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The PI is continuing his long standing program on the Theory of Aperiodic Solid. Presently 
6 collaborations are running. 

Reminder: an aperiodic solid can be described as follows: let G C Rd  be the discrete 
set of equilibrium positions of its atoms in the real space in which the solid is setting. 
The Hull of G is obtained as the closure of the family IL + a; a e Rd } of translated of 
the solid. The topology used here is the following: a subsequence of discrete subsets 
converges if and only if their intersections with any bounded open set of R d  converges 
for the Hausdorff distance. If the initial set of atoms is uniformly discrete, the Hull is a 
compact space Q endowed with an action of R d  by homeomorphisms. Each point in the 
Hull is itself a discrete subset of R d . This dynamical system has a canonical transversal 
made of points such that the corresponding discrete subset contains the origin in R d . This 
transversal is called the atomic surface by physicist studying quasicrystals. Such a Hull 
can be described through various points of view: as a dynamical system as previously, as a 
groupoid (of the dynamical system or of its transversal), as a tiling space, as a lamination 
(or foliated space). The crossed product C*-algebra C(Q) >a Rd can be interpreted as the 
space of continuous functions on a noncommutative manifold called the Noncommutative 
Brillouin Zone (NCBZ) [1]. Any invariant measure on the Hull gives rise to a trace on 
the NCBZ and vice-versa, and the trace is positive if and only if the invariant measure is 
positive. 
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1 Results of 2005 and current work 

1.1 The Hull of a Repetitive Finite Type Tiling: 

Collaboration: J.-M. Gambaudo, Math, Dijon, France & R. Benedetti, Math., Pisa, 
Italy. 
Article: Spaces of Tilings, Finite Telescopic Approximations and Gap-Labeling. [3] 

This paper has been accepted for Publication in Communication in Mathematical Physics 
in 2003. It took until April 2005 to finish the revision because of a lot of details and 
technicalities that needed to be fixed. The paper should appear in 2006. 

If the set of atoms is a repetitive Delone set of finite type, the present paper shows that it 
is associated with a repetitive tiling satisfying the finite pattern condition (the number of 
pattern of each size is finite modulo translation), the Hull can be constructed as an inverse 
limit of Branched Oriented Flat Riemannian manifolds (BOF). This construction allows 
to compute the longitudinal cohomology, the K-theory and the longitudinal homology of 
the corresponding NCBZ. It is proved that the set of invariant measures is given by the 
homology group in degree d. Criterion for unique ergodicity are given. This work is an 
extension to tilings of a previous work by Gambaudo and Martens [11] written in 2000 
and likely to be published soon. 

1.2 K-theory of the Hull and Box Decomposition: 

Collaboration: J. Savinien, Graduate School, Math., Georgia Tech. 

In 2005, J. Savinien has switched from continuing his study on phonons (see Section 2.1 
below) to the problem of understanding the computation of the group of K-theory of the 
Hull of a repetitive finite type tiling. In an important '99 paper, Forrest and Hunton 
[9] have proved that the K-group of the C*-algebra of a Zd-action on a Cantor set X is 
isomorphic to the group cohomology of Zd with values in the K-group of X, namely the 
space C(X, Z) of continuous function on X with integer values. A claim made in [9] that 
these cohomology groups are torsion free was recently corrected and computation of such 
groups shows indeed that torsion is actually present in various quasicrystal on dimension 
3 [10]. In principle the result of Forrest and Hunton also applies to all repetitive finite 
type tilings thanks to a theorem by Sadun and Williams [18] asserting that the Hull is 
homeomorphic to a bundle over a torus with fibers given by a Cantor set. However, 
this homeomorphism is not a conjugacy for the Rd action on the Hull. Moreover, the 
theorem of Forrest and Hunton is proved through a series of general arguments making 
the isomorphism quite implicit. Jean Savinien has taken the task of looking for a different 
point of view to describe this group. 

In the case of a Z d-action on a Cantor set X, the Hull can be constructed as a mapping 
torus of the of X by this action. In the tiling space construction the results given in 
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the previous Section 1.1 shows that the mapping torus construction can be replaced by 
the so-called box decomposition. Namely a box is a subset of the Hull homeomorphic 
to a cartesian product T x U where T is a clopen subset of the transversal, U c R d  is 
open and the homeomorphism is such that {t} x U corresponds to open subset of the 
leave through t E T. A box decomposition is a finite disjoint family of such boxes, with 
closure covering the Hull. Box decompositions always exist in such tiling spaces. The 
mapping torus is a special case for which there is a box decomposition with a unique 
box. Using box decomposition, it is easy to built a spectral sequence converging to the 
K-theory (Atiyah-Hirzebruch's or Schochet's spectral sequence). However in the course 
of building the spectral sequence, it occurs that the combinatoric of the various groups 
entering in the construction is described through the cohomology of a complex of discrete 
groups, generalizing the Pimsner-Voiculescu exact sequence. The groups occurring in this 
complex are given by the space C(EF , Z) where F runs through the set of prototiles or 
their faces, E F  is F's acceptance zone and is a clopen transversal to the lamination in the 
Hull and the differential is a combination of the usual simplicial cohomology, induced by 
the complex of faces of prototiles, and the translations in the Hull allowing to identify the 
various EF 's. In the case of a mapping torus, such complex was proposed by Pimsner. The 
goal is to prove that the cohomology of this complex gives the page two of the spectral 
sequence. 

1.3 Transverse Dirac Operator: 

Collaboration: J. Pearson, Graduate School, Math., Georgia Tech., M. Benameur, 
Univ Metz, France 

This part of the project is to show that the singular foliated space defined by the Hull 
can be treated in a way similar to the Connes-Moscovici approach to foliated smooth 
manifolds. The PI has already defined a Dirac operator acting transversally to the orbits 
of Rd  and defining a Fredholm module with respect to the crossed-product C*-algebra 
of the Hull (the so-called Noncommutative Brillouin zone, NCBZ). The PI expects that 
this is the first step toward describing the transverse fundamental class of the NCBZ. He 
has already found relations between parts of the dimension spectrum of this operator and 
various fractal exponents describing the complexity of the atomic distribution at large 
scale. One open question is whether there is a canonical Hopf algebra, like in Connes-
Moscovici, describing the invariance under diffeomorphisms of the transverse structure. 
This topics is now handled by John Pearson, a graduate student from Georgia Tech, 
who started in October 2004. He has now a general understanding of the Dirac operator 
on a metric Cantor set. With each metric Cantor set X, a canonical tree graph can be 
associated whose boundary is homeomorphic to X. This tree graph picture is illuminating 
in connection with the construction of the Dirac operator, because the representation used 
for building a spectral triple uses the £ 2 -space of the tree. However, John Pearson would 
like to prove a converse, namely to reconstruct the metric from the tree. Partial results 
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can be found in the literature but so far the reconstruction is not complete. 

1.4 Homotopy of the Hull: 

Collaboration: I. Palmer Graduate School, Math., Georgia Tech. 

In a '00 paper, Gambaudo and Martens [11] have considered a Z-action on a Cantor set 
and proposed to see the Hull as the inverse limit of graphs, which can be seen as the one-
dimensional analog of branched oriented flat Riemannian manifolds used to describe the 
Hull of a tiling. In their study, they have shown that the homology gives a classification 
of invariant probability measures, a result that has been generalized to the tiling case 
(Section 1.1). However, they have also shown that the homotopy gives precise information 
upon the entropy of the dynamical system. In the tiling theory, this aspect has not been 
investigated yet. The goal of Ian Palmer Ph. D. Thesis is to fill this gap. 

Results obtained: The first step being investigated is the construction of the covering 
space of a branched oriented flat Riemannian manifold B of the type used to describe 
the Hull of a tiling. Such a covering space is a branched manifold obtained by picking a 
prototile, gluing on its side a copy of all the prototiles that are allowed to be glued by the 
local matching rules, without producing any loop or closed surface, then repeating the 
operation on each free side of the new tiles. Such a construction is the multidimensional 
analog of the construction of a tree graph. The result will be called a garland here. It 
is a branched oriented flat Riemanian manifold which is simply connected, and locally 
compact, but not compact. If G denotes such a garland, a smooth sheet is an unbranched 
submanifold, obtained by picking a tile of G, then on each of the maximal face, picking 
one tile among the possible branches, and keep going forever to get a non compact, locally 
compact, simply connected, flat Riemannian manifold without boundary. However, as in 
the case of Riemann surfaces of a multivalued holomorphic function, such a manifold can 
have helicoidal points (a notion introduced by R. Williams). A smooth sheet is a tiling if 
and only if tit has no helicoidal points. The set of smooth sheets can be given a topology 
like the set of infinite paths of a tree graph. Namely two smooth sheet are close enough 
if they coincide on a large finite patch. Such a topology produces a Cantor set called the 
boundary of G and denoted by aG. By adding the longitudinal structure of a sheet into 
the game, one gets a lamination £(G) with leaves given by the smooth sheets of G and 
transversal aG. Clearly any closed submanifold C of B can be lifted to G in many ways 
and G helps investigating the homotopy class of C. The first result obtained so far is that 
if (Bn ) nEN  is a family of BOF manifolds the inverse limit of which defines the Hull of a 
tiling, then the corresponding garlands (Gn)72EN  satisfy Gn+1 C GT, so that ,e(Gri+1 ) can 
be seen also as a subset of .£(G,2 ) and the Hull of the original tiling can be recovered as 
the intersection of the ,C(G„)'s. 
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1.5 The Mott Variable Range Hopping: 

Collaboration: Peter Hislop, U. Kentucky 

Article J. Bellissard, P. Hislop, "Smoothness of correlations in the Anderson model at 
strong disorder", Submitted to Ann. H. Poincare, (8 Oct 2005), available on 
http://www.math.gatech.edurjeanbel/publijb.html 

Result: In the paper submitted to Annales Henri Poincare in the Fall 2005, the PI and 
Peter Hislop have shown that the the current-current correlation measure dm(E, E') is 
analytic away from the diagonal A = {(E,E'); E = E'}. The same is true for higher 
order current-current correlations functions. ❑ 

In 1968 Sir N. Mott [15] predicted that in strongly disordered systems, the low temperature 
conductivity should decay to zero as 

o- 	e 
_ (TA,. /T) 1/(d+1) 	

as T 0 , 

where TM , the Mott temperature, is a constant depending upon the characteristic of the 
electron gas near the Fermi level: density of states and localization length. This behavior 
has been observed in many insulating materials in which the Anderson localization is 
realized. It has been updated in the eighties by Efros & Shklovskii [19] if the Coulomb 
interaction between electrons is unscreened, in which case the exponent in 1/2 instead of 
1/(d + 1). Physicists believe that this Mott transport is responsible for the accuracy of 
the Hall plateaux in the Quantum Hall effect [16, 17]. The theoretical description of such 
result is so difficult that it takes a fair part of the book by Efros & Shklovskii [19] on 
semiconductors to be treated. 

In a series of paper with D. Spehner [21, 22, 2] the PI has built models describing this 
phenomenon. More recently, Faggionato, Schulz-Baldes, Spehner [8], have shown that 
Mott's formula is a lower bound for the diffusion of a semiclassical stochastic model 
built on Mott's hypothesis (called the FSBS model below). However, such model has 
not been validated from first principle yet. Electrons are quantized degrees of freedom 
and their dynamics is given by a SchrOdinger equation. In disordered solids, such as the 
conduction electrons in semiconductor at very low temperature, it is generally accepted 
that the Anderson model is a good approximation to describe this dynamics. To assess 
the validity of the axioms leading to the FSBS model, the PI, in collaboration with P. 
Hislop, has conjectured that the estimate (1) below should be true and is necessary to 
lead to Mott result. More precisely, let H be the Anderson Hamiltonian on Z d . namely 
H = A+V where A is the discrete Laplacean, while V = (V(x)) xEz d is a potential given by 
identically distributed independent real random variables, with covariance (V(x) 2 ) = W2 . 

If dm(E, E') represents the current-current correlation function of this model, if I is a 
small interval around EF (the Fermi level), then there is W, large enough so that for 
W > 147, there is c > 0 for which 
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ix/ dm(E, E') exp (c/ E — E' 1/(d-F1) )  < 00  . 	(conjecture) 

	
(1) 

As a consequence of this estimate, the Mott argument should lead to a rigorous proof 
of the Mott prediction. However, the PI and Hislop not only have failed to prove (1) 
but have strong evidence that instead dm(E, E') vanishes like 1E — E'Fle OE — E'1) for 
some a related to the dimension d. A recent result by Klein, Lenoble, and Muller [12] 
goes into the same direction. 

This raises the question of the validity of Anderson's model in accounting for Mott's 
prediction. Considering that there is an overwhelming set of experimental evidences 
validating Mott prediction, especially in semiconductors at low temperature but also in 
many insulators, the problem is to understand what mechanisms and what microscopic 
models are leading to it. The PI is currently working at it with P. Hislop 

1.6 Kubo's formula: 

Collaboration: 	D. Spehner (Essen, Germany), R. Rebolledo (Santiago, Chile), M. 
Loss, E. Carlen, (School of Mathematics, Georgia Tech) 
The PI is continuing a longstanding program in dealing with the proof of Kubo's formula. 
This program was initiated in [5] in order to estimate the accuracy of the Quantum Hall 
Effect from first principle. Since then, the PI has produced several papers in collaboration 
with his former students, H. Schulz-Baldes, D. Spehner, on the one hand and more recently 
R. Rebolledo (see the review paper [2]). 

Results obtained since 2004: During a visit at Santiago in March 2004, the PI and 
R. Rebolledo have developped the formalism needed to treat the dissipation dynamics for 
the electron gas (N-body problem) in an aperiodic solid. They proved that the generator 
of the dynamic £ (Lindblad Operator) has an infinite volume limit and defines a Markov 
semigroup preserving the C*-algebra of observable (and not only the von Neumann alge-
bra). Moreover the PI has obtained the Green-Kubo formula for all transport coefficients, 
including the thermal conductivity and the thermopower [4]. This formula requires the 
existence of an inverse for E. In trying to deal with this problem, the PI has recently 
(Fall 2004) found an amazing equivalence with a class of XY-model for quantum spins. 
This part is in preparation. 

Presently the PI is writing a review paper on this subject. He is also extending the 
information estimates found by E. Carlen and Lieb [7] in the case of free fermions at 
infinite temperature, to the case of finite temperature in order to estimate the rate of 
convergence to equilibrium. Since this is an estimate on e', there is a chance that, 
through a Laplace transform, tan estimate be available soon on the inverse 

—.C -1  =- i dt et.  
o 
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1.7 Completely Positive Maps: 

Collaboration: William Green, School of Math., Georgia Tech. 

Will writing the paper on Kubo's formula (see Section 1.6) the PI came across the problem 
of characterizing the Markov semigroups in C*-algebras. For the C*-algebraof bounded 
operators on a Hilbert space, this problem has been solved by Lindblad [14] using the 
Stinespring [23] theorem and a theorem of Kraus [13] on completely positive maps. The 
Lindblad theorem is the noncommutative analog of the Levy-Khintchin theorem for sta-
tionary stochastic processes (the so-called Levy processes). Amazingly, Such a result has 
never been extended to other cases of C*-algebras. Some extension to hyperfinite factors 
do exist, but it is likely that for non hyperfinite ones, topological obstructions, like rigid-
ity, do exists. In collaboration with W. Green, form Georgia Tech, the PI has taken the 
task to consider the case of Markov semigroups on an UHF algebra and to see whether 
there is an extension of Lindbald's theorem. It seems that using a description of such 
algebras in terms of groupoid C*-algebras a generalization of Lindblad's theorem, using 
the ideas used in the proof of the Levy-Khintchin theorem, can be obtained. 

2 Previous topics: 

2.1 Phonons in Aperiodic Solids: 

Collaboration: J. Savinien, Graduate School, Math., Georgia Tech. 

A new project started in May 2003 with a Ph D student, Jean SAVINIEN, at Georgia Tech: 
Theory of phonons in aperiodic solids. During the Spring 2004 semester this student is 
paid through the present NSF program. 

This project has been stopped for a while, due to difficulties that has not been overcome 
yet. 

Phonons are acoustic waves in solids due to vibrations of atoms about their equilibrium 
position. These waves are quantized and their frequencies constitute the "phonon spec-
trum" and are given by the spectrum of an operator H that belongs to the C*-algebra of 
the Noncommutative Brillouin zone (see Reminder above). The corresponding Density of 
Vibrational States (DOVS) is obtained as the spectral measure with respect to a given 
extremal trace on the NCBZ (or equivalently to an invariant ergodic probability measure 
on the Hull). The first step in this program consists in controlling the low frequency 
limit: in this limit, the phonons see only the large scale features of the solid. They behave 
like solutions of the wave equation with a sound velocity depending upon the polariza-
tion. If the solid is macroscopically isotropic and homogeneous, the sound velocities of all 
transverse modes are identical, while the longitudinal mode may have a different velocity. 
These two velocities can be computed from the invariant probability measure and the 
explicit form of H. 

7 



Results: In 2003-2004, an homogeneisation technique has been used to get an estimate on 
the selfadjoint operator giving the distribution of vibration modes (the 1-phonon Hamil-
tonian) in the harmonic approximation. In particular the low frequency limit produces a 
dispersion relation with a sound velocity that can be computed from the microscopic data 
(average spring constants). During the last ten months in 2004-2005, Jean Savinien has 
extended this work to the case of an electron in the effective mass approximation (band 
edges). 

Jean Savinien and the PI are working at using these estimates to get the diffusion exponent 
in this latter limit. If r(t) represents the (average) distance spent by the electron within 
time t then r(t) N ti3  where 0 is the diffusion exponent. It is expected that, whenever the 
effective mass approximation applies, then 0 1 (ballistic motion). There are still some 
technical difficulties that have to be overcome in order to get a complete proof. 

2.2 The Jacobi matrix of a Julia set: 

Collaboration: 	J. Geronimo, School Mathematics, Georgia Tech 4 P. Yuditskii, 
Kharkov, Ukrain 
Reference: Bellissard, J.; Geronimo, J.; Volberg, A.; Yuditskii, P. "Are they limit 
periodic?" Complex analysis and dynamical systems II, 43-53, Contemp. Math., 382, 
Amer. Math. Soc., Providence, RI, (2005). 

History: this problem was initiated in 1982 by the PI and became the source of a long-
standing collaboration with J. Geronimo (Georgia Tech) since 1986. Recently, P. Yuditskii 
(Kharkov) joined this group after his contribution to this problem using the Ruelle ther-
modynamical formalism [20]. Since may 2003, the PI together with J. Geronimo and P. 
Yuditskii have revised this problem after some progress made by P. Yuditskii. 

2.3 Magnetoresistance of Graphite Monolayer: 

Collaboration: C. Berger, W. de Heer, School of Physics, Georgia Tech 
Proceedings APS March Meeting 2004: Evidence for 2D electron gas behavior in 
ultrathin epitaxial graphite on a SiC substrate [6] 

The group led by Walter de Heer in the School of Physics, Georgia Tech, has been involved 
in studying carbon nanotubes for several years so far. A recent move lead this group 
toward studying a flat version of these nanotubes: monolyaers of carbon graphite. It 
is technologically possible to produce such monolayers on surface of a Silicon-Carbide 
clean sample, by usual chemical treatments. While the Si-C substrate is an insulator 
with wide gap, the surface monolayer behaves like a semimetal. C. Berger has performed 
several measurements of the magnetoresistance in high magnetic field (larger than 1T), at 
relatively low temperature (down to few K). The finding is surprising: there is a gigantic 
variation of the magnetoresistance (three orders of magnitude while the magnetic field 
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varies from b = 0 to B ti 1T !). I have proposed them a possible mechanism for explaining 
their result that is described below. A preliminary announcement of this result has been 
posted for a poster session at the APS March meeting in March 2004 [6]. 

Building these monolayers has been actually more difficult than expected. In 2004, the 
group has spent all his time to improve the surface techniques in order to get flat monolayer 
without defects. Then, in the Fall, the unexpected publication by another group, increased 
the pressure to get fast more results, in particular in proving that transistor can be 
designed. 

Since this last part of the work is more material science, the PI has not been able to 
collaborate on this issue. However, since early January 2005, Walt de Heer and his group 
have resumed the measurement of the magneto resistance and the collaboration should 
resume as well. 
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NSF Final report, July 2007 
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The PI has continued his long standing program on the Theory of Aperiodic Solid. 

Reminder: an aperiodic solid can be described as follows: let C Rd be the discrete 
set of equilibrium positions of its atoms in the real space in which the solid is setting. 
The Hull of r is obtained as the closure of the family IL + a; a e Rd} of translated of 
the solid. The topology used here is the following: a subsequence of discrete subsets 
converges if and only if their intersections with any bounded open set of R d  converges 
for the Hausdorff distance. If the initial set of atoms is uniformly discrete, the Hull is a 
compact space c2, endowed with an action of R d  by homeomorphisms. Each point in the 
Hull is itself a discrete subset of R d . This dynamical system has a canonical transversal 
made of points such that the corresponding discrete subset contains the origin in R d . This 
transversal is called the atomic surface by physicist studying quasicrystals. Such a Hull 
can be described through various points of view: as a dynamical system as previously, as a 
groupoid (of the dynamical system or of its transversal), as a tiling space, as a lamination 
(or foliated space). The crossed product C*-algebra C(5 -1) >a Rd  can be interpreted as the 
space of continuous functions on a noncommutative manifold called the Noncommutative 
Brillouin Zone (NCBZ) [3]. Any invariant measure on the Hull gives rise to a trace on 
the NCBZ and vice-versa, and the trace is positive if and only if the invariant measure is 
positive. 

PhD. students: During the period 2003-2007, the PI has advised four PhD students, 
Jean Savinien, John Pearson, Ian Palmer and Michael Burkhart. Jean Savinien just 
submitted a paper in May 2007 [12], John Pearson is about to finish the writing of 
his first paper [13] hopefully before the end of August 2007. Both should defend their 
PhD Thesis in 2008. The other two start having preliminary results. The four of them 
have been occasionally supported by the present grant as R.A.. The four of them have 
contributed to the present program of research. 
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1 The Hull of a Repetitive Finite Type Tiling: 

Collaboration: J.-M. Gambaudo, Math, Dijon, France R. Benedetti, Math., Pisa, 
Italy. 
Article: Spaces of Tilings, Finite Telescopic Approximations and Gap-Labeling. [5] 

This paper has been accepted for Publication in Communication in Mathematical Physics 
in 2003. It took until April 2005 to finish the revision because of a lot of details and 
technicalities that needed to be fixed. 

If the set of atoms is a repetitive Delone set of finite type, the present paper shows that it 
is associated with a repetitive tiling satisfying the finite pattern condition (the number of 
pattern of each size is finite modulo translation), the Hull can be constructed as an inverse 
limit of Branched Oriented Flat Riemannian manifolds (BOF). This construction allows 
to compute the longitudinal cohomology, the K-theory and the longitudinal homology 
of the corresponding NCBZ. It is proved that the set of invariant measures is given by 
the homology group in degree d. Criterion for unique ergodicity are given. This work is 
an extension of the result by Anderson and Putnam [1] on substitution tilings, and of a 
previous work by Gambaudo and Martens [20] to the case of tilings which are repetitive 
and with finite local complexity. 

2 K-theory of the Hull and Box Decomposition: 

Collaboration: J. Savinien, Graduate School, Math., Georgia Tech. 

In 2005, J. Savinien has switched from continuing his study on phonons (see Section 5.3 
below) to the problem of understanding the computation of the group of K-theory of the 
Hull of a repetitive finite type tiling. In an important '99 paper, Forrest and Hunton 
[18] have proved that the K-group of the C*-algebra of a Z d-action on a Cantor set X is 
isomorphic to the group cohomology of Z d  with values in the K-group of X, namely the 
space C(X, Z) of continuous function on X with integer values. A claim made in [18] that 
these cohomology groups are torsion free was recently corrected and computation of such 
groups shows indeed that torsion is actually present in various quasicrystal on dimension 
3 [19]. In principle the result of Forrest and Hunton also applies to all repetitive finite 
type tilings thanks to a theorem by Sadun and Williams [29] asserting that the Hull is 
homeomorphic to a bundle over a torus with fibers given by a Cantor set. However, 
this homeomorphism is not a conjugacy for the R d  action on the Hull. Moreover, the 
theorem of Forrest and Hunton is proved through a series of general arguments making 
the isomorphism quite implicit. Jean Savinien has taken the task of looking for a different 
point of view to describe this group. 

In the case of a Z d-action on a Cantor set X, the Hull can be constructed as a mapping 
torus of the of X by this action. More generally, let A be a C*-algebra endowed with a 
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Zd  action a : Zd H AutA. The Pimsner complex is defined as 

K.(A) AZ d  dd  K.(A) AZ d  , 	dp 	(ai. — 1) eiA 
i=i 

where {e h 	, ed } is the canonical basis of Zd, a, = a e, is the restriction of a to the i-th 
component of Z d , whereas xA is the exterior multiplication by x E Z'. Then in [12] the 
following result is proved as a preparation for the rest 

Theorem 1 Let A be a C*-algebra endowed with a Zd action a by *-automorphisms. 
Then, there is a spectral sequence converging to the K-theory of A Z d  

.02'8 Kr+s+d (A X a  Z d) 

with page-2 isomorphic to the cohomology of the Pimsner complex. 

It is worth noticing though, that such result is a special case of the Kasparov spectral 
sequence [21]. In the proof of this theorem, the crossed product A x Zd  is replaced by the 
mapping torus crossed-product. Namely 1 LA is the C*-algebra of continuous functions 
f : [0, 1]d  A such that, if x E [0, 1] d  and a E Zd  is such that x + a E [0,1] d , then 
f (x + a) = eva (f (x)). Here the hypercube [0, 1] d  can be replaced by any fundamental 
domain for the action of Zd in Rd . The latter plays the role of the universal cover of the 
classifying space of Zd . So that the hypercube could be replaced by the classifying space, 
which is homeomorphic to the d-torus ¶ d . Then, a general result in C*-algebra-theory 
shows that A x Zd  is Morita equivalent to M,A x Rd  [28]. In particular they have the 
same K-theory. A theorem by Connes [15], called the Thom-Connes isomorphism, shows 
that the K-theory of .11/LA >1 R d  is the same as the K-theory of ge,A with a shift by d 
(modulo 2) in the degree. 

In the tiling space construction the results given in the previous Section 1 shows that the 
mapping torus construction can be replaced by the branched manifold B o  built by gluing 
together the elementary prototiles (equivalence classes of tiles modulo translations) along 
their faces, according to whether some of their representatives in the tiling are glued 
together this way. The algebra A is then replaced by C(s), the space of continuous 
functions on the transversal. Then the Pimsner complex is replaced by the following: let 
the tiles in the tiling be given a compatible A-complex decomposition. Then each simplex 
of this decomposition is punctured so that the set of punctures is a Delone set. Let EA 

be the corresponding transversal. This give the tiling the structure of a singular chain 
complex. If a is a k-cell and T is a k — 1 cell, both given with an orientation, let [o-  : 
be the incidence number (in { —1, 0, 1}) of the pair. Then the translation x o.,, from the 
puncture of T to the puncture of a is well defined and depends only upon the corresponding 
prototile. This translation acts on EA as well. The operator Oa,, = x,Tx—x.,-, where 
X, is the characteristic function, on EA of the acceptance zone of a, represents such a 
translation. Then the Pimsner complex is defined as 
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c(u ,„ z) '114 c(E,,,z) , 	d p = E[0-  : r]O Cr,T • 

Cf ,T 

As a result, J. Savinien and the PI have obtained the following theorem 

Theorem 2 There is a spectral sequence that converges to the K -theory of the C* -algebra 
of the hull C2 

E? 	Kr-Hs+d(C (CI) xi Rd) , 

and whose page-2 is given by the cohomology of the Pimsner complex 

W,' (Bo; Ks (FL A)) • 

3 Transverse Dirac Operator: 

Collaboration: J. Pearson, Graduate School, Math., Georgia Tech. 

This part of the project is to show that the singular foliated space defined by the Hull can 
be treated in a way similar to the Connes-Moscovici approach to foliated smooth manifolds 
[16]. The main problem comes from the fact that, at least for tilings with finite local 
complexity, the transversal is completely disconnected, so that the tools of differential 
Geometry used in [16] cannot be used anymore. However, a differential structure can 
always be defined on such a space using the Connes notion of spectral triple. A spectral 
triple (A, D) is a family where A is dense *-subalgebra of a C*-algebra invariant by 
holomorphic functional calculus, 7-t is a Hilbert space on which A is represented and D, 
called the Dirac operator, is a selfadjoint operator acting on with compact resolvent, 
such that the commutator [D, A] is bounded for A E A. Such a triple is even whenever, 
in addition, there is a bounded operator F acting on N, called grading, such that (i) 
F = F* = F-1 , (ii) [F, A] = 0 for A E A and (iii) FD DF = 0. Whenever A is abelian, 
namely when it is a dense *-subalgebra of Co (K) where K is a locally compact space, the 
following formula 

p(x , y) = sup{ If (x) - f (y)1 ; f E A II [D, fill 5_ 1 } 

defines a distance on K, that will be called the Connes metric. Then a differential 
structure can be defined on A through 

dA = 	, 	AEA  . 

As a warm up towards such a program, the PI has proposed John Pearson to consider 
first the case of a metric Cantor set. In [13], J. Pearson and the PI have obtained the 
main part of the results. An abstract Cantor set is a completely disconnected compact 
space with no isolated point. Up to homeomorphism, such a space is unique and can 
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be described as the triadic Cantor set. However, if a metric is added, there are many 
non isometric Cantor sets. So let (C, d) be a metric Cantor set. Then Michon [25] has 
proposed to consider the following family of equivalence relation: for c > 0 two points 
x, y in C are 6-connected whenever there is a finite family x o  = x,x i ,• • • = y in C 
such that d(x k1 , x k ) < c for 1 < k < n. This relation is clearly an equivalence. The 
6-equivalence classes are called 6-connected components. As c decreases, there are values 

Eo > Ei > > cm  > decreasing to zero as m Do such that the equivalence 
relation is constant if 6 71 _ 1  > E < cn  and changes otherwise. Then the metric d will be 
called saturated if given x, y E C, the distance d(x , y) is equal to the diameter of the 
6-connected component of x for the smallest possible E such that x and y are c-connected. 
The previous decomposition provided C with a tree graph, called the Michon tree as 
follows: the vertices at level n are the connected components for the c a-equivalence. Let 
Vn  be the set of such vertices. Then Vo  as only one point, namely C itself. It will be called 
the root of the tree. A vertex v E Vn  is linked to v' E Vn+1  by and edge, if v' c v. The 
Michon tree Tw , d) is such that any vertex v has one grandchild having at least two sons. 
Then the limit set aT(C,d) is defined as the set of infinite paths starting from the root and 
there is a natural topology on it, defined by the clopen sets [v] namely the set of infinite 
path going through v. Then it is easy to check that C is homeomorphic to aTc,d). The 
first result is 

Theorem 3 (Classifications of saturated ultrametrics) Let T be a rooted tree such 
that every vertex has a nonzero but finite number of children. Let V(T) denotes its vertex 
set. Then there is a one-to-one correspondence between saturated ultrametrics on aT 
for which the metric topology agrees with the boundary topology and the set of functions 
f : V (T) —> R+ such that for v, v' E V(T) with v v' the following axioms are satisfied: 
(1) f (v) > f (e) 
(2) If [v] 	[v'] then f (v) = f(v'). 
(3) If [v] has more than one point then f (v) > 0. 

(4) For vovi • • • E aT,limn_oo  f (v n) = 0. 

Corollary 1 Let (C, d) be a metric Cantor set with Michon's tree T = Tc ,d). If d is a 
saturated ultrametric, then (C, d), is isometrically isomorphic to aT where the distance 
on T is associated with the function f on V(T) defined by f (v) = diamd [v]. 

Thanks to Michon's result and to Theorem 3, it is then sufficient to start from a rooted 
tree endowed with a saturated ultrametric d. Then a spectral triple is defined as follows: 
A = c,,,(aT) is the space of Lipshitz continuous functions on aT = (V (T)) ® C2 , 
and the Dirac operator is defined by 

1  
 D  [b2 	

I- 	'01 
1  1 (v)  = diam[v] [ 1 0

1 
 [ 	(v)' 

v E V(T) ,71), E ,e2 (V(T)) . 



A grading operator can be defined, with the same notations, by 

[ y 	r 	'01 
o 	1 	[ '02 ] (V) ( 2 

The main difficulty comes from the representation of A = C,,p (DT) . For indeed there are 
many possible representations. To describe them, a choice is a function 'r : v E V(T) 
(n)-2 such that r(v) E [v] x [v] and that, if T(v) = (xv, yv) then  d(xv, Yv) = diam[v]. 
Given such a choice the representation 71 -, of C,,,„,(aT) is defined, for f E CL,p(aT), v E V(T) 
and /j E i2 (V(T)), by 

(f  ) [ :,21  (v  ) [ f (ox ) 	 f(Oyv)  [ ',10/)21((v,v ))  

It is elementary to check that each such representation is faithful. However they are all 
needed for recovering the metric, as shown by the following result [13] 

Theorem 4 The Connes metric on aT defined by 

p(x y) = suPflf (x) — f (y)I ; f G A , suP 11[D 7r ,r( f )]11 < 1} 

coincides with the original metric d on T. 

The last result concerns the (-function of D, defined by 

((s) = Tr (1/3 1 -5 ) 

Since (9T is a metric space, the notion of (upper) box dimension is well defined (see [17] 
for the case of Cantor sets embedded in R d). If No  is the smallest number of clopen sets 
of diameter at most 6 needed to cover aT, then 

dilEB(aT) = lim sup In 
N5 

610 — in 6 

Theorem 5 If T is a rooted tree such that each vertex as at most M children, for some 
M > 2. Let d is a saturated ultrametric on aT and let D be the Dirac operator associated 
with d. Then C(s) converges for Rs > s o  where so  = dimB (aT) and diverges at s = so . 

4 Coherent transport in disordered media: 

Collaboration: Peter Hislop, U. Kentucky, Minter Stolz, U. Alabama Birmingham 
The coherent transport of electrons in an aperiodic solid concerns the dissipationless 
transport. In a series of previous work by the PI and its collaborators, published in the 
nineties, this transport is characterized by a diffusion exponent l3 (see [4] for a review), 
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defined by L(t) ti  t.3  if L(t) represents the distance covered by the electron during time t. 
The precise definition of L(t) can be involved but has been thoroughly studied previously. 
One of the main consequence of such a qualitative analysis is that the conductivity satisfies 
an anomalous Drude formula namely 

20-1 
N Tref 

where Tre , denotes the typical inelastic relaxation time of the electron. As a consequence, 
since the relaxation times diverges at zero temperature, the systems behaves like a con-
ductor if /3 > 1/2 and like an insulator if /3 < 1/2. It has been advocated that the strange 
behavior of the conductivity in quasicrystals is likely to be explained by a diffusion expo-
nent closed to 1/3. The case = 1/2 is likely to describe the regime of weak localization 
in disordered systems whenever the level statistic in the energy spectrum looks like the 
one for random matrices. 

In any case, it has been shown (see [4] for a review) that if H describes the one-electron 
(or one-hole) Hamiltonian and if X = (X 1 ,- , X d ) is the position operator then, the 
current operator is given by J = i[H, X] =- (Ji , • • • , Jd) and describes the coherent part 
of the current. The current-current correlation function is defined through the following 
formula: if f, g are continuous functions on the spectrum of H vanishing at infinity then 

TT  (Ji  f (H)Jjg(H)) 	f dm ii (E , E') f (E) g(E') • 	 (1) 
R2 

The symbol TT  represents the trace per unit volume that is usually defined whenever the 
electron moves in a solid described by a set of atomic position with Hull 12 and P represents 
a Probability measure on 1-2 which is translation invariant and ergodic. Then TT  defines a 
trace on the C*-algebra of the Hull C(12) >1 Rd. In most cases of interest, it is convenient to 
use the tight binding representation in which the electronic wave function lives on the set 
of atomic positions, a discrete subset of R d, in which case H belongs to the C*-algebra of 
the transversal E and IP is replaced by the probability measure induced on the transversal 
by IF. Therefore the left-hand side of eq. (1) is well defined for a large class of aperiodic 
solids. The classical Riesz theorem then implies the existence of the measure m i;  called 
the current-current correlation function. Not much is known about this measure apart 
that the matrix valued measure m = (m ij ) ii  is positive. It is usually unbounded unless 
the current J is bounded, which happens in the tight binding representation. However it 
can be shown (see [4]) that the diffusion exponent is given by 

f
dmii (E,  E') 

1112 E — E'1 2 ( 1-0') 1  

This suggests that the diffusion exponent is related to the behavior of the current current 
correlation function near the diagonal. For models leading to strong localization, the 
localization length £(E) at a given energy E is given by 

13 = inf{0 < < 1; 
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dmii  (E, E') 
dE £(E) 2  = 

xIll E — E'1 2  

In a recent work by Klein, Lenoble, and Muller [22], it is strongly suggested that dm(E, E') 
vanishes like 1E— E'1 2  ln' (1E — El) for some a related to the dimension d in such a case. 
In much the same way the n-point current correlation can be defined by 

7-P (12, fi(11),L,f2(11) • 41.(11)) =liz dm,(Ei, 	, En) f1(E1) • f n (E72 ) 
2 

In this case however it is unclear whether m i  is a positive measure. 

In front of this situation the PI has tried to convince the community of mathemati-
cal Physicists working in this direction to take the task of investigating the smoothness 
properties of the current-current correlation function. As a warm up he obtained, in col-
laboration with Peter Hislop, a partial result for the case of the Anderson model at strong 
disorder. The model is defined on f ( Z d ) as 

H = AA V 

where A is the discrete Laplacean defined by Oz/i(x) = Ev;iti„ =1  0(y) whereas V is 

the operator of multiplication Vii)(x) = VsiP(x) where the Vs 's are independent, identi-
cally distributed random variables such that E(v s ) = 0 and IE(V2 ) = W2  is the disorder 
parameter. In the paper [10] the following Theorem was proved 

Theorem 6 (see [10]) Assume that the common distribution of the V 's can be contin-
ued as a holomorphic function in a strip {z E C; Ca"z1 < r} and is integrable along any 
line Ili + is uniformly for < r . 

Then there is A o  > 0 such that for IN < Ao , the n-point current-current correlation 
functions are absolutely continuous measure with analytic density away from the diagonal. 

In 1996, Minami [26] proved that the level spacing distribution for the Anderson model at 
large disorder was given by a Poissonian statistics. The proof was based on an estimate 
that has surprised most experts in the field, in that it has been very difficult to extend 
it beyond the situation investigated by Minami. In particular, to these days nobody has 
succeeded to extend it to the case of an Anderson model on the continuum. 

During a series of discussions with Peter Hislop and Gunter Stolz, the PI found with them 
a new proof of this estimate [11], allowing to extend the result of Minami on Poissonian 
statistics to a much larger class of Hamiltonians. To explain this estimate, the Hamiltonian 
for which this estimate holds have the form H = Ho  + V where, as before, V is a random 
potential. But Ho  is simply a fixed selfadjoint bounded operator on £ ( Zd). Let A be a 
finite subset of the lattice Z d  and let PA be the projection onto the finite dimensional 
space £2 (A). Then HA = PAHPA. Let now A C A and let 
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1  
go (z) = Po 	Pp 

HA - Z 

Then 

Theorem 7 (see [11]) Let H = Ho  + V where Ho  is a bounded selfadjoint operator on 
f 2 (V) and V = (V,), Ezd is a random potential made of independent identically distributed 
random variable. If dp(V) be the common distribution of the V x 's, then dp is supposed to 
be absolutely continuous, namely dp(V) = p(V)dV with bounded density. 
If C...'sz > 0 and if ZS, is any subset of A having n points, the following inequality holds 

E (detpgA(z)l) < 7 '1 1 Pro 	 1A1 = n • 

As a consequence the following n-level Wegner estimate has been proved. Let J C R. Let 
EA (J) be the spectral projection of HA corresponding to eigenvalues in J 

Corollary 2 (see [11]) For any n E N, interval J C R and any cube A C Zd  

IED(Ti. EA (J) > n) < —71:1 11,0 11 71001J1 n 1Al n - 

Using these estimates the Minami argument showing that the level spacing distribution of 
the eigenvalues of H is Poissonian can be extend to Hamiltonian of the form H = Ho  + V, 
provided Ho  satisfies 

1(x1 1-1010 1 < ce -nlx- Y 1  

5 Other Topics 

During the period 2003-2007, the PI has worked on several other projects related to his 
proposal, namely the Theory of aperiodic solids. Here is an account of this activity, which 
did not give rise to published papers so far. 

5.1 Kubo's formula: 

Collaboration: 	D. Spehner (Essen, Germany), R. Rebolledo (Santiago, Chile), M. 
Loss, E. Carlen, (School of Mathematics, Georgia Tech) 
The PI is continuing a longstanding program in dealing with the proof of Kubo's formula. 
This program was initiated in [7] in order to estimate the accuracy of the Quantum Hall 
Effect from first principle. Since then, the PI has produced several papers in collaboration 
with his former students, H. Schulz-Baldes, D. Spehner, on the one hand and more recently 
R. Rebolledo (see the review paper [4]). 
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Results obtained since 2004: During a visit at Santiago in March 2004, the PI and 
R. Rebolledo have developped the formalism needed to treat the dissipation dynamics for 
the electron gas (N-body problem) in an aperiodic solid. They proved that the generator 
of the dynamic £ (Lindblad Operator) has an infinite volume limit and defines a Markov 
semigroup preserving the C*-algebra of observable (and not only the von Neumann alge-
bra). Moreover the PI has obtained the Green-Kubo formula for all transport coefficients, 
including the thermal conductivity and the thermopower [6]. This formula requires the 
existence of an inverse for Z. In trying to deal with this problem, the PI has recently 
(Fall 2004) found an amazing equivalence with a class of XY-model for quantum spins. 
This part is in preparation. 

Presently the PI intend to write a review paper on this subject. He also worked at 
extending the information estimates found by E. Carlen and Lieb [14] in the case of free 
fermions at infinite temperature, to the case of finite temperature in order to estimate 
the rate of convergence to equilibrium. Since this is an estimate on et 'c , there is a chance 
that, through a Laplace transform, an estimate be available soon on the inverse 

= J  dt et'e  

While working at the review paper on Kubo's formula the PI came across the problem 
of characterizing the Markov semigroups in C*-algebras. For the C*-algebraof bounded 
operators on a Hilbert space, this problem has been solved by Lindblad [24] using the 
Stinespring [32] theorem and a theorem of Kraus [23] on completely positive maps. The 
Lindblad theorem is the noncommutative analog of the Levy-Khintchin theorem for sta-
tionary stochastic processes (the so-called Levy processes). Amazingly, such a result has 
never been extended to other cases of C*-algebras. Some extensions to hyperfinite factors 
do exist, but it is likely that for non hyperfinite ones, topological obstructions, like rigid-
ity, do exist. The PI has taken the task to consider the case of Markov semigroups on an 
UHF algebra and to see whether there is an extension of Lindbald's theorem. It seems 
that using a description of such algebras in terms of groupoid C*-algebras a generalization 
of Lindblad's theorem, using the ideas used in the proof of the Levy-Khintchin theorem, 
can be obtained. In addition, he succeeded to get various example of Noncommutative 
Levy's processes for which a Levy-Khintchine formula can be proved. This work is still 
under progress. 

5.2 Groundstate of a Solid 

Collaboration: Ch.Radin U. Texas Austin 
The PI has started a program to understand better, from the point of view of Thermo-
dynamics, what are the characteristic properties of the zero temperature states for an 
assembly of neutral atoms, interacting through a two-body potential. In a collaboration 
with Charles Radin he has obtained in 2006 several results that have not been written yet. 
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The assumption on the potential are the following: V : x E Rd/{0} 1—> R will denote a 
continuous function with the following properties and will be called a two-body potential. 

(V1) V is rotation invariant, namely there is (I) : R + 	R such that V(x) = (D(Ix1). 

(V2) V is attractive at long distance and repulsive at short distance, namely, there is 
a > 0 such that is decreasing on (0, a) and increasing on (a, +oo). 

(V3) V has finite range, namely 
	

1V(x)1ddx < oo. 

(V4) V is strongly repulsive, namely lim o  I i x1 dV(x) = H-oo. 

(V5) V is stable, namely, there exists B > 0 such that that for any n E N,, and any 
family (x 1 , 	, x,i ) E (Rd)" then Ei<j  V(x, — xi ) > —nB. 

(V6) V is smooth, namely, away from the origin, V E Cd+1  and 1(1 — ZS.) (d+1)/2v1 is  

integrable. 

Under this set of assumption Ch. Radin and the PI have proved that the zero temperature 
limit of Gibbs measures exists and are concentrated on atomic configurations given by 
Delone sets. This work is still under progress. 

5.3 Phonons in Aperiodic Solids: 

Collaboration: J. Savinien, Graduate School, Math., Georgia Tech. 

This project was the initial program of research of Jean Savinien Ph. D. thesis (see Section 
2) which started in May 2003. This project has been stopped, due to difficulties that has 
not been overcome yet. Since then J. Savinien has changed his direction of and recently 
published a paper. The PI did not continue along these lines by lack of time. 

Phonons are acoustic waves in solids due to vibrations of atoms about their equilibrium 
position. These waves are quantized and their frequencies constitute the "phonon spec-
trum" and are given by the spectrum of an operator H that belongs to the C*-algebra of 
the Noncommutative Brillouin zone (see Reminder above). The corresponding Density of 
Vibrational States (DOVS) is obtained as the spectral measure with respect to a given 
extremal trace on the NCBZ (or equivalently to an invariant ergodic probability measure 
on the Hull). The first step in this program consists in controlling the low frequency 
limit: in this limit, the phonons see only the large scale features of the solid. They behave 
like solutions of the wave equation with a sound velocity depending upon the polariza-
tion. If the solid is macroscopically isotropic and homogeneous, the sound velocities of all 
transverse modes are identical, while the longitudinal mode may have a different velocity. 
These two velocities can be computed from the invariant probability measure and the 
explicit form of H. 
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Results: In 2003-2004, an homogeneisation technique has been used to get an estimate on 
the selfadjoint operator giving the distribution of vibration modes (the 1-phonon Hamil-
tonian) in the harmonic approximation. In particular the low frequency limit produces a 
dispersion relation with a sound velocity that can be computed from the microscopic data 
(average spring constants). During the last ten months in 2004-2005, Jean Savinien has 
extended this work to the case of an electron in the effective mass approximation (band 
edges). 

5.4 The Jacobi matrix of a Julia set: 

Collaboration: 	J. Geronimo, School Mathematics, Georgia Tech & P. Yuditskii, 
Kharkov, Ukrain 
Reference: [9] 

History : this problem was initiated in 1982 by the PI and became the source of a 
longstanding collaboration with J. Geronimo (Georgia Tech) since 1986. Recently, P. Yu-
ditskii (Kharkov) joined this group after his contribution to this problem using the Ruelle 
thermodynamical formalism [31]. Since may 2003, the PI together with J. Geronimo and 
P. Yuditskii have revised this problem after some progress made by P. Yuditskii. 

5.5 Magnetoresistance of graphene: 

Collaboration: C. Berger, W. de Heer, School of Physics, Georgia Tech 
Proceedings APS March Meeting 2004: Evidence for 2D electron gas behavior in 
ultrathin epitaxial graphite on a SIC substrate [8] 

The group led by Walter de Heer in the School of Physics, Georgia Tech, has been involved 
in studying carbon nanotubes for several years so far. A recent move lead this group 
toward studying a flat version of these nanotubes: monolyaers of carbon graphite. It 
is technologically possible to produce such monolayers on surface of a Silicon-Carbide 
clean sample, by usual chemical treatments. While the Si-C substrate is an insulator 
with wide gap, the surface monolayer behaves like a semimetal. C. Berger has performed 
several measurements of the magnetoresistance in high magnetic field (larger than 1T), at 
relatively low temperature (down to few K). The finding is surprising: there is a gigantic 
variation of the magnetoresistance (three orders of magnitude while the magnetic field 
varies from b = 0 to B 1T !). I have proposed them a possible mechanism for explaining 
their result that is described below. A preliminary announcement of this result has been 
posted for a poster session at the APS March meeting in March 2004 [8]. 

Since then the group of de Heer has refined the technics to produce high quality graphene. 
The properties of this material are just amazing. The electrons have a coherent length 
of the order of 10pm. This is because the graphene is such a hard material (harder than 
diamond) that the phonon frequencies are too high to couple to low energy electrons. Thus 
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the dissipation mechanisms are essentially negligible. In addition, the electrons behave 
like massless relativistic Majorana fermions, because the dispersion relation is linear in the 
module of the quasi momentum. Hence the effective Hamiltonian describing their kinetic 
energy is a 2D-Dirac operator. Due to the absence of dissipation, the magnetoresistance 
oscillations can be seen with an amazing amount of details, leading to difficulties in 
interpreting them. 

Since this last part of the work is more material science, the PI has not been able to 
collaborate on this issue after 2005. 

5.6 Entropy of Tilings and Homology of the Hull: 

Collaboration: I. Palmer Graduate School, Math., Georgia Tech. 

In a '00 paper, Gambaudo and Martens [20] have considered a Z-action on a Cantor set 
and proposed to see the Hull as the inverse limit of graphs, which can be seen as the one-
dimensional analog of branched oriented flat Riemannian manifolds used to describe the 
Hull of a tiling. In their study, they have shown that the homology gives a classification 
of invariant probability measures, a result that has been generalized to the tiling case 
(Section 1). However, they have also shown that the homotopy gives precise information 
upon the entropy of the dynamical system. In the tiling theory, this aspect has not been 
investigated yet. The goal of Ian Palmer Ph. D. Thesis is to fill this gap. 

Results obtained: The configurational entropy is defined as follows: let N(R) be the 
number of distinct patches of radius R. Then, if B(R) denotes a ball of radius R 

h, = lim sup 
In N(R) 
 , 

RIco VOIld (it) 

Thanks to a recent result of M. Baake et al. [2], the configurational entropy of a tiling 
coming from a repetitive Delone with finite local complexity coincides with the topological 
entropy of the Hull, seen as a dynamical system with its R d-action. 

I. Palmer and the PI have built a class of examples of tiling, coming from a repetitive 
Delone set with finite local complexity, having a positive configurational entropy. It is 
likely that among these examples, many are actually uniquely ergodic. 

Shub [30] conjectured that if M is a smooth compact manifold and f M M a smooth 
mapping, then the topological entropy h(f) of f satisfies 

h(f) 	ln sp(f.) 

	

where sp(f.) is the spectral radius of f. : H.(M; R) 	H.(M; R) in the homology space. 
This conjecture actually holds in various cases. For instance, if f is continuous and 
either M = Td  and or M = Td  x X where X is a compact orientable manifold which is 
R-homologically a sphere [27]. 
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The PI conjectures that some similar inequality should hold for repetitive tiling with 
finite local complexity. Using the construction of the Hull through an inverse limit 

= 	fn ) of branched oriented flat compact Riemannian manifolds, the following 
extension of the Shub conjecture should be correct 

he > lim sup 
vol (B ) 
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