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I. QUASI-NEWTON ALGORITHMS FOR CONSTRAINED 
NONLINEAR PROGRAMMING (M. S. Bazaraa) 

In this report, an algorithm for solving equality constrained nonlinear program-

ming is presented. The algorithm performs two major computations. First, the 

search vector is determined by solving a quadratic programming problem implicitly 

through a suitable projection. Second, a step size along the search vector is 

determined by extending the inexact line search procedure of Armijo in such a 

way to handle nondifferentiability of the descent function. Theorems showing 

global convergence of the proposed algorithm are given without proof. The details 

will be provided in a forthcoming research manuscript. 

The following research topics are currently under investigation: 

1. Establishing local convergence properties of the proposed algorithm under 

suitable choices of the quadratic form that determines the search vector. 

A superlinear rate of convergence is anticipated in the case where the sec-

ond order sufficiency conditions hold. 

2. Generalizing both global and local convergence results from equality cons-

trained problems to problems involving both equality and inequality cons-

traints. 

3. Computational testing of the proposed algorithms using test problems avail-

able from the literature of nonlinear programming. 
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1.2 Algorithm for Equality Constrained Problems  

Cmsiderthefcalowingnmainearprogrammihgprotdem,wherefandhi are contin- 

ously differtiable functions on R
7

. 

P : Minimize 
	

f (x) 

Subject to 
	

h.(x) = 0 
	

i=1,....,t 

In this section, a description of the proposal algorithm is given. The search 

vector is computed by solving a quadratic programming problem implicitly in 

terms of a suitable projection matrix. An inexact line search is then performed 

to compute the step size. 

1.2.1 Description of the Algorithm 

Initialization  

Choose r > 0, select a starting point xl , let k=1, and go to the main step. 

Main Step  

1. Choose a positive definite matrix B k  and compute pk  and qk  as follows, 

where h denotes the constraint vector h1 ,....,heand Vh denotes thenxt 

gradient matrix whose ith column is Vh.: 

Pk = 	- Vh(xk )[Vh(xk ) t  Bk l  Vh(7 )l -  xk 	Vh(xk ) t 	Vh(xk ) 

—1 
qk  = Blo  Vh(xk)[Vh(xk ) t  Bk 1 	1 Vh(xk)] 	h(xk ) 

If pk  = qlk = 0, stop; xk  is a Kuhn-Tucker point. Otherwise let 

d
k 

= p
k 

+ q
k 

and go to step 2. 

(2.1) 

(2.2) 
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2. Compute the smallest nonnegative integer y satisfying: 

(Pr (xk  + (1/2) Ydk) - 41.(xk ) < (1/3)(1/2) (Pr xk' did 
	

(2.3) 

where, 

0r  (x)= f(x) 	rl Ihi (x)1 
i=1 

(i) r (xk
, d

k
) = Vf(xk) t  d

k 
- r 	lh(xk )I 

i=1 

(2.4) 

(2.5) 

Let xic4.1  = x k  + (1/2) Ydk , replace k by k41, and go to step 1. 

The algorithm can be interpreted as an exact penalty function method that attempts 

to minimize the single unconstrained penalty function P r (x 	
1

c) 
i=1 

which under suitable conditions, results in a solution to Problem P. At a given 

point xk , the search vector dk  is computed . If dk  = 0, the solution procedure 

is stopped with the conclusion that xk  is a Kuhn-Tucker point. Otherwise, dk 
is 

a descent direction to the penalty function (1) r  provided that r > Iv.1 for 

i=1,..., ,e,wherev.l  
is the Lagrangian multiplier associated with the ith equa- 

lity constraint. Armijo's inexact line search is then used to calculate a step 

size, and the process is repeated starting with the new point. 

1.2.2 Computational Expedients 

The calculation of the vector d
k 

can be simplified as follows: 

d
k 

= -u
o 

+ U C 
	

(2.6) 

U = (ul , u2 ,...,ut ] 	 (2.7) 

The vectors u0 , 	 and C are determined by solving the following systems 



of linear 	equations: 

Bk  u o  = Vf(xk) 

Bk  u i  = Vhi (xk ) 

A C = Vh(xk) uo  - h(xk ) 

where, 

A = Vh(x ) 	U 

i=1,...,t 

4 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

In order to perform the above computations, the symmetric positive definite 

matrix Bk 
is decomposed into the form LL

t , where L is a lower triangular matrix 

with positive diagonal elements. Utilizing this factorization, the vectors 

uo ,....,ut  can be easily determined by forward and then baekword substitu- 

tion. Now, to compute C, the matrix A is determined. Here, the ijth element Aid 

 ofAisgivenbyVhi etric,Aij is computed for 

and j > i. Furthermore, A is itself positive definite, then it can 

^^t be factorized in the form LL. The vector C is calculated by solving the system 

^^t 
LL c = Vh(xk )t uo  - h(xk ). Now the search direction dk  is at hand. 
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1.3 Global Convergence Properties  

In this section, two results involving global convergence of the algorithm are 

given. The first shows that each accumulation point is a Kuhn-Tucker solution 

to the original problem. The second result establishes convergence of the 

whole sequence if an accumulation point satisfies a suitable second order suf-

ficiency condition. 

Theorem 1 

Consider the algorithm described in Section 1.2.1. Let f and hi  for i=1,...,t 

be continuously differentiable. Suppose that the family of matrices {BO is 

chosen to be uniformly positive definite. Furthermore, suppose that the sequence 

of generated points is contained in a compact set and that the penalty parameter 

r is such that r > IICk 11 for each k where C
k 

is the Lagrangian multiplier 

vector computed in (2.10). Then either the algorithm stops in a finite number 

of iterations with a Kuhn-Tucker point to problem P or else generate an infinite 

sequence lxid of which any accumulation point is a Kuhn-Tucker point for Problem 

P. 

Definition 1  

A feasible solution x to Problem P is said to satisfy the second order sufficiency 

optimality conditions if Vh(x) has full rank and if there exists a vector v such 

that: 

1. Vf(x) + Vh(x) v = 0 

2. The Hessian of the Lagrangian function f(x) + v t h(x) with respect to x is 

positive definite on the tangent plane {y Vh(X)ty= 0}. 



Theorem 2  

Let the accumulation point in Theorem 1 satisfy the second order sufficiency 

optimality condition. Then the whole sequence {xk} converges to x. 

6 



II. GENERIC OPTIMALITY CONDITIONS AND NONDIFFERENTIABLE 
OPTIMIZATION (J. E. Spingarn) 

Monotone-type properties of the subdifferentials of nonconvex nondifferen- 

tiable functions were studied. The class of "lower-C1" functions was char-

acterized as that class of locally Lipschitz functions whose subdifferentials 

are "strictly submonotone." The proximal point algorithm for solving equations 

of the form 0 E T(x) with T maximal monotone, was extended to "maximal strictly 

hypomonotone" mappings. This was shown to lead to a "proximal minimization" 

method for lower-C 2 
functions. 

Finite-dimensional variational problems were studied from a generic point 

of view. It was shown that for most problems in a given class, every solution 

is "strong" in a certain sense. The results were applied to a family of con-

vex programming problems in order to obtain second-order conditions that are 

necessary for optimality for almost all problems in the family. 

7 
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11.2 Research Summary 

Our research in nondifferentiable optimization has shown that concepts 

related to "monotonicity"of a multifunction play a natural role in the analysis 

of nondifferentiable functions. Further, we have shown that the "proximal 

point algorithm", which makes use of monotone mappings to solve convex program-

ming problems, can be generalized to mappings that are not monotone, and hence 

can be applied to nondifferentiable optimization problems. 

Recall that a multifunction T : Rn++Rn  is monotone provided that 

<K 1  - x2 , yl  - y 2 > > 0 whenever y 1  6 T(x1) and y2  6 T(x2 ). The graph of T is 

the set G(T) = {(x, y) E Rn  x Rn : y 6 T(x)}. T is maximal monotone if G(T) 

is not properly contained in the graph of another monotone mapping. If T is 

maximal monotone, the proximal point algorithm provides a method for finding 

x 6 R
n 
with the property that 0 6 T(x). 

The principal reason why monotonicity plays an important role in convex 

programming is that the subdifferential of a convex function is a maximal mon- 

otone mapping. That is if f: Rnr  R is convex, then the mapping Df: R
n +->- 

Rn 

defined by 

Bf(x) = {y: f(x l ) > “x) + 	- x, y> VIC c 

is maximal monotone. Since a point x which satisfies 0 c af(x) is a global 

minimizer for f, the proximal point algorithm provides a method for minimizing 

convex functions. Maximal monotone mappings also arise in a natural way from 

saddle functions. A saddle function is a function L(x, y) with the property 

that L is convex in x for fixed y and concave in y for fixed x. For such 

functions, the mapping T(x, y) = 3 xL(x, y) x - 3 3,L(x, y) is maximal monotone. 

Since a point (x, y) with 0 c T(x, y) is a saddle point for L, the proximal 

point algorithm thus provides a method for finding saddle points for convex-

concave functions. Rockafellar has demonstrated the close tie between this 
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method and the important "method of multipliers" for solving constrained con-

vex programming problems. 

Using the convex (monotone) case as a model, we investigated the class of 

"lower-C
1" functions and characterized it In terms of properties of the 

subdifferential mapping. 	This investigation was made possible by the recent 

introduction by Rockafellar and Clarke of the generalized gradient of a non-

differentiable nonconvex function. Clarke and Rockafellar have shown that the 

notion of the subdifferential of a convex function has a natural extension to 

much broader classes of functions. Clarke carried out this program for lower 

semicontinuous functions, and Rockafellar extended the theory to arbitrary 

extended real-valued fUnctions. In the locally Lipschitz case, which is the 

only case which concerns us here, the subdifferential of f: Rn÷R is defined 

to be the set-valued mapping 3f: Rn:Rn  obtained by taking 3f(x) to be the 

convex hull of the set of all limit noints of convergent sequences of the form 

Vf(xn
), where xn 

x and f is differentiable a t 
x
n
. This definition generalizes 

the definitdon given for the convex case. It is not hard to show that for a 

locally Lipschitz function f: Rn  4'R, f is convex if, and only if, 3f is monotone. 

A function f: R
n

--1, R is lower-C
1 if for every x E R

n there is a neighbor-

hood U of x, a compact set S, and a function g: U x S 4R such that 

(i) f(x) = max {g(x, s) : s c S} 	for all x c U 

(ii) g is continuous on U x S 

(iii) gx  is continuous on U x S 

Because this class of functions arises through the simple operation of taking a 

maximum over a compact set, it is clear that this class of functions is of 

interest in optimization theory; it is precisely through the operation of 

taking maxima that nondifferentiable functions are most often encountered. 
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Hence, it is highly desirable to have a characteristization of such functions 

in terms of their subdifferential mappings. We have shown that a locally Lip-

schitz function f is lower-C
1 if, and only if, 2f is "strictly submonotone". 

of is strictly submonotone  iff 

lim inf 	<xl 3c2' YI - 	Y2>  > 0  

x 	
lxi 	x2i 

1 

y. E Df(x. 1)  

for every Tc. This result is proven in [4], where we also present several other 

properties of lower-C
1 functions and relate these to properties that have 

been studied by other researchers in the area. Another property of lower-C
1 

functions, which we showed to be equivalent to f being lower C
1 
 when f is 10n-

ally Lipschitz, is the following uniform lower differentiability property: 

f is lower-C
1  if, and only if, for any x c R

n
, y c R

n , and c > 0, there exists 

> 0 such that 

f(x-' + ty) > f(x') + t I f(xf)  (y) - et 

whenever 1 	- x! < 6 and 0 < t < 6, 

where 11) 9f(x4)  (.) denotes the support function of Df(x 1 ). 

Rockafellar has recently obtained some related results. He characterized 

the subdifferentials of "lower-C
2" functions, showing that f is lower-C

2 

iff 2f is "strictly hypomonotone". 

This class of lower-C
2 functions, as well as the strict hypomontonicity 

property which characterizes their subdifferentials, has played a central role 

in our recent research. We define f: R
n 

RY001 to be  lower-C
2 

if f = g - h 

for some lower semicontinuous function g: R
n
-4-101{00} and some C

2 
function h. 

T is strictly hypomontone  provided for every bounded setKc::Rn  there is k > 0 

such that T + kI is monotone on K. T is maximal strictly hypomonotone pro- 
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vided T is strictly hypomonotone and the graph of T is not properly contained 

in the graph of another strictly hypomonotone mapping. 

For maximal strictly hypomonotone mappings T, we have developed a locally 

and linearly convergent algorithm for solving equations of the form 0 E T(x). 

These results will appear in [1]. In particular, taking T = af, the algorithm 

can be used to minimize lower-C
2 
functions. The algorithm is an extension 

of the proximal point method which solves 0 E T(x) in the case where T 

is a maximal monotone mapping. 

In the maximal monotone case, the known proximal point algorithm works 

because of the fact that for any c > 0, the proximal mapping  P(x) = (I+cT) 1 (x) 

is single-valued and nonexpansive. Starting from an initial point x C R n , 

the algorithm generates a sequence by the rule x16.1  = P(xk). 

To extend the algorithm to cover maximal strictly hypomonotone mappings, 

several obstacles had to be overcome. First of all, in the hypomonotone case, 

the proximal mapping need no longer be single-valued. This difficulty was over-

come by demtnstrating the possibility of modifying the proximal mapping to make it 

single-valued in the vicinity of a solution, so long as the constant c is not 

too large. Another problem is that the basic algorithm, if defined as in 

the monotone case, need not converge even locally, unless a strong regularity 

assumption is satisfied at the solution. The regularity condition which we 

require to establish the local linear convergence of our algorithm asserts 

the differentiability of T
1 at 0 and the monotonicity (positive semidefin-

iteness) of that derivative. This is a very strong assumption, and perhaps 

one which might seem unnatural. It would, after all, be pointless to esta-

blish convergence of an algorithm under hypotheses that are so strong that 

they cannot be expected to hold. For this reason, it is fortunate that we 

were able to obtain results establishing the generic necessity  of the 

required regularity condition. In other words, we showed that for "most" 
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problems (in a certain rigorous sense), the required regularity condition is in 

fact satisfied at all solutions. 

The generic necessity of the regularity hypothesis was established using a 

result of Mignot stating that a maximal monotone mapping possesses a derivative 

almost everywhere. This is in contrast to our previous work on generic condi-

tions in (differentiable) nonlinear programming j3, 5] where the principal 

tools for proving genericity came from differential topology; e.g., Sard's 

Theorem and transversity. 

In addition to our work on nondifferentiable optimization, we have con-

ducted research on the generic properties of variational problems. The results 

of this work have been written up in [2]. If T: R II :t- Rn  is a maximal monotone 

mapping and Cc= R
n 
 is a convex set, the associated variational problem  is 

to find z E 
Rn 

such that 

0 E T(z) + Nc (z), 

where N (z) denotes the normal cone to C at z. We showed that if T and C 

satisfy a certain Lipschitz condition, then generically, all solutions z 

are "strong" solutions in the sense that 

0 6 T(z) + relint N c (z). 

The condition we imposed on C is that the normal cone mapping N c (•) satisfy 

the following Lipschitz property: 

for all z E C, there exists, p z  > 0 and a neighborhood 

Uz 
of z such that dist(y l , N (z)) < 
	

z11371 1 

whenever z' 6 dz , y' C N (z 1 ). 

This condition is satisfied for example, if C is polyhedral (in which case 

we can always take p z  = 0), or a manifold-with-corners. 
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We were able to proved the following generic result: 

THEOREM. 	If C is a closed convex set satisfying the above Lipschitz condition 

and T is maximal monotone and locally Lipschitz on an open set containing C, then 

except for w c •

- 

Rn belonging to a set of measure zero, every z satisfying 

W

- 

 6 T(z) 	Nc (z) 

also satisfies 

w E T(z) + relint N (z). 

We were also able to prove a further result which has consequences regarding 

the generic stability of solutions to a variational problems: 

THEOREM. 	Let C and T be as in the previous theorem. Except for w E Rn  in 

a set of measure zero, w c T(z) + N (z) implies that S
-1 = (T+N )

-1 
is 

differentiable at w and the derivative A satisfies kernel (A) = L (Z)
1 and 

range (A) = L 	where'L (x) = Ey E R
n : y • y' = 0, y' c N (x)} 

These results have interesting consequences for the family 

minimize f(x) - x•v subject to g i (x) < ui , 

i = 1,...,m, and x E D 

of convex programming problems indexed by (v, u) E R n  x Rm . Here, the functions 

f, gi ,...,gm  are finite-valued continuously differentiable convex functions 

whose derivatives locally satisfy a Lipschitz property, and D is a closed 

convex set satisfying the Lipschitz property. If we define 

L(x,y) = f(x) + Ii=1 Y.g.(x), 

we prove the following: 

THEOREM. 	Suppose that D is a polyhedral convex set. Except for (v,u) 

belonging to a set of measure zero, we can make the following assertion. If 

x is a solution to (P ), if F is the unique face of D such that x c relint F, 
vu 

and if y E R
+ 

satisfies the Kuhn-Tucker conditions (for almost all (v,u), such 

i y will in fact exist), then 



{V(gi lF)(X) : i c 1(7)} is linearly independent 

- - H = V
x
2  L(x,y) satisfies VHC > 0 whenever 

0 0 C c <F> and C.Vg i (X) = 0 i s I(X) 

where 1(x) = {i : g i (X) = ri i }; 	V(gi lF)(X) denotes the gradient at x of the 

restriction of gi  to F, or equivalently, the projection of Vg i (X) onto <F>; 

2 - - 	 - - 
and V

x
L(x,y) is the Hessian of L at (x,y) with respect to x. 

14 
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ON GENERIC PROPERTIES OF VARIATIONAL PROBLEMS 

J. E. Spingarn 

School of Mathematics 
Georgia Institute of Technology 

Atlanta, Georgia 
U.S.A. 

Finite-dimensional variational problems are studied from a 
generic point of view. It is shown that for most problems 
in a given class, every solution is "strong" in a certain 
sense. The results are applied to a family of convex pro- 
gramming problems in order to obtain second-order conditions 
that are necessary for optimality for almost all problems in 
the family. 

INTRODUCTION 

In [6], [7], and [8], we investigated optimality conditions in nonlinear pro-
gramming from the generic point of view. 	 viewpoint, the important 
objects for study are not individual problems, but rather families of problems; 
one makes assertions about "typical" problems in a given family of problems. In 
these previous investigations, our principal tool was Sard's Theorem and its 
generalizations. 

In this paper, we obtain similar results, but restrict ourselves to convex pro-
gramming. The convex case is simpler, but illuminating. We will show that for 
convex programming problems, results similar to those of [6], [7], and [8] may be 
obtained without using Sard's Theorem. Instead, we rely on a result due to 
Mignot [1] concerning the differentiability of maximal monotone mappings. Using 
this result, some generic assertions about variational problems are establisshed 
which are then applied to convex programming. 

The relationship between variational problems and convex programming which we 
exploit here is well known. For more insight into this relationship, we refer 
the reader to [2] and [5]. 

PRELIMINARIES 

A multifunction T : Rn  :Rn  is a set-valued mapping. T is differentiable at x 
if T(x) is single-valued and there is a linear mapping A such that for every 
c > 0, 0 # T(x+h) c T(x) + A(h) + elhIB for all h in a neighborhood of 0, 
where 8= {z : 1z151}. The inverse of T is the multifunction defined by 

T-1 (y) = {x : y E T(x)}. If C c R
n 

is a closed convex set, x E C, we define 

N (x) = {y E Rn  : y • (x'-x) 5 0, Vx '  E C} 

LC(x) = {y E R n  : y • y' = 0, by' E N c (x)}. 

The relative interior of C, relint C, is the interior of C relative to the 
smallest affine flat containing C. The distance from x to C is denoted by 

dist(x,C). A multifunction T : R n  i Rn  is monotone if <x-x',y-y'> ?_ 0 when-
ever y c T(x), y' E T(x'). T is maximal monotone if T cannot be properly 



extended to a monotone mapping. 

17 
VARIATIONAL PROBLEMS 

The variational problem associated with the maximal monotone mapping T :R n 	R 
n 

and the closed convex set C c R n  is to find z E Rn  such that 

(1) 0 E T(Z) 	N c (z). 

Theorem 1 shows that if T and C satisfy a certain Lipschitz condition then, 
generically, all solutions to (1) are "strong" solutions in the sense that 
"N (z)" can be replaced with "relint N c (z)". Theorem 2 gives further first-

order information about typical solutions to (1). 

The condition to be imposed on C is that the normal cone mapping N c (•) satisfy 
the following Lipschitz property: 

(2) for all z E C, there exists p z 	0 and a neigh- 

borhood Uz  of z such that dist(y',N c (z)) 

whenever z' E Uz , y' E N c (z'). 

This condition is satisfied, for example, if C is polyhedral (in whiz:J, case we 
can always take p z  = 0), a manifold-with-corners, or more generally a "cyrto-

hedron" (this refers to a class of piecewise smooth sets defined in Spin-an) [6]) 

THEOREM 1. 	If C is a closed convex set satisfying (2), and T is maximal 
monotone and locally Lipschitz on an open set containing C, then except for 

E R
n 

belonging to a set of measure zero, every Z satisfying 

(3a) w E T(2) 	Nc (i) 

also satisfies 

(3b) w E T(2) 	relint N c (z). 

The proof of Theorem 1 hinges on 

n 
LEMMA 1.(Mignot [1]). 	A maximal monotone mapping T : R 	R 	is either empty- 
valued or differentiable at all points z, except possibly for z belonging to 

a set of measure zero in R
n

. 

Proof of Theorem 1: 	By Rockafellar [4, Theorem 2], the multifunction T = 
N C  is maximal monotone. (In general, if T 1  and T2  are maximal monotone 

mappings on R n  such that relint dom(T 1 ) n relint dom(T 2 ) # 0, then T i +T 2 

 is also maximal monotone). By the symmetry in the definition, it follows that 

T
-1 

is also maximal monotone. By the Lemma, there is a measure zero set Q c R
n 

such that w E Q implies that either T
-1 (w) = 0 or T -1  is differentiable 

at w. 

Suppose W 	Q and (3a) holds. In order to produce a contradiction, let us 

assume that (3b) does not hold. For simplicity, we assume W = O. T -1  is 

differentiable at 0 _since 0 	Q (T-1 (0) # 0 because 0 E T(7)). Choose 
c T(i) + relint N c (z). Then t5/ E T(2) 	N (z) for 0 	t 5 1 by convexity. 



If A is the derivative of T
-1 
 at 0 then for any c > 0, 

(4) 	 0 # T -1 (6, ) C z + tA(Y) + ctB 
	 18 

for all t sufficiently small. But z E T -1 (tY) for 0 	t < 1, so 0 E tA( ..9) 
+ ctB. Cancelling t, and letting c approach zero, we see that A(y) = O. 

Now fix c > O. For each t, choose z
t 

E T
-1  (t;'). By (4), we have 

Izt -ir 5 Ertl 	for small t. 	It follows by (2) that 

dist(tY-T(z t ), N c (i)) 	 liElt11 t,-T(z t )I 	5 

where M = 0 is such that It5,-T(z t )1 s M for t near O. Since 51 - T(i) E 

relint N c (i) and -T(i) E N c (i)\relint N c (i), there is v > 0 such that 

dist(tY-T(i), N r (i)) 	vItI 	for t < 0 sufficiently small. 	If K is a 
Lipschitz cons -Ont for T near 2 then 

vItl 	dist(tY-T(i), N c (i)) 	dist(t■-/-T(zt ), N c (i)) + IT(z t )-T(i)l 

112CMItl 	KEItl 	and so v 	(pM + K)c. 	Since E may be chosen arbitrarily 

small and V > 0, this is a contradiction. 0 

,n 
THEOREM 2. 	Let C and T be as in Theorem 1. Except for w E K 	in a set 

of measure zero, (3a) implies that T -1  = ( T+N
c

)
-1 
 is differentiable at 0 and 

the derivative A satisfies 

kernel(A) = L c (i) 1 	and 	range(A) = L c (i). 

Proof: 	Fix W 	Q, where Q is the measure zero set defined in the proof of 

Theorem 1, and assume (3a). From the previous proof, we know T -1  is differ- 

entiable at W, z = T
-1 
 (W), and (3b) holds. Let A be the derivative of T-1  

at W. Again, for simplicity we take cr = O. 

For any w E L c (i)' sufficiently small, it follows from (3b) that i E T -1 (w), 

which clearly implies that Lc (i) 1  c kernel(A). 	Fix u E yi), u # O. We 

will show that Au #0. Suppose instead that Au = O. Then for any c > 0, for 

all t sufficiently small, 	0 # T (tu) c z + ctB. 	For each such t, 

choose z t  E T
-1 
 (tu). Also, choose yt  E N c (z t ) such that to = T(zt ) 	yt . 

By (2), we have dist(y t ,N c (i)) 	P2Izt-2 11Y0 	p2Etlyt l 	for t suffi- 

ciently small. 

Let 7 denote orthogonal projection onto L c (i). Then 

IT(z t ) - T(i)1 	= 	Itu - yt  - T(2)I 

In(tu - y t  - T(i))I 

= 	ltu - n(yt )1 

tlul - 17(y t )r. 

17(y01 	< dist(yt ,Nc (i)) s 11 2 ctlyt I 

5 p2 Et(Itur+IT(zt )l) 5 p2 ctM 

where M is some bound for the quantity in parentheses, for t in some 
neighborhood of O. Hence, 	IT(z t ) - T(Z)I 	> t(lul - pEM). 	This shows that 

Now, 



IT( Z t) 	T( 2 )I 	1U1 	1-1 2 EM  
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holds for all t sufficiently near zero. Since c can be chosen arbitrarily 
small, this contradicts the Lipschitz property of T. Thus no such u exists, 

and we must have L (i) I  = kernel(A). 

Suppose next that Au 	Lc (i) for some u. Then v'Au < -u'Au for some 

0 # v ( L (i) 1 , and hence (v+u)'A(v+u) = (v+u)'Au = v'Au+u'Au < O. However, 

A, being the derivative at W of the monotone mapping T
-1 

must be positive 
semidefinite. That is, we must have (v+u)IA(v+u) 	O. This contradiction shows 
that range(A) c L c (2). By a dimension argument, it is clear that we must 

actually have range(A) = L c (2). 0 

CONSEQUENCES IN CONVEX PROGRAMMING 

Consider the parametrized family 

vu ) 
	

minimize f(x) - x•v subject to g i (x) - u i , 

i = 1,...,m, 	and x E D 

of convex programming problems indexed by (v,u) E R n  x Rm . Here, the functions 
f, g l ,...,gm  are finite-valued continuo,,b differentiable convex functions 

whose derivatives locally satisfy a Lipschitz property, and D is a closed 
convex set satisfying (2). Affine equality constraints could also be handled, 
but are omitted for brevity. 

Let us define 

L(x,y) = f(x) + 	yi g i (x), 

C = D x Rm  

T(x,y) = (Vf(x) + /7. 1  y i Vg i (x), ...,-g i (x),...). 

Since D satisfies (2), so does C. Also, T is maximal monotone and locally 
Lipschitz, so that the assumptions for Theorem 1 are satisfied. Hence, except 

for w = (v,u) E R n  x Rm  belonging to a set of measure zero, every z = (x,y) 
satisfying (3a) also satisfies (3b). The significance of this fact for the 
family (P vu ) can be seen from the following 

PROPOSITION 1. 	(3a) holds iff Z = (x,y) satisfies the Kuhn-Tucker conditions 
for (P 

vu
), namely 

(5a) Vf(x) - v + 	yi Vg i (x) E N D (x), 

g i (x) 5 u i , y i 	0, y i g i (x) = 0, 

and x E D 

while (3b) holds iff 

(5b) Vf(x) - v +2:T=1  y i Vg i (x) E relint N D (x), 

g i (x) < u i , y i 	0, 

y i  > 0 iff g i (x) < u i , i=1,...,m, 	and x E D. 



Proof: 	Similar to the proof of ([6], Lemma 3.1). 0 

Thus Theorem 1 implies that for "most" problems (P vu ): if x is a 

minimizer, and if there exists some y 	0 such that (x,y) satisfies the Kuhn- 
Tucker conditions (5a), then (x,y) also satisfies the strengthened conditions 
(5b). The following shows that the existence of such a y is also guaranteed 
for most problems 

20 

PROPOSITION 2. 	Except for (V,U) belonging to a set of measure zero, 
(PVU) 

has the property that if X is a solution then there exists y such that 
(x,y) satisfies the Kuhn-Tucker conditions (5a). 

Proof: 	Let K denote the set of u E Rm  such that {x E D: g i (x) 	..., 

g
m
(x) 	um )  is nonempty. For any u E int K, the Slater condition holds for 

(Pvu)* By ([3], Theorem 28.2), this implies that a Kuhn-Tucker vector exists for 

(P 
vu 
 ) so long as the infimum in (P

vu 
 ) is not -co. Thus if u E int K, v E Rn , 

and x solves (P
vu 
 ), then (x,y) satisfies (5a). Since the boundary of K is 

of measure zero, the proof is complete. 0 

According to Theorem 2, the mapping T
-1 

= (T+Nc )
-1 

is differ2htiable at almost 

all w = (v,u) E R n  x Rm . By Proposition 1, 	T-1 (v,u) is the set of all „klirs 

(x,y) satisfying the Kuhn-Tucker conditions (5) for the problem (Fvu)* The 

differentiability of T -1  at (v,u) can thus be translated into an assertion 

about the sensitivity of (x,y) to changes in (v,u). 

The assertions in Theorem 2 concerning the properties of the derivative of T -1 

are more difficult to relate to the family ( 
Pvu)*  We will do this only for the 

case where D is polyhedral convex. In this case, it is clear that C = D x RT 
is also polyhedral convex. Suppose that w = (7e,5) and z = (x,y) satisfy 

the conclusions of Theorem 2. In other words, assume that T -1  = (T+Nc ) -1  is 

differentiable at W, z = T -1 (W), and the derivative A satisfies 

(6a) kernel(A) = L c (i) 1  

(6b) range(A) 	= Lc (i) 

and also (by the proof of Theorem 1), 

(6c) w E T(i) 	relint N c (i). 

The point z lies in the relative interior of a unique face G of C. Since 

for any z E relint G, L c (z) is simply the subspace of R n  x Rm  parallel to 

G, it makes sense to introduce the notation L (z) = <G>. For z E relint G, 

N (z) is also independent of z, so it makes sense to introduce the notation 

N (z) = N (G). Note that relint N c (G) is the interior of N c (G) relative to 

<G>1 . Let Tr denote orthogonal projection onto <G>. 

We will show next that (6) implies that the function n o T : G 	<G> has a 
nonsingular derivative at 2. For simplicity, consider only the case W = O. 
Since n(W) = ir(T(2)), we have 7T(T(2)) - T(2) E relint N (G). 	For z E G 

sufficiently close to I, since T is continuous and by (6c), we have 

7(T(Z)) - T(Z) E N (G). 	Equivalently, z E T
-1

(1T(T(z))) for all z E G suffi- 



ciently near Z. On the other hand, if z e T
-1
(u) with u E <G> and z E G 

near z, then clearly u = 7(T(z)). This demonstrates that for u E <G> and 

z E G in a neighborhood of 2, z E T
-1 (u) if and only if z E (TI0T)

-1
(u). But 

we know that T
-1  is differentiable at W = 0, with . the restriction of the 

derivative to <G> being a nonsingular mapping : <G> 	<G> by (6a) and (6b). 

Hence (70T)
-1 

considered as a map : <G> 	G is differentiable at 0, with 
nonsingular derivative. It is an easy consequence of this that Tr o T 	G.+<G> 
is also differentiable at 2, with a nonsingular derivative. It is now not 
difficult to prove the following consequence of Theorem 2: 

THEOREM 3. 	Suppose that C is a polyhedral convex set. Except for 6;070 
belonging to a set of measure zero, we can make the following assertion. If 
X is a solution to (P 

vu
), if F is the unique face of D such that 

c relint F, and if .9 c RT satisfies (5b) (for almost all 61,6), such ;I 
will in fact exist by Propositions 1 and 2 and Theorem 1), then 

(7a) {V(g i lF)(X) : i E I(X)} is linearly independent 

(7b) H = V2 L(R,j;) satisfies cilic > 0 whenever 

0 # c E <F> and c.Vg i (X) = 0 Vi E I(R) 

where I(X) = 	: g 1 (R) = 	v(g i lF)(X) denotes the gradient at X of the 

restriction of g i  to F, or equivalently, the projection of vg i (R) onto <F>; 

and VL(X,,Y) is the Hessian of L at (R,.i) with respect to X. 
X 

Proof: 	If we let E= {yERT : y i  > 0 iff iEI(X)}, then G = F x E is 

the unique face of C = D x RT that contains z = (R,Y). We have already seen 

that 7°T, restricted to G, has a nonsingular derivative at Z. The fact that 

(7a) and (7b) hold is a direct consequence of the nonsingularity of this 
derivative. The argument, being identical to one found in the proof of ([8], 
Theorem 2), is omitted. D 
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