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1 Outline of Research Accomplishments 

One of the central tenets of signal processing and data acquisition is the Shannon/Nyquist 
sampling theory: the number of samples needed to capture a signal is dictated by its 
bandwidth. Very recently, we have developed an alternative sampling or sensing theory 
which goes against this conventional wisdom. This theory now known as "Compressed 
Sensing" or "Compressive Sampling"—or CS for short—allows the faithful recovery of 
signals and images from what appear to be highly incomplete sets of data, i.e. from far fewer 
data bits than traditional methods use. 

While CS is a very recent discovery, there is little doubt that it has the potential for 
considerable impact in many fields of science and technology. For instance, CS may come 
to underlie procedures for sensing and compressing data simultaneously and much faster (or 
in other words, one could translate analog data into already compressed digital form). In 
practice, this means that one could obtain super-resolved signals from just a few sensors. It 
goes without saying that this situation raises tantalizing opportunities. In medical imaging, 
radiologists recognize that CS will enable new technologies such as high-speed magnetic 
resonance angiograms; in fuel cell research, CS will empower state of the art imaging 
technologies. In the area of analog-to-digital converter (ADC) technology, CS may come to 
enable revolutionary advances in data conversion, which is the subject of this program. 

During the whole length of the program, Caltech and Northrop Grumman have worked in 
close collaboration, and led a concerted and focused effort which demonstrates that 
Compressive Sampling can indeed help addressing enormous challenges in the acquisition 
and processing of ultra wideband radio frequency signals. By way of background, recall that 
the classical or standard Shannon theory asserts that to sample a signal with a given 
frequency bandwidth, one needs to digitize the signal at a sampling rate which is at least 
twice the bandwidth. This is extremely problematic since for ultra wideband signals, high 
speed ADC technology indicate that current capabilities fall well short of needs, and that 
hardware implementations of high precision Shannon-based conversion seem out of sight for 
decades to come. In short, conventional thinking seems to have hit a brick wall. In 
application areas, this has some significant implications. For instance, Shannon based 
analog-to-digital conversion limits the ability of systems to cope with evolving threats. 

Against this background, the focus of our concerted effort has been the design of two novel 
ADC architectures which exploit the assumed structure of the signal we wish to acquire in 
order to dramatically reduce the sampling rate and enable new approaches to data 
conversion. Hence, our work directly addresses the major challenges set forth in the Broad 
Agency Announcement. Namely, our work "enables practical data conversion approaches 
which more effectively apply system resources to find the useful information content 
embedded in a complex RF environment and directly measure it in a more concentrated 
form than is possible in currently." To cut a long story short, we designed and constructed 
hardware prototypes directly inspired by the theory of Compressive Sampling and 
demonstrated that in the laboratory, one could achieve the gains which were theoretically 
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anticipated. On top of this achievement, our experiments show that one can reliably acquire 
signals which are in principle far outside of the range of current data converters. That 
is, we believe that if our prototypes were to scale up as expected, then one would hold a new 
generation of ADCs with sensing capabilities way beyond the brick wall discussed earlier. 
To summarize, our effort is a first and extremely encouraging step in transforming an 
enormously promising mathematical theory into effective new hardware. 

1.1 Technical contributions 

The remainder of this report will provide a full account of our accomplishments, of our 
technical results and of the various metrics which we have used to assess performance. 
Before getting into a detailed exposition, however, it might be best to begin by giving a 
general overview. During this last year, our research has essentially focused on three fronts: 
1) the design and fabrication of a differential non-uniform architecture; 2) the design of a 
random pre-integration architecture; and 3) the study of how these architectures perform in 
real world applications, especially in the context of GSM-based communications. We briefly 
outline each of these. 

• A differential non-uniform sampling architecture. First, we have designed a non-
uniform analog-to-digital converter, simulated its expected performance, and 
constructed a prototype able to produce real data. In a nutshell, our non-uniform 
sampler (NUS) digitizes the signal at randomly sampled time points. In effect, these 
random or pseudo-random time points are obtained by jittering nominal (low-rate) 
sample points located on a regular lattice. The rationale behind this architecture is 
that the theory of Compressive Sampling asserts that this data acquisition strategy 
allows the reconstruction of wideband frequency signals with no information loss 
provided that the spectrum of the signal under study is sufficiently sparse. In the 
situation where the spectrum is only approximately sparse, one can reconstruct the 
full signal with very low distortion. 

There are of course tremendous benefits associated with a reduced sampling rate as 
this provides added circuit settling time. In addition, the longer time for S/H settling 
has the effect of reducing the noise level. Of concern, however, is whether all the 
circuit's nonidealities, such as thermal noise, sample jitter due to clock timing errors, 
pattern noise due to the use of a non-uniform clock, quantization feedback inter-
symbol, and amplifier nonlinearities cause serious problems for the reconstruction. 
To investigate all these effects, we have run a series of extensive simulation studies 
showing that all these nonidealities behave like additive Gaussian noise. Because we 
also developed noise aware reconstruction algorithms, our finding shows that with 
realistic error models, the quality of the reconstruction, e.g. the effective number of 
bits, smoothly degrades as the various effects get amplified. That is, the effect of all 
these errors is the same as adding noise with the same power. In truth, we did not 
expect such a remarkable performance prior to this study. 

Further, we also developed a prototype sampler able to digitize real analog signals 
and tested our methods and algorithms on real data. Of major concern is the fine 
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tuning of algorithms and extensions of our theories and methods to include 
continuous time signals (all of the existing CS theory is exclusively about finite 
discrete time signals). Especially, methods which extend as much as possible the 
dynamic range of signals we wish to detect and recover are of special interest. The 
upshot here is that early experiments with the prototype demonstrate performance for 
real world applications. For instance, our NUS architecture combined with our 
reconstruction algorithms reproduce very high frequency signals even though these 
signals are sampled at a rate which is way below the Nyquist rate. 

In conclusion, our experiments suggest that the potential impact of CS on ADC 
technology is real. For instance, one can assess these implications in the context of 
the so-called Walden's curve. Roughly speaking, Walden observed that the 
performance limits of current analog-to-digital converters have three regimes 
determined by whether the sampling rate is low, intermediate or high. In each region, 
there is a curve bounding the accuracy of an ADC (the number of effective bits) as a 
function of the sampling rate; the higher the rate, the fewer the number of effective 
bits. Note that there is a brick wall at about 1 GHz which says that it almost 
impossible to design an accurate ADC operating near that speed. The feasible region 
is the set of all ADCs obeying Walden's observation, those with a prescribed 
maximum number of effective bits for a given sampling rate. In this context and if 
one is interested in the acquisition of signals with a reasonably sparse frequency 
spectrum, then one can use CS to significantly extend the achievable region beyond 
the Walden curve. First, for moderate and intermediate sampling rates, one can 
obtain effective numbers of bits which were perhaps thought as unattainable. And, 
second one can extend the achievable region past the ambiguity curve (past the brick 
wall) and digitize ultra wideband signals with reasonable accuracy. 

• A random pre-integration architecture. We studied another CS architecture for 
digitizing analog signals which we dubbed RPI for random pre-integration. Whereas 
the NUS architecture is in some sense optimal for signals with a sparse frequency 
spectrum, the RPI architecture is adapted to a wide variety of sparsity domains. For 
instance, the RPI architecture is extremely well suited to digitize very high frequency 
pulses with all kinds of shapes. More broadly, the RPI architecture is nearly ideal for 
signals having a sparse signature in the time-frequency plane. 

Whereas it may not be possible to digitize the analog signal at a very high rate rate, it 
may be quite possible to change its polarity at a high rate. The idea of the RPI 
architecture is then to multiply the signal by a pseudo-random sequence of plus and 
minus ones, integrate the product over time windows, and digitize the integral at the 
end of each time interval. This is a parallel architecture and one has several of these 
random multiplier—integrator pairs running in parallel using distinct or event nearly 
independent pseudo-random sign sequences. In effect, the RPI architecture correlates 
the signal with a bank of sequences of +/-1, a sensing mechanism known in the 
theory of CS to enjoy remarkable properties in terms of the low number of 
measurements needed for a given "information rate." 
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Just as for the NUS architecture, a main concern has been whether our proposed 
architecture and reconstruction algorithms are robust vis a vis hardware 
imperfections. We then developed an error model and performed extensive 
simulation studies to assess the impact of the three main sources of uncertainty; 
namely, thermal noise, timing jitters (random and patterned) which has the effect of 
only approximately knowing the location of the sign switches, and cross-talks 
between channels. The conclusion of these studies is that all three sources of 
imperfection behave like thermal noise. That is to say, the recovery error closely 
tracks the measurement errors. In other words, one witnesses the same kind of robust 
performance as in the case of the NUS architecture. Again, this is extremely 
encouraging. 

We then demonstrated the potential of this compressive sampling implementation 
concept via tests and simulations. Of special interest here is the acquisition of sparse 
pulse trains which possibly overlap. Our simulations include a realistic integrator 
model together with a realistic error model (SPICE). Here, much work was needed 
on the methodological side to obtain the highest possible performance. In a nutshell, 
developments included the development of a general bank of waveforms in which 
the assumed sparsity is expressed, the development of improved and innovative 
processing algorithms, and the development of alternatives to 1 1 -minimization for 
enhanced accuracy. All of our latest results indicate a very significant potential 
impact, should this architecture ever be implemented. 

Despite the enormous promise of this architecture, we did not develop an RPI test 
bed because of budget constraints. 

• GSM detection & decoding from subNyquist sampling. To test the effectiveness of 
the NUS architecture in a real world application and in order to develop metrics 
comparing CS and conventional sampling, we considered a simulated 
communications scenario involving a GSM cellular system. The setup is roughly as 
follows: a 20MHz frequency band is divided into 100 channels of bandwidth 200kHz 
each. During a single time slot, some of these 100 channels may contain encoded 
message packets. The binary messages are encoded Gaussian minimum-shift keying 
(GMSK) and then modulated up to the appropriate carrier frequency in the GSM 
band. If in a single time slot, only a few channels contain encoded information, then 
the signal of interest has a sparse spectrum and falls well in the range of the 
capabilities of the NUS architecture. 

We conducted experiments both with simulated data and with NUS test bed data. In 
the experiments with simulated data, we constructed GSM spectra with varying 
numbers of active channels. Taking nonuniform samples of the composite signal, we 
were able both to estimate the unknown carrier frequencies positions of the active 
channels and furthermore to invert the measurement process on these channels alone. 
Ultimately we were able to recover the GSM pulses on the active channels using a 
total nonuniform sampling rate proportional only to the 200kHz bandwidth of each 
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active channel times the number of active channels. We also found these experiments 
to be robust to noise, with a predictable degradation as the noise level increases. 

In the experiments with NUS test bed data, we constructed spectra containing small 
numbers of active GSM channels (at known carrier frequencies). We again were able 
to recover these signals with low bit error rates using a total nonuniform sampling 
rate proportional only to the 200kHz bandwidth of each active channel times the 
number of active channels, and again we found these experiments to be robust to 
noise. We also conducted additional experiments where the spectrum contains strong 
interferers (TV signals) at known frequencies outside the GSM bandwidth. For these 
experiments we were able to again recover the GSM pulses (by inverting the 
measurement operator over both the GSM channels plus the TV bandwidth); in this 
case the requisite sampling rate was proportional to the unknown GSM bandwidth 
plus the TV spectrum bandwidth. 

In summary, we found in each of these experiments that the necessary nonuniform 
sampling rate derived from the information level (the bandwidth) of the unknown 
portions of the spectrum, rather than the total bandwidth of the spectrum, and that the 
recovery process was robust to noise. Each of these conforms to the general 
performance predicted in CS theory. 

Clearly, our research addresses many of the goals outlined in the BAA. First, we are 
enabling practical data conversions approaches which are far more effective than traditional 
converters. Second, we have demonstrated in the laboratory the power of an explicit sensing 
mechanism, namely, the NUS architecture. Based on this experience on the one hand and on 
the numerical studies of the RPI architecture on the other, we are confident that a hardware 
implementation of the RPI architecture will also eventually meet our expectations. We are of 
course fully aware of both the technical challenges and the considerable amount of work 
which lie ahead. And third, we have deployed our prototype and algorithms to deal with 
important real world situations with significant success. 

1.2 Looking ahead 

Our team has accumulated a significant amount of evidence pointing in a clear direction: 
future CS-based systems are very likely to work. Looking ahead, this provides a unique 
opportunity to change current approaches to data conversion. Energized by this success, 
Caltech and Northrop Grumman already have a plan to move forward. Just as our past work 
has had a lot of focus, our plans for the future are concentrated around very specific and 
concrete goals: 

• The design and hardware implementation of high-speed non-uniform sampling 
architectures operating in the GHz range; that is, able to acquire signals with 
frequency content up to 10 or 20 GHz. 
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• The hardware implementation of one (or several) random pre-integration 
architecture; the target is the acquisition of pulse-like signals at extremely high 
frequencies, again with content up to 10 or 20 GHz. 

Clearly, our aim is to make real systems which could change the way one views RF signal 
acquisition. Making this possible, however, would require assembling a team with a broader 
set of skills and expertise. For instance, one would have to address the problem of 
implementing hardware architectures capable of processing massive amounts of data and 
producing signals of full length in reasonable time. Our team calls COMS the process of 
taking as input undersampled data and returning a full length signal, a shorthand for convex 
optimization with minimal sampling. One can thus complement our list with a third 
additional goal: 

• The design and efficient hardware implementation of data processing architectures 
for COMS. 

In light of this last goal, it is clear that in addition to engineers with a specialty in ADCs, and 
applied mathematicians with a specialty in signal processing, large scale computations, and 
Compressive Sampling, we would also need expertise in large scale convex optimization 
and in programmable analog or digital signal processing. Now our team has already taken 
steps in this direction. 

First, Caltech has started a collaboration with the group led by Professor Stephen Boyd from 
Stanford University. Stephen Boyd is a world expert in optimization and together with 
Michael Grant, a member of his research team, we have started to exchange promising ideas 
for speeding up COMS. Second, Caltech has engaged Paul Hasler, a Professor at the 
Georgia Institute of Technology. Paul Hasler is working on relieving the enormous pressure 
put on DSP units. His work shows how the range of analog signal processing functions 
available results in many potential opportunities to incorporate these analog signal 
processing systems with digital signal processing systems for improved overall system 
performance. Professor Hasler believes that his "analog thinking" could contribute 
significantly to COMS. 

Both Professor Boyd and Professor Hasler are extremely interested in our project and have 
indicated that they would be eager to join our team, should we receive additional funding 
and move forward. 

2 Non-Uniform Sampling 

2.1 Numerical Modeling and Sensitivity Analysis 

The non-uniform sampling architecture is shown in Figure 1. We will examine the stability 
of COMS in the face of four hardware non-idealities: additive thermal noise, sample 
location jitter, quantization, and nonlinear gain. The goal is to show that despite their 
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Figure 1: Non-uniform sampling architecture model for sensitivity analysis 

2.1.1 Numerical Model 

We simulate the system for an input signal which is bandlimited and periodic with 
fundamental interval [0,T]. We can expand the input x(t) using the Fourier Series 

x(t)= 	( c0)e  j2 /ma TN 

.=0, 
where the maximum possible frequency is NI2T. The M sample locations are given by 
0 	< t2  < • < tm  T . We can interpolate to arbitrary sample locations by using 

x(tni )= Ib'(coe / 2  ff,ak /TN 

This makes the recovery problem finite dimensional: we want to reconstruct each of the N 
Fourier coefficients (most of which will be zero if the signal is spectrally sparse) from the M 
sample measurements. We will denote the mapping from a set of Fourier coefficients to the 
samples on F := 	„,} with the MxN "measurement matrix"A 

We recover the signal in two stages. Given the M vector of measurements y, the first stage 
consists of solving the linear program 

min /I d(co) subject to A (Ad— y) < E 
oo 

for an appropriate value of E (usually close to 2 o- , where o-  is the standard deviation of the 
noise in the measurements). Setting S2 to be the support of the solution to the above (the 
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frequencies with non-zero components), the second stage consists of a least-squares 
projection onto this discovered support: 
(in=  (AnT An)-IA.1T)), 
	d(a) = 0, for co f2. 

Here, the Mx I Q I matrix 	is formed by taking the columns from A whose indices are in 
Q. In situations where all of the frequency components are well above the noise floor, the 
first stage will almost always recover the correct support. This was the case in all the 
experiments here, as we are primarily interested in high SNR applications. 

2.1.2 Thermal Noise 

Thermal noise is modeled by adding additive white Gaussian noise to the measured samples. 
If the support is discovered correctly in the first state, the expected mean-square error in the 
recovery is 

El d—c = Trace(AnTAJ1)• 62 
2 

where c 2  is the noise variance. In previous publications, the authors have developed 
uncertainty principles which tell us in effect that 

Trace(41 	—
N 

S 
• 

where S is the number of non-zero frequency components: S =1 Q I. 

The extent to which the experiments match this theory is striking. Consider a particular case 
where N=1000, M=110, and S = 20. We will measure the signal-to-noise ratio in terms of 
effective number of bits: 

;

/ E signal 2\  1 
enob = —log 2 +1. 

2 	E11error1
2 
2 

For the signal shown in Figure 2, we choose the noise variance so that the enob for the 
Nyquist samples is 6 bits. In this case we expect the enob for the recovery to be 

1 	M \  
6+ 

2 
 —log 2  — 7.2 bits. 

S 
In our experiments, we observe a recovery error of about 7.1 bits (see Figure 3). This result 
is typical for the thermal noise results and the other sources of error; compressive sampling 
seems to come within 0.1 to 0.2 bits of the ideal enob. 

100 	 200 	 300 	 400 	 500 	 600 	 000 	 500 	 900 	 1000 100 	 200 	 300 	 400 	 500 	 500 	 700 	 900 	 900 	 1000 
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Figure 3: Predicted Effect of Thermal Noise on Recovered ENoB 

Figure 2: Time and Frequency Domain Plots of the Multi Tone Signal Used for Simulating 
Effects of H/W Model Error Sources 

Figure 3 shows the recovery error versus Nyquist enob for different values of M and a'. 

Notice that the recovery enob tracks the input enob on a straight line of slope 1. This is the 
exact same behavior we would observe if the recovery process simply consisted of inverting 
an orthogonal transform, even though the COMS recovery process is exceptionally 
nonlinear. 

2.1.3 Sample Location Jitter 

Unlike thermal noise, the perturbations caused by timing jitter are signal dependent. 
Nonetheless, our experiments show that to COMS, it is essentially AWGN of the same 
variance. 

To model random timing jitter, we set 
Yk = f (tk + (5k), k = 1,• • • , M 
where the sk  are independent Gaussian random variables with variance 62 . We can derive 
the expected noise power introduced by timing jitter. The noise power will of course 
depend on the frequency content of the signal being sampled. The Fourier transform of the 
error f (t k  + ok )— f (t) is then X(co) = F (co)(e"a  k —1). The variance for a single frequency 
component is then 

E[X(co)X *  (w)]  =F (co) 2  E[2 — e'sk — 	= 2P-' (co) 2 	Cc'''.  2 /2 ). 

When coo-  is small, 1— e- co2cr 2 /2 ^zi C.0262 /2 , and so 
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Thus if the input is a single complex sinusoid the expected measurement SNR will be 

SNR = 1 a) 20_2 

In general, the mean-square jitter error will be the sum of the EIX(co)1 2  above over all the 
frequency components in the signal. 

The question is now whether the jitter error looks any different to the COMS reconstruction 
than additive white Gaussian noise with the same SNR. The answer, as shown in 

Figure 4 below, is that it does not. Just as in the thermal noise experiments, the enob in the 
recovery from jittered samples tracks the measurement enob on a straight line, so we can 
conclude that the signal dependent nature of the jitter error does not cause any unforeseen 
problems. 

7 	8 	9 	10 	11 
	

12 
Noise Power in Nyquist ENOB 

Figure 4: Predicted Effect of Jitter on Recovered ENoB 

There are two other sources of timing jitter: patterned jitter which depends on the 
differences between the sampling locations, and aperture distortion, which is caused by 
interference from the signal itself In practice, we expect the errors caused by these two 
sources to be quite small. Regardless, in simulating both types of these types of jitter we 
observed that they behaved (as far as reconstruction error is concerned) just like the random 
jitter of comparable power described above. 

2.1.4 Quantization 
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As expected, the errors produced by quantization also did not cause any problems. An 
quantizer with step size q essentially behaved as a additive white Gaussian noise with per-

sample variance of q 2  /12. 

We verified that this statement stays true when the quantization error is patterned. We 
modeled this feedback error by having the simulated quantizer obey 

xq (tk ) = Quantize x(t k  ) + 	C  	 x g (tk_i) 
tk — t k-1 

where C is a constant which controls the magnitude of the feedback, and xq (tk ) is the 
quantized value of the signal at time tk . This modification to the model did not change 

things; the recovery error still behaved as it does in the face of AWGN with variance q2  /12. 

2.1.5 Nonlinearity Polynomial 

Unlike our other hardware nonidealities, the error caused by a polynomial gain does not look 
random at all. The reason for this is not hard to see, especially when the input signal is a 
trigonometric polynomial. If x(t) is the superposition of a few sinusoidal components, then 
the output of the polynomial gain element 
x (t)= x(t) + a2 x 2 (t) + a3 x 3 (t) 

will also be the superposition of a small number of sinusoidal components. Thus the 
residual is spectrally sparse, and COMS cannot distinguish it from the true signal. Worse, 
the error is concentrated on the support of the original signal; an example is shown in Figure 
5. 

0.25 

0.2 

D.15 

a 1 

D.05 

00 11111  
100 	200 	300 	400 	500 	600 	700 

Figure 5: Residual error caused by a polynomial gain is spectrally sparse 

We adjusted the gain coefficients a 2  and a3  = 6.67a2  so that the enob of the Nyquist samples 
of the distorted signal was 6, and recovered using COMS for different numbers of samples. 

1000 
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As we can see from the plot in Figure 6, adding samples does not help the recovery after a 
point, as the error itself has the same structure as the signal. 

150 	 200 	 250 
	

300 
	

350 
number of samples K 

Figure 6: Oversampling only helps up to a point with polynomial distortion 

Fortunately, we expect the size of this error to be very small in an actual hardware 
implementation. 

2.1.6 Windowing for "off the grid" signals 

[THIS WAS A FRAGMENT IN JUSTIN'S DOCUMENT... DO WE WANT TO SAY 
SOMETHING HERE?] 

2.2 Undersampled A/D and the Walden Curve 

From the simulation results in the previous section, we can begin to see the potential impact 
of compressive sampling on ADC technology. In this section, we discuss this potential 
impact in the context of the so-called "Walden Curve". 

In [Walden, 1999], Walden surveyed a collection of analog-to-digital converters, and 
concluded that their performance was limited by three main factors: 

• Thermal noise. The faster the ADC runs, the more the input signal is subject to 
various types of noise. The net effect of these various perturbations can be modeled 
as additive white Gaussian noise whose variance is proportional to the sampling 
frequency. Under standard operating conditions, thermal noise limits the effective 
number of bits by 

b  therm = 31.56 --
1

log, R ef  — —
1

log2  F samp , 

 

where Reff  is an "effective resistance" for the noise sources in the integrated circuit, 
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and F„„, is the sampling frequency at which the ADC is operating. Note that 

doubling the sample rate costs us 0.5 effective bits. 

• Aperture jitter. As discussed in the previous section, the locations at which the 
ADC takes samples are also subject to some uncertainty. If 6 j2, is the variance of 

the sample location uncertainty, aperture jitter limits the effective number of bits by 

bfit = —3.44 + log 2 
1 

— log 2  Fmax  

where Fmax  is the highest frequency (expressed in Hertz) in the input signal. The 
jitter impairment is signal dependent; doubling the maximum frequency in the input 
will cost us 1 effective bit. 

• Comparator Ambiguity. Ultimately, the maximum speed at which the ADC can 
run is determined by the process used to fabricate the integrated circuit. The limit 
on the effective number of bits brought on by the comparator ambiguity is given by 

b., = 0.453 •  fr 	1.1, 
Fsamp 

where f 1  is a parameter that characterizes how quickly the transistors in the circuit 
can react to small change in voltage. Note that b amb  differs dramatically in form 
from btherni  and b1111 ; the ambiguity error grows exponentially with the sampling 

frequency. 

To make things concrete, we will use R e  --= 50 ohms, o-  , fl= 20 femtoseconds, and fr  = 250 

GHz. The corresponding Walden curve (assuming that we are sampling at the Nyquist rate 

Fsamp = 2Finax ) is shown in Figure 7. The region bounded above by these three functions is 

the set of effective-number-of-bits (enob) / maximum-frequency-content performance 
points that we can achieve using standard Nyquist sampling. As an example (correspond to 
the yellow dot in Figure 7), we could easily expect around 10 effective bits from a state-of-
the-art ADC for a signal bandlimited to 5 GHz and sampled at 1 GHz. 
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Figure 7: Walden Curve 

If the signal is spectrally sparse, the number of effective bits can be boosted using some 
simple signal processing. Thermal and jitter noise can be mitigated by "pulling out" 
(selectively filtering) only the frequencies in which we are interested. If F„,„ is the total 
frequency content of the signal, this post-processing would yield a gain of 

1 
Sparsity gain = —log2 Finax  bits. 

2 	Font 

The revised Walden Curve for Fmax  I Fc„ni  = 100 (the signal only occupies 1% of the 
spectrum between DC and Fmax ) is shown in Figure 8; the thermal and jitter noise lines have 
moved up by 3.32 bits. 
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Figure 8: Revised Walden curve with shifted thermal and jitter noise lines 

Sparsity also allows us to extend the feasible region past the ambiguity curve by using 
compressive sampling. We have seen that in practice, a signal with S Fourier modes can be 
reconstructed from only M 5S of its N Nyquist samples (on an interval [03]) with an 
effective number of bits very close to 

1  bcs b
nYq 

 + log2— 
S 
 , 
 

where bnyq  is the effective number of bits for the limiting noise factor --- bn ,q  = b for high-

frequency input signals, and bn ,q  

currently unachievable region is dominated by jitter noise; at these input frequencies, our 
enob will be approximately 

1 	 1 	Fsam  bps  —3.44 + log 2 	— log e  Fmax  + —log 2  
ain I 	 2 	Fcon , 

where we have translated "samples per period" into "sampling rate". (For COMS to be 
effective, the samples need to be uniformly spaced. We can interpret Fs„p  as the average 

sampling rate. We are going to make the assumption that the curve bounding the feasible 
region is the same for an ADC that takes non-uniformly spaced samples is the same as in the 

b  therm when the ADC is running more slowly. The 
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Figure 9: Revised Walden curve for nonuniform sampling followed by COMS reconstruction 
(with Fsamp >= 5F m„t). The feasibility region extends past the comparator ambiguity curve, 

making signal acquisition possible for signals with very high frequency content. 

For a graphical interpretation, we see from Figure 7 that there exist ADCs that yield 10 
effective bits at a sampling rate of 1 GHz. Of course, we can use this ADC at lower 
sampling rates, and the effective number of bits should increase along a line that has slope 1 
(the same slope at the line for bth„.). The achievable enob for different operating rates is 
shown by a yellow region in Figure 10 (left panel). Using COMS, the feasible region 
continues to the right along a line of slope 1 until the reconstruction error becomes jitter 
limited, after which the feasible region follows a line of slope 2 downwards. The extended 
yellow region in Figure 10 (right panel) illustrates this. Since the ADC is operating at a 
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constant rate (1 GHz) for every point in this region, comparator ambiguity does not limit the 
performance. 
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Figure 10: Left: By changing the sampling speed on a traditional ADC (in proportion to the 
maximum frequency in the input) we can achieve any point in the yellow region. Right: Using 

COMS, we can achieve any point in the extended yellow region without changing the 
sampling rate (as long as Fsamp  >= SFccul). 

2.3 GSM Case Study 

2.3.1 Simulation 

To test the effectiveness of recovering sparse signals from nonuniform samples, we consider 
a simulated communications scenario involving a GSM cellular system. 

For our simulation, we consider a 20MHz frequency band (from 2MHz to 22MHz) divided 
into 100 channels of bandwidth 200kHz each. During a single time slot (approximately 500 
microseconds), some or all of these 100 channels may contain encoded message packets. 
Each message packet has a data rate of 270.8333 kbps. The binary messages are encoded 
Gaussian minimum-shift keying (GMSK) with bandwidth parameter 0.3 and then modulated 
up to the appropriate carrier frequency in the GSM band. 

Figure 11 shows the basic setup for a prototypical GSM receiver: in this conventional 
setting, the GSM signal would be sampled at least 2x higher than the 20MHz bandwidth of 
the GSM band. These high-rate uniform samples would then be used, for example, to 
determine which of the 100 channels were active during the transmission (which should be 
apparent just by taking an FFT of the samples), and then the samples could be demodulated 
down to from each desired carrier frequency, lowpass filtered, and GMSK decoded. 
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Figure 12: GSM Detection & Decoding from N -U Low-rate Sampling 

We will examine an alternative receiver, as shown in Figure 12. In this setup we take only a 
small number of nonuniform samples of the GSM signal. From these samples we must 
perform the same tasks: determine the locations of the active channels, and decode the 
packets corresponding to those specific channels. Our methodology is as follows: 

Active Channel Detection:  Supposing we have M samples from a length-N discrete 
signal, we estimate the signal's Fourier transform by creating a length-N signal that 
contains all zeros except for the M sample values at the proper times. We take the 
FFT of this length-N signal, and then create 100 test statistics by summing the 
squared magnitudes of the FFT coefficients in each of the 100 disjoint GSM 
channels. We let the largest of these statistics determine our prediction for the a 
active channel positions. 

Signal Recovery on Known Channels:  Once we have determined the proper channels 
on which the nonzero Fourier coefficients must be estimated from the nonuniform 
samples, we set up an overdetermined system of equations y = A*f, where f is a 
complex vector of length K (where K < M), y are the M nonuniform samples, and A 
is an MxK subsampled IFFT matrix whose columns correspond to frequencies only 
on the active channels and whose rows correspond only to the nonuniform sample 
times. The vector f represents the unknown Fourier coefficients on the channels to be 
estimated. (The remaining Fourier coefficients of the signal are implicitly assumed to 
be zero.) Because the above system is overdetermined, we consider minimizing the 12 
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residual Ily — A*f11 2, which can be solved efficiently using conjugate gradients. (The 
computation merely requires a moderate number of length-N FFTs.) 

These are the basic algorithmic components of the following experiments. 

EXPERIMENT 1:  

As a first experiment, we consider real-world GSM packet signals collected from an antenna 
at a carrier frequency of approximately 1.9496 GHz. After modulation to baseband, the 
signal was sampled at a rate of 640kHz and broken into packets of time slot duration 531 
microseconds. Each complex baseband packet has much of its energy concentrated in the 
range [-150kHz,+150kHz]. A total of 623 packets were collected from the antenna. 

A single trial of the experiment considers a single time slot and proceeds as follows: 

1. Create test signal.  
We select some number a (between 1 and 11) of channels to be active. We randomly 
select a out of the possible 623 GSM packets from real-world data. These packets 
are lowpass filtered to the range [-200kHz,+200kHz] and then modulated up to a 
random carrier frequencies out of the 100 possibilities, with the assurance that no 
two active channels are fewer than 5 channels apart. The packets are maintained with 
equal power, a setup possibly representative of the transmission from the basestation. 
The full, high-rate discrete signal has an effective sampling rate of 46.08MHz, for a 
total of N = 24480 high-rate samples over the simulation time slot of 531 
microseconds. 

2. Add noise.  
We select a target SNR (between 0dB and 200dB), based on which we add Gaussian 
noise across the entire GSM band, so that the SNR in the active channels meets this 
target SNR. For computation of SNR in active channels we use 400kHz of 
bandwidth in each active channel centered at the carrier frequency. 

3. Subsample.  
We select some number M (between 1000 and 5000) of random nonuniform samples 
from the noisy length-N test signal. The sample times are drawn at random from the 
N=24480 discrete possibilities of the full-sample signal. 

4. Estimate active channels.  
Based on the nonuniform samples, we use the FFT to estimate which channels (out 
of 100 possibilities) were active. To do this, we create a length-N signal out of the M 
nonuniform samples by zeropadding at the non-sampled locations. We take the FFT 
of this signal, and then create 100 test statistics by summing the squared magnitudes 
of the FFT coefficients in each of the 100 disjoint GSM channels. We let the a 
largest of these statistics determine our prediction for the a active channel positions. 

5. Recover packets.  
At this stage, we use the M available nonuniform samples to invert the measurement 
process on the estimated active channels. Allowing 400kHz of bandwidth for each 
packet to be recovered, we have a total of a*400kHz of bandwidth to estimate. Over 
the time slot of 531 microseconds, this corresponds to approximately a*424 real- 
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valued unknown parameters, which we must estimate from M real-valued samples. 
With no additional information on the structure of each GSM packet, this is possible 
only when M is (moderately) larger than cc*424. To recover the coefficients we set 
up the overdetermined system of equations y = A*f, where f is a complex FFT 
coefficient vector of length cc*212, y are the M nonuniform samples, and A is a 
subsampled IFFT matrix whose columns correspond to frequencies only on the 
active channels and whose rows correspond only to the nonuniform sample times. 
Because the system is overdetermined we minimize the 1 2  residual Ily — A*f112, which 
can be solved efficiently using conjugate gradients. (The computation merely 
requires a moderate number of length-24480 FFTs.) 

6. Evaluate performance.  
Based on the recovered FFT coefficients for the active channels, compare the 
recovered packets to the original packets. Because we lack ground truth on the 
original GSM bitstreams, our performance metric for this experiment is the decrease 
in SNR of the recovered packet relative to the noisy packet in step 2 (the "target 
SNR"). 

The results of this experiment are presented in Table 1 for various values of a and M. The 
entries of the table represent the typical decrease in SNR, as described above in step 6. We 
note that, with a full set of samples (no random sampling) the best possible entry in the table 
would be OdB. The decreases we show in the table are fairly consistent over a wide range of 
target SNRs, and in most cases all a of the active channel positions were correctly estimated 
in step 4. Our second experiment below better reflects the impact of inaccurate channel 
estimation. 

Table 1: GSM loss (in dB) for Real -world Data 

# of non-uniform 
samples 

Number of active channels 
1 2 3 4 5 7 9 11 

1000 -18dB -50 N/A N/A N/A N/A N/A N/A 
2500 -10 -12 -13 -17 -25 N/A N/A N/A 
5000 -7 -7 -8 -8 -9 -10 -13 -22 

We can offer a few comments about these results. First, more samples M give better 
performance, as expected. Second, the results are fairly robust when M is moderately larger 
than 0424 — in this regime, in fact, with fixed M, the number of a active channels has very 
little impact on the performance. Third, the entries in the table are somewhat predictable by 
statistical theory: the decreases in SNR are caused by the presence in y of noise from the 
inactive channels. The true equation for the measurements y is given by y = A*f + B*g, 
where A and f are as described in step 5, g is a vector of the FFT coefficients on the inactive 
channels, and B is a subsampled IFFT matrix whose columns correspond to frequencies only 
on the inactive channels and whose rows correspond only to the nonuniform sample times. 
The vector g contains only Gaussian noise, and B*g will approximately represent Gaussian 
noise, so y can be thought of as noisy observations of A*f. As the length M of y increases, 
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we have more observations of A*f, each with (approximately) the same noise level. The 
variance of the estimation should decrease as 1/M, so a 2x increase in M should decrease 
squared error by 2x, corresponding to an SNR improvement of 3dB. Indeed this is what we 
see in the lower-left corner of the table. 

EXPERIMENT 2: 

As a second experiment, we construct synthetic GSM signals, which will allow us to 
evaluate the actual bit error rate of the reconstructed signals. Our experiment is largely the 
same as Experiment 1, with the following differences: 

We use a time slot of 472 microseconds instead of 531 microseconds. Over this 
interval, each message packet has a data rate of 270.8333 kbps, and contains 16 
guard bits, leaving 111 bits of information per packet, per active channel, per time 
slot. 
We construct random bit sequences in Matlab and use a Matlab SimuLink module 
for GMSK encoding. The full, high-rate discrete signal has an effective sampling 
rate of 48749940Hz, for a total N=23040 high-rate samples over the simulation time 
slot of 472 microseconds. 
We limit the reconstruction bandwidth to 270.8333kHz instead of 400kHz. Hence 
there are approximately 256 real-valued unknown parameters for each packet. 
We evaluate the recovery performance by demodulating each packet from its carrier 
frequency down to baseband, and using a Matlab SimuLink module for GMSK 
decoding. 

Figure 13, Figure 14, and Figure 15 show the bit error rate (BER) as a function of the 
nonuniform sampling rate M/N, for various numbers a = 2,4,8 of active channels, and with 
each curve representing a different target in-channel SNR in the noisy generated signals 
before sampling. The dashed lines represent the breakdown point where M = a*256; this is 
the fundamental sampling limit without any additional models on the Fourier coefficients in 
an active channel. We see that with only moderate oversampling relative to this fundamental 
limit, it is possible to recover the GSM signals with very low BER. The recovery is, of 
course, sensitive to the in-channel SNR before sampling. 
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Figure 13: GSM Decoding from N-U Sampling 2 Active Channels 

Figure 14: GSM Decoding from N-U Sampling 4 Active Channels 
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Figure 15: GSM Decoding from N-U Sampling 8 Active Channels 

Figure 16 shows the effective number of bits (enob) of the recovered packets, according to 
the formula 

enob = log2 ( II 	e2rlirxolri ll 2  ) 

where x is the set of Fourier coefficients of the active packets, and the error is measured in 
the recovery of these coefficients. (This figure does not involve decoding the recovered 
pulses at the bit level.) Examining these plots, we see that, down to a sampling regime where 
M is roughly 2-3x larger than the sampling limit a*256, dividing the sampling rate by 2 will 
reduce the enob by only '/2 bit. As noticed in Experiment 1, this is true across a wide range 
of in-channel SNRs. 
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Figure 16: GSM Decoding from N-U Sampling 2 and 4 Active Channels 

2.3.2 Analysis of Test Bed Data 

We have also conducted simulated GSM experiments with NUS test bed data. 

In these experiments, our GSM band occupied 20MHz between 102MHz and 122MHz. We 
again considered 100 channels within this band, each of bandwidth 200kHz. 

We used Matlab and the SimuLink GMSK encoder to construct synthetic GSM signals, as 
described in Experiment 2 above. The full-sample rate for these synthetic discrete signals 
was set at 752990800Hz, and the time slot duration was 472 microseconds, giving a total of 
N=355840 high-rate samples per packet time slot. 

These signals were then converted to analog and sampled using the NUS protocol, where the 
NUS sample positions were taken from a grid of resolution 752990800Hz. From this fine-
scale grid, 110 out of every 1024 sample positions were kept (or 38224 out of the 355840 
total high-rate samples), giving an effective overall sampling rate of approximately 81 MHz. 

The discrete sampled data was then imported back into Matlab for reconstruction. The 
experiments in this section all involve estimation of Fourier coefficients on selected bands 
within the 752990800Hz spectrum. This estimation from nonuniform samples proceeds 
exactly as described in the above GSM experiments, and again has complexity proportional 
to a length-355840 FFT. Subsequent decoding of GSM pulses simply involves 
demodulation, filtering, and GMSK decoding in Matlab SimuLink. 

EXPERIMENT 1:  

For the first experiment we act as an oracle that knows which channels will be active, and 
focus on the quality of the decoded GSM packets as the signal amplitude changes. The 
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signal amplitude was attenuated by various amounts before sampling, effectively changing 
the SNR of the sampled data. 

Figure 17 shows the decoded BER for several nonuniform sampling rates, where the GSM 
signal consists of a=3 active channels. The highest rate (approximately 81 MHz) 
corresponds to the entire set of test bed data; lower rates correspond to randomly chosen 
subsets drawn from this data. We see that, for signal attenuation levels of -40dB or better, 
the three GSM packets can be decoded with zero bit errors even at sampling rates 
approaching the fundamental limit (2*02701(11z). For more aggressive attenuations, the 
BER improves as the sampling rate improves, consistent with the noise robustness observed 
in the above GSM experiments. 
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Figure 17: Bit Error Rate for Test Data for Three GSM Channels at Various Amplitudes 

To confirm our analogy between signal attenuation and decreased SNR, we conduct a pure-
Matlab experiment, where we begin with the original 355840 high-rate samples, quantize to 
10 bits of resolution, and add white Gaussian noise intended to mimic the thermal noise of 
the ADC. Figure 18 shows the results of repeating our experiment on subsampled versions 
of this data. 
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Figure 18: Ideal GSM signals with ADC SNR modeled by additive noise 

EXPERIMENT 2:  

For our second experiment we consider a more realistic GSM scenario where the received 
signal contains one or more interferers. In this simulation we model these interferers as 
strong TV signals (6MHz bandwidth each) with known frequencies that are outside of the 
GSM band. Figure 19 shows the experimental setup, where the TV signal(s) are added 
before sampling the signal. The first TV signal is centered at 193MHz; the second is 
centered at 22MHz. 
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Figure 19: Signal Processing Diagram for Generation and Analysis of Test Bed GSM Signal 
with TV Interferers 

In order to recover the GSM signals, we find it necessary to invert the measurement operator 
both on the known active GSM channels and on the portion of the spectrum occupied by the 
TV signal(s). In fact we find it useful to allow a full 10MHz of bandwidth (centered at 
193MHz or 22MHz) to reconstruct each TV signal. Our decoding performance, however, is 
gauged solely on the BER of the GSM packets, not the fidelity of the recovered TV signal. 

00  	
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Figure 20 shows the decoded BER for the GSM packets (cc = 3 active channels) for various 
attenuations of the GSM signal before sampling; the TV signal power remains constant 
while the GSM signals are attenuated. The dashed lines represent the fundamental sampling 
limit for a bandwidth of 0270kHz + (#TV signals)* 10MHz, assuming no additional models 
for signal structure. 

Figure 20: Bit Error Rate from Test Data for 3 GSM Signals plus One and Two TV Signals 

Comparing this experiment with the plots in Figure 17, we see that the impact of the TV 
signals is simply an increase in sampling rate proportional to the bandwidth of the TV 
signals. In particular, supposing we fix a sampling rate of 2x the theoretical minimum in 
each plot (dashed line), then for -70dB attenuation we see BER in the range 0.2-0.34 in each 
plot, and for -60dB attenuation we see BER in the range 0.01-0.02 in each plot. 

3 Generalized Compressive Sampling by Random Preintegration 

3.1 System Characterization 

Under established compressed sensing theory, one can reconstruct signals from 
measurements made with various random measurement ensembles, in particular the binary 
random ensemble. With this ensemble, each measurement consists of the inner product of 
the signal with a random sequence of +1's and -1's. Note that such measurements could be 
made by sending the signal to one channel for each measurement, randomly flipping the the 
polarity at the Nyquist rate, and then integrating the result to get each measurement. This is 
exactly what the RPI architecture does, except instead of perfect integration, a low pass filter 
is applied, and instead of having a single measurement for each channel, the output is 
subsampled. This is displayed graphically in Figure 21. The signal x is multiplied by m, a 
random sequence of +1's and -1's, then convolved with the single-pole filter h, then finally 
subsampled at times nT. The effective measurement vectors p r, are plotted at the bottom of 
the figure. (Note that the plot of h is time-reversed to visually match up with (p ❑  . What is 
shown is not the impulse response, but the effective weighting of a sample.) 
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Figure 21. Graphical representation of the model of the measurement process 

3.2 Numerical Modeling and Sensitivity Analysis 

A single channel of our proposed Random Pre-Integration (RPI) architecture is shown in 
Figure 21. The input signal is modulated by a pseudo-random polarity (or "chip") sequence 
P,n (t) and the result is passed through a non-ideal integrator and sampled. There are several 
non-idealities in this architecture which we will address. 

First, added to the signal at the input to each channel is cross talk interference. This is 
essentially the interference caused by the polarity switch at the other channels. Since the 
chip sequence is unstructured (it appears random), we expect that the interference will 
essentially behave like additive white Gaussian noise. The experiments described below 
verify this. 

Next, there is the nonlinearity polynomial, which has a pointwise polynomial response that 
is dominated by the linear term, and has small quadratic and cubic coefficients. 

There is also timing uncertainty when the switch between polarities occurs. At first, the 
timing errors here seem like they are more serious than in non-uniform sampling 
architecture, as there will be multiple errors in each measurement. However, we will see 
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below that this is not too much of a concern; since there is more signal energy in each of the 
measurements, the overall measurement signal-to-noise ratio only increases by a factor of 
two. As in the non-uniform sampling case, timing errors do not cause pathological 
problems. 

The integrator is also not perfect. However, if we have a good model for how it behaves, 
most of its imperfections can be accounted for in the recovery procedure by simply adjusting 
the measurement matrix used in the COMS algorithm. For the numerical simulations 
discussed below, we modeled the integrator as a linear system with a single pole at 
a =1.945 x 10 8 , the resulting impulse response is 

h(t)= 	, t 

The resulting measurement functions, shown in Figure 21, look like decaying chip 
sequences. 

3.2.1 Numerical Model 

We simulated the system with bandlimited, periodic inputs on [0,T]. The input can be 
expanded using the Fourier series 

x(t) = 1(a))ej2g"ITN 

co=0, ,N-1 

where the maximum possible frequency is NI2T. The interval was partitioned into N 
subintervals by 0 = to  < t l  < • • < tN  =1, over which the polarity is constant: 

P„,(t)= p„,), =±1, on [tk , tk+, ] . 

The contribution at the output of the integrator over a time period [t p t2 ] where 
tk < t

l 
< t2 < tk+i  for some k is 

mti,t2)= C° ( t2 - r )x(r) dr = E 
( 

a+ jco
) 	(-1" 2  —e -a(t2-`' )e -1 "') 

1 

and the output of the integrator at time t is 

Sm  (t) = Ep„,,k  • fir(tk ,t "0+ p,, ,K( , )+1H(tK( , )+1 ,t) 
1:1.1c.K(t) 

where K(t) is the largest k such that tk+, < t. The above equations define the rows of the 
measurements matrix, mapping the Fourier coefficients '(co) of the input to a sample value 
S(t,). In general, the partition given by the tk  will be different in each channel, as the 
sample locations are not necessarily synchronized and each polarity sequence is subject to 
different timing uncertainties. 
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3.2.2 Experimental Setup 

For the numerical experiments, we used a signal consisting of S=10 cosine components with 
randomly chosen frequencies. The number of Nyquist samples (which is the same as the 
length of the chip sequence over the interval [0,T] was N=500. Five samples were taken in 
each channel, and the number of channels varied between 20 and 200. 

The nonlinearity nonideality behaves exactly as in the non-uniform sampling case. For large 
values of the constants in front of the nonlinear terms, it causes an error which is 
concentrated on the signal support. Fortunately, we do not expect this to be a limiting factor 
in a real hardware system. 

There are actually three types of timing jitter in our system model: random jitter, pattern 
jitter (caused by interference from the chip pattern), and aperture distortion (caused by 
interference from the input signal). We simulated each of these, and they all behaved 
similarly, basically behaving like random noise with a certain variance (see Figure 22). We 
discuss only the case of random jitter in detail below. 
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Figure 22: Thermal Noise Results. Recovery error scales linearly along with the measurement 
error. 

3.2.3 Cross Talk 

The cross talk was modeled as additive noise to the input at each channel. The magnitude of 
this interference depends on the locality of the measurement circuits for the two channels, 
here we assume that the power scales like cr 2 , where d is the physical distance between the 
two channels. (This behavior does not matter much for what we are trying to establish here, 
i.e. that the cross talk noise does not cause pathological problems.) Specifically, the input to 
each of the M channels was added with a different noise realization 
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C  
x,(t)= 	Pn,(t—T„,, k ) 

m = 1 

where Pm  is the polarity of channel m, C. is a constant which controls the magnitude of the 
noise, and r k „, is a delay between channels k and m modeled here as 

10-9 
= 	 m,k  Im— k ^ 

 

but again this choice does not seem to be too critical for our end results. Since the polarity 
sequences are essentially random, the noise in one channel will have variance 

2 
n

C 
2 

0-
2 

 "=","   
6 'VT  

It is important to realize that the cross talk in each channel is essentially independent, and so 
the cross talk noise power in the set of all measurements will scale with the number of 
channels. 

Figure 23 below shows that the recovery error scales linearly along with the measurement 
error, illustrating that the cross talk does not cause any pathological problems for the COMS 
recovery procedure. 
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Figure 23: Cross-talk Results. Recovery error scales linearly along with the measurement 
error. 

3.2.4 Timing Uncertainty 

There will of course be some (hopefully small) uncertainty in the timing of the polarity 
change. We expect that this uncertainty will be on roughly the same order as the sample 
location jitter in the non-uniform sampling architecture. A point of concern for the RPI 
architecture is that each single measurement will now suffer the effects of multiple timing 
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errors. However, more signal power is also captured in each measurement, which we will 
see mitigates this effect. 

Consider first what we might call an ideal RPI measurement system. A single measurement 
can be expressed as 

Yk =Zc,(S(t )— S(t,_,)) 

where S(t,) is the integral of the input signal up to time t, 	±1 (the "chip") is the value 
of the polarity over the interval [ci ,t,], and P is the total number of chips used for a single 
measurement. If the input signal is a sinusoid, then S(t)will also be a sinusoid, and we can 
write the error in the measurement as 

ek  =Ic,(X(t)— X(t, +1)) 
i=i 

where X(t k ) = S(t k ) — S(t k  + 5k ) is the time jittered value of a sinusoid (as we studied in 
Section 2.1). The expected noise power will be 

Eekl 2  =I(X(t i )—X(t,,)) 2 Ps% 2p11 2(020-2 
r=1 

where A and w are the amplitude and frequency of the (complex) sinusoidal input, and 6 2  is 
the variance of the Gaussian timing jitter. The expected measurement power will be 

i (S(t,)— S(t,_ 1 )) 2  A 2P 
1= 1 

if the nominal chip width is far enough below the Nyquist spacing. The expected SNR for 
the measurements is thus just a factor of two smaller than in the non-uniformly sampled case 

1 

As we can see in Figure 24 below, timing uncertainty also does not cause unexpected 
problems. The output SNR tracks the measurement SNR in a straight line. 

SNR = 2c02a2 
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Figure 24: Timing Jitter Results. Recovery error scales linearly along with the measurement 
error. 

3.3 Algorithms for Sparse Signal Recovery 

In this section we describe recent theoretical and algorithmic work geared toward improving 
sparse signal recovery. We first describe the construction of a multiscale Gabor dictionary 
intended to provide sparse representation of smooth modulated pulses. We also describe two 
variations on the 1 1  recovery technique that improve the recovery of sparse signals from 
limited measurements. The work in this section is abstract, and applies generically to 
compressive measurements of any modality (not necessarily taken from the RPI system). 
However we subsequently validate these ideas by testing on RPI data in Section 3.4. 

3.3.1 Multiscale Gabor Dictionary 

In order to reconstruct we need for the signal to be sparse in some dictionary IF. That is, we 
model the signal as a linear combination of relatively few vectors from some collection of 
vectors fiv,I. Ideally the vectors xv, resemble typical signals, and yet are generated in a 
systematic way so that they form a frame and can be computed quickly. Note that the 
question of which dictionary to use (as well as which reconstruction algorithm to use) is 
somewhat independent from the measurement process, so some of our experiments have 
been with synthetic data using ideal measurement matrices. 

The one dictionary we have tried with which we have had the most success is a Gabor (or 
windowed Fourier) frame dictionary. This consists of Fourier vectors (sine waves) of all 
frequencies modulated by smooth windows to form pulses. The windows are all of the same 
shape, but they are of different scales and shifts. For example, the windows for the largest 
scale are plotted in Figure 25. Typical elements of the dictionary are plotted in Figure 26. 
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Figure 25. Largest scale iterated sine windows used for Gabor dictionary 

Figure 26. Example elements of Multiscale Gabor Dictionary 

If the entire collection of windows form a partition of unity (meaning that the sum of their 
squares equals 1 everywhere), then this is a tight frame. There are two types of windows we 
tried using, so-called iterated sine windows, which do form a partition of unity, and 
Gaussian windows, which do not. It is useful but not essential that the frame be tight, and in 
some cases the Gaussian windowing works better. 

Note that we do not do anything sophisticated to handle the boundary; for the windows 
which do not fit within the boundary, we simply treat the signal as equaling zero outside the 
boundary. However, in the RPI setup, it is reasonable to assume that since the signal is 
contained entirely in the interior of the domain. This is because we have a stream of data, 
and pulses will be relatively rare events, so if the signal is ever not in the center, we can 
recenter by taking a shifted block of adjacent RPI output data. 

Throughout the reconstruction algorithm, we need to repeatedly apply the dictionary and its 
transpose. Unlike the measurement matrix (1), the dictionary W can be extremely large, so it 
is important that we have a fast algorithm for applying it without having to compute it 
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explicitly. Indeed, there is a fairly straightforward algorithm using FFT's. A rough outline is 
as follows: 

• To compute the frame coefficients of a signal (apply analysis matrix T T) 
o Initialize the output vector as empty 
o At each scale, 

■ At each shift, 
• Multiply input vector by windowing function 
• Pad with zeros to oversample in frequency 
• Apply FFT, and appropriate transformation to make it real-

valued 
• Concatenate the results to the output vector 

• To compute a signal based on its frame coefficients (apply synthesis matrix IP) 
o Initialize the output vector as a zero vector of the correct size 
o At each scale, 

■ At each shift, 
• Take frame coefficients and delete them from the input vector 
• Apply appropriate transformation and IFFT 
• Delete excess data (transpose of padding with zeros) 
• Multiply by the windowing function 
• Add the result to the output vector 

Note that we can effectively oversample in scale, space, and in frequency, making the 
dictionary richer. When deciding how much to oversample, there are a few trade-offs 
involved. If the dictionary is too small (for example, if we only included windows of much 
larger scales than the support of the signal) then it will not be effective at capturing the 
signal, and fidelity of reconstruction will suffer, or fail completely. Obviously, making the 
dictionary extraordinarily large will make the computational complexity of the 
reconstruction intractable. But even if computation is not an issue, adding too many 
elements to the dictionary will impair the fidelity of reconstruction by adding extraneous 
elements to the dictionary. 

In our experiments, when working on a vector of length 2 9, we use windowing scales 2 6 
 through 29 , then oversampling by a factor of 2 in space, and 2 in frequency, resulting in a 

total of 22144 frame vectors. 

3.3.2 Variations of L1 Recovery 

In this section we briefly discuss two variations on the canonical 1 1  recovery program 
designed to improve the recovery of sparse signals. After discussing the theory and 
motivation behind these approaches, we present preliminary experiments supporting the 
potential benefits in signal recovery, particularly when these two modifications are 
implemented simultaneously. 

3.3.2.1 Synthesis Vs. Analysis 
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There is a subtle variation in the canonical I 1  recovery program for overcomplete 
dictionaries. If we believe the dictionary is a good representation for the signals we are 
trying to acquire, there are two ways to formulate the problem. The first is standard II 
synthesis: 

min 114 such that (Ina = y . 
a 

This program looks for the sparsest combination of the columns of 'I' that matches the 
observed measurements y. (To make things simple, we are using equality constraints here, 
but the main points of this discussion will not change if we relax (Ina = y to 

11(In a — yll 2 6. or IFT(Ii ((na —y) 	s.) The other option for recovery is to solve the 

analysis problem 

min tIlT x11 such that (Dix = y , 

which looks for the signal x(t) whose forward transform coefficients Vx are as sparse as 
possible. If the dictionary 'I' is orthogonal, these programs are equivalent. For 
overcomplete kV (when 1Y has more rows than columns) though, they are different. To see 
this, we rewrite the analysis problem as 

min 	such that (Ina = y, 	= a . 
a 

Thus the 1 1  analysis problem is more tightly constrained than the 1 1  synthesis problem. 

In the experiments below (see Section 3.3.3), where tY is a dictionary of modulated pulses 
at different shifts (and thus its columns are highly correlated), it seems that the additional 
constraints that 1 1  analysis imposes are a significant aid in the recovery process. A 
theoretical understanding of this phenomena is a subject of current research. 

3.3.2.2 Reweighting LI 

We discuss a slight reformulation of l i minimization that improves the recovery of sparse 
signals. Historically, the motivation for choosing the 1 1  norm in the optimization 

(1) min 	subject to y = (Ina 

comes from the fact that it provides a convex relaxation of a more desirable but intractable 
optimization problem 

(2) min al 0 subject to y = (Ina 
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where a is a coefficient vector, k is a sparse basis or dictionary transforming the sparse 
coefficients to a signal x = Tot, and 43$ is the measurement matrix taking the signal to the 
measurements y = Ox. For the present discussion let us assume a is Nxl, Pis NxN, and (I) is 
MxN with M<N. 

Now, let W denote an NxN matrix with nonzero entries wi,w2,• • •,wN along the diagonal and 
zeros elsewhere. We note that in (2), the norm a 1 0  can be replaced by the reweighted norm 

l Wall o  without changing the solution. However, minimizing the corresponding relaxation 

(3 ) 	
min Wa subject to y = cbtlfa 

will not return the same solution as the unweighted norm la I I  in (1). 

Our goal is to obtain a set of weights W that actually improve upon the 1 1  norm, making it 
behave more like the 10 norm. The key difference between the 1 1  and 10 norms is the 
dependence on magnitude --- larger coefficients are penalized more heavily than smaller 
coefficients, unlike the democratic penalization of the 10 norm. Ideally the weights W could 
correct for this imbalance, by setting w n  inversely proportional to a n. Of course, the true 
coefficients a are not known in advance, but an iterative procedure can be used that 
alternates between estimating a and redefining the weights. The algorithm is as follows 

1. Set the iteration i = 1. Set w n(1)  =1 for n = 1,2,...,N. 

2. Leta (1)  be the solution to (3) with weights w n 	. 

3. Set w(`±` )  = 	1  
an`)  + 

4. Increment i and go to step 2. 

The parameter s in step 3 should be set slightly smaller than the expected entries of a. As 
demonstrated below, the recovery process is somewhat robust to the choice of E. 

As an alternative interpretation of this reweighted 1 1  recovery algorithm, it is interesting to 
note that every iteration of the above algorithm is guaranteed to decrease [12] the following 

function of a : 	logan  + s). This objective function is concave (not convex) but more 
n=I 

closely resembles the 1 0  norm. Unfortunately the algorithm is guaranteed only to converge to 
a local (not necessarily global) minimum. 
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Figure 27: Sparse signal recovery from M = 100 random measurements of a length N = 256 
signal. The probability of successful recovery depends on the sparsity level K; the dashed 
curves represent a reweighted algorithm that outperforms the traditional unweighted l i  

approach (solid curve). 

Figure 27 shows a simple experiment with N = 256. For several values of K, we construct 
K-sparse signals randomly in the time domain ('I' is the identity matrix), assigning zero-
mean, unit-variance Gaussian coefficient values to K nonzero elements in random positions. 
For each signal we set M = 100 and construct a random M \times N measurement matrix cl) 
with iid Gaussian entries. The solid black curve denotes the probability (over 100 trials with 
random x and (13) of correctly recovering the K-sparse signal from the measurements y = Ix 
using the unweighted 1 1  algorithm. We see that, using M = 100 measurements and the 
unweighted 1 1  algorithm, we can correctly recover K-sparse signals with very high 
probability when K 25 = M/4. 

Figure 27 also shows the results of reweighting l i ; the dashed curves represent several 
different values for the parameter E. We see a marked improvement over the unweighted 1 1 

 algorithm --- with the proper choice of E, the ability to recover sparse signals has increased 
from K 25 = M/4 to K 33 = M/3. 

Preliminary work has also shown promising results from reweighted versions of other CS 
recovery algorithms. For example, in the case of noisy measurements we have experimented 
with a reweighted version of the quadratically constrained 11 program 

min Wa subject to y — (13q/a11 2  < y . 
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For moderate noise levels, reweighting typically yields signal estimates with 30-40% lower 
mean-square error (MSE) than the unweighted algorithm. 

3.3.3 Combined experiments 

We have also tested our variations of 1 1  recovery on recovering a synthetic modulated 
Gaussian pulse from compressive measurements. The pulse x has length 128 and is shown in 
Figure 28. From this signal we construct a 30x128 measurement matrix (I) having iid 
Gaussian entries and obtain the 30 measurements y = (Dx. 

From these measurements we use several variations of the 11 algorithm to recover the pulse; 
in each case we use a sparse Gabor dictionary T. Figure 29 shows plots of the 
reconstruction errors of the recovered signal relative to the true signal x, the numbers quoted 
indicate the 12  reconstruction error as a percentage of the 1 2  norm of the original signal x. 

We see in this experiment that analysis-based 1 1  outperforms the traditional synthesis-based 
11 recovery, and that reweighting each of these methods further improves the performance. 
The best performance, by a factor of 10 in both 1 2  error and absolute error, is achieved by 
combining these benefits: using a reweighted analysis-based 1 'recovery method. 

0.5 

-0.5 

Figure 28: Synthetic modulated Gaussian pulse for testing variations of recovery. 
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Figure 29: Reconstruction error plots for synthetic Gaussian pulse using variations on l i 
 recovery. 

3.4 Analysis of Circuit Simulation Results 

3.4.1 Discrete System Characterization 

Of course, the reconstruction algorithms require knowing the measurement matrix D. Note 
that the resolution of the domain of (I) can be any sampling rate, but for simplicity in our 
experiments, we took it to be the same as the Nyquist rate (which is also chip rate of the 
random polarity changes). So to analyze the results of the SPICE simulations, we construct 
b exactly as outlined above. 

1. Load the signs of the chip sequences for each channel 
2. Load the impulse response 
3. For each sample of each channel, we take the time-reversed impulse response, 

shifted to the sample location and multiply that by the chip sequence for that channel 
to get the measurement vector pn. 
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To get the measurement data, we just take the output from the integrator simulations and 
subsample at the locations corresponding to the above measurement vectors. Ideally these 
should equal the inner products <x, y„>, where x is the input signal subsampled at the 
Nyquist rate. 

The measurement process is not precisely the same as a true binary random ensemble, but in 
our experiments, it is close enough to still give good results. Exactly how many channels are 
necessary and how high the sample rates should be has not been entirely resolved. 
Obviously, more channels and higher sampling rates will result in higher fidelity. 

Note that with the entire set of simulation output, we can experiment by choosing the 
sampling rate arbitrarily. Also, we can choose to limit our measurements to less than the full 
set of channels. If we do either of these, then we need to build the measurement matrix (in 
steps 1-3 above) appropriately for use in the reconstruction algorithm. 

We have run experiments with both 32 channels at a low sampling rate and 8 channels at a 
high sampling rate, (such that the total number of measurements in each case was the same). 
For one specific experiment, using a single Gaussian pulse input and synthesis based 
reconstruction on noisy SPICE data, the 8-channel measurements resulted in an 11.7% error, 
whereas the 32-channel measurements resulted in a 5.8% error. This supports the expected 
trend — as the number of channels increases, the measurement process more faithfully 
mimics a true binary random ensemble, which should improve performance. 

3.4.2 Two -Pulse Reconstruction Experiments 

Using the procedures outlined in previous sections, we have run experiments on data from 
RPI spice simulations. For thoroughness, every combination of 4 different variables was 
run: whether to use synthesis or analysis, whether to use data from 8 channels or 32 
channels, which window shape to use, and whether to use reweighting or not. The relative 
error of all cases is shown in the following table: 

Iterated Sine 
Windowing 

Gaussian 
Windowing 

I Iterated Sine 
Windowing, 

Weighted 

Gaussian 
 

Windowing, 
Weighted 

Synthesis- 
Based 

8 
Channel 8.37% 8.58% 7.91% 8.13% 

32 
Channel 

37.26% 6.28% 36.79% 4.85% 

Analysis- 
Based 

8 
Channel 

6.70% 6.73% 6.52% 6.48% 

32 
Channel 

17.33% 20.55% 4.26% 4.77% 
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In some cases, the reconstruction algorithm failed to completely resulting in an abnormally 
large error. The best possible reconstruction, with a relative mean square error of 4.26%, is 
shown in Figure 30 along with the original signal. This was based on 4 measurements each 
from 32 channels, using a reweighted analysis based reconstruction, and iterated sine 
windows. 

Figure 30. Best reconstruction from RPI SPICE simulation data (green) vs. Original signal 
(blue). Based on data from 32-channels (4 measurements each). Algorithm used reweighted 

analysis, iterated sine windowing for the frame. 

4 Future Plans 

As mentioned in the introduction, our plans for the future include the design and hardware 
implementation of a high-speed non-uniform sampling architecture and of a random pre-
integration architecture operating in the GHz range. A critical component of these projects is 
of course the development of efficient hardware implementation of data processing 
architectures for COMS. All along this program, sparse recovery computations (COMS) 
were performed in an off-line fashion: the output of a nonuniform sampling ADC was 
captured and delivered in batches to 11-MAGIC, a MATLAB-based software package—
developed by the Caltech team—which performed the computations. One of our future goals 
is to demonstrate the feasibility of real-time operation at high sample rates. In this section, 
we assemble the evidence that this goal can be achieved within the lifetime of a possible 

Page 42 



follow-up project through a combination of improvements in algorithms, software, and 
hardware. 

Before we begin, we would like to emphasize that the definition of "real time" depends on 
the application. In static medical imaging, for instance, current performance levels might be 
sufficient. For the Analog to Information program, however, the sparse recovery algorithm 
takes on the role of signal acquisition, so to be most useful COMS should require an amount 
of time which is not too long compared to the duration of the signal itself. It goes without 
saying that the faster we can solve the sparse recovery problem, the wider the variety of 
applications we can pursue. 

Now we believe that our future projects hinges on the strongest possible expertise in the area 
of large scale optimization, and in the area of digital and analog signal processing, and this 
is the reason why our team has started a collaboration with the group led by Professor 
Stephen Boyd from Stanford University and with Professor Paul Hasler from the Georgia 
Institute of Technology. Professor Boyd and Professor Hasler are world leaders in the 
aforementioned areas. In concrete terms, our collaboration started on January 16 111 2007, 
when Caltech organized a meeting between the Caltech-NG team and Paul Hasler and 
Michael Grant, a senior member of the Boyd group. This meeting generated a lot of 
enthusiasm and the confidence that together, we could achieve something significant. 

Our interest in collaborating is genuine; the paragraphs below were written jointly with 
Michael Grant and Paul Hasler. 

4.1 Speeding up COMS 

How do we improve the performance of COMS? More specifically, how do we accelerate 
the solution of sparse recovery problem 

(4) 	 min x subject to Ax = b 

or of the Dantzig selector (DS) model (the noise aware version of the above program) 

(5) 	
min 	subject to A *  (Ax — 	< ? 

Here and below, A is the sensing or the sampling matrix relating the features of the signal 
we wish to reconstruct to the measured data. If an interior-point algorithm is applied, the 
computational effort is dominated by the execution of matrix-vector products of the form Av 
and A w. All other calculations, including the determination of step lengths and evaluation 
of stopping criteria, constitute a tiny fraction of the effort. Thus the acceleration of such an 
algorithm must necessarily focus on two goals: 

• reducing the number of matrix-vector products that are required; and 

• computing those products as fast as possible. 
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The first of these goals requires fundamental improvements in the underlying algorithm; the 
second is more a function of lower-level software, firmware, and/or hardware performance. 
We address them in order. 

4.2 Algorithmic improvements 

Compressive Sampling is attracting an enormous amount of attention and each week, a 
flurry of new articles are released on this subject. For examples, researchers in optimization 
are proposing improvements over the standard solvers that one finds in 1 1 -MAGIC. Recent 
developments for models related to (4) and (5) suggest that we should be able to reduce the 
several thousand matrix-vector products 1 1 -MAGIC is using by an order of magnitude or 
more. Some of the ideas to achieve this are rather straightforward. Modern interior point 
methods produce a sequence of guesses x" converging to the solution. Each update x" is 
obtained from the previous guess x("-I)  by solving a large system of linear equations (this is 
the famous Newton step). Therefore, the speed of the optimization algorithm is tied to the 
ability to solve very large systems of linear equations; for the problems we are interested in, 
the sizes of these linear systems prohibit direct methods, and we need to employ iterative 
methods such as the method of Conjugate Gradients. It is well known that the accuracy and 
speed of such iterative solvers depend upon the conditioning of the linear system we wish to 
invert. The problem is that near the solution, such systems are typically ill-conditioned. One 
way out is to use preconditioning. 

In this direction, Stanford University researchers S.-J. Kim, K. Koh, et. al. have developed a 
new method for solving large-scale 1 1 -regularized least squares (L1RLS) problems [5]. Like 
1 1 -MAGIC, their method is based upon a standard interior-point method, and uses a 
conjugate gradient (CG) method to compute search directions. But Kim et. al. have 
developed two key contributions to improve performance: a fast and effective preconditioner 
to reduce the number of CG iterations required, and a more effective method of controlling 
the algorithm itself. 

With a straightforward MATLAB implementation of their algorithm, they demonstrate 
considerable improvement in performance over other methods applied to L1RLS 
problems—not just 1 1 -MAGIC but also very specialized methods such as HOMOTOPY [2]. 
For example, a 256K-point medical imaging example was solved in only 130 CG iterations, 
as opposed to 6000 CG iterations for 1 1 -MAGIC. 

Our problem formulations may be a little more complex than L1RLS, but the models do 
share a significant amount of structure; and the higher-level algorithmic improvements 
developed by Kim et. al. can be translated rather easily to our problems. Thus we can 
reasonably expect that by developing a similarly effective preconditioner, we can obtain 
relative performance gains comparable to those achieved for L 1 RLS. Indeed, the Stanford 
team is eager to assist in this effort. 

All of this is extremely encouraging, because for the non-uniform sampling architecture, our 
projections indicate that the algorithms would run 20 to 30 times faster than the current 
implementation. More importantly, the signal reconstruction would take only a few hundred 
FFTs, which is an important step toward real time computations. 
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4.3 High-speed digital implementations of COMS 

In the case where the signal in question is sampled in the time domain and compressible in 
the Fourier domain, the rows of A are selected orthogonal rows of a Fourier transform 
matrix. (Even in the RPI architecture, most computations reduce to taking FFTs.) In such a 
case, FFT methods can be applied to accelerate the computation of matrix-vector products. 
Highly optimized software libraries are available to perform FFTs on general-purpose 
computer systems and DSP chips. IP cores are readily available to perform the same 
operations on FPGAs and ASICs. 

To illustrate what kind of performance improvements are possible, we have assembled FFT 
benchmark data for various software/hardware scenarios in Table 2 below. We have chosen 
two data lengths, 2 16 = 25 62 = 65536 and 2 20  = 10242  = 1048576 points, and have presented 
the performance of a single FFT computation in in terms of both speed (in Gflops) and time 
(in milliseconds). The first scenario employs double-precision calculations in MATLAB, the 
method that 11-MAGIC currently employs. For all others, single-precision floating point 
performance is quoted. 

Table 2: Benchmarks for various single -precision floating -point FFT implementations 

hardwaleisoftware speed 
Gflops 

time 
ms 

source 

Intel Core Duo 2.16GHz 65536 0.19 13.9 authors 
MATLAB 7.3 (double precision) 1048576 0.22 235 

Intel Core Duo 2.16GHz 655 36 0.77 3.4 authors 
MATLAB 7.3 1048576 0.37 139 

Intel Xeon 3.0GHz 655 36 11.0 0.24 [3] 
Intel HP library PP 1 1048576 5.0 10.4 

350MHz TI C67x DSP 65536 1.0 2.6 [9] 
1048576 1.0 52.5 

Texas Memory Systems 65536 3.2 0.82 [10] 
TM-44 Custom DSP 1048576 3.3 15.7 

200MHz Virtex-4 FPGA 65536 4.0 0.65 [II 
-IDSP FFT core 1048576 5.0 10.5 

NVIDIA, 7900 CPU 65536 6.1 0.43 [4] 
GPUPF1W software 1048576 6.1 8.6 

3.2 ► Hz Cell Processor 65536 41.8 0.063 [1 1] 
1048576 35.9 1.5 

The table reveals several interesting points. First of all, the overhead imposed by MATLAB 
seems considerable, and goes well beyond differences in processor speed. Some of this 
difference can be easily explained. For example, the Intel IIP library can utilize multiple 
cores simultaneously, while MATLAB 7.3 cannot. Furthermore, MATLAB is performing 
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additional steps, such as bit-reversal reordering, that would not be necessary in a custom 
code. 

The GPU results are more compelling than they may appear to be; the processor used for 
those benchmarks is several months old and has been superceded by a significantly faster 
model. In practice, a GPU are treated as a coprocessor: the primary CPU is retained for 
higher-level algorithmic tasks, and the GPU is assigned that portion of the computational 
burden for which its vectorized architecture is best suited (e.g. FFTs). Care must be taken in 
such an arrangement to control memory bandwidth consumption [6]. 

The Cell processor produces the best results by a 4x-6x margin. Not surprisingly, there has 
been considerable interest in the Cell computing architecture for scientific computing. The 
paper cited above cites performance estimates for other computational tasks besides the FFT 
[11]. The Stanford Folding@Home project, which has for some time used GPUs to 
accelerate their protein folding simulations [8], is now developing a version of their software 
to run on the Cell-based Playstation 3 [7]. 

Neither the DSP- nor FPGA-based solutions produce better performance, though in lower-
power applications they may be preferable. If an application demanded it, the sparse 
recovery algorithm could be implemented on a custom ASIC. Such a solution could achieve 
FFT performance that exceeds the best software/hardware combinations above, while 
simultaneously lowering power consumption. 

4.4 Analog solutions 

An interesting question is whether analog signal processing could relieve some of the 
pressure on COMS. In addition to increasing computational speed, another motivation for 
analog processing is the efficiency in terms of the number of computations performed per 
unit of power consumed. This could potentially enable a wide range of portable and power 
constrained applications. Interestingly, some areas of analog signal processing, including 
vector-matrix multiplication, analog filterbanIcs, Gaussian mixture model classifiers, and 
hidden Markov model classifiers have experimentally demonstrated at least a power 
efficiency improvement of 1000 over custom digital solutions [13]. 

COMS requires a physical implementation that solves constrained convex optimization 
problems. Analog solutions to such problems usually begin by creating an energy surface 
that is minimized by the physics of the analog computation; that is, the solution converges to 
the lowest energy state. One early formulation involves building Hopfield networks to solve 
linearly constrained optimization problems [14]; this allows us to envision several potential 
circuit implementations. Because we wish to solve a large set of coupled ODEs (in time), 
often approximating a PDE, we have different methods for modifying and accelerating the 
convergence of these analog systems. In particular, the time constant(s) for system 
convergence can continually vary because of global convergence of the analog physical 
system. 

For many COMS problems, scaling the constrained linear optimization solvers will be 
challenging. In general, for m system inputs and n output variables, the physical solution 
typically requires O(nm) computations per iteration and requires O(nm) area to store the 

Page 46 



constraints. In the analog environment, the same area required to store the constraints 
performs the resulting vector-matrix multiplication, so a parallel, mesh-based architecture is 
fairly natural in these approaches. The challenges of scaling become clear for an image or 
signal reconstruction problem where one might have m = 10,000 inputs (e.g., samples) and n 
= 1,000,000 unknowns (e.g., a 1-megapixel image or a few milliseconds of a 1-GHz 
bandwidth signal). This would result in over 10Gflops of computations per iteration and 
require over 10 9  analog storage elements. The resulting IC would be similar to a 40Gbit 
EEPROM storage device, which is close to the currently available (i.e., the 4Gbyte iPod 
Shuffle); therefore the approach would seem to be possible with the best technologies 
available over the next 2-3 years. The challenge is to develop algorithms over the next few 
years that would take advantage of this direct EEPROM-like scaling for the entire 
constrained linear optimization. 

One would imagine two initial stages of development before scaling an architecture to these 
sizes. First, one would develop small constrained optimization algorithms that can be 
compiled in current analog signal processing hardware, namely the Large-Scale Field 
Programmable Analog Arrays that have been developed at the Georgia Institute of 
Technology [13,15]. Second, one would develop a moderate constrained optimization 
algorithm, for example to recover a signal of length 4,096 (which can be easily generated by 
existing hardware) from 128 samples. In this case, the number n x m of flops per iteration 
and memory elements is about 512,000. Ideally, one would gain fundamental insight from 
these studies to develop architectures capable of reconstructing higher-dimensional signals. 

4.5 Conclusions 

Just looking at digital implementations for the moment, a rough and optimistic estimate of 
the performance gains achievable can be obtained by supposing that the relative gains 
achieved by Kim et. al. for L1RLS can be duplicated for DS, and that a Cell-based FFT 
implementation can maintain the 36Gflop performance quoted above. Combining these 
factors yields a speedup of 6000*35.9/130* 0.22 = 7531x! Although we concede that this 
improvement seems quite optimistic, this helps supporting the claim that COMS 
computations that now take minutes with 1 1 -MAGIC can ultimately be performed in seconds 
or even fractions of seconds with currently available hardware. 

With improvements in hardware performance that are certain to come over the few years to 
come, that speedup factor may not be so optimistic after all. 
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