## A STUDY OF THE HEAT TRANSFER CHARACTERISTICS

IN A FIN TYPE EVAPORATOR

## A THESIS

## Submitted for the Degree

## of

## Master of Science in Mechanical Engineering

by

J. N. Felton and

C. C. Grommet

Atlanta, Georgia

Georgia School of Technology

1938



## ACKNOWLEDGEMENTS

The authors take this means of expressing their appreciation to Professor R. S. King, who suggested the research, and to Professor A. D. Holland, whose practical advice and helpful suggestions facilitated its accomplishment. The authors also wish to thank Mr. Willis D. Ludwig and Mr. Wisser, who originally laid out the equipment.

\*\*\*\*

## TABLE OF CONTENTS

|     |                                 | Page |
|-----|---------------------------------|------|
| I.  | Nature of Study                 | 3    |
|     | A. Purpose                      | 3    |
|     | B. Application                  | 4    |
|     | C. Previous Work by Others      | 5    |
| II. | Instruments and Equipment       | 10   |
|     | A. General Layout               | 10   |
|     | B. Fan, Motor, and Ductwork     | 10   |
|     | C. Control of Flow              | 12   |
|     | D. Manometer                    | 12   |
|     | E. Pitot Tube                   | 14   |
|     | F. Intake Orifice Meter         | 14   |
|     | G. Heating Coil                 | 15   |
|     | H. Cooling Coil                 | 15   |
| ê   | I. Eliminator and Diffuser      | 18   |
|     | J. Thermocouples                | 22   |
|     | K. Thermometers                 | 22   |
|     | L. Compressor, Condenser, Motor |      |
|     | Weighing By-Pass                | 24   |
| III | . Method of Conducting Test     | 26   |
| IV, | Results                         | 28   |
| v.  | Conclusions                     | 45   |
| VI. | Results Based on Thermocouple   |      |
|     | Doto                            | 17   |

## TABLE OF CONTENTS (CONTINUED)

|         |      |          |          |       |            | E    | age | ;  |
|---------|------|----------|----------|-------|------------|------|-----|----|
| VII.    | Cond | clusions | Regardin | g The | rmo-       |      |     |    |
| •       | coup | ples     |          |       |            |      | 49  |    |
| VIII.   | Apı  | pendix   |          |       | uen<br>Sta |      | 61  |    |
|         | Α.   | Manomete | r        |       |            |      | 61  |    |
|         | Β.   | Thermoco | uples an | d Pot | en-        |      |     |    |
|         |      | tiometer | S        |       |            | •    | 63  |    |
| 1       | C.   | Coil Con | stant Da | ta    |            |      | 68  |    |
|         | D.   | Orifice  | Caldulat | ion   |            | .*   | 69  |    |
|         | E.   | Ammonia  | Heat Bal | ance  | Check      |      | 70  |    |
|         | F.   | Bibliogr | aphy     |       |            |      | 72  |    |
| CURVES  | 10   |          |          |       |            |      |     |    |
|         | Α.   | Based on | Saturat  | ion I | 'empe r-   |      |     |    |
|         |      | ature    |          |       |            |      | 36  |    |
|         | Β.   | Based on | Thermoc  | ouple | Data .     |      | 55  |    |
|         | С.   | Thermoco | uple Cal | ibrat | ion        |      |     |    |
|         |      | Curves   |          |       |            |      | 65  |    |
| DI AGRA | MS:  |          |          |       |            |      | ,   |    |
|         | Α.   | Apparatu | S        |       |            |      | 8.  |    |
|         | В.   | Isometri | c View o | f Amn | onia M     | ains | 11  | (  |
|         | C.   | Thermoco | uple Pos | itior | 18         | 16 e | ind | 17 |

# TABLE OF CONTENTS (CONTINUED)

Page

DIAGRAMS (Cont'à):

|        | D.   | Eliminator and Diffuser        | 19 |
|--------|------|--------------------------------|----|
|        | E.   | Thermocouple Wiring Diagram    | 20 |
|        | F.   | Wet Bulb Arrangment            | 21 |
|        | G.   | Table of Runs                  | 25 |
| ILLUSI | RATI | IONS:                          |    |
|        | Α.   | General View of Equipment      | 9  |
|        | Β.   | Ammonia Compressor and Conden- |    |
|        |      | ser                            | 9  |
|        | С.   | Micromanometer                 | 13 |
|        | D.   | Ammonia Test Coil and Diffuser | 13 |
|        | E.   | Potentiometer Set-Up           | 23 |

\*\*\*\*

### PREFACE

## COMPLEXITY OF PROBLEM

A large number of variables affecting coil performance have been previously reported.\*

The following table shows some variables en-

AIR:

- 1. Temperatures: Dry-bulb, wet bulb, dew-point.
- 2. Velocity: Linear velocity through free area or face area.

3. Turbulence.

REFRIGERANT:

- 1. Type: Chemical composition, liquid or direct expansion.
- 2. Operating Range: Pressures and temperatures.
- 3. Velocity.
- 4. Turbulence.

COIL:

1. Surface Ratio: Ratio of air-side surface area to refrigerant side sur-

face.

\*\*\*\*

\* See Bibliography in Appendix.

- 2. Type of fins: Round, square, or continuous.
- 3. Shape of fins: Plain, crimped, ribbon or wedge-shape.
- 4. Fin bond: Integral, dipped, expanded, pressed, etc.
- 5. Material: Copper, Aluminum, steel, castiron, brass.

6. Depth and piping: Depth of fins, number of tube rows, tube spacing, counter flow, parallel flow, cross flow, mixed flow, etc.

\*\*\*\*

### I NATURE OF THE STUDY

A. Purpose.

During the last few years there has been very rapid development in the air-conditioning industry. This development has given rise to a number of manufacturers of accessories necessary for a complete unit. As yet, very little of the equipment has been standardized. There has been no accurate basis on which a coil might be rated. The selection of a coil has been at the best a rough estimate. Each manufacturer has given his own specifications. Since this method of rating and selecting a coil for a particular job has not been the desire of both the sales engineer and the installation contractor, it would indeed be practical to have standard, accurate information on which evaporator coils might be rated and selected.

Necessary tables and charts for complete information regarding all types of coils would require an unlimited amount of research, as well as a most elaborate outlay of expensive instruments and equipment. That a single manufacturer or even a group of men interested in research should undertake such a comprehensive problem would be an expensive and impractical project.

Page 3

Since there has been considerable interest shown in this problem, the authors think it quite feasible that even so complete a situation might be attacked by any number interested and the final results correlated and made available to the general engineering public.

Our aim, then, has been to endeavor to fulfill partially the hopes of so many engineers for a standardization, with the hopes that the result obtained might be checked independently, verified or corrected and made available to those desirous of the information.

Sufficient data were taken to provide overall heat transfer coefficient with a combination of three variables, viz., quantity of air across coil, temperature of air entering, and temperature of ammonia. A schedule sheet of the runs made is shown on page 25

Thermocouples were attached at various points over the tubes and fins to determine the characteristics of the temperature gradient.

B. Applications.

The scientific value and practical advantages are apparent:

1. Complete information would provide manufacturers and installation engineers with an accurate and precise method of rating and selecting standard coils.

2. With any one type as a basis, comparative data could easily be acquired.

3. Reliable results concerning temperature gradients would tend to insure more efficient and economical design.

4. These data would be of great value to the independent manufacturers who do not have elaborate research and testing departments.

5. In many cases there is occasion for special equipment, depending on the nature of the job. With sufficient data available, the coil could be designed quickly and accurately with a knowledge that the product would perform as specified.

C. Previous Work.

After a search of practically all recent engineering information available, it was found that considerable work has been done with fin type evaporator coils.

The most recent research similar to this was by G. L. Tuve and C. A. McKeeman.<sup>9</sup>

9. Performance of Fin-Tube Units for Air Cooling

\*\*\*\*\*

and Dehumidifying, Heating, Piping and Air Conditioning, June, 1937.

#### \*\*\*\*\*

The most comprehensive mathematical analysis has been done by William Goodman<sup>8</sup>. Mr. Goodman also carried out sufficient experiments to verify his mathematical conclusions.

Pownall<sup>1</sup> of York Corporation and W. J. King and W. L. Knaus<sup>5</sup> of General Electric Corporation have conducted experiments similar to those mentioned.

As was definitely shown at the delivery of Mr. Goodman's paper, there are still numbers of conflicting opinions as to coil performance.

#### \*\*\*\*\*

8. Dehumidification of Air with Coils, Refrigerating Engineering, October, 1936.

1. Rational Development and Rating of Extended Air Cooling Surface, October, 1935.

5. <u>Heat Transfer Rates in Refrigerating and Air</u> <u>Cooling Apparatus</u>, May, 1934. Without exception, the above mentioned authorities are of the opinion that so far there have not been accurate fin surface temperatures determined by the use of theremocouples.

The investigation of previous experiments did not disclose work done on the type coil used under the different variables employed herein.



ño .

PAGE 9

GENERAL VIEW OF EQUIPMENT



AMMONIA COMPRESSOR AND CONDENSER

### II INSTRUMENTS AND EQUIPMENT

A. General Layout.

The plan on page 8 and photographs on page 9 show the arrangement and relative size of the equipment. It was set up in the basement of the Mechanical Engineering Building of the Georgia School of Technology in the spring of 1934. The metering element on the extreme end of the suction side of the blower was set up for an investigation of the intake pipe orifice. A Pitot tube traverse was taken for the orifices used and the quantity of air checked by a heat balance on air and ammonia.

The manometer for the orifice was located as near as possible to the point of pressure measurement, so that the connecting length would be a minimum.

An isometric view of the ammonia mains and weighing bypass is shown on page 11.

B. Fan, Motor and Ductwork.

The fan used was a Sirocco #4 multiblade blower built by American Blower Company of Detroit. The diameter of the impeller was twenty-four inches with sixty-four blades ten inches wide. The scroll casing was sixteen inches wide and the diameter of the



intake was twenty-five inches. The discharge was twenty inches square. It was belt driven at 700 R.P.M. by a 220 volt, 60 cycle, 3 phase, 5 H.P. induction motor.

The duct work was of twenty-two gage galvanized iron pipe 22.75 inches inside diameter. All joints were soldered air-tight, and all rough projections on the inside of the joints were removed. Steel reinforcing hoops were placed around the pipe to insure a round cross section.

C. Control of Flow of Air.

Since a constant speed inducation motor was used to drive the fan, other means had to be provided to vary the flow. This was accomplished by two methods:

1. By varying the size of the orifice on the suction side of the fan.

2. By a sliding shutter at the fan discharge.

D. Manometer.

Previously, during the investigation of the intake pipe orifice as a metering device for air, it was necessary to construct a micro-manometer to measure accurately slight pressure differentials. A photograph of this instrument may be found on page 13.



PAGE13

MICROMANOMETER



AMMONIA TEST COIL AND DIFFUSER

The design of the instrument was worked out at Georgia Tech, but it was based on a similar instrument used at the University of Toronto<sup>11</sup>. It is read directly to one thousandth of an inch of alcohol and may be estimated to .0005 inch of alcohol approximating .0004 inch of water. A full description of the manometer may be found in the appendix.

Page 14.

E. Pitot Tube.

The Pitot tube used to check the coefficient for the two orifices used was made especially for the series of tests on Investigation of the Intake Orifice. The tube was proportioned as recommended by the American Society of Mechanical Engineers.<sup>10</sup>

F. Intake Orifice Meter.

The orifice plates were of the thin-plate, squareedge type with circular openings concentrically located with respect to the pipe. They were turned on

\*\*\*\*

11. E. Owen - <u>Measurement of Air Flow</u> - Chapman & Hall, Ltd., London, 1933.

10. American Society of Mechanical Engineers Research Publications, Third Edition - 1931 - Fluid Meters, Their Theory and Application. a lathe from galvanized sheet iron with an average thickness of .64 inches. Rough edges were removed by a fine file. Only two orifices were used:

1. 15.25 inch diameter or 45% of pipe area.

2. 10.2 inch diameter or 20% of pipe area.

A pressure tap located 40% of the pipe diameter downstream from the intake orifice was found to be the position of the vena contracta or maximum pressure differential. The tap was ground with valve compound, and the hose connection was of new, heavy tubing.

G. Heating Coil.

A steam heating coil manufactured by Trane Company was placed between the blower and the cooling coil in order to secure the desired dry-bulb temperature of the air before the cooling unit.

H. Cooling Coil.

The coil used was a special Larkin <u>Humi - Temp</u> of aluminum, cross fin type. Tubes were 5/8" in diameter and spaced on  $1\frac{3}{4}"$  center lines.

The unit was housed in an aluminum housing to give the maximum amount of refrigeration in the minimum amount of space, and with the minimum amount of weight.





### Specifications:

 Width
 Height
 Depth

  $12\frac{1}{4}$ "
  $12\frac{1}{4}$ "
 7"

 Fins
 27 - 7" x  $12\frac{1}{4}$ "
  $1 - 9\frac{1}{4}$ " x  $12\frac{1}{4}$ "

 1 -  $9\frac{1}{4}$ " x  $12\frac{1}{4}$ "
 Thickness - .028"

 28 Holes
 .5" Diameter

 Tubes:
 3 

Free Frontal Area 0.602 sq. ft. Fin Spacing 7/16"

Cooling Surface

33.25 sq. ft.

4 rows of 7 each  $12\frac{1}{4}$ " long

0.627" outside diameter

0.525" inside diameter. Ratio of Fin to Tube Area 7.09. Refrigerant - Ammonia.

A sketch of the coil may be seen on page 16. A full description of the thermocouples and their positions may be found in the appendix.

I. Eliminator and Diffuser.

It was found necessary to devise some means of completely mixing the exit air from the ammonia coil and also to eliminate all moisture particles in order that a representative temperature measurement might be made. A combined diffuser and eliminator was designed and built by Moncrief Furnace Company, Atlanta, Georgia. A sketch of this piece of apparatus





\_\_\_\_\_



Page 22.

may be seen on page 19.

K. Thermocouples.

Copper, constantan thermocouples were used. The potentiometer was a Leeds & Northrup, K-2. Their arrangement and hook-up may be seen from figures on page 23.

A complete discussion of apparatus and method of attaching the thermocouples may be found in the appendix.

L. Thermometers.

Calibrated thermometers capable of being read to one-half degree were used to measure the temperatures of the air and ammonia. Difficulty was encountered in making accurately calibrated thermometers give consistent wet bulb readings. It was necessary to shield them from any source of radiation, as well as to devise a suitable moisture supply through wicking.

One wet and dry bulb thermometer was placed in the air entering the duct. Three wet bulb and two dry bulb thermometers were placed before and after the cooling coil.

A sketch showing the wet bulb arrangment may be seen on page 21.

PAGE 23



POTENTIOMETER ARRANGEMENT



POTENTIOMETER AND GALVANOMETER

M. Compressor, Condenser, Motor, Ammonia By-Fass.

The ammonia compressor used was manufactured by the Columbus Iron Works, Columbus, Georgia.

It is a two-cylinder vertical enclosed machine  $3\frac{1}{2}$ " bore,  $3\frac{1}{2}$ " stroke, maximum speed recommended 375 R.P.M. Capacity at 357 R.P.M. with 20# suction 185# discharge slightly in excess of three tons.

The compressor was driven through a V-Belt drive by a 10 H.P., 220 volt, 60 cycle, 3 phase, 1160 R.P.M., induction motor manufactured by Westinghouse.

The condenser used was a shell and tube type manufactured by York Ice Machinery Corporation.

The ammonia weighing by-pass was assembled at Georgia Tech. An isometric view showing the detail may be seen on page 11. This by-pass consisted of a system of pipes and valves arranged in such a manner that the two ammonia drums could be used alternately as source and receiver. Having these drums placed on scales provided an accurate method of weighing and checking the amount of ammonia circulated.

\*\*\*\*

TABLE OF RUNS MADE

|   | SERIES 1 |             |                   | . SE | RIES .       | 2                 | SERIES 3 |              |                   |
|---|----------|-------------|-------------------|------|--------------|-------------------|----------|--------------|-------------------|
|   | FLOW     | AIR<br>TEMP | SUCTION<br>PRESS. | FLOW | AIR<br>TEMP. | SUCTION<br>PRESS. | FLOW     | AIR<br>TEMP. | SUCTION<br>PRESS. |
|   | 1        | 80          | 25                | 1    | 90           | 25                | 1        | 100          | 25                |
| A | 2        | 80          | 25                | 2    | 90           | 25                | 2        | 100          | 25                |
|   | 3        | 80          | 25                | 3    | 90           | 25                | 3        | 100          | 25                |
|   | 1        | 80          | 35                | /    | 90           | 35                | 1        | 100-         | 35                |
| R | 2        | 80          | 35                | 2    | 190          | 35                | 2        | 100          | 35                |
| 0 | 3        | 80          | 35                | 3    | 90           | 35                | 3        | 100          | 35                |
|   | 1        | 80          | 45                | 1    | 90           | 45                | 1        | 100          | 45                |
| C | 2        | 80          | 45                | 2    | 90           | 45                | 2        | 100          | 45                |
| U | 3        | 80          | 45                | 3    | 90           | 45                | 3        | 100          | 45                |
|   | 1        | 80          | 60                | 1    | 90           | 60                | 7        | 100          | 69                |
| n | 2        | 80          | 60                | 2    | 90           | 60                | 2        | 100          | 60                |
| 1 | 3        | 80          | 60                | 3    | 190          | 60                | 3        | 100          | 60                |

AIR TEMPERATURE IN OF AMMONIA SUCTION PRESSURE IN #/1" GAGE

FLOW LEGEND

1

23

. 21 IN. ALCOHOL-15.25 IN. ORIFICE .10 IN. ALCOHOL-15.25 IN. ORIFICE .20 IN. ALCOHOL-10.20 IN. ORIFICE

I INCH ALCOHOL = 0.80 INCHES WATER

Page 26.

## METHOD OF CONDUCTING TEST

With a determined quantity of air, the proper orifice was bolted to the intake end of the duct. The manometer was checked to remove all air bubbles, the base of the instrument leveled, and the zero reading accurately set. After the fan was started, the slide value at the discharge of the blower was set to give the desired flow.

The steam tempering coil was regulated to produce the desired dry bulb temperature before the coil.

The thermocouple cold junction was packed with a water ice mixture and the potentiometer connected up. The instruments were set to zero against a standard cell and a set of check readings taken to insure stable operation. In so doing, any thermocouple found to give pulsating readings was checked and corrected, usually at the cold junction.

The compressor was operated until the desired pressure and temperature of the evaporator coil was reached. It was necessary to use two expansion valves, one before the coil and one after it, in order to reach the desired capacity with any degree of rapidity. Since the system was of small capacity

Page 27.

and "pump-downs" frequent, it was found advisable to purge regularly. A few degrees of superheat were carried on the suction side of the coil in order that a heat balance might be made between the ammonia and the air. After all conditions became constant, the valves of the weighing by-pass were changed in order that the full drum might be used as the source of ammonia. Readings were taken for a period of one-half hour. The time required for an overall set of readings averaged roughly four minutes. Time required between runsvaried, due to a number of reasons:

1. Atmospheric conditions naturally varied from day to day.

2. The necessity of keeping constant a number of conditions without sensitive, automatic controls required no set length of time.

In view of the fact that the outside air conditions changed from day to day, trial runs were made frequently and a heat balance calculated.

Repeat runs were made on at least one-fourth of the work. It was not practical to try to average the two runs, since the wet and dry bulb readings were necessarily different.

\*\*\*\*

### RESULTS

The tabulated results are shown on pages 34 and 35.

On comparing the saturation temperature after the expansion value with the temperature and pressure, immediately after the coil when carrying no superheat, an average pressure drop of one (1) pound was considered a reliable value.

The coil temperature was taken from ammonia tables<sup>13</sup>, as the saturation temperature corresponding to the average pressure throughout the coil.

Calculations for the quantity of air flowing, using pressure drop across an intake orifice,<sup>14</sup> are as shown.

#### Run 1 Series 1A

| Ente | ering Air   | $\mathbf{T}_{d}$ | میں<br>تحق | 76 <sup>0</sup> | Ammonia Data                 |    |
|------|-------------|------------------|------------|-----------------|------------------------------|----|
|      |             | Tw               | ***        | 50 <sup>0</sup> | Temple before exp. valve = 6 | 50 |
| Air  | Before Coil | Td               | 1          | 790             | Temp. after exp. valve = 1   | 10 |

#### \*\*\*\*

13. Circular of the Bureau of Standards #142, <u>Tables</u> of Thermodynamics Properties of Ammonia.

14. Transactions of American Society of Mechanical Engineering, Dec., 1934, Vol. 56, No. 12, <u>The Intake Ori-</u> fice and a Proposed Method For Testing Exhaust Fans, by N. C. Ebaugh and R. Whitfield.

Page 29.

 $T_{W} = 51.7^{\circ} \text{ F} \text{ Temp. out of Coil} = 14^{\circ}\text{F}$ Air After Coil  $T_{d} = 68^{\circ}\text{F}$  Pres. out of Coil = 25#/p'' gage  $T_{W} = 46.4^{\circ} \text{ F} \#\text{NH}_{3}/30 \text{ Min.} = 16.5\#$ Barometer = 29.2 "Hg.

Orifice = 15.25" Manometer Reading = .21 "Akohol

Air-By Orifice

"air/min. = 835/hd

 $h = .21 \times .8 = .168'' H_20$ 

From Psychrometric chirt the volume at  $T_d = 76$ and  $T_w = 50$  is 13.54 at 14.7#/D" pressure.

Correcting for Pressure

| $P_2V_2$  | 640<br>863 | P   | l V1             |       | 1. J  | · *             |
|-----------|------------|-----|------------------|-------|-------|-----------------|
| $P_2$     |            | 29  | .2"Hg            | -     | 14.3  | 5# <b>/D"</b>   |
| Pl        | <b>5</b> 5 | 14  | .7#/D            | 11    |       |                 |
| vı        | =<br>14    | 13  | .54 c            | u. ft | •     | с.<br>1. т. – А |
| V2 =      | 14         | .35 | x                | 13.5  | 4 =   | .13.88          |
| 1<br>▼2 = | d.         | -   | $\frac{1}{13.8}$ | 8     | •0    | 72              |
| #air/n    | iin        |     | 83 <u>5/</u>     | .168  | x .07 | 31              |
|           |            | Ξ   | 92 #             | /min. |       |                 |

A simplification of the formula used is shown in the appendix. Ammonia weights were recorded in order that a heat-balance check could be made on the quantity of air flowing. The difference in pounds of air by heat balance as compared to pounds of air by intake orifices drop was limited to five per cent. The calculation for this check is shown in the appendix. As shown on the result sheet, a constant quantity of air was taken for a given or ifice with a constant pressure drop. The maximum deviation due to a density change of entrance air was found to be 2.28%, as shown in the appendix.

Differences in total heat per pound of dry air were taken directly from a General Electric Psychrometric Chart. A number of readings were checked against a general psychrometric<sup>15</sup> chart, which took into account pressures under 14.7 pounds per square inch. The differences found were insignificant.

The log mean temperature differences and the overall heat transfer coefficients were calculated as follows:

#### $H = KA \Delta T$

| H | Heat | transfer | in | BTU's | per | hour. |
|---|------|----------|----|-------|-----|-------|
|   |      |          |    |       |     |       |

- K = Coefficient of heat transfer BTU's per sq. ft. per <sup>o</sup>F per hr.
- A = Area of transfer surface.
- $\Delta T$  = Log mean temperature difference between

#### \*\*\*\*

15. <u>Psychrometric chart with Barometric Pressure as a</u> Variable. J. S. Chandler, Heating and Ventilating, Vol. 33, March, 1936, P. 36.
Page 31.

air entering and ammonia.

 $K = \frac{H}{A \triangle T}$ 

Air temperature entering =  $79^{\circ}F$ 

Air temperature leaving = 68°F

considering an average pressure drop of one pound through the coil.

Average pressure in coil =  $39.35 \neq .5 = 39.85 \#/D"$  abs. Saturation temperature at 39.85 #/D" abs. =  $11.5^{\circ}F$ LMTD =  $\frac{T_1 - T_2}{T_2 - T_1}$   $T_1$  = Temp air in  $T_2 - T_1$  = Temp air out

$$\log_{e} \frac{13}{T_{s}-T_{2}} \qquad T_{2} = \text{Temp air out}$$
$$T_{s} = \text{Sat. Temp of NH}_{3}$$

LMTD =  $\frac{79 - 68}{\log_e \frac{11.5 - 79}{11.5 - 68}} = \frac{11}{\log_e \frac{67.5}{56.5}} = \frac{11}{\log_e 1.195}$ 

LMTD = 
$$\frac{11}{.178}$$
  
LMTD =  $61.8^{\circ}F$ 

 $H = #air/hr x \triangle H$ 

 $= 92 \times 60 \times 3 = 16,560 \text{ BFU's/hr}$ 

K

K

$$= \frac{H}{A \Delta T}$$
$$= 16.560$$

33.25x61.8

The air velocity was calculated using the temp. before the coil and the free area of a cross section of the coil.

Calculation for free area of coil is shown in

Page 32.

the appendix.

### Q = AV

Q = Quantity of air - cu. ft. per. min.

A = Free Frontal Area

V = Velocity of Air - ft. per. min.

Area = .602 sq. ft.

Q = # air per. min. x specific valume Volume of air before coil = 13.61 x  $\frac{14.7}{14.35}$ 

Vol. = 13.96

Q = 13.96 x 92 = 1283 cu. ft. per. min. Velocity Entering Coil



Velocity = 2130 ft. per. min.

On the result sheet is shown an overall coefficient based on an arithmetic temperature difference between the entering dry bulb and coil. Investigation showed that such a calculation was not used as a basis in engineering work. This value was used, however, as a rough check on the coefficient found by the use of the log mean temperature difference.

Although the entering dry bulb temperature was kept constant, the relative humidity changed with atmospheric conditions. With an increase in relative humidity, a decrease in sensible cooling was recorded for the same series. This fact affected the L.M.T.D., which in turn gave irregularity to the curves using velocity and the overall coefficient. Curves most representative of the performance are those using BTU per sq. ft. against the free velocity.

Curves were also plotted using coil temperature as the abscissa and "K" as the ordinate. Again the same irregularity was noticed.

\*\*\*\*

# SAMPLE D'ATA SHEET RUN #1 SERIES IA

| PRE. | SSUR | ES  |     |     | T    | EMI  | PER  | ATO  | IRE  | 5    |      |      |      |      |      |      | 4.    | NH3   | WT. |       |         |
|------|------|-----|-----|-----|------|------|------|------|------|------|------|------|------|------|------|------|-------|-------|-----|-------|---------|
| 0    | AC   | MM  | AIR | IN  | B    | EFO  | RE   | Cold |      | AF   | TER  | C    | 012  |      | N    | Hs   |       | 01    | 02  | BAR   |         |
|      |      |     | DRY | WET | DRY  | DRY  | WEr  | WET  | WET  | DRY  | DRY  | Wer  | WET  | WET  | 8.E. | A.E. | 0.C.  |       |     |       |         |
| #/0" | #/0" | "AL | oF  | F   | °F   | oF   | oF   | °F   | °F.  | °F   | °F   | of   | oF   | %    | %    | °F   | °F    | #     | #   | "Ho   |         |
| 105  | 25   | .21 | 76  | 50  | 78   | 18.2 | 51   | 51.8 | 51.8 | 67   | 67.5 | 46   | 46.2 | 46   | 65   | 11   | 14.5  | 137.5 | 184 | 29.26 |         |
| 105  | 25   | .21 | 76  | 50  | 79   | 79.5 | 51.9 | 51.5 | 52   | 68   | 68.2 | 46.5 | 47   | 46.8 | 65   | 11.2 | 14    |       |     | 29.26 |         |
| 103  | 25   | .21 | 16  | 50  | 77.9 | 78.6 | 51   | 51.2 | 51.8 | 66.9 | 67   | 46   | 46.2 | 46   | 65   | 11   | 13.2  |       |     | 29.26 |         |
| 103  | 24.5 | .21 | 76  | 50  | 81   | 80   | 52   | 52.2 | 53   | 68.5 | 69   | 47   | 47   | 41   | 65   | 11   | 14.5  | 154.0 | 168 | 29.26 |         |
| 104  | 25   | .21 | 76  | 50  | - 1  | 19-  |      | 51.7 |      | 6    | 8    | -    | 46.4 |      | 65   | 11   | 14.05 | 16.5  | 16  | 29.26 | AVERAGE |

PAGE 34

LEGEND

| D    | DISCHARGE              |
|------|------------------------|
| AC   | AFTER COIL             |
| M.M. | MICROMANOMETER         |
| BE   | BEFORE EXPANSION VALVE |
| AE   | AFTER EXPANSION VALVE  |
| OC   | OUT OF COIL            |
| DI   | DRUM ONE               |
| 02   | DRUM TWO               |

# TABULATED DATA AND RESULTS

| SERIES                                  | -       |       | IA     |        | 1      | B      |       |         | 1C     |        |        | 10     |        |        | 2A     |        |        | 28     |        |        | 2C     |        |        | 20      |       | 3      | A      |        |        | 38     |        |        | 30     |        |        | 30    |        |
|-----------------------------------------|---------|-------|--------|--------|--------|--------|-------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|--------|
| RUN UN                                  | VITS    | 1     | 2      | 3      | 1      | 2      | 3     | 1       | 2      | 3      | 1      | 2      | 3      | 1      | 2      | 3      | 1      | 2      | 3      | 1      | 2      | 3      | 1      | 2       | 3     | 1      | 2      | 3      | 1      | 2      | 3      | 1      | 2      | 3      | 1      | 2     | 3      |
| LENGTH OF RUN M                         | IIN.    | 30    | 30.    | 30     | 30     | 30     | 30    | 30      | 30     | 30     | 30     | 30     | 30     | 30     | 30     | 30     | 30     | 30     | 30     | 30     | 30     | 30     | 30     | 30      | 30    | 30     | 30     | 30     | 30     | 30     | 30     | 30     | 30     | 30     | 30     | 30    | 30     |
| BAROMETER IN.                           | HG.     | 29.2  | 29.12  | 291    | 29.16  | 29.16  | 29.1  | 290     | 29.0   | 29.0   | 29.0   | 29.0   | 29.0   | 29.3   | 29.3   | 29.0   | 29.2   | 29.2   | 29.0   | 29.12  | 29.12  | 29.0   | 29.12  | 29.12   | 2912  | 290    | 29.0   | 29.1   | 29.14  | 2914   | 29.12  | 29.12  | 29.1   | 29.0   | 29.12  | 29.0  | 29.0   |
| AIR TEMP. IN-WET °1                     | F       | 50    | 56     | 64.8   | 52 5   | 515    | 64.8  | 59.5    | 59.5   | 64.5   | 60     | 60     | 65     | 52     | 52     | 69.5   | 53     | 52.5   | 70     | 57.5   | 56     | 69     | 57     | 57      | 60    | 575    | 56     | 70.5   | 56     | 56     | 60     | 58     | 55     | 67.3   | 59     | 57    | 66.5   |
| AIR TEMP. IN-DRY °F                     | C       | 76    | 77     | 7.6    | 19     | 77     | 76    | 78      | 78     | 76     | 78     | 78     | 76.7   | 74     | 74     | 80.5   | 76     | 76     | 82     | 79     | 77     | 83     | 78     | 78      | 84    | 78     | 75     | 90     | 77     | 77     | 84     | 80     | 78     | 85     | 8/     | 83    | 84     |
| AIR TEMP. BEFORE COIL-WET of            | F       | 51.7  | 57     | 65.15  | 533    | 52.8   | 66    | 60.2    | 60.2   | 65.6   | 61.    | 60.5   | 65.9   | 583    | 583    | 721    | 58.5   | 58     | 72 5   | 61     | 61     | 71     | 61     | 61.2    | 61.8  | 66     | 65.3   | 73,25  | 64.8   | 63.9   | 65.8   | 65.3   | 63     | 71.8   | 65.5   | 63.2  | 71.5   |
| AIR TEMP. BEFORE COIL - DRY OF          | F       | 79    | 79.8   | 791    | 81     | 80     | 79.5  | 80.2    | 80.2   | 79.6   | 80.4   | 79.7   | 79.9   | 70.Z   | 90.2   | 90     | 90.2   | 90.3   | 90.8   | 89     | 90.2   | 90     | 89     | 90      | 39    | 102.1  | 101    | 99.8   | 100.9  | 101    | 100.5  | 100.5  | 100    | 99.7   | 99.8   |       | 99.8   |
| AIR TEMP. AFTER COIL - WET OF           | F       | 46.4  | 51.2   | 60     | 50     | 48.5   | 61.5  | 57.75   | 57.3   | 62     | 58.8   | 57.9   | 632    | 52.4   | 52     | 65.35  | 53.9   | 53.1   | 67.9   | 57.8   | 57     | 67.3   | 58.1   | 57.8    | 38    | 58.95  | 57.5   | 65.6   | 59.25  | 57.9   | 59     | 61.5   | 58.3   | 67.2   | 62.6   | 59.85 | 68     |
| AIRTEMP. AFTER COIL - DRY ºI            | F       | 68    | 66     | 684    | 74     | 71     | 70.4  | 73.8    | 73     | 71.1   | 74.7   | 73.4   | 72.6   | 75.2   | 75.6   | 79.9   | 80.5   | 79.5   | 79.3   | 80     | 80.2   | 79.5   | 81     | 81.1    | 79.1  | 83.1   | 80.9   | 815    | 86.4   | 84.7   | 82     | 89.5   | 86.9   | 86.6   | 91     | 917   | 88.3   |
| SIZE ORIFICE INC                        | CHES    | 5.25  | 15.25  | 10,2   | 15.25  | 15.25  | 10.2  | 15,25   | 15.25  | 10.2   | 15.25  | 15.25  | 10.2   | 15.25  | 15.25  | 10.2   | 15.25  | 15.25  | 10.2   | 15.25  | 15.25  | 10.2   | 15.25  | 15 25   | 0.2   | 15.25  | 15.25  | 10.2   | 15,25  | 15.25  | 10.2   | 15.25  | 15.25  | 10.2   | 15.25  | 15.25 | 10.2   |
| ORIFICE MANOMETER READING IN.           | AL.     | .21   | . 10   | .20    | .21    | .10    | .20   | .21     | .10    | .20    | .21    | .10    | .20    | .21    | .10    | .20    | .21    | .10    | .20    | .21    | .10    | .20    | .21    | .10     | .20   | .21    | .10    | .20    | .21    | .10    | .20    | .21    | .10    | .20    | .21    | .10   | .20    |
| A TEMP. BEFORE EXP. VALVE "             | F       | 65    | 77     | 79.5   | 77     | 77     | 78.1  | 76      | 75.3   | 80     | 69.4   | 68     | 78     | 76.9   | 78     | 84     | 72.3   | 73     | 83     | 75     | 75     | 80     | 76.5   | 77      | 72    | 85     | 79.4   | 87.2   | 72-1   | 79.5   | 73     | 75     | 80     | 73.5   | 75     | 79.8  | 82.6   |
| M TEMP. AFTER EXP. VALVE OF             | F       | 11    | 11.5   | 11.5   | 21     | 21     | 21.5  | 30.6    | 30.7   | 31     | 40.5   | 41.3   | 41.6   | 11     | 12     | 12.5   | 22     | 21.3   | 22.3   | 32     | 31     | 311    | 42     | 41.5    | 42    | 12.7   | 12.3   | 12.8   | 22.1   | 25     | 22     | 31     | 30.8   | 30,8   | 42     | 41.9  | 41.5   |
| M TEMP. OUT OF COIL OF                  | -       | 14    | 13     | 15.6   | 33.5   | 29.7   | 23.3  | 34.6    | 34     | 32.4   | 43.4   | 43.2   | 42.9   | 16     | 14.1   | 16.8   | 27.1   | 27.1   | 24     | 34     | 33     | 33.4   | .45    | 42      | 42    | 37.1   | 12.6   | 17.3   | 23     | 23     | 23     | 35.8   | 32.9   | 32.1   | 44     | 45.6  | 43.8   |
| O PRESS. OUT OF COIL ABS. #1            | 6" 3    | 19.35 | 39.31  | 39.30  | 48 83  | 49.33  | 49.3  | 59.25   | 59.25  | 59.25  | 73.95  | 74.55  | 74.25  | 39.1   | 39.4   | 39.35  | 49.85  | 47.35  | 49.75  | 59.31  | 59.31  | 59.35  | 74.31  | 74.3/ 3 | 14.31 | 18.95  | 39.25  | 393    | 49.32  | 49.32  | 49.31  | 59.31  | 59.3   | 59.35  | 74.31  | 74.75 | 74.25  |
| N DISCHARGE PRESS. ABS. #/1             | 'o" 1   | 18.35 | 194.31 | 114.3  | 172.33 | 174.33 | 169.3 | 14.4.25 | 144 25 | 169.25 | 151.25 | 148.25 | 168.25 | 162.4  | 155.4  | 170.25 | /37.35 | 136.35 | 164.25 | 154.31 | 189.31 | 163.25 | 15431  | 154.31  | 59.31 | 159.25 | 204 25 | 191.3  | 166.32 | 166.32 | 159.31 | 154.31 | 162.3  | 169.25 | 154.31 | 15925 | 168.25 |
| 1 WEIGHTS PER JOMIN LB                  | 35      | 6.5   | 13.5   | 10.5   | 11.0   | 9.5    | 8.5   | 9.0     | 7.5    | 6.5    | 8.0    | 6.5    | 5.0    | 20.5   | 15     | 14     | 16.5   | 11.5   | 10     | 12     | 10.5   | 8.0    | 10.5   | 8.5     | 6.5   | 27.5   | 22     | 16.5   | 21     | 16.5   | 12     | 15     | 12     | 9.5    | 12     | 9.5   | 7.5    |
| A AVERAGE PRESSURE ABS. #/              | 'a" 3   | 19.85 | 39.85  | 39.5   | 49.33  | 49 83  | 19.8  | 59.75   | 59.75  | 59.75  | 74.45  | 75.05  | 74.75  | 39.6   | 39.9   | 39.85  | 50.35  | 49.85  | 50.25  | 59.81  | 59.81  | 59.85  | 74.81  | 74.31   | 74.81 | 39.45  | 39.75  | 39.8   | 49.82  | 49.82  | 49.81  | 59.81  | 59.8   | 59.85  | 74.81  | 75.25 | 74.75  |
| SATURATION TEMP. OF                     | F       | 1.5   | 11.5   | 11.44  | 21.05  | 21.5   | 21.48 | 30.0    | 30.0   | 30.0   | 40.76  | 41.16  | 40.96  | 11.21  | 11.55  | 11.49  | 21.99  | 21.53  | 21.9   | 30.06  | 30 06  | 30.09  | 410    | 41.0    | 110   | 1.05   | 11.38  | 11.44  | 21.5   | 21.5   | 21.49  | 30.06  | 30.05  | 30.09  | 41.0   | 41.3  | 40,96  |
| POUNDS OF AIR PER MIN. #/M              | MIN     | 72    | 63.5   | 10.8   | 92     |        | 40.E  | 92      | 63.5   | 40.8   | 92     | 63.5   | 40.8   | 92     | 63.5   | 40.8   | 92     | 63.5   | 40.2   | 92     | 63.5   | 40.Z.  | 92     | 63.5 -  | 40,8  | 92     | 63.5   | 40.8   | 92     | 63.5   | 40.8   | 92     | 63.5   | 40.8   | 92     | 63,5  | 40.8   |
| AHPER POUND OF AIR BTU                  | U'5/#   | 3.0   | 3.5    | 4.1    | 2.0    | 2.4    | 3.3   | 1.7     | 1.9    | 2.6    | 1.4    | 1.7    | 2.0    | 3.7    | 4.0    | 5.4    | 2.9    | 3,1    | 3.9    | 2.1    | 2.6    | 3.1    | 1.9    | 2.2     | 2.7   | 5.0    | 5.5    | 6.4    | 3.8    | 4.2    | 4.8    | 2.7    | 3.2    | 3.8    | 2.1    | 2.3   | 2.9    |
| B.T.U.'S PER HOUR BTU:                  | "3/HR 1 | 3560/ | 13,340 | 10,040 | 11,040 | 9,14.4 | 8,078 | 9,384   | 7,239  | 6,365  | 7,728  | 6,477  | 4,896  | 20,420 | 15,240 | 13,220 | 16,010 | 11,810 | 9,407  | 11,590 | 9,906  | 7477   | 10,490 | 8,382 6 | 610   | 27,600 | 20,960 | 15,670 | 20,780 | 16,000 | 11,750 | 14,890 | 12,190 | 9,302  | 11,590 | 8,763 | 7,099  |
| L.M.T.D.* *AIR-NH3 OF                   | E 6     | 51.8  | 61.3   | 61.7   | 56.1   | 53.8   | 52.8  | 46.3    | 46.1   | 45.4   | 36.5   | 35.2   | 34.9   | 71.3   | 70.7   | 72.7   | 63.2   | 62.7   | 63.0   | 54.4   | 54.8   | 54.9   | 43.9   | 43.2    | 12.2  | 81.0   | 79.0   | 79.3   | 72.1   | 70.7   | 69.3   | 64.9   | 63.3   | 63.0   | 54.3   | 54.6  | 52.9   |
| COEF. OF HEAT TRANSFER                  | HR E    | 3.06  | 6.54   | 4.89   | 5.92   | 5.11   | 4.60  | 610     | 4.72   | 4.22   | 6.37   | 5.53   | 4.22   | 8.61   | 6.48   | 5.97   | 7.62   | 5.66   | 4.49   | 6.41   | 5.44   | 4.09   | 7.19   | 5.84    | 1.71  | 10.2   | 7.98   | 5.94   | 8.75   | 6.81   | 5.10   | 6.90   | 5.79   | 4.44   | 6.42   | 4.83  | 404    |
| AIR VELOCITY ENTERING COIL FT           | MIN Z   | 130   | 14.95  | 965    | 2155   | 1485   | 965   | 2170    | 1508   | 967    | 2170   | 1502   | 967    | 2174   | 1510   | 990    | 2180   | 1515   | 990    | 2191   | 1525   | 988    | 2191   | 1525    | 975   | 2250   | 1560   | 1008   | 2235   | 1551   | 994    | 2238   | 1549   | 1010   | 2235   | 1555  | 1010   |
| AT OF AIR IN AND NH3 OF                 | FG      | 7.5   | 68.3   | 67.7   | 59.9   | 58.5   | 58.0  | 50.2    | 50.2   | 49.6   | 39.6   | 38.5   | 39.0   | 79.0   | 78.6   | 78.5   | 68.2   | 68.8   | 68.9   | 58.9   | 60.1   | 59.9   | 48.0   | 49.0    | 48.0  | 91.0   | 89.6   | 88.4   | 79.4   | 79.5   | 79.0   | 70.4   | 69.9   | 69.6   | 58.B   | 59.3  | 58.8   |
| COEF. BASED ON AT OF AIR IN AND NH3 BTU | O'HR    | 738   | 5.87   | 4.46   | 5.54   | 4.70   | 4.19  | 5.62    | 4.34   | 3.86   | 5.87   | 5.06   | 3.78   | 7.77   | 5.84   | 5.06   | 7.06   | 5,16   | 4.11   | 5.92   | 4.96   | 3.75   | 6.57   | 5.14 .  | 1.14  | 9.12   | 7.04   | 5.33   | 7.95   | 6.05   | 4.47   | 6.36   | 5.24   | 4.02   | 5.93   | 4.44  | 3.63   |

NOTE \* IN. AL. = INCHES ALCOHOL \* \* L.M.T.D. = LOG MEAN TEMPERATURE DIFFERENCE

| FIN SPACING     The INCH       Image: Ima                                                                                                                        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PERFOR           | MANCE C          | URVES ON           | AMMONIA           | COOLING                 | <i>CO11</i>             |              |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|--------------------|-------------------|-------------------------|-------------------------|--------------|--------|
| 440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | FIN SP.          | ACING ~7           | KIG INCH          |                         |                         |              |        |
| 0-14<br>0-14<br>0-14<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-16<br>0-0<br>0-0<br>0-0<br>0-0<br>0-0<br>0-0<br>0-0<br>0- |      | $\frac{1}{2} \frac{1}{2} \frac{1}$ |                  |                  |                    |                   |                         |                         |              |        |
| 600<br>600<br>100<br>100<br>100<br>100<br>100<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                    |                   |                         |                         |              |        |
| Image: State     Image: State<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | <00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                  |                    | 10-140<br>        |                         |                         |              |        |
| 11   100   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                    |                   |                         |                         | -10-         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H.R. | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                  |                    |                   |                         |                         |              |        |
| S 200 0 1/1 0 0 0   S 0 0 1/2 0 1/2 0 0   S 0 0 1/2 0 1/2 0 0   S 0 0 1/2 0 1/2 0 1/2   S 0 1/2 0 1/2 0 1/2 0   S 0 1/2 0 1/4 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EZ   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                    |                   |                         |                         | _0_13        |        |
| Image: Contract Fill of the contract of the contrecont of the contract of the contract of the c                                                                                     | 1/54 | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                |                  |                    |                   |                         |                         | -0-10        |        |
| 10~ COL TEMP, 41°F<br>AIR TEMP. ~ 80°F<br>800 1000 1200 1400 1600 1800 2000 2200<br>FREE VELOCITY BASED ON ENTRANCE AIR TEMP - FT./MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 81   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o                |                  |                    | 1A~<br>1B~<br>1C~ | COLL TEMP               | 1.5°F<br>21.5°F<br>30°F |              | 1-12-) |
| 800 1000 1200 1400 1600 1800 2000 2200<br>FREE VELOCITY BASED ON ENTRANCE AIR TEMP - FT./MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                    | I D~ C<br>AIR     | COIL TEMP.<br>TEMP. ~ C | 41°F<br>30°F            |              |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 800<br>F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1000<br>REE VELC | 1200<br>DCITY BA | 14 00<br>ISED ON L | 1600<br>NTRANCI   | 1800<br>E AIR TEI       | 2000<br>MP ~ FT./.      | 2200<br>MIN. |        |



------















#### CONCLUSIONS

Page 45.

1. With a limited velocity range, the heat transfer per square foot per degree F. per hour based on log M.T.D. between ammonia and air varies with some power of the velocity.

BTU/Sq. ft./°F/hr. = CV<sup>n</sup>

(a). This statement is thought to be true for total dry-coil or wet coil operation over a relatively small velocity range.

(b). From curves obtained, it is concluded that "n" also varies with varying coil temperatures and entering air temperatures.

(c). Values of "n" were checked and found to vary from .2 to .8.

3. The purpose previously described, has been partially fulfilled:

(a) For the particular coil, under operating conditions specified, curves giving the desired in-formation are available.

(b) An analysis was made based on the thermocouple data.

4. How Should a Coil Be Rated?

The following schedule is proposed on testing and rating coils:

(1). Coils should be classified as to material

used in construction.

(2). A second necessary consideration is to refrigerant used.

(3). With the material and refrigerant determined, the following tests should be made:

(a) Select one type fin.

(b) Vary conditions:

- 1. Entrance air temp. 70, 80, 90,  $100^{\circ}F$
- 2. Coil Temperature 10, 20, 30,  $40^{\circ}$  F
- Quantity of air flowing or velocity from 200 ft/min - 1500 ft/min in desired increments.
- (c) Run tests with dry coil and wet coil.

(d) A straight, plat-type, continuous fin is recommended as a basis for comparison.

\*\*\*\*

RESULTS ON AMMONIA COIL PERFORMANCE BASED ON SURFACE TEMPERATURES-OBTAINED BY THE USE OF THERMOCOUPLES

An average surface temperature was obtained by taking an average of the thermocouple readings. This average was made on a relative weight basis. By an examination of the thermocouple positions shown on pages 16 and 17, it was concluded that a direct arithmetic average would not give a representative surface temperature due to the fact that various thermocouples represented areas of different size. The readings were averaged according to the following weights:

| Couple         | # | Weight | Couple # | Weight | Couple # | Weight |
|----------------|---|--------|----------|--------|----------|--------|
| 10             |   | 1      | 4        | 2      | l        | 4      |
| 11             |   | 1      | 6        | 2      | 2        | 4      |
| 12             |   | l      | 15       | 2      | 3        | 4      |
| 13             |   | 1      | 16       | 2      | 8        | 4      |
| 14             |   | 1      |          |        |          |        |
| 17             |   | 1      |          |        |          |        |
| T <sub>3</sub> |   | 1      |          |        |          |        |

Thermocouples representing the smallest areas were given a weight of unity. One tube temperature was taken since the tube area represented only 14.1% of the total cooling surface. A tabulated result sheet is shown on page 54. Families of curves showing the coil performance were included.

The logarithmic mean temperature difference between the surface and the air was calculated in the same manner as the coefficient based on the ammonia saturation temperature.

L.M.T.D. =  $\frac{(T_s - t_2) - (T_s - t_1)}{\log_e \frac{T_s - t_2}{T_s - t_1}}$  $= \frac{t_1 - t_2}{\log_e \frac{T_s - t_2}{T_s - t_1}}$  $T_s = Surface Temperature - ^OF$ 

t<sub>1</sub> = Dry Bulb Temperature of Air before ammonia coil - <sup>O</sup>F

 $t_2$  = Dry bulb temperature of air after

ammonia coil - <sup>O</sup>F

log<sub>e</sub> = Logarithm, Base "e"

The designation, <u>free velocity</u>, as appears on the curves means the velocity in feet per minute based on the temperature of the air entering the ammonia coil and the free frontal area.

The predicated curves shown dotted, were plotted by taking ratios between the space increments and velocity increments.

## CONCLUSIONS REGARDING THERMOCOUPLES

Page 49.

1. It is evident from the result sheet that there is a general decrease in surface temperature with a decrease in air velocity with constant coil and entering air temperature.

2. The surface temperature decreases toward the downstream end of the coil.

3. There is a rise in surface temperature with an increase in entering air temperature.

4. The average temperature of the coil approaches the dew point of the entering air.

5. The variation in temperature recorded by the individual thermocouples was inconsistent from run to run.

An attempt at an explanation is made:

(a). The bond between tube and fin is a consideration.

> 1. Corrosion or looseness would tend toward a decrease in heat transfer rate.

(b). The fact that there is a pressure drop through the coil would affect the coil temperature.

(c). In successive points throughout the tubes varying degrees of turbulence in the refrigerant would tend to alter the heat transfer rate. (d). Local eddies set up in the particular coil tested would vary from time to time and run to run, a fact which could easily lead to inconsistency.

6. The surface temperature cannot be taken as the refrigerant temperature.

7. From the curves, using surface temperature and  $\mathrm{BTU/D^1/hr}$ . as coordinates, it is readily seen that the heat transfer per square foot per hour increases as the velocity increases. This fact indicates that the resistance to heat transfer through the air film decreases with increased velocity.

\*\*\*\*\*

# SAMPLE THERMOCOUPLE DATA SHEET RUN #1 SERIES ID

| -    |      |      |      |      |      |      | - M. | ICR  | ove  | NZTe | s –  |      |      |      |      |      |      |      |      |      |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| #    | 1    | 2    | 3    | 4    | 5    | 6    | 8    | 9    | 10   | 11   | 12   | 13   | 14   | 15   | 16   | 17   | TI   | Tz   | T3   | T4   |
| 3-45 | 697  | 120  | 697  | 767  | 118  | 170  | 162  | 190  | 809  | 862  | 158  | 764  | 821  | 181  | 126  | 845  | 723  | 897  | 184  | 803  |
|      | 695  | 118  | 695  | 168  | 172  | 777  | 164  | 195  | 786  | 851  | 158  | 168  | 824  | 187  | 736  | 840  | 719  | 904  | 187  | 803  |
|      | 685  | 709  | 679  | 773  | 783  | 111  | 166  | 193  | 800  | 863  | 762  | 761  | 814  | 181  | 134  | 836  | 705  | 882  | 177  | 185  |
| ý    | 674  | 700  | 671  | 158  | 775  | 771  | 763  | 182  | 803  | 850  | 151  | 762  | 812  | 111  | 732  | 833  | 712  | 880  | 776  | 789  |
|      | 670  | 697  | 661  | 149  | 760  | 751  | 750  | 776  | 184  | 849  | 148  | 155  | 811  | 774  | 723  | 831  | 715  | 872  | 749  | 764  |
|      | 666  | 692  | 667  | 757  | 765  | 158  | 150  | 773  | 110  | 853  | 737  | 157  | 802  | 769  | 723  | 828  | 101  | 878  | 771  | 791  |
|      | 671  | 696  | 685  | 760  | 773  | 165  | 158  | 779  | 805  | 857  | 145  | 754  | 810  | 779  | 719  | 830  | 703  | 873  | 169  | 781  |
| 4-15 | 673  | 694  | 673  | 754  | 111  | 112  | 753  | 178  | 794  | 850  | 738  | 758  | 800  | 174  | 726  | 828  | 111  | 874  | 773  | 781  |
| AVG  | 679  | 703  | 679  | 761  | 112  | 768  | 158  | 183  | 794  | 855  | 150  | 759  | 810  | 119  | 121  | 834  | 712  | 882  | 773  | 787  |
| TEMP | 62.5 | 63.6 | 62.5 | 66.2 | 66.7 | 66.6 | 66.1 | 61.2 | 67.7 | 70.2 | 65.7 | 66.1 | 68.4 | 67.0 | 64.7 | 69.5 | 64.0 | 71.7 | 66.8 | 67.4 |

PAGE 51

## THERMOCOUPLE DATA AND RESULTS EMF-MICROVOLTS TEMP OF 30 MINUTE AVERAGE

| RUN   | 1    | 1    | 2    |       | -   | 3    | 1    | /    | 1   | 2    | -   | 3    | 1     |       |      | 2    | 1 . | 3    |     | 1    |     | 2     |     | 3    |      | 1    |      | 2    |     | 3    |      | 1    | 1 2 | 2    |      | 3    |
|-------|------|------|------|-------|-----|------|------|------|-----|------|-----|------|-------|-------|------|------|-----|------|-----|------|-----|-------|-----|------|------|------|------|------|-----|------|------|------|-----|------|------|------|
| SERIE | 1.   | A    | IA   | -     | 1   | A    | -1   | B    | 1   | B    | 1   | B    | 1     | C     | 1    | C    | 1   | C    | 1   | D    | 1   | D     | 1   | D    | 2    | A    | 2    | A    | 2   | A    | 2    | B    | 2   | B    | 2    | B    |
| Court | EMF  | TEMP | EMF  | TEMP  | EMF | TEMP | EMF  | TEMP | EMF | TEMP | EME | TEMP | EMF   | TEMP  | EMF  | TEMP | FMF | TEMP | EMF | TEMR | EMF | TEMP  | EMF | TEMP | EME  | TEMP | EMF  | TEMP | EMF | TEMP | EMF  | TENP | EMF | TEMP | EME  | TEMP |
| /     | 390  | 49.5 | 347  | 47.6  | 426 | 51.1 | 592  | 58.6 | 506 | 54.7 | 510 | 54.9 | 601   | 59.0  | 540  | 56.3 | 548 | 56.6 | 679 | 62,5 | 614 | 59.6  | 613 | 59.6 | 393  | 49.6 | 444  | 52.0 | 425 | 51.1 | 623  | 60.0 | 592 | 58.6 | 636  | 60.6 |
| 2     | 286  | 44.9 | 328  | 46.6  | 305 | 45.7 | 61.5 | 59.6 | 496 | 54.3 | 458 | 52.6 | 621   | 59.9  | 549  | 56.7 | 513 | 550  | 703 | 63.6 | 631 | 60.4  | 593 | 58.7 | 289  | 45.0 | 308  | 45.9 | 361 | 48.2 | 608  | 59.3 | 567 | 57.3 | 541  | 56.3 |
| 3     | 305  | 45.8 | 330  | 46.9  | 370 | 48.6 | 629  | 60.3 | 495 | 54.3 | 418 | 50.8 | 573   | 57.8  | 510  | 54.9 | 467 | 53.0 | 679 | 62.5 | 615 | 59.7  | 585 | 58.3 | 3.71 | 48.7 | 338  | 41.2 | 487 | 53.9 | 626  | 60.1 | 551 | 56.8 | 548  | 56.6 |
| .4    | 501  | 54.8 | 453  | 52.5  | 530 | 55.8 | 691  | 63.0 | 589 | 58.5 | 589 | 58.5 | 110 0 | 63.9  | 640  | 60.8 | 620 | 59.9 | 761 | 66.2 | 691 | 63.1  | 673 | 62.3 | 584  | 58.2 | 593  | 58.7 | 568 | 51.5 | 72.5 | 64.6 | 686 | 62.9 | 77.6 | 66.9 |
| 5     | 409  | 51.2 | 459  | 52.6  | 416 | 50.7 | 123  | 64.5 | 605 | 59.2 | 550 | 56.7 | 708 0 | 63.8  | 647  | 61.1 | 588 | 58.5 | 772 | 66.7 | 711 | 64.0  | 660 | 61.7 | 422  | 51.0 | 449  | 52,2 | 503 | 54.6 | 756  | 66.0 | 714 | 64.1 | 659  | 61.6 |
| 6     | 480  | 53.6 | 521  | 55.4  | 477 | 53.5 | 777. | 66.9 | 611 | 59.5 | 523 | 55.5 | 707 0 | 63.8  | 634  | 60.5 | 546 | 56.6 | 768 | 66.6 | 695 | 63.3  | 637 | 60.7 | 594  | 58.7 | 493  | 54.2 | 618 | 59.8 | 845  | 70.0 | 721 | 64.4 | 6.74 | 62.3 |
| 8     | 41.5 | 50.7 | 455  | 52.4  | 402 | 50.1 | 722  | 64.5 | 597 | 59.8 | 523 | 55.5 | 707 0 | 63.8  | 639  | 60.7 | 549 | 56.7 | 758 | 66.1 | 686 | 62.8  | 613 | 59.6 | -    | -    | -    | -    | -   | -    | -    | -    | 1-  | -    | -    | -    |
| 9     | 458  | 52.6 | 519  | 55.3  | 545 | 56.5 | 803  | 68.1 | 677 | 627  | 574 | 57.8 | 737   | 65.1  | 695  | 63.3 | 632 | 60.4 | 783 | 67.2 | 744 | 655   | 725 | GA.6 | 626  | 60.1 | 567  | 57.5 | 729 | 64.8 | 898  | 72.4 | 800 | 68.0 | 741  | 65.3 |
| 10    | 554  | 56.9 | 576  | 57.9  | -   | -    | 768  | 66.5 | 674 | 62.3 | -   | -    | 766 0 | 665   | 701  | 63.5 | 1   | -    | 794 | 67.7 | 741 | 65.3  | -   | +    | 637  | 60.7 | 655  | 61.4 |     | -    | 881  | 71.6 | 811 | 63.4 | -    | -    |
| 11    | 563  | 57.3 | 608  | 59.3  | 600 | 590  | 859  | 70.6 | 749 | 65.7 | 649 | 61.2 | 823   | 6.9.0 | 772  | 66.7 | 705 | 63.7 | 855 | 70.2 | 813 | 68.6  | 761 | 66.2 | 7.79 | 67.0 | 713  | 64.1 | 767 | 66.5 | 1005 | 77.1 | 906 | 72.7 | 836  | 69.6 |
| 12    | 374  | 48.8 | 430  | 51.3  | 412 | 50.5 | 723  | 64.5 | 587 | 58.4 | 500 | 54.5 | 6.76  | 6.2.4 | 6.19 | 59.8 | 545 | 56.5 | 150 | 65.7 | 690 | 63.0  | 643 | 60.9 | 477  | 53.5 | 441  | 51.8 | 517 | 55.3 | 794  | 67.7 | 700 | 63.5 | 656  | 61.5 |
| 13    | 483  | 53.6 | 485  | 53.8  | 487 | 53.9 | 115  | 64.2 | 609 | 59.4 | 565 | 57.4 | 712 0 | 64.0  | 653  | 61.3 | 599 | 58.9 | 759 | 66.1 | 702 | 63.5  | 670 | 62.1 | 523  | 55.5 | 542  | 56.4 | 527 | 55.7 | 809  | 68.4 | 729 | 64.8 | 710  | 63.9 |
| 14    | 627  | 60.2 | 57.9 | 58.0  | 554 | 56.9 | 767  | 66.5 | 687 | 62.9 | 596 | 58.8 | 755 6 | 65.9  | 697  | 63.3 | 628 | 60.3 | 810 | 68.4 | 757 | 65.9  | 638 | 63.0 | 18%  | 67.4 | 744  | 65.4 | 645 | 61.0 | 911  | 73.0 | 830 | 69.3 | 783  | 67.2 |
| 15    | 505  | 54.7 | 500  | 54.5  | 435 | 51.5 | 717  | 64.3 | 629 | 60.3 | 527 | 55.7 | 702   | 63.5  | 650  | 61.2 | 558 | 57.1 | 779 | 67.0 | 720 | 64.4. | 631 | 60.4 | 595  | 58.7 | 548  | 56.6 | 449 | 52.2 | 843  | 69.9 | 729 | 64.8 | 668  | 62.0 |
| 16    | 364  | 48.4 | 385  | 48.3  | 255 | 43.5 | 679  | 62.6 | 553 | 56.8 | 385 | 49.3 | 646 0 | 61.0  | 517  | 57.9 | 434 | 51.5 | 727 | 64.7 | 665 | 61.9  | 525 | 55.6 | 492  | 54.1 | 393  | 49.6 | 394 | 49.7 | 752  | 65.8 | 637 | 60.4 | 539  | 56.2 |
| 17    | 647  | 61.1 | 630  | 60.3  | 581 | 58.1 | 843  | 69.9 | 745 | 65.5 | 611 | 59.5 | 792   | 67.6  | 739  | 65.2 | 632 | 60.4 | 834 | 69.5 | 782 | 67.2  | 114 | 64.1 | 936  | 74.1 | 772  | 66.7 | 750 | 65.7 | 1010 | 77.4 | 881 | 71.6 | 770  | 66.6 |
| T-1   | 4/8  | 50.8 | 479  | 53.5  | 431 | 51.4 | 698  | 63.4 | 583 | 58.2 | 444 | 51.9 | 642   | 60.9  | 576  | 57.9 | 486 | 53.9 | 712 | 64.0 | 659 | 61.6  | 615 | 59.7 | 535  | 56.0 | 4.84 | 53.8 | 566 | 57.4 | 747  | 65.6 | 686 | 62.9 | 566  | 57.5 |
| T2    | 646  | 61.0 | 672  | \$2.2 | 604 | 59.1 | 882  | 71.6 | 804 | 68.1 | 680 | 62.6 | 851 7 | 70.3  | 821  | 68.9 | 731 | 64.9 | 882 | 71.7 | 848 | 70.1  | 818 | 68.8 | 814  | 68.6 | 810  | 68.4 | 683 | 62.7 | 981  | 76.1 | 957 | 75.0 | 778  | 67.0 |
| 73    | 462  | 52.8 | 496  | 54.3  | 470 | 531  | 728  | 64.8 | 634 | 60,5 | 579 | 58.0 | 723 0 | 64.5  | 677  | 62.5 | 609 | 59.4 | 773 | 66.8 | 727 | 64.7  | 693 | 632  | 487  | 53.9 | 551  | 56.8 | 476 | 53.4 | 814  | 68.6 | 739 | 65.2 | 705  | 63.7 |
| T4    | 576  | 57.9 | 511  | 54.9  | 414 | 50.6 | 702  | 63.6 | 637 | 60.6 | 470 | 53.1 | 679 6 | 62.5  | 641  | 60.8 | 537 | 56.1 | 787 | 67.4 | 157 | 66.0  | 602 | 59.0 | 681  | 62.6 | 671  | 62.4 | 368 | 48.5 | 822  | 69.0 | 746 | 65.6 | 593  | 58.7 |

## THERMOCOUPLE DATA AND RESULTS ENF-MICROVOLTS TEMP OF 30 MINUTE AVERAGE

| RUN #  | 1    | -    |      | 2    | T    | 3    |      | /    |      | 2     |      | 3    |     | 1    |     | 2    |     | 3    |      | 1    |      | 2    | -    | 3    |      | 1    |      | 2    |      | 3    |       | 1    | -    | 2    |      | 3    |
|--------|------|------|------|------|------|------|------|------|------|-------|------|------|-----|------|-----|------|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|------|------|------|------|------|
| SERIES | 2    | C    | 2    | C    | 2    | C    | 2    | D    | 2    | D     | 2    | D    | 3   | A    | 3   | A    | 1   | 3.A  | 3    | B    | 3    | B    | 3    | B    | 3    | C    | 3    | G    | 3    | C    | 3     | D    | 3    | D    | 3    | D    |
| COUPLE | EMF  | TEMP | EMF  | TEMP | EMF  | TEMP | EMF  | TEMP | EME  | TEMP  | EME  | TEMP | EMF | TEMP | EMF | TEMP | EMF | TEMP | EMF  | TEMP | EMF  | TEMP | EMF  | TEMP | EME  | TEMP | CMF  | TEMP | EMF  | TEMP | EMF   | TEMP | EMF  | TEMP | EMF  | TEMP |
| 1      | 672  | 62.3 | 67.5 | 62.3 | 657  | 61.5 | 184  | 67.2 | 182  | 61.2  | 639  | 63.1 | 411 | 50.5 | 393 | 499  | 421 | 51.0 | 677  | 62.4 | 631  | 60.4 | 673  | 62.3 | 743  | 65.4 | 807  | 68.3 | 732  | 64.9 | 991   | 765  | 965  | 75.4 | 826  | 69.2 |
| 2      | 657  | 615  | 669  | 621  | 609  | 59.4 | 833  | 69.4 | 304  | 65.1  | 653  | 620  | 288 | 45.0 | 249 | 43.2 | 321 | 46.5 | 555  | 56.9 | 419  | 53.5 | 574  | 57.8 | 670  | 62.1 | 657  | 61.5 | 628  | 60.2 | 982   | 76.1 | 947  | 74.6 | 175  | 66.3 |
| 3      | 599  | 58.9 | 534  | 69.5 | 601  | 59.0 | 862  | 70.8 | 326  | 69.2  | 629  | 603  | 550 | 56.7 | 319 | 464  | 480 | 53.6 | 588  | 58.4 | 544  | 56.4 | 579  | 53.0 | 141  | 65.3 | 654  | 61.4 | 610  | 59.4 | 923   | 73.5 | 894  | 72.2 | 721  | 64.4 |
| 4      | 765  | 664  | 754  | 65.9 | 754  | 65.9 | 360  | 10.7 | 363  | 10.5  | 787  | 67.4 | 693 | 63.2 | 636 | 60.6 | 627 | 60.2 | 850  | 70.2 | 776  | 66.9 | 844  | 70.0 | 908  | 72.8 | 926  | 73.6 | 879  | 71.5 | 1099  | 81.4 | 1017 | 80.4 | 937  | 74.1 |
| 5      | 780  | 67.1 | 732  | 67.2 | 72.3 | 645  | 928  | 73.7 | 396  | 72.3  | 773  | 672  | 431 | 51.4 | 378 | 49.0 | 449 | 52.2 | 715  | 64.2 | 633  | 60.5 | 724  | 64.6 | 797  | 67.8 | 803  | 68.1 | 805  | 68.2 | 1117  | 82.2 | 1096 | 81.3 | 740  | 742  |
| 6      | 763  | 663  | 754  | 65.9 | 108  | 63.8 | 1006 | 77.2 | 543  | 12:1  | 745  | 65.5 | 840 | 69.8 | 414 | 50.6 | 620 | 59.9 | 811  | 68.5 | 678  | 62.5 | 706  | 63.8 | 882  | 71.6 | 791  | 67.6 | 797  | 67.8 | 1085  | 80.8 | 1033 | 78.4 | 395  | 72 2 |
| 8      | -    | -    | -    | -    | -    | -    | -    | -    | -    | -     | -    | -    | -   | -    | -   | -    | -   | -    |      | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -     | 1    | -    | -    | -    | -    |
| 9      | 847  | 701  | 841  | 69.8 | 802  | 63.1 | 1059 | 79.6 | 959  | 75.1  | 857  | 70.5 | 801 | 68.0 | 533 | 56.0 | 750 | 657  | 902  | 72.5 | 786  | 67.4 | 861  | 70.7 | 930  | 73.8 | 872  | 71.2 | 937  | 74.1 | 1170  | 84.6 | 1134 | 83.0 | 1036 | 78.6 |
| 10     | 899  | 12.4 | 869  | 71.1 | -    | -    | 985  | 76.3 | 937  | 7.7.1 | -    | -    | 720 | 64.4 | 660 | 61.7 | +   | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -     | -    | -    | -    | -    | -    |
| 11     | 995  | 767  | 943  | 744  | 906  | 72.7 | 1159 | 84.1 | 1039 | 73.6  | 952  | 74.8 | 916 | 13.2 | 733 | 64.9 | 864 | 70.8 | 1057 | 79.5 | 943  | 74.4 | 974  | 75.8 | 1107 | 81.8 | 1021 | 77.9 | 1045 | 79.0 | 1317  | 91.3 | 1219 | 86.8 | 1148 | 83.6 |
| 12     | 799  | 63.0 | 768  | 66.5 | 690  | 63.0 | 1001 | 77.0 | 894  | 71.7  | 151  | 65.8 | 491 | 54.1 | 345 | 47.5 | 479 | 53.5 | 753  | 65.9 | 500  | 545  | 692  | 63.1 | 819  | 68.8 | 762  | 66.3 | 788  | 67.4 | 1124  | 82.5 | 1059 | 79.6 | 901  | 72.5 |
| 13     | 833  | 69.5 | 800  | 68.0 | 735  | 65.0 | 955  | 74.9 | 891  | 72.0  | 785  | 67.3 | 591 | 58.6 | 511 | 55.0 | 533 | 55.9 | 846  | 70.1 | 713  | 64.0 | 773  | 66.3 | 905  | 72.7 | 8.84 | 71.7 | 838  | 697  | 1181  | 85.1 | 1102 | 81.6 | 930  | 73.8 |
| 14     | 924  | 73.5 | 870  | 71.1 | 795  | 67.7 | 996  | 76.7 | 947  | 1.4.6 | 33.5 | 69.1 | 811 | 68.5 | 807 | 68.3 | 637 | 60.6 | 1061 | 79.7 | 937  | 73.9 | 868  | 71.0 | 1067 | 79.3 | 1014 | 17.5 | 900  | 12.5 | 1201  | 86.0 | 1126 | 82.7 | 964  | 75.3 |
| 15     | 881  | 71.6 | 809  | 68.4 | 709  | 63.9 | 988  | 76 4 | 394  | 72.4  | 748  | 65.6 | 564 | 57.3 | 540 | 56.3 | 400 | 50.0 | 873  | 71.2 | 712  | 64.0 | 714  | 64.1 | 946  | 74.5 | 881  | 71.6 | 777  | 67.0 | 1181  | 85.1 | 1069 | 80.1 | 892  | 72.1 |
| 16     | 186  | 67.4 | 705  | 637  | 635  | 60.5 | 982  | 76.1 | 850  | 70.2  | 637  | 629  | 392 | 49.6 | 339 | 47.2 | 303 | 45.6 | 731  | 64.9 | 560  | 57.2 | 539  | 56.2 | 827  | 69.2 | 722  | 64.5 | 683  | 62.1 | 1105  | 31.7 | 1001 | 77.0 | 808  | 68.3 |
| 17     | 1000 | 76.9 | 923  | 73.5 | 820  | 63.9 | 1130 | 82.8 | 999  | 76.9  | 856  | 10.5 | 992 | 76.6 | 809 | 68.4 | 794 | 67.7 | 1134 | 83.0 | 959  | 75,1 | 872  | 71.2 | 1154 | 83,9 | 1009 | 77.3 | 939  | 14.2 | 1256  | 88.5 | 1152 | 83.8 | 1020 | 77.8 |
| TI     | 659  | 61.6 | 723  | 64.5 | 624  | 60.0 | 921  | 73.4 | 862  | 70.8  | 671  | 62.2 | 791 | 67.6 | 509 | 54.9 | 605 | 59.2 | 755  | 66.0 | 669  | 61.8 | 625  | 60.1 | 761  | 66.2 | 731  | 64.9 | 703  | 63.6 | 937   | 74.1 | 948  | 74,6 | 793  | 67.7 |
| T2     | 994  | 76.6 | 1010 | 77.4 | 964  | 15.3 | 1106 | 81.7 | 1089 | 80.0  | 992  | 76.6 | 902 | 72.5 | 880 | 71.6 | 774 | 66.8 | 1069 | 80.0 | 1050 | 19.2 | 1038 | 78.6 | 1149 | 83.1 | 1106 | 81.7 | 1102 | 81.6 | 1317  | 91.3 | 1277 | 89.5 | 1190 | 35.3 |
| T3     | 851  | 70.3 | 813  | 68.5 | 779  | 67.0 | 987  | 76.3 | 91.7 | 13.2  | 836  | 69.6 | 475 | 53.3 | 464 | 529  | 482 | 53.7 | 821  | 69.0 | 108  | 63.8 | 809  | 68.4 | 883  | 717  | 892  | 72.1 | 886  | 71.8 | 12.09 | 86.4 | 1128 | 82.7 | 984  | 76.2 |
| T4     | 853  | 10.4 | 330  | 69.3 | 719  | 643  | 938  | 14.2 | 906  | 12.7  | 789  | 67.5 | 850 | 70.2 | 736 | 65.1 | 644 | 60.9 | 928  | 73.7 | 815  | 63.6 | 334  | 69,5 | 902  | 12.5 | 896  | 72.3 | 810  | 68.4 | 1044  | 78.9 | 1007 | 77.2 | 901  | 72.5 |

| SERIES                       |            |      | IA   | 100   |       | IB    | 1.2.2 |       | IC    | -     |       | ID    |       |
|------------------------------|------------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| RUN                          | UNITS      | 1    | 2    | .3    | 1     | 2     | 3     | 1     | 2     | 3     | 1     | 2     | 3     |
| VELOCITY ENTERING COIL       | FT/MIN.    | 2150 | 1500 | 965   | 2150  | 1500  | 965   | 2150  | 1500  | 965   | 2150  | 1500  | 965   |
| AMMONIA SATURATION TEMP.     | oF         | 11.5 | 11.5 | 11.44 | 21.5  | 21.5  | 21.5  | 30.0  | 30.0  | 30.0  | 41.0  | 41.0  | 41.0  |
| FIN SURFACE TEMP             | oF         | 51   | 51.4 | 50.7  | 63.0  | 57.9  | 54.7  | 62.1  | 59.3  | 56.4  | 65.2  | 624   | 60.8  |
| ENTERING AIR TEMP DRY BULB   | 0.F        | 79.0 | 79.8 | 79.1  | 81.0  | 80.0  | 79,5  | 80.2  | 80.2  | 79.6  | 80.4  | 79.7  | 79.9  |
| LEAVING AIR TEMP DRY BULS    | °F         | 68.0 | 66.0 | 68.4  | 74.0  | 71.0  | 70.4  | 73.8  | 73.0  | 71.1  | 74.7  | 73.4  | 72.6  |
| LOG MEAN TEMP. DIFF          | oF         | 22,0 | 20.7 | 22.45 | 14.35 | 17,15 | 19.90 | 14.60 | 16.95 | 18.30 | 12.11 | 13.95 | 15.11 |
| COEFFICIENT OF HEAT TRANSFER | BTU/ HR OF | 22.6 | 19.4 | 13.45 | 23.10 | 16.05 | 12,20 | 19.30 | 12.90 | 10.45 | 19.10 | 14.0  | 9.75  |

# TABULATED DATA AND RESULTS BASED ON THERMOCOUPLES

| SERIES                       | -         |       | 2A    | 1     |       | 2B    | 1     |       | 20    |       | 1     | 2D    |       |
|------------------------------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| RUN                          | UNITS     | 1     | 2     | 3     | 1     | 2     | 3     | 1     | 2     | 3     | 1     | 2     | 3     |
| VELOCITY ENTERING COIL       | FT/MIN    | 2180  | 1520  | 985   | 2180  | 1520  | 985   | 2180  | 1520  | 985   | 2180  | 1520  | 985   |
| AMMONIA SATURATION TEMP      | °F        | 11.5  | 11.5  | 11.44 | 21.5  | 21.5  | 21.5  | 30.0  | 30.0  | 300   | 41.0  | 41.0  | 41.0  |
| FIN SURFACE TEMP             | oF        | 54.3  | 53.3  | 54.1  | 65.3  | 61.8  | 61.8  | 66.0  | 65.2  | 62.8  | 73.3  | 70.7  | 64.8  |
| ENTERING AIR TEMP DRY BULB   | OF.       | 90.2  | 90.2  | 90.0  | 90.2  | 90.3  | 90.8  | 89.0  | 90.2  | 90.0  | 89.0  | 90.0  | 89.0  |
| LEAVING AIR TEMP DRY BULB    | OF        | 75.2  | 75.6  | 79.9  | 80.5  | 79.5  | 79.3  | 80.0  | 80.2  | 79.5  | 81.0  | 81.1  | 79.1  |
| LOG. MEAN TEMP DIFF          | OF        | 27.65 | 28.80 | 30.70 | 19.60 | 22.70 | 22.75 | 18.20 | 19.50 | 21.60 | 11.20 | 14.35 | 18.85 |
| COEFFICIENT OF HEAT TRANSFER | BTY HR OF | 22.2  | 15.9  | 13.0  | 24.6  | 15.65 | 12.45 | 19.10 | 15,30 | 10.40 | 28,10 | 17.60 | 10.55 |

| SERIES                       |           |       | 3A    |       | -     | 3B    |       |       | 30    | in die | 1 Te  | 30    | 1     |
|------------------------------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|
| RUN                          | UNITS     | 1     | 2     | 3     | 1     | 2     | 3     | 1     | 2     | 3      | 1     | 2     | 3     |
| VELOCITY ENTERING COIL       | FT/MIN    | 2240  | 1555  | 1005  | 2240  | 1555  | 1005  | 2240  | 1555  | 1005   | 2240  | 1555  | 1005  |
| AMMONIA SATURATION TEMP      | OF        | 11.5  | 11.5  | 11.44 | 21.5  | 21.5  | 21.5  | 30.0  | 30.0  | 30,0   | 41.0  | 41.0  | 41.0  |
| FIN SURFACE TEMP             | oF        | 56.9  | 52.0  | 53.8  | 65.7  | 61.0  | 63.0  | 69.5  | 67.9  | 65.9   | 80.2  | 77.5  | 70.5  |
| ENTERING AIR TEMP DRY BULB   | OF        | 102.1 | 101.0 | 99.8  | 100.9 | 101.0 | 100.5 | 100.5 | 100.0 | 99.7   | 99.8  | 100.6 | 99.8  |
| LEAXING AIR TEMP. DRY BULD   | oF.       | 83.1  | 80.9  | 81.5  | 86.4  | 84.7  | 82.0  | 89.5  | 86.9  | 86.6   | 91.0  | 91.7  | 88.3  |
| LOG MEAN TEMP. DIFF          | °F.       | 34.70 | 39.90 | 36.20 | 27.40 | 31.10 | 27.30 | 25.10 | 24.95 | 26,80  | 14.70 | 18.25 | 22.95 |
| COEFFICIENT OF HEAT TRANSFER | BTU HAROF | 23.90 | 16.60 | 13,0  | 23.0  | 15,50 | 12.90 | 17.90 | 14.70 | 10.45  | 238   | 14,40 | 9.35  |

51





PAGE 57 ENTERING AIR TEMPERATURE ~100°F X BTU REE VELOCITY 2240 FT/MIN 2~ 1555 FT/MIN 3~ 1005 FT/MIN 4~ PREDICTED FOR SOOFT/MIN O SURFACE TEMPERATURE ~ of PERFORMANCECURVES ON AMMONIA COOLING COIL FIN SPACING ~ THE INCH







Page 61.

#### APPENDIX

Manometer.

The type micro manometer used needed no calibration or corrections. The density of the alcohol or manometer fluid at the temperature used had to be known.

It consisted of a horizontal bottle half-filled with alcohol connected below the fluid level by a flexible hose to a glass tube with a cross hair engraved on it. The inclined tube was raised or lowered by turning the dial on top of the main screw. The sensitiveness of the instrument was changed by varying the inclination of the tube. (See Page 13). The zero was set after leveling the base and turning the dial to zero. The inclined tube was then raised or lowered relative to the carriage until the bottom of the meniscus was on the cross hair.

In measuring a differential pressure, the lower pressure was connected to the top of the inclined tube and the higher pressure to the reservoir. If pressure above atmospheric was to be measured, the connection would be made to the reservoir, the top of the cross hair left open to the air. For a pressure below that of the atmosphere, this connection was shifted to the inclined tube.

Page 62.

To measure either pressure the dial was turned to raise the inclined tube until the meniscus of the liquid level was opposite the cross hair. Since the main screw had ten threads to the inch, one revolution gave 0.1 inch which was indicated on the main column. The rim of the dial had one hundred equal divisions, so that 0.01 revolution meant .001 vertical travel of the carriage.

The instrument reads directly to 0.001 inch of alcohol and could be estimated to 0.0005 inches. Its accuracy was determinedby the precision with which the main screw was cut. These threads were cut by an expert machinist on a special toolmaker's lathe. Care was taken while turning to prevent heating above approximate room temperature at which it would be used. Temperature changes had no appreciable effect on its accuracy. 20°F. change in temperature affected the length of the brass screw only 0.02%.

The great advantage of the instrument over the usual inclined manometer was that the liquid level in the reservoir was unchanged regardless of the reading so long as the meniscus was at theocross hair, and since the same volume of liquid was in the connecting tube regardless of the reading.

There was no error in uneven capillary effect in a tube of varying bore, since for all readings the liquid was at the same position in the tube.

The density of the ethyl alchol used was found by comparing the weight of a given volume with that of the same valume of water, both at room temperature. It was found to be .80 at 83°F.

On trying to use distilled water in the manometer, it was found that the meniscus broke when the tube was inclined at slight angles. Alcohol had an additional advantage in that it gave about 25% greater reading for the same pressure.

Theremocouples.

Thermocouples used were made of copper and constantan furnished by Leeds & Northrup. The hot junction was fused and spot soldered at each position on the fins and tubes as the coil was being assembled. The fins were pressed over the tubes.

A common cold junction was used. This consisted of a sheet metal interior around which was placed a two-inch cork-board insulation. The outer finish was of  $\frac{1}{4}$ " plywood. All joints and cracks were sealed with an asphalt compound.

In the common cold junction were placed pieces of glass tubing sealed at one end and filled with mercury, into which were placed the individual leads. The junction was packed with a sufficient amount of shaved ice and water to hold 32°F. constant for better than a day.

A Leeds & Northrup, K-2 potentiometer was used in conjunction with the thermocouples. The range used was from .0000001 to .015 volt.

A sketch showing the position of the thermocouples is shown on pages 16 and 17.

The wiring diagram was shown on page 20.

Values for the calibration curve on standard copper constantan thermocouples were taken from Leeds & Northrup conversion tables with the cold junction at  $32^{\circ}F^{12}$ .

These results were checked and verified by tables for copper-constantan determined by the Geophysical Laboratory.<sup>12</sup>

Sample couples were also independently checked and found to be correct.

#### \*\*\*\*

Leeds & Northrup Standard Conversion Tables.
Adams, Bull, A.I.M.M., 159 Pg. 2111, 1919.






# Page 68.

## COIL DATA

Size of coil  $12\frac{1}{4}$ " x  $12\frac{1}{4}$ " x 7" Spacing = 7/16" 27 Fins 7" x  $12\frac{1}{4}$ " 1 Fin  $9\frac{1}{4}$ " x  $12\frac{1}{4}$ " Thickness of fins = .028" 28 Holes .5" Diameter.

### Tubes

Fins

4 rows of 7 each  $12\frac{1}{4}$ " long .627 outside diameter .525 inside diameter

Free Frontal Area

|    | Total   | 12.25 x 12.25       |               | 150.0625 sq. in. |
|----|---------|---------------------|---------------|------------------|
|    | Tubes   | 7 x 12.25 x .627    | acco<br>galiv | 53,7653 sq. in.  |
|    | Fins    | 28 x 12.25 x .028"  | <b>.</b>      | 9.6040 sq. in.   |
|    | Free    | Area = Total - Tube | e Area        | - Fin Area       |
|    | Free    | Area = 86.69 sq. in | 1. =          | .602 sq. ft.     |
| Co | oling : | Surface Area.       |               |                  |

Total Fins 28 x 12.25 x .028 = 9.6040  $27 \times 7 \times 12.25 = 2315.2500$ Holes 28 x 28 x .5 = 392.0 Net Fin Area = 2056.12 x 2 = 4112.24 Tubes 28 x 12.25 x .627 = 675.64 Total Area = Net Fin Area  $\neq$  Tube Area

= 4787.88 sq. in. = 33.25 sq. ft.

## SIMPLIFICATION OF FORMULAS

AIR CALCULATION BY INTAKE ORIFICE

#air/min. = 1096.2 C.A./hd

C = Coefficient of discharge for orifice

A = Area of orifice in square feet.

h = Head in inches of water.

d = Densty of air at orifice.

Coefficient of discharge for both orifices used is .6 as given by Whitfield in his thesis on Intake Orifice Method of Measuring Air.

15.25" Orifice.

|           | #air/min. | -<br>-<br>    | 1096.2 CA/hd          |
|-----------|-----------|---------------|-----------------------|
|           | C         |               | .6                    |
|           | А         | ad<br>80      | 1.27 sq. ft.          |
|           | #air/min. |               | 835/hd                |
| 10.20" Or | rifice.   |               |                       |
|           | #air/min. | 442-<br>2005- | 1096.2 CA/hd          |
|           | C         | 685<br>865    | .6                    |
|           | A         |               | .567 sq. ft.          |
|           | #air/min. | -<br>         | 1096.2 x .6 x .567/hd |
|           | #air/min. | 200<br>200    | 373/hd                |

REASON FOR CONSTANT AIR QUANTITIES WITH SLIGHTLY VARYING DENSITIES.

Maximum air temperature at orifice is:

 $T - Dry = 90^{\circ}F$   $T - Wet = 70.5^{\circ}F$ Volume from chart = 14.1 at 14.7 #/D" press. 14.1 x  $\frac{14.7}{14.3}$  = 14.5 Density =  $\frac{1}{14.5}$  = .069 Substituting in orifice formula as simplified: #air/min. = 835/hd = 835/.168 x .069

= 90 #/min.

Thus we have a maximum error of 2 #/min. in 92 #/min. This gives an error of 2.28% and was the balance of our data does not warrant a greater degree of accuracy, our assumption is justified

AMMONIA HEAT BALANCE CHECK.

As shown by calculations in the results for the quantity of air by the intake orifice, a value of 92# of air per minute for Run 1, Series 1A is found.

Below are calculations showing the ammonia heat balance check:

Page 71.

NH3 BALANCE CHECK

 $\# NH_{3} (\triangle H) = \# air (\triangle H)$ Heat of air at  $T_{W}$  of  $51.7^{\circ}F = 21.3 BTU/\#$ Heat of air at  $T_{W}$  of  $46.4^{\circ}F = 18.3 BTU/\#$ H of air = 3.0 BTU/#Heat of NH<sub>3</sub> liquid at  $65^{\circ} = 114.8 BTU/\#$ Heat of superheat of NH<sub>3</sub> at  $14^{\circ}$  and  $39.35 \#/\square$ " abs. = 617.1 $\# NH_{3} (\triangle H) = \# air (\triangle H)$ 

 $#air/min. = \frac{\#NH_3/_{30} (\Delta H)}{air (\Delta H) \times 30}$  $= \frac{16.5 (617.1 - 114.8)}{3 \times 30}$  $= \frac{16.5 \times 502.3}{90}$ #air/min. = 91.9

Thus our orifice value of air flow is correct.

\*\*\*\*

#### BIBLIOGRAPHY

- 1. <u>Rational Development and Rating of Extended Air Cool-</u> <u>ing Surface</u>, Pownall, <u>Refrigerating Engineering</u>, October, 1935.
- 2. <u>Heat Transfer From Direct and Extended Surfaces with</u> <u>Forced Air Circulation</u>, G. L. Tuve and C. A. McKeeman, <u>Heating, Piping and Air Conditioning</u>, Vol. 6, June, 1934, P. 267.
- 3. Performance of Fin-Tube Units for Air Heating, Cooling, and Dehumidifying, G. L. Tuve, ASHVE, Journal Section, <u>Heating, Piping and Air Conditioning</u>, December, 1935, P. 589.
- 4. Graphical Method of Determining Finned Coil Capacities Described, E. P. Wells, <u>Heating</u>, Piping and Air Conditioning, Vol. 8, No. 12, December, 1936, P. 665.
- 5. <u>Heat Transfer Rates in Refrigerating and Air Cooling</u> <u>Apparatus</u>, W. J. King and W. L. Knaus, <u>Mechanical En-</u> <u>gineering</u>, Vol. 56, No. 5, May, 1934, P. 283.
- 6. <u>Heat Transmission in Cooling Air with Extended Surfaces</u>,
  W. L. Knaus, <u>Refrigerating Engineering</u>, Vol. 29, Nos.
  l and 2, Jan. and Feb., 1935, P. 23 and P. 82.

- <u>Ffect of Moisture on Heat Transfer</u>, Siegfried Rupricht, <u>Refrigerating Engineering</u>, Vol. 27, No. 4, April, 1934,
   P. 182.
- 8. <u>Dehumidification of Air with Coils</u>, William Goodman, Refrigerating Engineering, Oct., 1936.
- Performance of Fin-Tube Units for Air Cooling and Dehumidifying, G. L. Tuve and C. A. McKeeman, <u>Heating</u>, Piping and Air Condioning, June, 1937, P. 379.
- 10. American Society of Mechanical Engineers Research Publication, Third Edition, 1931, Fluid Meters, Their Theory and Application.
- 11. E. Ower <u>Measurement of Air Flow</u>, Chapman and Hall, Ltd., London, 1933.
- 12. Leeds and Northrup <u>Standard Conversion Tables</u>. Adams, Bull, A.I.M.M.E., 159 P. 2111, 1919.
- 13. Circular of the Bureau of Standards #142, Tables of Thermodynamic Properties of NH3.
- 14. The Intake Orifice and a Proposed Method of Testing Exhaust Fans, N. C. Ebough and R. Whitfield, <u>Transactions</u> of <u>Mechanical Engineers</u>, Dec., 1934, Vol. 56, No. 12.

15. <u>Psychrometric Chart with Barometric Pressure as a Var-</u> <u>iable</u>, J. S. Chandler, <u>Heating and Ventilating</u>, Vol. 33, March, 1936, P. 36.

\*\*\*\*