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Abstract. Pervasive overharvesting of consumers and anthropogenic nutrient loading are
changing the strengths of top-down and bottom-up forces in ecosystems worldwide. Thus,
identifying the relative and synergistic roles of these forces and how they differ across habitats,
ecosystems, or primary-producer types is increasingly important for understanding how
communities are structured. We used factorial meta-analysis of 54 field experiments that
orthogonally manipulated herbivore pressure and nutrient loading to quantify consumer and
nutrient effects on primary producers in benthic marine habitats. Across all experiments and
producer types, herbivory and nutrient enrichment both significantly affected primary-
producer abundance. They also interacted to create greater nutrient enrichment effects in the
absence of herbivores, suggesting that loss of herbivores produces more dramatic effects of
nutrient loading. Herbivores consistently had stronger effects than did nutrient enrichment for
both tropical macroalgae and seagrasses. The strong effects of herbivory but limited effects of
nutrient enrichment on tropical macroalgae suggest that suppression of herbivore populations
has played a larger role than eutrophication in driving the phase shift from coral- to
macroalgal-dominated reefs in many areas, especially the Caribbean. For temperate
macroalgae and benthic microalgae, the effects of top-down and bottom-up forces varied as
a function of the inherent productivity of the ecosystem. For these algal groups, nutrient
enrichment appeared to have stronger effects in high- vs. low-productivity systems, while
herbivores exerted a stronger top-down effect in low-productivity systems. Effects of
herbivores vs. nutrients also varied among algal functional groups (crustose algae, upright
macroalgae, and filamentous algae), within a functional group between temperate and tropical
systems, and according to the metric used to measure producer abundance. These analyses
suggest that human alteration of food webs and nutrient availability have significant effects on
primary producers but that the effects vary among latitudes and primary producers, and with
the inherent productivity of ecosystems.
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INTRODUCTION

A key question regarding the forces that structure

communities is the relative influence of consumers (top-

down) vs. resources (bottom-up) in controlling commu-

nity composition, structure, and function (Hairston et

al. 1960, Oksanen et al. 1981, Leibold et al. 1997).

Understanding the relative effects of these forces is

becoming increasingly important as humans alter

ecosystems by removing consumers (Duffy 2003) and

increasing nutrients (Smith et al. 1999) over large spatial

scales. For example, the recent switch from coral-

dominated to algal-dominated reefs in many tropical

regions, especially the Caribbean, could be due to loss of

herbivores, increased eutrophication, or an interaction

between decreased herbivory and increased nutrient

loading that reduces the ability of reefs to rebound in the

face of disturbance (McCook 1999, Hughes et al. 2003,

Bellwood et al. 2004). Such large-scale changes in

community structure following alterations of top-down

and bottom-up forces are becoming more common in

marine ecosystems (Valiela et al. 1997, Smith et al. 1999,

Steneck et al. 2004), making it critical to understand

how changes to these forces cascade through the

community.

Many marine ecosystems are typified by primary

producers such as kelps and seagrasses that are the

foundation species that facilitate whole ecosystems

(Bertness et al. 2001). Other primary producers, such

as coral reef macroalgae that can overgrow and kill

corals (McCook et al. 2001), are pivotal interactors that

strongly impact foundation species (corals), fundamen-

tally changing the physical and ecological structure of

the entire ecosystem. Thus, knowing how consumers and

resource availability affect primary producers is critical

for understanding how marine ecosystems function.

Benthic marine communities are commonly regulated by

consumers (Duffy and Hay 2001, Steneck and Sala
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2005). However, nutrient availability and larval recruit-

ment are influential bottom-up forces that also affect

benthic communities (Menge et al. 1997, Nielsen and

Navarrete 2004). These multiple forces are not mutually

exclusive and may rarely act in isolation (Leibold et al.

1997), making it important to identify when and where

they interact (or fail to interact) as drivers of community

organization. Given the context-dependent nature of

most ecological interactions (Polis et al. 1996, Hay et al.

2004), it is unlikely that any single experiment can

address this general question. A quantitative synthesis of

the data from individual studies investigating the

interactions of herbivores and nutrient loading on the

abundance of primary producers is needed to critically

evaluate the relative roles of herbivores vs. nutrients in

controlling the abundance of primary producers and

mediating phase shifts.

Recent meta-analyses have shown complex interac-

tions between herbivores and nutrients in controlling the

species diversity of primary producers (Worm et al.

2002) and in affecting periphyton abundance (Hille-

brand 2002), suggesting that these interactions might be

important for controlling primary-producer abundance

across a range of ecosystems, environmental conditions,

and types of producers. Therefore, we used factorial

meta-analysis (Gurevitch et al. 2000) to synthesize the

results of 54 field experiments that orthogonally

manipulated nutrient availability and herbivore pressure

in benthic marine ecosystems representing a wide

diversity of habitats and primary-producer types. We

assessed the relative roles of herbivores, nutrients, and

their interaction on primary-producer abundance for:

(1) marine primary producers pooled across all habitats

and producer types, (2) different types of producers (i.e.,

macroalgae vs. seagrasses vs. microalgae), (3) producers

in different habitats (i.e., low- vs. high-productivity

environments or temperate vs. tropical systems), and (4)

producers in different functional groups (i.e., crustose

vs. upright macroalgae). Instead of debating the role of

bottom-up vs. top-down forces, we focus instead on the

types of primary producers responding to these forces

and the conditions under which their relative roles

change, i.e., the context-dependent nature of the answer

to this debate.

METHODS

We found studies by searching the Institute for

Scientific Information (ISI) Web of Science database

(1945–2005; search terms included herbiv* and marine,

herbiv* and nutrient, nutrient and marine, etc.) for field

experiments manipulating both herbivory and nutrients.

We also searched the reference lists of papers identified

by this search. Studies had to satisfy three criteria to be

included in our analyses: (1) experimentally manipulate

nutrient availability and herbivore presence orthogonal-

ly in a field setting, (2) measure the abundance of

primary producers in response to these treatments, and

(3) report abundance means, error measurements, and

sample sizes for experimental treatments. All studies

that satisfied criteria 1 and 2 also satisfied criterion 3.

We found 23 published studies with a total of 50

experiments and also included three unpublished studies

for a total of 26 studies with 54 experiments (Appendix

A). Twenty-one experiments were on benthic micro-

algae, 15 on tropical macroalgae, 14 on temperate

macroalgae, three on seagrasses, and one on the marsh

grass Spartina alterniflora. Benthic microalgae consisted

primarily of diatoms and cyanobacteria (Appendix A).

Common species in the tropical macroalgal communities

were Dictyota spp., Lobophora variegata, Dasycladus

vermicularis, Amphiroa spp., and cyanobacteria. Fila-

mentous/turf algae and crustose algae were rarely

identified in tropical studies. In temperate macroalgal

communities, common algae were Fucus spp., Ascophyl-

lum nodosum, Pilayella littoralis, Enteromorpha intesti-

nalis, Callithamnion tetragonum, and Cladophora spp.

Seagrasses were Thalassia testudinum and Halodule

wrightii. Fishes were the dominant herbivores in tropical

macroalgal communities while fishes and urchins were

common in seagrass beds. Gastropods and crustaceans

were the dominant herbivores in temperate macroalgal,

benthic microalgal, and Spartina communities (Appen-

dix A). Urchins were common in only one of the

experiments in temperate macroalgal communities.

Herbivore removal was accomplished via barriers

(i.e., cages or anti-fouling paint) preventing access to

experimental plots. Nutrient enrichment was generally

accomplished via reservoirs containing nitrogen and

phosphorus that continually released nutrients to the

water column except for two studies that enriched

sediment pore water. When a single study enriched at

multiple nutrient concentrations or with both a nitrogen

and phosphorus and a nitrogen-only treatment, we used

data from the nitrogen and phosphorus treatment at the

highest concentration tested; this maximized our prob-

ability of detecting a nutrient enrichment effect. Most

studies monitored nutrient levels to ensure significant

nutrient enrichment of the water column or sediment

pore water. Primary-producer abundance was measured

as biomass (20 experiments), absorbance of chlorophyll

a (a proxy for microalgal biomass; nine experiments),

biovolume (nine experiments), primary-producer density

(eight experiments), or percent cover (eight experi-

ments). If data were reported as a time series, we used

data from the final sampling period. We did not analyze

effects on species diversity or richness because such

metrics were rarely reported.

We performed meta-analyses on the total, pooled data

set and then separately on tropical macroalgae, temper-

ate macroalgae, benthic microalgae, and seagrasses.

Because effects of herbivory and nutrient availability

may differ depending on the inherent productivity of the

ecosystem (Hillebrand 2002, Worm et al. 2002), we

divided the studies on temperate macroalgae and benthic

microalgae into those conducted in either low- or high-

productivity habitats (Appendix A). To classify the
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experiments into low- or high-productivity categories,

we used designations by the studies’ authors or other

publications related to the study areas as in Worm et al.

(2002). Different studies used different measures (i.e.,

dissolved vs. total nutrients) to assess the productivity of

the habitat, making absolute thresholds for classification

difficult to define. We did not divide tropical macroalgal

or seagrass studies according to productivity because all

studies were performed in areas of similar productivity.

To see whether the way investigators assessed changes in

abundance of primary producers affected our analyses,

we also performed analyses on the different abundance

metrics (i.e., biomass, density, percent cover) for each

type of primary producer (except for seagrasses due to

low sample size).

Because different algae may respond differently to

experimental treatments (Pedersen and Borum 1996), we

used functional group designations based loosely on

Steneck and Dethier (1994) to lump algae from tropical

and temperate macroalgal studies into three categories:

(1) crustose algae, (2) filamentous/turf algae, and (3)

upright macroalgae. Steneck and Dethier (1994) listed

seven morphological categories; we collapsed their

categories into only three groups due to the range of

seaweeds commonly included in the studies we assessed.

This coarser designation of algal types also produced

larger samples sizes (and greater statistical power) for

each algal type. Our crustose algae category equaled

their group of the same name (e.g., Neogonolithon and

Peyssonnelia). Our filamentous/turf algae included their

functional group filamentous algae (e.g., Ectocarpus and

Piayella). Our upright macroalgal grouping included

their functional groups: (1) foliose algae (e.g., Ulva and

Porphyra), (2) corticated foliose algae (e.g., Padina and

Lobophora), (3) corticated macrophytes (e.g., Sargassum

and Gigartina), (4) leathery macrophytes (e.g., Fucus and

Ecklonia), and (5) articulated calcareous algae (e.g.,

Halimeda and Amphiroa). Not all studies reported data

for the abundance of specific functional groups so our

sample sizes were not consistent for all analyses across

functional groups.

We used factorial meta-analysis (Gurevitch et al.

2000) that calculates the mean effect of the major factors

as well as how the two main factors interact to determine

the response variable (conceptually similar to a two-

factor ANOVA). This allowed us to compare the mean

effects of herbivore removal, nutrient addition, and their

interaction. In addition, we calculated the individual

effects of herbivore removal under ambient and enriched

nutrient status and of nutrient enrichment in the

presence and absence of herbivores. (See Fig. 1 for an

outline of experimental treatments and their use in

computing effect sizes.) These calculations are based on

Hedges’ d (Gurevitch and Hedges 1993), which measures

the difference between treatment and control means

divided by a pooled standard deviation from the

treatment and control and multiplied by a correction

factor to account for differences in sample size among

studies. For the analyses of algal functional groups from

temperate vs. tropical habitats, we used the response

ratio metric (L¼ ln[xt/xc] where xt is the treatment mean

and xc is the control mean; Hedges et al. 1999) because it

does not require error measurements for its calculation

(as does Hedges’ d ), and many studies did not report

error measurements for functional group response

variables. However, using the response ratio precluded

using factorial meta-analysis, allowing us to calculate

only the individual effects for the analyses of functional

groups.

Means, error measurements, and sample sizes used to

calculate effect sizes were obtained from tables or

extracted from graphs using Grab It! XP (Datatrend

Software, Raleigh, North Carolina, USA). Error mea-

surements reported as standard errors were converted to

standard deviation for use in effect size calculations.

Calculations of effect sizes were performed as outlined in

Gurevitch et al. (2000) for factorial analysis with

Hedges’ d, and Hedges et al. (1999) for the response

ratio using workbooks in Microsoft Excel. We per-

formed unweighted, mixed-effect model meta-analyses

with MetaWin 2.0 (Rosenberg et al. 2000). Confidence

intervals (95%) were calculated using a bias-corrected

bootstrapping technique with 9999 sampling iterations

(Adams et al. 1997). Effect sizes were considered

significant if 95% confidence intervals did not cross

zero. Effect sizes within analyses (e.g., herbivore

removal effect vs. nutrient enrichment effect) were

FIG. 1. A depiction of the four treatments present in all
orthogonal manipulations of herbivore (H) pressure and
nutrient (N) availability. Mean effects refer to the average
effect of herbivore removal or nutrient addition. Individual
effects refer to the effects of nutrient enrichment in the absence
and presence of herbivores and the effects of herbivore removal
in the absence and presence of nutrient enrichment. The effect
size calculations are represented by the addition or subtraction
of the number labels for each treatment in the figure. These
equations represent the numerator in the effect size calculation
equations as in Gurevitch et al. (2000).
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considered different from one another if their 95%

confidence intervals did not overlap.

To facilitate comparison of treatment effect sizes, we

constructed our calculations so that the effects of both

nutrient enrichment and herbivore removal were

positive. Thus, we tested (1) the effect of removing

herbivores from the system, not the effect of adding

herbivores to the system, and (2) the effect of nutrient

enrichment. A positive effect size for herbivore removal

or nutrient enrichment means that these manipulations

enhance the abundance of primary producers. A

positive effect size for the interaction term means that

nutrient enrichment has a larger effect in the absence of

herbivores than in their presence. For factorial analy-

ses, mean effect sizes are designated dþþ, whereas

individual effect sizes are designated dþ. Response ratio

effect sizes in the analyses of algal functional groups are

designated L.

To determine whether effect sizes were correlated with

experimental duration or experimental plot size, we used

linear least-squares regression to compare effect sizes

with the log-transformed duration (in days) or the log-

transformed experimental plot size (in square meters) of

each experiment. Regressions were performed only for

mean effects and were performed for all studies pooled

and for each primary-producer type except for sea-

grasses due to low sample size (n ¼ 3).

RESULTS

Factorial meta-analysis across all experiments showed

that both nutrient enrichment (dþþ ¼ 0.98) and

herbivore removal (dþþ ¼ 1.55) strongly affected

abundance of primary producers (Fig. 2A). There was

also a significant interaction (dþþ¼0.42), indicating that

nutrient enrichment had a greater effect in the absence

of herbivores. Further, herbivore removal in the

presence of enrichment (dþ¼ 1.84) had a much greater

effect than enrichment when herbivores were not

removed (dþ¼ 0.51; Fig. 2B).

For tropical macroalgae (Fig. 2C), nutrient enrich-

ment (dþþ¼ 0.90), herbivore removal (dþþ¼ 2.84), and

their interaction (dþþ¼ 0.60) were all positive. Nutrient

enrichment enhanced tropical macroalgae in the absence

of herbivores (dþ¼ 1.37) but not in their presence (dþ¼
0.28) (Fig. 2D). In contrast, herbivore removal had a

strong, positive effect both with (dþ¼ 3.23) and without

(dþ¼ 2.15) enrichment; the effects of herbivore removal

were greater under either nutrient regime than were the

effects of nutrients in the presence of herbivores

(Fig. 2D).

Seagrass communities (Fig. 2E) showed no effect of

nutrient enrichment (dþþ ¼ 0.09), a positive effect of

herbivore removal (dþþ¼ 0.97), and no interaction (dþþ

¼ 0.08). Nutrient enrichment did not affect seagrasses

either with or without herbivores, but herbivore removal

was positive in both the absence and presence of

nutrients (Fig. 2F). These analyses suggest that herbi-

vores have strong effects while nutrients have limited

effects on seagrass abundance, but the low sample size (n

¼ 3) constrains these conclusions.
Temperate macroalgae (Fig. 3A) were positively

affected by both nutrient enrichment (dþþ ¼ 1.06) and
herbivore removal (dþþ ¼ 1.27). The effect size for the

interaction term was positive (dþþ ¼ 0.40, CI ¼�0.03/
0.93) but not significant (the confidence intervals

overlapped zero). The nutrient enrichment effect was

FIG. 2. Results of meta-analyses on mean and individual
effects (left panels and right panels, respectively) for (A, B) all
primary producers, (C, D) tropical macroalgae, and (E, F)
seagrasses. Effect sizes are Hedges’ d and 95% CI. Effects are
statistically significant (P , 0.05) if confidence intervals do not
overlap d¼ 0. A positive d indicates an increase, and a negative
d indicates a decrease in primary-producer abundance. Differ-
ent lowercase letters designate differences among categories
within an analysis based on 95% CI, i.e., data points with
different letters do not have overlapping confidence intervals.
Graphs with no letters had no significant differences among
data points. Note different scales on y-axes.
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significant both in the presence (dþ¼ 0.61) and absence

(dþ¼ 1.37) of herbivores (Fig. 3B). Herbivore removal

had a significant positive effect in the presence of added

nutrients (dþ ¼ 1.56), but without added nutrients the

effect size was smaller (dþ ¼ 0.80) and slightly

overlapped zero, making the effect statistically nonsig-

nificant.

The background nutrient status of the ecosystem

affected the relative roles of herbivory and enrichment

on temperate macroalgae. In low-productivity environ-

ments, both nutrient enrichment (dþþ ¼ 0.67) and

herbivore removal (dþþ ¼ 1.87) had positive effects

(Fig. 3C), while the interaction effect was marginally

nonsignificant (dþþ ¼ 0.42, CI ¼�0.03/1.10). However,

analyses of individual effects showed that enrichment

significantly enhanced algal abundance only in the

absence of herbivores (dþ ¼ 1.02; Fig. 3D). Herbivore

removal effects were strong in the absence (dþ ¼ 1.35)

and presence (dþ ¼ 2.31) of enrichment. In high-

productivity areas, there was a positive nutrient

enrichment effect (dþþ¼ 1.77) but no herbivore removal

effect (dþþ¼ 0.19) or interaction (dþþ¼ 0.37; Fig. 3E).

The enrichment effect appeared strong in both the

presence (dþ ¼ 1.29) and absence (dþ ¼ 1.99) of

herbivores but was statistically significant only with

herbivores present despite the effect size being larger

without herbivores (Fig. 3F).

FIG. 3. Results of meta-analyses on mean and individual effects for temperate macroalgae for (A, B) all studies, (C, D) studies
in low-productivity areas, and (E, F) studies in high-productivity areas and for benthic microalgae for (G, H) all studies, (I, J)
studies in low-productivity areas, and (K, L) studies in high-productivity areas. Symbols and analyses are as in Fig. 2. Note
different scales on y-axes.
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For benthic microalgae, the mean effects of nutrient

enrichment (dþþ¼0.64), herbivore removal (dþþ¼0.76),

and the interaction (dþþ ¼ 0.21) were all positive

(Fig. 3G). Additionally, all individual effects were

significantly positive and did not differ from one another

(Fig. 3H). In low-productivity areas, the effects of

nutrient enrichment (dþþ ¼ 0.55), herbivore removal

(dþþ ¼ 1.13), and their interaction (dþþ ¼ 0.36) were

significant (Fig. 3I). However, nutrient enrichment was

significant only in the absence of herbivores (dþ¼ 0.85),

while herbivore removal was significant both with (dþ¼
1.38) and without (dþ¼0.71) nutrient additions (Fig. 3J).

In high-productivity areas, enrichment (dþþ¼ 0.71) and

herbivore removal (dþþ¼ 0.48) were significant but the

interaction was not (dþþ ¼ 0.11; Fig. 3K). Individual

effects for microalgae in high-productivity areas were all

significantly positive and did not differ from one another

(Fig. 3L).

When we divided temperate and tropical macroalgae

into functional groups, effects of herbivore removal and

nutrient enrichment depended on latitude and algal type.

For crustose algae in temperate systems (Fig. 4A),

enrichment in the presence of herbivores significantly

decreased abundance, and no other contrasts were

significant. However, this contrast should be viewed

with caution due to low sample size (n ¼ 2). Crustose

algae in tropical systems (Fig. 4B) were modestly

enhanced by nutrient enrichment in the absence of

herbivores (L ¼ 0.57). However, herbivore removal

strongly decreased the apparent abundance of crustose

algae in the absence (L ¼ �2.36) and presence (L ¼
�2.23) of enrichment. For upright macroalgae, nutrient

enrichment had no effect in either temperate or tropical

habitats (Fig. 4C, D), but herbivore removal increased

macroalgal abundance in both temperate (L ¼ 0.60 in

the absence of nutrient enrichment; Fig. 4C) and

tropical communities (L ¼ 3.13 and L¼ 2.81 in the

absence and presence of nutrient enrichment; Fig. 4D).

Filamentous/turf algae in temperate systems were

enhanced both by nutrient enrichment (L ¼ 1.12 and L

¼ 0.91 with and without herbivores) and by herbivore

removal (L ¼ 0.52 and L ¼ 0.73 with and without

nutrient enrichment; Fig. 4E). In tropical systems,

filamentous/turf algae decreased under nutrient enrich-

ment in the presence of herbivores (L¼�1.02), with no

other effects being significant (Fig. 4F).

FIG. 4. Results of meta-analyses on individual effects for (A, B) crustose algae, (C, D) upright macroalgae, and (E, F)
filamentous/turf algae in temperate and tropical ecosystems. Effect sizes are response ratio and 95% CI. Symbols and analyses are as
in Fig. 2. Note different scales on y-axes.
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Just as effects differed as an effect of latitude, local

nutrient regimes, and algal type, they also differed

depending on how producer responses were assessed (as

biomass, percent cover, density, etc.). When biomass

was used in studies on tropical macroalgae (n¼ 10), the
mean effects for enrichment, herbivore, and interaction

effects were positive as were all the individual effects

(Fig. 5A, B). However, using percent cover (n ¼ 4)

showed a positive mean effect of herbivore removal but

no mean enrichment or interaction effects (Fig. 5C).

Individual effects for percent cover showed positive

herbivore removal effects, no enrichment effect in the
absence of herbivores, and a negative effect of enrich-

ment in the presence of herbivores (Fig. 5D). Measuring

density of tropical macroalgae showed the same pattern

as percent cover, but only one study measured density so

an analysis was not run for this metric (Fig. 5E, F). For

temperate macroalgae, measuring biomass (n ¼ 3)
showed positive mean effects for enrichment, herbivory,

and their interaction (Fig. 5G). Individual effects for

biomass showed no effect for enrichment with herbi-

vores, positive effects for enrichment without herbivores

and herbivore removal with enrichment, and a negative

effect for herbivore removal without enrichment (Fig.

5H). Analyses of percent cover for temperate macro-

algae (n ¼ 4) showed no significant effects (Fig. 5I, J).

Measuring density of temperate macroalgae (n¼ 7) gave

positive enrichment and herbivory effects but no

significant interaction, while the individual effects were
all significantly positive (Fig. 5K, L). For benthic

microalgae, biomass (n ¼ 3) showed a positive mean

herbivore effect but no enrichment or interaction effect

while individual herbivore removal effects were positive

but enrichment effects were not significant (Fig. 5M, N).

Measuring absorbance of chlorophyll a (n ¼ 9) showed
positive mean enrichment and herbivore effects but no

interaction (Fig. 5O). Individual effects when measuring

absorbance were positive except for herbivore removal

in the presence of nutrient enrichment (Fig. 5P). When

biovolume was measured for benthic microalgae (n¼ 9),

the mean effects for enrichment, herbivore removal, and
their interaction were positive (Fig. 5Q). Individual

effects for biovolume showed positive effects of herbi-

vore removal in the absence and presence of enrichment

but a positive enrichment effect only in the absence of

herbivores (Fig. 5R).

Regressions comparing effect sizes and experiment

duration showed relationships for only two of the 12

FIG. 5. Results of meta-analyses on mean and individual effects (left panels and right panels, respectively) comparing types of
abundance measurements for (A–F) tropical macroalgae, (G–L) temperate macroalgae, and (M–R) benthic microalgae. Symbols
and analyses are as in Fig. 2. Note different scales on y-axes.
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comparisons (i.e., the herbivore removal and interaction

effects for benthic microalgae; Appendix B). Experi-

ments lasted on average 119.2 6 17.8 d (mean 6 SE)

with a range of 12–540 d. Regressions comparing effect

sizes and experimental plot size showed no significant

relationships for any of the comparisons (Appendix C).

Mean experimental plot size was 0.14 6 0.03 m2 with a

range of 0.023–1 m2.

DISCUSSION

When averaged across all experiments in our study,

herbivore pressure and nutrient availability both signif-

icantly affected the abundance of primary producers

(Fig. 2A, B). The positive interaction terms for the

overall analysis (Fig. 2A), for tropical macroalgae (Fig.

2C), and for benthic microalgae (Fig. 4A) demonstrate

that effects of nutrient enrichment are magnified in the

absence of herbivores and that herbivory and nutrifica-

tion can act synergistically to alter communities

(Scheffer et al. 2001, Worm et al. 2002). Further,

context-dependent patterns of top-down and bottom-

up regulation were evident when comparing temperate

vs. tropical macroalgae (Figs. 2, 3), low- vs. high-

productivity systems (Fig. 3), and different functional

groups of algae (Fig. 4). Outcomes could also differ

based on the metrics used to assess abundance of

primary producers (Fig. 5).

On coral reefs, both loss of herbivores (Hughes 1994,

Hughes et al. 1999) and increased eutrophication

(Lapointe 1997, 1999) have been emphasized as the

primary mechanism driving the transition of many reefs

from coral- to macroalgal-dominated ecosystems. Our

analyses suggest that reduced herbivory is the primary

factor increasing macroalgal abundance but that nutri-

ent enrichment can interact with reduced herbivory to

magnify these effects (Figs. 2C, D, 4F). This interaction

has been emphasized in recent conceptual models of the

decline of coral reef health (McCook 1999, Bellwood et

al. 2004) as well as experimental manipulations address-

ing this problem (e.g., Miller et al. 1999, Smith et al.

2001). The compounding effects of reduced herbivore

pressure and increased nutrient loading likely make reefs

less resilient to disturbance (Hughes et al. 2003) because

herbivores are necessary to keep open space free of algae

and facilitate coral recruitment following coral bleach-

ing, hurricanes, and disease epidemics (Aronson et al.

2005) and because increased nutrient loading in the

absence of herbivores increases coral mortality by

stimulating macroalgal growth (Jompa and McCook

2002). Additionally, excess nutrients can increase the

severity of coral diseases (Bruno et al. 2003), decrease

coral growth rates (Koop et al. 2001), and increase

bioerosion of reef substrate (Carreiro-Silva et al. 2005),

enhancing the transition from coral- to algal-dominated

reefs.

Removal of herbivores on reefs dramatically de-

pressed the appearance of crustose algae (Fig. 4B) but

increased the abundance of upright macroalgae (Fig.

4D). Many corals preferentially recruit to crustose

coralline algae (Heyward and Negri 1999), but their

recruitment and survival are suppressed by upright

macroalgae (Lewis 1986, McCook et al. 2001, Jompa

and McCook 2002), making herbivores crucial to reef

health because they indirectly facilitate coral recruitment

and survival by promoting crustose corallines and

suppressing upright macroalgae. However, the true, vs.

apparent, effects of herbivores on crustose coralline

algae (Fig. 4A, B) are difficult to determine with

certainty because crustose corallines may be overgrown

but not killed by macroalgae (Steneck and Dethier

1994). Because the studies in our analyses measured

percent cover of crustose algae instead of biomass,

crustose algae may have been present but obscured by a

fleshy algal canopy, decreasing their relative abundance

but perhaps not their absolute abundance. However,

this change, even if it is only in apparency, is still

ecologically significant for corals because their larvae

prefer to settle on unobscured crustose corallines, and

even larger corals are damaged by direct contact with

larger macroalgae (McCook et al. 2001, Jompa and

McCook 2002). Thus, overgrowth of living corallines

may both preclude coral recruitment and suppress the

growth and survivorship of previously established

corals.

The results from experiments on tropical macroalgae

appear to depend in part on the metric used to measure

macroalgal abundance (Fig. 5A–F). Studies measuring

percent cover (n¼4) showed strong herbivore effects but

minimal enrichment effects, while studies measuring

biomass (n ¼ 10) showed strong herbivore and enrich-

ment effects. However, it is difficult to assess how

biomass and percent cover differ when measuring the

same community as only one study (McClanahan et al.

2003) reported both biomass and percent cover mea-

surements for the whole community. Thus, any inherent

differences in the metrics used to assess the relative

effects of herbivores and nutrients are confounded by

differences between the study sites, the species unique to

each site, and other procedural differences among

studies. For example, all of the studies on tropical

macroalgae that used percent cover as the metric were

conducted in the Florida Keys, USA. Thus, the strong

herbivore effects shown when measuring percent cover

may be a bias of the metric or may be due to particularly

intense herbivory in the Florida Keys as compared to

other study sites. Differences in the relative roles of

herbivores and nutrients when comparing different

abundance metrics were evident for both temperate

macroalgae (Fig. 5G–L) and benthic microalgae (Fig.

5M–R). Thus, future studies of top-down and bottom-

up interactions would benefit from measuring commu-

nity responses in a variety of metrics as no single metric

may be the most meaningful in terms of primary

producer abundance. For example, an increase in

percent cover as opposed to biomass of tropical macro-

algae may be more damaging to coral reef health
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because an increase in percent cover may mean that

algae are more likely to contact and overgrow corals or

prevent juvenile corals from recruiting to the benthos.

However, measuring biomass instead of percent cover

may give a better approximation of how herbivory and

nutrients affect the absolute production of primary

producers.

The scale of experimentation also may constrain the

conclusions for these analyses. Although we showed

little effect of scale on the experimental effect sizes

(Appendix C), the maximum plot size for these

experiments was 1 m2
, which is far smaller than the

kilometer-wide scale that may represent anthropogenic

effects on ecosystems. This smaller scale may diminish

the effects of nutrients but magnify the effects of

herbivores on primary producers, especially in systems

such as tropical reefs, where herbivores (fishes) are very

mobile and large compared to the primary producers.

For example, nutrient enrichment in the presence of

herbivores did not show an effect for tropical macro-

algae (Fig. 2D) and even showed a negative effect when

only filamentous/turf algae (Fig. 4F) or percent cover of

the whole community was considered (Fig. 5C). Highly

mobile fishes could generate these patterns by concen-

trating their feeding efforts on small patches of algae

that are nutritionally enriched. However, experimental

nutrient enrichment on coral patch reefs averaging .250

m2 (over two orders of magnitude larger than experi-

ments in our analyses) also showed no effect of

enrichment on algal abundance in the presence of

herbivores (Koop et al. 2001). Further, exclusion of

herbivores on reefs of 50–230 m2 with no nutrient

addition (Sammarco 1982, Hay and Taylor 1985, Lewis

1986) shows dramatic increases in macroalgal abun-

dance similar to our analyses (Figs. 2C, 4B). Although

these ‘‘large-scale’’ experiments are still smaller than the

scale of eutrophication or overfishing of herbivores,

their results suggest that the processes regulating the

abundance of tropical macroalgae on the scale of ;1 m2

are similar to those that operate on the scale of hundreds

of square meters.

For temperate macroalgae and benthic microalgae the

relative importance of herbivores and nutrients differed

between areas of low vs. high productivity. In low-

productivity areas, both temperate macroalgae and

benthic microalgae were significantly affected by herbi-

vore removal and nutrient enrichment (Fig. 3C, I), but

nutrient enrichment was significant only when herbi-

vores were absent (Fig. 3D, J). For temperate macro-

algae in high-productivity areas, the effects of nutrient

enrichment were significant, whereas the effects of

herbivore removal were not (Fig. 3E, F). However, all

of the studies for temperate macroalgae in high-

productivity systems were conducted in the Baltic Sea,

meaning that this effect could be a region-specific

pattern rather than a general phenomenon. For benthic

microalgae in high-productivity areas, both nutrient

enrichment and herbivore removal were significant (Fig.

3K, L). However, herbivores exert greater control on

benthic microalgal abundance in low-productivity areas

because nutrient enrichment in the presence of herbi-

vores had no effect on abundance in low-productivity

(Fig. 3J) areas but a significant effect in high-produc-

tivity areas (Fig. 3L). Thus, herbivores appear to exert

stronger top-down control in low-productivity systems

while nutrient enrichment can affect producer abun-

dance in both low- and high-productivity temperate

systems.

Two other meta-analyses of aquatic systems have

addressed how system productivity affects the interac-

tion of top-down and bottom-up forces. Hillebrand

(2002) showed that for freshwater and marine benthic

microalgae the effect of herbivores appears to decline as

system productivity increases and also that the interac-

tion between herbivores and nutrients is significant at

low and high productivity but nonsignificant in moder-

ately productive areas. Worm et al. (2002) showed even

more dramatic effects of background productivity on

the role of herbivores vs. nutrient availability in

controlling species diversity in aquatic communities.

Nutrient enrichment in low-productivity systems in-

creased diversity but herbivores decreased diversity,

whereas nutrients in high-productivity systems de-

creased diversity and herbivores increased diversity.

The comparison of our analyses with those of Worm et

al. (2002) suggests that the effects of herbivores and

nutrients are more complex than merely changing

overall abundance of primary producers. For example,

herbivores may facilitate the replacement of palatable

macroalgae with unpalatable macroalgae with little

effect on actual primary-producer abundance (Lubchen-

co and Gaines 1981, Lotze et al. 2001). Thus, our meta-

analysis could underestimate changes in community

structure because we measure only producer abundance.

Further, comparison of these three meta-analyses (Hille-

brand 2002, Worm et al. 2002, this study) suggests that

consumers may have lesser effects on the abundance of

primary producers in high-productivity areas but larger

effects on diversity, whereas nutrient enrichment affects

both abundance and diversity. In low-productivity

areas, consumers may depress both the abundance and

diversity of producers while nutrient enrichment in-

creases diversity but not abundance.

For temperate macroalgae, these patterns for low-

and high-productivity studies may stem, in part, from

the types of algae present. Larger perennial macroalgae

(e.g., Fucus) tend to dominate natural intertidal areas,

while ephemeral, filamentous algae (e.g., Enteromorpha)

become more abundant with eutrophication (Worm et

al. 2000, Worm and Lotze 2006). Physiological studies

show that larger macroalgae often absorb nutrients

more slowly than filamentous algae (Pedersen and

Borum 1996), suggesting that larger macroalgae respond

less quickly to nutrient pulses than filamentous algae.

Our analyses agree with these physiological studies and

show that upright macroalgae in temperate systems
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show no response to nutrient enrichment and are only

moderately affected by herbivores (Fig. 4C), while

filamentous/turf algae are affected by both herbivores

and nutrient availability (Fig. 4E). Filamentous/turf

algae are often preferred foods for herbivores and may

preempt larger macroalgae when they are not removed

by grazers (Lubchenco 1978, Sousa 1979). If herbivores

graze filamentous/turf algae to low levels, they may then

be forced to feed on less preferred larger macroalgae,

which may be why we show a modest effect of

herbivores on temperate upright macroalgae.

Thus, producer abundance in low-productivity areas

may be more strongly affected by herbivores because

they keep filamentous algae to low levels, thereby

increasing grazing on less preferred perennial macro-

algae and because upright macroalgae may be minimally

influenced by short-term changes in nutrient availability

(Pfister and Van Alstyne 2003). Primary-producer

abundance in high-productivity areas may show strong

responses to nutrient enrichment because filamentous

algae rapidly respond to nutrient pulses and more easily

compensate for losses to herbivores with rapid growth.

Grazer manipulations in both the laboratory (Lotze and

Worm 2002) and the field (Worm and Lotze 2006)

support this pattern, showing a declining effect of

herbivores on filamentous algae as nutrient enrichment

increases. In addition, field surveys across several

replicate eutrophic and control rocky-shore communi-

ties show that larger macroalgae decrease while filamen-

tous/turfs (e.g., Enteromorpha) increase as rocky shores

become eutrophic (Worm and Lotze 2006). In these

systems, producer abundance appears to be controlled

by consumers when productivity is low and by nutrients

when productivity is high.

A limitation of the analyses for temperate macroalgae

is that all of the studies come from rocky intertidal or

shallow subtidal systems where herbivores may be large

(e.g., urchins or gastropods) relative to primary produc-

ers (filamentous/turf algae and small to medium-sized

macroalgae). Our data set did not include experiments

from large kelp communities (i.e., Macrocystis spp.) in

which the producers are much larger than their

consumers. These large, perennial macroalgae can

respond strongly to pulsed inputs of nutrients (Dean

and Jacobsen 1986) and suffer extensive die-offs when

faced with nutrient-poor water for extended periods

(Dayton et al. 1992), indicating that nutrient availability

strongly affects their abundance. The fact that our

analyses do not show a nutrient enrichment effect for

smaller macroalgae (e.g., Fucus) (Fig. 4C) suggests that

the experiments in our analyses potentially were not of

sufficient duration to pick up a nutrient enrichment

signal for these macroalgae. In addition, herbivores have

weak (Sala and Graham 2002) to strong (Estes et al.

1998) effects on kelps, emphasizing the need for more in-

depth experimental work on how the relative roles of

herbivores and nutrient availability affect kelp commu-

nities and how the relative size or metabolism of

consumers and producers may alter the relationships

between top-down and bottom-up forces.

Nutrient enrichment in the presence of herbivores

significantly suppressed temperate crustose algae (Fig.
4A), tropical filamentous/turf algae (Fig. 4F), and

overall tropical macroalgae as measured using percent

cover (Fig. 5D). The studies we analyzed did not address

the mechanisms producing these effects, and our
analyses cannot rigorously assess the mechanisms

involved. However, herbivores are commonly nitrogen-

limited (Mattson 1980), suggesting that dominant

herbivores in these systems could be selectively attacking

algae with enriched levels of nitrogen. Fishes on tropical
reefs will selectively attack filamentous algae growing on

plots with elevated nutrients (D. E. Burkepile and M. E.

Hay, unpublished data) and individual macroalgae that

have been subjected to nutrient enrichment (Boyer et al.
2004). This aspect of nutrition and fish behavior could

explain why filamentous/turf algae in temperate areas

with few herbivorous fishes are enhanced by nutrients,

while those in tropical areas with abundant fishes are
significantly suppressed by nutrient additions only when

herbivores are present (Fig. 4F). Similarly, nutrients

may enhance the nutritional value of crustose algae to

temperate grazers, resulting in their decline with
enrichment when herbivores are present (Fig. 4A). Thus,

integrating the study of herbivore nutrition with

research on the relative roles of top-down and bottom-

up forces could provide a more mechanistic understand-
ing of how these forces interact.

Alterations to food webs and nutrient availability are

pervasive across marine ecosystems. These changes

produce context-dependent effects that vary across

latitudes, primary producers, and the inherent produc-
tivity of ecosystems. Understanding the mechanisms

driving these patterns may require greater focus on (1)

how aspects of herbivore nutritional needs and algal

physiology affect the strength of top-down and bottom-

up forces, (2) how these forces vary across spatial and
temporal scales (most experimental studies use small-

scale manipulations to address what are fundamentally

large-scale questions), and (3) integrating small-scale

field experimentation with modeling of consumer
movement and of eutrophication at large scales.
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APPENDIX A

A table and reference list of studies used in the analyses (Ecological Archives E087-189-A1).

APPENDIX B

Results of regression analyses testing for relationships between mean effect size and experimental duration (Ecological Archives
E087-189-A2).

APPENDIX C

Results of regression analyses testing for relationships between mean effect size and experimental plot size (Ecological Archives
E087-189-A3).
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