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Abstract. Large brown seaweeds dominate coastal hard substrata throughout many of
the world’s oceans. In coastal North Carolina, USA, this dominance by brown seaweeds is
facilitated by omnivorous fishes, which feed both on red and green algae and on herbivorous
amphipods that graze brown algae. When fish are removed in the field, brown seaweeds
are replaced by red seaweeds, and herbivorous amphipods are more abundant. Using an
array of large (;4000 L) outdoor mesocosms, we tested three mechanistic hypotheses for
this pattern: fish feeding facilitates brown algal dominance (1) by removing red and green
algal competitors, (2) by removing amphipods and reducing their feeding on brown sea-
weeds, or (3) through an interaction of these mechanisms. Our experiments revealed strong
impacts of both fish and amphipods, and a key role for the interaction, in structuring this
community. When both fish and amphipods were removed (the latter with dilute insecticide),
space was rapidly dominated and held for 17 weeks by fast-growing, primarily filamentous
green algae. In contrast, when either fish, amphipods, or both were present, green algae
were cropped to a sparse turf, and space was more rapidly dominated by larger macroalgae.
The impacts of amphipods and fish on late-successional macroalgal assemblages were
comparable in magnitude, but different in sign: red seaweeds prevailed in the amphipod-
dominated treatment, whereas browns dominated in the presence of fish. Laboratory feeding
assays and amphipod densities in the tanks suggested that the significant effects of am-
phipods were attributable largely, if not exclusively, to the single amphipod species Am-
pithoe longimana, which fed heavily on brown macroalgae. Our experimental removal of
red and green algae failed to enhance cover of brown algae significantly; however, the latter
reached substantially lower cover in the grazer-removal treatment, where green algae were
very abundant, than in the fish-only treatment, where green algae were sparse. Thus, our
results support the third hypothesis: fish-mediated dominance of brown algae involves both
suppression of grazing amphipods and removal of algal competitors. Although collective
impacts of fish and amphipods on this benthic community were generally comparable in
magnitude, impacts normalized to each grazer’s aggregate biomass were consistently higher
for amphipods than for fish, sometimes by 1–2 orders of magnitude. Thus, the impacts of
grazing amphipods (specifically A. longimana) on the benthic community were both strong
and disproportionate to their biomass. These experimental results imply that grazing am-
phipods, which are ubiquitous in marine vegetation but poorly understood ecologically,
may play important roles in the organization of benthic communities, particularly where
predation pressure is low.
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INTRODUCTION

A long and distinguished tradition of experimental
field studies demonstrates that marine herbivores, par-
ticularly mollusks and sea urchins in rocky shore hab-
itats (Paine and Vadas 1969, Dayton 1975, Lubchenco
1978, Lubchenco and Menge 1978, Paine 1992), and
fishes and urchins on tropical reefs (Randall 1961, Og-
den et al. 1973, Carpenter 1986, Lewis 1986, Lessios
1988, Morrison 1988, Hay 1991) play key roles in the
organization and functioning of marine benthic com-
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munities. Such studies have been seminal in establish-
ing field experiments as a standard approach in com-
munity ecology (Paine 1980, Hairston 1989) and have
made major contributions to our understanding of food
webs and trophic transfer in marine systems. These
studies also have been pivotal in establishing the gen-
eral principles of community organization that tran-
scend habitat boundaries. Through these types of in-
vestigations, benthic marine ecologists have gained an
understanding of the dynamics of community structure
that may be as complete and as subtle as is currently
available for any community (Dayton 1971, 1975, Con-
nell 1972, Lubchenco and Menge 1978, Paine 1980,
1992, Menge and Lubchenco 1981, John et al. 1992,
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Hughes 1994, Estes and Duggins 1995, Menge 1995,
Hay 1997).

Given this history, it is noteworthy that we remain
largely ignorant of the trophic and ecological roles
played by the small, mobile herbivores (mesograzers)
that abound in the nearshore benthos. Marine algae and
seagrasses harbor diverse assemblages of small, mobile
invertebrates dominated by peracarid crustaceans, gas-
tropod mollusks, and polychaete worms (Colman 1940,
Wieser 1952, Nagle 1968, Mukai 1971, Choat and Kin-
gett 1982, Edgar 1983a, b, c, d, Dean and Connell
1987). These mesograzers are ubiquitous in nearly all
vegetated habitats and can occur in tremendous den-
sities. In systems such as shallow reef crests (Brawley
and Adey 1981) and seagrass beds (Jernakoff et al.
1996) where grazing fishes and macroinvertebrates
such as sea urchins are usually not abundant, meso-
grazers appear to be the dominant primary consumers
(Orth and van Montfrans 1984, Brawley 1992). Be-
cause of their small size, high abundance, short gen-
eration times, and consequently high rates of secondary
production (Fredette and Diaz 1986, Fredette et al.
1990, Edgar 1993), mesograzers, and particularly the
crustaceans, are major conduits of primary production
to higher trophic levels (Kikuchi 1974, Adams 1976b,
Kitting et al. 1984, Edgar and Shaw 1995), and are thus
critical players in near-shore trophic transfer.

Although their role in trophic transfer is widely ac-
knowledged, the potential impacts of mesograzers on
the structure of natural communities are virtually un-
known compared with the well-documented impacts of
macrograzers. This is due in large part to the formidable
logistical challenges to manipulating mesograzer den-
sities under realistic conditions. Yet the same charac-
teristics that make mesograzers important trophic links
in food chains—abundance, rapid population growth
and production—suggest that they could have impor-
tant impacts on plant assemblages belied by their low
standing biomass and general inconspicuousness. Me-
sograzers as a group are also both taxonomically and
ecologically diverse. In many marine communities, the
number of mobile epifaunal invertebrate species (not
including meiofauna) inhabiting algae or seagrasses
runs in the 10s to 100s (Nelson 1979a, Stoner 1980b,
Edgar 1983a, 1990, Dean and Connell 1987), some-
times exceeding the number of macrograzer species by
an order of magnitude or more. Although many of these
epifaunal species appear to feed on microbiota and de-
tritus, a significant but poorly known fraction of them
feed on algae ranging from microalgae to giant kelps
(van Montfrans et al. 1984, Duffy 1990, Duffy and Hay
1991a, Brawley 1992, Cronin and Hay 1996, Jernakoff
et al. 1996, Poore and Steinberg 1999, Cruz-Rivera and
Hay 2000).

A limited number of observational and experimental
studies suggests that mesograzer feeding can influence
the composition of benthic plant assemblages. One of
the first of these was Brawley and Adey’s (1981) dem-

onstration that, in a coral-reef mesocosm, filamentous
algal turfs gave way to dominance by red macroalgae
after introduction of the grazing amphipod Ampithoe
raimondi. Subsequent experiments (Kennelly 1983,
1991, Zeller 1988) and observations (Kangas et al.
1982, Haahtela 1984, Tegner and Dayton 1987) also
demonstrated changes in marine algal assemblages
concomitant with population increases of epifaunal in-
vertebrates. The most explicit attention to the potential
importance of mesograzers, however, has been in sea-
grass beds, where these animals often comprise the
dominant primary consumers (Kitting et al. 1984, Orth
and van Montfrans 1984, van Montfrans et al. 1984,
Jernakoff et al. 1996). In these systems, competition
from fast-growing epiphytes is a frequent threat to the
seagrasses, such that the growth and general vigor of
seagrass beds is likely to depend on suppression of
these epiphytes. Numerous studies have addressed this
general hypothesis by focusing on the potential impacts
of grazing crustaceans and gastropods on epiphyte ac-
cumulation on seagrasses (reviewed in Jernakoff et al.
[1996]). But the results have been equivocal. On the
one hand, it is clear that many mesograzers feed on
epiphytic algae in preference to seagrasses, and much
evidence suggests that this feeding is beneficial for the
grasses. But with few exceptions (e.g., Neckles et al.
1993), such studies have been largely observational, of
short duration, unreplicated, or frustrated by other de-
sign problems. Thus the mounting evidence for the
importance of mesograzers in marine communities is
mostly circumstantial, or was obtained under artificial
conditions at small spatial and temporal scales. What
is lacking is an adequately replicated, experimental
study in something approaching a natural benthic com-
munity over an entire growing season.

Here we present results of a study designed to assess
experimentally the relative importance of grazing by
omnivorous fishes, grazing by amphipods, and compe-
tition among algae, in mediating the characteristic pat-
tern of brown algal dominance on hard substrata in North
Carolina, USA. Using a replicated array of large (;4000
L), outdoor mesocosm tanks supplied with flowing, un-
filtered seawater, we manipulated the abundance of om-
nivorous fish and grazing amphipods in a factorial ex-
periment, and followed benthic succession for five
months. We addressed the following questions: (1) Do
fish promote dominance of brown seaweeds by removing
their competitors, by removing their (meso)grazers, or
both? (2) Do mesograzers have measurable impacts on
benthic community organization, and if so how do they
compare, qualitatively, with those of fishes? (3) Which
mesograzer species have the greatest impact on com-
munity organization?

METHODS

Natural history of the system

Our study focused on the seaweed-dominated com-
munity that occurs on hard substrata in coastal North
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TABLE 1. Field abundances of key organisms studied in the mesocosm experiments.

Organism Abundance Units Season Reference

Brown algae ;20 % cover Oct Miller and Hay (1996)
Sargassum filipendula 585 g wet mass/m2 Jul Hay (1986)
Dictyota spp. 44 g wet mass/m2 Jul Hay (1986)
Padina gymnospora 39 g wet mass/m2 Jul Hay (1986)

Red algae ;3 % cover Oct Miller and Hay (1996)
Hypnea musciformis 9 g wet mass/m2 Jul Hay (1986)
Chondria dasyphylla 0.5 g wet mass/m2 Jul Hay (1986)

Green algae
Enteromorpha spp. 0.4 g wet mass/m2 Jul Hay (1986)
Ulva spp. 0.07 g wet mass/m2 Jul Hay (1986)

Grazers
Spottail pinfish (Diplodus holbrooki) 7–8 no./m2 Jul Hay (1986)
Total amphipods to 130 no./g wet algae Jun Duffy (1990)
Ampithoe longimana 0–4 no./g wet algae Jun–Aug Duffy and Hay (1991b, 1994)

Notes: All data are from Radio Island Jetty, North Carolina, USA, except those for Ampithoe longimana from Radio Island
Jetty and Lennoxville Point, North Carolina. Values reported are means, except for total amphipods and Ampithoe longimana
(range).

Carolina during warmer months of the year (Table 1).
Previous studies in this, and adjoining, systems (Adams
1976a, Hay 1986, Hay and Sutherland 1988, Duffy
1990, Duffy and Hay 1991b, 1994) have revealed a
characteristic seasonal pattern of plant and animal suc-
cession as follows. As water temperatures warm in
spring, fish densities in nearshore habitats increase rap-
idly due to recruitment of young-of-year and immi-
gration of adults from deeper wintering areas. Over
hard substrata, much of the nearshore fish biomass is
made up of omnivorous spottail pinfish Diplodus hol-
brooki (M. E. Hay, unpublished data). Juvenile D. hol-
brooki, like many other common coastal species, begin
feeding on planktonic copepods and epifaunal crusta-
ceans as they settle out of the plankton; as they grow
to adult size, their diet expands to include an increasing
proportion of benthic algae, which comprises the major
fraction of the diet by late summer (Darcy 1985b; M.
E. Hay, unpublished data). D. holbrooki appears to
have similar habits to the other common sparid in our
area, Logodon rhomboides, which despite its primarily
herbivorous adult diet, feeds actively on small crus-
taceans in preference to algae when these animals are
available (Holmlund et al. 1990). In late fall as water
temperatures drop, D. holbrooki migrates offshore.

During the winter and early spring, seaweed assem-
blages on hard substrata support very high densities of
mobile epifauna, dominated by the suspension-feeding
amphipods Caprella penantis and Jassa marmorata
(formerly J. falcata; Duffy [1990]). The arrival of large
numbers of juvenile fishes in spring is generally ac-
companied by a marked decline in epifaunal abun-
dance, and a shift in species relative abundance and
size frequency distribution (Nelson 1979b, Duffy 1990,
Duffy and Hay 1991b, 1994). During the late summer
period of high fish abundance, these epifaunal assem-
blages remain at relatively low densities (Duffy and
Hay 1991b); the major macrophyte-grazing mesoher-

bivores are Ampithoe longimana in the summer and A.
marcuzii during colder months (Hay et al. 1987, Duffy
1990, Duffy and Hay 1991b, 1994).

The seaweed assemblage also shows predictable sea-
sonal changes (Schneider and Searles 1991; M.E. Hay,
unpublished data). In spring, several red and green
algae flourish, gradually giving way during summer to
an assemblage dominated by brown seaweeds (pri-
marily Sargassum filipendula,, Dictyota menstrualis,
D. ciliolata, and Padina gymnospora) that are unpal-
atable to grazing fishes. These seaweeds persist through
fall. Experimental exclusion of fishes in the field pre-
vents this transition to brown dominance, with red mac-
roalgae, which are palatable to local grazing fishes,
dominating the substratum in fish exclusion cages
(Miller and Hay 1996). In late fall as water tempera-
tures drop, the brown seaweeds listed above, most of
which are of tropical/warm temperate distribution, be-
gin to senesce. The winter flora is dominated by se-
nescent S. filipendula, and filamentous and bladed algae
of more northerly distribution.

Spottail pinfish differ markedly from the common
grazing amphipods in their feeding preferences among
the local algal species. Both spottails and the other
common omnivorous sparid in our area, Lagodon
rhomboides, feed preferentially on green and red algae
and avoid browns (Hay 1986, Hay et al. 1987, 1988).
The local ampithoid amphipods, in contrast, generally
feed more heavily on browns than on other macroalgae
(Hay et al. 1987, Duffy 1990, Duffy and Hay 1991b,
1994).

Experimental design

The primary focus of our study was a mesocosm
experiment manipulating the densities of Diplodus hol-
brooki, grazing amphipods, and red and green algae,
in a replicated factorial design. We followed the suc-
cession of benthic communities on concrete blocks in
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FIG. 1. Schematic illustration of the mesocosm experiment’s
design. Each large rectangle represents a tank, subdivided lon-
gitudinally by a mesh panel (dotted line) into fish-inclusion and
fish-exclusion compartments (only the forward half of each tank
is shown; the back half was not used). Tanks in heavy outline
were treated with insecticide; those in light outline were not. The
four smaller rectangles within each compartment represent the
individual concrete block substrata, two of which had red and
green algae removed weekly (competitor removal) and two of
which were left undisturbed (control). Arrows show no removal
(open rectangle) and competitor removal (shaded rectangle).

each treatment over the course of 22 weeks. We con-
ducted the experiment in a series of eight ;4000-L
stainless steel tanks located behind the University of
North Carolina at Chapel Hill’s Institute of Marine Sci-
ence in Morehead City, North Carolina, USA. The
tanks are outdoors and are supplied with a constant
flow of raw, unfiltered seawater from adjacent Bogue
Sound. Each tank is supplied with a ;60-L dump-buck-
et that generates waves. Seawater is pumped into this
bucket until it fills, becomes unstable, and then dumps
into the tank, creating a wave that travels the length of
the tank, maintaining turbulent water circulation
throughout and simulating the natural physical envi-
ronment on local rock jetties. The water then drains
from a standpipe at the downstream end. The tanks are
exposed to ambient conditions of light, temperature,
and weather.

In our experiment, each tank was divided into four
compartments using 1.9-cm plastic mesh. We used only
the two upstream compartments in each tank because
we were concerned that the compartments that were
remote from the wave generator might not be exposed
to adequate turbulence. After inoculating the meso-
cosms with seaweeds and mesograzers (see next sec-
tion), four concrete cinder blocks were placed on the
bottom of each compartment. We monitored the benthic
communities that developed on the top surfaces of these
blocks.

The experiment was designed to test the relative im-
portance of (1) fish grazing, (2) mesoherbivore (spe-
cifically amphipod) grazing, and (3) competition
among algae in mediating the dominance by brown
macroalgae observed on local hard substrata in the
field, and in previous mesocosm experiments (see Hay
1986, Miller and Hay 1996). We used a modified fac-
torial design to separate the effects of these three fac-
tors (Fig. 1). First, to assess the effects of mesograzers,
we treated four of the eight tanks with a dilute solution
of insecticide (liquid Sevin [Ortho, Marysville, Ohio,
USA], active ingredient 1-napthyl n-methylcarbamate,
see Methods: Evaluation of insecticide effects below)
to maintain reduced densities of small, mobile inver-
tebrates. The remaining four tanks were untreated and
served as controls. Insecticide tanks were treated on
days 1, 11, 63, and 152 of the experiment by shutting
off water flow, adding 3.7 mL of full-strength liquid
Sevin solution (51.0 g active ingredient) to a bucket
of seawater, dumping this solution into the tank, stirring
the tank briefly with a stick to attain a concentration
of ;1 mL/L, and allowing the Sevin to work for ;30
min before restoring water flow to the tanks. Water flow
was stopped and restored in the control tanks for the
same period. Second, to assess the effects of fish, we
stocked fish in one of the two compartments in each
tank. Finally, to assess the importance of competition
from red and green algae in suppressing brown algal
dominance, we manually removed red and green algae
from two of the four blocks in each compartment, leav-
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ing the remaining two blocks undisturbed as controls.
Reds and greens were removed weekly through the end
of September, and less frequently thereafter, when algal
growth rates appeared lower. Data from the two blocks
of the same treatment (competitor removals or controls)
within a compartment were pooled, and treated as a
single datum, in all analyses. There were thus four
grazing treatments which, because insecticide primar-
ily affected amphipods, we refer to as: (1) ‘‘grazer-
removal’’ (2amphipods/2fish), (2) ‘‘fish-dominated’’
(2amphipods/1fish), (3) ‘‘amphipod-dominated’’ (1am-
phipods/2fish), and (4) ‘‘fish1amphipods’’ (1amphi-
pods/1fish). Each grazer treatment contained a nested
pair of competition treatments (removal and control,
Fig. 1), yielding a total of eight treatments. Each of
the eight treatments was replicated four times.

Stocking the mesocosm tanks

The experiment was initiated on 3 June 1991, when
we placed the concrete substratum blocks into the clean
tanks and began pumping seawater into them. After
three to four weeks, we stocked the tanks with eight
species of seaweeds in wet masses approximating those
measured in an equivalent area at the same time of year
at nearby Radio Island Jetty. The species were the red
algae Hypnea musciformis (;11 g), Gracilaria tikva-
hiae (;12 g), and Chondria dasyphylla (;12 g); the
brown algae Sargassum filipendula (;10 g), Padina
gymnospora (;5 g), and Dictyota menstrualis (;10 g);
and the green algae Codium fragile (;20 g), and Ulva
spp. (;7 g). A handful each of the red seaweeds Ca-
lonitophyllum medium and Rhodymenia pseudopal-
mata, which are found in low abundances at Radio
Island, were also added to each compartment. These
plants, which were not defaunated, provided an initial
inoculum of mesograzers and epiphytic algae, foods
for our consumers, and a local spore source for further
colonization of mesocosm surfaces. The algae were
attached to the mesh sides of the compartment with
cable ties. On 8 July, we added eight spottail pinfish
(Diplodus holbrooki) to each of the fish-inclusion com-
partments. This fish density (6.8 individuals/m2 of for-
aging area) is similar to the mean recorded during sum-
mer in the field (Table 1, Hay 1986).

Statistical analysis of the mesocosm experiments

The design of the mesocosm experiment is complex,
involving three factors (insecticide, fish, competition),
nine measurement dates, and a large number of poten-
tial response variables. One treatment (insecticide) was
coincident with the blocking factor (tank), and the other
two were nested within levels of the insecticide treat-
ment (competition within fish within insecticide). Anal-
ysis of the experiment thus posed some challenges,
which we have chosen to approach as follows. First,
to simplify interpretation and reduce the total number
of statistical tests, we aggregated algal species into
higher taxa, namely green, red, and brown macroalgae,

and our analysis concentrates on how treatments af-
fected these groups. This approach is justified by pre-
vious studies showing that grazer feeding rates in this
system are generally much more similar for common
species within these algal groups than among them
(Hay et al. 1987, 1988, Duffy and Hay 1991b). Second,
we reduced the total number of dates analyzed by test-
ing for treatment effects on a given algal taxon only
on the date at which that taxon reached its highest
overall abundance. We opted for this approach rather
than using repeated-measures ANOVA because the lat-
ter often produces a large number of significant inter-
action terms, which require post hoc lower-level AN-
OVAs to dissect out interpretable effects. Instead we
planned comparisons in advance based on ecologically
relevant criteria (i.e., major algal groups on dates of
peak occurrence).

To compare the impacts of different grazer treat-
ments, our analysis held competition constant (i.e., by
considering only the non removal blocks in each com-
partment). These tests involved four grazer treatments
(see Methods: Experimental design). Because mesograzer
reductions could only be achieved by treating entire
tanks with insecticide, our design was not a completely
randomized factorial one; instead, fish and no-fish
treatments are paired within tanks, whereas insecticide
and no-insecticide tanks are unpaired and, moreover,
coincide with the blocking factor for the fish treatment.
This constitutes a split-plot design, and we analyzed
the results using the split-plot ANOVA developed for
such designs (Potvin 1993). There were four indepen-
dent replicates for each treatment combination. A lim-
itation of this design and analysis is the inability to
separate the variance due to block (in this case, tank)
effect from that due to one of the treatments (in this
case, mesograzer removal).

To assess the importance of competition among al-
gae, we compared the cover of brown algae on blocks
from which red and green algae were removed vs. on
undisturbed blocks. Because each experimental unit
(tank compartment) of a grazer treatment contained
both competitor-removal and control blocks, we com-
pared the difference in brown cover between the paired
control and removal blocks within each compartment
using paired-sample t tests. Separate tests were run for
each combination of date and grazer treatment, but we
used the sequential Bonferroni procedure (Rice 1989)
to maintain overall a at 0.05 for the set of tests.

Before conducting any statistical analyses, we eval-
uated heterogeneity of variances among treatments us-
ing Cochran’s test. In all cases where significant het-
erogeneity was found, variance was approximately pro-
portional to the mean, so we transformed the data by
log(x 1 1) and reran Cochran’s test. In most cases this
homogenized the variances and we proceeded with AN-
OVA. In a few cases transformation reduced but failed
to eliminate variance heterogeneity so we ran the AN-
OVA on the transformed data with reduced variance
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heterogeneity. All statistical analyses were performed
using SAS version 6.12 (SAS 1985).

Evaluation of insecticide effects

We used the insecticide Sevin (1-napthyl n-methyl-
carbamate) to suppress amphipods in our experiment.
This product is a cholinesterase inhibitor in insects
(Casida 1963, Matsumura 1985) and appears to have
a similar mode of action against several marine ar-
thropods (Buchanan et al. 1985). Our experiment relies
on the assumption that treatment with Sevin depresses
abundances of mesograzers (specifically amphipods)
but has negligible effects on other organisms. This as-
sumption is supported by several lines of evidence: (1)
Sevin is very effective against many marine crusta-
ceans, but has little effect on mollusks or fishes; to
affect the latter animals significantly, Sevin must be
applied at concentrations 10 to 300 times greater than
those that kill crustaceans (Buchanan et al. 1985). (2)
Sevin has been extensively used for nearly 40 years in
estuaries of the northeastern Pacific to rid commercial
oyster beds of burrowing shrimps and crabs. Although
it is applied at high concentrations from helicopters,
no detrimental, long-term effects on fishes have been
detected (Buchanan et al. 1985; D. A. Armstrong, per-
sonal communication). (3) Carpenter (1986) success-
fully used Sevin to conduct mesograzer removals on a
coral reef and demonstrated that it had no detectable
effects on algal biomass or productivity over the 4-
month period of his study. Although the concentration
of Sevin and frequency of application that we used in
our experiments were less than those used or evaluated
in the above studies, we nevertheless evaluated its po-
tential effects on target and nontarget animals in our
system.

Amphipods.—To determine the susceptibility of me-
sograzers to insecticide, we exposed groups of five in-
dividuals of the amphipod Ampithoe longimana (n 5
6 groups) to insecticide at a concentration of 1 mL/L
in bowls of seawater, and recorded the time elapsed
until all five amphipods in a replicate bowl had died.
Another six groups of five individuals each were ob-
served in bowls of untreated seawater as controls. We
compared the proportion of individuals surviving in
Sevin and control treatments after one hour using a
Mann-Whitney U test.

Fish.—We assessed the impacts of insecticide at 1
mL/L on both survival and growth of spottail pinfish
over 39 d in the laboratory, using the following design.
Thirty fish were collected from the field and acclimated
for 7–10 d in the laboratory flowing-seawater system
until they were feeding regularly on commercial pellet
food. They were then measured for standard length,
and a single fish was placed in each of 30 38-L aquaria
supplied with flowing seawater. Fifteen of the tanks
were assigned as control tanks, and the other 15 tanks
were assigned as insecticide-treatment tanks. To con-
trol for differences in feeding rate among individuals,

a control fish was paired with a treatment fish of ap-
proximately the same size in an adjacent tank, and the
two were fed equal amounts of food. We accomplished
this by alternately offering each fish a single pellet of
commercial fish food until one of them stopped eating,
at which point neither of the fish was offered more
food. This ensured that both fish in a pair received the
same ration. Fish were fed once each day, and the num-
ber of pellets eaten by each was recorded at each feed-
ing. On three occasions (days 13, 20, and 27) during
the 39-d experiment, the water supply to each tank was
shut off and a solution of insecticide was added to the
treatment tank of each pair and mixed through the water
to achieve a concentration of 1 mL/L. After 1 h the
water flow was resumed to all tanks. At the end of the
experiment, the standard length of each fish was re-
measured.

Monitoring benthic succession and mesograzer
abundance

We monitored benthic succession by measuring per-
cent cover of benthic organisms on the concrete sub-
strata, allowing repeated nondestructive sampling of
the community. Percent cover of benthic organisms was
measured on nine dates by identifying taxa under each
of 100 points within a quadrat lain over the surface of
each block. In cases where more than one species over-
lapped under a given point, each was counted as one;
thus total cover could exceed 100%.

Standing biomass of benthic taxa was measured at
the end of the experiment, when all organisms were
scraped from the blocks and preserved. Samples from
this final harvest were sorted by taxon, generally to
species for algae and more conspicuous sessile animals,
and to higher taxa for smaller and rarer organisms.
They were then dried to constant mass at 608C,
weighed, ashed in a muffle furnace at 4508C, and re-
weighed.

We estimated mesograzer abundance in the tanks in
September by counting and identifying the animals col-
onizing brown seaweeds deployed in the tanks during
a grazing assay (see Methods: Grazer impacts below).
At the end of the assay, we gently removed the de-
ployed algal pieces from the tanks, taking care to avoid
disturbing associated animals. We then removed as-
sociated animals from the algae by decanting the water
from the holding bag through a 500-mm mesh sieve,
and rinsing the alga repeatedly in tap water to dislodge
animals; all rinse water was passed through the sieve,
and the collected animals were preserved in 10% for-
malin. Animals were counted and identified from one
thallus of each algal species deployed in each section
of each tank.

Grazer impacts on brown seaweeds

We used two sources of evidence to test the impacts
of mesograzers on brown algae in the mesocosm ex-
periment. First, to measure mesograzer impact on the
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dominant browns directly, we deployed pieces of Sar-
gassum filipendula, Dictyota menstrualis, and Padina
gymnospora in the tanks in two separate experiments,
one in August and one in September. In August, one
piece of each of the three algal species (initial blotted
wet mass 5 4.36–5.97 g) was attached to the mesh side
of the compartment with a cable tie. The algal pieces
were left for 7 d, after which the remaining portion of
each was gently enclosed in a separate plastic bag,
removed from the mesh wall, and the bag was sealed.
In the laboratory, the plant portion was blotted dry and
weighed again to obtain the change in mass during the
7-d experiment. The September experiment was similar
except that three pieces of each species were deployed
in each tank; after the remaining algal portions had
been retrieved at the end of 8 d, the mean mass change
of the three portions of a given species in a compart-
ment was used as the datum for analysis.

As a second estimate of mesograzer damage, at the
conclusion of the experiment we measured the size
(area) of fronds remaining on plants of Sargassum fi-
lipendula that had settled and grown on blocks in the
tanks. This alga was the dominant brown seaweed in
the tanks. After plants were harvested, we photocopied
five fronds selected randomly from each of five plants
from each substratum block; we then measured the ar-
eas of all fronds from one block in each tank com-
partment using the digitizing program NIH image (Na-
tional Institutes of Health, Bethesda, Maryland, USA).
This technique estimates only the total area and perim-
eter of the frond, rather than the amount lost to grazing.
Since grazing appeared to be the primary process pro-
ducing differences in frond area among treatments, we
considered this a reasonable approach to estimating,
albeit crudely, the impact of grazing at the level of
individual fronds.

Laboratory feeding assays

To evaluate which of the common mesograzer spe-
cies contributed most to treatment effects on macroal-
gae observed in the tank experiment, we measured
feeding rates of each of six epifaunal species on seven
species of algae in the laboratory. No-choice assays
were conducted for six of the most abundant epifaunal
species that were known or suspected of being herbiv-
orous, namely the amphipods Ampithoe longimana,
Dulichiella appendiculata, and Elasmopus levis, the
isopod Paracerceis caudata, and the gastropods Dia-
stoma varium and Costoanachis sp. We measured their
feeding rates on the green algae Cladophora ruchingeri
and Enteromorpha sp., the red macroalgae Hypnea
musciformis and Chondria dasyphylla, and the brown
macroalgae Padina gymnospora, Dictyota menstrualis,
and Sargassum filipendula. All assays were conducted
simultaneously. Portions of algae were blotted dry
(100–200 mg), weighed, and placed in replicate 100-
mL plastic cups with monospecific groups of grazers;
an equal number of replicate cups received algal por-

tions but no grazers (controls) and were used to cal-
culate endogenous changes in algal mass unrelated to
grazing. Grazer and control cups were paired by using
algal portions from the same thallus. After 5–6 d, we
removed the remaining algal portions from the cups,
blotted, and reweighed them. The estimated amount
grazed was calculated by comparing change in mass of
the alga exposed to grazers with that of the paired
control alga, after correcting for endogenous mass
change in the grazer-exposed alga by subtracting the
percentage change measured in the grazer-free control.

Comparing impacts of fish and amphipods

One of our primary interests in this experiment was
to compare the relative importance of fish vs. meso-
grazers in impacting the algal assemblage, i.e., their
relative interaction strengths. In addition to the tradi-
tional raw, arithmetic differences between treatments
with and without the consumer, several other metrics
have been proposed recently as more standardized es-
timates of interaction strength useful for comparison
among different consumers, prey types, and environ-
ments (Berlow et al. 1999). Berlow et al. (1999) used
simulation studies to compare the behavior of Paine’s
(1992) index (PI), the Index of Community Importance
(CI, Power et al. 1996), the Dynamic Index (DI, Os-
enberg and Mittelbach 1995, Wootton 1997), and the
raw difference under different conditions of prey and
consumer density, type of consumer functional re-
sponse, and proximity of the interaction to equilibrium.
All of the indices were sensitive to one or more of
these conditions, such that an appropriate index should
be chosen carefully to reflect the specific question ad-
dressed and the conditions of the experiments used to
calculate it.

Based on the results of Berlow et al. (1999), we chose
to present our results on grazer effects in the form of
raw (as opposed to proportional) differences among
treatments. We calculated grazer effects separately for
spottail pinfish and for grazing amphipods, using sev-
eral response variables. These included the cover of
green, red, and brown algae on the dates at which each
reached its highest overall cover, as well as total benthic
biomass and biomass of brown algae (the dominant
benthic taxon) at the conclusion of the experiment. For
each effect we calculated (1) the ‘‘collective’’ differ-
ence, i.e., the absolute difference between treatments
resulting from the aggregate effects of all grazer in-
dividuals present, (2) the ‘‘per-biomass’’ difference,
which is simply the collective effect of a grazer taxon
divided by its aggregate biomass, and (3) the ‘‘per-
capita’’ difference, i.e., the collective effect divided by
the number of individual grazers present. Of these three
alternative measures of interaction strength, the per-
capita effect is perhaps most straightforward to inter-
pret in that effects of grazers on plants are exerted by
individual animals. Similarly, the per-capita effect is
important in being the term most commonly used by
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TABLE 2. Estimation of grazer biomass in common units (g AFDM grazers/block).

Term Value Value units Source Product Product units

Grazing amphipods†
1 17.3 no. grazing amphipods/g wet

algae
Sargassum, Dictyota, Padina

(September)
(17.3)

2 9.26 g wet algae/g AFDM algae Sargassum 160 no. amphipods/g AFDM algae
3 0.002 g AFDM/individual amphipod Ampithoe longimana 0.280 g AFDM amphipods/g AFDM

algae
4 1.07 g AFDM algae/block final harvest (December) 0.300 g AFDM amphipods/block

Spottail pinfish‡
1 83.7 fish length (mm) final harvest (December) (83.7)
2 0.034 g AFDM Diplodus/length

(mm)
measurements of field-

collected Diplodus
2.81 g AFDM/fish

3 7 no. fish compartment final harvest (December) 19.7 g AFDM Diplodus/compart-
ment§

4 0.064 block area as percentage of
total foraging area

measurement (cage sides,
ends, blocks)

1.26 g AFDM Diplodus/block

Note: ‘‘Product’’ 5 the product of the ‘‘value’’ on that line multiplied by the product from the previous line.
† Ampithoe longimana, A. marcuzii, Dulichella appendiculata, and Caprella penantis.
‡ Diplodus holbrooki.
§ Total AFDM Diplodus per tank was actually calculated by summing estimated masses of individually measured fish.

theoreticians to model the dynamics of species inter-
actions (Laska and Wootton 1998). Nonetheless, we
consider the per-biomass effect a more useful alter-
native to the per-capita effect as a means of comparing
grazer taxa, such as fish and amphipods, that differ
greatly in body size (three orders of magnitude in the
fish and amphipods we studied, Table 2) and abundance.
Moreover, the per-biomass effect might be considered
closer to an intrinsic measure of a species’ impact in
that population biomass is more tightly constrained by
available energy or resources than is abundance. We
used raw differences to calculate these effects for the
following reasons. First, unlike PI and CI, the raw dif-
ference is symmetric about zero such that positive and
negative effects of similar absolute value yield corre-
spondingly similar values of the index. Second, DI per-
forms poorly when prey abundances are near equilib-
rium. Since our estimates of grazer impact were mea-
sured on the date when the algal taxon reached highest
abundance, they appear to be as close as this system
gets to equilibrium, such that DI may be an inappro-
priate index.

Calculating the collective impact of grazers was
straightforward, but estimation of grazer biomass re-
quired a series of conversions since grazer biomass was
not measured directly. To compare biomass of fish and
amphipods in common units, we estimated the aggre-
gate ash-free dry mass (AFDM) of grazers per unit of
bottom (i.e., block) area (Table 2). First, for fish, we
measured the number and lengths of fish in each ex-
perimental compartment at the conclusion of the ex-
periment, and estimated their AFDM using a subse-
quently measured length/AFDM relationship for D.
holbrooki. Since the fish had access to the entire com-
partment, we then normalized fish AFDM to the area
of a single concrete block as follows. The total area
available for feeding within a compartment (surfaces

of blocks plus area of plastic mesh compartment sides)
was estimated, and the total AFDM of fish within the
compartment was then multiplied by the fraction of that
area comprised by a single block to obtain biomass of
fish per block. To calculate biomass of amphipods (Ta-
ble 2), we first converted amphipod abundance per
gram wet algae in September (the only date on which
such data were available) to abundance per gram AFDM
algae, using a measured relationship for AFDM/wet
mass of Sargassum filipendula. Next, grazing amphi-
pod abundance was multiplied by mean AFDM per
individual amphipod to obtain AFDM of amphipods
per AFDM algae. Finally, we multiplied this number
by the final benthic biomass harvested from a single
block to normalize grazer biomass to the area of an
individual concrete block.

A final issue in comparing effects of different grazers
is the relevant ‘‘normal’’ treatment against which to
compare the grazer-exclusion treatments. The estimat-
ed impact of a consumer on a prey assemblage can be
influenced strongly by prey abundance and the presence
of other grazers. In an attempt to dissect out the com-
munity impact of a single grazer taxon (e.g., amphi-
pods) in isolation, as opposed to its impact in the intact
community (e.g., containing both amphipods and fish),
we calculated grazer effects using two complementary
approaches. The ‘‘isolated’’ effect of a grazer is the
difference between algal abundance in the presence of
that grazer taxon alone vs. in the absence of all grazers.
Thus, the isolated effect measures the grazer’s total
impacts on the target algal group, potentially including
both direct effects (grazing) and indirect effects (e.g.,
mediation of competition among algae), in the absence
of interaction with other grazers. The ‘‘net’’ effect of
the grazer, in contrast, compares algal abundance in the
intact (normal) assemblage with all grazer taxa present
vs. that where the grazer in question has been deleted.
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FIG. 2. Successional patterns as percent cover (mean 61 SE) of the dominant groups of benthic algae, and bare space,
in the four experimental grazer treatments. Data shown are from the unmanipulated control (noncompetitor removal) blocks
only (n 5 4). Cover totals 100% in many cases because of high cover of a detritus/microbial coating of unknown origin.
All treatments included some isopods (Paracerceis caudata) and snails (Diastoma varium), but the ‘‘grazer-removal’’ treatment
contained no fish and very few amphipods (Fig. 8).

Because in this case other grazers are present in both
the normal and deletion treatments, the net effect mea-
sures the grazer’s total impacts on the target algal group
including those resulting from interactions with effects
of other grazers. In other words, the isolated effect of
a grazer measures the impact of adding that grazer to
an algal assemblage, whereas the net effect measures
the impact of deleting that grazer from an intact com-
munity.

RESULTS

Evaluation of insecticide effects

Exposure to Sevin had a rapid and severe effect on
the amphipod Ampithoe longimana. When exposed to
the insecticide at a concentration of 1 mL/L in the lab-
oratory assay, all individuals were obviously moribund,
i.e., lying in unnatural positions with little movement,

within 2–3 min. In the six replicate groups exposed to
insecticide, all individuals died by the end of the 60-
min observation period; the average time (61 SE) until
all individuals died was 11.4 6 4.5 min. All amphipods
in untreated control bowls were active and apparently
healthy at the end of the experiment. The difference in
survival between Sevin and control treatments was sig-
nificant (P , 0.005, Mann-Whitney U test). Similarly,
when the mesocosm tanks were treated with Sevin,
dead and dying amphipods were conspicuous by the
end of the treatment.

In contrast, the insecticide treatment had no effect
on survival or growth of spottail pinfish during the 39-
d experiment. All fish survived the experiment except
for two that leapt out of their tanks and were lost; fish
in those pairs were excluded from the analysis, re-
sulting in a total sample of 13 pairs. When fish were
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FIG. 3. Impacts of different grazer treatments on cover
(mean 61 SE) of the three major algal groups for the date on
which each group peaked in overall abundance. For brown
algae, data from competitor-removal (hatched bars) and con-
trol (open bars) blocks are shown separately; for other algal
taxa, data are shown only for control blocks. See Table 3 for
statistical analysis.

paired by size and food ration, mean percentage change
in standard length of control fish was 20.0 (62.8)%
and did not differ from change for Sevin-treated fish
(17.1 6 3.2%, P 5 0.16, paired-sample t test).

Development of Algal Assemblages

Grazer impacts on benthic succession: general pat-
terns.—Over the course of the five-month experiment,
the mesocosm tanks developed a diverse assemblage
of algae, sessile invertebrates, and mesograzers. In all
treatments, the benthic community was eventually
dominated by seaweeds. These communities differed
markedly, however, among treatments. Where both fish
and amphipods were removed, fast-growing, structur-

ally simple green algae (primarily Enteromorpha sp.
and Cladophora ruchingeri) rapidly covered most
available space and held it throughout much of the five
months of the experiment (Fig. 2). Green algae in this
treatment covered at least twice as much space (87 6
9% on 15 August) as in any other treatment (maximum
of 43 6 10% on any date), dominated the community
longer, and were the most abundant algal type through
the October sampling date in the grazer-removal treat-
ment. Indeed the data for percent cover substantially
underestimate the differences in algal biomass among
treatments since green algae in treatments with grazers
were invariably cropped to a turf only a few millimeters
high, whereas Cladophora tufts in the treatment lacking
grazers reached lengths up to ;200 mm (J. E. Duffy,
personal observation). Red algae in the grazer-removal
treatment reached a maximum coverage of 23 6 6%
at the end of the experiment in December. Brown algae
achieved similar cover only on the final date. Thus,
rapidly growing green algae appear to be the compet-
itive dominants in this system for most of the growing
season, at least in the short term (less than one year).

In the fish-dominated treatment, where amphipods
were suppressed by insecticide (see Results: Mesogra-
zer abundance), blocks developed a seaweed assem-
blage quite similar to that found locally on hard sub-
strata: green algae dominated initially but declined in
August, after which brown algae (primarily Dictyota
menstrualis and Padina gymnospora early in the sea-
son, and Sargassum filipendula after September) began
to increase in cover (Fig. 2). By the end of the exper-
iment coverage by browns averaged 68 6 12% of
space. Red algae never grew much larger than the spo-
reling stage in the fish-dominated treatment.

Blocks exposed only to mesograzers (‘‘amphipod-
dominated’’) developed markedly different communi-
ties than did any of the other three treatments. In Au-
gust, after the initial bloom of greens that occurred in
all treatments, red seaweeds (primarily Hypnea mus-
ciformis and Chondria dasyphylla) increased rapidly
and maintained dominance for the duration of the ex-
periment (Fig. 2). Thus, these red macroalgae achieved
appreciable cover only where amphipods were present
and fish were absent.

Blocks exposed to both fish and amphipods devel-
oped a community somewhat similar to that where only
fish were present, but with substantially lower total
cover (Fig. 2). Blocks were colonized initially by the
green algae Enteromorpha and Cladophora, which
gradually gave way to dominance by browns, primarily
Sargassum filipendula. At the end of the experiment,
however, browns averaged only 20 6 5% cover, less
than one-third of their cover in the fish-only treatment.
As in the latter treatment, coverage by reds was very
low, never exceeding 8 6 3%. A substantial proportion
of space remained bare throughout, with 66% of space
unoccupied at the end of the experiment.

Grazer impacts on benthic succession: statistical
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TABLE 3. Results of split-plot analyses of variance testing differences among grazer treatments
in cover of the three major algal groups on dates at which each reached its highest overall
cover, and in total benthic biomass at the end of the experiment.

Response variable†
and source df SS MS F‡ P

Green algal cover (15 Aug)
Insecticide 1 9687 9687 25.85 0.0023
Tank(Insecticide) 6 2248 375
Fish 1 2660 2660 11.77 0.014
Fish 3 Insecticide 1 2448 2448 10.83 0.017
Tank 3 Fish(Insecticide) 6 1356 226

Red algal cover (9 Oct)
Insecticide 1 3.39 3.39 4.86 0.07
Tank(Insecticide) 6 4.18 0.70
Fish 1 18.13 18.13 33.90 0.001
Fish 3 Insecticide 1 0.27 0.27 0.50 0.50
Tank 3 Fish(Insecticide) 6 22.12 3.69

Brown algal cover (9 Dec)
Insecticide 1 4195 4195 8.58 0.026
Tank(Insecticide) 6 2934 2934
Fish 1 2192 2192 55.28 0.0003
Fish 3 Insecticide 1 978 978 24.66 0.0025
Tank 3 Fish(Insecticide) 6 237 40

Total benthic biomass (9 Dec)
Insecticide 1 1.15 1.15 1.59 0.25
Tank(Insecticide) 6 4.35 0.72
Fish 1 0.012 0.012 0.12 0.74
Fish 3 Insecticide 1 1.04 1.04 10.41 0.018
Tank 3 Fish(Insecticide) 6 2.83 0.47

Note: P values , 0.05 are indicated in bold.
† Date in parentheses.
‡ F tests for the main effect (Insecticide) use MSTank(Insecticide) as the error term; F tests for the

main effect of Fish use MSTank3Fish(Insecticide) as the error term (Potvin 1993).

analysis.—The divergent impacts of fish and amphi-
pods can be seen most readily on the dates when each
of the three major algal groups reached its highest
abundance (Fig. 3, Table 3). On 15 August, when green
algae reached highest overall cover across treatments,
both fish (P 5 0.014, split-plot ANOVA) and amphi-
pods (P 5 0.002) each strongly reduced green algal
cover, with the interaction (P 5 0.017) reflecting the
much greater impact of each grazer where the other
was absent. On 9 October, when red algae peaked, there
was a strongly negative effect of fish (P 5 0.001) on
red cover, reflecting the near absence of red algae in
both treatments containing fish, whereas the positive
effect of amphipods was marginal (P 5 0.070). At the
end of the experiment on 9 December, brown algal
cover was lower in the presence of amphipods (P 5
0.026), and enhanced by fish (P 5 0.0003), with the
interaction (P 5 0.002) again reflecting the greater im-
pact of fish where amphipods were absent. That the
reduced cover of browns in amphipod treatments was
a result of grazing is supported by observations of ex-
tensive grazing damage to Sargassum fronds in these
treatments (Fig. 4, Table 4, see Results: Grazer im-
pacts). Fish and amphipod effects on total benthic bio-
mass, which was dominated by brown algae, were sim-
ilar to those for brown cover (Fig. 5, Table 3). In this
case mesograzers alone had little effect on total benthic

biomass, and fish alone increased benthic biomass,
whereas fish and amphipods together strongly de-
pressed benthic biomass (fish 3 amphipod interaction,
P 5 0.018).

We tested grazer impacts on benthic species richness
and diversity, as measured by Simpson’s 12l (Lande
1996), on the three dates on which the major algal
groups reached maximum abundance (15 August, 9 Oc-
tober, 9 December). Fish depressed both species rich-
ness and diversity of benthic organisms on 9 October,
and species richness on 9 December, whereas amphi-
pods had no effect on species diversity on any of the
three dates tested (Table 5).

Competition among seaweeds.—Our results provide
equivocal support for the hypothesis that competition
from red and green algae depresses brown algal dom-
inance in the absence of fish. On the one hand, sub-
stratum blocks experimentally cleared of reds and
greens showed no significant enhancement of brown
macroalgal cover in any of the grazer treatments (Fig.
6). Specifically, paired-sample t tests comparing brown
cover on the control and competitor-removal blocks in
a compartment were performed for each of the 36 date–
treatment combinations, and none of these tests ap-
proached the Bonferroni-corrected significance level
for multiple tests. These results argue at least that com-
petitive release alone does not explain fish-mediated
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FIG. 4. Impacts of different grazer treatments on individ-
ual frond area (mean 61 SE) of Sargassum filipendula plants
harvested from substratum blocks at the end of the experi-
ment. A representative frond from that treatment is shown
above each bar. See Table 4 for statistical analysis.

FIG. 5. Impacts of different grazer treatments on biomass
of the major taxa of benthic organisms occupying substratum
blocks (unmanipulated controls only) at the end of the ex-
periment in December. Biomass of sessile animals was neg-
ligible (,0.04 g in all treatments). Error bars show 61 SE

for total summed biomass. See Table 3 for statistical analysis.

TABLE 4. Results of split-plot analysis of variance testing differences among grazer treatments
in mean individual frond area of Sargassum filipendula plants harvested at the end of the
experiment.

Source df SS MS F P

Insecticide 1 14.54 14.54 9.38 0.022
Tank(Insecticide) 6 9.30 1.55
Fish 1 2.36 2.36 18.40 0.0051
Fish 3 Insecticide 1 0.07 0.07 0.52 0.50
Tank 3 Fish(Insecticide) 6 0.77 0.13

Notes: F tests were calculated as in Table 3. P values , 0.05 are indicated in bold.

dominance by brown algae. On the other hand, despite
the lack of statistical significance, brown algal cover
in the absence of grazers was consistently, if only
slightly, higher where red and green algae were re-
moved for five months (Figs. 3 and 7).

Mesograzer abundance in the tanks

Animal assemblages associated with brown algae in
the tanks during September (Table 6) included many
of the same taxa found on brown seaweeds at local
field sites (Duffy 1989, 1990). Somewhat surprisingly,
neither periodic applications of insecticide nor the pres-
ence of spottail pinfish significantly reduced total abun-
dance of mobile epifaunal animals, or total abundance
of mesograzers, associated with brown algae in the
tanks (Fig. 7, Table 7). The lack of treatment effects

on epifaunal density is attributable in large part to the
dominance of the mesograzer assemblage by the gas-
tropod Diastoma varium (48% of total mobile epifaunal
individuals collected), which was unaffected by either
fish or insecticide (Fig. 8, Table 8). In contrast, insec-
ticide was almost completely effective at suppressing
grazing amphipods, including Ampithoe longimana and
Dulichiella appendiculata (Fig. 8, Table 8). Although
animals were sampled 19 d after the most recent ap-
plication of insecticide to the tanks, a total of only 48
grazing amphipods was collected from algal samples
in all insecticide-treated compartments, compared with
1678 from samples in the untreated compartments (Ta-
ble 6), a 35-fold difference. Finally, insecticide treat-
ments actually increased densities of the isopod Par-
acerceis caudata (Fig. 8, Table 8), perhaps by relaxing
competition from amphipods, or providing more fa-
vorable algal foods. The concentration of Sevin we
used was the minimum that we judged effective at kill-
ing amphipods, as determined in laboratory experi-
ments prior to the mesocosm study. Apparently this
concentration was not sufficient to kill isopods. For the
four most abundant grazer species, there were few ob-



May 2000 249AMPHIPOD IMPACTS ON COMMUNITY STRUCTURE

TABLE 5. Results of split-plot analyses of variance testing differences among grazer treatments
in benthic species richness and diversity (Simpson’s 1-l) on dates at which each of the major
algal groups reached its highest overall cover in the experiment.

Response variable†
and source df SS MS F P

Species richness (15 Aug)
Insecticide 1 3.06 3.06 0.50 0.50
Tank(Insecticide) 6 36.44 6.07
Fish 1 5.06 5.06 3.50 0.11
Fish 3 Insecticide 1 4.00 4.00 2.76 0.15
Tank 3 Fish(Insecticide) 6 8.69 1.45

Diversity (15 Aug)
Insecticide 1 0.000240 0.000240 0.01 0.93
Tank(Insecticide) 6 0.181 0.0301
Fish 1 0.00960 0.00960 0.44 0.53
Fish 3 Insecticide 1 0.0337 0.0337 1.55 0.26
Tank 3 Fish(Insecticide) 6 0.130 0.0217

Species richness (9 Oct)
Insecticide 1 0.25 0.25 0.09 0.77
Tank(Insecticide) 6 16.50 2.75
Fish 1 45.56 45.56 12.36 0.013
Fish 3 Insecticide 1 0.56 0.56 0.15 0.71
Tank 3 Fish(Insecticide) 6 22.12 3.69

Diversity (9 Oct)
Insecticide 1 0.00107 0.00107 0.02 0.88
Tank(Insecticide) 6 0.262 0.0437
Fish 1 0.140 0.140 9.34 0.022
Fish 3 Insecticide 1 0.000636 0.000636 0.04 0.84
Tank 3 Fish(Insecticide) 6 0.0903 0.0903

Species richness (9 Dec)
Insecticide 1 0.39 0.39 0.18 0.69
Tank(Insecticide) 6 13.34 2.22
Fish 1 8.26 8.26 23.69 0.0028
Fish 3 Insecticide 1 1.27 1.27 3.63 0.11
Tank 3 Fish(Insecticide) 6 2.09 0.35

Diversity (9 Dec)
Insecticide 1 0.0411 0.0411 2.63 0.16
Tank(Insecticide) 6 0.0937 0.0156
Fish 1 0.0411 0.0411 2.19 0.19
Fish 3 Insecticide 1 0.0000556 0.0000556 0.00 0.96
Tank 3 Fish(Insecticide) 6 0.113 0.0188

Notes: F tests were calculated as in Table 3. P values , 0.05 are indicated in bold.
† Date in parentheses.

vious differences in density among the three brown
algal species sampled.

Thus, the insecticide treatment in this experiment
excluded amphipods specifically, and did not suppress
numbers of the dominant gastropod and isopod. Where-
as D. varium dominated insecticide treatments, A. lon-
gimana dominated in the absence of insecticide, com-
prising 44% of all mobile epifaunal individuals in in-
secticide-free treatments, regardless of the presence of
fish (Table 6, Fig. 8). As was true for seaweeds, the
‘‘species’’ richness (some animals were identified only
to higher taxon) of animals associated with algae was
reduced by fish, whereas insecticide had no such effect
(Fig. 7, Table 7).

Laboratory feeding assays

Of the six epifaunal species examined, only two fed
appreciably on macroalgae in the laboratory assay (Fig.

9). In this assay significant consumption was detected
by comparing mass loss of portions from the same algal
thallus exposed, vs. unexposed, to grazers using paired-
sample t tests; significance values were corrected
across the seven separate algal species offered to each
grazer species using the sequential Bonferroni proce-
dure (Rice 1989). The amphipod Ampithoe longimana
fed heavily on all species offered except for the red
alga Chondria; it was the only grazer species that fed
significantly on Sargassum, the dominant brown sea-
weed at out site. The isopod Paracerceis caudata also
consumed significant amounts of the red alga Hypnea
and the brown algae Padina and Dictyota. The am-
phipods Dulichiella appendiculata and Elasmopus levis
each consumed relatively small but significant amounts
of some macroalgal species. The two gastropods, Dias-
toma varium and Anachis avara, did not consume sig-
nificant quantities of any of the algal species offered.
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FIG. 6. Results of experimental treatments testing for competitive suppression of brown macroalgae by red and green
algae. Separate paired t tests comparing the cover of brown algae on control vs. removal blocks within the same compartment
were conducted for each treatment/date combination; of these 36 tests, only one (denoted by *) was significant at the nominal
a value of 0.05, and none approached significance at the Bonferroni-corrected a for the entire set of tests.

Grazer impacts on brown seaweeds

Mesocosm grazing assays.—Overall, brown ma-
croalgae deployed in the tanks fared poorly in treat-
ments exposed to amphipods. Browns retrieved from
the amphipod-exposed treatments often bore extensive
amphipod grazing scars, particularly in the amphipod-
dominated treatment. Growth of brown seaweeds de-
ployed for 8 d in the tanks was fairly consistently lower
(often negative) in treatments with amphipods, but was
never affected negatively by the presence of fish (Fig.
10, Table 9). Separate split-plot ANOVAs for each of
the three brown algal species showed that amphipods
reduced growth of Sargassum (P , 0.001) and Padina
(P 5 0.042) in August, the trend for Dictyota in August
being obscured by a fish 3 amphipod interaction (P 5
0.004). In September, amphipods reduced growth of
Dictyota (P 5 0.003) and Padina (P 5 0.014), with a

similar but nonsignificant trend (P 5 0.11) for Sar-
gassum. Growth of Dictyota was enhanced by the pres-
ence of fish in September (P 5 0.021).

To examine the effect of grazers on brown seaweeds
in aggregate, we pooled mass changes for all three
species within a compartment. In August, amphipods
(F1, 6 5 10.63, P 5 0.017), but not fish (F1, 6 5 1.29,
P 5 0.30), affected algal mass; the interaction (F1, 6 5
18.40, P 5 0.005) revealed that reduction in growth of
brown algae by amphipods was more pronounced in
the absence of fish. In September, amphipods again
reduced brown algal growth (F1, 6 5 25.95, P 5 0.002),
whereas fish had no effect (F1, 6 5 1.72, P 5 0.24), and
there was no interaction (F1, 6 5 3.38, P 5 0.12).

Sargassum leaf damage measurements.—Fronds of
Sargassum harvested from the blocks at the end of the
experiment were extensively damaged by grazing scars



May 2000 251AMPHIPOD IMPACTS ON COMMUNITY STRUCTURE

FIG. 7. Effects of insecticide treatment and fish on abun-
dance and species richness (mean 61 SE) of epifauna asso-
ciated with brown algae deployed in the mesocosm tanks in
September. Data were pooled from the three seaweeds (Dic-
tyota, Sargassum, and Padina) deployed during the September
grazing assay, which ended 19 d after the most recent insec-
ticide application. Animal densities were measured on the
same plants from which grazing losses were measured (Fig.
10). Total epifauna includes all animals found on the plants;
total mesograzers includes all species judged from this and
previous studies to be herbivorous (see Table 6). See Table
7 for statistical analysis.

FIG. 8. Effects of insecticide treatment and fish on den-
sities (mean 61 SE) of the four most abundant mesograzer
species associated with brown algae deployed in the meso-
cosm tanks in September. These are also the four grazer spe-
cies found to consume significant amounts of algae in lab-
oratory assays (see Fig. 10). See Table 8 for statistical anal-
ysis.

in treatments containing amphipods (Fig. 4). In the
amphipod-dominated treatment, in particular, many
Sargassum stipes bore few remaining fronds. Of the
remaining fronds, mean individual frond area was
strongly reduced by amphipods, by 49% on average (P
5 0.022, split-plot ANOVA) and increased by an av-
erage of 28% by fish (P 5 0.005), with no interaction
between the two grazers (P 5 0.500, Fig. 4).

Comparing impacts of fish and amphipods

The relative impacts of spottail pinfish and grazing
amphipods on the algal assemblage differed consid-

erably depending on how they were calculated (Fig.
11). Comparison is most straightforward for the ‘‘iso-
lated effects,’’ which compare treatments with one
grazer type vs. the treatment with no grazers (2fish/
2amphipods). Perhaps surprisingly, the raw, collective
effects of amphipods were greater than those of fish
for both green and red algae, and were approximately
half as large as those of fish for brown algae (Fig. 11).
These collective effects of amphipods result in part
from their high density in the 2fish/1amphipods treat-
ment, an analog of field situations where fish predation
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FIG. 9. Grazing impacts of common epifaunal inverte-
brates on seven algal species in the laboratory. Grazing im-
pacts were calculated by subtracting the mass change in algal
portions exposed to animals from that of unexposed (control)
portions from the same individual thallus. A significant im-
pact of grazing was inferred from paired t tests comparing
exposed and unexposed portions, with the a level adjusted
to 0.05 over all seven algal species via the sequential Bon-
ferroni procedure (Rice 1989). The number of individuals per
replicate is in parentheses.

is negligible. As expected, the per capita effects of fish
were two to three orders of magnitude greater than
those of amphipods, reflecting a similarly large differ-
ence in body mass between the two grazer types. In
contrast, when expressed per unit grazer biomass, the
isolated effect of amphipods was greater than that of
fish for all algal response variables, and substantially
so for red and green algal cover (Fig. 11).

The net effect of a grazer in our experiment is the
difference in the response variable that results from
removing that grazer from the normal community that
includes both grazers. Thus, the net effect potentially
includes interactions with the effects of the other grazer
taxon. In contrast to the pattern for isolated effects, the
net effects of amphipods were stronger than those of
fish for brown algae and weaker for red algae, whether
calculated on a collective or per-biomass basis (Fig.
11). These results suggest that amphipods can have
dramatic impacts on benthic community organization
even in the presence of fish.

DISCUSSION

Our results demonstrate that grazing amphipods can
produce impacts on benthic community organization
that are comparable or greater in magnitude, but mark-
edly different in kind, to the widely appreciated impacts
of fishes. Specifically, both types of grazers strongly
depressed cover of early-successional green algae, and
both had comparably strong impacts on late-succes-
sional red and brown algae. But fish ultimately pro-
duced a benthic community dominated by brown ma-
croalgae, similar to that occurring at undisturbed field
sites in out area, whereas amphipods produced a com-
munity dominated by red macroalgae. Paralleling these
patterns, exclusion of fishes from local field sites re-
sults in dominance by red algae, while brown algae
dominate in the presence of fish (Miller and Hay 1996).
Exclusion of both grazers in our mesocosm experiment
resulted in a third community configuration in which
the fast-growing, ‘‘ephemeral’’ green algae Entermor-
pha and Cladophora maintained dominance throughout
much of the five-month experiment.

The main objective of this study was to assess ex-
perimentally the poorly understood role of mesogra-
zers, and compare it with the well-documented impor-
tance of algal competition (Dayton 1975, 1985, Schiel
and Foster 1986) and grazing by omnivorous fish (Hay
1986, Miller and Hay 1996) in organizing a seaweed-
dominated benthic community. Specifically, we sought
to determine the mechanism for the finding that om-
nivorous fishes promote dominance by brown sea-
weeds, whereas reds prevail in the absence of fishes
(Miller and Hay 1996; M. E. Hay, unpublished data).
Our experiment was designed to distinguish between
two distinct hypotheses for these results: (1) red and
green algae released from fish grazing outcompete
browns (the ‘‘competition hypothesis’’), and (2) am-
phipods released from fish predation graze heavily on
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TABLE 6. Animals collected from brown seaweeds deployed in the mesocosm tanks during
the September grazing experiment.

Taxon
2 Fish,

1 Insecticide
1 Fish,

1 Insecticide
2 Fish,

2 Insecticide
1 Fish,

2 Insecticide

Diastoma varium (G) 1016 808 318 587
Ampithoe longimana (G) 6 6 637 603
Leptochelia sp. 389 98 5 3
Paracerceis caudata (G) 258 81 55 28
Dulichiella appendiculata (G) 0 0 278 19
Corophium spp. 51 58 23 49
Elasmopus levis 0 0 74 51
Costoanachis sp. 8 12 37 16
Caprella penantis (G) 34 2 3 4
Astyris lunata 4 8 2 4
Erichthonius brasiliensis 4 1 5 2
Ampithoe marcuzii (G) 0 0 9 0
Other gastropods 2 4 0 1
Polychaetes 6 1 0 0
Cerapus tubularis 0 0 0 1
Paracaprella tenuis 0 0 1 0
Stenothoe sp. 1 0 0 0
Crab megalopa 1 0 0 0

Total grazers 1314 897 1301 1241
Total crustacean grazers 298 89 983 654
Total animals 1782 1079 1450 1368

Notes: The total numbers of each taxon collected from all three algal species combined (n
5 4 of each) are presented, by treatment. Analyses of treatment effects on particular taxa are
presented in Figs. 8 and 9. Taxonomy follows Ruppert and Fox (1988). G 5 grazer.

TABLE 7. Results of split-plot analyses of variance testing differences among grazer treatments
in epifaunal density and species richness in September.

Response variable
and source df SS MS F P

Total epifaunal density
Insecticide 1 155 155 0.78 0.41
Tank(Insecticide) 6 1191 198
Fish 1 158 158 0.29 0.61
Fish 3 Insecticide 1 22 22 0.04 0.85
Tank 3 Fish(Insecticide) 6 3272 545

Total mesograzer density
Insecticide 1 388 388 2.37 0.17
Tank(Insecticide) 6 981 164
Fish 1 32 32 0.07 0.80
Fish 3 Insecticide 1 0.01 0.01 0.00 0.99
Tank 3 Fish(Insecticide) 6 2893 482

Epifaunal species richness
Insecticide 1 4.00 4.00 0.83 0.40
Tank(Insecticide) 6 28.75 4.79
Fish 1 6.25 6.25 10.00 0.020
Fish 3 Insecticide 1 1.00 1.00 1.60 0.25
Tank 3 Fish(Insecticide) 6 3.75 0.62

Notes: F tests were calculated as in Table 3. P values , 0.05 are indicated in bold.

browns (the ‘‘trophic cascade hypothesis’’). We con-
clude that our data support important roles for both
amphipod grazing and possibly algal competition in
suppressing brown algal dominance where fish are ab-
sent. Several lines of evidence implicate the importance
of amphipod grazing. First, brown macroalgae de-
ployed in the tanks generally lost more mass, or gained
mass more slowly, in amphipod-exposed treatments
than in treatments without amphipods (Fig. 10, Table
9), corroborating amphipod feeding patterns seen in

laboratory assays (Fig. 9). Second, browns that re-
cruited naturally onto blocks in the amphipod-domi-
nated treatments bore extensive scars from amphipod
grazing that reduced blade size (Fig. 4, Table 4) and,
in some cases, reduced Sargassum plants to bare stipes.
Third, exclusion of amphipods with insecticide sub-
stantially increased the cover and biomass of browns,
particularly where fish were present (Figs. 2–5). In con-
trast, evidence for the role of algal competition is more
indirect. Although weekly removal of red and green
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TABLE 8. Results of slit-plot analyses of variance testing differences among grazer treatments
in density of the four most abundant mesograzer species in September.

Response variable
and source df SS MS F P

Diastoma varium
Insecticide 1 896 896 0.16 0.70
Tank(Insecticide) 6 33 082 5513
Fish 1 2393 2393 0.55 0.49
Fish 3 Insecticide 1 4476 4476 1.02 0.35
Tank 3 Fish(Insecticide) 6 26 345 4390

Ampithoe longimana
Insecticide 1 15 115 15 115 22.53 0.0032
Tank(Insecticide) 6 4026 671
Fish 1 184 184 2.18 0.19
Fish 3 Insecticide 1 184 184 2.19 0.19
Tank 3 Fish(Insecticide) 6 505 84

Paracerceis caudata
Insecticide 1 1.58 1.58 8.00 0.030
Tank(Insecticide) 6 1.19 0.20
Fish 1 0.63 0.63 2.40 0.17
Fish 3 Insecticide 1 0.007 0.007 0.03 0.87
Tank 3 Fish(Insecticide) 6 1.57 0.26

Dulichiella appendiculata
Insecticide 1 4.87 4.87 7.98 0.030
Tank(Insecticide) 6 3.66 0.61
Fish 1 2.12 2.12 5.70 0.054
Fish 3 Insecticide 1 2.12 2.12 5.70 0.054
Tank 3 Fish(Insecticide) 6 2.23 0.37

Notes: F tests were calculated as in Table 3. P values , 0.05 are indicated in bold.

FIG. 10. Effects of grazer treatments on change in mass (mean 61 SE) of three brown seaweed species deployed for 7–
8 d in the mesocosm tanks. Results are shown for separate experiments in August (top) and September (bottom). See Table
9 for statistical analysis.
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TABLE 9. Results of split-plot analyses of variance testing differences among grazer treatments
in mass change of three brown algal species deployed in the tanks at each of two time periods.

Response variable†
and source df SS MS F P

Dictyota (August)
Insecticide 1 23.14 23.14 3.32 0.12
Tank(Insecticide) 6 41.77 6.96
Fish 1 0.68 0.68 0.28 0.61
Fish 3 Insecticide 1 46.84 46.84 19.58 0.0044
Tank 3 Fish(Insecticide) 6 14.35 2.39

Sargassum (August)
Insecticide 1 10.91 10.91 37.21 0.0009
Tank(Insecticide) 6 1.76 0.29
Fish 1 0.08 0.08 0.09 0.78
Fish 3 Insecticide 1 0.00 0.00 0.00 0.99
Tank 3 Fish(Insecticide) 6 5.90 0.98

Padina (August)
Insecticide 1 18.00 18.00 6.60 0.042
Tank(Insecticide) 6 16.36 2.73
Fish 1 5.76 5.76 2.81 0.14
Fish 3 Insecticide 1 0.05 0.05 0.02 0.89
Tank 3 Fish(Insecticide) 6 12.32 2.05

Dictyota (September)
Insecticide 1 7.23 7.23 22.67 0.0031
Tank(Insecticide) 6 1.91 0.32
Fish 1 3.00 3.00 9.58 0.021
Fish 3 Insecticide 1 0.60 0.60 1.91 0.22
Tank 3 Fish(Insecticide) 6 1.88 0.31

Sargassum (September)
Insecticide 1 0.53 0.53 3.59 0.11
Tank(Insecticide) 6 0.89 0.15
Fish 1 0.16 0.16 1.13 0.33
Fish 3 Insecticide 1 0.02 0.02 0.12 0.74
Tank 3 Fish(Insecticide) 6 0.87 0.15

Padina (September)
Insecticide 1 1.35 1.35 11.76 0.014
Tank(Insecticide) 6 0.69 0.11
Fish 1 0.08 0.08 0.88 0.39
Fish 3 Insecticide 1 0.31 0.31 3.41 0.11
Tank 3 Fish(Insecticide) 6 0.55 0.09

Notes: F tests were calculated as in Table 3. P values , 0.05 are indicated in bold.
† Month in parentheses.

algae from substratum blocks failed to enhance brown
algal cover significantly, there was a slight but con-
sistent trend toward higher brown algal cover on com-
petitor-removal blocks in the grazer-removal (2fish/
2amphipods) treatment where algal competition would
be most intense (Figs. 3 and 7). Moreover, the sub-
stantially higher final cover of browns in the fish-dom-
inated treatment compared with the grazer-removal
treatment (Figs. 2 and 3) seems most straightforwardly
interpreted as resulting from the removal of red and
green algae by fish. These patterns are consistent with
a role for green algal competitive dominance in de-
pressing brown algal cover.

Thus, our results imply that brown algal dominance
requires suppression of amphipod grazing and possibly
suppression of algal competitors. In the field these fac-
tors generally coincide because the dominant sparid
fishes in our system (including both Diplodus holbrooki
and Lagodon rhomboides) feed heavily on both am-

phipods (Adams 1976b, Nelson 1979b, Stoner 1980a,
Darcy 1985a, b) and red and green algae (Hay 1986,
Hay et al. 1987, 1988). Moreover, field observations
are consistent with our results in that brown seaweeds
dominate the benthos during summer (Hay 1986, Miller
and Hay 1996), when fish density is high and amphipod
density is low (Holmlund et al. 1990, Duffy and Hay
1991b). In summary, brown dominance in this system
appears to be facilitated by a mechanism akin to the
trophic cascade (Carpenter et al. 1985) in which fish
predation suppresses density or activity of grazing am-
phipods, which in turn allows brown seaweeds to flour-
ish (Fig. 12).

This is among the first controlled experimental dem-
onstrations that mesograzers strongly affect benthic
community organization, and particularly the abun-
dance of late-successional macroalgae. Although our
experiment was not conducted in the field, it overcame
many of the limitations that have historically con-
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FIG. 11. Comparative impacts (estimated interaction strengths) of fish and grazing amphipods on abundance of major
algal groups. The isolated effect of a grazer is the difference in algal abundance between the treatment containing only that
grazer (e.g., for amphipods, 2fish/1amphipods) and the treatment containing no grazers (2fish/2amphipods). The net effect
is the difference between the treatment containing both grazers (1fish/1amphipods) and the treatment where the target grazer
has been deleted (for amphipods, 1fish/2amphipods). The collective effect is the raw, arithmetic difference between the two
treatments. The per-biomass effect is the collective effect divided by estimated grazer biomass per block, and the per capita
effect is the collective effect divided by estimated grazer abundance per block. The number under each pair of bars shows
the absolute value of the ratio of effects for amphipods over fish.

strained our understanding of mesograzer community
impacts. The experiment was replicated, conducted in
large (;4000 L) tanks with regular wave action, sup-
plied with flowing, unfiltered seawater containing algal
and animal propagules, exposed to ambient environ-
mental conditions, extended through most (five

months) of the warm growing season, and included
most common species of algae, sessile invertebrates,
and mesograzers found at local field sites. In general,
the algal flora that developed in our tanks (Fig. 2) was
similar to that found on local hard substrata in the field
(Table 1, Hay 1986, Miller and Hay 1996; M. E. Hay,
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FIG. 12. Schematic summary of processes organizing the benthic community in each of the four grazer treatments. Solid
arrows indicate negative impacts of consumption (downward arrows) or competition (horizontal arrows); dotted lines indicate
potential interactions that are inhibited in the treatment. Dominant algal taxa in each treatment are indicated in bold. The
question mark in the lower right panel reflects uncertainty about the degree to which predation controls amphipod grazing
(see Discussion: A trophic cascade involving mesograzers?).

unpublished data). Epifaunal assemblages in the tanks
(Table 6) were diverse and contained most of the spe-
cies common at local field sites (Duffy 1989, 1990).
The most obvious difference between our tanks and
field communities was the higher densities of amphi-
pods in the tanks. The principal mesograzer Ampithoe
longimana in September averaged 20 individuals/g wet
algae in the amphipod-dominated treatment, and 17
individuals/g wet algae in the fish1amphipod treat-
ment. These compare with summer densities of #5 A.
longimana/g wet algae measured on browns in the field
(Table 1). The likely explanation for the higher am-
phipod densities in our tanks is that each experimental
compartment occupied only one-fourth of the total tank
volume, such that the remainder of the tank effectively
served as a refuge from fish predation. Amphipods sus-
tained large populations in these refuge areas (as evi-
denced by their densities in the adjoining amphipod-
dominated treatments). These higher local densities
could counteract fish depression of amphipod densities
within the fish1amphipod treatment by facilitating
continuous colonization, especially at night when these
fish do not feed but when amphipods remain active.
Our tanks also lacked the wrasses, blennies, gobies,

and other small carnivorous fishes that may contribute
to reduced epifaunal densities in the field.

These considerations suggest that amphipod densi-
ties in the 1fish/1amphipods treatment were abnor-
mally high, and thus that the strong net effects of am-
phipods (which use this treatment as a standard, Fig.
11) in the experiment are likely inflated compared with
their effects in the field. In contrast, the amphipod-
dominated (2fish/1amphipod) treatment presumably
approximates natural amphipod densities in the absence
of fish predation. Thus, the strong impacts of amphi-
pods in the absence of fish (isolated effects, Fig. 11)
are less likely to be artifactual. We therefore believe
that the isolated effects of amphipods (Fig. 11) are a
realistic estimate of their potential community impacts
where fish predation is negligible, whereas our finding
of strong amphipod impacts in the presence of fish is
suggestive but needs reexamination under more real-
istic amphipod densities.

A trophic cascade involving mesograzers?

In the absence of other grazers, amphipods in our
experiment had stronger collective impacts (isolated
effects, Fig. 11) on red and green algae than did fish.
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Moreover, on a per-biomass basis, amphipods had
stronger impacts than fish on all algal response vari-
ables except the net effect on red algae. A potentially
general implication of these results is that in the ab-
sence of fish predation, amphipod populations can at-
tain densities high enough to cause substantial damage
to macroalgae, with pervasive consequences for ben-
thic community structure (Fig. 12). Supporting this
possibility, amphipod densities similar to those we ob-
served are not uncommon in nature. Total amphipod
densities at local field sites averaged ;130 individuals/
g wet algae in spring (Table 1), before fishes begin
feeding heavily on benthic crustaceans (Duffy and Hay
1991b), and seaweed-associated amphipods in systems
throughout the world can reach similarly high densities
(Wieser 1952, Mukai 1971, Choat and Kingett 1982,
D’Antonio 1985, Edgar and Aoki 1993, Lancellotti and
Trucco 1993). Although only a subset of amphipod
species are herbivorous, our results suggest that such
densities can produce significant grazing impacts on
community organization. This raises two questions: (1)
What factors prevent most grazing amphipod popula-
tions in the field from reaching the high densities ob-
served in our tanks? And, (2) how general are such
amphipod-mediated impacts on community organiza-
tion likely to be? We consider the first question here
and the second in the next section.

First, despite decades of interest, the regulation of
mobile epifaunal population densities remains poorly
understood. On the one hand, there is a wealth of cir-
cumstantial evidence for a controlling influence of pre-
dation, most commonly showing that densities and
body sizes of epifauna are negatively correlated with
the abundance of predators, mostly fishes (Van Dolah
1978, Nelson 1979b, Edgar 1983a, b, Duffy and Hay
1991b), and a few experimental studies provide some
support for this hypothesis (Kennelly 1983, 1991, Le-
ber 1985). On the other hand, many experimental stud-
ies have failed to demonstrate a clear negative impact
of fish predation on mobile epifauna in the field (Young
and Young 1978, Nelson 1981, Choat and Kingett 1982,
Holmlund et al. 1990, Martin-Smith 1993). Often the
lack of a predation effect appears due either to rapid
movement of epifauna through cage walls, or to the
formidable artifacts involved in caging experiments
with such small animals. In our experiment, epifaunal
taxa differed substantially in their responses to fish.
The snail Diastoma, for example, showed no hint of
reduction by fish. When considered individually, abun-
dances of crustacean grazer species (Ampithoe longi-
mana, Paracerceis caudata, Dulichiella appendicula-
ta, and Caprella penantis), also were not significantly
reduced by fish. When their abundances were pooled,
however, fish depressed aggregate density of crustacean
grazers (P 5 0.046, split-plot ANOVA) by 45% relative
to the treatment where mesograzers but not fish were
present. That the suppression of amphipod densities or
activities by fish has cascading impacts on the seaweed

assemblage is supported by the 64% higher cover of
browns in the treatment with both fish and amphipods
than in the treatment with amphipods alone (Fig. 3),
and by the significant fish 3 amphipod interaction for
loss of brown algal mass in the August grazing assay
(Results: Grazer impacts). As discussed above, we sus-
pect that these effects of fish are conservative due to
the extensive refuge space available in our tanks that
likely reduced the impact of fish on amphipods in these
experiments. If fish predation similarly limits popula-
tions of mesograzers in the field, their preferred foods
(brown algae in this study) could be facilitated by fishes
through a trophic cascade mechanism similar to that
demonstrated for total algal biomass in freshwaters
(Carpenter et al. 1985, Power 1990) and other marine
hard-bottoms (Estes and Palmisano 1974, Estes and
Duggins 1995, Wootton 1995, Estes et al. 1998).

Is amphipod grazing ecologically significant?

The second question raised by our results is how
frequently amphipod grazing plays a significant role in
benthic community organization. Grazing amphipods
are ubiquitous in marine benthic communities but they
have rarely been satisfactorily manipulated in a com-
munity study (see Carpenter 1986 for an exception), in
large part because of formidable logistical hurdles. For
this reason, among others, their potential role in com-
munity organization is largely unknown. Nevertheless,
there is some precedent for our results in several pre-
vious experimental studies (see Introduction), most no-
tably the pioneering work of Brawley and Adey (1981).
Using a coral reef mesocosm, these authors showed
that algal assemblage dominance shifted from filamen-
tous species to red macroalgae after amphipods (Am-
pithoe raimondi) invaded the tank, a result strikingly
similar to our findings (Figs. 2 and 3). Other experi-
mental studies, while not targeting mesograzers spe-
cifically, demonstrated changes in algal assemblage
structure within exclusion cages that coincided with
increased density of mobile epifauna (Kennelly 1983,
1991, Zeller 1988). Although experimental manipula-
tions of mesograzers are rare, several anecdotal obser-
vations similarly implicate certain amphipods as im-
portant grazers in other marine benthic communities.
Interestingly, the most striking cases of mesograzer im-
pacts on benthic community organization dispropor-
tionately involve amphipods in the family Ampithoi-
dae, as did our study and that of Brawley and Adey
(1981). Ampithoids are characteristics members of
benthic macrophyte beds throughout the world, in-
cluding southern-hemisphere (Kreibolm de Paternoster
and Escofet 1976, Tararam and Wakabara 1981, Edgar
1983a, d) and northern-hemisphere kelp and other
brown algal beds (Mukai 1971, Gunnill 1982, Tegner
and Dayton 1987, Duffy 1990, Chess 1993), seagrass
beds (Nagle 1968, Marsh 1973, Nelson 1979a, Stoner
1980b, Virnstein and Howard 1987), and tropical algal
beds (Lewis and Kensley 1982, Hay et al. 1990, 1994).
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Although the feeding habits of most of these amphipods
are poorly known, those that have been studied gen-
erally show mild to strong preference for, or at least
association with, brown algae (Griffiths 1979, Conlan
and Bousfield 1982, Lewis and Kensley 1982, Hay et
al. 1987, 1990, Duffy 1990, Poore and Steinberg 1999,
Cruz-Rivera and Hay 2000). There are several other
reports of important impacts on benthic communities
by ampithoids. Chess (1993) observed destruction of
kelps at several sites along the Pacific coast of North
America when the stipe-boring ampithoid Peramphi-
thoe stypotrupetes was abundant. Perhaps most intrigu-
ing are the reports of massive kelp and macroalgal
deforestation in California following the El Niños of
the 1960s and early 1980s (Tegner and Dayton 1987).
After cool waters returned in the wake of El Niño, kelp
populations recovered and grew vigorously. Recovery
of kelp-associated fish populations lagged behind, how-
ever, and the newly recovered kelp beds suffered an-
other catastrophic decline coincident with a population
explosion of the kelp curler amphipod Peramphithoe
humeralis, which was hypothesized to have escaped
predatory control (Tegner and Dayton 1987). This
chain of events bears striking similarities to what we
observed in our mesocosm experiment.

Opening the black box of mesograzers

Our experiment illustrates dramatically the diversity
in functional roles that can occur among superficially
similar taxa at the same trophic level, even within pu-
tative functional groups (see also Paine 1992, Wootton
1997). While it is not surprising that herbivorous fishes
and mesograzers should have divergent impacts on the
plant assemblage, the differences among species of me-
sograzers are more intriguing. Several previous studies
have shown that co-occurring mesograzer species can
have quite different feeding preferences (Zimmerman et
al. 1979, Duffy 1990, Duffy and Hay 1994, Cruz-Rivera
and Hay 2000) and our laboratory assays corroborate
these previous studies (Fig. 9). This study confirms that
these differences have important consequences for com-
munity organization. Specifically, the red seaweed as-
semblage that developed in the amphipod-dominated
treatment differed dramatically from those in all other
treatments, despite the fact that total epifaunal density
and even total mesograzer density showed no significant
differences among treatments. Explaining the facilita-
tion of red algae by mesograzers thus requires finer tax-
onomic resolution. Several lines of evidence suggest that
this effect was attributable almost entirely to the single
amphipod species Ampithoe longimana. First, insecti-
cide treatment significantly suppressed only amphipods,
of which A. longimana was the most abundant, whereas
numbers of snails and isopods were not suppressed by
either insecticide or fish. Second, A. longimana was the
only amphipod in our tanks that fed readily on brown
macroalgae in laboratory assays. Finally, Sargassum
fronds sampled from mesograzer treatments were ex-

tensively damaged by grazing scars of the type produced
by A. longimana, resulting in significantly reduced in-
dividual frond area compared with other treatments.

Our results thus show not only that mesograzers can
have significant impacts on benthic community struc-
ture, but also imply that these impacts can be highly
species specific. The common practice of tabulating
epifaunal species by higher taxonomic categories, or
even by functional groups (with function usually being
assumed rather than known), would have obscured the
important role of grazing amphipods in this system.
Clearly the simple size-based classification of grazers
common in food web studies and ecosystem models is
too coarse grained to predict plant assemblage com-
position in this system. In fact, the specificity of grazer
impacts goes beyond the nuances of species compo-
sition to the total standing stock of primary producers,
arguably the single most important term in ecosystem
models. Specifically, in the presence of fish, removal
of grazing amphipods with insecticide resulted in a
.300% increase in total plant biomass (Fig. 5), despite
the similarity in total mesograzer abundances in the
two treatments (Fig. 7). Similar points about the com-
munity- or ecosystem-level consequences of species-
specific ecology have been made for terrestrial (Polis
1991, Polis and Strong 1996), benthic marine (Paine
1969, 1980, 1992), and pelagic marine systems (Leh-
man 1988).

One of the more surprising results of our study was
the relative strength of amphipod impacts on the algal
assemblage in comparison with those of fish (Fig. 11).
These comparisons rely on several assumptions (Table
2). First, our estimates of amphipod biomass are in-
direct; they assume that abundances were similar in
September (when mesograzer numbers were measured)
and at other times (when treatment effects were mea-
sured), and similar on brown macroalgae vs. benthos
as a whole. Although our calculations of effect strength
involved several such steps, we believe that the final
result is conservative with respect to conclusions about
amphipod importance, for two reasons. First, the mea-
sured abundance of mesograzers, and particularly Am-
pithoe longimana, was likely higher on the brown algae
we deployed to collect them than on benthic organisms
in aggregate, both because these browns generally sup-
port higher densities of A. longimana than do other
algae, and because A. longimana abundance in the field
peaks in late summer when we collected our samples
for abundance (Duffy and Hay 1991b, 1994). This will
tend to overestimate abundance of amphipods in the
tanks, and thus underestimate their per-biomass effects.
Second, we calculated effects for amphipods as a group
since our experimental design removed all amphipod
species collectively, rather than as single species. Thus,
the most conservative interpretation of our results
would attribute community changes in the insecticide
treatments to the amphipod guild collectively; this is
what we have done in Fig. 11. Yet our laboratory feed-
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ing assays, and the relative abundance of mesograzer
species in the tanks, provide evidence that these com-
munity changes are attributable primarily, if not solely,
to the single amphipod species Ampithoe longimana.
This amphipod had the highest overall feeding rates of
any mesograzer examined, and was the only one that
fed appreciably on brown macroalgae. Again, this
makes our calculation of effect strength for grazing
amphipods conservative because the per-biomass effect
is calculated from biomass of all grazing amphipods
rather than the fraction of that biomass made up by A.
longimana, which likely produces the strong effects.
Calculation of effects for A. longimana alone results
in slightly higher values. Thus, while the unusually
high densities of amphipods in the normal (1fish/1am-
phipod) treatment may inflate our estimates of net ef-
fects (Fig. 11), our experiment shows clearly that graz-
ing amphipods can have dramatic impacts on benthic
macroalgal assemblages, a role which has been virtu-
ally unrecognized compared with the widely appreci-
ated roles of fishes and large invertebrates such as sea
urchins.

We suggest that the community impacts of these
abundant but inconspicuous animals deserve more at-
tention. In the last two decades it has become clear that
in many oceanic systems, the majority of primary pro-
duction and the majority of grazing activity are me-
diated by very small algae, protists, and bacteria that
had passed through the plankton nets traditionally used
by oceanographers (Pomeroy 1974, Azam et al. 1983,
Li et al. 1983). In soft-bottom marine communities, a
growing body of evidence indicates that small preda-
tory invertebrates, including polychaetes, amphipods,
and meiofaunal turbellarians, have significant impacts
on both the adults and settling larvae of benthic mac-
rofauna, which demonstrably affect community struc-
ture in some cases and are suspected of doing so in
others (Watzin, 1983, 1986, Commito and Ambrose
1985, Osman et al. 1992, Ólaffson et al. 1994, Osman
and Whitlatch 1995). Similarly, grazing amphipods are
common and often abundant on the rocky marine bot-
toms that have stimulated so much groundbreaking re-
search in community ecology. Our results suggest that
increased attention to these animals will yield impor-
tant insights into how such systems work.
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