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The Generation Capacity Planning Problem 

The electric utility industry faces some of the most challenging 

planning problems to be found. Implicit in its franchise is an obliga-

tion to meet the public's demand for electric energy, a demand whose 

growth has been quite rapid in the past four decades and shows little 

sign of declining. In addition the industry is extremely capital inten-

sive and rapid expansion of capacity creates enormous requirements for 

investment funds. 

Thus, electric utilities must not only correctly determine what the 

future demand for energy will look like, but also determine a sequence of 

expansion projects and feasible methods for their funding. Given the mag-

nitude of investment and operating costs, even slight improvements in the 

expansion plan can impact significantly the consumers of electric energy 

and the industry's stockholders. It isn't surprising, then, that several 

different methods have been proposed for use by utilities in capacity 

expansion studies. 

The research reported here focuses on the generation capacity plan-

ning problem and considers it independent from the problems of transmis-

sion and distribution. Although this approach could obviously lead to 

suboptimization, it is consistent with the philosophy of many major util-

ity planning groups. Also, a fundamental precept guiding this research 

is that optimization models can and should play a vital role in the gener-

ation planning process. Therefore this report deals primarily with the 

role of optimization models in generation capacity planning and with the 

development and use of specific models in that process. 
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1.1 The Role of Models in Generation Planning 

The long range generation planning problem involves not only tech-

nological and economic, but also social, environmental and purely politi-

cal issues. Furthermore, all of these issues are clouded by uncertainty. 

No planning model or collection of planning models will ever be able to 

adequately cope with and resolve all these issues. Ultimately, the stra-

tegic decisions regarding expansion planning must be made by human decision 

makers. In this context, the proper role of optimization models for stra-

tegic planning is to allow the decision makers to explore various possible 

"futures" and various available strategies. This implies that good stra- 

tegic planning models will have certain characteristics such as flexibility, 

ease of use, and economy of use. 

Here, strategic or planning problems are contrasted with tactical or 

operating problems. In the electric utility industry two typical tactical 

problems are the day-to-day plant loading or dispatching problem and the 

scheduling of annual maintenance or planned outages. In these instances, 

mathematical models may very well be used to make the required decisions 

under a wide range of operating conditions. The primary distinctions 

between these examples of tactical and strategic problems is that tactical 

decisions are in effect over a shorter horizon, they may easily be revoked 

or changed and they involve much less uncertainty. In contrast, strategic 

decisions extend over a much longer horizon (e.g., twenty to forty years), 

they are not easily changed (at least those affecting the initial portion 

of the horizon) and they involve a great deal of uncertainty. 

The recognition of the distinction between tactical and strategic 

problems is also a key element in developing optimization models for use 

in planning because it governs, to a large extent, the appropriate level 
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of modeling detail. For example, in maintenance scheduling, annual budget 

planning, or fuel stockpile positioning, it is important to have a good 

estimate of the energy produced by each generating unit during each week. 

In long range generation planning, however, such estimates are not really 

needed, as long as the total system production cost is correctly estimated. 

Especially for the types of optimization models considered in this 

research, the magnitude of the problems that can be solved is inversely 

related to the level of detail in the model. Increasing the level of 

detail in the model implies that there will be a concomitant reduction 

in the size of problems that can be solved as measured by, say, the number 

of generating units and periods in the planning horizon. Primarily because 

of the state-of-the-art in computation, long range generation planning 

models should not incorporate greater detail than is actually needed. 

There is a second, equally important, argument for limiting the level 

of detail in strategic planning models, which would be valid regardless of 

the capability for computing optimal solutions. The argument is based on 

the idea of spurious precision, i.e., a precise answer need not be accurate 

(better known is Garbage-In - Garbage-Out). In a long range generation 

planning model, regardless of the precision with which they are stated, 

detailed estimates of unit production beyond the first year or two cannot 

be regarded as accurate because of the enormous uncertainty. Thus, even 

if this level of detail could be included in such a model at no cost, it 

should  not, because the resulting detailed estimates have little value. 

Obviously the model must incorporate production in some manner in order to 

estimate variable production cost; in this case the issue is the necessary 

level of detail. 

The proper role and use of optimization models in generation planning, 
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as viewed in this research, can be summarized as follows. The role of 

optimization models is to facilitate the identification of the best stra-

tegies to follow under a variety of possible future events. Optimization 

models should be used to determine the appropriate strategies to employ in 

generation capacity expansion under a variety of possible future conditions. 

At this point, the results of the studies using optimization models should 

be used by the analyst to define a limited set of specific expansion plans. 

This limited set of expansion plans can then be analyzed in greater detail 

as a basis for actual decision making. This process is illustrated in 

Figure 1.1 which emphasizes that the models are used to provide better 

insight and information for the decision maker - they are not used to pro-

vide decisions. 

For a variety of reasons, methods suggested in the literature (which 

is reviewed in Chapter 2) generally do not adopt this philosophy. In 

many cases, the methods do not employ optimization and are based on very 

detailed production costing simulators. Thus, they essentially omit the 

Phase I element of planning as illustrated in Figure 1.1. In other cases, 

the optimization is so expensive that the analyst is precluded from explor-

ing more than one or two sets of conditions. Methods of this ilk typically 

do not employ a detailed Phase II evaluation. 

Figure 1.1 here 



1.2 Issues in Generation Planning 

From the previous discussion, it is clear that in designing a genera-

tion planning model a fundamental question is, "Which issues should the 

model address directly and which issues should be resolved outside the 

model?" The manner in which this question is answered naturally affects 

not only the quality of the resulting solutions but also the complexity 

of the model, its ease of solution, its data requirements and the cost of 

its use. 

The following discussion addresses those issues which have been or 

could be reasonably incorporated in a generation planning model. The 

choice of issues is biased by an engineering point of view, i.e., politi-

cal, social and environmental issues are not directly incorporated. It 

is assumed that if necessary, they may be incorporated by appropriately 

constraining the solution, or by using a different criterion. 

1.2.1 Economic Issues 

One of the basic economic trade-offs in generation planning is 

between the initial cost of a facility and its subsequent operating 

costs. Facilities, such as combustion turbines, with low initial costs 

per megawatt (MW) typically have large operating (primarily fuel) costs 

per megawatt-hour (MWH), while facilities such as nuclear or hydro-

powered generators with low operating costs typically have large initial 

costs. 

In a steady-state, no-growth system, depreciation of existing facili-

ties would allow the utility to accumulate capital for replacement from 

current operating revenues. Such is certainly not the case at present 

because of inflation and the rapidly expanding demand for electric energy. 

6 
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In this situation either current operating revenues must include part of 

the cost of expansion or investor funds must be attracted. 

Suppose that all construction funds come from current operating 

revenues. There would be an obvious pressure to minimize initial con-

struction costs resulting in higher future operating costs. Since these 

higher costs would be reflected in the cost to consumers there would be 

added pressure to reduce construction costs, etc. The problem is further 

aggravated by ever-increasing costs for fossil fuels, which are the major 

energy source for electric utilities. 

On the other hand, suppose that all construction funds come from 

investors, either through equity or bonded indebtedness. If this source 

of construction funding were unconstrained, one could argue that there 

would be pressure to install facilities with low future operating costs, 

since doing so would minimize the impact of future increases in fuel costs. 

In the past, most construction funds were generated by investors. 

In reality, construction funds may come from both sources. The prob-

lem then would seem to be simply one of choosing the appropriate mix of 

funding. However, because the electric utility industry is regulated, the 

economic issues tend to be complicated by political issues. In recent 

years, many utilities have faced not only rising fuel and construction 

costs, but a reluctance on the part of regulatory agencies to grant rate 

increases. This creates a situation in which not only are current revenues 

not sufficient to fund construction, but at the same time investors are 

discouraged. 

Thus, at the present time and in the foreseeable future, generation 

planning will have to cope with scarce construction funds. It seems unrea-

sonable to expect a long range capacity planning model to incorporate the 
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complex economic-political interaction, so it is assumed that this issue 

is dealt with outside the model. Resulting estimates of the availability 

of construction funds, the cost of investor generated funds, and interest 

rates become exogenous inputs to the generation planning process. In 

particular, this information impacts the:formulation of the mathematical 

model to be used in the planning process. 

One manner in which the information can be incorporated into the 

model is by specifying for each period in the planning horizon the amount 

of funds to be made available for construction, i.e., by constraining the 

solution. To a certain extent, this treatment of the problem of scarce 

construction funds reduces it to a capital budgeting framework. Thus, 

expansion projects could be modelled in considerable detail with regard 

to the duration of construction, rate at which construction costs are 

incurred, differential inflation rates, etc. Furthermore, short-term 

borrowing and lending could also be incorporated. 

A second manner in which the information affects the planning model 

is in the choice of the criterion  to be used. Typically, the criterion 

has been taken to be the sum over the periods in the planning horizon of 

the discounted capital and operating costs. The exogenously specified 

discount rate has a crucial effect on the outcome of the planning process. 

The criterion of minimizing total discounted costs re-emphasizes the 

fundamental trade-off between capital and operating costs. The use of 

this criterion requires the estimation of operating costs in future time 

periods. Even if the facilities to be used in future periods were speci-

fied a priori,  the estimation of these costs would be a very difficult 

problem. 

In the first place, demand for energy and power in future periods 
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must be estimated, along with the prices of various fuels. Given that all 

this information is available (and reliable) the problem is to determine 

what the costs would be, based on the operating characteristics for each 

generating unit, their fixed operating costs, maintenance scheduling and 

operating policy (e.g., spinning reserve requirements). It seems unreason-

able to expect a long range capacity planning model to also provide main-

tenance scheduling and operating policies, so these are assumed to be 

determined outside the model. 

Appendix A summarizes a mathematical description of the parameters 

developed in Chapter 4 to incorporate the various economic issues into 

the capacity planning model. The notation will be used consistently 

throughout this report. 
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1.2.2 Technological Issues 

A fundamental problem in long range generation capacity planning is 

to predict what types of generation facilities will be developed, and what 

their operating characteristics will be. This includes, of course, refine-

ments to existing types of facilities. This technology assessment problem 

must be resolved outside the planning model. It is assumed that the poten-

tial expansion projects are completely defined with respect to cost, con-

struction time, feasible commissioning times and size options. 

A more central technological issue is that of reliability of service. 

Generation, transmission and distribution facilities are subject to randomly 

occurring failures resulting from a variety of causes. Since these failures 

can't be completely controlled, the service provided is not 100% reliable, 

i.e., there is some probability that some of the demand occurring at an 

instant in time will not be served. 

Reliability has become a key issue because of the expense of having 

large capacity reserves on hand to compensate for possible unit failures. 

Although this is widely recognized as a problem, there does not seem to be 

a good understanding or specification of what it means for the system to 

be reliable, what level of reliability is satisfactory, or what are the 

economics of unreliability. 

The current practice is to equate unreliability with the loss of load 

probability (LOLP). Appendix B presents a mathematical development of 

LOLP. Essentially LOLP is the fraction of time during a year that system 

power capacity falls below the demand for power. A commonly used defini-

tion of an acceptable LOLP is one which corresponds to "one day in ten 

years," i.e., LOLP = 1/3650. 

The LOLP approach to reliability assessment has several shortcomings. 
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In the first place a given LOLP could result from an infinite variety of 

circumstances. At one extreme would be a system which was 100% reliable 

except for one very brief period in the year, during which it almost cer-

tainly could not meet the presented load. At the other extreme would be 

a system which was somewhat less reliable over the entire year, but had 

no periods during which demand would almost certainly fail to be served. 

Although the LOLP approach does not distinguish between these two extreme 

cases, it is quite unlikely that the two situations would appear as equiva-

lent alternatives to any decision makers. 

A perplexing problem with LOLP is how to treat various load manage-

ment tactics. For example, is a voltage reduction, strictly speaking, a 

loss of load? Similar questions arise regarding public appeals, selective 

curtailment of service, etc. Operating policies can impact LOLP, for 

example, reductions in spinning reserves. Likewise events such as fuel 

shortages can cause a loss of load even though there is no failure of 

generation equipment. 

Finally, the LOLP approach does not explicitly recognize the cost of 

reliability or its economic benefits. There is very little evidence avail-

able for use in judging the merit of a given level of reliability. Of 

course, in the traditional approach, i.e., planning to meet all demand at 

all times, there was no need to consider the cost of reliability. The cost 

of capacity, however, is forcing explicit consideration of the economic 

costs of various types of load losses. 

In terms of long range capacity planning models, the issue of reli-

ability is perhaps the most difficult to deal with. It must be incorporated 

in some manner, or else the resulting plans may not be feasible. the usual 

approach avoids explicit consideration of economics by requiring either a 
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minimum reserve capacity (actually capacity in excess of anticipated 

peak demand) or by specifying a minimum acceptable LOLP. Although most 

optimization models use the reserve requirement approach, at least one 

recent model incorporates a yearly constraint on LOLP. 

An alternative approach to reliability requirements is suggested and 

explored in the research reported here. The approach is based on the rationale 

that system reliability can be controlled by controlling plant mix, i.e., the 

types and sizes of units in the system. In essence, this approach requires 

the a priori specification of an appropriate set of plant mix constraints. 
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1.3 Scope and Objectives  

As indicated in the introduction, this research considers the genera-

tion capacity expansion problem to be independent of the problems of trans-

mission and distribution. Furthermore, no consideration is given to the 

problems of data gathering, including forecasting and estimation, or to 

problems of implementing expansion plans. Evidently, these problems are 

currently resolved in some manner, and the current methods are assumed to 

be adequate. The scope of this research is further restricted to long 

range planning models and methods which are based on or make some use of 

optimization. 

The objective of the research reported here is the development of an 

optimization model and methodology for use in long range generation 

capacity planning. The form of the model and the type of methodology 

developed are directly related to the concept of the expansion planning 

process described by Figure 1.1. 

The remainder of this report is organized as follows. A brief survey 

of the literature on generation expansion planning models is presented in 

Chapter 2. Particular attention is given to the issues of model adequacy, 

capacity for parametric analysis and "what if?" studies, and the cost and 

timeliness of results. Chapter 3 describes a new approach to production 

cost estimation and presents some empirical evidence for its effectiveness. 

In Chapter 4 this new approach to production costing is used to develop a 

mixed integer programming model of the generation capacity planning problem. 

Chapter 4 also contains a discussion of a new approach to reliability based 

on constraining generation plant mix. In Chapter 5, the methodology is 

developed for obtaining optimal and approximate solutions to the problem as 

modelled in Chapter 4. The design of an integrated system implementing 
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these results is addressed in Chapter 6. Finally Chapter 7 summarizes the 

research results and points toward further work. 
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A Survey of Optimization Models 
for Generation Capacity Planning 

The problem of planning generation capacity expansion can be stated 

in general very simply: Determine the types and sizes of units to be added 

within the planning horizon, say, thirty years, so that the system is ade-

quately reliable, financial resources are not exceeded and an appropriate 

measure of total cost is minimized. This would appear to be a problem 

which is ideally suited to treatment via optimization models, and in fact, 

quite a number of optimization models have been proposed. None of these 

optimization models, however, has gained the level of acceptance of the 

simulation based heuristics such as OGP [ 1, 8, 13] or WASP [12]. 

One reason why there is no widely accepted optimization model is that 

at the detailed level, the statement of the generation planning problem 

becomes incredibly complex. For example, no practical technique is cur-

rently available for modelling system reliability in closed form. Model-

ling the system operating costs is also quite complicated, since it 

involves a constantly changing demand for energy and the operation of a 

large system of interconnected generating units, each having its own oper-

ating requirements and characteristics. Because of these and other com-

plicating factors, a number of modelling assumptions are required. In 

addition, simplifying assumptions and aggregations are often required to 

make the model computationally tractable. 

Each different set of modelling assumptions leads to a different opti-

mization model, giving different types of results. In contrast, the simu-

lation based approaches require fewer decisions in modelling because they 

essentially attempt to replicate the actual system. Thus, there is more 

unanimity of opinion regarding their validity and usefulness. 
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The purpose of this brief survey is to identify the different types 

of optimization models that have been proposed, the major modelling assump-

tions required and the relative advantages and disadvantages of each. This 

survey is intended to be indicative of the types of models in the literature 

rather than a comprehensive catalog of all published results. The survey 

is organized into three sections by solution methodology: linear and non-

linear programming models, dynamic programming models, and mixed integer 

programming models. A final section compares and contrasts the various 

approaches. 

2.1 Linear and Nonlinear Programming Models  

The historical evolution and state of practice for linear and non-

linear programming models is described in detail in Anderson's widely 

referenced paper [ 2 ]. The key assumptions embodied in the formulations 

discussed by Anderson are: 

(1) System demand can be adequately represented by a load 

duration curve (LDC). 

(2) Reliability requirements can be satisfied by a specified 

generation capacity margin. 

(3) All units of a given class (hydro, fossil, nuclear, etc.) 

can be lumped together for purposes of production costing, 

and each class has a constant marginal production cost. 

(4) Capacity additions in any positive amount are permitted 

and costs of capacity are linear (constant cost in $/mw 

added). 

Using the notation given in Appendix A, these assumptions lead to the fol-

lowing linear programming problem: 
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J 	 T 	I 
minimize 	z= y F.z. + X 	y 	y 6.c 	x 

j=1 3 	t=1 jEJ
t 
i=1 j jti jti  

subject to: 

xjti > P ti 	
t = 1, 	T 	 (2) 

4sj  
t 

x. . < a. z
j 	

j = 1, 	J 
jt  

t = 1, 	T 

i = 1, . 	I 

J
t 
y z.3  > P ti  (1 + m) t = 1, 	T 

j=1 
i = 1, ..., I 

z., x. ti > 0 
i 

where 

z. = installed capacity in category j 

J = index set for categories; there is a category for every 

combination of generation class and vintage (year of 

commissioning) 

J
t 
= subset of category indices corresponding to a vintage 

less than or equal to t 

xjti = power output of category j in increment i of the LDC 

for period t 

cjti = discounted marginal cost associated with x. 
j 

F. = discounted capital costs per unit of capacity in 

category j. 

The major shortcomings of this model, as discussed by Anderson, have 

to do with its computational requirements. In particular, the constraints 

(1) 

i = 1, ..., I 

(3) 

(4) 



20 

(3) result in a large LP model. For example, if there are 20 categories, 

10 segments in the LDC and 6 periods, there will be 1200 constraints of 

this type and about 1500 constraints in all. This growth in the size of 

the LP model was viewed as undesirable and lead to other formulations. 

The "z-substitutes" method reported by Anderson in [ 2] replaced the 

variables x
jti 

 by variables r. . representing the reduction in output of 

unit j between increments i and i + 1 of the LDC: 

r 	. = x. . - x. 	. 	> 0 	i 	1, ..., I - 1 
jti 	jti 	jt ,i+1 - 

Since the sum of the power reductions cannot exceed the power capacity, the 

JTI constraints (3) could be replaced by only JT constraints of the form 

I 
r. ti < a. 

t
z. 	j = 1, 	J 

j  
i=1 

(3') 

t = 1, 	T 

This change in the formulation eliminated the difficulty of model size. 

The state-of-the-art in linear programming software is such that the 

modified LP model presents no serious computational problems. There are, 

however, other problems with this formulation. First of all, it requires 

aggregating the generating units in such a way that important differences 

in operating characteristics (because of size, design, etc.) and fuel costs 

(because of fuel type, environmental restrictions or unit location) cannot 

be considered. This is in addition to the assumption of constant marginal 

production costs. Thus, the production cost estimation sector of the model 

is open to question regarding the accuracy of its results. 

Beglari and Laughton [3] present an interesting approach to dealing 

with this difficulty. In their combined costs  approach, they first use a 

linear programming model similar to the one described by Anderson to 
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determine capacity additions. Then they simulate the power system with 

the proposed capacity additions to update the cost factor elements of the 

LP model. This process is repeated until "convergence is reached," which, 

as they report, usually takes between two and four iterations. 

The second major shortcoming of the classical LP formulation is in 

the representation of construction financing. Although Anderson does not 

present it, a construct budget constraint could easily be formulated. In 

the early years of the planning horizon, however, capacity additions are 

very lumpy, especially for large high-cost units such as nuclear. Linear 

programming techniques cannot adequately cope with the lumpy nature of 

these additions (although Anderson does mention the use of integer varia-

bles and integer programming techniques). 

On the other hand, linear programming models have several significant 

advantages. First of all, there are numerous high-quality state-of-the-art 

software systems for solving linear programming problems. These systems 

generally provide facilities for matrix generation, report writing, and 

most importantly, post-optimality analyses. Thus, linear programming 

models have a clear edge over other optimization approaches simply because 

of their ease of use and software support. It should be noted that the 

basic LP model described by Anderson is the point of departure for most of 

the mixed integer programming models described below. 

The nonlinear programming (NLP) models, as described by Anderson, were 

formulated primarily in response to the size of the initial LP models. In 

the NLP models, preprocessing of the unit data allows defining a "merit 

order" for unit loading. Availability factors are ignored and the energy 

output of each unit is estimated by assigning it in merit order to a "slice" 

of the LDC, as illustrated in Figure 2.1. The resulting model has only peak 
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power requirements on generating capacity but has a convex, nonseparable 

objective function. 

Figure 2.1 here 

The nonlinear programming models do not provide a better (more ade-

quate) representation of the generation capacity planning model. Further-

more, it is hard to argue that they provide any significant computational 

advantage, especially since the post-optimality capabilities of LP models 

are lost. For these reasons nonlinear programming models will not be con-

sidered further. 

2.2 Dynamic Programming Models  

The process of selecting generation units to add capacity to an exist-

ing system might be viewed as a sequential decision process. With this 

point of view it is natural to consider dynamic programming (DP) models of 

the capacity planning problem. Henault, et al.  [9] propose a DP model in 

which the state variable is the "system configuration," thus, every possible 

state is specified a priori.  They include in "system configuration" the 

location, size, and performance of not only generation but transmission 

equipment as well. 

Because of the way in which the state space is defined, any configura-

tion not meeting reliability requirements can be eliminated. The objective 

is to minimize the sum of (1) discounted costs of incremental state changes, 

(2) total discounted operating costs and (3) penalty costs associated with 

violating reliability requirements. The operating cost estimate is based 

on the (expected) peak demand and a load factor. The authors assume that 

capacity additions take one period or less to implement, although this does 

not appear to be a limiting assumption. 
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The model is limited, however, in that it cannot explicitly deal with 

constraints which link the planning periods. For example, if projects do 

require several periods to implement and there are construction budget 

constraints then the periods are linked together through these constraints. 

Requiring all possible states to be specified a priori has some clear advan-

tages, in that it allows considerable generality in the specification of 

the cost functions, etc. At the same time, it is a severe limitation since, 

in essence, the analyst specifies the solution in setting up the model. 

Moreover, it means that the number of configurations is likely to be quite 

small. 

The formulation used by Irisari [10] also employs a single state vari-

able; however, in this case the state is the total installed capacity. 

Irisari assigns a value or "worth" to reliability as measured by LOLP thus 

treating reliability as part of the criterion rather than as a constraining 

factor. Irisari assumes a constant load factor for each generating unit 

and a constant marginal cost in determining the system operating costs, 

which seems to be a rather severe simplification. Irisari does incorporate 

a period by period budget constraint, so there is an implicit assumption 

that capacity additions do not impact the budget except in one period. 

Irisari's model could be considered a simplified version of one devel-

oped by Petersen [16] which employs a four dimensional state vector whose 

components are the system's power capacities in four categories: hydro, 

thermal, nuclear, and peaking turbine. The decision variable is a four 

dimensiQual vector representing additions in each category. Petersen mini-

mizes the sum of allocated capital costs and total discounted operating 

costs over the planning horizon. While this model is flexible with regard 

to the system configurations, it suffers from the same limitation as Henault 
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et al., i.e., it does not permit any constraint which links the periods 

together. Petersen gives a fairly detailed account of the techniques used 

to reduce the computational effort and reports that problems with 20 year 

planning horizons could be solved in 5 to 10 minutes (Univac 1108). 

Petersen uses a "very efficient algorithm developed by Debanne. ," [7] 

to determine the production costs for a given system state. The procedures 

developed by Booth [ 5, 6] and Jenkins and Joy [12], on the other hand, 

use detailed production costing simulators in conjunction with dynamic pro-

gramming. Because of the computational burden imposed, the WASP system 

developed by Jenkins and Joy [12] allows the state space at each stage 

(planning period) to be arbitrarily curtailed, possibly resulting in sub-

optimization. 

It is interesting to note that one-period-at-a-time optimization, or 

optimization with limited look ahead [ 8] is claimed to give results which 

are comparable to dynamic programming algorithms. There is not, however, 

any hard evidence in the published literature to support this conjecture. 

Irisari [10] also gives a similar static heuristic procedure. 

In summary, the dynamic programming models in general require the 

units to be aggregated somehow, either by category as in Petersen [16] or 

into configurations as in Henault et al. [ 9]. In the one case, flexibil-

ity is gained at the cost of modelling detail, while in the other, much 

detail can be incorporated but flexibility is sacrificed. The limiting fac-

tor in DP models is the inability to cope with period linking constraints. 

The positive aspect of DP models is that within this limitation they allow 

considerable flexibility in the specification of the cost functions. 
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2.3 Mixed Integer Programming Models  

Mixed integer programming (MIP) models are usually based on a linear 

programming formulation similar to the one given by Anderson [2], with 

the addition of zero-one variables to account for the lumpy (or fixed 

charge type) investments required for most generation units. The most 

significant differences between the MIP models discussed below are in scope 

(generation only or generation plus transmission), plant mix (whether or 

not hydro is included), and the treatment of reliability requirements. 

The models of primary interest in this report all deal directly with 

the dynamic nature of the decision process and have planning horizons with 

four to nineteen periods representing from nineteen to thirty years. A 

somewhat different model has been suggested by Scherer and Joe [20] for 

dealing with a static (one decision period) problem of capacity expansion. 

Their goal was to choose an expansion plan to minimize expansion cost while 

satisfying an explicit LOLP constraint. The latter was accomplished by 

enumerating all 2n  system states, where n is the number of existing plus 

potential generation units. The model holds some theoretical interest, but 

has little practical value for large systems. 

The MIP models proposed by Noonan [14], Sawey [18], Rowse [17], and 

Iwayemi [11] exhibit a range of features corresponding to different assump-

tions and different planning situations. For example, Sawey and Iwayemi 

include expansion of the transmission network while Noonan and Rowse do 

not. Only Sawey ignores hydro expansion and only Noonan considers pumped 

hydro projects. 

All four models assume a constant marginal production cost. Rowse, 

Sawey and Iwayemi allow each existing unit to be individually represented 

in the model, while Noonan lumps units by category (i.e., hydro, fossil, 
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peaking turbine, etc.). Rowse and Noonan represent demand as a LDC with 

3 and 15 increments, respectively. Sawey and Iwayemi do not use LDC's 

because they deal with distributed demands, so their demand models are 

essentially the actual demand, approximate by discrete changes. They use 

two and four modes (or demand levels) respectively. 

The description of the expansion alternatives is somewhat general in 

all four models. Expansions are identified either by site (Rowse, Sawey) 

or by category (Noonan, Iwayemi). The size of the expansion may be discrete 

or continuous within specified limits. Sawey's model is the only one with 

an explicit capital budget constraint, and his is a one-year budget, i.e., 

there is no carryover of funds and all project expenditures are assumed to 

occur in the year of commissioning. 

The treatment of reliability varies dramatically between the four 

models. Iwayemi ignores reliability altogether. Rowse uses a simple 

reserve or capacity margin constraint. Sawey suggests three different 

approaches, including a capacity margin constraint, but does not indicate 

which method was used in his case study. Sawey's other two suggestions 

were to 

(1) limit the size of any expansion unit to some fraction of 

the existing system capacity; 

(2) simply inflate the demands to induce a spinning reserve 

(note that this has an effect on operating cost estimates). 

The most sophisticated approach to reliability is taken by Noonan, who 

uses an explicit stochastic constraint on LOLP. This results in a non-

linear constraint set which he subsequently linearized. 

Sawey and Rowse used the OPHELIE MIXED system and Iwayemi used 

APEX III system to solve their respective mixed integer problems. Noonan, 
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however, developed a special purpose algorithm based on Benders' partition-

ing [4]. Each of the four models was implemented in a case study and 

Table 2.1 summarizes some interesting data about the case studies. 

Table 2.1 here 

About the only conclusion to be drawn from Table 2.1 is that the spe-

cialized solution procedure seems to permit greater detail in modelling 

(more time periods, load curve increments and expansion options) for a simi-

lar computational effort. This points out a major hindrance to widespread 

acceptance of MIP models, viz.,  the lack of computationally effective widely 

available algorithms for sufficiently general formulations. 

MIP models of the generation capacity expansion problem have some of 

the desirable properties of LP models, particularly modelling flexibility 

in characterizing the expansion options and in constraining the solution. 

The most significant weakness of the MIP models per  se is in the production 

costing sector, where the assumption of constant marginal production cost 

is overly restrictive. In addition, at the current state of practice, MIP 

models are not computationally attractive when compared to LP models. 

Their attractiveness improves considerably, however, when compared to simu-

lation approaches to expansion planning. 

2.4 Summary  

In comparing the three categories of optimization models, the follow-

ing conclusions are reached: 

(1) LP models currently offer the greatest flexibility and have 

the most highly developed solution procedures. LP models are 

computationally feasible for in-depth parametric studies. 
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(2) DP models admit considerable flexibility in their cost struc-

tures. Unfortunately, computational considerations usually 

require excessive aggregation. DP solution procedures must 

be "tailor-made" and do not offer the post-optimality capa-

bilities of linear programming. 

(3) MIP models have the same modelling flexibility offered by 

LP models. Unfortunately the general purpose solution pro-

cedures are not currently adequate for detailed, large scale 

models. Special purpose procedures require computational 

effort comparable to that for DP models. 

MIP models seem to offer the best chance for overcoming the inherent limi-

tation of linear programming models, i.e., the inability to cope with large 

fixed costs. There is need for additional research along two lines: 

(1) improving the production costing sector of the model, especially 

relaxing the assumption of constant marginal production costs; 

(2) developing more computationally efficient solution procedures 

and techniques for post-optimality analysis. 
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Figure 2.1. Merit Order Loading 



Table 2.1. Statistics for Four Case Studies 

STATISTIC Iwayemi Noonan Rowse Sawey 

Solution procedure APEX III Special OPHELIE OPHELIE 

Number of periods 6 19 4 15 

Period length 5 1 3 1 

Segments in load curve 4 15 3 2 

Expansion projects per year 7 20 6 7 

Binary variables 30 380,0* ? 86 

Continuous variables 262 38,255* ? 1294 

Constraints 198 19+,27* ? 973 

Solution time (CPU sec.) ? 426 -450 600 

Machine CDC 6600 CDC 6600 CDC? CDC? 

30 

*Benders' master problem and each of 19 subproblem LP's 
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A Production Costing Model for Electric Utilities 

The long range planning of generation capacity for electric power 

systems is a complex problem requiring the contributions of many technical 

fields in its solution. In particular, there has been considerable inter-

est, as evidenced by [20, 27], in the use of management science techniques 

for studying these problems. 

Models of the long range generation capacity planning problem (here-

after, the generation planning problem, or GPP) have been proposed, based 

on linear programming [1, 3, 6, 18, 19], nonlinear programming [7, 26], 

dynamic programming [15, 22], and mixed integer programming [12, 20, 24] 

formulations, as well as simulation procedures [8, 9, 16] and procedures 

which attempt to combine simulation with optimization [2, 4, 11, 21]. A 

fundamental issue dealt with in all these models is the economic trade-off 

between capital costs and operating costs. This paper addresses the oper-

ating cost sector in models for the long range GPP. 

The approach taken here represents a significant departure from the 

traditional approach in the following sense. Traditionally, especially in 

simulation models, the production costing sector has been quite detailed, 

usually representing each generating unit in the system as a distinct 

entity. As a result, the models have been required to incorporate consider-

able detail regarding unit operations, and quite often are capable of pro-

ducing detailed accounting type reports for each unit. In short, the 

models have been very precise in the production costing sector. 

The price extracted for having a precise representation is two-fold. 

In the first place, the greater the modelling detail, the greater the 

burden for parameter estimation and data base management. Secondly, the 

solution techniques applied to these models become ever more costly as the 
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level of detail increases. Especially in long range planning (twenty 

years or more) one must question whether or not the price paid for the pre-

cise model can be justified, simply because of the uncertainty associated 

with the estimates of parameter values. 

On the other hand, the models are of no value if they are not accurate, 

 i.e., when the model indicates economic superiority for one plan over 

another, it should be correct. Thus, for long range planning, one may 

desire a computationally tractable model that is accurate even though it 

may not be precise in the sense discussed above. In the face of massive 

uncertainty regarding fuel availability and costs, equipment costs, techno-

logical developments, etc., such a model could be used to develop strate-

gies, with detailed evaluation and planning relying on more detailed, or 

precise, models. 

With this in mind, the research reported here is directed toward 

developing an approach to the production costing sector which is computa-

tionally tractable while at the same time meets the requirement for 

accuracy. The basic idea is one which many experienced system planners 

will initially scoff at, but the empirical results indicate success in 

both computational efficiency and accuracy. The approach is described 

below assuming that production costs are required for only one time period. 

The basic approach is then evaluated by comparing the results obtained to 

those obtained using a large scale simulation for a major southeastern 

utility system. Finally, the adaptation to a mixed integer programming 

formulation of the generation capacity planning problem is discussed. 
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3.1 Production Costing for a Single Time Period 

The goal of this production costing model is to efficiently provide 

a reasonable estimate of the overall system operating cost for each time 

period in the horizon. The behavior of individual units and any other 

information is considered extraneous to the overall expansion planning 

problem. For the one period production costing model, three basic assump-

tions are made. First, it is assumed that a reliable demand forecast is 

available in the form of a load duration curve. Next, units can be classi-

fied as being one of two operating types: (1) continuous levels of output 

between a minimum and maximum capacity, and (2) units which are either "on" 

or "off," i.e., they have one discrete production level. Finally it is 

assumed that the given system configuration meets reliability criteria and 

maintenance scheduling feasibility. 

The approach described here for obtaining an estimate of production 

cost for the system consists of two general steps, determining a system 

production cost function and computing expected production cost. For the 

initial step, production cost as a function of production level is devel-

oped first for two aggregate units, an aggregate continuous production unit 

and an aggregate discrete production unit. To obtain the system cost for 

the period, the two aggregate cost curves are combined into a system pro-

duction cost curve. The product of the system cost function and the load 

duration function is integrated with respect to time to compute the desired 

cost estimate. Since the second step is simply computational, interest is 

centered in developing the system production cost function. 

Establishing the cost-output relationship for continuous units is per-

formed using a marginal costing approach illustrated below. For the second 

type, or "discrete" units, the production cost relationship is established 
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using dynamic programming principles described later. The overall produc-

tion cost curve is then derived by solving a simple optimization problem 

where demand is varied parametrically over the relevant range. 

3.1.1 Marginal Cost  Approach for  Continuous Units  

All generation units in a power system are assumed to have individual 

production (or fuel) costs which assume the quadratic form: 

PC = Ax
2 
+ Bx + C 

where PC is the production cost per hour and x is the production level. 

For this analysis, a continuous unit is one which can produce power x at 

a continuous level between prescribed upper and lower bounds. 

For a system which has only continuous units, all of which are con-

sidered to be operating within their production limits, the production 

costing problem at a given demand level, D, may be formulated as a convex 

optimization problem (assuming A > 0, B > 0): 

(P1) 
	

minimize 	TC(D) = 	(A.x.
2 
  + B.x. + C.) 	 (1) 

subject to: 	x. = D 	 (2) 
. 

L. < x. < U. 	i = 1, 2, ..., N 	 (3) 
1 - 1 - 1 

where 

TC(D) = hourly production cost at production level D 

A
1
., B., C. = coefficients of quadratic production cost curve for unit i 

1 1 

x
i 
= production or output level of unit i 

L. = lower bound on production for unit i 
1 

U. = upper bound on production for unit i 
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Solving (P1) for every possible D between y L
i 

and y U . will yield the 

desired relationship between production cost and output. 

Because the objective in (P1) is convex, a Kuhn-Tucker point will pro-

vide an optimal solution. In order to characterize the Kuhn-Tucker points 

in a helpful way, it is convenient to restate (P1) with the associated dual 

variables shown in brackets: 

(P2) minimize 	y A.x. + B
i 
 x. + C. 

.  

	

subject to: D - X xi  = 0 	 [u] 	 (4) 
i 

	

x. - L
i 
 < 0 	i = 1, 2, ..., N 	[vi ] 	 (5) 

	

U. - x
i 
 < 0 	i = 1, 2, ..., N 	[w

i
] 	 (6) 

Letting p.(x.) denote the marginal production cost (2A.x.+B.)for unit 

i = 1, 2, 	..., N, the Kuhn-Tucker conditions for (P2) can be written as: 

D - X x. 	= 0; 	x. 	> L.; 	x. 	< U. 	i = 1, 	2, 	..., 	N 	(7) . 

	

v., 	w. 	> 	0 	i = 1, 	2, 	..., 	N 	(8) 
i - 

	

vi(xi - L.) 	= 0 	i = 1, 	2, 	..., 	N 	(9)  i 

w
i
(U. 	- x

i
) 	= 0 	i = 1, 	2, 	..., 	N 	(10) 

p.(x.) 	- u + v. 	- w
i 
 = 0 	i = 1, 	2, 	..., N 	(11) 

From the conditions (7) - (11) it is clear that: 

 

v
i 

> 0 	only if 	x. = L. 	 (12) 



w.>0 only if 	- U. 
1 

if L. < x. < U. then p.(x.) = u 	 (14) 
1 	1 	1 	1 1 

Now a simple characterization of an optimal solution to (P2) is at hand. 

Corresponding to each demand level, D, there is a "system marginal cost," U. 

In satisfying the demand D, each individual unit operates in one of three 

states:eitherxi =Li,Li <xi <Uv orxi =Ui.Ifx.=Li  then from 
1 

(11) and (12) we have p
i 
 (x.) > u. If L

i 
< x. < U

i
, then from (11) and (14) 

we have p i (x i ) = u. If x i  = Ui , then from (11) and (13) we have p i (xi) < u. 

Thus, (P2) can be solved for a given D by searching for the optimal 

"optimal" xi 	be 

readily determined from the above conditions on p.(x.), i.e., choose x. so 

that 1 (x i) = u unless this violates the bound constraints on x . , in which 

case it is pegged at the appropriate bound. 

Note that it is a simple matter to solve (P2) for a range of values 

of D. For example, start with D = X L., and determine the optimal solu- 
• 

tion. Increasing D above this level corresponds to increasing u, the 

"system" marginal cost. As u increases, individual units change their 

production status, i.e., they begin to produce above L. or they get pegged 

at U.. Since these changes are easy to keep track of, it is easy to gen-

erate the entire aggregate marginal production cost or total production 

cost function. Note that if there are n units in the system there will be 

at most 2n breakpoints in the piecewise linear aggregate marginal cost 

curve, one for each status change for each unit. 

3.1.2 Continuous Units - Marginal Cost Curve Algorithm  

The desired result of this procedure is the specification of the 

relationship between marginal cost and demand level for all continuous 
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units in the system so that total cost may then be determined. Due to 

the piecewise linearity of the aggregate marginal cost curve, it may be 

recorded as a series of breakpoints. Breakpoints exist where the marginal 

cost corresponds (1) to a level at which a unit produces above its lower 

bound production level, and (2) to a level at which a unit's output must 

become set at its upper bound production level. The algorithm proceeds 

by incrementing marginal cost to the next breakpoint quantity and then 

calculating output at that point. Steps in the routine are as follows: 

0. [Initialize] 

For each unit i E I determine 

p. F  2A.U. + B. 

p. 1 2A.L. + B. 

1. [Find smallest marginal cost] 

L, 
p min kp ) 

2. [Partition units] 

For all i c J = 	p; = p} 	x. t L. 

For all i e K = {i: pi; > 	x.t L. 

For all i E L = {i: pui  p} 	x. t U. 

(Note: initially, L = 0) 

3. [Initial breakpoint on curve] 

t t  1 

Pt P 

D
t 	

X L. 
. 
1 

4. [Find next breakpoint] 

a_ForeachieJdetermine6.-<-2A. [U. - x.] 
1 I 

For each i E K determine IS. .+ 	- p
t 

2A1 
 L
i 
	1 



(the 6's are the minimum change in p that would result 

in a breakpoint from unit i) 

t + t + 1 

b. Set 6 	6 	min (6., co) 
J 	p 	.

EJ 	
1 

1 

6 	6 	min (S i , co) 
K 	q 	. 	1 iEK 

c. If 6
J 

< 6K then: pt 
= p

t-1 
+ 6

J 

(unit p reaches J + J - {p}  

its upper L + L + {p} 
limit next) 

x. 	(11 t  - B.1 	i )/2A 	i 	J 1  

x + U 
P 	P 

D  t + y x. 
1 

else: p
t 
 = p

t-1 
 + 6

K  

(unit q starts 	K t  K - {q} 
to produce 
above its lower J + J + {q} 
limit next) 

x. f  (11 t  - B.) /2A. 	
i e J 

D + X x. 
t 	1 

d. If J = 0 stop; else repeat 4. 

EXAMPLE 

UNIT NO. Li 
 1 

A. B. 
1 

C. 
1 

1 10 20 1 1 1 

2 15 40 1 3 1 

3 10 30 1 2 1 

O. UNIT NO. P.1  Pi  

1 21 41 

2 33 83 

3 22 62 
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1. 

2. 

3. 

4. 

i + min (21, 	33, 	22) = 21 

J = 	xl  = 10 

K = {2, 	3} 	x2  = 15, x3  = 10 

L = 0 

t + 1 	p
1 	

21 	D1 
 + 10 + 15 

a. 	6
1 	

2(1)(20 - 10) = 20 

6 2 
+ 2(1)(15) + 3 - 21 = 12 

6
3 
+ 2(1)(10) + 2 - 21 = 1 

t + 1 + 1 = 2 

b. 	6
J 
+ 6

p 
+ min (20) 

6
K 
+ 6

q 
+ min (12, 1) 

c. 	6
J 

> 6
K 	

p
2 
+ 21 + 1 = 22 

+ 10 = 35 

K = {2} 

J = {1, 3} 

xi  + (22 - 1)/2 = 10.5 

x
2 
+ (22 - 2)/2 = 10 

D2 
+ 10.5 + 10 + 15 = 35.5 

d. J 	0 and K # O. Go to step 4. 

4. a. 6
1 	

2(1)120 - 10.5] = 19 

6
3 
+ 2(1)[30 - 10] = 40 

6
2 
+ 2(1)(15) + 3 - 22 = 11 

t + 3 

b. 6 J  4- 19 + min (19, 40) 

6
K 
+ 11 + min (11) 

p
3 
= 22 + 11 = 33 c. 6J 

 > 6
K  

K + 0 

J + {l, 2, 3} 

xl  ' (3 3  - 1)/2 = 16 

x2  ' (33 - 3)/2 = 15 

x
3 
+ (33 - 2)/2 = 15.5 

D
3 
+ 16 + 15 + 15.5 = 46.5 

d. J 	0 and K 	0. Go to step 4. 

42 
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4. a. 6
1 	

2(20 — 16) = 8 

	

6
2 	

2(40 — 15) = 50 

6
3 
÷ 2(30 — 15.5) = 14.5 

t f  4 

b. IS
J 	

6
1 	

min (8, 50, 14.5) 

s
K 
 ÷ co 

c. 6
J 
 < 6

K 
	p

4 
= 33 + 8 - 41 

J {2, 3} 

L {1} 

x2 	(41 — 3)/2 = 19 

x3  t  (41 — 2)/2 = 19.5 

p
1 
 20 

D
4 	

20 + 19 + 19.5 = 58.5 

d. J 	0. Go to step 4. 

4. a. 6
2 

4-  2(40 — 19) = 22 

5 3 ' 2(30 — 19.5) = 21 

t + 5 

b. 6
J 	

6
3 	

min (22, 21) 

6K 
÷ co 

c. 6
J 
 < 6

K 	
p
5 
= 41 + 21 = 62 

J 4--  {2} 

L f  11,  3} 

x
2 	

(62 — 3)/2 = 29.5 

x
3 
 ± 30 

D
5 	

20 + 29.5 + 30 = 79.5 

d. J 	0. Go to step 4. 

	

4. a. 6 2 	
2(40 — 29.5) = 21 

t .4- 6 

b. 6J 
4--  S 2 

= 21 

6 

c. 6
J 

< SK 	
p
6 
= 62 + 21 = 83 

J ÷ 0 
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L t  {1, 2, 3} 

x2  t  40 

D
6 

20 + 40 + 30 = 90 

d. J = 0. Stop. 

Breakpoints on curve are: 

(35, 21) (35.5, 22) (46.5, 33) (58.5, 41) (79.5, 62) (90, 83) 

Using this algorithm, the marginal cost-output relationship is estab-

lished for all continuous units. The total production cost curve can be 

developed by simultaneously recording total cost at each breakpoint on the 

marginal cost curve. In order to complete the costing for the entire sys-

tem, the next step is to establish the total cost-demand relationship for 

the category of units which operate in a discrete fashion. This will be 

done with the following technique. 

3.1.3 Cost Approach for Discrete Units 

To be considered in this category are those units which are assumed 

to be operated at discrete production levels. Consequently their produc- 

tion costs are discontinuous; i.e. there are only certain cost-output values 

to consider. Only two such-values are considered, one associated with 

lower bound operation (AL
2 
+ BL + C) and the other with the upper bound 

operation (AU.
2  
 BU + C

i
). To simplify, this discussion will further 

assume a zero value for all lower bound outputs, although it is easy to 

modify the analysis to include nonzero lower bounds. This category is 

intended to include gas-fired or peaking turbines. 

For a given demand level, D, the production costing problem for a 

system with only discrete units may be formulated as: 

minimize 	TC(D) = c,yi  
i 

(P3) (15) 



subject to: y U.y. = D 
. 	I 
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(16) 

y. = 0, 1 	V 1 
i 

where 

TC(D) = total production cost per hour for the system at output 

level D 

c. = A
1
:U.

2  
+ B.U. + C. =, cost per hour of producing for unit i 

1 	 1 

U. = upper bound production level for unit i 

1 if unit i produces at upper bound level 

Y. 
0 if unit i produces at lower bound level 

However, (P3) is a binary knapsack problem for which the following recur-

sive relationship may be applied: 

k-1 
f
k
(b) = min c

k
y
k 

+ min 	c.y, 
y
k
=0,1 	 j=1 " 

k-1 
subject to: 	y U.y. = b - U

k
y
k 

j=1 	J  

. = 0, 1 	j = 1, . 	k - 1 
YJ 

In a straightforward manner, the recursion can be rewritten as 

f
k
(b) = min 	

(ckyk 
+ 

fk-1(b 
 - U

k
y
k
)) 	k = 1, 2, 	N, 	(19) 

y
k

0,1 b = 0, 1, 	D 

Since the output constraint (16) has been written as an equality, 

f
k
(b
n
) will only be defined for certain discrete values of b; in particular 

those which satisfy 

k 
y uiy . = b 

1=1   

(17) 

(18) 
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for some specification of the binary variables. Thus, the state space may 

be reduced appropriately. Also, at any stage of the solution, the particu- 

	

lar solution {yi: i = 1, 	k} which gives the minimum cost is not 

important. Rather, determining this minimum cost is the issue of concern. 

Thus, solution tables need not be maintained at each stage of the recursive 

solution. These two observations lead to a computationally efficient pro-

cedure for solving (P3). 

3.1.4 Discrete Units - Dynamic Programming Algorithm  

The algorithm for generating the discrete aggregate production cost 

is presented below. The algorithm considers each discrete unit in turn 

and examines all current output levels to see if a new output level can 

be created or if a lower cost has been found for an existing output level. 

0. [Initialize] 

	

0{0}
' 

t
o 	

0
' 
 d0 {- 0 

k 	0, I<- 1 

1. [Select the next unit] 

k k + 1 

kk-1 

2. [Attempt to modify existing points or create new ones] 

For each by E 
	
in descending order 

DO 

Compute 6 ÷ b + Uk  
P 

IF cS = d
q 

c 13 
k-1 

THEN t ÷ min {t 
q 	

, t + c } (Modify existing q Q 	k 
point) 

ELSE DO 

(3 1‹. 	161 

	 (Create a new point) 

I I + 1 
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t
I 	

t
p 	

c 

d 

END 

END 

3. If t < n
d 

go to 1, else STOP. 

EXAMPLE  

UNIT NO. 

1 

2 

3 

	

c. 	a. 1 

	

3 	2 

	

4 	2 

	

2 	3 

O. [Initialize] 

DO E-  {0}-' t0' 0,  d0'  0; kt 0; I 	1 

1. [Select Unit 1] 

1. IS
1 
	{l}; k t 1 

2. 6 t 0 + 2 = 2 

6  t 130 	{0, 2} 	(Create a new point) 

I 1 + 1 = 2 

t
1 
 0 + 3 = 3 

di  2 

3. 1 < 3 so go to step 1. 

Current (di , t i) set > (0, 0) (2, 3) 

2. [Select Unit 2] 

1.
2 	

2}, k 	2 

2. IS = 2 + 2 = 4 	131 ^2 = {0, 2, 4} 	(Create a new point) 

I 2 + 1 = 3 

t
2 3 + 4 = 7 

d
2 

4 

= 0 + 2 = di  t f3,1  4>t i  = min {3, 4} = 3 	(Check existing 
point) 

Current (d
1
., t. 

1
) set 	> (0, 0) (2, 3) (4, 7) 



t. 
J 

10 —

8 — 

6 — 

4 — 

2 — 

1 	2 	3 	4 	5 	6 	7 
	D 
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Figure 3.1 
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3. [Select Unit 31 

1.
3 
+ {0, 2, 4}, k + 3 

2. 6 + 4 + 3 = 7 	132 
=>

3 
+ {0, 2, 4, 7} 	(Create a new point) 

I + 4 

t
3 
+ 7 + 2 = 9 

d
3 
+ 7 

+ 2 + 3 = 5
2 

=>13
3 

<- {0, 2, 4, 5, 7} 	(Create a new point) 

I + 5 

t
4 
+ 3 + 2 = 5 

d
4 
+ 5 

6 + 0 + 3 = 3
2 

.>12
3 
+ {0, 2, 3, 4, 5, 7} 	(Create a new 

I + 6 	
point) 

t
5 
+ 0 + 2 = 2 

d
5 
 +3 

3. 3 = 3 STOP. 

The (di , ti) points on the curve are (0, 0) (2, 3) (3, 2) 

(4,'7) (5, 5) (7, 9) and are shown graphically in Figure 3.1. 

Figure 3.1 here 

Note that the costs determined for the aggregate discrete unit are 

not necessarily monotone with output. This is primarily an end point 

difficulty, occurring for small values of output and possibly for values 

near the maximum aggregate output. 

3.1.5 Developing the Overall System Cost vs. Output Curve  

The two previous sections have demonstrated methodologies which yield 

one production cost-output curve for all continuous units and one set of 

points for production cost versus output for all discrete units. Combining 

these two curves into one overall total production cost versus output rela-

tionship is the next step. For any output level D, this problem may be 



50 

formulated as: 

(P4) 
	

minimize 	K(D) = TC1 (x) + tin 

subject to: x + y d.y. = D 
4 J J 

y. = 1 

L < x < U 

.=0, 1 
373 

where 

x = level of production for aggregate continuous unit 

TC
1
(x) = cost of production at level x for aggregate continuous unit 

j th  t. = production cost for the j 	discrete point 

1 if the j th  discrete point is used 
= Y3 	

0 otherwise 

th 
d. = production level for the j 	discrete point 

U = upper bound on continuous units' production 

L = lower bound on continuous units' production 

However, (P4) may be written as 

(P5) K(D)= .min[t..y.+TC(D-d.)] 
J jEJ 

(24) 

U 	 (25) 

The optimal solution to (P5) will be piecewise convex as illustrated in 

Figure 3.2. 

Figure 3.2 here 
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For any given demand level, D, (P5) is easily solved by simply try-

ing each of the discrete output levels (including zero) and choosing the 

one which leads to the best total cost. Again, some computational effi-

ciencies can be realized by solving (P5) parametrically, and this is 

greatly simplified if the discrete points have been "smoothed" so that 

they are monotone. 

3.1.6 Computing Estimated Cost for One Period  

The final step in the cost estimating procedure is to combine the 

aggregated system production cost curve with demand information. In 

standard fashion, suppose that the load duration curve is given with 

intervalsofwidthe,andloadvaluesP.,i = 1, 2, ..., 8760/0. Then 

the estimated production cost is given by 

EPC = 0 y K(P i ) 
	

(26) 

3.2 Empirical Evaluation  

The production costing procedure was implemented in FORTRAN IV on a 

CDC Cyber 74 and tested using data from a large southeastern utility. As 

shown in Table 1, computational results from this method compare very 

favorably with those obtained by the utility using a conventional, large 

scale simulation procedure. For purposes of long range (20-40 years) 

studies, the accuracy of the method along with its relatively small com-

putational requirements make it quite attractive for implementation within 

a capacity planning model. 

Table 1 here 

Although the small sample size precludes statistical analysis, the 
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computational requirements of the method can be described as follows: 

cpu = f [Ti 1 + 5n
c 
+ 2

nd 
 + [ 76 680 ] (6)(2n

c
)11 

words z  9(n
c 
+ n

d
) + lln

c 
+ n

d 
+ 36 

where 

cpu = execution time 

T = number of years in study 

n
c 
= number of continuous units 

nd  = number of discrete units 

6 = number of points in discrete units cost function 

The storage words include only the major arrays. Other variables and 

the object code require a constant, approximately 1200 words. 

Obviously, both storage and execution time are significantly affected 

by the number of points in the discrete units cost function. For the 

sample data there were 37 discrete units which resulted in 1280 points in 

the associated aggregate production cost function. The number of points, 

6, can increase quite rapidly with the number of units, in fact the maxi-

mum is 2 
d . If n

d 
is large, then some method for reducing (S is needed, and 

fortunately, several methods are readily available. The most effective of 

these appears to be interval partitioning [22]. 

Certain issues of interest were faced in implementing the aggregation 

method. One of these issues involved choosing the magnitude of 0, the 

increment size for the load duration curve. For the computational results 

reported in Table 1, the load duration curves were used as received from 

the utility, and consisted of 68 segments of unequal duration. 

Another implementation issue was how to derate individual unit 
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capacity to reflect the expected outage rate. Derating was accomplished 

for the continuous units by assuming more outage on the continuous units 

when their output is low, and less outage as output increases to maximum. 

This approach is based on the observation that scheduled outage for 

maintenance, refueling, etc. typically occurs during seasons of relatively 

low demand, e.g. Spring and Fall. As system output approaches its peak, 

it is desirable to have all units operational. It may be observed, how-

ever, that during peak demand unanticipated outages have undesirable 

effects on system reliability and corresponding cost estimates. For the 

purposes of this production costing, the impact of unanticipated outages 

on computational results are shown to have negligible influence in deter-

mining a credible production estimate and thus may be reasonably ignored. 

Discrete units were not derated under the assumption that typically 

they are not base load suppliers since their operating costs are rela-

tively higher so their downtime will be scheduled during periods of low 

demand. Incorporating this technique for handling capacity derating into 

the overall procedure was not only intuitive and computationally appeal-

ing, but provided reasonable results. 

A final implementation issue derived from the large number of produc-

tion points (levels of b in Eq. 19) obtained for the discrete units cost 

curve. When solving for total annual production cost (P5), certain low 

cost points tended to dominate every solution value. Searching the entire 

list became computationally undesirable. Therefore, the total cost curve 

for discrete units was represented in the overall aggregate costing by a 

reduced list. This smaller set was obtained by dividing the discrete total 

cost curve into segments containing ten adjacent demand-level points and 

selecting from the ten the point with minimum cost for inclusion in the 

aggregate costing step. 
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All of these implementation issues were resolved in such a way that 

the desired result of relatively accurate and computationally efficient 

results were obtained. Significantly, this procedure provides a reason-

able approach to the production costing requirements for long range capac-

ity expansion planning. Integration of the production costing results 

into an expansion planning model is considered in the following section. 

3.3 Incorporation into Capacity Expansion  Planning Model  

The generation expansion planning problem may be formulated as a con-

strained optimization problem. The objective is to minimize total costs 

including production costs and capital outlays. Constraints for the prob-

lem include reliability guarantees, budget restrictions, system configura-

tion requirements, and demand satisfaction. Decision variables fall into 

two broad categories: (1) system configuration specification (a "yes-no" 

or integer variable for each unit for every time period), and (2) produc-

tion or output levels for each unit for every time period (a continuous  

variable). 

It has been observed that this type of formulation can be decomposed 

into two related subproblems: an integer subproblem for project selection 

and scheduling and a continuous subproblem for production costing [20]. 

Each distinct integer subproblem solution defines an associated distinct 

continuous subproblem or production costing problem. The production cost-

ing procedure presented here can be incorporated in the continuous sub-

problem in the following way. 

The continuous subproblem for one time period may be modelled as a 

network flow problem as illustrated in Figure 3.3. In this formulation it 

is assumed that the load duration segments all have the same width, which 



55 

may lead to more segments than are required by some other models [ 3 ]. 

Figure 3.3 here 

The annual energy capacity of the existing system and proposed expan-

sion projects are given by E i , i = 0, 	n. For each production unit 

(existing system or proposed addition) and for energy import (n + 1st unit) 

the multiple arcs represent piecewise linear convex production costs, in 

power terms. Within each segment of the load duration curve, the power 

requirement is P t , t = 1, ..., 8760/8. 

The derating scheme discussed earlier may also be applied to the 

network model. All that is required is that for each unit there must be 

different capacities and costs for each interval of the load duration 

curve. Note that the complete model is simply a convex cost transporta-

tion problem, which can be readily solved using any one of a number of 

modern network flow codes, e.g., GNET [10], NETFLO [14] or PNET [13]. 

3.4 Summary  

Production cost estimation is a crucial component of any generation 

capacity expansion model. The accuracy of the estimates is of obvious 

concern to system planners. In addition, the computational effort required 

for the estimation is a key factor since it determines to a large degree 

how frequently or extensively the model can be used. 

This paper has presented a new approach to production cost estimation 

which has considerable promise for enhancing GPP models. While the model 

does not provide detailed estimates of unit loads, it does provide accurate 

estimates of total production cost. Furthermore, the computational require-

ments are quite modest and the approach is flexible enough to be incorporated 

in a variety of different models. 
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Figure 3.3. Network Flow Model for Production Costing 
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Table 1. Computational Results Using Two Production 
Costing Methods for 4 Year Study of Large 

Year 

Southeastern Utility 

Utility's 
Simulation 	Aggregation 
Method 	Procedure Difference 

Per Cent 
Difference 

19 X 1 1,108,095 1,080,042 -28,053 -2.532 
Estimated 

Total 19X 2 1,334,934 1,340,301 5,367 .402 
Operating 

Cost 19 X 3 1,535,235 1,548,168 12,932 .842 
($1000) 

19 X 4 1,770,274 1,746,355 -23,919 -1.351 

TOTAL 5,748,538 5,714,865 -33,673 -.586 

Execution 	 45 minutes 	11.4 seconds 
Time 	 (AM DOL V6) 	(CDC Cyber 74) 

(FTN, OPT=2) 
Core 	 Program 1146 words 

Requirements 	 Arrays 9668 words 
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A Mixed Integer Programming Model 
for Generation Capacity Planning 

Long range planning for generation capacity in electric utilities is 

a very complicated and complex problem. Solutions to the planning problem 

specify for the near term (one to ten years) the expansion projects to be 

funded, and indicate for the longer term (ten to forty years) the sizes 

and types of units to add. To obtain the data for the problem, many dif-

ferent time series must be estimated (demand, fuel availability and cost, 

construction cost, etc.), the available technologies must be predicted, 

and the future availability of construction funds must be determined. 

The problem of looking ahead twenty to forty years to predict economic 

and technical factors alone is an enormous one. 

Given the necessary data regarding future events, a solution to the 

generation planning problem requires a correct assessment of the impacts 

associated with the very "lumpy" investments being considered, and must 

satisfy several very complex constraints. The solution must allow the 

presented loads to be met, must provide a reasonable level of reliability 

and must not exceed the budgets predicted over the planning horizon. 

Because the generation planning problem is a problem of resource allo-

cation and scheduling in the face of resource and technical constraints, it 

is natural to try to approach the problem via optimization models. Such 

models have been suggested by several authors, based on linear programming 

[ 1, 2, 6], nonlinear programming [ 3, 10], dynamic programming [ 5, 8 ] 

and mixed integer programming [ 4, 7, 9] methods. Each of these models, 

however, has one or more shortcomings which have resulted in diminished 

usefulness. 

First of all, model adequacy is a problem in many cases. In particular, 
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some current technologies favor very large generating units. The resulting 

investments are discrete in nature and simply cannot be considered ade-

quately by models based on continuity assumptions. Thus, linear and non-

linear programming models are typically inadequate when these very lumpy 

resource allocations are to be made. 

Another effect of large generating units is relatively long construc-

tion periods. In the presence of construction budgets, this means that 

several periods are "tied together" through the construction budget con-

straints. Although this does not prevent the use of dynamic programming 

based models, it does result in state space dimensionality problems. Thus, 

models based on dynamic programming which incorporate budget restrictions 

are likely to be severely penalized in computational effort required. 

The second major shortcoming of previous models is that when model 

adequacy is satisfied, the computational effort required when using the 

model is generally excessive. Because there is so much uncertainty regard-

ing the future, it is desirable to employ post-optimality studies (such as 

parametric analysis) to determine the robustness or stability of the solu-

tions. Especially for mixed integer programming models, this has been 

computationally infeasible. 

Thus, although mixed integer programming models seem best suited in 

terms of model adequacy, their computational requirements have limited 

their utility. This paper introduces a new mixed integer programming model 

designed in an attempt to overcome this problem. The new model differs 

from existing models in several respects. First, it incorporates annual 

limits on new construction funds while allowing carryover of unspent funds 

from the previous year. Second, it incorporates a new simplified yet accu-

rate approach to production costing. The new approach is computationally 
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compatible with a large scale mixed integer programming model. Third, the 

new model treats reliability requirements in a novel fashion and one that 

is easily understood by system planners. 

4.1 Problem Specification  

There are many different ways to state the generation planning problem, 

depending on how various aspects of the problem are treated. This section 

of the report presents a detailed account of the various problem character-

istics which will be incorporated in the mathematical model of the follow-

ing section. 

Planning Horizon  

It is assumed that the planning horizon extends over T periods, which 

need not have the same duration. Let S
t

, t = 1, 	T denote the duration 

of period t in years. It may prove desirable to use longer durations for 

periods further in the future. 

In the following discussion, the parameters will generally not be 

indexed by period, for simplicity. It should be understood that whenever 

appropriate, a parameter may take on different values in each period. 

Also, costs and commissionings are assumed to occur at the end of the 

associated period. 

Demand  

The generation planning problem is driven by the demand for energy 

and is significantly affected by the distribution of the demand. For the 

purposes of a long range planning model the demand for energy can be des-

cribed by a load duration curve (LDC). The LDC for any period is repre-

sented by a set of discrete values as illustrated in Figure 4.1 where: 

e i  = width (in hours) of the .th 
 interval of the LDC 
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= power demand in interval i (MW) 

P.O. = energy demanded in interval i (MWH) 
1 1 

The LDC may represent a period of any desired length, e.g., a week, month, 

year, etc. The period represented by the LDC need not be the same as the 

period in the planning model. For example, if a two year planning period 

is used, a "typical" one-year LDC could be employed, provided the cost 

estimates were multiplied by a factor of two. If A is the time covered by 

the representative LDC, then
t 

LDC's are required in period t. 

Figure 4.1 here 

Generating Units  

The demand for energy is satisfied by operating a system of generation 

units. It is assumed that the variable operating costs for each unit in 

$/mw can be described as a quadratic function: 

V.(x) = A.x
2 
+ B,x + C. 

where 

V (.) = variable production cost function for unit j ($/MW) 

x = production level (IW) 

A., B., C. = unit specific parameters. 
J 	J 	J 

The coefficients A., B., and C. can take on different values in different 
J 	J 

periods to reflect unit aging or anticipated changes in fuel costs. It is 

further assumed that when operating, a unit must operate between two limit-

ing power levels, i.e., 

L. < x < U. 
J 	J 

where 

L1  = lower limit on production for unit j 
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U. = upper limit on production for unit j 

These limits are not absolute, and should be set in light of the quadratic 

approximation to variable costs. 

There are fixed costs associated with the generation units. The defi-

nition of these fixed costs in a long range planning model is a subject of -

some controversy, especially in a model which aggregates to a considerable 

extent. It is assumed here that the planning period fixed costs include 

the usual taxes, interest, etc., as well as the fixed operating costs. 

That is, the costs of start up, shut down, and maintenance that cannot be 

incorporated into the variable production cost are assumed to be represented 

in the single planning period fixed cost: 

F. = planning period fixed costs associated with operating 

unit j. 

To some extent, the fixed costs depend on how the unit is operated. In 

this situation it would be prudent to determine whether or not the solution 

were sensitive to the precise values of the F.. 

Generating units are subject to both planned and forced outages. It 

is assumed that the resulting availability rate, a., is known for each unit 

(possibly in each planning period). The availability rate is simply the 

expected number of hours the unit will be available divided by the number 

of hours in the period. 

Expansion Units  

Let J be the index set for all generating units and let J
e 
be the sub-

set of indices for expansion units which may be selected or have already 

been selected but not yet commissioned. For any unit in J
e 

there is a 

commissioning "window," i.e., a time period during which the unit must be 



commissioned, assuming it is selected for construction (or has already 

begun construction). Let w. denote the index set of time periods in the 

commissioning window for unit j, j s Je . 

Construction Costs  

Regardlessoftheperiodtcw.when expansion unit j is completed, 

the construction period has the same length, d, years. Construction costs 

are estimated in then-current dollars, and their magnitude depends on the 

commissioning date. If expansion unit j is selected for commissioning in 

periodtEw.then the construction costs in each period are denoted cjkt 

where k = t - d. + 1, t - d. + 2, ..., t, assuming planning periods of one 
J 	 J 

year. If the planning periods have other durations, the annual construc-

tion costs must be converted as appropriate. 

Construction Funds  

The availability in period t of new funds for construction is given 

by Bt, specified in then-current dollars. Construction funds not fully 

utilized in period t may be carried forward into period t + 1. Such funds 

are assumed to grow according to a short term investment rate, r tia . 

Reliability  

System reliability is commonly measured by the loss of load probabil-

ity, or LOLP. When the types and sizes of units are given, along with 

their individual forced outage rates, controlling LOLP amounts to control-

ling the generation plant mix. Thus, it is assumed that suitable con-

straints on unit size, proportions of capacity in various classes, etc., 

can be specified. (The derivation and specification of these constraints 

is discussed in more detail in following sections.) 

Another common practice in capacity planning is to require a certain 
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capacity margin, i.e., generation capacity in excess of the predicted peak 

demand. If a margin is required it is denoted by m t , such that (1 + m t ) 

times the peak power demanded is the required generation capacity. 

4.2 Model Formulation  

A guiding principle in the model formulation is that the purpose of 

the model is to reveal the "optimal" (for given parameters) decisions for 

selecting and commissioning generation units. Thus, the specific details 

of unit operations are not of interest per se. Rather, they are only of 

interest as they impact the estimated system production costs. 

Following this principle, the units in the existing system are treated 

in a new and novel way. All units in the existing system are aggregated as 

discussed in Chapter 3, with the resulting production cost being given by: 

F
at 

= annual fixed operating costs in period t 

= 	y 	F. 
j6J\J 

V
at

(x) = aggregate variable production cost ($/mw) in period t 

for j E J\Je  

As demonstrated in Chapter 3, this approach still yields accurate estimates 

of the associated production costs, even though it obscures the details of 

individual units' operations. 

Similarly, the production costs for the potential expansion units are: 

Fjt 
= annual fixed operating costs in period t, j E J e 

V
Jt 

(x) = variable production cost in period t ($/mw), j E J
e 

Also, there are production limits on the aggregate units: 
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L < x < U 

	

at - 	- at 

and the potential expansion units (if they are chosen): 

t 
L
j 
 < x < Uj t j e J

e 

The detailed development of the model is presented in the following 

sections. Section 4.2.1 deals with the constraints in the production cost-

ing sector of the model, Other constraints are discussed in the sections 

4.2.2 and 4.2.3. The important issue of criterion specification is addressed 

in section 4.2.4. 

4.2.1 Production Costing Sector  

The production costing sector of the model provides the necessary esti-

mates of variable production costs. This sector actually "drives" the model 

since it is where the demand for electricity is incorporated. 

The requirement to satisfy demand as represented by the series of load 

duration curves can be stated as: 

x 
al 

 . 
t  + 
	x • , = P

it 	
i = 1, ..., X/6 E I 	 (1) 

Jit  
jEJ

e 

where 

x 
al  . t 

 = power output of the aggregate unit during interval i of the 

LDC for period t 

jit = power output of expansion unit j during interval i of the 

LDC for period t. 

Note that a uniform increment length, 0, a uniform LDC duration, X, and a 

uniform number of increments, I, for each LDC has been assumed. In addi-

tion, no expansion unit may be operated prior to its commissioning, and if 

selected, is available in every period following its commissioning. This 

t = 1, 	T 



requirement generates the following constraints: 

L . 
	

X 	y. < x. 	< U . 	X j 	
j E J 

Tewi 

	

ji 	fit 	jt 
TCw. 

	

3 	
T 	e 

T<t 	 T<t 	i = 1, ..., I 

t = 1, 	T 

where 

1 if unit j is commissioned in period T 
= YJT 	

0 otherwise 

For simplicity, it is assumed that xjit  is defined to be zero for periods 

t prior to the commissioning window, w.. 

In order to represent the availability factor, the expansion units 

are constrained with respect to total energy produced in any period: 

j E Je 	 (3) 

t = 1, 	T 

If desirable or necessary, the aggregate unit representing the existing sys-

tem may be similarly constrained. 

Constraints (1)-(3) define the production costing sector of the gen-

eration capacity planning model. Because of the assumptions regarding the 

LDC representation, the production costing sector of the model exhibits a 

special structure. In later sections of this report, the special structure 

will be examined and methods will be presented for exploiting the special 

structure in a solution procedure. 

Thedecisionsrepresentedbythevariables. Y3 .1 , i.e., the selection 

and commissioning decisions are subject to constraints other than those in 

the production costing sector of the model. There are two types of addi-

tional constraints of primary interest here: budget oriented constraints 

and reliability oriented constraints. 
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(2) 

X x.. 	< ,, U. a 
3it 	jt j t 

j=1 
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4.2.2 Budget Oriented Constraints  

The simplest formulation of the construction budget constraint is: 

	

yy c. y. + S - (1 + r
t
)S

t-1 
= B

t 	
t = 1, 	T 	(4) 

4cj p>t  jtp JP 	t 
e 

Constraint (4) allows the carryover of excess construction funds with a 

short term growth (or investment return) rate of r
t
. This formulation is 

somewhat restrictive since it requires the annual construction budgets to 

be specified a priori. 

A more complex formulation would treat the budget amount as a decision 

variable, at least partially. To see how this could be accomplished define 

the following variables: 

1 if additional construction funds are obtained for period t 
z
t 

= 
0 otherwise 

S
t 
= amount of additional budget funds obtained in period t 

Now, constrain 13
t 
between appropriate limits, e.g.: 

omin z  < 	< otmax 
z P t 	t 	t 	Pt 

The extended budget constraint formulation is then 

G 	y y . 	Si - (1 	rdst-1  - 	= Bt 	t = 1, 	T
t 

 jEJe  p>t 3LP 313 	1  
tEwj  

din zt < 
t 

< f
ax ax 

t 	
t = 1, 	T 

t 	 t  

	

z
t 
= 0 or 1 
	

t = 1, 	T 

The reason for defining the zero-one variables, z t' 
is to allow for non-

zero lower limits on budget expansion and to allow for fixed costs of 
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obtaining additional funds. 

Although the extended formulation has the obviously desirable property 

of greater generality, it also has some drawbacks. In particular, it may 

prove to be computationally undesirable, since it adds another dimension 

in the decision space. Therefore, the formulation in constraint (4) will 

be adopted in subsequent developments. 

4.2.3 Reliability Oriented Constraints  

The reserve margin constraint is the simplest of the reliability 

oriented constraints and has the following form: 

tiat +YI.J. t  [Y YJ. T  k 	t (1 + mt ) 	t = 1, 	T 	(5) 
j  

T<t jEJ
e  

Constraint (5) requires that if all units are operated at their maximum 

rated power, their output exceeds the period's peak power requirement by 

at least m
t 

• 100%. 

As discussed earlier, the other reliability oriented constraints are 

the plant mix constraints. The idea behind these constraints is that 

because generation units are discrete entities, constraints on composition 

can serve the purpose of constraining LOLP. 

For example, it is widely recognized that it would probably be undesir-

able to have a system made up of only a few very large generating units 

even if they were individually quite reliable. The reason is that if any 

one unit failed, it would represent a large fraction of total capacity, 

and thus very large reserve margins would be required. In contrast, rela-

tively small reserve margins might be feasible with much less reliable 

units, provided that each unit is small enough. 

Instead of giving a completely general formulation of the unit mix 
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constraints, several specific examples will be given. One type of unit 

mix constraint would restrict the total capacity in some category to be 

less than a specified fraction of the total system capacity. For example, 

suppose nuclear fueled generation is to be restricted to less than 40 per- 

cent of total capacity. Letting J N  denote nuclear units, the appropriate - 

constraints are: 

r- 

y 	U . + 	y 	U. 	y y 	< .40 
j t 	 t  

jeJN 	jCJNnJe 	T<t 

iVJe 

U
a 
+ y 	U' t 

X y. T  
jcJ

e 	
T<t 

t = 1, 2, ..., T 

This formulation yields a mix constraint for each period. Because of the 

nature of the problem, it may be just as effective to specify the constraint 

only for four or five periods in the planning horizon, rather than for every 

period. 

A second type of unit mix constraint enforces a proportionality rela-

tionship between two classes of generating units. For example, suppose 

that fossil fuel units are required to be more than 60 percent of the 

capacity of nuclear units. Letting JF, denote fossil units, this constraint 

would be written: 

X 

j CjF 	iCjFnje 	T<t 	 jEJN 
	

; L T 	

ujt 	yiT  <t 
1J 	 .60 	y 	u. + jt 	 y 

i"e 	 —i"e 

t = 1, 2, ..., T 

Again, it may be desirable to drop all but four or five of the constraints. 

Note that these constraints are stated with regard to categories  of 

units. In the examples given above, the categories were based on energy 

source. It would be just as easy to specify other categories, for example, 
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based on the magnitude of the forced outage rates. 

A third type of constraint would force the solution to "compensate" 

for selecting a very large or very unreliable unit. Letting a. be the 
J t 

unit forced outage rate, this constraint is: 

y 	(1 _ a. 
t 
)U.

t 
 Xy. > (1 - a)YUy+ U

at 3 	j 	jT 
jEJ

e 	
T<t 	 _jEJ it  T<t jT  

e 

t = 1, 2, ..., T 

Or 

y 	-- 	yu. 	y 	. 	(1 - a)Uat 
e 

jt jt 	YiT 
jEJ 	 Tt 

In this constraint a is a parameter representing a desired "average" or 

capacity weighted forced outage rate. Choosing a relatively smaller value 

for a would result in relatively more compensation in the solution. As 

with the other two reliability oriented constraints, this one could be 

specified for only a few time periods in the planning horizon. 

One last set of constraints must be added. Observe that thus far, 

nothing prohibits more than one yjt = 1 for a given expansion unit, i.e., 

it might be commissioned more than once. While this is a practical impos-

sibility, the model might call for such a solution in order to satisfy the 

reliability oriented constraints. Thus, the following constraints are 

required: 

tew. 
y Yjt 

5 1 	J  E Je 
J 

(6) 

4.2.4 Objective Function  

A widely accepted criterion for the generation planning problem is the 

minimization of the total discounted costs, including operating costs and 

expansion costs. The present formulation, however, treats the construction 
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budget as fixed, so that expansion costs are not properly included in the 

objective function, with two minor exceptions. 

If there are unspent construction funds at the end of period T, they 

can be treated as a savings and netted out against the operating costs. 

Thus, all costs (operating as well as construction) should be estimated in 

then-current dollars, and discounted by an appropriate factor, say y. The 

resulting objective function to be minimized is the discounted total cost: 

DTC = 	y 
t=1 

Eat+ 
= 

Vat (xait ) 	X 	Ejt 	Y.  + X V (x " ) 
i 4EJ 	T<t  it 	i=1  jt jit 

e 

 

(7) 

If the extended formulation of the budget constraints is to be used, 

then the costs associated with obtaining additional funds must be included 

in the objective function. This formulation can be viewed as equivalent to 

the minimization of total discounted costs by letting the B
t 
be zero and 

appropriately specifying the costs associated with z
t 
and

t
- 

The objective function as stated in (7) is highly nonlinear. In addi-

tion to the fixed costs, it has convex variable'c costs. The solution pro-

cedures discussed in Chapters 5 and 6 exploit the problem's special struc-

ture to overcome the nonlinearities. It is assumed, however that the 

convex cost functions
, 
V
at

( ) andVjt  ( ), j 6 J
e 
are piecewise linearized 

as illustrated in Figure 4.2. 

Figure 4.2 here 

4.3 Model Use  

The complete mixed integer programming model for the generation plan-

ning problem is 



minimize DTC 

subject to: 

L
jt 

X 	y. < x. 	< U 	y 	. 
jT 	jit 	

U. 
	YJI  

TEw. 	 TEwi  
T<t

J  

I 	
1 

x.. < —U. a. 	j 	J
e Jit - e j t j t 

i=1 
t = 1, 

c. y. + S - (1 + r t )S t_i  = B 
jeJ p>t jtP  jP 	

t 
 

e 

U
at 

+ 	U._ X y. 	L t 
jEJe JL -r<t it - lt(1 + m) 

Ry > r 

y. 	1 	j E Je jt 
tEw. 

y. = 0 or 1, S
t 
 > 0 

jt 

xait -F xjit 	it 
jEJ

e 
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(8) 

i = 1, 

t = 1, 

J
e 

..., I 

T 

(9) 

(10)  

i = 1, 

t = 1, 

..., I 

T 

(11)  

T 

t = 

t = 1, 

1, 

T 

T (12) 

(13) 

(14) 

(15) 

(16) 

where constraints (14) are simply a generalized representation of the reli-

ability oriented constraints. 

This model represents a departure from existing models in several 

important respects. First, it incorporates a detailed capital budgeting 

type constraint on construction expenditures. Thus the analyst is required 

to specify the construction budgets for each year in the planning horizon. 

The second major departure is that reliability requirements are 

enforced implicitly. The analyst's input, therefore is an important and 
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essential component in the model. As illustrated in Figure 4.3 the evolu-

tion of the model involves interaction by the analyst in an iterative 

fashion in order to generate an appropriate set of reliability constraints. 

This type of interaction is viewed here as the proper use for optimization 

models for long range planning. 

Figure 4.3 here 

A third departure is that even though sufficient expansion projects 

are defined, there may be no feasible solution because of either the budget 

constraints or the reliability constraints. This implies that an iterative 

use of the model is mandatory, at least in those situations where no feasi-

ble solution is discovered on the first try. 

Finally, the model departs from existing mixed integer programming 

models in its production costing sector. The LDC is specified in such a 

way that a special, readily exploitable structure results. Within this 

framework, aggregation has been used to give a computationally superior 

model without sacrificing accuracy. In addition, the nonlinear production 

costs have been treated as such instead of linearized as in most other 

mixed integer programming models. 

4.4 Parameter Specification  

Two points need to be made regarding parameter specification. The 

first is that there are a number of critical solution controlling parameters, 

namely: 

y: the discount factor 

rt : short term investment return rate 

B
t
: construction budget 

and the factors used in the reliability constraints (e.g., a, the target 
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system average forced outage rate). It is anticipated that these types of 

parameters are studied to determine the impact on the solution of changes 

in their values. 

In addition, the model requires specifying a large number of cost 

parameters in then-current dollars. The practical approach to this parame-

ter specification problem is as follows. First, estimate all costs in cur-

rent dollars. Next, separate costs into different categories based on the 

assumption that costs in a given category will inflate (or deflate) at the 

same rate. Finally, specify the appropriate inflation rates for each cost 

category. With this data base it is a simple matter to generate the required 

cost parameters for the model. Moreover, it becomes a simple matter to 

study alternative assumptions about differential inflation rates. 

4.5 Summary  

This chapter contains a detailed discussion and specification of a 

mixed integer programming model for the long range capacity planning problem. 

The model differs significantly from other mixed integer programming models 

for GPP, both in the structure available to be exploited in a solution pro-

cedure and in the required manner of use. The ultimate evaluation of this 

new model therefore depends on its computational requirements and on its 

accessibility to utility system planners. 
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Algorithms for Solving the 
Generation Planning Problem 

In Chapter 4, a new mixed integer programming model was formulated for 

the long range generation capacity planning problem. The purpose of this 

chapter is to present the development and analysis of solution algorithms 

for this new formulation. The algorithms are based on Benders' partition-

ing procedure [3] and exploit the special structure of the GPP model. To 

simplify the presentation of the algorithm, it will be helpful to restate 

the generation capacity planning model in vector form as: 

	

P: 	 minimize 	z = L'y + 1'V(x) 	- YrST  + K 	 (1) 

subject to: 	+ DS = B 	 (2) 

	

>r 	 (3) 

	

+ Ax > b 	 (4) 

	

E Y, S > 	0 	 (5) 

In the objective function, 1' is a row vector of ones, V(x) is a column 

vector and K represents the sum of all constant terms. Note that v is a 

vector of convex functions. Constraints (2) and (3) are, respectively, the 

budget and reliability constraints, while constraints (4) are the produc-

tion costing sector constraints. The set Y is defined as: 

V 	 y
jt 	' 

1; v.
jt 
 = 0 or 1 

tew. 
(6) 

It should be noted that Benders' partitioning has been previously con-

sidered as an approach to solving the generation planning problem. Noonan 

and Giglio [16] applied it to a model with an explicit, nonlinear LOLP 



constraint and linear production costs. Bloom [4] discusses the applica-

tion of Benders' partitioning to simplified versions of the models pre-

sented by Noonan and Giglio, Phillips, et al. [18], and Schweppe, et al. 

[19]. 

5.1 Benders' Partitioning  Procedure 

Problem P can be rearranged in such a manner that the selection and 

commissioning decisions, they's, and the production decisions, the x's, 

are partitioned into two distinct yet related problems. The result of 

the partitioning is: 
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Fy - yTsT  + minimum 1'v(x) + K P1: 	minimize 

E 
Ax > b - Gy  

(7 ) 

   

Cy DS = B 

> r 

S > 0 

This arrangement of the problem isolates the integer variables, or 

complicating variables, to use Geoffrion's terminology [7]. If the compli-

cating variables, y, are fixed, the remaining problem in x is a concave 

program and may be readily solved. This is precisely the structure for 

which Benders' partitioning algorithm [3], and Geoffrion's generalization 

[7] of it were developed. 

Using Geoffrion's results [ ], problem P can be restated in the fol-

lowing equivalent form: 
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P2: 	minimize y 0 	 (8) 

T 

	

y
0 
> (F + uG)y + u(Ax  - b) + liv(x) - y S

T 
+ K 	 (9) 

Cy  + DS = B 	 (10) 

EY. 	>r 	 (11) 

y E V, u > 0 	 (12) 

Geoffrion's generalized Benders' partitioning algorithm does not solve P2 

directly. Instead, it adds the constraints (9) in a sequential fashion, 

much like a cutting plane procedure. Thus, the constraint set represented 

	

by (9) can be indexed, say on q = 1, 	Q and written as: 

y
0 
 > (F u 	uq  (AX - b) 	(xq  ) - ySTq K

q 
	

) 

or simplifying: 

Y0 
	y_ 

+6q 
	

q = 1, 	Q 
	 (9 " )  

The cuts or Benders constraints,  (9"), are generated by solving the 

production costing subproblem for a specified 

SP(i): v(Y) = minimum 	l'V(x) 	 (13) 

subject to: Ax > b - G9  (14) 

Because of the reserve margin constraints, if I is feasible in (2), (3) and 

(5), then SP(I) will have a feasible solution, which simplifies the general-

ized Benders' procedure. 

The generalized Benders' procedure for solving problem P can now be 

stated 17]: 
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STEP 1: For a Ty_ satisfying (2), (3), and (5), solve SP(i), obtaining 

the optimal dual vector u. Set q 4-- 1, u + u, LBD + v(1). 

Select a convergence tolerance parameter, e > 0. 

STEP 2: Solve the current master problem, P2, with (9) replaced by 

(9"), obtaining the solution 	90). If LBD > Yo  - E, then 

STOP. 

STEP 3: Solve the revised subproblem SP() obtaining the optimal dual 

vector, u. If v(i) > 9 0  - E, then STOP. Otherwise, set 

q q + 1, u + u, LBD + max (LBD, v(2)). Return to STEP 2. 

Geoffrion shows that this procedure converges finitely for problems in the 

class considered here, i.e., where y  is required to be a zero-one vector. 

5.2 An Exact Algorithm  

An exact algorithm for implementing the generalized Benders' procedure 

for solving problem P requires: (1) a method for solving SP(), and (2) a 

method for solving the revised master problem for a given set of Benders' 

constraints. As indicated in Chapter 4, the production costing sector of 

the model was formulated in such a way that solving the subproblems would 

be a simple task. Unfortunately the revised master problem does not appear 

to have an easily exploitable structure. 

5.2.1 Solving the Subproblem 

For a given "Y, the subproblem to be solved is: 
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(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

SP(1) has several useful properties. First of all, the problem naturally 

decouples into independent subproblems for each period, t = 1, ..., T. 

Thus, the problem may be solved by solving T smaller, more manageable 

problems. 

A second, less obvious, property is that the problem can be easily 

transformed into a network flow problem. The advantage of doing so is that 

there are quite efficient algorithms available for solving network flow 

problems, so the computational burden is eased. In order to demonstrate 

the network structure, drop the t subscript and let 

6i 
= y. 

3 1  TEWj 
T<t 
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Figure 5.1 illustrates a network flow formulation of the production 

costing subproblem for one period, where the LDC has three segments and 

there is one potential expansion unit in addition to the existing system. 

Each source of energy, i.e., the existing system or the expansion unit, is 

represented by two nodes. The arc between them has a maximum capacity, 

corresponding to constraint (17). The cost on this arc is always zero. 

Each increment of the LDC is also represented by a node, and the required 

flow out of the node represents the power demand constraints, (16). The 

arcs joining the unit nodes to the increment nodes represent the actual 

production of energy. The costs on the arc flows are taken directly from 

(15) except that the term y8 is omitted, since it can be factored out. 

Figure 5.1 here 

The bound constraints, (18) and (19), are the only aspect of SP(y) 

that is not directly translated into the network formulation. For compu-

tational reasons, it is desirable to enforce the bound constraints in a 

different way. As shown in the example, there are two arcs between expan-

sion unit nodes and LDC increment nodes. The arc going from the generation 

unit node represents the production of energy by that unit. However, if 

in the given y, the unit is not available, i.e., 6j  = 0, the flow will be 

forced into the associated arc going back into the generation unit node, 

thus will not be available to satisfy the power demand. With this model-

ling "trick" it will be necessary to adjust the optimal solution value for 

all those units not available in the current Y. 

The purpose behind this somewhat cumbersome method of enforcing the 

bounds is the reduction of computational effort. With the network formu-

lated as in Figure 5.1, a change in 1 does not require a completely new 

solution to the network flow problem. A significant overhead is avoided 
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by simply changing the arc costs (by replacing S_'s with their new values) 

and restarting the optimization from the most recent optimal solution. 

The efficacy of this technique has been demonstrated in many other mixed 

integer programming applications [10, 13, 14, 16]. 

Although the subproblem can be converted to a network flow problem, 

there is still the matter of the convex costs, V.(x). In order to fully 

exploit the state of the art technology for solving network flow problems 

[5, 11, 12] it will be necessary to use a piecewise linear approximation 

as shown in Figure 5.2. Note that the approximation can be made as tight 

as desired by choosing more linear segments. The effect in the network is 

toreplaceeachproductionarc(thosehavingcostslf.(x)) by a set of arcs, 

one for each linear segment in the approximation. 

Figure 5.2 here 

At this point, the production costing subproblem has been transformed 

into an equivalent linear programming problem having a computationally 

advantageous special structure. Noonan and Giglio [17] also employed a 

linear programming subproblem but their model did not incorporate convex 

production costs nor did it exploit the underlying network structure. 

All that remains is to show how to recover the optimal dual vector, u, 

from the solution to the piecewise linearized network flow problem. The 

optimal dual variables associated with constraints (16) and (17) are just 

the corresponding node potentials in the solution to the network flow 

problem. 

The dual variable values associated with the bound constraints (18), 

(19) and (20) are easily determined by considering the Kuhn-Tucker condi-

tions for optimality of SP(9). Let ai , unrestricted; j  < 0, yji  < 0, and  _ 

X 	> 0 be, respectively, the dual variables for constraints (16), (17), 
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(18), and (19). Note that a. and IS. are available from the network solution. 

The Kuhn-Tucker conditions give: 

	 V + a. + 1 +y i 	j 

	

+ X i = 0 	j E J
e 

U lal 

Ji 
j j  

i = 1, ..., I 

[x.. - U.6.]y.. = 0 	j sJU lal 
ji 	j j ji 	 e  

i = 1, ..., I 

[x.. - 	 =0 	jsJU {a} 
ji 	j j ji 	 e  

i = 1, ..., I 

Approximating ax..  Vj  by the optimal reduced cost for x.., and noting that 

Ji 
not both y.. 

ji 
 and A.. may be non-zero gives directly the computational scheme 

for determining the rest of the vector u. 

5.2.2 Solving the Master Problem  

At iteration Q of the generalized Benders' procedure, the master problem 

to be solved is: 

MP: 	minimize y 0 	 (21) 

Y0  > f3  Y + 6 q 	
q = 1, ..., Q 	 (22) 

- —q—  

a + DS = B 	 (23) 

EY 	>r 	 (24) 

/ c "I, S .>. 0 	 (25) 

which is a mixed integer programming problem. Although MP is not formid-

ably large (e.g. if T = 30, IJ e l = 30 and the average Iw j l = 5, MP has 150 
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0-1 variables, 31 continuous variables, 60 + Q constraints and 30 general-

ized upper bounds) it also does not have any obviously exploitable struc-

ture. 

Thus, it appears that a standard linear programming based branch and 

bound approach [9] would be the wisest choice for solving MP in the straight-

forward generalized Benders' partitioning procedure. Such a procedure is 

likely to be most successful when MP is tightly constrained by budget and 

reliability requirements. 

5.3 A Variant of the Exact Algorithm  

Many variations of Benders' partitioning have been suggested in the 

literature [2, 6, 10, 15], at least partially motivated by poor performance 

of the original procedure. In this section, the one proposed by Geoffrion 

and Graves [10] is considered for solving the generation planning problem. 

Geoffrion and Graves (GG) propose using the master problem, not to 

generate lower bounds per se, but to generate new feasible y's for the sub-

problem. Feasibility for the Benders' constraints means that y
0 
 must not 

exceed the best known feasible solution value, call it UBD. Thus the 

Benders' constraints are rewritten as: 

UBD - E > (3, 	+ 8q 	q = 1, 	Q 	 (26) 

Obviously, if no such feasible solution can be found, the procedure 

terminates. 

Since the master problem was only used to find feasible i's, GG 

observed that any objective function could be used. In their empirical 

evaluation, they found that using the most recently generated Benders' 

constraint as the objective function gave good results. 

With these modifications, the master problem at iteration Q of the 
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procedure is: 

MP': 	minimize 	y0  = 	Y_ o 	-111 

subject to: UBD - E > 	y 	d 	q = 1, 	Q 

.Cy + DS = B 

> r 

S > 0 

Note that the problem need not be solved to optimality; it may be terminated 

as soon as a feasible ./ is encountered. 

5.4 An Approximate Algorithm  

The reason for considering an approximate algorithm for the generation 

planning problem is that there may be situations in which quickly finding 

good solutions is the object rather than spending more (perhaps much more) 

time to guarantee optimality. For example, in studying the effects of 

differing assumptions about fuel costs, it might be desirable to quickly 

examine many different possibilities. In situations such as this, having 

a good solution and some evidence indicating how good it is may be all that 

is needed. 

Several approaches to developing approximate solutions are available, 

based on the exact procedures described in the previous section. Note, how-

ever, that the goal of the approximate algorithm is to avoid large computa-

tional requirements. Thus, for example, simply using a large 6 value in 

the termination criterion of the exact algorithms does not constitute a 

desirable procedure, because it still requires solving a mixed integer pro-

gramming problem. 
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An approach that has been used with some success in solving similar 

problems [1] is the following. Implement the generalized Benders' pro-

cedure except that instead of solving the master problem, MP, as a mixed-

integer programming problem, solve it as an LP and then use some ad hoc 

rules to integerize the continuous solution. Additional rules are required 

to handle situations in which the same is generated more than once. 

In the work reported in [1], it was found that this approach usually 

led to very good or optimal solutions. Unfortunately, the lower bound 

obtained from the linear relaxation of MP was usually very weak so that 

the quality of the solutions could not be judged. Attempts to strengthen 

the bounds through Lagrangian relaxation [8] were generally unsuccessful. 

5.5 Summary  

This chapter has described both exact and approximate algorithms for 

solving the generation capacity planning problem as formulated in Chapter 4. 

While these algorithms have not been empirically tested yet, there is rea-

son to hope for good computational results. Similar applications of Benders' 

partitioning have been successful, and the model used here has been formu-

lated to exploit the problem's special structure. 
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A User Oriented System for 
Generation Capacity Planning 

The development of an optimization model and associated algorithms 

for generation capacity planning does not guarantee their use. In order 

for such developments to gain acceptance, there must be at least a design 

for the supporting data base and its management and more importantly, a 

design for the interface between the user and the algorithms. The purpose 

of this chapter is to propose some design guidelines for these aspects of 

an integrated generation capacity planning system. 

6.1 Overview 

One of the most important factors to consider in designing the system 

is that its users will probably have very little knowledge of the methodolo-

gies employed in the solution procedures. Their expertise will be in other 

areas, and it is crucial that their use of the system should magnify their 

capabilities in modelling, optimization, or computer programming. The user 

should not be required to undergo extensive training in order to learn how 

to use the system. This consideration leads to the first of the general 

guidelines: 

(1) 	The system should be terminal oriented, incorporating a 
conversational style prompting monitor. 

Special purpose terminal monitors have been developed for a number of 

general purpose optimization systems, e.g., 1420S [2] and EZLP [3]. These 

monitors are actually nothing more than master programs with extensive I/O 

and capabilities for processing character string data. A desirable feature 

of the terminal monitor is the capability for the user to obtain from the 
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terminal monitor some basic instruction in how to use the system along 

with simple examples. 

A second important factor to consider is that the system may be used 

to solve many different problems or variation of a given problem. Thus 

it is necessary to separate the data base and data base management 

functions from the solution procedures. The system must allow the user 

to specify the source (filename) for the data to be operated on: 

(2) The system should permit the user to specify (from the 
terminal) the filenames of the data to be used. 

A third requirement is that the system be flexible in the reporting 

of results. For large scale generation capacity planning, it would be 

impractical to receive detailed solution reports at the terminal. It 

might be desirable, however, to have detailed reports in a hard form for 

further analysis. Thus the system should provide for appropriate aggregated 

and/or abbreviated reporting to the terminal and for flexible reporting 

to a high speed hard copy printer: 

(3) The system should provide levels of reporting for results 
both to the terminal and to hard copy printers. 

A fourth and final design consideration is to make the system 

modular. There are two reasons for doing so. One is that a modular 

system is easier to code and debug. The other is that if the system is 

designed in a modular fashion, the more important functions can be 

implemented and used while ancillary functions are being developed: 

(4) 	The systems should be modularized. 
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6.2 Data Base Design  

The existing widely-used generation planning systems, such as OGP [1], 

WASP [4], and others 16,7,8], all require much of the same basic data as 

is required by the optimization model proposed here. In a system based on 

the optimization model, it would be desirable, then, to have the same basic 

file organization. It is inevitably true, however, that no two utilities 

(or other potential users) will have exactly the same detailed file 

organization or structures. Thus, the system must be flexible as well as 

easily modified in the input of raw data. 

This leads to the definition of a system function called "CREATE 

DATA." This function takes raw data in some specified format, modifies 

it according to user instructions, and creates a user data file in a 

standard format. For example, suppose the system is designed to operate 

on the following four files: 

LOAD file: 	contains load forecasts 

UNIT file: 	contains heat rate and output limit coefficients 

PROJECT file: 	contains base year construction costs and 
commissioning window data 

PARAMETER file: contains discount rates, inflation rates, 
budget limits, and plant mix constraints 

In order to set up the PROJECT file, the CREATE DATA function may be required 

to access several of the user's existing data files. 

It will generally be true that the best internal organization of the 

data in their four files will not necessarily be the most convenient for 

the solution procedure. This consideration leads to the definition of a 

new file and another system function, "CREATE PROBLEM FILE". This function 

takes as input the four data files described above and produces a single 

file containing all the data required by the solution procedure in a format 
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convenient for input to the procedure. The resulting PROBLEM file will then 

be the input source for the solution procedure. 

The third system function is "SOLVE PROBLEM", which takes the PROBLEM 

file as input and generates a RESULTS file. This system function may 

require some direct input from the user, for example, to choose the 

solution technique (exact or approximate) or to determine when to stop 

the procedure. 

The RESULTS file can be examined by the user through a fourth system 

function called "QUERY RESULTS". The primary purpose of this function is 

to reformat and summarize the results for easy assimilation by the user. 

This function is required because of the volume of results produced by 

the problem solver. 

The final system function is "CREATE REPORTS", which uses the RESULTS 

file along with user instructions to create a set of reports which may 

be dumped to a hard copy printer. Again, the purpose of the function is 

to allow flexibility in reporting results so that only those results actually 

needed are printed. 

6.3 System Functions  

Figure 6.1 illustrates the fundamental structure of the system, including 

the five primary system functions and the six system specific files. Note 

that this system architecture allows for a great deal of flexibility in 

implementation. For example, the SOLVE PROBLEM function might allow the 

user limited abilities to override or specify alternative values for 

certain parameters in the problem file, e.g., a fuel cost inflation 

factor. 
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Because certain functions are likely to require considerable elapsed 

time, e.g., CREATE DATA or SOLVE PROBLEM when optimizing, it will be 

important to have a "batch" mode for the system functions. In other 

words, the user will specify all the user-supplied parameters but instead 

of the processing being done in a real-time or time-share mode, the work 

will be sent to the batch queue. In this way, the terminal can be freed 

for other uses. 

Finally, as noted by Jordon and Schlaepfer [5], there are potential 

uses of interactive graphics in power system planning. This type of 

interactive processing also falls within the scope of the architecture 

as described. 
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Summary and Recommendations 

The research reported on here is directed toward developing optimiza-

tion models and solution techniques for use in long range planning of 

generation capacity for electric utilities. The key accomplishments to 

date in this research effort are: 

(1) the development of a new technique for production cost esti-

mation, its implementation and experimental validation; 

(2) the detailed development of a new mixed integer programming 

model of the generation capacity planning problem which 

explicitly incorporates construction budget considerations 

and treats reliability requirements in a novel way; 

(3) the general development of exact solution procedures and 

heuristic solution procedures which exploit the proposed 

model's special structure to achieve computational effi-

ciency; and 

(4) the development of guidelines and an architecture for an 

integrated planning system based on the proposed model and 

solution techniques. 

Item (1) in particular represents a significant departure from the 

traditional and currently accepted practice. Although the results of that 

work have been used here in a mixed integer programming model, the tech-

nique is equally valid in the context of dynamic programming approaches 

(such as WASP [1]) or system myopic heuristics (such as PEP [2]). In 

addition, the technique is potentially valuable in more comprehensive 

models which include a revenue generation sector [3]. Although there 

are some computational issues remaining to be settled, the research 

effort relative to item (1) is essentially complete. 
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Research on item (2) is continuing, specifically with regard to 

mechanisms for defining the appropriate plant mix constraints. Several 

questions remain to be answered. First of all, what types of feedback are 

needed and how should the feedback be used by the analyst in the iterative 

process of developing these constraints? In addition, are there any tech-

niques that can allow a priori specification of a "good" set of plant mix 

constraints? The issue of reliability measurement for generation is itself 

an unresolved one, and it is recommended that further research on the 

approach proposed here represents a valuable contribution to understanding 

and solving the problem. 

The value of the general developments of item (3) may only be deter-

mined through implementation and computational testing. In the implemen-

tation process, a number of interesting methodological issues will need to 

be resolved, especially in the solution of the Benders' master problem. 

This research is also continuing and computational results should be forth-

coming in the near future. 

In terms of practical value, the development of an integrated system 

based on the results of item (4) may prove to be most significant. One 

reason why mixed integer programming models are not more widely used in 

general is that the solution methodologies are not very accessible to the 

potential users. However, development of such a system holds more interest 

as a commercial venture than as a research endeavor, so no further research 

seems warranted. 



REFERENCES  

1. Jenkins, R. T., and D. S. Joy, "Wein automatic system planning package 
(WASP) - an electric utility optimal generation expansion planning 
code," ORNL-4945, Oak Ridge National Laboratory, Oak Ridge, 
Tennessee, 1974. 

2. Lansdowne, Z. F., C. L. Rudasill, and 0. S. Yu, "Power system expan-
sion model for energy R&D planning," presented at TIMS/ORSA Meeting, 
San Francisco, California, 1977. 

3. Walters, D. H., and R. T. Jenkins, "Integrated power system planning 
model," presented at TIMS/ORSA Meeting, San Francisco, California, 
1977. 

111 



Appendix A 

112 

Notation and Terminology 



T = number of time periods in the study 

D = demand level faced by system of generation units 

TC(D) = hourly production cost at output level D for system 

A.,B.,C. = coefficients of quadratic cost curve for unit i 
1 1 1 

x. = production or output level of generation unit i 

L. = lower bound on production for unit i 
1 

U. = upper bound on production for unit i 

S t = duration of period t in years for the generation capacity 
planning model 

A = amount of time covered by the representative load duration 
curve 

t
/A = number of load duration curves required in period t 

EPC = estimated production cost for one time period in production 
costing routine 

P. = power demand value for segment i of the load duration curve 
1 

O.
1 
 = width of interval partitions on the load duration curve 

E. = annual energy capacity of unit i 
1 

v (-) = variable production cost function for unit j (S/mw) 

F. = planning period fixed costs associated with operating unit j 

a. = availability rate for unit j = (expected number of hours 
available)/(number of hours in period) 

J = index set of all units for the generation planning model 

J
e 
= subset of indices for expansion units 

w. = index set of time periods in the commissioning window for 
unit j, j E Je  

d. = length of time for construction of expansion unit j 

B
t 
= new funds available in period t for construction 

S
t 
= excess construction funds accumulated in period t 

cjkt = construction cost for project j in period k if commissioning 
occurs in year t 

r t  = 
short term investment rate of return at period t 
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Y = discounting factor for costs 

m
t 
= generation capacity required in excess of the predicted peak 

demand 

a. = unit j forced outage rate 

a = desired "average" or capacity weighted forced outage rate 

c. = cost per hour of producing for discrete unit i 
= A.U? + B.U. + C. 

1 1 	1 I 

b = output level prescribed in recursive relationship developed 
in algorithm for discrete units 

f
k
(b) = optimal solution value (minimum cost) at the k

th 
solution 

stage for output level b 

t 
= set of system output levels for which associated costs have 

been determined, given a system of discrete units 1 through t 

b = individual member of set 13
t 

(d.,t.) = (demand, cost) point derived for the system of discrete units 

n
d 
= number of discrete units 

n
c 
= number of continuous units 

n = number of units in the system 

u = dual variable associated with the demand satisfaction require-
ment in the marginal cost approach for continuous units 

v. = dual variable associated with lower bound restriction on unit i 
1  in the marginal cost approach for continuous units 

w. = dual variable associated with upper bound restriction on unit i 
1 in the marginal cost approach for continuous units 

p.(x.) = marginal production cost (2Aixi  + Bi) associated with unit i 
1 I 

operating at level x i  

p. = marginal production cost associated with unit i when it is 
1 operating at its upper bound on production 

p. = marginal production cost associated with unit i when it is 
1 

operating at its lower bound on production 

p = variable representing marginal cost for entire system of 
continuous units at a specific output level 

S i = 
smallest change in continuous system marginal cost, p, which 
would force unit i either to assume an operation level above 
its lower bound or to become fixed at a production level 
corresponding to its upper bound in the production 
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K(D) = hourly production cost at output level D for total system 
containing all continuous and discrete units 

x = production level for aggregate continuous unit 

TC
1
(x) = cost of production level x for aggregate continuous unit 

th 
t. = production cost for the j 	discrete point 

d. 	
th 

= production level for the j 	discrete point 

U = upper bound on production for aggregate continuous unit 

L = lower bound on production for aggregate continuous unit 
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The Loss of Load Probability (LOLP) 
Approach to Generation Reliability 
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The LOLP is essentially an estimate of the fraction of time during 

the year when the system will not be able to meet all demand because of a 

forced or unplanned outage. The development given below is based on des-

criptions found in [1, 2]. 

Suppose the vector x represents the state of the system. If there are 

n units in the system then x is an n-vector whose elements are one or zero, 

depending on whether or not the corresponding unit is available or in ser-

vice. When the system is in state x, there is a random variable, G(x), 

which describes the instantaneous generation capacity resulting from the 

randomly occurring failures of the units in service. In principle, there 

is a different G(x) for each possible state, x, which may occur. 

For a given x, the distribution function for G(x) is FG (glx) and is 

determined as follows. Let J be the index set for units that are avail- 
x 

able in state x. For each of the n units in the system, let U. be the 

random variable describing unit availability, with distribution function 

F.(u). In practice, U is generally assumed to be discrete with only two 

values, full capacity and completely failed, with corresponding probabili-

ties (1 - a) and a, where a is the forced outage rate. FG (glx) is the 

convolution of all the F.(u) for units j E J
x

. 

As an illustration, consider a system with four generating units hav-

ing the capacities and forced outage rates given in Table B.1. Let x = 

(0, 1, 1, 1), i.e., only units 2, 3, and 4 are available. F G (glx) is 

determined by convoluting F
2
(u) with F

3
(u) to obtain an intermediate result, 

F* (u), then convoluting F* (u) with F4 (u). The calculations are illustrated 

in Table B.2. 
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Table B.1. Sample Problem 

4 Unit Capacity Forced Outage Rate 

4 1 40 0.010 
• 

2 45 0.015 

• 3 50 0.005 

4 55 0.010 

• 
4 

t
• 

• 

Now let L(t) be a random variable describing the demand for power at 

time t. The expected value of this random variable is simply the fore-

casted demand. The distribution function for L(t) is F
L 	

t). The margin, 

or excess of capacity over demand at time t is now a random variable, 

M(tlx): 

M(tlx) = G(x) - L(t) 

whose distribution function is found by convolution ("*" denotes the con-

volution operation): 

FM (m, tlx) = FG (glx) * 	t) 

If the margin is less than zero, M(tlx) < 0, then there is a loss of load, 

and the instantaneous probability of this event is simply Fm (0, tlx). 

Thus, it is a simple matter to determine LOLP, provided the system 

state x doesn't vary: 

1 
LOLP 	M(0, (0 tlx) dt 

0 

In reality x does vary in response to anticipated changes in the load, 

L(t), as well as to allow for planned maintenance. Further, because the 

changes in x are not random, they can't be incorporated in the above model 



Table B.2. Calculation of F t
(glx) 

. 

. 
u 

0 

45 

P
2
(u) u 

0 

50 

P
3 
 (u) u 

0 

45 

50 

95 

P* (u) 

.015 

.985 

.005 

.995 

.000075 

.004925 

.014925 

.980075 

4r 
4. 

4 . 
U P* (u) u P

4
(u) u P(u) FG (g !x) 

0 .000075 0 .01 0 .00000075 .00000075 

. 45 .004925 55 .99 45 .00004925 .00005000 

t 50 .014925 50 .00014925 .00019925 

95 .980075 55 .00007425 .00027350 

95 .00980075 .01007425 

100 .00487575 .01495000 

• 105 .01477575 .02972575 

150 .97027425 1.0 
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K 

4 
V by making x a random variable with a known distribution function. 

In order to allow for planned variations in x, the time interval must 

be broken down into contiguous increments, each of which is as long as pos- 
V 

y 
 

sible but still corresponds to only one state. Suppose there are m such 

increments. Let I be the index set for these increments with x. the state 
—1 

during increment i, which is defined as (T i-1' 
T] where T

0 
 = 0 and T

m 
= 1. 

Also, let d.
1  T

i  - T i-1 . Now to calculate the annual LOLP, simply calcu- 

late the LOLP for each increment, then combine them: 

4 	 M(tlxi ) = G(xi ) - L(t) 

FM (m, !xi ) = FG (g1Lci ) * FL (k, t) 

.. 
►  

LOLP i 	d 
= 	

FM ' 
(0 tlx.) dt .1 f Ti 
	-a 

1 T. 
1-1 

LOLP = 	LOLP.(d.) • 	 a_ 

►  



A 

A 
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