz

Fig. 3 Point mass model for outerloop inversion

where, Zδcoll
is the control derivative for acceleration

in the vertical axis. Lbv is the direction cosine matrix
that transforms a vector from the vehicle (or local)
frame to the body frame and g is an assumed gravity
vector. The desired specific force along the body z axis
may be evaluated as

fsf = (ades − Lbvg)3 (59)

The required collective input may be evaluated as

δfdes
= δcolldes

=
fsf

Zδcoll

+ δcolltrim (60)

The attitude correction required in order to orient
the thrust vector to attain the desired translational
accelerations are given by the following small angle
corrections

∆φ = −ades2

fsf
, ∆θ =

ades1

fsf
, ∆ψ = 0 (61)

For the simplified helicopter model, heading change
has no effect on accelerations in the x, y plane and
hence ∆ψ = 0. These three correction angles may now
be used to generate the attitude quaternion correction
desired by the outerloop. Thus,

qdes = q(∆φ, ∆θ, ∆ψ) (62)

where, q(.) is a function10 that expresses an euler an-
gles based orientation as a quaternion. The overall
detailed controller architecture is shown in Figure 4.

Remark 3. If the desired specific force fsf is close to
zero, which occurs when the desired acceleration in the
body z axis is the same as the component of gravity vec-
tor along that axis, then, Equation (61) is undefined.
In order to overcome this problem, one can impose a
restriction where (61) is only computed if |fsf | > f̄sf ,
where f̄sf > 0 and is a lower limit. Essentially it
means, “do not bother using attitude unless the desired
specific force is greater than f̄sf”.

Choice of Gains Rp, Rd, Kp, Kd

When implementing the combined adaptive inner-
outerloop controller for position and attitude control,

the poles for the combined error dynamics must be
selected appropriately. In the following analysis we
examine the situation where inversion model error is
compensated for accurately by the neural-network and
assume that the system is exactly feedback linearized.
The inner loop and outer loop each represent a second
order system and the resulting position dynamics x(s)

xc(s)

is a fourth order system.
Considering the closed loop longitudinal dynamics,

near hover, and acknowledging an abuse of notation,
it may be written as

ẍ = ades = ẍc + Kd(ẋc − ẋ) + Kp(xc − x) (63)

θ̈ = αdes = θ̈g + Kd(θ̇g − θ̇) + Kp(θg − θ) (64)

where, Rp, Rd, Kp, Kd are the PD compensator gains
for the innerloop (pitch angle) and outerloop (fore-aft
position). x is the position, θ the attitude and θg the
attitude command. Normally, θg = θc +θol where θc is
the external command and θol the outerloop generated
attitude command. Here, we assume that the external
attitude command and its derivatives are zero, hence,
θg = θol. In the following development, we will find
the transfer function x(s)

xc(s)
and use that to place the

poles of the combined inner-outer loop system in terms
of the PD compensator gains Rp, Rd, Kp, Kd.

Ignoring contributions of θ̇g(s) and θ̈g(s), the pitch
dynamics Eq. (64), may be rewritten in the form of a
transfer function as

θ(s) =
θ(s)
θg(s)

θg(s) =
Kp

s2 + Kds + Kp
θg(s) (65)

If the outerloop linearizing transformation used to ar-
rive at Eq. (63) has the form ẍ = fθ, where f = −g
and g is gravity, it may be written as,

s2x(s) = fθ(s) (66)

The outerloop attitude command may be generated as

θol =
ẍdes

f
=

ades

f
(67)

Noting that θg = θol, if, θc = 0,

θg = θol =
1
f

[ẍc + Rd(ẋc − ẋ) + Rp(xc − x)] (68)

Using Eq. (65) and Eq. (68) in Eq. (66),

s2x(s) =
Kp

[
s2xc + Rds(xc − x) + Rp(xc − x)

]

s2 + Kds + Kp

(69)

Rearranging the above equation results in the follow-
ing transfer function

x(s)
xc(s)

=
Kps

2 + KpRds + KpRp

s4 + Kds3 + Kps2 + KpRds + KpRp
(70)
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Fig. 4 Detailed inner and outer loop controller architecture for an autonomous helicopter

A 4th order characteristic polynomial written as the
product of two second order systems may be expressed
as.

Υ(s) = (s2 + 2ζoωo + ω2
o)(s2 + 2ζiωi + ω2

i )

= s4 + (2ζiωi + 2ζoωo)s3

+ (ω2
i + 4ζoωoζiωi + ω2

o)s2

+ (2ζoωoω
2
i + 2ω2

oζiωi)s + ω2
oω2

i (71)

where, the subscripts i, o, represent the inner and out-
erloop values respectively.

Comparing the coefficients of the poles of Eq. (70)
and Eq. (71) allows the gains to be expressed as a
function of the desired pole locations

Rp =
ω2

oω2
i

ω2
i + 4ζoωoζiωi + ω2

o

Rd = 2
ωoωi(ζoωi + ωoζi)

ω2
i + 4ζoωoζiωi + ω2

o

Kp = ω2
i + 4ζoωoζiωi + ω2

o

Kd = 2ζiωi + 2ζoωo (72)

Numerical Results
The proposed guidance and control architecture was

applied to a nonlinear simulation of a Yamaha R - Max
helicopter, using a simulation tool called ESim. The
R - Max helicopter weighs about 128 lbs (empty) and
has a main rotor radius of 5.05 ft. Nominal rotor speed
is 700 revolutions per minute. Its practical payload
capability is about 66 lbs with a flight endurance of
greater than 60 minutes. It is also equipped with a
control rotor.

The helicopter was commanded to perform a circu-
lar maneuver in the North-East plane with constant
altitude. Constant speed was commanded around

the circuit at the same time commanding heading by
declaring the number of pirouettes to be performed per
loop. The trajectory equations are given by

pc =




V
ω cos(ωt)
V
ω sin(ωt)
−h


 , vc=



−V sin(ωt)
V cos(ωt)

0




ψc = ωtf (73)

where, t is simulation time and h is a constant altitude
command. V is speed of the maneuver, ω is angular
speed of the helicopter around the local frame origin,
and f is number of pirouettes to be performed per
circuit. If ω = π/2 rad/s, the helicopter will go around
once every 4 seconds. If f = 1, the helicopter will
rotate once every revolution.

Parameters

The controller parameters for the innerloop involved
choosing Kp,Kd based on a natural frequency of
3, 3, 5 rad/s for the roll, pitch and yaw channels re-
spectively and damping ratio of 0.9. For the outerloop,
Rp, Rd were chosen based on a natural frequency of
1, 1, 1.5 rad/s for the x, y and z body axis all with a
damping ratio of unity. The neural network was chosen
to have 5 hidden layer neurons. The inputs to the net-
work included body axis velocities and rates as well as
the estimated pseudo controls i.e, xin = [vB , ωB , â, α̂].
The output layer learning rates9 ΓW were set to unity
for all channels and a learning rate of ΓV = 10 was set
for all inputs. Limits were imposed on the maximum
angular rate and translational velocity that the refer-
ence model dynamics may demand. The limits were
set to vlim = 50 ft/s and ωlim = 3 rad/s in the refer-
ence model dynamics. Maneuver parameters involved
setting the speed of the maneuver to V = 10 ft/s,
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Fig. 6 x-y plane trajectory plot of helicopter po-
sition with innerloop adaptation only

ω = 0.5 rad/s and frequency of pirouette to once ev-
ery revolution i.e., f = 1.

Simulation

Maneuvers with the above parameters were simu-
lated with and without outerloop adaptation. Inner-
loop adaptation was enabled in all cases. Figure 5
shows the position tracking in the x-axis of the local
frame (North). Figure 6 illustrates the position plot
of the helicopter in the x-y plane during the first 30
seconds of simulation and the latter 80-100 seconds
of simulation at which point the innerloop may be
assumed to be fully trained. Tracking without adapta-
tion in the outerloop is quite poor due to the simplistic
point-mass model used for outerloop inversion.

Figure 7 and Figure 8 shows similar plots but with
adaptation in both the inner and outer loops. The net-
work is able to compensate for approximations in both
the innerloop dynamics and the outerloop dynamics.
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Fig. 8 x-y plane trajectory plot of helicopter po-
sition with both inner and outerloop adaptation
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Fig. 10 The Yamaha R-Max Helicopter
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Fig. 11 North position step command response
during flight test

In Figure 8, during the latter parts of the simulation,
the network appears to be fully trained with accu-
rate tracking to within 2 ft. Additionally, Figure 9
illustrates the heading command and response of the
helicopter for the full adaptation case.

Flight Test

Finally, the controller was flight tested on the
Yamaha R-Max helicopter shown in Figure 10. Fig-
ure 11 shows the flight-test response of the helicopter
to a step position command of 100ft, where, the outer-
loop bandwidth was set to 2rad/s with unity damping
for all channels. The innerloop bandwidths were set
to 3rad/s with unity damping, together with an an-
gular rate limit of 1rad/s. The graph shows the raw
step command together with the reference model out-
put and helicopter response. Additionally, a velocity
limit of 10ft/s was included in the outerloop reference
model, this is evident from the almost linear response
in position during the maneuver.

Conclusions
This paper presents results where the inner loop at-

titude control and outer loop trajectory control loops
have been combined using Pseudo Control Hedging
(PCH) in a way that does not affect adaptation. Both

loops can now use the same adaptive element to can-
cel model errors. Additionally PCH was also used to
prevent unwanted adaptation to actuator limits and
dynamics in the innerloop. Using this architecture,
a consolidated reference command xc that includes
position, velocity, attitude and angular rate may be
provided to the control system. This reference signal
is automatically augmented with any attitude correc-
tions required to follow a trajectory. Using PCH along
with expressions for the poles of the combined inner-
outer loop error dynamics alleviates bandwidth sepa-
ration requirements. This allows increased bandwidth
in the outerloop leading to better overall tracking per-
formance.

Appendix : Proof of Theorem 1
Considering the error dynamics of Eq. (20), using

Eq. (48) for ν̂ad and noting that the NN reconstruction
error with optimal weights is given by

ε = ν∗ad −∆ = W ∗T σ(V ∗T x̄)−∆

the error dynamics may be written as

ė = Ae + B
[
WT σ(V T x̄)−W ∗T σ(V ∗T x̄) + ε + νr

]
(74)

For clarity, hereafter, σ = σ(V T x̄), σ∗ = σ(V ∗T x̄) and
σ′ = σ′(V T x̄). Using a Taylor-series expansion for σ
with respect to W and V , Eq. (74) may be rewritten
as

ė = Ae + B
[
W̃T (σ − σ′V T x̄) + WT σ′Ṽ T x̄ + w + νr

]

where, after defining, W̃ , W −W ∗, Ṽ , V − V ∗,

w = ε−W ∗T
[
σ∗ − σ + σ′Ṽ T x̄

]
+ W̃T σ′V ∗T x̄

The norm of w may bounded as9

‖w‖ ≤ ε̄+2Z̄(bw+n2)+2Z̄ā(bw+n2)(1+bw+n2)‖Z̃‖‖x̄‖
where Z̃ = Z − Z∗, ā is the maximum activation po-
tential of Eq. (27). A bound on the norm of the NN
inputs x̄ may be expressed as

‖x̄| ≤ bv + x̄c + Z̄ + ‖e‖+ (1 + bw + n2)‖Z̃‖
Hence, the upper bound on the norm of w may finally
be expressed as

‖w‖ ≤ c0 + c1‖Z̃‖+ c2‖e‖‖Z̃‖+ c3‖Z̃‖2

where, c0, c1, c2, c3 are known constants. Consider the
Lyapunov candidate function,

L(e, W̃ , Ṽ ) =
1
2

[
eT Pe + tr(W̃Γ−1

w W̃ ) + tr(Ṽ Γ−1
v Ṽ )

]

Using the NN weight update laws of Eq. (51) and
Eq. (52), the time derivative of L along the state tra-
jectories may be expressed as

L̇ = −1
2
eT Qe + rT (w + νr)− κ‖e‖tr(Z̃T Z)
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Using −tr(Z̃T Z) ≤ ‖Z̃‖F ‖Z∗‖F − ‖Z̃‖2F and using
Eq. (50) for the robustifying term νr, results in

L̇ ≤ −1
2
eT Qe + ‖r‖‖w‖ − rT Krr(‖Z‖F + Z̄)

− κ‖e‖‖Z̃‖2F + κ‖e‖‖Z̃‖F Z̄

Using the bound on w and requiring that

λmin(Kr) ≥ c2

‖PB‖ and κ > ‖PB‖c3

L̇ may be further bounded as

L̇ ≤ −1
2
λmin(Q)‖e‖2 − (κ− ‖PB‖c3)‖e‖‖Z̃‖2F

+ a0‖e‖+ a1‖e‖‖Z̃‖F

where,

a0 = (ε̄ + 2Z̄(bw + n2))‖PB‖
a1 = 2Z̄ā(bw + n2)(1 + bw + n2)

(bv + x̄c + x̄rm + Z̄)‖PB‖+ κZ̄

Now, L̇ ≤ 0 when,

‖Z̃‖F ≥ Zm =
a1 +

√
a2
1 + 4a0(κ− ‖PB‖c3)
κ− ‖PB‖c3

or
‖e‖ ≥ a0 + a1Zm

1
2λmin(Q)

By selecting λmin(Q), κ, ΓW and Γv, L̇ ≤ 0 everywhere
outside a compact set that is entirely within the largest
level set of L, which in turn lies entirely within the
compact set D.9 Thus, for initial conditions within
D, the tracking error e and weights Z̃ are uniformly
ultimately bounded.
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