Equations of Motion for Dynamically Stable Mobile Manipulators

Neil Dantam Pushkar Kolhe Mike Stilman*

December 14, 2010

1 Introduction

This paper derives the equations of motion for Sparky, a mobile manipulator robot show in Fig. 1. These equations are used in the manipulation analysis, simulation, and experiments of [1].

2 Newton-Euler Equations

Assumptions

- Coulomb Friction
- Nonzero velocity in x
- Constant acceleration a
- Zero angular acceleration and angular velocity of link and object
- Wheels are very light and have a negligible moment of inertia

Figure 1: Mobile Manipulator Robot Sparky

Symbol	Meaning
N, L, G, O	point
θ, ϕ, γ	angle
$r_{\star}, e_{\star}, l_{\star}, \ell$	length
m_{i}	mass of body i
M	mass of box
a	linear acceleration
F_{\star}, N_{\star}	force
α	angular acceleration
M_{A}	moment about point A
T	Torque
μ_{\star}	coefficient of friction

Table 1: Summary of Symbols

Wheel Free Body Diagram in Fig. 2(a).

$$
\begin{array}{r}
\sum F_{x}=2 m_{1} a=N_{x}+F_{W x} \\
\sum F_{y}=0=-N_{y}-F_{g 1}+F_{W y} \\
\sum M_{N}=2 J_{W} \alpha_{w}=0=-T+r_{1} F_{W x} \tag{3}
\end{array}
$$

where m_{1} is the mass of each wheel (there are two).

Link Free Body Diagram in Fig. 2(b).

$$
\begin{array}{r}
\sum F_{x}=m_{2} a=-N_{x}-F_{L x} \\
\sum F_{y}=0=N_{y}-F_{g 2}+F_{y 2}-F_{L y} \\
\sum M_{N}=0=T-r_{2}\left(\sin \phi F_{g 2}+\cos \phi m_{2} a\right)+l_{2}\left(\cos \theta F_{L x}-\sin \theta F_{L y}\right) \tag{6}
\end{array}
$$

Object Free Body Diagram in Fig. 2(c) and Fig. 2(d).

$$
\begin{array}{r}
\sum F_{x}=M a=F_{L x}+F_{O x} \\
\sum F_{y}=0=F_{L y}-F_{G}+F_{O y} \\
\sum M_{G}=0=-F_{L x} l_{L}-F_{L y} \frac{e_{x}}{2}+F_{O y} \frac{e_{x}}{2}-F_{O x} \frac{e_{y}}{2} \tag{9}
\end{array}
$$

Where l_{L} is the y distance from L to G.

3 Equation Analysis

Expression for $F_{L x}$

1. Start with Eq. 7.

$$
M a=F_{L x}-F_{O x}
$$

2. Replace $F_{O x}$ with Coulomb friction.

$$
M a=F_{L x}-\mu_{3} F_{O y}
$$

Figure 2: Free-Body Diagram. (b) represents the robot by a single torso link. (c) refers to an object being pushed using SP. (d) presents the object for LP and LL. Thick lines indicate the surfaces of the object that are in contact with the robot.
3. Replace $F_{O y}$ using Eq. (8).

$$
M a=F_{L x}-\mu_{3}\left(F_{G}-F_{L y}\right)
$$

4. Reorder

$$
\begin{equation*}
a=\frac{F_{L x}-\mu_{3}\left(F_{G}-F_{L y}\right)}{M} \tag{10}
\end{equation*}
$$

This Eq. (10) is Eq. (1) in [1].

Initial Expression for a

1. Start with Eq. (4) and reorder terms.

$$
F_{L x}=-m_{2} a-N_{x}
$$

2. Replace N_{x} using Eq. (1).

$$
F_{L x}=-m_{2} a-2 m_{1} a+F_{W x}
$$

3. Replace $F_{W x}$ using Eq. (3) and factor.

$$
\begin{equation*}
F_{L x}=-a\left(2 m_{1}+m_{2}\right)+\frac{T}{r_{1}} \tag{11}
\end{equation*}
$$

This Eq. (11) is Eq. (2) in [1].

Expression for $F_{L y}$ Take Eq. (6) and reorder.

$$
\begin{equation*}
F_{L y}=\frac{T-r_{2}\left(\sin \phi F_{g 2}+\cos \phi m_{2} a\right)+l_{2} \cos \theta F_{L x}}{l_{2} \sin \theta} \tag{12}
\end{equation*}
$$

This Eq. (12) is Eq. (3) in [1].

Final Expression for a

1. Take Eq. (10) and replace $F_{L y}$ with Eq. (12).

$$
a=\frac{F_{L x}-\mu_{3}\left(F_{G}-\frac{T-r_{2}\left(\sin \phi F_{g 2}+\cos \phi m_{2} a\right)+l_{2} \cos \theta F_{L x}}{l_{2} \sin \theta}\right)}{M}
$$

2. Distribute M.

$$
a=\frac{F_{L x}-\mu_{3} F_{G}}{M}+\mu_{3} \frac{T-r_{2}\left(\sin \phi F_{g 2}+\cos \phi m_{2} a\right)+l_{2} \cos \theta F_{L x}}{M l_{2} \sin \theta}
$$

3. Replace $F_{L x}$ with Eq. (11).

$$
a=\frac{-a\left(2 m_{1}+m_{2}\right)+\frac{T}{r_{1}}-\mu_{3} F_{G}}{M}+\mu_{3} \frac{T-r_{2}\left(\sin \phi F_{g 2}+\cos \phi m_{2} a\right)+l_{2} \cos \theta\left(-a\left(2 m_{1}+m_{2}\right)+\frac{T}{r_{1}}\right)}{M l_{2} \sin \theta}
$$

4. Factor a.

$$
a=\frac{-a\left(2 m_{1}+m_{2}\right)}{M}+\frac{\frac{T}{r_{1}}-\mu_{3} F_{G}}{M}-\frac{a \mu_{3} l_{2} \cos \theta\left(2 m_{1}+m_{3}\right)}{M l_{2} \sin \theta}+\mu_{3} \frac{T-r_{2}\left(\sin \phi F_{g_{2}}+\cos \phi_{2} a\right)+l_{2} \cos \theta \frac{T_{1}}{r}}{M l_{2} \sin \theta}
$$

5. Solve for a.

$$
\begin{equation*}
a=\frac{\frac{\frac{T}{r_{1}}-\mu_{3} F_{G}}{M}+\mu_{3} \frac{T-r_{2}\left(\sin \phi F_{F_{2}}+\cos \phi_{2} a\right)+l_{2} \cos \theta \frac{T_{1}}{r}}{M l_{2} \sin \theta}}{1+\frac{2 m_{1}+m_{2}}{M}+\frac{\mu_{3} l_{2} \cos \theta\left(2 m_{1}+m_{2}\right)}{M l_{2} \sin \theta}} \tag{13}
\end{equation*}
$$

Eq.(13) gives an expression for acceleration based on the control input parameters θ, ϕ, T.

4 Push-Pull Comparison

Assumptions

- Square Box
- Point L is at top corner of box opposite to O

Derivation

1. Take Eq. (9) for square box with corner contact

$$
0=F_{o y} \ell-F_{o x} \ell-F_{L y} \ell-F_{L x} \ell
$$

2. Divide through by ℓ and shift $F_{L y}$

$$
F_{L y}=F_{o y}-F_{o x}-F_{L x}
$$

3. Pushing Case
(a) Replace $F_{O x}$ with Coulomb friction

$$
F_{L y}=F_{o y}\left(1-\mu_{3}\right)-F_{L x}
$$

(b) Consider an infinitesimal increase in pushing $F_{L x}, d F$, whose sign is negative because it exerts a negative moment.

$$
\begin{equation*}
F_{L y}=F_{o y}\left(1-\mu_{3}\right)-F_{L x}-d F \tag{14}
\end{equation*}
$$

4. Pulling Case
(a) Replace $F_{O x}$ with Coulomb friction

$$
\begin{equation*}
F_{L y}=F_{o y}\left(1+\mu_{3}\right)-F_{L x} \tag{15}
\end{equation*}
$$

This Eq. (15) is Eq. (12) in [1].
(b) Consider an infinitesimal increase in pushing $F_{L x}, d F$, whose sign is positive because it exerts a negative moment.

$$
\begin{equation*}
F_{L y}=F_{o y}\left(1+\mu_{3}\right)-F_{L x}+d F \tag{16}
\end{equation*}
$$

References

[1] P. Kolhe, N. Dantam, and M. Stilman. Dynamic Pushing Strategies for Dynamically Stabile Mobile Manipulators. In 2010 IEEE International Conference on Robotics and Automation, 2010. Proceedings, 2010.

