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1. Background  

A vast number of important integer and combinatorial problems in 

areas such as distribution, communications, transportation, and 

facilities location can be viewed as fixed charge flow problems on graphs 

or networks, i.e. flow problems with fixed costs incurred on arcs 

with positive flow. On May 1, 1980 Drs. Ronald L. Rardin and R. Gary 

Parker proposed to the National Science Foundation a line of 

research on such fixed charge problems entitled, "Tight Relaxation 

Approaches to Fixed Charge Problems on Graphs and Networks." Their 

proposal envisioned a program of research on forming, and implementing in 

algorithms, non-standard relaxations of fixed charge problems on networks 

and graphs. More specifically, the proposal contemplated study of both 

tight linear programming relaxations of fixed charge problems on graphs 

and networks, and investigation of combinatorial relaxations for the same 

problems. Total funding sought was $152,080. 

At the request of the National Science Foundation, a revised 

proposal was submitted on January 13, 1981 for a reduced scope effort 

considering only the linear programming relaxations. That revised scope 

was funded as Grant Number ECS-8018954 for two years beginning March, 

1981, in the amount of $49,951. This report briefly summarizes progress 

on the planned research during the first grant year and activities 

contemplated for the second. 

2. Progress during the First Grant Year 

As noted above research planned under the grant centers on tight 

non-standard linear programming relaxations for fixed charge problems on 

graphs and networks. The relaxations are tight in the sense that 
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solutions obtained from such relaxations closely approximate optimal 

solutions for the underlying mixed-integer programming problems. 

The proposed method of approach anticipated a combined computational and 

theoretical investigation of such relaxations, with computational phases 

seeking effective strategies for dealing with the massive linear programs 

involved in such relaxations and theoretical studies aimed at 

sharpening the relaxations and proving their effectiveness on restricted 

classes of problems. 

The attached working papers detail how substantial progress has been 

achieved on both these fronts during the first grant year. Attachment 1 

"Tight Relaxations of Fixed Charge Network Flow Problems" 

merely summarizes work prior to the beginning of the grant. It has been 

submitted for publication in Operations Research Letters. Attachment 2, 

"Development of a Progressive Disaggregation Approach 
to Fixed Charge Network Flow Problems" 

centers on new computational aspects. Attachment 3, 

"Some Polynomially Solvable Multi-Commodity Fixed 
Charge Network Flow Problems" 

includes new theoretical developments. The latter paper has been 

submitted for publication in Discrete Applied Mathematics.  

Briefly, the achievements reported in the papers are the following: 

• A variant on our earlier formulation has been discovered 

which leads to both a tighter linear programming formulation 

of the problem and (generally) fewer linear programming 

constraints. Attachment 2, Section 2 provides details. 

O Central issues have been isolated, and algorithmic strategies 

for dealing with them proposed, to implement the disaggregation 



concept on our linear programming relaxations progressively. 

The relaxations involve disaggregation of flows into 

components tracking the supply point at which the flow began 

and the demand point to which it is destined. Rather 

than dealing with all such variables, and associated 

constraints, at one time, the progressive approach 

treats flows in increasingly more detailed supply and demand 

groupings. Ultimately, a full disaggregation to individual 

supplies and demands may be reached, but it is hoped that 

the progressive strategy will lead to less total computations 

by diminishing the effort expanded on early iterations. Among 

the issues dealt with in Attachment 2 are the form supply and 

demand groups should take, and how the progressive approach 

can be integrated in Lagrangean relaxation of the tight form. 

co Our relaxations have been proved exact on a significant class 

of problems arising on graphs with specific structure. 

Attachment 3 details a proof that the linear programming 

relaxation we have been studying yields an integer solution 

for uncapacitated problems on series-parallel graphs--an 

important subset of planar graphs. The tight linear programming 

relaxation for such fixed charge network problems is unimodular, 

regardless of the number of commodities considered. Thus, 

polynomial procedures for linear programming yield polynomial 

time algorithms for all such fixed charge cases. 

We noted above that two of the attached papers have already been 

submitted for publication. It is also anticipated that work on 
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computational phases will be published, but submission awaits 

computational testing of concepts developed in the research. 

Beyond these efforts to disseminate results through scholarly 

journals, six seminars have been presented by investigators on the work: 

• "Progressive Relaxation of Fixed Charge Network Flow 

Problems," presented to the Fall Joint National meeting 

of the Operations Research Society of America and The 

Institute of Management Sciences, Toronto, Canada, April, 

1981. 

• "Tight Relaxations of Fixed Charge Network Problems", 

presented in seminars at 

a. Department of Industrial Engineering, Auburn 

University, April, 1981 

b. Department of Industrial Engineering, State University 

of New York at Buffalo, April, 1981 

c. Department of Industrial Engineering and Operations 

Research, Virginia Polytechnic and State University, 

February, 1982 

d. School of Industrial Engineering, Purdue University, 

March, 1982 

o "Lagrangean Relaxation with Application to Fixed Charge 

Network Flows", presented to the Applied Mathematics Round 

Table, Exxon Corporation, March, 1982. 

3. Anticipated Activities for the Second Grant Year 

Planned activities for the second grant year will be directed toward 
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completing and extending the achievements described above. More 

specifically, 

• Computational Testing. Algorithmic strategies for the 

progressive strategy presented in Attachment 2 are being 

implemented in a computer code so that they can be empircally 

tested. This computational activity has proceeded more slowly 

than originally planned because of inadequate availability of 

computer resources at Georgia Tech. However, satisfactory 

arrangments have now been made and testing is advancing. By 

the end of the project both a code and an empirical evaluation 

of the progressive strategy should be available. 

• Polynomial Algorithm.  Attachment 3 shows that a significant 

class of fixed charge problems can be solved exactly via our 

linear programming relaxation. By appeal to the availability 

of polynomially-bounded algorithms for linear programming, 

that result proves the indicated problems are polynomially 

solvable. However, we believe there should be more direct 

combinatorial algorithms for the relaxation in such cases. 

Theoretical effort in the remaining part of the project will 

be directed toward the discovery of such algorithms. 



ATTACHMENT 1 



Industrial Systems and Engineering 
Report Series No. J-82-3 
January, 1982 

TIGHT RELAXATIONS OF FIXED 

CHARGE NETWORK FLOW PROBLEMS 

by 

Ronald L. Rardin* 

* Associate Professor, School of Industrial and Systems Engineering, 
Georgia Institute of Technology, Atlanta, Georgia 30332 

Abstract: A vast number of important engineering and management problems can 
be viewed as network flow problems with fixed charges for opening arcs. This 
research derives new, tight, linear programming relaxations for such problems 
based on a disaggregation of flows. The concenpt behind such relaxations is 
presented, and an algorithm for their solution is discussed. 

This material is based upon work partially supported by the National Science 
Foundation under Grant Number ECS-801954. 



1. Introduction  

A vast number of important engineering and management problems in dis-

tribution, communication, transportation, and facilities location can be viewed 

as single or multi-commodity network flow problems with fixed charges for con-

structing/setting up/installing arcs. Such problems with commodities in P 

can be stated in mixed-integer form as follows: 

min 	1 vPxP  + fy 	 (1) 
pCP 

(MFP) 	s.t. 	 Exp = by 	for all p£1:" 	 (2) 

xP > 0 	for all pep 	 (3) 

(1/11.) 1 xP _- v 

	

_ . 	for all jcA 	 (4) 

pet" 
..., J 	'J 

0 s y s 1 

y integer 

Here E is the vertex-arc incidence matrix of a directed graph, G(V,A), xP 

is the flow of commodity p on that network, v P  is the variable (per unit) 

cost of such flow, by  is a requirements vector for commodity p (having com-

ponentssummingtozero),u.isthecapacityofarcjalli,f.is the fixed 

charge on arc j, and y. is a 0-1 variable switching "on" the fixed charge Yj  

when flow through arc j is allowed. I assume throughout that all f. are 

nonnegative. If capacities, u., are not naturally apparent in the problem 

setting, they can usually be generated as any number greater than or equal to 

(5) 

(6) 

the maximum flow through the arc. 

Figure 1 shows a simple numerical example with IP! = 1 commodity. All 10 

units of flow originate at vertex 1; 5 are required at vertex 3 and 5 at vertex 

4. It is easy to check that an optimal solution sends one unit 1-4, 4 units 
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10 

Figure 1. An Example Network 



1-2-4, and 5 units 1-2-3. Total cost is 63. 

2. The Standard Relaxation  

Since the early work of Balinski [1, 2] a standard approach to dealing 

with problems (MFP) has been to solve linear programming relaxations (MFP) 

obtained when constraints (6) are dropped. Such relaxations provide both 

bounds for branch-and-bound schemes and a source of approximate solutions; 

given an (MFP) optimum, one need only round "up" all positive, but fractional 

y. to obtain a feasible solution to (MFP). Yj  

For the above example this (MFP) relaxation is solved by sending 1 unit 

1-4, 4 units 1-2-4, and 5 units 1-3; total cost is 54 (83% of the optimal 63). 

When rounded "up" this solution costs 104 (165% of optimal). 

Neither of these values is very satisfactory, and actual experience is 

often much worse. To see why, observe that the constraints (4) will always 

be tight in some optimal solution for (MFP); where f j  > 0, slack in such 

constraints implies unnecessary cost. Since constraints (4) will be equalities 

in(MFP),theireffectistoproratethefixedcost,f.,over the corresponding 

capacity. For example, in arc (1-2) of Figure 1, 4/10 of the fixed cost,40, 

would be paid in the (MFP) optimum because 4/10 of the capacity, I0,is used by 

the optimal flow. If capacities are large, it is easy to see that this pro-

ration process would soon negate, or nearly negate, the impact of fixed costs 

on (MFP) optima. Optimal relaxation solutions tend to use many arcs at relatively 

small fractions of capacity. This is particularly so when capacities are arti-

ficially created as maximum possible flows. 

3. A Disaggregated Formulation  

In a number of special cases, including warehouse location problems (Balinski 

[2], Davis and Ray [4], Erlenkotter [5], Bilde and Krarup [3],Geoffrion and Graves 

[7])and uncapacitated problems (Magnanti and Wong [8]), various researchers have 
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shown the merit of disaggregating (MFP) flows to obtain linear programming 

relaxations that more closely approximate the mixed-integer problems. One 

can retrieve these special cases and extend the notion to all (MFP) by 

recognizing that flow in any commodity can always be disaggregated into 

separate commodity flows between origin-destination pairs of the requirements 

vector, bp . Specifically, let xP fs,t1 be a vector showing the flow of the 

portion of commodity p originating at source s and destined for sink t. Then 

an equivalent mixed-integer form to (MFP) is 

min G xP [s,t]1+ f w 
[sES 

(7)  
peP teT 

s.t. EPxP [s,t] = 0 for all pEP, scS , tET 
P 	P 

(8) 

/ x.[s,t] 	= bP for all peP, sESp  (9) 
teT 	{j leaving sl 

-/ x.rs,t] 	= by for all peP, teT (10) 
seS 	fj entering t} j  

(DFP) 	 xP[s,t] ?_ 0 	 for all peP, seS 
P 
 , teT

P 	
(11) 

(1/u.) 	/ 	xl,) [s t] 	w, 	for all jeA (12) 
peP sESp  tcTp   

(1/ -bP ) 	XP:[s,t] 
seq 

< w.  for all jeA, peP, tcT 
p 

(13)  



- 	7  
(1/b') 	L 	xl.) [s t] 

s 	tEt 	3 	, 
w. for all jcA, pcP, scS (14) 

0 	1 
	

(15) 

w integer 
	

(16) 

Here S = {sources for commodity p} = {s: bP  > 0} 
P 	 s 

T = {sinks for commodity p} 	= {t:-b > 0} 
P 	 t 

El)  = the row submatrix of E containing row 	i Ef 1 : 111) = 0 / 1 

In this new form w corresponds directly to y of (MFP), and flow variables 

are related by 

x. = 	 xp [s,t] 
scSp  tcT 

P j  
(17) 

Relaxations (7), (8) through (10), (11), (12), (15), and (16) of (DFP) corres-

pond to (1), (2), (3), (4), (5), and (6) of (MFP), respectively. Denote by 

v(•) the value of an optimal solution to problem (-) and by (DFP) the linear 

programming relaxation of (DFP). Then this correspondence and the fact that 

(DFP) 'and (DFP) have extra constraints (13) and (14) lead to the following 

conclusion: 

Proposition 1.  Solution values for (MFP), (DFP), (MFP) and (DFP) satisfy 

v(M7FP) 5 v()FP) 	v(DFP) = V(MFP) 	 (18) 

0 

The new elements in the (DFP) formulation are systems (13) and (14). 

Intuitively, (13) requires that , w., the portion of the fixed charge paid on 

arc j, must equal or exceed the fraction of a demand satisfied through arc j. 
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Bimilarly,(10forcesw.to match the portions of each supply directed through 

arc j. The extra constraints are implied by (12) when integrality, (16), is 

enforced. But they may significantly improve the linear programming relaxation (DFP) 

becausef.isnowproratedoverbothu.and all relevant supplies and demands. 

The latter are often much smaller than capacities. 

The example of Figure 1 illustrates. An optimal solution to the linear 

programming relaxation (DFP) sends 1 unit 1-4, 4 units 1-2-4, and 5 units 

1-2-3. The relaxation cost is 62, 98% of the optimal 63. When all fractional 

w. in the relaxation are rounded "up",a feasible solution is obtained that 

is indeed the (DFP) optimum. The effect of the disaggregation is seen on arc 

(1,2). The (DFP) optimum pays the entire fixed charge, 40, because all demand 

at vertex 3 is satisfied through (1,2). From this example we may draw the 

further conclusion: 

Proposition 2:  In selected problems both inequalities of (18) may be strict. 

4. Solving the Tighter Relaxation  

If the strength of the (DFP) relaxation is to be realized, an approach 

must be found for solving or nearly solving that massive linear program. Three 

cases can be identified. Uncapacitated cases  have neither binding arc capacities, 

u., nor limits on supply at sources. Equivalently they are problems where con-

straints (12) are unnecessary and each requirements vector has only one positive 

component at the commodity's single source. Weakly capacitated  cases admit 

supply limits, but do not have binding arc capacities. They include the capaci-

tated warehouse location problem. Finally, fully capacitated  problems have 

binding arc capacities, and possibly also binding supplies. 

In both the uncapacitated and the weakly capacitated cases we can ignore 

constraints (12) of (DFP). Suppose we "dualize" (13) and (14), i.e. place them 
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in the objective function with nonnegative dual multipliers S P [t] and 

5. [s], respectively, to obtain 

min 1 vP 	 xP [s,t]) + fw 
pEP 	sES tsTp  

(DFP SQ ) + G 	G 	G (S[t] 	1 	xl?[s,t ] - w.1 
pEP jcA tET -bP  sES 

h9j 

	

+///e[t] 	1 X 	x11) fs,t1 - W. 
pEP jEA SES J 	bP 	tET J 	 J1 

	

s.t. 	(8), (9), (10), (11), (15) and (16) 

For fixed cS and u variables in (DPP ) the commodities are linked only at 

sources and sinks (through (9) and (10)). Moreover, each origin-destination 

commodity problem is essentially one of picking a single path along which to 

ship from source to sink. Thus, one can approach (DFP) by trying to maximize 

v(DFP
du

) over nonnegative values of the dual variables as follows: 

StepO:Initialization.Setall t [t] ande[s] to zero, and fix dual and 8i  

primal incumbent solution values v D 
- °, v 	+ m . 

Step 1: Implicit Costs.  Determine (19) objective function coefficients 

	

f. 	f. - 	1 	&?[s] - 	 81:1 [0 

	

J 	J pEP sESp 	pEP tel 

vP [ s
' 
 t] 	v1;)  + GI:ts1/13 13  + e[t]/(-14) 

J 	J 	s 

Step 2: Shortest Paths.  For each pEP, sES , teT compute the shortest 

path from s to t over arc lengths 171:) [s,t]. Let efs,t1 be the set of 

arcs in that path and cP [s,t] its length. 

(20) 

(21) 
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Step 3: Transportation Problems:  For each commodity pelt', solve a trans- 

portation problem from sources seS to sinks tET with costs cP [s,t]. 

Supplies are {bP  > 0} and demands {-bP  > 0}. Denote by zP [s,t] an optimal 

flow from s to t in that transportation problem. 

Step 4: Flow Solution:  Construct and optimal flow for (DFP ocy) by 

assigning for each p, sES , teT , zP [s,t] units of flow along all arcs 

in the corresponding shortest path R P [s,t]. 

Step 5: 0-1 Problem.  Compute relaxation optimal values for the w. 
3 

variables via 

	

w. 	1 if f. s 0 and 0 otherwise. 

	

3 	3 

Step 6: Dual Solution.  Compute a dual solution,Vir as the sum of the 

(DFP ) costs of the optima in Steps 4 and 5. If vD > vD' 
save a new 

dual incumbent v
D 

v
D* 

Step 7: Primal Solution.  Create a feasible solution to (DFP) by paying 

full fixed charges on any arc used in the flow of Step 4. Let v be its 

* 
cost, and if v < v P' save a new primal incumbent v t  v 

P .  

	

* 	 * 
Step 8: Dual Update.  If v is sufficiently close to v

D' 
stop and accept 

the primal incumbent as an approximate (DFP) optimum. If not, modify 

duals (5 1.( [t] and a[s] by taking a finite step along a subgradient of the 
3 

function N)(DFP
(Sa

) at the current dual point. 	Then return to Step 1. 

Since every problem (DFP6a) is a Lagrangean relaxation of (DFP) (see 

Fisher [6] for details of such relaxations and subgradient search), and every 

flow of Step 4 is primal feasible we have:.  

Proposition 3:  At any stage of the above algorithm 

* 
v
D 	v (DFP)- P 

(22) 
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5. Preliminary Computational Experience  

To see whether values in (22) could be brought close enough together to 

solve problems without the need for branch and bound, 15 random 

test problems were generated and approximately solved by the above algorithm. 

The problems were uncapacitated, 1-true-commodity cases with relatively high 

fixed charges on all arcs. 

Table 1 summarizes problem Characteristics and results obtained for the 

three problems of each size group. 	As indicated,the ordinary (MFP) relaxations 

provide very poor information. Relaxation solution values are only 25-50% of 

optima. 

* * 
The above (DFP) algorithm was set to stop when either v

P
/v
D 	

102.5% or 

a 15 minute time limit (CDC Cyber74) was reached. All problems of less than 

1000 arcs stopped before time limit. As indicated, the 1000 arc cases reached 

solutions provably within 4-8% of optimal in the 15 minutes. 

Although this amount of computer time is not insignificant, and results are 

highly preliminary, values in Table 1 strongly suggests that disaggregated re-

laxation approaches to fixed charge network problems have great promise. Exist-

ing branch-and-bound algorithms for such problems (e.g. Rardin and Unger [91) 

are taxed at 100-200 fixed charge arcs because of poor (MEP) bounds. With (DFP) 

it appears 1,000 or more arc problems are within range. 



Table 1. Preliminary Computational Results 

Arcs 

Problem Size 

Demands 

Estimated % CDC Seconds to 

Reduce vP/vD 
102.5% with (DFP) 

v(MFP) 

Forms of v(MFP) Nodes 

50 20 5 43.5% 0.8 

23.2% 0.8 

54.6% 5.3 

100 36 10 47.3% 7.5 

37.1% 3.8 

36.9% 2.7 

200 67 20 36.1% 23.5 

37.0% 19.2 

41.3% 19.6 

500 157 50 35.9% 416.5 

40.1% 353.2 

47.6% 237.6 

1000 308 100 37.9% 105.5% in 900 

29.3% 107.7% in 900 

41.0% 103.8% in 900 
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Abstract 

Fixed charge network flow problems model network design and location 

settings by allowing both fixed and variable charges for arc flow. Recent 

research has shown that very close approximations to mixed-integer solutions 

for each problems can be obtained from massive linear programs wherein flows 

are artificially disaggregated into separate components for each origin - des- 

tination pair. This paper develops the strategy of a progressive disaggregation 

algorithm employing the latter linear programming relaxation. However, flows 

are initially undisaggregated. As computation proceeds, supply and demand sub-

sets are further and further partitioned to tighten the relaxation as required 

without incurring the computational burden of a complete disaggregation into 

supply-demand pairs. 



s.t. 	 x. a  = 

(i, 8)6E 	1 

(1)  

(2) 

(3)  

1. Introduction  

The fixed charge network flow problem in one commodity is typically form-

ulated 

min 	 y • .x.. + 	I 	f_y.. 
1.] 	

(i,j)cE 
1J 1J 

for all REV 

	

x. 	s
a 	

for all acS 
(a,DEE 	et3  

(n) 

	

x z . - = 0 	for all ter 

(9„DEE 	3 	(1. 5 9...)cE 1  

x
13 
./u

13 
. 	

13 
y.. 	for all (i,j)EE 

x.. 	0 
	

for all (i,j)cE 

1 	y.. 	0 
	

for all (i,j)cE 

y.. integer 
	for all (i,j)cE 

Here E is the arc set of a specified network; x,. is the flow from i to j; 
3.3 

S, Dand T are the supply point, demand point and transshipment point subsets of 

nodes respectively; s a  is the supply at point a; d a  is the demand at point (3; 

and u.. is a capacity of arc (i,j) flow. Costs (1) include a variable (per unit 
3.3 

flow) cost v.. and a fixed charge f.. "switched on" by the 0-1 variable y.. 
1J 	 1J 	 1J 

whenever x.. > 0. We assume throughout that all f.. and v.. are nonnegative 

although the latter requirement can be relaxed in some cases. 

Formulation (FC) gives a correct mixed-integer statement of the fixed charge 

network flow problem, but its linear programming relaxation, (obtained by deleting 

(i,j)cE 



OeD (a,j)eE °J  
y 	x .[a,8] < s

a 	
for all aES 	 (11) 

(Mc) 

constraint (8)) often provides only a very poor approximation to the mixed in-

teger form. Rardin and Choe (1979) and Rardin (1982) demonstrated that a much 

better linear programming approximation is obtained by disaggregating flows 

x. j  into components x..[a,8] distinguished by the supply point a at which the 

flow originated and the demand point 8 to which it is defined. 

Such a multi-commodity formulation  is 

min v. 	 y 	- f.. Y.. 
(i,j)cE 	aES '360 1.3 	(i,j)cE iJ 1.] 

(9) 

s.t. 	 x„ [a,12.] = d
o 	

for all 8ED 	 (10) 
acS (i,B)cE 1 ' 

(12) xv [a,8] - 	x. ,[a,8] = 0 	for all aES 
(2.,DEE 3 	(1,0EE 	 RED, keT 

(1/u. 4 ) 	y x..[a,8] 	
Y 

1J  aES 	13 	
13 

x..fa,81 	0 

1 > y., ?_ 0 
1J 

integer yij  

for all (i,j)EE 

for all (i,j)EE 
acS, RED 

for all (i,j)cE 

for all (i,j)cE 

y
ij 	

for all (i,DEE 	 (17) 
min{sa' d

} 
	 aeS, RED 



As mixed-integer programs, forms (FC) and (MC) are equivalent. However, 

disaggregation of (FC) flows x. j  into separate commodities x
ij 
 [a,c3] leads to a 

tighter linear programming relaxation in (MC) because of the new constraints 

(17). With f., 	0 the linear programming relaxation, say (f), of 

(FC) will always have an optimal solution with no slack in (5). Thus, (FC) 

solutions incur only the fraction x„/u.. of the fixed charge f.. that flow 
13 13 	

xij 

forms of its capacity u... Equation (13) enforces the same limit in (MC), the 
iJ 

linear programming, relaxation of (MC). However, (17) also forces y., to be as 
ij 

large as the fraction of any source a or sink f3 flow passing through (i,j). 

The improved linear programming relaxation follows when (as is usually the 

case), s
a 
and/or are much smaller thanu ii . 

Although providing generally much tighter linear programming approximations, 

the (NC) form is an enormous linear program. For a case with 750 arcs, 25 

supplies, 100 demands, and 125 transshipment nodes, (MC) has over 400 thousand 

main constraints and approximately 2.2 million variables. The dual ascent scheme 

proposed by Hardin and Choe (1979) exploits problem structure in a Lagrangean 

relaxation, (we give details below), but a typical iteration still involves 

shortest path problems for each (a,0 pair, and search over dual variables for 

all constraints (17). For the problem size just described, there would be 

2500 such shortest path problems and approximately 1.9 million searchable dual 

variables. 

However, the formulations (FC) and (MC) may be viewed as endpoints of a 

disaggregation continuum. Form (FC) treats all flows in a single commodity; 

(MC) disaggregates flows into artificial commodities for each origin - destination 

pair. Certainly, there are intermediate possibilities wherein flow is treated 

in groups, (Ak ,Bk) with Ak  c S, Bk  c D. 

In this paper we first sharpen the (MC) formulation and then develop 
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strategies for an algorithm exploiting a progressive  disaggregation of SxV 

flows. The algorithm generally follows the Lagrangean relaxation philosophy of 

Rardin and Choe (1979), but processing begins with the undisaggregated form (FC), 

i.e. with one supply group Al  = S and one demand group 13 1  = D. 	As com- 

putation proceeds supply and demand groups are progressively partitioned to 

create new artificial commodity structures. It is hoped that computational testing 

now underway will demonstrate such a progressive approach reduces total calcu-

lation to obtain a satisfactory approximation to an (MC) optimum. 



y 	x ja,f31 
aeAk  se$k  

Y 	
for all (i,j)cE 	(18) 

d 	ij and all k 
facA

k 
a  (3cB

k 

13 

2. An Improved Formulation  

Flow in our given network can be conceptualized as the rectangle of Figure 1. 

Sides reflect supplies and demands respectively. Formulation (FC), which uses 

only one commodity, views the rectangle of flows on arc (i,j) as a single unit 

x... In (MC), each supply, demand cell of the rectangle is tabulated separately 

as x..[a,P]. At disaggregation levels between these extremes, supplies and demands 

are grouped in a rectangle (A
k

,73
k
) collecting all flows from origins acAk  to 

destinations f3eBk . 

The analog of Rardin and Choe's (MC) constraint (17) for such a commodity 

k'k
) is 

However, by treating supplies and demands separately we can expand the sums 

in the numerator and thus sharpen the relaxation. 

Lemma 1: Improved Formulation.  Let x..[a,S], sa , 	S and 1) be as in formu- 
j 

lation (MC), Ak  a nonempty subset of S and Bk  a nonempty subset of D. Then the 

following constraints are satisfied by every feasible (integer) solution to (FC) 

I 	I x. 4 [a,S1 
acAk  Sep 1-I  

L 
	

( 	Yij min 	s , I d o  
/ acAk  CI  (30) ' 

for all (i,j)cE 
and all k 

(19) 



an intermediate grouping (Ak ,Bk) 
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SI 

              

              

               

               

Figure 1: Total Flow as a Supplies by Demands Rectangle 



	

/ 	x..[a,8] 
acS BcB 	1J  

	

min) I 	do , I s 
laEBz  P  acS `24  

y.. 	for all (i,j)cE and all k (20) 

s>  >0,da  >0,xij [a, 8 , 

ij satisfying(18)1D{y ij satisfying (19) and (20)1 
	

(21) 

Proof: It is clear that (19) and (20) are valid in (MC); they simply require 

that yij  be at least the fraction of supply in Ak  or demand in 	passingg through 

(i,j), respectively. To see (21) observe that if I 	s
a 

5_ I 	d0 , (19) has 
acA

k  
acB2 

the same denominator as (18), and at least as great a numerator. If 

acAk a  ae8
k 

s 	d
6, 

(20) dominates (18). 

For a system of q commodities (A 1 , B1), (A2 , B2),...,(A 
q 
 , B 

q
) there are 

q constraints of type (18) and potentially 2q like (19) and (20). However, 

any commodities k and SZ, with Ak  = Az  or Bk  = 89,  have the same constraint (19) 

or (20) respectively. The result can be a considerable reduction in the possible 

number of (19) and (20). In the extreme case where every (a,a) c Sx1) forms a 

separate commodity, there are ISI + IDI constraints (19) and (20), but ISI • IDI 

limits (18). Thus, at least, as this complete disaggregation is approached, 

use of (19) and (20) results in both a substantial saving of constraints and a 

gain in formulation tightness. 



3. The Lagrangean Relaxation Settini 

With even a partial disaggregation of problem flows into artificial 

cottuttodities, one obtains a formidable linear program relaxation to be solved. 

If arc capacities (13) (or (5)) are nonbinding, Rardin and Choe (1979) showed 

how an effective Lagrangean relaxation of the remaining problem could be structured 

by summing constraints (19) and (20) in the objective function with nonnegative 

A dual multipliers. Let A=4.4.0 be the list of distinct supply subsets of current 

artificial commodities, {a
ij

[ic]: A
k
eA,(i,j)en be the nonnegative dual multipliers on 

A corresponding constraints (19), B----{Bt the list of distinct demand subsets of 

current commodities, and {S ii [k]: Bz EB, (i,j)cE} be the dual variables on their 

constraints (20). Then the implied Lagrangean relaxation is as follows: 

min 	V 	v. 	 + 	/ 	f
"y • • (i,j)cE 1J  aES Bev 1J 	(i,j)cE 33 1J 

X x., a,f31 
•asAk  acD 1' 

min 	s , 	d 	Yij 
aC Ak  a  REV 

+ 
(i,j)cE Ak6A 1J a 

(22) 

/ 	X 	[t] 
(i,j)cE BzeB 

aeS 13E8k  xii [c]  / 
	/ 

min{ 	d s 
a) 1(36 	aeS Bz  

s.t. 	 x..ta,al = d 	for all aa 	 (23) 
acs (i,ocE J 



x 	a,13] 	s
a 	

for all aeS 	 (24) 
(3eD (a,j)cE 	° jJ 

(13
a6

[A
'
B]) 

xja,31 - 	x.,[a,f3] = 0 	for all aES, 
(Z,DEE 	 (i,k)eE 	1' 	 8cD, tET 

(25) 

	

x..[a43] 	0 	for all (i,j)ct, 	(26) 
acS, ficD 

	

1 ?- y ij 	0 	for all (i,j)cE 	(27) 

integer 	for all (i,j)cE 	(28) 
Y ij 

For any choice of nonnegative
ij

[k] and
ij

[t] formulation,i(P
a6

[AA]) 

gives a valid lower bound on the cost of an (Pc) or (KC) optimum. A-search is, 

of course, necessary to find good dual values. 

The advantage of the (P66 [A,13]) form lies with the fact that [a,(31 systems 

are linked only through the objective function. Thus, for fixed dual values, 

(Pa6 [a,S]) separates into a series of shortest path problems for [a,$] pairs, 

followed by an S to D transportation problem. 

InCluding subgradient steps to improve duals and revise the present commodi-

tization, a full procedure employing (P as [A,g])is as follows: 

Step 0: Initialization. Fix dual and primal incumbent values 

vD 	vP 	"f° ' 

Step 1: Initial Disaggregation. Partition the source mode by desti-

nation node set SxD into an initial series of artificial supply-demand 

commodities, and let A be the list of distinct supply subsets, Ale 



and 8 the corresponding list of distinct demand subsets . Fix 

all duals a. ..[k] and (S..[9.] at zero. 

Step 2: Implicit Costs. Determine (22) objective function coefficients 

f. 	f 	- X 	a. [k] - / 	(3..[Z] 	 (29) 
AkcA 	 a 13  

v..[a,M + 	+ 	/ (a[k]/s[k]) + 	y (6..w/d[z], 
1, 	

vij 	 .. 
1, 	 ", 	1, 

AkeA:aeAk1 	 {13t ' 
03.f303

t 
 } 

(30) 

where s[k]AminX 	s, 	 (31) 
1 acAk  a  1303 P  

d[2] 	min 1 	 X sj 	 (32) 

6  8t 	
acS 

Step 3: Shortest Paths. For each pair (a,(3) of a source and a destination 

node, compute the shortest path from every a to every S over arc lengths 

v • Ja,(31. Let R[a,f3] be the set of arcs in the shortest path from node 

a to node (3 and c[a,f3] its length. 

Step 4: Transportation Problem. Using costs c[a,f3], suppliers s a  and 

demand d S , solve an S to D transportation problem. Denote by z[a,5] an 

optimal flow from a to 13 obtained in the solution to the transportation 

problem. 

Step 5: Flow Solution: For each a and 13 , assign z[a,f3] units of flow 

to all arcs (i,j) in the corresponding set of shortest path arcs R[a,(3]. 

Step 6: 0-1 Problem. Compute relaxation optimal values for the y ij 

 variables via 

	

y.. 	1 	if f.. 	0 and 0 otherwise. 

	

lj 	 1J 
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Step 7: 	Dual Solution.  Compute a dual solution , 
v
D, 

as the sum of 

the costs of the optima in Steps 5 and 6. If v
D 

v
D 

save a new dual 

incumbent v
D 

v
D. 

Step 8: Primal Solution.  Create a feasible solution to (DC) by paying 

full fixed :charges on any arc used in the flow of Step 5. Let v p  be 

its cost. If v
P 
 < vP' save a new primal incumbent as an approximate 

optimum to (FC). If not, check whether the rate of improvement in the 

* * 
ratio 

vP/vD 
is satisfactory. If so, go to Step 10. 

Step 10: Dual Update.  Modify duals a ii [k], and d..[Z] by taking a finite ij 

step along a subgradient of the Lagrangean dual function at the current 

dual point and projecting to restore nonnegativity (see for example 

Bazaraa and Goode (.1979) for details on subgradient schemes). Then return 

to Step 2. 

Step 11: Disaggregation.  Further subdivide the present artificial commodi-

tization of Sxp. Add any newly created distinct supply subset Ak  to A and 

pick an appropriate nonnegative starting value for corresponding dual 

variables {a
ij

[k]:(1,j)cEl. Similarly, add newly created distinct demand 

subsets
2,  to B and choose nonnegative ij

[2]:(i,j)ce. Then, return to 

Step 2. 

4. Artificial Commodity Structures 

One important set of issues surrounding the implementation of the above 

algorithm concerns the family of artificial commodity structures employed. The 

algorithm is impacted by commodity structure in several ways. 

• Relaxation Tightness.  One aspect is the degree to which the linear 

programming relaxation of problem (9) - (16), (19), (20) tightly 



approximates the underlying integer problem. Commodities impact 

relaxation tightness through the fact that there is one set of 

constraints (19) for each distinct supply set (i.e. each AkeA) 

and one set of constraints (20) for each distinct demand set (each 

k
eB). Relaxations associated with different commodity structures 

differ only in the limitations imposed by these constraints. 

oDuallIariables.Thenumberofdualvariablesetsfa..[M:(i,j)cEl 

and -(8..[SO:(i,j)zEl which must be stored and searched over in any 
1J 

commoditization is also controlled by the dimension of the distinct 

supply and demand subset sets A and B. For each AkEA and each 

BEB there is a set of constraints (19) or (20) and an associated 

set of dual variables. 

o Shortest Path Problems.  Step 3 of the algorithm calls for finding 

shortest paths between all supply-demand pairs. Arc lengths 

v..[ct,f3] for shortest path problems are as in (30). Assume, as is 

usually the case, that there are many fewer supply nodes than demand 

nodes (Symmetric arguements could be given for the opposite case). 

Then, noting all v..[a,r3] are maintained nonnegative throughout pro-

cessing, a version of the efficient Dijkstra (1959) algorithm should 

be employed to compute shortest paths. But the Dijstra algorithm can 

compute simultaneously the shortest path from one node to all other 

nodes. Thus, if 	fa,$) is independent of 	the Dijstra procedure 

However , if the  

termof(20)createsdifferentv..[a,(3], the procedure must be applied 

onceperaESsrldperdemandsubsetwithdistinctv..[a,S]. In total 

number of combinations of 
13 03 to which any 

simultaneously belongs 

shortest path will be 'required per execution of Step 3. 
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From the above it is clear that all impacts of artificial commodity struc-

ture are controlled by the supply subset list A {Ak} with each Ak  c S and 

the demand subset list B =18 1 with each B c D. To compare possibilites, 
Q . . 

define a structure [A,B] to be tighter  than another [A,B] 

(

satisfying (19) for AkeA 	 satisfying (19) for A
k
EA yid  

	
yid 

 and (20) for 8Q  e8 	 and (20) for B
i
a 

That is, [A,B] is tighter than [A,B] if it provides at least as tight a linear 

programming relaxation. We can then obtain some simple dominance results. 

Lemma  2: Dominance of Covering Subsets. Let [A,B] be a commodity structure for 

flows in Ski), i.e. A a list of distinct nonempty subsets of S and B a similar 

list of subsets of D. 

[ Au 	, 8] and [A,Buriill 

than either [Au{X),B] 

Also, defineAcS-uA, and8cD-uB, . Then both 
A 	 B K  

are tighter than [A,8]. Also, [Au{A}, 8u{/7}] is tighter 

. - 
or [A,Bu{B}]. That is, extending the parts of S and D 

covered by A and B tightens the formulation. 

Proof: 	Immediate from the fact that new constraints (19) for A and/or (20) for 

B are added, without deleting any others. 

Lemma 3: Dominance of Partitioning Subsets.  As above let [A,B] be a commodity 

structure for flow in SxD, and pick any AkcA such that I s 	I d„, and any 
asAk 'a 	13eD 

B a with 	d s 	s. Then both [A,B], and [A,B] are tighter than [A,B] 
BeD 	aeS a  

and [A,B] is tighter than [A,B] or [A,B] where 



A = 	 u {At: all Ak c Ak , Ak n A1=4) for ij,u
"  = 
	 (34) 

B=6— 6 1 U {Bi - all Bi  c 6 	BI-  n 0=4) for iij, u 	= 6 1 	(35) 
2, 	k 

That is, replacing such Ak  and 6ft, by a partition of them yields a tighter 

relaxation. 

Proof: We shall show only the case of {AA tighter than [A,6] where 

1 	2 
A = A - {Ak} u 	A.12(1 with Al

k 
 c Ak, 
	k  A

2  c Ak , Ak n Ak= (!l, and Ak  u Ak  

All other cases follow by analogous arguement for B and straightforward 

i induction on the number of {Ak}  or {8 } respectively. 

For our case the only difference in formulations [A,B] and [A,B] is the 

former contain 

versus the latter's 

and 

xii [a,8] 
aeAk  seD 

min 
 {

1 	s, X 
aeAk  a  13e1) 

5  Y 
min 	s , y 1J 

aeAk a  f3eD 

 x..ice,81 
aeAk I3eD 13 

yi ] min { y 2 sa 	
d 

aeAk 	' (3ED 

for all (i,j)cE (36)  

for all (i,j)eE (37)  

for all 	(i,j)eE (38)  

X Ic.J04,al 
aeAk  ' REV 13  

By the hypothesis that 	sa 
5 y d

$' 
the supply sum provides the minimum, 

aeAk 	(30) 

proof reduces to showing 

2 
in denominations of (36) - (38). Thus, noting Ak  and Ak  partition Ak , the 
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X x..[a,P.] 	 X 	x..[(1,] 
13ED 	1J 	aEA

2 
SO) 	1]  

 

max 
s 

aEA
k 

a 

 
2 sa 

aeA
k 

  

1 	
+ 	2 	X x..[a0] 

aEA
k 	3 	aeA

k SED 13  

s 

	

1 	a 	L.2 	a aeAk 	apA 
k 

Assume the Ak  term provides the max on the left in (39). Then if (39) fails 

/ 	/ 2tij ta,fil 	/ 1 	/ 	 + 	2 	/ x. i [a,] 

	

cLEAk  $eD 	 aEA
k 

BED 1- 	aEA
k 
 Sea 1J 

X l sa + 	s 

	

1 sa 	 2 a 

	

acAk 	 aeAk 	aeAk  

Cross multiplying and simplifying leads to 

	

/ 2 s  I{ / 1 	xi* ra ' l 	1 s  ][ 	2 	/ 1" a 'l 
aEA

k 
a  aeAk  BED J 	< aeAk  a  aeAk  13eD 1J3  

Or 

y x..[a,] 	X 	X x..[a,f3] 

	

aeAk  f3eD 13 	 CtEAft 	c't) 

s2 sa 

	

aeA
k 

a 	 aEAk 

k 
Al Since this contradicts the assumption that A  provides the maximum in (39), we 

can conclude (39) holds, and the Lemma follows. 

nit 

(39) 
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Lemma 2 makes it clear that tighter relaxations will result if we con-

sider only commodity structures with (A,B] covering [S,D], i.e. 

u Ak  = S 
A 

uBQ = V  

There could, of course, be a price in terms of dual variables and shortest 

path problems for demanding a cover. However, at most one new supply group 

S - u Ak , and one new demand group V - u BQ , would have to be added to a non- 
A 

covering [A,13]. Thus, only two new sets of dual variables and perhaps 

no new shortest path calculations are implied. For these reasons we enforce 

(40) and (41) in all further discussion. 

We shall also demand commodity structures be nonoverlapping i.e. 

	

Ak  n Ai  = 0 	for all Ak ,AicA, i k 	 (42) 

	

n 13j = 0 
	

for all B
R.
, $ , c$, jfi, 	 (43) 

Lemma 3 provides part of the arguement for the latter restrictions. That lemma 

shows relaxations are usually tightened when a supply set A k  (or a demand set 

) is partitioned. It also follows, for example, that when Al c A2, it is 

preferable to include sets Al and A2-A1 in the commodity structure instead of 

Al and A2 . We see that there is usually a gain in relaxation tightness when 

supply or demand sets do not overlap. In the A
l c A2 example there was not even 

an increase in dual variables. However, replacing an arbitrary Al  and A2 

by (A1-A2 ), (A1  n A2 ), and (A2-A1) would tighten the relaxation only by a net 

increase of one system of dual variables. 

(40)  

(41)  
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The other arguement for nonoverlapping sets as in (42) and (43) relates 

to the number of shortest path problems (33). Since subsets in any list B are 

distinct, (33) cannot be less than ISI • W. Any 8 satisfying (43) achieves 

that lower limit. 

5. Implementation Issues  

Based on the analysis of the previous section, we propose to implement 

the Lagrangean relaxation algorithms of Section 3 via supply group and demand 

group lists A and B that always partition S and D as in (40) - (43). Step 1 

will create initial partitions, and each time disaggregation Step 11 is executed 

2 
either some Ak  c A will be replaced by two nonoverlapping sets A k  and Ak  , or 

1 	1  
some B e B will be replaced by a similarly partitioning pair B B. 

k 

Even within this approach to disaggregation, there remain many issues re-

garding implementation of the algorithm of Section 3. When the algorithm starts, 

a decision must be made with regard to the initial number of subsets in A and 

and the elements of each of these subsets. Then, at every iteration it must be 

decided whether to further the disaggregation by partitioning an Ak  s A or 

8k c 8. When the decision to proceed with the disaggregation is made, a series 

of additional decisions are confronted, including selection of the subset to be 

partitioned, the assignment of its elements to the new subsets, and the 

initialization of the dual variables corresponding to the new subsets. 

5.1 Initial Generation of Artificial Commodities  

At the start of the procedure it could be decided to have one or more 

elements in partitioning lists Aand B. If the decision is to start with 

singletons A ={S}, 8 = {D}, all further partitioning of the original source node 

set and the original destination node set will be performed in the disaggre-

gation Step 11. 
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An alternative is to partially partition S and V from the beginning. In 

general more dual variables and more shortest path problems will result in 

early iteration. However, if the source nodes and the destination nodes are 

initially grouped based on a careful analysis of the problem to be solved, 

the relaxation may be much tighter so that progress on the dual bound in the 

initial stages of the procedure is faster, favorably compensating the additional 

computational burden brought on by handling more artificial commodities from 

the beginning. It is also possible that by starting from an "intelligent" 

list of supply and demand subsets, further disaggregation of these initial 

subsets would be more beneficial because the initial grouping has already con-

sidered concerns too bulky to include each disaggregation step. Finally, an 

initial subdivision of S and 17 obviously implies the number of times the 

disaggregation step will later be invoked by the algorithm is significantly 

reduced. Thus results may be less sensitive to the effectiveness and efficiency 

of Step 11 calculations. 

In light of these potential advantages non-singleton initial disaggregations 

are being tried in computational testing presently underway. In picking initial 

groups the goal is to quickly reach a tight relaxation without producing too 

many elements of the initial bland 13 lists. Noting the form of constraints (19) 

and C20) it appears we would like to segregate supply and demand points with 

large s
a 

and d
8 
 respectively. Otherwise, their presence in the denominator of 

(19) or (20) dilutes the impact of other flows on y id . Similarly, if a node 

is isolated, and thus particularly expensive to service, it seems reasonable 

to employ a strong relaxation in regard to it, i.e. isolate it in a separate 

supply or demand set. 

For these reasons the initial disaggregation Step 1 being tested auto-

matically segregates in one-point sets any supplies and demands with unusually high 

servicing cost or supply/demand. For remaining supply and demand points, 
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constraints (19) and (20) will be strongest if flows tending to have a 

common shortest supply-demand path are grouped. In the algorithms initial 

groups are formed so that ones with the most common path elements are-together. 

Figure 2 shows a single-supply example of these initial disaggregation 

notions. Since there is only one supply,A = S={1}. The initialization rules 

we have outlined would create a starting partition of V = {2,4,5,6,7,8} as 

= {{5}, {6}, {2,4}, {7,8}.. Node 5 is isolated because of its high demand, 

node 6 because arcs entering it are particularly costly. Among the remaining 

nodes, 2 is placed with 4 because all paths to 4 pass through 2,and 7 with 8 

because many paths to 8 transit 7. 

5.2 Selections of the New Partition  

In the dual ascent procedure, used in conjunction with the progressive 

disaggregation procedure described herein, whenever the rate of improvement on 

the bound of the optimal solution to (P a6 fA,M) does not meet the minimum 

standards set beforehand, it signals the need to further disaggregate some of 

the current artificial commodities. This is carried out by partitioning one or 

more supply and/or destination node subsets. As noted above we have chosen to parti-

tion only one subset at any one time. The main reason for such choice is to 

keep the procedure simple while still achieving the goals of the disaggregation. 

The selection of the subset to be partitioned involves ranking the current 

subsets according to some criterion that matches our strategic objective -- 

significiant improvement of the dual bound. As we have explained earlier, the 

disaggregation pattern affects the dual bound only through constraints (19) 

and (20). In the algorithm of Section 3, those constraints are included in the 

(pas jA,131) objective function as terms 
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where s[k] and d[t] are as in (31) and (32). One new element is nonnegative 

weights (f../m[k]) and (f ij /n[t]) used to scale constraints (19) and (20) for 

greater subgradient search efficiency. Generally, m[k] is similar in 

magnitude to s[k], and n[t] to d[tl. 

Since the expressions in (44) and (45) are less than or equal to zero 

in feasible solutions, minimizing their absolute value will tend to improve 

the dual bound quality. Consequently, we select for partition the subset for 

which the corresponding expression (44) or (45) is the most negative. The 

implementation of this selection rule is very simple and it does not involve 

any additional calculations, since the values of expressions (44) and (45) are 

always readily available in the dual ascent procedure where they are used in 

evaluating the objective function. 

Once the subset to be partitioned is identified, it is necessary to deter-

mine how to partition it. This includes deciding how many new subsets to 

create and which elements of the subset being partitioned to assign to the 

new subsets. 



With regard to the composition of the two new subsets, a criterion similar 

to the one used in selecting the subset to be partitioned is applied. For each 

element of the selected subset, its contribution to the expression in (44) for 

a source node subset, or to (45) for a destination node subset, is evaluated. 

Based on these contributions, the elements with the highest contributions 

will be assigned to one of the subsets, and the rest of the elements will be 

assigned to the other. Each of the new subsets is required to have the same 

number of elements, so that all singletons will be reached in the minimum number 

of partitions. 	Again, these decision rules are quite simple to implement 

because (44) and (45) are readily available. 

5.3 Initializing Dual Variables  

Once it has been decided to partition a supply group A k  or demand group 

Be initial values must be chosen for dual varialbes a ii [k] or 8 ij [2,] and for 

scaling coefficients m[k] or n[t]. We shall discuss the case of partitioning a 

demand set B into two new sets B and B for which we seek new duals 

f8ij 
[p] and 8

ij 
 [q]: (i,j)cE} and scaling weights n[p] and n[q]. The case of 

partitioning a supply subset Ak  is completely analogous. 

In the previous section we showed how the goal in selecting B and B 

was one of maximizing the short term improvement in dual bound. We would, of 

course, like initial dual variables to also advance the dual solution. But 

there is another important issue: we desire stability in the dual search so that 

any poorly chosen duals will quickly be corrected by Step 10 of the algorithm. 

To obtain stability, we seek to assure that the x and y primal solutions 

of Steps 5 and 6 of the algorithm (Section 3) will not decrease violently in 

the first iteration after disaggregation. (If group selection was sound the 

dual value should improve). 
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the last because Bp  and 8 partition demands in 8 . Also, (49)-(52) yield 

5.. 
[P] 	 (d[p] ) 	8..[z] 

n[p]d[p] 	n[i]d[p] kcl[k] 	n[2]d[Z] 

and 

5..[4:1] 	(3..[9,] 	d[q] 	d..fil 

n[q]d[q] 	n[Z]d[q] (d[2,]) 	n[k]d[2] 

(49) 

(50)  

(51)  

(52)  

as required to preserve the v
ij

[a,8] of (48). 



6. Experimentation  

Previous sections outlined the development of a strategy for implementing 

progressive disaggregation in the context of a Lagrangean relaxation algorithm 

for tight formulations of fixed charge network flow problems. 	Justifications 

provided for details of the algorithm do consider problem properties, but their 

true effectiveness can only be measured empirically. Thus, a series of experiments 

involving variants of these strategic decisions is presently underway. 
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ABSTRACT 

Recent developments have shown that many uncapacitated multi-commodity 

fixed charge network flow problems admit very tight linear programming re-

laxations in the sense that continuous solutions closely approximate discrete 

ones. In this paper we show that on series-parallel graphs those linear 

programming relaxations are perfect, i.e. they yield discrete optima. We 

also illustrate how a number of known combinatorial optimization problems 

can be formulated in this fixed charge format. The implication is that all 

the indicated fixed charge problems, including the specified combinatorial 

cases, are solvable in polynomial time via linear programming. 



1. Introduction  

The Uncapacitated p-Commodity Fixed Charge Network Flow Problem can 

be stated 

min kL, vk xk + fx
o 

" 
s.t. 	E x

k 
 = r

k 
	 for k=1,2,...,p 

k 
x > 0 	 for k=1,2,...,p 

0 	V  k 

	

Px. >kE1 x. 	for j=1,2,...,n j 	= 	j 

0 

	

xj  = 0 or 1 	for j=1,2,...,n 

where E is the vertex-arc incidence matrix of an n-arc directed network, 

k 
x is the flow vector of commodity k in the network, v is the vector of 

variable costs per unit for flow x
k 
 , r is a requirements vector on commodity 

k, f. is a fixed cost incurred when at least one commodity uses arc j, x0 

is a vector of 0-1 variables switching "on" and "off" the fixed charges, P 

is a large constant, and 0 and 1 represent appropriate vectors or matrices 

of 0's and l's respectively. We assume throughout that f 	0 and that the 

sum of -v. k  around any directed cycle in the commodity k network is nonnegative. 

Under these assumptions, x. = 1, and f. is paid, exactly when constraint 

(1-4) allows flow. 

Unlike the usual multi-commodity flow problem (see for example Kennington 

and Helgason (1980)) commodities do not compete for an arc capacity. Instead, 

they interact through the shared fixed installation/construction/setup cost, 

f.. 



We term the problem "single-source" because we shall assume that each 

commodity is supplied at a single vertex, although this vertex may vary with 

commodity. This assumption implies that each r
lc 
 is a vector with components 

summing to zero which has a unique positive component at the supply point, 

negative entries at various demand points, and zero entries where the 

commodity is only transhipped. Of course, any uncapacitated commodity flow 

problem can be placed in single source form by adding an "super source" if 

required. However, this transformation would change the form of the graph--the 

issue to which we will shortly direct our interest. 

Although formulation (1-1) - (1-5) is a correct mixed-integer statement 

of the problem, previous work (see Rardin and Chou (1979)) has shown 

that its linear programming relaxation (replacing (1-5) by 0 5 x
0 
 5 1) often 

gives a very poor approximation to an optimal solution. Much better results 

are obtained if each commodity is subdivided into separate commodities for 

each demand point. One can then rescale flows, requirements, and variable 

costs so that all demands are unity. The result has the form 

q  k k 	0 
min 

k  E 1 
 v x + fx 

= 
(1-6) 

(MCFC) 	s.t. Exk  = rk 

x0  > x
k 

0 

0 . 
x integer 

for k=1,2,...,q 

for k=1,2,...,q 

(1-7) 

(1-8) 

(1-9) 

with each r
k 
having exactly one +1 and one -1, and q the revised number 

of commodites. 

In this paper we investigate cases for which the linear programming 

relaxation of (MCFC) is "perfect", i.e. cases for which the integrality 

requirement (1-9) is redundant. In Section 2 we use results in Truemper 

(1977) and Truemper and Soun (1979) to show that if the graph associated 
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with matrix E has a certain series-parallel property, (1-6) through (1-8) 

will always solve in integers. Thus, since linear programming problems can 

be solved in polynomially-bounded time (Khachian (1979)), it follows that 

all such (MCFC) are polynomially solvable. Section 3 shows how several 

familiar combinatorial optimization problems can be formulated as (MCFC), in 

which case, they too are polynomially solvable on the indicated graphs. 

2. Unimodular Cases  

A matrix M can be termed unimodular if the determinant of every maximal 

nonsingular square submatrix M (denoted deb (M)) is f 1. Unimodularity is 

a weaker property than total unimodularity for which all square submatrices 

R have deb (Si) = 0, + 1. Still, it is well known (see Vienott and Dantzig 

(1968)) that a linear constraint system 

Ax = b 

x 0 

has integer extreme points if A is unimodular, and A and b are integer; basic 

solutions computed by Cramer's rule will have unit denominators. 

Suppose E is the vertex-arc incidence matrix of a directed graph, 

T. Thus, if arc a k  = (i,j) belongs to T, column k of E has a +1 in row i 

and a -1 in row j. Such E are well known to be totally unimodular. Truemper 

(1977) investigated conditions under which constraints Ex = b may be supplimented 

with additional linear constraints Dx + s = d while keeping the corresponding 

constraint matrix at least unimodular. 

A subgraph of a graph, say T, is said to be Euler if every vertex of T is 

incident to an even number of arcs of T. A vector x is a circulation vector  

onasubgraphiofTifEX=Oandx.=0 whenever the corresponding edge j 

of T does not belong to T. In terms of these definitions, Truemper's main result 

can be stated as follows: 
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Lemma 1. Unimodularity of Networks with Side Constraints (Truemper (1977)).  

Let E be the vertex-arc incidence matrix of a directed graph T and D a matrix 

of integers. Then the matrix 

E 0 

D I 

is unimodular if and only if 

(i) There exists a spanning forest of T such that for every cycle C
k 

formed by adding arc k to the forest there is a nonzero circulation 

vector x
k 
with 0, ± 1 components such that Dx

k 
is a vector with 

0, ± 1 components; and 

(ii) For every Euler subgraph T of T with nonempty arc set, there is 

- 
arlonzerocirculationxonTsuchthatcomponents020.=0 whenever 

row sum (D1), is even. 

Our interest here is in the unimodularity of the constraint system for problem 

(MCFC). As stated in (1-7) and (1-8), the vector x °  is not subject to balance 

of flow restrictions, 

Ex0  = r 0 	
(2-1) 

However, it will be convenient to add such constraints for the moment. Now 

when slacks, s
k
, are also added in the constraints (1-8), the matrix of 

interest becomes 



I 

I 

•I 

x0 
	

x
1 	

x
2 	

xq 	s
1 s 2 	

sq 
E 

E 

E 

E 

M = 

-I 	 I 

The graph, T, of Lemma 1 is simply q+1 copies of the directed graph G over which 

(MCFC) is defined. 

A connected, undirected  graph U is said to be series-parallel if it 

can be reduced to a tree by sequential application of the following operations: 

series reduction:  Replace a degree-2 vertex j and incident edges 

(i,j) and (j,k) by a single edge (i,k). 

parallel reduction:  Eliminate one of any two parallel edges connecting 

the same pair of vertices. 

Observe that the operation of these equations is well-defined (i.e. unambiguous) 

An equivalent definition (see Duff in (1965)) is that U is series-parallel if and 

only if it possesses no subgraph that can be reduced to K
4 

(the complete graph on 

4 vertices) by using only series reduction. Clearly, the latter assures all series-

parallel graphs are planar, but planar graphs need not be series parallel. Some 

useful examples are given in Figure 1. 
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(a) Some Series-Parallel Graphs 

(b) Some Planar, but Non-Series-Parallel Graphs 

Figure 1: Examples of Series-Parallel and Non-Series-Parallel Graph 



With these definitions we can now state our main result. 

Theorem 2: Unimodularity of Series Parallel (MCFC) with x
0 
 Flow Balance:  

Let E be the vertex-arc incidence matrix of a directed graph G. Then the 

undirected graph obtained by ignoring direction in G is series-parallel if 

and only if every matrix of the above form M is unimodular. 

Proof: We shall apply Lemma 1. The graph T of that lemma is the union of 

(q+1) disjoint copies of the G for this theorem. Thus, any spanning forest 

will include a spanning forest from each of the (q+1) components. Also, cycles 

of Lemma 1 part (i) will belong entirely to one component. Since the lower, D-

section of matrix M consists entirely of zero and identity sub-matrices 

corresponding to the components,it follows that any 0, +1, -1 circulation on a 

cycle will yield a 0, +1, -1 total below. This establishes condition (i) of 

Lemma 1. 

To show the series-parallel property is necessary to condition (ii) of 

the lemma, consider the K4 
example of Figure 2, and pick the 4-edge cycles 

4-1-3-2-4 and 4-1-2-3-4 as Euler Subgraphs in the x
o 

and x
1 
 commodities res-

pectively. The two cycles share arcs (4,1) and (2,3), and condition (ii) will 

be satisfied only if we can find a nonzero circulation in the two commodities 

that agrees on the two arcs. However, it is easy to check that any circu- 

lation (i.e. weighting which sums to zero at each vertex) must have x
0 
 weights 

on (4,1) and (2,3) with opposite signs, while such a circulation for the 

x
1 
subgraph must have matching weights on the two arcs. 

To prove the series-parallel property is sufficient for property 

(ii) of Lemma 1, we proceed inductively by reversing the defining reductions 

of series-parallel graphs. Property (ii) holds trivially for trees since 

trees have no Euler subgraphs with nonempty edge sets. By definition of 

series-parallel graphs, more complex cases can be reduced to trees by a 

sequence of series and parallel reductions. Thus, by reversing the 
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demand = 1 

demand = 1 	 demand = 1 

Figure 2: Example Failing Unimodularity When Not Series-Parallel 



sequence of such reductions, any series-parallel graph can be reconstructed 

from a tree. We shall show that if a given graph G satisfies property (ii), 

any graph, G, obtained from E by reversing either a series or a parallel reduction 

Also satisfies the property. Thus, inductively, 	the property will be seen 

to hold for all series-parallel graphs. 

Assume that property (ii) holds for a present graph a and let G be the 
next graph in this reverse reduction order. Since the graph, T, of Lemma 1, 

property (ii) corresponding to G is the union of (q+1) identical copies of G, 

any Euler subgraph, H, of T will decompose into Euler subgraphs H
0
, H

1 

of the components. The lower D-section of matrix, M, can have even row total 

(D1). only if some arc, e, belongs to both H
0 
 and at least one of the 

{Hi : i=1,2,...,q}. 

The case of reversing a series reduction to move from a to G is straight-
forward. Suppose arc e = (i,k) of G is to be restored to the arc sequence 

{e,f} of G joined at new degree-2 vertex j. For i=0,1,...,q define Hi  

as the graph obtained from H i  by substituting e for fe,f}. Clearly each such 

H

- 1 

 is an Euler subgraph of G. Thus, by induction there is a nonzero circulation 

fx1: 
i=0,1,...,q} on the Ri  that cancels as required in property (ii). Let 

x
E- 
 be the weight in that circulation for edge e. We need only duplicate it on 

both of e and f to have a circulation that cancels for the fH il in G. Specifically, 

i 
if both e and f have the same direction as e we choose x i 4  xf x- for all i. 

If both have the opposite orientation to e, we make x
e
i  
 4 

 x
f 

-x- . 	Similarly, 

i 
if e and f have opposite directions, we select x

e
_
e 

x
' 
x
f 	

xe  or x
f 

X
i' 

1 	- i x
e 
4 xe  . 

Now consider reversing a parallel reduction, i.e. adding an arc, e, in G 

that parallels another , e, already in G. We shall assume e and e have the 

same direction because one needs only to reverse the sign of the circulation 

value for e in the opposed direction case. 
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As before let {Hi : i=0,1,...,q) be (not all empty) subgraphs of the (q+1) 

copies of G. If H
o has empty arc set, there is no cancellation to prove. If 

0 
H has nonempty arc set, we consider three cases: 

0 	 0 	0 
Case 1: H includes only e and e.  Create a circulation in H by x

e 
+1, 

0 	 0 x 4  -1. For any other H
i 
containing both e and e, cancel this H circulation 

by duplicating it. Any Eulerian H i  that contains e or e, but not both, 

necessarily includes a cycle C i including e (respectively e). Choose x
e 

+1 

(respectively xe 4  -1) and then pick ±1 orientation for other arcs of C i  to 

form a circulation. The resulting x i  cancels as required on e (respectively 

Case 2: H
0 
 includes e and e and other edges of G.  For i=0,1,...q, con-

struct Euler subgraphs of 6 as follows: 

H
i 

less e and e 	 if Hi  contains both a and e 

H1 less edges in C i if H1 contains a or e, but 

H1 
 

not both 

otherwise, 

Here, as above, C 1 is any cycle of H i containing e (or e). 

The H systems is Euler because each construction removed a cycle from an Euler 
0 

subgraph. Moreover, at least H is nonempty because H
0 
 had more than a and e. 

Thus, the Ei  are a system of Euler subgraphs of E to which property (ii) inductively 

applies. Let fRi l be the implied nonzero circulation. Choosing xt
i  
 4 

 x
t 

for all i and 

t gives the required cancelling circulation for the H
i 
of G. Zero xe 

and xi have 
e 

been chosen for all i, and thus, cancellation as in property (ii) is achieved. 

Still, since the x are not all zero, neither are the x
i

. 

H 



Case 3: H
0 
 includes at most one of e and e.  For i=0,1,...,q con-

struct Euler subgraphs of G as follows: 

H1 less e and e 	if Hi  contains both e and e 

H
i 

less e plus e 	if H1 contains, e but not e 

H
i 

otherwise. 

As above the H1  are Euler subgraphs because we have only substituted parallel 

arcs or deleted cycles. Also, the H system is not all empty because the edges 

0 
of H are the same as those in H 0 . Thus, the H system is again one to which 

property (ii) inductively applies in G. Let 6c il be the implied circulation 

and pick 

xe 	if t=e and H1  contains e but not e 

0 	if t=e and Hi  contains e but not e 

0 
)c 	if H1  contains both e and e, t=e 

and H
0 
 contains e or t=e and H0  

contains e 

-0 
if H

i 
contains both e and e, t=e 

e 

and H
0 
 contains a or t=e and H0  

contains e 

x
t 	

otherwise 

The effect is to shift e circulation to e when e replaced e in constructing 

the H system. 	That revised circulation is nonzero because the x one was. 

Also, the circulation must cancel in G because it cancelled on e in G. If 

the implied circulation was nonzero on the at most one of e and a in H0 , we 

have also balanced it with a circulation on the fe, el cycle in each H
i 
con- 

H 

x
i 
t 

r 
t taining that cycle. We conclude that the new circulation X is the one re- 



Y_ 

quired for property (ii). 

Since Cases1-3 are exhaustive, the proof is complete. 

Theorem 2 shows that constraint matrices, M, for versions of (MCFC) also 

requiring balance of flow in the x
0 
 variables are unimodular if the associ -,  (2-1) 

ated graph is series-parallel. To see that the result can be extended to the 

ordinary (MCFC) formulation (1-6) to (1-9) consider the replacing (2 -1) by 

Ex0 - Ey = 0 (2-2) 

	

y 0 	 K2-3) 

Here new zero-cost variables y negate the effect of the x
0  so that a zero 

balance of flow can be achieved at no cost for any choice of x
0

. 

The corresponding contraint matrix for this new form is 

x1 	 sq  

	

x
2 
• • • x 	s

l 
s 
 2 

E 

E 

E 

x
0 

E 

N 

I 

I 

r 	 r 
I 

I 



The following corollary shows N is unimodular whenever M is. 

Theorem 3: Unimodularity of Series-Parallel (MCFC) Without x
0 
 Flow Balance. 

Let E be the vertex-arc incidence matrix of a directed graph G. Then the 

undirected graph obtained by ignoring direction in G is series parallel if and 

only if every matrix of the above form N is unimodular. 

Proof: The only difference from Theorem 2 is that the x
0 
 /y component of 

Truemper's graph T no longer matches that of the other x
k
. However, it is 

series-parallel whenever G is because it merely duplicates each arc with 

one oriented in the opposite direction. 

To prove the present theorem we can extend the strategy used for 

Theorem 2. Necessity is exactly as before. For sufficiency, suppose we re-

build G from a tree in step-by-step order without restoring any y-arcs. All 

arguements of the proof of Theorem 2 apply. After G is constructed, we add 

the y-arc system by reversing parallel reductions. Since the new arcs have 

no coefficients in the lower, D-system of N,no new conflicts of Euler subgraphs 

will need to be resolved. 

SR 

Theorems 2 and 3 are both necessary and sufficient because 

the conditions of Lemma 1 are. However, it is conceivable that all non-

unimodular bases are dominated or infeasible for (MCFC). The example of 

Figure 2 shows that if there are at least q=3 commodities,a minimal counter-

example is possible. For the indicated cost, the unique optimal solution 

to the linear programming relaxation of (MCFC) is to make all x
0 
 variables -X2- , 

and to send i unit of flow in each demand commodity direct from vertex 4 and the 

other 1/2 via the demand point's predecessor in the circuit 1-2-3-1. This 

solution costs 9/2, while every integer optimum costs 5. 

A final note should be added regarding direction. In the proof of our 

results we have been concerned mainly with the undirected version of our 
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series-parallel graphs, G. Our only requirement is that whatever orientation 

is given to an edge, it have the same orientation in all commodities. 

It is reasonable to ask whether one could mix orientations with, for 

example, some commodities having edge 9 directed (i,j) and others having 

it directed (j,i). Figure 3 gives a trivial case for which such an extension 

fails. In order to achieve the cancellation on Euler subgraphs required for 

Lemma 1 condition (ii), circulations must match on the two k arcs as should 

those on the two 2 arcs. Such circulations cannot both sum to zero at the 

two vertices. 

3. Implications for Certain Combinatorial Problems  

Results of the previous section show that any (MCFC) on a series -parallel 

graph can be solved by linear programming. That is, such (MCFC) can be solved 

in polynomial time. It follows that any problem that can be formulated as 

(MCFC) (or (MCFC) with flow balance in x
0 
 ) is polynomially solvable on series-

parallel graphs. 

For some combinatorial problems fitting naturally in the fixed charge 

format the fact that series-parallel cases are polynomially solvable is already 

known, although not in those general terms. For example, the uncapacitated 

warehouse location problem (choosing which of several possible "warehouses" to 

build as sources in a bipartite graph) is unimodular if there are at most 2 sources 

or 2 sinks (see Cho, Johnson, Padberg and Rao (1981)). Also, many of the one-

commodity forms of Erickson (1978) are series-parallel without the "supersink." 

However, the opportunity for multi-commodities -- whether natural or 

artificially induced -- raises many new possibilities. We have outlined below 

how some typical problems can be placed in (MCFC) form. In each case we believe 

the result that the problem is polynomially solvable for directed series-parallel 

graphs is new, although other special cases have been polynomially solved. 
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(Readers are referred to Garey and Johnson (1979) for details on particular 

problem's status). Naturally since all our formulations are weighted, they 

implicitly include cardinality analogs (i.e. equal weights). Also note that 

the formulations imply (MCFC) on general graphs is NP-Hard because each problem 

listed is known to be NP-Hard in the worst case. 

In all the definitions to follow we assume G is a directed graph with 

arc set A and vertex set V. If the given problem is defined on an undirected 

graph with edge set E, we create a directed case by putting (i,j) and (j,i) 

in A whenever (i,j) e E. Weights on the two arcs match that on the edge. 

Steiner Tree Problem (Nonnegative Edge/Arc Weights).  

Problem is to find a minimum total weight (directed or undirected) tree spanning 

a subset V of V. The problem is easily solved when V = V (see Lawler (1976)) 

but generally difficult if V V. To formulate the case where weights are 

nonnegative as (MCFC), we merely pick some vertex t E V to be the root of the 

tree (for directed cases all the IVIchoices of t might have to be tried in turn). 

All vertices in V-{t) are then treated as demand points, each with its own 

commodity. Weights on edges are the fixed costs, f, and all variable costs, 

v
k
, are zero. The optimal Steiner tree will consist of those arcs t for which 

0 
= 1 in the (MCFC) optimum. 

Minimum Equivalent Graph Problem (Nonnegative Edge/Arc Weights) The Mini-

mum Equivalent Graph Problem is to find a minimun total weight system of edges 

or arcs that includes a directed path between all ordered pairs of vertices 

(t,u) E V x V. Clearly, a minimum spanning tree provides an optimum for the 

undirected case, but the directed case is NP-Hard (on general graphs). To 

formulate the nonnegative weight directed problem as (MCFC) we need only create 

one commodity for each pair (t,u) E V x V. Fixed costs, f, are set to the arc 

weights and variable costs, v
k , are zero. An optimal solution uses all arcs 

Q for which x
k 
= 1 in the (MCFC) optimum. 

-16- 



Shortest Total Path Spanning Tree (Nonnegative Edge Weights).  The Shortest 

Total Path Spanning Tree Problem seeks a spanning tree of G for which the sum 

of the lengths of paths between all paris of vertices is minimal. The problem 

makes sense only for undirected G. For such G with nonnegative edge weights, 

the problem can be formed as (MCFC). We adopt virtually the same formulation 

as the Minimal Equivalent Graph Problem with commodities for each ordered vertex 

pair. However, this time variable costs, v
k
, are set equal to edge weights. 

Thus, the sum of the variable costs will equal total path length. A spanning 

tree is the minimal cardinality system connecting all vertices. Thus, we can 

force the paths to all travel through a tree by making all fixed costs, f i , 

equal to a very large constant, p. Every tree solution will have 2 (IV! - 1) - 

copies of p (bath forward and reverse arcs will be needed along the tree). Thus, 

variable costs will determine optimality. An optimal tree will be formed by choosing 

edges corresponding to arcs 2, with x
0 
 = 1 in the (MCFC) optimum. 

Minimum Spanning Euler Subgraph (Directed Graphs with Nonnegative Edge Weights). 

A subgraph G of G with vertex and arc sets V and A is Euler if the numbkrlof arcs in 

A directed into each vertex in V equals the number directed out. The subgraph 

is spanning if every vertex of V is joined by some arc of A. The Minimum Spanning 

Euler Subgraph Problem seeks the least total weight such subgraph. The nonnegative 

cost case of this problem is reduced to an (MCFC)-like form in the same general 

way as the Minimum Equivalent Graph Problem. Commodities are formed for each 

ordered vertex pair; weights become fixed charges. 

The new feature here is that the arcs k with x
0 
 = 1 must form an Euler 

subgraph. To enforce that requirement we add two new constraint systems: 

	

Ex0  = 0 
	

(3-1) 

	

x
0 

5 1 
	

(3-2) 

System (3-1) assures equal in and out degree, and (3-2) prevents duplicate 

-17- 



use of arcs. Recall that Theorem 2 proved (MCFC) with (3-1) is unimodular. 

Simple integer upper bounds such as (3-2) cannot change the unimodularity re-

sult. The determinant of every basis of the problem including (3-2) is decided 

by the determinant of an essential basis from matrix M of Theorem 2. (See, for 

example, Bazaraa and Jarvis (1977) for details). 

Travelling Salesman Problem.  The famous Travelling Salesman Problem seeks 

a minimun total length circuit visiting each t c V exactly once. An optimal 

solution is a spanning Euler subgraph with one "in" and one "out" arc at each 

vertex. Thus, it is a minimum spanning Euler subgraph among those of minimum 

cardinality. To make the above formulation compute a travelling salesman tour, 

we need only add a large constant,p, to each fixed charge. Every feasible tour 

will incur IVI copies of this constant, so that optimality is determined by 

total weight. Note that this constant can also assure all costs are nonnegative. 
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Thesis Abstract 



Thesis summary for: "Progressive Disaggregation for Fixed Charge Network 
Flow Problems", by Oscar Adaniya 

Advisor: Dr. R. L. Rardin 

SUMMARY 

Fixed charge network flow problems model network design and 

location settings by allowing both fixed and variable charges for 

arc flow. Recent research has shown that very close approximations 

to mixed-integer solutions for each problem can be obtained from 

massive linear programs wherein flows are artificially disaggregated 

into separate components for each origin-destination pair. This 

paper develops the strategy of a progressive disaggregation algorithm 

employing the latter linear programming relaxation - However, flows 

are initially undisaggregated. As computation proceeds, supply and 

demand subsets are further and further partitioned to tighten the 

relaxation as required without incurring the computational burden 

of a complete disaggregation into supply-demand pairs. 
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TECHNICAL SUMMARY 

A vast number of important optimization problems in areas such as 

distribution, communication, transportation and facilities location can 

be viewed as flow problems on graphs or networks, where flow is permitted 

in certain arcs/edges, (i,j) only when a fixed charge,f ij , is paid. 

Flow originates at known supply points in the graphs, and distributes to 

demand points of known requirements while satisfying some balance of flow 

considerations at intermediate transshipment points. Flow may be in a 

single or in multiple commodities, and flow capacities may or may not be 

present. 

When the graph is directed, such fixed charge network flow  problems  

may be formulated as 

min F P  xP  7 7 	v.„ + fy 
Pc P(ipn 	i j  cE 	 (i,J)cE " ij 

(1) 

s.t. 	7 	xis  = - e 	for all peP, SEEP 	(2) 
(i,P)EE 

7 	xP  < sP 	for all pep, neSP 	(3) aj 	a 
(a,neE 

(NP) 

7 	xP 

• 

- 	E 	xP 	 for all peP, ter 	(4) 
( 2, ,i)eE 	

• 	

(1,0eE it = 0 

( 7 xP  )/u 	< 	 for all (k,j)6E 	(5 ) 

	

pep  ij 	ij 	Yij 



p > o xij  

1> y . > 0 

integer Yij  

for all (i,j)eE, peP (6) 

for all (i,j)eE 	(7 ) 

for all (i,j)eE 	(8 ) 

Here C is the arc set of the specified structure; P is the set of 

commodities; xP
j 
 is the flow of commodity p from i to j; 	and DP  and TP 

 i 

are the supply point, demand point, and transshipment point subsets for 

commodity p, respectively; sP  is the commodity p supply at point a; dP  is 
a 0 

the commodity p demand at point 0; and u
13 
 is a flow capacity for arc 

(i,j). Costs in (1) include a variable (per unit flow) cost vij and a 

fixed charge f
ij 

"switched on" by the 0-1 variable y
ij 

whenever any 

xPj  > O. We assume throughout that all f ij 
and v

ij 
are nonnegative 

i 

although the latter requirement can be relaxed in some cases. 

We term problems of the form (NP) uncapacitated if the optimal 

solution set would not change when all s lc: in (2) and uij  in (5) were 

replaced by a large constant, M (say E r 	do ). The problems are 

pePfleDP 

weakly capacitated if only the u ij  may be replaced by such an M, and 

capacitated if both the s P  and the u
ij 

restrict solutions. a 

One particularly straightforward example of a problem which takes on 

form (NP) is the classic warehouse location problem. However, numerous 

other well-known discrete optiization problems can be easily, although 

sometimes less obviously, cast in the (NP) form. Among these is the 



Steiner tree problem, the minimum weight equivalent subgraph problem, and 

the traveing salesman problem. 

Unfortunately, most interesting models of the (NP) form are 

difficult integer and combinatorial programming problems. In fact, many 

can be shown to belong to the notorious class NP-Complete. Thus, almost 

all research on practical algorithms for such problems centers on 

either enumerative, branch-and-bound schemes or approximate procedures 

yielding feasible, but not provably optimal solutions. Such techniques 

rely, in turn, on relaxations of the original problem, i.e., problems 

with feasible solution sets including that of (NP) and cost or objective 

functions underestimating (1). Such relaxations may, of course, be much 

easier to solve than the original problem. Accordingly, if they are 

sufficiently tight (i.e., they closely approximate the original problem), 

relaxations can provide useful lower bounds for branch-and-bound 

algorithms and serve as the core of heuristic procedures for constructing 

good feasible solutions to (NP). 

The majority of solution procedures draw on the linear programming 

relaxations obtained when the integrality requirements (8) are discarded. 

Substantial research has been done, accordingly, relative to the 

formulation of tigher relaxations. Rardin and Choe (1979) pursued this 

line of investigation. There, flows x P •  for each true commodity peP are ij 

disaggregated into componentsx ij  [a,8] distinguished by the suply point a 

at which the flow originated and the demand point p to which it is 

destined. Viewing each a,P,p combination as a separate comodity yields 

the formulation: 
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xP 
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 for all (i,j)EE 
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Of course, the linear programming relaxation of (MC) need not yield an 

(MC) optimum, but preliminary testing in Rardin and Choe (1979) indicated 

the relaxed formulation could provide a very tight relaxation for at 

least the uncapacitated and weakly capacitated cases. 

Now, constraints (18) of the tight (MC) formulation requires y id  to 

equal or exceed the fraction of any supply spa 	 0 
or demand dP  flowing as 

xP
j 
 ra,81. However, the formulation can be sharpened if (18) is replaced 

i 

by 

E 	xP
j 
 [a,81 

i 
BEDP 	< y 	for all (i,j)cE, 

iJ min sa , T d B  pe P, aESP  
8EDP 

aESP  
c  Y4 	for all (i,j)EE 	(20) 

min ( 7 	sPa'  d ip} 
4 

8 	 pep, BE OP 
aESP  

These new constraints treat supplies and demands separately, summing 

flows in one of the two dimensions. 

Denote by (MC') the version of formulation (MC) using (19) and (20) 

in place of (18). It is easy to show that the (MC') formulation 

dominates (MC) in the sense that every solution feasible in (MC') is 

feasible for (MC). However, (MC') is also more compact. For every 

commodity p there is one constraint (18) for each (a,S) c SP, DP , i .e.,  

(19) 

xP
j 
 [a '  01 i 

P 	P 
IS l'IP 1 in all. The stronger (MC') formulation is achieved with 'S P ! + 



101 constraints (19) and (20). 

Of course, linear relaxation of tight formulations (MC) and (MC') 

are enormous linear programs requiring specially structured algorithms. 

For a case with 5 commodities, 350 arcs, 10 supplies, 50 demands and 130 

transshipment vertices, (MC') has over 425 thousand main constraints and 

875 thousand variables. 

The early (Rardin and Choe (1979)) paper detailed a Lagrangean 

relaxation strategy for the (MC') linear relaxation of the uncapacitated 

and weakly capacitated cases. For those cases, constraints (14) may be 

deleted. Dualization of constraints (19) and (20) with Lagrange 

multipliers leaves a separate flow problem for each a,S,p combination. 

The latter can be solved by a series of shortest path calculations 

followed by a transportation problem. Search over dual multipliers for 

constraints (19) and (20) leads to a relaxation solution. 

The formulation (NP) and (MC) (or (MC')) may be viewed as endpoints 

or a disaggregation continuum. Form (NP) treats all flows of commodity p 

as a single unit; (MC') disaggregates flows for each p into separate 

artificial commodities for origin—destination pairs. Clearly, there are 

intermediate possibilities wherein commodity p flows are treated in 

groupings, say (A:,13:) with A: c Sr', Bli)  c DP . 

The concept of progressive disaggregation suggested in the funded 

proposal sought to exploit these intermediate possibilities in order to 

speed computation. Flows might begin in fully aggregated form (NP). As 

computation proceeds, and dual variables are better estimated, smaller 

supply and demand groups could be attempted in order to improve the 

quality of the relaxation. 



A major part of the present resssearch effort has been devoted to 

developing such a progressive approach for implementing the Lagrangean 

dual algorithm on uncapacitated and weakly capacitated cases. Various 

issues are analyzed among which are 

• Which are the most desirable forms of supply group-demand group 

commodizations? 

• How can an initial list of artificial commodities be generated? 

• How should supply or demand groups be selected for partition as 

disaggregation proceeds? 

• When should additional disaggregation be involved? 

• How can dual variables for new commodity groups be effectively 

initialized from ones for groups they replace? 

Tables 1 and 2 summarize computational results. Twelve different 

uncapacitated and weakly capacitated fixed charge network flow problems 

were randomly generated with all combinations of three types of 

capacitization (uncapacitated, weakly capacitated with relatively loose 

capacity, weakly capacitated with tight capacity), two problem sizes (175 

and 350 arcs), and two levels of fixed charge contribution to cost (30- 

40% versus 60-70%). All problems are sparse. The problems were solved 

with 6 algorithmic strategies (only 3 are applicable to uncapacitated 

cases) involving all combinations of initial supply disaggregation (no 

initial disaggregation, full initial disaggregation) and initial 

disaggregation (no initial disaggregation, selected initial group 

formulation, full initial disaggregation) alternatives. Since the goal 

was comparison of strategies, all cases were terminated when a primal 

solution and a lower bound were known to differ by at most 25%. 



Table 1. Medium Problem Results  
(175 arcs, 5 supplies, 25 demands, 75 nodes) 

Initial 
Supply 

Disaggr. 

Initial 
Demand 
Disaggr. 

Uncapacitated 
Weakly 

Capacitated (Loose) 
Weakly 

Capacitated (Tight) 
Moderate 

Fixed 
High 

Fixed 
Moderate 
Fixed 

High 
Fixed 

Moderate 
Fixed 

High 
Fixed 

None 3 3 7 7 7 8 

None Selected 5 8 13 11 18 12 

Full 7 12 32 34 32 29 

None 19 6 9 11 

Full Selected 12 12 13 19 

Full 22 27 24 18 

Table 2. Large Problem Results
1
—L- 

2/ 

(350 arcs, 10 supplies, 50 demands, 150 nodes) 

Initial 
Supply 

Disaggr. 

Initial 
Demand 
Disaggr. 

Uncapacitated 
Weakly 

Capacitated (Loose) 
Weakly 

Capacitated (Tight) 
Moderate 

Fixed 
High 
Fixed 

Moderate 	High 
Fixed 	Fixed 

Moderate 
Fixed 

High 
Fixed 

None 3 8 60 64 60 109 

None Selected 8 27 >180 >180 122 >180 

Full 14 40 >180 >180 >180 >180 

None >180 >180 174 >180 

Full Selected 93 >180 179 >180 

Full >180 >180 >180 >180 

All times in Univac 1100/81 minutes. Typically 8-10% was CPU with the 
residual being disk operations. 

?/Times reflect solution to provable 25% optimality. 



Results in the tables clearly demonstrate the merit of the 

progressive disaggregation approach. All progressive strategies produced 

better results than the "brute force" approach which fully disaggregates 

supplies and/or demands before computation begins. The best progressive 

strategy--starting with no disaggregation of supplies or demands--was 2 

to 4 times more efficient than the complete disaggregation approach and 

on some alrge problems, the only method to yield results within the time 

limit. 

Of course we would like to have a relaxation (say (MC')) which under 

fairly mild restrictions was perfect in the sense that its solution was 

integer-optimal. However, even if such a development was in hand,appeal 

to the polynomial solvability of linear programs vis-a-vis the ellipsoid 

algorithm would not, presently, have great practical value. Rather more 

direct, combinatorial approaches would be sought. 

Accordingly, this research also examines the development of such 

efficient procedures for problems defined on a restricted class of graphs 

known as series-parallel. Such research has appeared elsewhere in 

various forms. Notable in this regard is the work reported in 

Takamizawa, Nishizeki and Saito (1982). 

A graph is series-parallel if and only if it contains no subgraph 

homeomorphic from K
4 

(the complete graph on four vertices). Other 

specifications of series-parallel also exist, their equivalence being 

shown in the unifying paper by Rardin, Parker and Wagner (1982). 

Polynomial-time algorithms have been given for weighted versions of 

the Steiner tree problem and the minimum equivalent subgraph problem. 

these procedures are detailed in other aattachments. Also included is 

the problem of deciding hamiltonicity in series-parallel graphs. Here, 



we prove that such graphs have at most one such cycle and we characterize 

those that are hamiltonian. 

Finally, the notion of nonexact analysis is considered relative to 

non-series-parallel structures. Our interest is confined to those 

procedures which are not improvable by alternative, polynomial schemes in 

terms of their performance guarantees. 

Our principle finding along these lines is somewhat negative. For 

the so-called bottleneck traveling salesman problem (BTSP), we were able 

to produce a nonexact procedure having worse-case bound of two which is 

realizable and not improvable by any polynomial alternative unless and 

are equivalent. The stated algorithm is based on the notion of 

squares of biconnected graphs. Such graphs (squares) are known to be 

hamiltonian. In the attachments, we give an algorithm for finding such a 

cycle as well as the nonexact analysis for the BTSP. 
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ABSTRACT 

Series-parallel graphs form an important subset of planar graphs 

defined in terms of arrangements of edges and subgraphs in a manner 

corresponding to series and parallel connection in electrical networks. 

In this paper we review a host of alternative definitions of such graphs 

and show that if properly specified, all definitions are equivalent. We 

also exhibit a linear-time algorithm for checking such properties. 



1. Introduction 

Series-parallel graphs are an important subset of planar graphs de-

fined in terms of arrangements of edges orsubgraphs in a fashion corres-

ponding to the intuitive notion of series and parallel connection in elec-

trical networks. A classic study of such graphs is Duff in (1965), and recent 

results are contained in Takamizawa, Nishizeki, and Saito (1982), and Valdes, 

Tarjan, and Lawler (1982), Rardin, Parker, and Wang (1982), and Rardin, 

Parker,.and Rickey (1982). 

Unfortunately, there are some disparaties regarding definitions of 

such graphs. The purpose of this note is to verify that, when carefully 

specified, the concepts behind all these definitions can be made to con-

form, i.e. all such characterizations are equivalent. We also exhibit 

a linear-time algorithm for implementing one of the definitions and 

indicate how it implicitly tests several others. 

Neither the algorithm nor any of our characterizations is entirely, 

or even mostly new, Rather, our objective is only to make precise, matters 

which are more often hinted at than exposited in the extensive literature 

of series-parallel graphs. 

2. Main Definition  

We consider an undirected, looplessli multigraph G with finite vertex 

set V and finite edge set E, such that V contains no isolated vertices, We 

shall say that such a G is series-parallel if and only if some sequence of 

applications of the following three reductions converts G into a dis- 

joint collection of edges. 

1,/ Results are easily extended to encompass self loops by introducing an 
artificial, degree-2 vertex into each loop before applying our results. 

1 
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• series reduction: replace any degree-2 vertex j and its incident 

edges e = (i,j), f = (j,k) such that i # k, by new edge g = (i,k). 

• parallel reduction: replace any two edges e = (i,j) and f = (i,j) 

joining the same vertices by a new edge g = (i,j). 

• jackknife reduction: replace any degree-1 vertex i, its incident 

edge e = (i,j), and any other edge f = (j,k) meeting vertex j by 

a new edge g = (j,k). 

Figure 1 illustrates the three types of reductions, and Figure 2 

shows a (not unique) sequence reducing a given graph to a single edge. 

Observe that the three reductions are well-defined in that any suitable 

sequence will produce the correct conclusion regarding a given input graph. 

Series and parallel reductions are well known and common to all 

definitions. However, confusion arises when G Is not connected or is 

not biconnected. "Two-terminal series parallel" in Takamizawa et al  

(1982), "edge series-parallel" in Valdez et al (1982) and "closed graphs" 

of Duffin (1965) are constrictions to distinguish various cases. We in-

troduce jackknife reductions to encompass non-biconnected situations such 

as that of Figure 3. It is easy to verify that all three of the above 

reductions are needed to reduce the graph of Figure 3 to a single edge. 

3. Forbidden Homeomorphic Subgraphs  

A subgraph H of G is said to be homeomorphic from a graph Q if and 

only if some sequence of applications of series reduction to H produces 

a graph isomorphic to Q. Series-parallel graphs can be characterized in 

terms of forbidden homeomorphic subgraphs. 

Theorem 1: Series-Parallel Graphs and K4 . A loopless, undirected, multi- 

graph G with no isolated vertices is series -parallel if and only if 

G contains no subgraph homeomorphic from K
4 

(the complete graph on 4 

vertices). 



 

Replace  

deg (j) =2 

With  

 

a. Series 
Reduction 

e 

b. Parallel 
Reduction 

 

deg(i)=1 

0 	® c. Jackknife 
Reduction 

Figure 1: Defining Reductions of 
Series-Parallel Graphs 
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Figure 2: A Sequence of Reductions Showing 
a Given Graph is Series Parallel 
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Figure 3. A Graph Requiring Series, Parallel and 
Jackknife Reductions to be Reduced to 
an Edge. 
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Proof:  First observe that we need consider only connected graphs G. 

If any subgraph homeomorphic from K4 
exists, one will certainly lie in a 

single component of G. Conversely, series, parallel and jackknife re-

ductions neither combine nor create disjoint components, so that G is 

series-parallel if and only if every connected component can be reduced 

to a single edge. 

Assume G is connected, and let H be a subgraph of G homeomorphic 

from K4 . Any G' obtained from G by a single series, parallel or jackknife 

reduction must also contain a subgraph H' homeomorphic to K 4 . This is 

true because if all reduced edges belong to E(G)\E(H) then H' = H .  

(note that we symbolize the edge and vertex sets of a graph G by E(G) 

and V(G) respectively). If not, H' is either the product of a series 

reduction of H, or the result of replacing an edge e or f of H by a 

new edge g joining the same vertices. 

Applying this observation at each step of series, parallel, or jackknife 

reduction, we see that every sequence of such reductions must terminate 

before or upon reducing G to a graph isomorphic to K 4 . Since K4  admits no 

further reduction, we can conclude that if the original G contains a sub-

graph homeomorphic from K
4' no sequence of reductions will reduce G to 

a single edge, i.e. G is not series-parallel. 

For the converse, we must show that if G is not series-parallel, i.e. 

reduction terminates before G has been reduced to an edge, then G con-

tains a subgraph homeomorphic from K 4 . The algorithm of Section 4 and 

Lemma 3 will demonstrate constructively that if reduction terminates on 

a reduced form G' of G, then G' contains a subgraph H' homeomorphic from K
4

. 

By the same arguement as above, it follows that G must have contained a 

corresponding subgraph H that has been. reduced to H' in G'. 
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We call a vertex, c, a cut-vertex of a graph G if c separates G 

into subgraphs G 1  and G2  with nonempty edge set, and such that 

G = E(G 1) u E(G 2) and V(G1 ) n V(G2) = {c}. A cut-pair is a pair of 

vertices c and d of G that separates G into subgraphs G 1  and G2  with 

nonempty edge sets such that G = E(G 1) u E(G2), V(G1) n V(G2) = {c,d}. 

A graph is triconnected if it is connected, contains at least 4 vertices, 

and possesses no cut-vertex and no cut-pair that separates G into G
1 
and 

G2 with both G 1 and G2 having at least three vertices. 

The graph K4  of Theorem 1 is triconnected. We can apply Theorem 1 

to see that series-parallel graphs forbid any triconnected homeomorphic 

subgraphs. 

Corollary 2: Triconnectivity and Series-Parallel Graphs. A loopless, 

undirected graph G with no isolated vortices is series-parallel if and 

only if it contains no subgraph homeomorphic from a triconnected graph. 

Proof: If G is not series-parallel, Theorem 1 shows G contains a subgraph 

H homeomorphic from K4 . Since K4  is triconnected, G does indeed have a 

subgraph homeomorphic from a triconnected graph. 

For the converse suppose G contains a subgraph H homeomorphic from 

7 a triconnected graph Q. Then G must also contain such a subgraph H nomeo- 

morphic from a triconnected graph Q having no multiedges. Removal of 

edges in Q0 
A
= Q would either produce the needed Q or generate a graph 

with degree-2 vertices which is itself homeomorphic from some triconnected 

Q
1
. If Q

1 
has multiedges, we repeat the process. 

Let Q be a triconnected graph with no multiedges from which sub-

graph H of G is homeomorphic. Clearly the minimum degree in Q is three; 
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neighbors of degree-1 and degree-2 vertices form cut vertices and cut-

pairs respectively. But then neither series, parallel nor jackknife 

reduction of Q is possible. By Theorem 1,Q contains a subgraph homeo-

morphic from K4 . But since H is homeomorphic from amd Q is homeomorphic 

from K4, we see H is homeomorphic from K 4. By Theorem 1, G is not series-

parallel. 

4. A Linear Time Algorithm  

One version of the problem of finding a linear time algorithm for de-

tecting series-parallel graphs is posed as an exercise in Aho, Hoperoft and 

Ullman (1974). Although no solution is given, Valdes et al (1982) pro-

vide one for graphs that can be fully reduced by just series and parallel 

reduction, and they indicate Valdes (1978) contains another. Takamizawa 

et al (1982) reference a Japanese-language publication, Nishizeki et al  

(1976) in asserting linear time testability of their forms of series-

parallel graphs. 

We shall show in Section 6 that none of these papers seems to deal 

with the full family of graphs we term series-parallel. Thus we shall 

present here our own linear time scheme. The algorithm is strongly 

based on Hoperoft and Tarjan's (1973) approach to the closely related 

problem of identifying triconnected components of a graph. As in the 

proof of Theorem 1, an algorithm to either reduce a given graph G 

satisfying the hypothesis of the theorem to a collection of disjoint 

edges, or demonstrate that G contains a subgraph homeomorphic to K4  needs 

only to deal with connected components, one at a time. Thus we shall 

9 



take G to be a connected multigraph encoded by a list of pairs 

iu[e],v[e]: ec E}  recording the two vertices joined by each e, and a 

set of star lists {s[v,i.]: i=1,2,...,d[v]) showing indices of the d[v] 

edges joining each vertex v c V. For simplicity of presentation we will 

also assume G contains a degree-1 vertex r. Obviously, if no such vertex 

existed, we could augment G with an artifical edge joining an artificial 

vertex without impacting whether gr not G contained a subgraph homeomorphic 

from K4 . 

The algorithm proceeds in up to four stages. The first stage 

searches C from r in depth first sequence, labeling vertices and edges 

for sorting at Stage II. Vertices are labeled with 9.[v] = the depth of 

vertex v in the search, and t[v] - the edge through which vertex v is 

first visited. nen the search is completed, edges of 4.t[v] : v c V} 

yield a spanning tree of G with nontree edges forming backedges, i.e. 

(u,v) e E such that if i[u] > 9[v], v lies along the tree path from u 

to the root vertex r. Similarly, if Z[v] > k[u], u lies along the tree 

path from v to r. (See for example Aho, Hoperoft and Tarjan (1974), p. 

178 for verification of this property of depth-first search.) 

All vertices deeper in the tree than a given tree edge, t, are 

called descendents of t, including the v such that t = t[v]. Back 

edges have no descendents. 

The edge labels b[e] that we compute reflect the minimum depth Z[w] 

of a vertex w reachable through a path beginning with e and using only 

decendents of e and their backedges. Specifically, for e = (u,v), 

Z[u] < 2.[v] 
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{ i[u] if e is a backedge 

min{Z[v], min{t[w]: (x,w) is a backedge, x is a descendent of el) 

if e is a tree edge 

b[e] 

Stage II of the algorithm performs a radix sort to rearrange star edge 

numbers e cfs[v,i]l at each vertex in decreasing b[e] order. All edges, 

e, are linked into one of the IVI chains according to their b[e] labels. 

Chains are then unloaded in reverse depth order to create new reordered 

stars {s[v,i]: i=1,2,...,n[v]l containing only the n[v] < d[v] edges. 

searched from v at Stage I. The effect is that the depth first search 

of Stage III will come last to portions of the tree with backedges reach-

ing nearest the root. Figure 4 shows both the Stage I and Stage III 

sequence of first visits to edges in the example of Figure 2. 

The Third Stage of the algorithm actually performs series, parallel 

and jackknife reductions until either G has been reduced to a single 

edge or we are able to conclude G contains a subgraph homeomorphic 

from K4' 
G is searched in depth first fashion from the same root, thus 

building the same tree as in Stage I. However, this time stars have 

been sorted by Stage II. 

Tree edges leading to degree-1 vertices are immediately jackknife-

reduced with their predecessors in the tree. Whenever a degree-2 vertex 

is encountered in the search, it is immediately series-reduced. Parallel 

reductions are detected when existing or created backedges duplicate 

either the tree edge t[v] or an already passed over back edge from v. 

If a back edge is encountered that is parallel to neither t[v] nor the 

passed over back edge, we are able to conclude G contains a subgraph 

homeomorphic from K 4 . 
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As reductions develop, new edges are added to E. We 

dynamically update star values s[v,i] and free pointers t[v] to the new 

numbers, and record reductions in a binary tree. Specifically, we save 

(u[e], v[e], p[e], c[e,1], c[e,2]) 

for each edge e=1,2,... where u[e] and v[e] are the two vertices 

joined by e, p[e] is the parent of e in the binary tree (the edge into 

which e is later reduced if any), and c[e,1], c[e,2] are the two edges 

from which e was created. Figure 5 shows the tree implied by reductions 

of Figure 2. The binary tree obtained could, itself, later be (linear 

time) searched in depth-first order to construct any original graph 

entity reduction has proved to be of interest. 

If G is series-parallel, processing stops after Stage III returns 

to the root vertex r. However, if Stage III terminates with the con-

clusion that G contains a subgraph homeomorphic from K 4, Stage IV is 

applied to exhibit such a forbidden subgraph of the current G4J  The sub-

graph has the form shown in Figure 6. The single additional path needed to 

complete the homeomorph is identified by a partial continuation of the 

depth first search aborted in Stage III. The explicit statement of the 

algorithm can now be given. 

Stage I: Edge Depth Labels  

Step 0: Initialization. Tag all vertices as unvisited by setting 

9.,[k] 	-1 for all k e V 

1/ Backtracking in the binary tree might be required to exhibit a 
corresponding homeomorph from K4 in the original (unreduced) G, 
but this is easily accomplished in 0(IVI + 1E1) time. 
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Figure 5: Binary Tree of Reduction Produced for Example of Figure 2 



Figure 6. Homeomorphic Subgraph from 
K4 

Identified at Stage IV 
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and all edges as unprocessed by 

b[e] 4- -1 for all e c E 

Then initialize the search at (any degree-1) root vertex r by t 	0, 

t[r] f  0, Mr] t  0, i[r] F  1, h F  r. 

Step 1: Process an Edge at h. If i[h] > d[h] go to Step 2 and 

backtrack. Otherwise, define e A = s[h, i[h]] and k = the end of e 

other than h. 

la: If e is an unprocessed back edge (b[e] < 0 and t[k] > 0), 

set b[e] t  Z[k] and swap as necessary so that u[e] = h, 

v[e] = k. Also, if h 	r, update b[t[h]] 	min{b[t[h]],b[e]l. 

lb: If e leads to an unvisited vertex k (d[k] < 0), initialize 

vertex k by 	 '),Ek] 	", [Lk] 	b[e] 	i[k] 	0. 

Then swan as necessary so that u[e] = h, v[e] = k, and advance 

to k by h k. 

Set i[h] 	i[h]+1 and repeat Step 1. 

Step 2: Backtrack. Define k a u[t[h]]. If k = r, Stage I is 

complete. If not, update b[t[k]] 	minfb[t[k]], b[t[h]]) and de- 

cline to k by t 	h k. There, advance i[h] f i[h]+1 and 

return to Step 1. 

Stage II: Radix Sort of Stars  

Step 0: Initialization. For d=1,2,..., tVI , initialize list 

L[d] 	4. Also set n[v] 	0 for all v c V. 
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Step 1: List Loading. For e=1,2,...,IEI, add edge e to list 

L[b[e]]. 

Step 2: List Unloading. For d = IVI, IVI-1, ..., 1 unload list 

L[d] into stars by for each es L[d] setting n[u[e]] + n[d[e]]+1 , 

s[u[e], n[u[e]]] + e. 

Stage III: Reduction  

Step 0: Initialization. Initialize the next edge pointer, I*, IEI, 

and edge tree variables p[e] + 0, c[e,l] + 0, c[e,2] 	0 for all 

e e IEI.  Then start a new search at root vertex r via i[r]-4-1, 10-r. 

Step 1: Edge Processing. If i[h] > n[h], go to Step 2 and backtrack. 

Otherwise, define e A = s[h,i[h]], k = v[e]. 

la: If e is a back edge parallel to t[h] (e 0 t[k], 

v[e] = u[t[h]]) , advance i[h] + i[h]+l and go to Step 4 

to parallel reduce with E + e, f + t[h], 	u[t[h]]. 

lb: If e is a back edge not parallel to t[h] and there is 

no passed over edge at h ( e 0 t[k], o[h] = 0), advance 

i[h] + i[h]+1 and make e the passed over back edge via 

o[h] 	i[h]. 

lc: If e is a back edge parallel to the passed over edge 

f 
A
= s[h,o[h]] (e 0 t[k], v[e] = v[f]), advance o[h] + i[h], 

i[h] 4 i[h]+1, and go to Step 4 to parallel reduce with 

+ e, 	f, 	+ h. 
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ld: If e is a back edge parallel to neither t[h] nor the 

passed over edge at h, G contains a subgraph homeomorphic 

from K4 . Proceed to Stage IV. 

le: If e is a tree edge and k is a degree-1 vertex 

(e = t[k], d[k] = 1) advance i[h] 	i[h]+1, and go to Step 

5 to jackknife reduce with E 	e, f t  t[h], h t  u[t[h]]. 

lf: If e is a tree edge, k is a degree-2 vertex and 

f 	s[k,n[k]] is not parallel to e (e = t[k],d[k] = 2, 

v[f] 	u[e]) go to Step 3 and series reduce with i 	e, 

? 	f, 	-4-  h. 

lg: If e is a tree edge (e = t[k]) and either d[k] > 2 or 

A , 
f = sLk,n[k]] is parallel to e (v[f] = u[e]), advance to 

vertex k by n 	k, o[h] - 0, i[h] 4-- 1. 

Repeat Step 1. 

Step 2: Backtracking. Define e t t[h], k - u[e]. 

2a If k = r, stop; G is series-parallel because it has been 

reduced to the single edge e. 

2b: If k r, decline to vertex k by h k, and return to 

Step 1. 

Step 3: Series Reduction. Advance g g+1 and series reduce edge 

E and T into g by 

u[g] u[E] 

y[E] 4- 1/[?] 

s[17,i[i;]] g 
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d[v[E]] 4- d[v[E]]-2 

p[e] f  g 

p[f] f E 

c[g,1] 	E 

c[g,2] 	7 

t[v[1]] t g if 1 = t[ [1]] 

Then return to Step 1. 

Step 4: Parallel Reduction. Advance g i+1 and parallel reduce 

E and f into E by 

u[E] 	u[T] 

v[i] 	v[T] 

s[FIMF1 ]] 

d[u[g]] 	d[uii]1-1 

d[v[g]] 	d[v[i]]-1 

p[E] 	E 

p[T] F  i 

c[g,1] f E 

c[g,2] T 

t[v[T]] t i if F = trv[F]l 

Then if a new degree-2 vertex has been created other than at search 

vertex h (CFI] = 2, g = t[v[v],d[v[g]] > 1), go to Step 3 and 

series reduce the new degree-2 vertex via E 	t[T-1],T÷g,171-4--u[E]. 

If no such vertex was created, return to Step 1. 
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Step 5: Jackknife Reduction. Advance g 01 and jackknife reduce 

E and f into g by 

u[g] 4- urn 

v[g] 4- v[I] 

d[u[e]] 	d[u[e]]-1 

d[v[E]] 	d[v[i]]-1 

p[e]+g 

p[f] 	g 

c[g,1] 	E 

c[E,2] 4- T 

t[v[F]j — g if ? = t[v[?]] 

Then return tc Step 1. 

Stage IV: Horeororphic Subgraph Identification  

Step 0: Initialization. Save the search vertex h, the current 

search edge e, and associated entities on which Stage III terminated 

as elements of the homeomorphic subgraph depicted in Figure 6. 

Specifically, 

e 1 4- e 

e2 4- s[h,o[h]] 

e
3 	

t[h] 

v
1 	

v[e
1

] 

v
2 
	v[e2 ] 

v
3 	u[e3 ] 

v
4 

4- h 

Then restart the search at the tree predecessor of h by h + v 3, 

i[h] + i[h]+1. 
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Step 1: Edge Processing. If i[h] > n[h] go to Step 2 and backtrack. 

AA 
Otherwise define e = s[h,i[h]],k = v[e]. 

la: If e is a back edge touching below v
1 

in the tree 

(e 	t[k],t[k] < 2,[17 1 ], go to Step 3 to complete the 

forbidden subgraph. 

lb: If e is a tree edge (e = t[k] 

h 	k,i[h] 	0. 

Increment i[h] + i[h]+1 and repeat Step 1. 

Step 2: Backtracking. Decline to vertex u[t[h]] by setting h + u[t[h]]. 

Then return to Step 1. 

Step 3: Path Identification. Save w l  + u[e], w2  + v[e], e4  + e. 

Thcn trace b. ,-Awards thros:gh the tree from w
1 

to w
2 
by following 

labels t[k] until a path w1 ,...,v3 ,...,v2 ,...,v1 ,...,w2  has been 

identified. When w 2 is reached stop; this path completes the re-

quired homeomorphic subgraph of Figure 6. 

The principal issue of correctness that must be established for our 

algorithm is that it stops only with G fully reduced or with a subgraph 

homeomorphic from K4 . 

Lemma 3: Algorithm Stopping. Let G be a connected, undirected, loopless 

graph with degree-1 vertex r. Then application of the above algorithm 

to G leads to either termination of Stage III with the correct conclusion 

that G is series-parallel or termination at Stage IV with a subgraph H' 
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of the current reduced version G' of G that is homeomorphic from K
4

, 

Proof.:  Consider Stage III of the algorithm. It is easily checked that 

all reductions undertaken from the different cases of Step 1 are valid 

series, parallel or jackknife reductions. Furthermore, no vertex is 

departed via Step 2 until it is either degree-1 or degree-2, i.e. 

certain to be immediately eliminated by jackknife (respectively series) 

reduction. Thus if backtracking proceeds until we are ready to return 

to the root, only r, its incident edge, and the adjacent vertex can 

remain. (The latter vertex is degree-1 because r is degree-1.) Clearly 

the final reduced graph G' is a single edge and G is series-parallel. 

If, on the other hand, Stage III searching is aborted at Step ld, 

entities constructed at Step 0 of Stage IV must be as illustrated in 

Figure 6. Current search vertex h = v, is joined to its immediate tree 4 

predecessor v 3 
 by tree edge e

3' 
and to vertices v

2 	v1  and 	by the passed -  

over and current back edges e 2  and e = e
1
. Necessarily v

1, 
v
2 

and v3 

are distinct because otherwise e = e
1 
would have been parallel reduced. 

Moreover, we have Z[v 1 ] < Z[v 2 ] because the passed over back edge e 2  was 

encountered before e
1 
in the processing of the Stage-II-ordered star 

of h = v,. 
4 

Most important for the entities recorded at Stage IV, Step 0 is that 

v
3' 

the tree predecessor of h = v4, is at least degree-3 and is joined 

via some descendent vertex w 1 
and a back edge e

4 
to a vertex w

2 be-

longing to the tree path from v 1  to r. These claims must hold because 

had v
3 
been degree-2 when first encountered in Stage III it would have 

been series-reduced by Step lf, and if it were later made degree-2 by 

parallel reduction, Step 4 would have passed to Step 3 and series-reduced 
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it. Moreover, the star ordering introduced at v
3 
by Stage II assures 

that, since the search passed first to e
3 

instead of the next listed edge at 

v3, the latter edge has a descendent-back-edge path reaching at least 

as close to the root as the one (e 3 ,e 1) encountered through e 3 . Since 

the subgraph H' of Figure 6 is clearly homeomorphic from K 4, this com-

pletes the proof. 

Theorem 4: Correctness of the Algorithm.  Let G be as in Lemma 3 with 

vertex set V and edge set E. Then application of the above algorithm to 

G either exhibits a sequence of series, parallel and/or jackknife re-

ductions converting G to a single edge or produces a subgraph H' of a 

series, parallel and/or jackknife reduced form G' of G such that H' is 

homeomorphic from K4 . Moreover, all computation is accomplished in 

time linear in IV1 and 1E1 (0(1V!+1E1). 

Proof:  Lemma 3 established all needed properties for correct convergence 

of the algorithm that do not follow automatically for the nature of 

depth-first search. To complete the theorem we need only to show com-

putation is in the worst case 0(1V1+IE:). We analyze computation by 

stages: 

Stage I.  The depth-first search of Stage I begins with 0( 1V1+1E1) 

initialization of Step 0. It encounters each edge of E twice at 

Step 1, once at each vertex of the edge. The 0(1V1) tree edges 

are also backtracked through once each by Step 2. Since all 

processing is clearly in constant time, computation for Stage I 

totals 0(1V1+1E!). 
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Stage II. Stage II begins with 0(IVI) initialization and then un-

loads and reloads each edge of E. Total time is 0(IV1+1E1). 

Stage III. Initialization of Stage III is 0(1E1). As the graph 

is examined each edge is either a tree edge, a back edge saved as 

the passed over edge, a back edge leading to an immediate parallel 

reduction, or a back edge causing processing to pass to Stage IV. 

The 0(IVI) tree and passed over back edges are either series or jack- 

knife reduced at once, or so reduced upon backtracking at Step 2. 

Moreover, each reduction replaces 2 edges by 1 so there are at most 

0(1E1) reductions. We can conclude Stage III requires at most 

0(IVI) + 0(1E) edge searching plus 0(1E1) reductions. Since all 

component calculations clearly require constant time, total effort 

is 0(1V1+1E'). 

Stage IV. Stage IV requires at most 0(1E1) edge examinations and 

0(IVI) backtracks before it reaches Step 3. There an 0(1V1) backtrack 

through the tree completes processing and total time is 0(1V1+1E1). 

5. Terminal Subgraphs  

Clearly any edge created by series, parallel or jackknife reduction 

represents a subgraph of the original G. Denote the graph represented 

by e in a reduced graph G as G[e]. If e belonged to the original G, 

G[e] 
A
= e. 

We call G[e] a terminal subgraph of G because it is characterized 

by terminal vertices u[e] and v[e]. These vertices are the only ones of 

G[e] that persist in reduced graph E. That is, G[e] is joined to the 



rest of G only through terminal vertices u[e] and/or v[e]. 

Reversing this perspective, we can develop an equivalent charac-

terization of series-parallel graphs in terms of terminal subgraph 

separations . Cut vertices and cut pairs were defined in Section 3. A 

terminal graph G[u,v] is any graph with distinct vertices u and v 

identified as terminals. We consider the separation of loopless terminal 

multigraphs G[u,v] containing no isolated vertices into two loopless 

terminal multisubgraphs G
1
[uv

1
] and G2[u2,v2]  containing no isolated 

vertices and satisfying G[u,v] = E(G1 [urvi ])uE(G2 [u 2 , 2 ]). 

• series separation: separate G[u,v] at a cut vertex c # u,v into 

terminalsubgraphsyu,c]andG2 fc,v1,such that V(G1 ru,cpnV(G2 [c,v]) 

• parallel separation: separate G[u,v] at (terminal) cut pair into 

terninalsura71., ,;
1 
 ,v] and G 2 [u,v], such that V(0

1
[u,v])nV(G2 [11,v1) ,---,: u,v). 

• jackknife separation: separate G[u,v] at (terminal) cut vertex u 

(respectively (terminal) cut vertex v) into terminal subgraphs 

G i [u,v] and G 2 [u,t] (respectively G 2 [t,v]) satisfying 

V(G1 [u,v])nV(G2 [1.1,t]) = _u.} (respectively V(G i [u,v])n V(G 2 [t,v]) = (v)) 

and t is any vertex of G 9  except u or v. 

Theorem 5: Separation Characterization. A loopless, undirected multigraph 

G with no isolated vertices is series-parallel if and only if every con-

nected component of G can be separated into a collection of disjoint edges 

by designating an appropriate pair of distinct vertices of the component 

as terminals and applying some sequence of series, parallel and jackknife 

separations. 
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Proof:  First assume G is series-parallel and consider a connected com-

ponent E. By applying the algorithm of Section 4 we can construct a binary 

tree of reductions with corresponding terminal subgraphs such that G[g] 

is the parent of G[e] and G[f] in the tree' if e and f were series or 

parallel or jackknife-reduced to g. Ends of this binary tree are single 

edges, and the last-constructed, root vertex of this binary tree has 

G[g] = G. 

Viewing this binary tree from its root, we want to show it corres-

ponds exactly to a sequence of series, parallel and jackknife separations 

leading to a disjoint collection of edges. We begin by choosing as term-

inals of the root graph the two vertices of the edge to which it was 

reduced. Now proceed inductively through the binary tree. If a G[g] 

was formed by series reduction of G[e] and G[f], each of G[e] and G[f] 

has exactly one terminal in common with G[g], and V(G[e])nV(G[f]) is their 

common terminal (which is not a terminal of G[g]). These are exactly the 

requirements for a series separation. 

If G[g] was formed by parallel reduction of G[e] and G[f], all three 

have the same terminals and V(G[e]) - V(G[f]) = lu[e],v[e]}. Reversal of 

the reduction is a parallel separation. 

Finally, suppose G[g] was created by jackknife reduction of G[e] and 

G[f]. G[e] and G[f] intersect only at their common terminal, G[f] has 

the same terminals as G[g], and G[e] has as terminals the one it shares 

with G[f] and some other vertex. Clearly G[g] jackknife separates into 

G[e] and G[f]. 

For the converse we apply Theorem 1. If G is not series-parallel 

we know from the earlier result that Chas a connected component G with a 
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subgraph H homeomorphic for K
4' 

We will show this implies no sequence 

of series, parallel and jackknife separations can divide G into a collec-

tion of disjoint edges. 

Consider a sequence of series, parallel and jackknife separations 

of G, and let G
0  be the last one containing every edge of H. That is 

E(R)cE(Go [u,v1), but separation of G o [u,v] into yuvvi l and G2 [u2 ,v2 ] will 

leave E(R)OE(Gi, E(H)0E(G 9). Now U is homeomorphic from K4 , so it contains no 

cut vertices. Also, cut pairs are possible only for pairs of vertices 

both belonging to a path of H corresponding to a single edge of K4 . It 

follows that the separation was of the parallel type, that both terminals 

of Go , G1  and G2  belong to such a path of H, and that one of G 1  and G2 

 contains all of H except a path through degree-2 vertices. That is, one 

of G
1 

and G
2' 

say G , contains a subgraph of the form H depicted in Fig-

ure 7. 

Further parallel separation of G
1 
will leave terminals unaltered and 

entirely in one or the other created subgraph. Jackknife separations 

are possible if u or v is a cut vertex, but again, all of H' must belong 

to one of the successors and terminals will be undisturbed. Series 

separations do move terminals, but only to cut vertices dividing the graph 

so that one original terminal belongs to each successor. 

We can conclude that only with series separations can a subsequent 

sequence of series, parallel and/or jackknife reductions not leave 

entirely contained in one of the two resultant subgraphs. But all 

possible cut vertices of a graph like H' belong to either the path 

(a,...,u) or the path (v,...,c). It follows that any sequence of such 

separations will eventually lead to a descendent containing the subgraph 

R" of Figure 7. 
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terminals 

H' 

Figure 7: Failure of Separation on 
Subgraphs Homeomorphic from 
K4 



Further separation of R" is impossible. Thus, we can conclude that 

if a originally contained an H homeomorphic from K4, 	cannot be separated 
by any sequence of series, parallel and/or jackknife separations into a 

collection of disjoint edges. This completes the proof. 

6. Comparison to Other Definitions  

The fundamental Duffin (1965) paper on series-parallel graphs sought 

to clarify relations between alternative definitions in the earlier work 

of Riordan and Shannon (1942). Duffin defined series-parallel graphs as 

those for which resistance between any adjacent pair of terminals could 

be computed by Ohm's laws: 

• Resistance is additive for resistors in series 

• Reciprocal resistance is additive for resistors in parallel 

Duffin also defined confluent graphs as graphs having no cycles C
1 

and 

C2 that cannot be oriented in such a way that all common edges have like 

direction. 

Any distinct 4-vertex cycles of K 4  fail the confluence property. 

More generally Duffin proved(his Theorem 1) that a graph is confluent if 

and only if it contains no subgraph homeomorphic from K 4 . Furthermore, 

in his Theorem 3 he established that a graph is series-parallel if and 

only if it is confluent. 

We can thus conclude via our Theorem 1 that both our definition and 

Duffin's definition of series-parallel graphs are equivalent. However, 

Duffin defined only two reductions--equivalent to our series and parallel. 

Consequently, he only gave a reduction characterization of the case 
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where G is biconnected. The simple graph of Figure 3 illustrates that 

cases lacking a subgraph homeomorphic from K
4 
but still not completely reduc-

ible by series and parallel operations, are possible when G is not biconnected. 

The recent paper by Valdes, Tarjan and Lawler (1982) is primarily 

concerned with a vertex form of series-parallel graphs. However, these 

authors do define and employ edge series-parallel digraphs. Lemma 2 of 

their work references Duff in in asserting digraphs are edge-series-parallel 

if and only if they can be reduced to single edges by series and parallel 

reductions. Thus their definition is limited to graphs reducible by 

series and parallel operations alone, and excludes, for example, the 

graph of Figure 3. 

Another recent and important paper on series-parallel graphs is that 

of Takamizawa, Nishizeki and Saito (1982). These authors define series-

parallel graphs as those reducible by series and parallel reductions to 

a two-edge cycle. It is easy to see that this limits their series-parallel 

graphs to the biconnected ones since series and parallel reductions 

preserve biconnectivity. 

More importantly, however, Takamizawa et al treat a more general form 

called two-terminal series-parallel. Like our Section 5, two-terminal 

series-parallel graphs are defined in terms of separations of a given 

graph G. The process begins with up to two vertices of G designated as 

terminals. New graphs produced by separating G also have two terminals. 

However, one or both may be virtual (i.e. artificial). If we adopt 

the equivalent notion that single terminal and no terminal graphs are 

allowed, two terminal series-parallel graphs are those which can be de-

composed into a collection of disjoint edges by any sequence of applica- 

tion of the series (type I) and parallel separations tabulated in our Table 1. 
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Table 1: Classification of Separations in 1 
 Two-Terminal Series-Parallel Graphs—/ 

Separation Form  

Series (Type I) 

	

Gl/ 	
2/ 	

G 2.1  Separation 	Key 	 Key --i 

	

G1 	Key 2  
Vertex(s) 	Vertices 	Vertices 	Vertices  

b 	 a,b,c 	 a,b 	 b,c 

b 	 a,b 	 a b 	 .,b 	 b 

b 	 b 	 b b 

Parallel 

	

!,.11 	 a,b , 	 a,b , 	 a,b ,_ 

	

a 	 a,b , 	 a,b 	 a,b 

	

none 	no terminals no terminals no terminals 

1/ Adapted from Takamizawa et al (1982) 

21 Underlined vertices are terminals. 
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Series (type I) separations divide G at a cut-vertex, c, into two 

parts G 1  and G 2 . The cut-vertex c is not a terminal of G but becomes a 

terminal of both G1  and G 2 . Terminals of G are also terminals of which-

ever of G
1 
and G

2 they belong to. In particular, if G had two terminals 

one must be part of G 1  and the other part of G 2 . 

Parallel separations have three purposes. If G has no terminals, 

parallel separation merely divides G into one collection G and another 

G2 of disconnected components of G. If G has one terminal and it is a 

cut-vertex, parallel separation creates new one-terminal subgraphs sepa-

rated at that cut-vertex. If G has two terminals, parallel separation 

divides G at the terminals when they form a cut-pair. 

Clearly, series (type I) and parallel separations with two terminals 

perform substantially the same functions as our series and parallel 

separations of Section 5. Parallel separations with no terminals merely 

isolate connected components. 

Parallel separations with one terminal are more interesting. They 

effect part of what we do by jackknife separation -- divide graphs at a 

cut-vertex that is also a terminal. However, two-terminal series-parallel 

graphs still do not appear to cover the full range of our series-parallel 

graphs. It is not hard to verify that separation of the graph in Figure 

3 by methods of Table 1 eventually halts with a subgraph consisting of a 

3 vertex path having 2 adjacent terminal vertices. Thus the graph of 

Figure 3 is not two-terminal series-parallel even though it conforms to 

our definition of series-parallel. On the other hand, a proof like that 

of the converse of Theorem 5 can show that if G is not (our) series-

parallel, it is not two-terminal, series7parallel. The subgraph R" of 
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Figure 7 admits no Table 1 separation. But just as in the proof of 

Theorem 5, it must eventually be encountered. Whether we start with 0, 

1 or 2 terminals, H can be first disturbed only by the two-terminal, 

cut-pair form of parallel separation at which our proof begins. 

Finally, we note that our own work in Rardin, Parker, and Wang (1982) 

and Rardin, Parker, and Richey (1982) use still a different definition of 

series-parallel graphs. We described such graphs as those reducible by 

series and parallel reduction to a tree. Clearly, the example of Figure 

3 fails this test even though it satisfies the definition of Section 2. 

7. Conclusion  

Our aim in this paper has been to clarify and synthesize knowledge 

about series -ID:Ira -1.1cl graphs. We can summarize our conclusions by the 

following: 

Theorem 6: Equivalent Characterizations. Let G be a loopless, undirected 

multigraph with no isolated vertices. Then the following are equivalent: 

(i) G can be reduced to a collection of disjoint edges by some 

sequence of applications of series, parallel and jackknife 

reductions (as defined in Section 2). 

(ii) G contains no subgraph homeomorphic from K4 . 

(iii) G contains no subgraph homeomorphic from any triconnected 

graph. 

(iv) Every connected component of G can be separated into a 

collection of disjoint edges by designating an appropriate 

pair of vertices of the component as terminals and applying 
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some sequence of series, parallel and jackknife separations 

(as defined in Section 5). 

(v) G contains no cycles C l  and C2  that cannot be oriented in 

such a way that all common edges have like direction. 

Furthermore, whether G satisfies (i) - (iv) can be tested in time linear 

in the number of its edges and vertices. 
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ABSTRACT 

In this paper, we address the following problem. Given an undirected 

graph G(V,E) with arbitrary edge weights, determine a minimal weight subset 

of edges which forms a tree and which includes a specific subset of vertices 

in V. It is well known that finding such a subgraph, referred to as a 

Steiner tree, is formally difficult for arbitrary G(V,E). On the other hand, 

if we confine our attention to a class of graphs commonly referred to as 

series-parallel, the problem can be solved. We demonstrate this in the pre-

sent paper. 



1. INTRODUCTION 

Consider an undirected graph G(V,E) with vertex and edge sets V and E 

respectively. We shall assume throughout that G(V,E) is loopless but may 

possess multiple edges. The Steiner tree problem on graphs  seeks a subset 

E c E forming a tree which includes all vertices in a specified subset 

S c V and which has minimum total edge weight. Note that we specifically 

define the problem on graphs in order to differentiate it from the classic 

version defined on the Euclidean plane. In the latter case, the problem is 

a well-known one in geometry which asks for a set of lines (also in the 

plane) which connect a set of points and does so with minimum total length. 

Hereafter, we will simply refer to our problem by STP. 

The difficulty of the STP has been established, its NP -Completeness (for 

the decision analog) following via a transfOrmation from EXACT COVER BY 

3-SETS (Karp (1972)). Even various special cases remain intractable. Among 

these are problems with equal edge weights (Carey and Johnson (1979)) as well 

as problems defined on planar graphs (Garey and Johnson (1977)). 

On the other hand, there are some easily resolvable cases. Clearly, when 

S = V, the STP trivially reduces to the minimum weight spanning tree problem 

for which highly efficient algorithms are known and when IS1 = 2, the problem 

becomes one of finding the shortest path in a graph which connects the ver-

tices in S. This also'is well-solved so long as edge weights are non-negative. 

Of course, general (nonpolynomial) algorithms have also been developed. We 

direct the interested reader to Lawler (1976) for coverage of these, in parti-

cular the work of Dreyfus and Wagner (1972). An interesting survey of the 

STP can also be found in Hakimi (1971) and recently, a branch and bound 

procedure was presented by Shore, et. al., (1982). 

In this paper, we give a procedure for solving the STP on a restricted 

class of graphs referred to as series-parallel.  Our algorithm is based, in 
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part, on notions developed in Takamizawa, et. al. (1982) as well as on im-

plications arising from earlier results in Rardin, et. al. (1982). Fol-

lowing, we characterize the class of series-parallel graphs of interest 

after which we motivate the development of the algorithm. The procedure 

is formally stated and demonstrated with a small problem. We next 

establish the algorithm's polynomiality and finally, we conclude with some 

general observations. 

2. SERIES-PARALLEL GRAPHS 

The notion of series-parallelism in graphs is not of recent vintage. It 

also is a concept which has found its way into a host of problem settings 

dealing with graphs and networks. Included are classic problems in electri-

cal engineering, routing and transportation problems, problems in network 

design and various precedence constrained scheduling problems. 

Accompanying this range of settings has been a concomittant growth in 

the literature of the various fields. This, in turn, has created a somewhat 

confusing situation insofar as a unified view of series-parallel structures 

is concerned. An early attempt at resolving this appeared in the work of 

Duff in (1965), and later, in Lawler (1978). 

For our purposes, the following definition of series-parallel graphs 

will suffice. In particular, we will say that a loopless, undirected graph, 

G(V,E) is series-parallel if it can be reduced to a forest by the sequential 

application of the following elementary operations. 

(i) series reduction:  Replace any degree-2 vertex k, and the 

incident edges (or pseudo-edges) e and f connecting k to 

vertices i and j # i respectively, by a new pseudo-edge g 

incident to i and j. 
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(ii) parallel reduction: Replace two edges (either or both of 

which may be pseudo-edges) e and f, both incident to vertices 

i and j, by a new pseudo-edge g incident to i and j. 

An alternative, and more familiar definition suggests that G(V,E) is 

series-parallel if and only if it possesses no subgraph homeomorphic to K 4 
(the complete graph on four vertices). This definition assures that all 

conforming graphs are planar but not the converse since K4  itself is planar. 

Regardless, it is easy to show that these two views of the series-parallel 

property are not equivalent, e.g., any 1-tree satisfying the latter defini-

tion and which has no degree-2 vertices is not reducible by operations (i) 

and (ii) above. 

With no additional specifications on G(V,E), our class of series-parallel 

graphs can accurately be viewed as a restricted class of those conforming to 

the definition employing the forbidden K4 subgraphs (or homeomorphs of K4
). 

However, if we take our graphs to be 2-connected then the definitions are 

equivalent. Recall that a graph is 2-connected if every pair of vertices lies 

on a cycle. Further, under 2-connectivity any valid sequence of operations (i) 

and (ii) will reduce such a graph (if and only if it is series-parallel) to 

a single edge or pseudo-edge ([2]). 

Note that we have introduced the term pseudo-edge in order to signify 

artificial edges which result from series and parallel reductions. These 

artificial edges, of course, represent subgraphs of G(V,E). Let us denote 

by G(e) the subgraph associated with pseudo-edge e and by V(e) and E(e), the 

vertex and edge sets of G(e), respectively. The vertices to which e is in-

cident will be termed the terminals of G(e). 



4 

When e E E (i.e., e is a "true"-edge in G) and e is incident to vertices 

say i and j, we shall set V(e) 	 and E(e) t {e} where e A (1, j). 

When e and f are series or parallel reduced to g, the associated G(g) is ob-

tained via V(g) t  V(e) u V(f) and E(g) 	E(e) u E(f). The key observations 

leading to the development of an algorithm for the STP on series-parallel 

graphs can now be stated. 

Lemma 1: Common Elements of Series or Parallel-Reduced Subgraphs. Suppose 

edges or pseudo-edges e and f are series or parallel-reduced to pseudo-edge 

g. Then 

la: E(e) n E(f) = 

lb: V(e) n V(f) = ikl where k is the common terminal of G(e) and 

G(f), if the reduction is series. 

lc: V(e) n V(f) = 	j} where i and j are the two terminals of 

G(e) and G(f), if the reduction is parallel. 

Proof: All edges and all non-terminal vertices of G(e) and G(f) have been 

absorbed in one of e or f before the two are combined as g. Hence, no such 

edge or non-terminal vertex could belong to both G(e) and G(f), In addi-

tion, G(e) and G(f) have exactly one (for series) or two (for parallel) ver-

tices in common which follows by definition of series and parallel reduction. 

iI 

It is obvious that the series and parallel reduction operations neither 

create not join disconnected components of G. Thus reduction will lead to 

a forest which is a tree exactly when G is connected. In dealing with the 

STP, we need consider only this case since G(V,E) admits a Steiner tree on 

vertices S c V if and only if vertices in S belong to a single component. 



5 

Earlier we stated that under the assumption that the original graph is 

2-connected, the reduction process always leads to a single (pseudo) edge. 

In order to simplify the ensuing presentation of cases, we will assume 

such a reduction to an edge always occurs. In cases where reduction 

yields a tree of 2 or more edges (the original graph may even be a tree) we 
A 

can induce 2-connectivity by adding an artificial, non-Steiner vertex, V, to 

the current, reduced graph and connecting it to every vertex of the tree by 

artificial edges having weight +co. Clearly, such an edge and hence, v, will 

not be part of an optimal Steiner tree. The next lemma assures that this con-

struction results in a 2-connected graph and more importantly, that it pre-

serves the series-parallel property. 

Lemma 2: Artificial 2-Connection of Tree Cases. Let T be a tree on vertex 

set V(T). Then the graph H formed by connecting a new vertex v to each 

i e V(T) is 2-connected, series-parallel. 

Proof: That H is 2-connected is clear since every pair i, j e V(T) lies on 

the cycle formed by edges (v, i), (v, j) and the unique path in T connecting 

i and j. To see that H is also series-parallel observe that if this were not 

so, then H would necessarily contain a subgraph homeomorphic to K
4 . One ver-

tex in such a subgraph might be v but at least three would belong to V(T). 

However, this would imply the presence of K 3  (or a homeomorph of K3) in T and 

hence, a cycle, which is not possible if T is a tree. Thus H contains no such 

homeomorph and is indeed series-parallel. 

We are now in a position to develop an algorithm for the STP under the 

stated series-parallel assumption. 
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3. DEVELOPMENT OF AN ALGORITHM 

Our aim is to develop an inductive procedure. That is, we wish to express 

optimal Steiner solutions in a subgraph, say G(g). This subgraph results from . 

a series or parallel reduction as a function of its antecedent subgraphs, say 

G(e) and G(f). From Lemma 1, we observed that G(e) and G(f) share no edges 

and have only terminal vertices in common. As a consequence, there are rela-

tively few cases to consider. The next lemma lists the possibilities for a 

series reduction. 

Lemma 3: Antecedents of a Tree Produced by Series Reduction. Suppose degree- 

' 2 vertex k, and edges or pseudo-edges a and f connecting k to i and j i re-

spectively, are series-reduced to pseudo-edge g. Then every tree, T, of 

G(g) satisfies one of the following: 

3a; T is a tree of G(e) 

3b: T is a tree of G(f) 

3c: T is the union of a tree of G(e) and a tree of G(f), both 

of which include vertex k. 

■ 

To produce a similar classification of cases under parallel reduction, 

we require an additional concept. B is a terminal biforest of the subgraph 

G(g) associated with pseudo-edge g if B consists of two disjoint trees, 

each including exactly one of the terminals of g. Accordingly, we have 

Lemma 4: Antecedents of a Tree Produced by Parallel Reduction. Suppose two 

edges or pseudo-edges e and f, both connecting vertices i and j, are paral-

lel-reduced forming pseudo-edge g. Then every tree, T, of G(g) satisfies 

one of the following: 
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4a: T is a tree of G(e). 

4b: T is a tree of G(f). 

4c: T is the union of trees of G(e) and G(f) both of which 

contain i and neither of which contains j. 

4d: T is the union of trees of G(e) and G(f) both of which 

contain j and neither of which contains i. 

4e: T is the union of a tree of G(e) containing both i and 

j with a terminal biforest of G(f). 

4f: T is the union of a tree of G(f) containing both i and 

j with a terminal biforest of G(e). 

■ 

Having introduced the terminal biforest cases, we must now consider how 

they night occur in reductions. The next two lemmas treat the series and 

parallel cases. 

Lemma 5: Antecedents of a Terminal Biforest Produced by Series Reduction. 

Suppose degree-2 vertex k, and edges or pseudo-edges e and f connecting k to 

i and j ¢ i respectively, are series reduced to pseudo-edge g. Then every 

terminal biforest, B, of G(g) satisfies one of the following. 

5a: B is the union of a tree of G(e) including vertex i but 

not k, and a - tree of G(f) including vertex j but not k. 

5b: B is the union of a tree of G(e) including both vertices 

i and k and a terminal biforest of G(f). 

5c: B is the union of a tree of G(f) including both vertices 

j and k and a terminal biforest of G(e). 
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Lemma 6: Antecedents of a Terminal Biforest Produced by Parallel Reduction. 

Suppose two edges or pseudo-edges e and f, both connecting vertex i to vertex 

j, are parallel reduced to a new pseudo-edge g. Then every terminal biforest, 

B, of G(g) satisfies the following. 

6a: B is the union of terminal biforests of G(e) and G(f). 

The previous four lemmas demonstrate that trees and terminal biforests 

of new pseudo-edge subgraphs can be derived from similar results which exist 

relative to their antecedents. We need only exercise some care in recording 

which terminals belong to various trees. To specialize the results to 

Steiner trees and Steiner terminal biforests (terminal biforests for which 

all Steiner vertices belong to one of the two trees), we need only check 

whether the antecedent structures can contain all required Steiner vertices. 

Also, since structures obtained by union in various cases of Lemmas 3-6 rep-

resent the union of edge-disjoint entitites, the optimal union will possess 

total weight equivalent to the sum of the weight of optimal antecedents of 

the specified types. 

With these observations, an algorithm for the STP can be stated in terms 

of edge (or pseudo-edge) labels. We define these below. 

t(e, -) A the weight of a minimum Steiner tree on G(e) that 

uses neither terminal. 

t(e, k) A the weight of a minimum Steiner tree on G(e) that 

uses only  terminal k (one label for each terminal). 

t(e, +) 0  the weight of a minimum Steiner tree on G(e) that 

uses both terminals. 

t(e, I) 	the weight of a minimum Steiner terminal biforest 

on G(e). 
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We can now state the algorithm formally. In the following, we denote the 

Steiner vertices by set S and edge weights, which may be arbitrary, by w(e) 

for e A (1, j) e E. 

Step 0: Label. Edges in E.  To each edge e = (i,j) in E assign the labels 

t(e, -) 	-1-°° 

if j e S 
t(e, i) 4-  

0 otherwise 

+03 if i e S 
t(e, j) 

0 otherwise 

t(e, +) 	w(e) 

t(e, I) 4— 	0 

Step 1: StoDp.in7i. If the present graph is a single (pseudo) edge, 

e = (i,j), stop; the weight of an optimal Steiner tree in G is 

min {t(e, -), t(e, 1), t(e, j), t(e, +)}. 

Otherwise, if a series reduction is possible, go to Step 2 and if a 

parallel reduction is possible, go to Step 3. 

Step 2: Series Reduction. Select any degree-2 vertex k of the 

present graph and let e be the edge (or pseudo-edge) connecting 

k to i and f, the edge (or pseudo-edge) connecting k to j. Replace 

k, e and f by a new pseudo-edge, g, with labels 
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t(g, -) 4--- 

min ft(e,k) + t(f,k), t(e,-)} 	if V(e) n S 	(1) 

and V(f) n S= 4,  

min { t(e,k) + t(f,k), t(f,-)} 	if V(f) n S 

and V(e) n S = $ 

min ft(e,k) + t(f,k), t(e,-), t(f,-)} if fV(e) u V(f)} n S 

t(e,k) + t(f,k) 	 otherwise 

t(e,+) + t(f,k) 
t(g, i) 4-- 

min ft(e,i), t(e,+) + t(f,k)} 

t(f,+) + t(e,k) 
t(g, j) 4-- 

min ft(f,j), t(f,+) + t(e,k)} 

if V(f) n S 

otherwise 

if V(e) n S # $ 

otherwise 

t(g, +) 	t(e,+) + t(f,+) 

t(g, 	min ft(e,+) + t(f,!), t(e,l) + t(f,+), t(e,i) + t(f,j)} 

Return to Step 1. 

Step 3: Parallel Reduction. Select any two edges or pseudo-edges e 

and f connecting the same pair of vertices i and j in the present 

graph. Replace e and f by a new pseudo-edge, g, with labels 

t(g, -) 

if V(e) n S 	s and V(f) n S= 4,  

if V(f) n S 	(I) and V(e) n S= 4,  

min ft(e,-), t(f,-)} if (V(e) u V(01 n S 

otherwise 

t(g, i) 4-- 	t(e,i) + t(f,i) 

t(g, j) 	t(e,j) + t(f,j) 
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t(g, +) 4- 	min {t(e,l) + t(f,+), t(f,l) + t(e,+)} 

t(g, 1) 4- 	t(e,I) + t(f,l) 

Return to Step 1. 

Prior to demonstrating the algorithm, we establish with the next result 

the validity as well as the efficiency of the procedure. We have 

Theorem: Correctness and Efficiency. Let G be a 2-connected and series-

parallel graph. The stated algorithm computes the weight of an optimal 

Steiner tree in G in time growing as a polynomial in the number of edges 

and vertices in G. 

Proof: To see that the algorithm is polynomial, we observe that each re-

duction of either type reduces the number of edges and pseudo-edges by one. 

In addition, computation associated with a reduction involves only scans for 

reducible cases and within each, label updates. Hence, the algorithm is 

clearly polynomial in IVI and 1E1. 

To show that the procedure always yields the correct solution value (or 

+00 if G has no Steiner tree) we can proceed inductively. Observe that 

straightforward application of the label definitions establishes that ini-

tial assignments are correct. 

Now, assume that labels do reflect the desired optimal values for edges 

or pseudo-edges e and f being series-reduced as in Step 2 of the algorithm. 

Label rules of Step 2 merely enumerate the antecedent combinations contem- 

plated by Lemmas 3 and 5 in order to produce optimal labels for the new pseudo-

edge g. Similarly, if a parallel reduction is performed at Step 3, labeling 

enumerates the cases of Lemmas 4 and 6. Since these are the only cases, cor-

rect labels must result. 
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Of course determining the weight of an optimal Steiner tree is not the 

same as "solving" the STP. To accomplish this, we must produce an appro-

priate subgraph having the optimal weight. The issue, however, is no dif-

ferent than that in say, shortest path analysis where a particular path is 

easily reconstructed from its length calculations by a simple backtracking 

scheme. The following example serves as an illustration. 

Suppose G(V,E) is given as in Figure la where edge weights, w(e), are 

given on the figure. Let S = {2, 3, 7}  and for ease, denote the edge labels 

by the format shown in Figure lb. Proceeding in step-by-step fashion we 

have 

Step 0:  Initially, the labels on all edges are set and appear 

as shown in Figure 2. 

Step 1:  Consider vertex 6 which is of degree two. Letting 

e = (5,6) and f = (6,4) we perform a series reduction, re- 

placing e and f by g = (5,4). The labels for g are calculated 

and we have 

t(g, -) 	min ft(e,6) + t(f,6), t(e,-), t(f,-) 

= min {0 + 0, +.0, +...) 

= 0 

t(g, i) 	min ft(e,5), t(e,+) + t(f,6)} 

= min {0, 10 + 01 

= 0 



t(g, j) 4— min (t(f,4), t(f,+) + t(e,6)} 

= min {O, 5 + 0} 

= 0 

t(g, 	t(e,+) + t(f,+) = 15 

t(g, I) 4-- min {t(e,+) + t(f,I), t(e,I) + 	t(e,i) + t(f,j)} 

= min {0, +o, 0} = 0 

Step 1: Replacing edges (5,6) and (6,4) by pseudo-edge (5,4) 

clearly does not produce a single edge graph and we continue. 

Step 2: Vertex 5 is now a degree-2 vertex and we can perform 

a series reduction again. Letting e A- (3,5) and f 	(5,4) in 

the present gra177., we create the new pseudo-edge g 4  (3,4). The 

labels on g are +=, 0, +0., 19 and 0 for t(g, -), t(g, i), t(g, j), 

t(g, +) and t(g, I) respectively. 

Step 1, 3: A pair of parallel edges now connect vertices 3 and 4. 

One of these is a real edge and the other is the result of the pre-

vious two series' reductions. Letting the pseudo-edge be the laiter, - 

 denote it by e and the true edge by f. Forming the new pseudo-edge, 

g 
A= (3,4) by parallel reduction produces the following labels 

t(g, -) 	-1.-co 	(note: V(e) and V(f) share Steiner vertex 3) 

t(g, i) 	t(e,3) + t(f,i) 

13 

= 0 
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t(g, j) 	t(e,4) + t(f,4) 

+co 

t(g, +) 4— min [t(e,l) + t(f,+), t(f,I) + t(e,+)} 

= min {0 + 3, 0 + 19} 

= 3 

t(g, I) 4— t(e,I) + t(f,I) 

= 0 

The procedure continues in this manner until stopping occurs with a single 

edge. This is guaranteed since the original graph is 2-connected. 

Regardless, we summarize the entire calculation in Figure 3 where at each 

iteration the new labels are given along with the associated subgraph G(g). 

The reader will observe that when Step 1 is finally invoked an optimal weight 

results as min {t(e, -), t(e, 8), t(e, 9), t(e, +)} = min f3, 1, 5, -2} = -2 

where the e 4 (8, 9). The optimal tree is shown in Figure 4. 

4. SUMMARY AND CONCLUSIONS 

In this paper we have presented a polynomial algorithm for treating the 

Steiner tree problem defined on graphs which possess a series-parallel struc-

ture. When our graphs are 2-connected-series-parallel on equivalent character-

ization is that they contain no subgraph homeomorphic to K4 . 

This work on Steiner trees stems directly from a more general context in 

which it has been shown by the first two authors that a rather rich class of 

combinatorial problems are efficiently solvable when the series-parallel 

property is present. In particular, it is known that numerous such problems 
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can be formulated as multi-commodity fixed charge network flow problems, the 

linear programming relaxation of which is perfect, i.e., integer. This latter 

condition results from a unimodularity property and polynomiality follows from 

the application of the ellipsoid algorithm [7]. 

Of course, from an algorithmic perspective, resting the case for formal 

efficiency on the solvability of linear programs is not at present very in-

sightful. However, we observe that when such a phenomenon has occurred pre-

viously, efficient combinatorial algorithms have generally resulted (e.g., 

matching). This, as much as any other reason has provided the motivation 

for the present algorithm for the Steiner tree. problem. To this extent, it 

is anticipated that continued research will produce similar results for other 

interesting problems defined on the class of series—parallel graphs. 
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Figure 1. Sample Problem 



Figure 2. Original Edge Labels for Sample Problem 
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Figure 3. (cont) 
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Figure 4. Optimal Steiner Tree for Sample Problem 
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ABSTRACT  

The problem of finding a minimum cardinality subset A c A such 

that the subgraph, G(V,X), preserves the reachability properties of digraph 

G(V,A) is well known to be difficult. In this paper, we consider a 

generalization which seeks a minimum weight subset A satisfying the 

stated conditions where the weights of arcs in A are assigned arbitrary 

integer values. A polynomial time algorithm is given for the case 

where the underlying, undirected graph is series—parallel. Naturally, 

the stated algorithm subsumes the cardinality case on such graphs as 

well. 



1. INTRODUCTION  

In this paper we consider the following problem: given a directed 

graph, G(V,A), where arcs, e s A are assigned arbitrary integer 

weights, c(e), find a minimum weight subset —A c A such that the graph, 

G(V,A) possesses a directed path between vertices u and v in V if an 

only if G(V,A) does. When c(e) are identical, the problem reduces to 

one of determining a minimum cardinality subset, and is known accor-

dingly, as the minimum equivalent graph problem (MEGP). Relativising, 

we shall refer to our problem as the weighted version of the MEGP and 

hereafter denote it by MWEGP. The corresponding graphs are denoted by 

MEG and MWEG, respectively. 

Relatively little has been done on the MEGP, although three not-

able papers have appeared: Moyles and Thompson (1969), Hsu (1975) and 

most recently, Martello and Toth (1982). Regardless, the MEGP is known 

to be difficult, its intractability having been established in Sahni 

(1974). Thus, since an algorithm for the MWEGP would trivially solve 

the MEGP, the former is difficult, as well, for instances defined on 

arbitrary directed graphs (the problem is uninteresting on undirected 

graphs since a minimum weight spanning tree provides the solution). 

However, in what follows we shall demonstrate that when the underlying 

simple graph of G(V,A) is in the class of graphs referred to as series—

parallel, the MWEGP can be solved in polynomial time. 

Following, we review some basic notions regarding series—parallel 

graphs, after which we motivate the development of an algorithm. We 

then provide a formal statement of the procedure and demonstrate it 

with a sample problem. After establishing the efficiency of the 



algorithm we conclude with some comments regarding other solvable 

problems on series-parallel graphs. 

2. BACKGROUND  

Let G(V,A) be a directed graph and denote by G(V,E), its undirected 

counterpart. That is, G(V,E) is obtained from G(V,A) by simply negecting 

the orientation of arcs in A. We then have that G(V,E) is series- 

parallel if and only if it can be reduced to an edge by the sequential 

application of the following elementary operations: 

(i) Series-reduction: replace any degree-2 vertex, k, and its 

incident edges (or pseudo-edges), e and f, connecting k to 

vertices i and jyki, by a pseudo-edge, g, incident to i and j. 

(ii) Parallel-reduction: replace any two edges (either or both of 

which may be pseudo-edges), e and f, both incident to vertices 

i and j, by a pseudo-edge, g, incident to i and j. 

(iii) Jackknife-reduction: replace any degree-1 vertex, k, its 

incident edge e=(j,k), and any other edge, f=(i,j), incident to 

e, by a pseudo-edge, g=(i,j). 

Alternately, Duffin (1965) has given the following characterization 

of series-parallel graphs. 

Theorem 1:  A loopless, undirected graph is series-parallel if and only 

if it possesses no subgraph homeomorphic to X
4 

(the complete graph on 4 

vertices). 

I:1 

There are also other specifications of series-parallel graphs whose 

equivalence with either of the two above is established in Rardin, Parker 

and Wagner (1982). Regardless, it is obvious that series-parallel graphs 

form a subset of planar graphs since '<. 4  itself is planar. It is also 
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worth observing that 2-connected graphs free of K
4 
homeomorphs are reduc-

ible to an edge by invoking only the series and parallel reductions. 

The latter observation above is important since it allows a slight 

simplification for the MWEGP. Clearly, any degree-1 vertex in a graph 

(either the original graph or one which has been reduced) implies the 

existence of a cut-vertex. Hence, if any pair of vertices (neither of 

which is the cut-vertex) in the two blocks induced by the cut-vertex are 

connected by a path, the path must include the cut-vertex. This, in 

turn, implies that there is no loss of generality if we consider only 

instances of the MWEGP which are defined on 2-connected graphs. To be 

consistent, we simply modify Theorem 1 accordingly and eliminate reduc-

tion operation (iii). 

Of course, there is discretion in how the series and parallel opera-

tions are applied on a graph. As it turns out, however, this application 

can be arbitrary. We have 

Theorem 2: If G(V,E) is a 2-connected, series-parallel graph, then any 

admissable sequence of operations (i) and (ii) will reduce G to a single 

edge. 

Proof:  See Richey, et.al. (1982). 

In Figure 1, we iliustate the reduction process. Here, the directed 

graph, G(V,A) is converted to its underlying, undirected counterpart, 

G(V,E) after which reductions (i) and (ii) are applied, culminating with 

a single edge. 
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(i) 

G(V,A) 
	

G(V,E) 

ii 

Figure 1. Series and Parallel Reductions 



3. DEVELOPMENT OF THE ALGORITHM  

3.1 General Concepts  

During the reduction process, pseudo-edges are formed by the series 

and parallel reduction operations. Each pseudo-edge represents a 

subgraph of the original graph. Of course, ascertaining the relationship 

between the MWEGs of these subgraphs and the MWEGs of their series and 

parallel combinations is at the heart of the ensuing algorithm. 

Suppose we let G r ( Vr'  E r ) denote the graph resulting from the 

application of a sequence of series and parallel reductions to the 

underlying, undirected counterpart of a directed graph, G(V,A). In 

addition, define C[e] to be the subgraph of G(V,A) with vertex and edge 

sets V[e] and E[e] respectively, corresponding to ee F. 

Now, a MWEG of G[e] must possess a path between any two vertices of 

G[e] if the vertizes are connected by a path in G[e]. In particular, 

consider paths between a terminal of G[e] (i.e. an element of V[e] n V
;
) 

and some other vertex in V[e]. Clearly, any path between i E V[e] and 

j E V\V[e] must use at least one terminal of G[e]. Thus, if i and j # i 

are elements of V[e], then any path between them which is not contained 

in G[e] must pass through both terminals of G[e]. This is so since a 

path passing through one terminal twice can be considered as two separate 

pieces, the cycle exterior to G[e] and the path interior to G[e]. We are 

lead to the following lemma: 

Lemma 3: If the values of the minimum weight subgraphs of G[e] are 

known with respect to the following properties for every e E E
, 

then the 

value of the MWEG of G(V,A) can be determined. 
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(i): Subgraph equivalent to G[e], denoted by 
	

(MWEG) 

(ii): Subgraph equivalent to G[e] which has a path from terminal i 

to terminal j (both of G[e]), denoted by 

(iii): Subgraph equivalent to G[e] which has a path from terminal j 

to terminal i (both of G[e]), denoted by 	 (44 

(iv): Subgraph equivalent to G[e] which has a path from i to j and a 

path from j to i, denoted by 

(v): Subgraph which would  be equivalent to G[e] if a path from i to 

j were added to the subgraph, denoted by 

(vi): Subgraph which would  be equivalent to G[e] if a path from j to 

i were added to the subgraph, denoted by 

(vii): Subgraph which would be equivalent to C[e] if a path from i to 

j and a path from j to i were added to the subgraph, denoted 

by 	 (-4741') 

(viii): Subgraph which has a path from i to j and would be equivalent 

to G[e] if a path from j to i were added, denoted by 47 4,  

(ix): Subgraph which has a path from j to i and would  be equivalent 

to G[e] if a path from i to j were added, denoted by 

Note: In (v)-(ix), subgraphs which "would be equivalent to Gje] if•..." include 

subgraphs which are equivalent to G[e] without the specified path(s). 

Proof: Consider vertices is Ne i] and j c V [ed such that there exists 

a path from i to j in G(V,A) which passes through edges (in order) 

e 1 ,e2 ,...,e 2  c Er  where Z > 1. Our proof will be by induction on k. 

Clearly, the lemma is true when 2. = 1 for by the discussion 

proceeding the lemma, each path between i and j must be entirely in G[e
1

] 

or else consist of arcs in E[e
1
] added to a simple path between the 

terminals of el . Since all possible combinations of paths between the 

terminals are included in the nine specified subgraphs, every possible 

subgraph of G[e l ] which could include a path from i to j in the MWEG of 
6 



G(V,A) is accounted for. 

Now, assume the lemma to he true for 1 = k. Then for 9, = k + 1, let 

t he the terminal vertex shared by e k  and e k+1 . Since t c G[ek], all 

possible paths between i and t which could be in the MWEG of G(V,A) have 

been considered. In addition, since t and j are in GCek+lj , all 

possible paths between t and j have been considered as well. Further, 

this is true for all possible terminals t, and hence all possible paths 

between the stated vertices i and j are accounted for by the nine 

specified subgraphs. This completes the proof. 

As it turns out, it is convenient to think of nine subgraphs not as 

separate cases but rather in terms of their interrelationships. That is, 

a given case can be viewed in terms of those cases which are restrictions 

of it. This leads to the hierarchy in Figure 2. Interpreting, a given 

case denoted by node i includes another, i' if there is a directed path 

from node i to node i' in the figure. 

Of course, no minor question at this point is that regarding the 

actual calculation of the subgraph labels specified in Lemma 3. That is, 

how are such values determined for a pseudo-edge from its constituent 

real edges? 

Let L[e] be a nine-tuple 	for pseudo- edge e with elements 

related as 

and denoted by X(e,*) a given value in the nine-tuple, i. e. 

* Ef++,+,...,44.}. Then the next two lemmas show how pseudo- edges 

interact. 
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Figure 2. Hiearchy of Subgraph Labels 
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Lemma 4: Let pseudo- edges e and f be series-reduced, forming pseudo-

edge g. Then 

t(g0-4-) = ge,*--*) + t(f )-4-+) 

t(g,+) = 9(e,+) t(f,+) 

1 (g2+) = 2(e,+) + k(f,+) 

£(g,MWEG) = ge,MWEG) + t(f,MWEG) 

t(g2) = ge,74) + 1..(f,;147:) 

= 	 + gf,17-0..) 

r  9,(e,+) + /(f,74 ) 

t(ed.+) + t(f,-;) 
t(g,4-4-) = min 

9(e,t6i7•) + 2.(f;4717.) 

k(g,MWEG) 

9 (e,+) + 9 (f, 4-4) 

9 (e2 44) + i(f,+) 
9.(g2 4-i") = min 

k(e,-.474) + t(f,..74) 

t(g,MWEG) 

r k(e2++) + 9 (f,÷4÷) 

9(e, 4-74 ) + t(f,'-+) 
t(g,-4-4+) = min el  

t(g, 4-71- ) 

Proof: In Table 1, the potential resulting graph from each of the 81 

label combinations are shown. Observe that crossed-out cells indicate 

subgraphs which cannot become part of the MWEG of the original graph due 

to Lemma 3. Cells marked by asterisks indicate subgraphs which dominate 

9 



the others in Figure 2. These combinations have simply been re-organized 

to produce the list given by the lemma. 

The reader may note that the series combinations preserve symmetry. For 

parallel reduction, we have 

Lemma 5: Let pseudo- edges e and f be parallel-reduced, forming pseudo-

edge g. Then 

2.(g,4-4.) = min  

t(g,+) = min 

t(g,+) = min 

i(e,++) + gf,474) 

z(e,4-74) + t(f,÷÷) 

2.(e,„Ttt) + t(f;470 

9(e;17;.) + t(r, -.47) 

z(e0.) + t(f0) 

t(e,4+) + l(f,+) 

R.(g,+-÷) 

(

t(e,+) + k(f,+.71..) 

k(e) -4-74) ÷ k(f24') 

l(g1+4') 

( t(e,MWEG) + i(f,MWEG) 

i(g,MWEG) = min 	t(g,+) 

t(g,+) 

t(e,;;t) + 2(f,+744) 
£(g, 4) = min 

t(e,+4+) + t(f,:1:) 

( 	+ t(f,471.) 
1/(g440 = min 

t(e04) + Z(f,";"(...) 
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r 9 (e,-4-4. ) + 9.(f) -71') 
9(g,44.) = min 	/, 

9(g) 

9(e,g4-71) + 9,(f,471.) 
9(g,+.74) = min 	

.9.(gA) 

9(g0-74) = ge0-74) 	9(f0.44.) 

Proof: Employing Table 2 rather than Table 1, the proof follows in 

analogous fashion to that of Lemma 4. We leave the details to the 

reader. 

3.2 The Algorithm 

We are now in a position to state a computational procedure. We 

present the scheme in step-by-step fashion. 

Step 0: 	  For the given instance, G(V,A) let Gr(lr ,Er ) be 

the associated indirected graph. Denote as c[e] the weight 

of arc e corresponding to edge e eEr  and let vertex i be the 

left vertex of e and j, the right vertex. Initialize L[e] as 

follows: 

ge,++) = +m 

t(e,-0.) = 

.st(e,-(-) = 

c(e) if e = <i,j> 

\„. + 0. if e = <j,i> 

+ co if e = <i,j> 

c(e) if e = <j,i> 

ge,MWEG) = c(e) 

9(e4) = 9(e,4.) 

t(e47;) = 9,(e,-4-) 

11 



min(c(e),0) if e = <i,j> 

( 
t(e,71.4-) = 

c(e) 	if e = <j,i> 

c(e) 	if e = <i,j> 
9.(e,44- ) = 

min(c(e),0) if e = <j,i> 

ge,4- 4) = min(c(e),0) 

Note that <i,j> denotes the ordered pair defining an element of A. 

Step 1: Reduction. Beginning with the initial G r  and referring to 

Lemmas 4 and 5, perform series and parallel reductions 

arbitrarily, updating Gr  after each. When Gr  can be reduced no 

further, go to Step 2. 

Step 2: Stopping. If Gr is a single pseudo- edge, stop; the problem 

solution is at hand. The MWEG of C can be obtained by 

backtracAing through the sequence of reductions which produced 

C . If G
r 

is not a single edge, then the underlying undirected 

graph of G(V,A) is not series-parallel. 
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Table 1. Series Reduction 

• — ►  MWEG .4-74-Or 

—. --A. MEG FWEG ::;:: lirlitirliir 11111111 ..-71- 

Milai3e.  
wirwow 

MWEG M jEG  p■ -■ko loW34Ww_ 
..--2_- 

% V h . 4 w oo 1 to . 	-4  I ■  1  -4  0 - 
0101 

. . . - I L 	. _,44■4/ ..4.1w  
El■ W4-4 0-_,4■_■111■11-41 

Mt■ 

Table 2. Parallel Reduction 

MWEG --el. -4— 
---44-4•• 

04--4b. .14----Pb ■01---bw ■4.--ttim• .44--Ii■ 

1,--■.. 

TEG H
I
 
 

1111-1C11  

-9 
b. 

p
i[ilt  

 

	

.- ".111,  .111, 

	
 

$1  

_._ 
•••10-74--• 

— tr 

-b. 
.----.4b. 

.4F-i-- 

.-4-71-- 
---at. 

•■•■-•.--o..- 

-- 1w. 

---4-44.. 
..41---- 

F-- 

13 



3.3 An Example  

In order to demonstrate the algorithm, consider the graph shown in 

Figure 3. Weights are specified directly on the arcs. Initializing we 

have: 

1,[1,41=(03,4,03,4,4,03,0,4,0) 

1,[2,3]=(c0,2,c0,2,2,c0,0,2,0) 

L[3,4]=(co,c0,5,5,03,5,5,0,0) 

1,[6,7]=(c0,03,2,2,0.,2,2,0,0) 

L[9,8]=(00,c0,7,7,c0,7,7,0,0) 

L[8,11]=(c0,2, ,,, ,2,2,03,0,2,0) 

I[11,8]=0D,c0,9,9,03,9,9,0,0) 

L[9,10]=(x,03,1,1,03,1,1,0,0) 

L[9,11]=(c,3,00,3,3,c0,0,3,0) 

L[9,12]=(c0,00,3,3,..,3,3,0,0) 

L[11,12]=(co,c0,1,1,=0,1,1,0,0) 

The entire computation can be summarized by Table 3 where specific choices for 

reduction are shown in the first column with the pseudo-edge creation 

and label computation in the second and third. Observe that we denote 

series and parallel reduction as S and P respectively. The backtracking 

process is depicted by the boxed label components and the resulting 

MWEG is shown in Figure 4. 
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Figure 3 Graph of Example 
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a  

P U1 b 0 

P 1Q 
d 0 
e 0 
f  

S O5 	g 
P 5O h 

0 
i  

	0 

S 80 k 
(1) 

P  

q  

r  

s ® 

j  

Table 3. Summary of Computation for Example Problem 

L[a]=(c0,1,00,14],c0,1,1,1) 

• L[b]=(,-2,-2,-2,-2,-2,-2,-2,-2) 

Lici=(cW,9,°D,c°,5,44 

L[d]=(2,212,2,2,2,2,2,2) 

L[f]=(o,3,a,15,15,co,15,15,15) 

L[g]=(°',c°,3,3,° 3 ,3 C3,3) 

L[h]=(18,02,18,18,18,18,18,18,18) 

L[i]=(0.,c0,0.,6,0.,03,143,1) 

1..[Icj=(0.,c0,21,21,c0,21,210,18) 

L[1]=(.0,coo.,22,c0,0, ,22,19,[11D 

L[m]=(1,1,1,1,0,1,1,-6,-6) 

L[n]=(20,20,20,201131,20,20,13,13) 

L[p]=(11,11,11,11,21/.9,2,0) 

1.(q1=(31,31,31,31 	,22,22,22,20) 

L[s]=(7,7,7,7,7124,7,4) 

L[tj=(26,26,26,51,26,24,24,26,24) 
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Figure 4 MWEG of Example 
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3.4 Discussion  

Of course, crucial issues regarding the algorithm presented are 

its correctness as well as its computational requirements. Accordingly, 

the following theorem summarizes: 

Theorem 6: The MEG algorithm will, in polynomial time, correctly 

produce a desired subgraph or stop with the conclusion that the input 

(undirected) graph is not series-parallel. 

Proof: First consider stopping and suppose that step 2 is reached with 

Cr not an edge. Then the minimum vertex degree in Gr is three and thus, 

Cr must possess a subgraph homemorphic to K 4 
[e.g. Dirac (1952), Richey, 

et. al. (1982)]. But this must mean that the original graph G(V,E) 

possesses a subgraph homeomorphic to K4  and by Theorem 1 is not series-

parallel. Regardless, step 2 must be reached after polynomially many 

series and/or parallel reductions which is immediate since simply testing 

if an arbitrary graph is series-parallel can be done in 0(1 V1 + I El) 

steps as shown in Rardin, et. al. (1982). 

A correct structure must be produced by the algorithm since in the 

proofs of Lemmas 3-5, all possibilities for subgraph construction via the 

reduction process are accounted for. In addition, the pseudo-edge label 

updates require computation independent of instance size leaving in tact 

the stated polynomiality of the procedure. 

Ea 
We observe that alternative statements of polynomial time series-

parallel testing are available in the literature in addition to that 

alluded to in the proof above. Among these are Liu and Geldmacher (1980) 

and Takamizawa, Nishizeki and Saito (1982). 
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4. SUMMARY  

In this paper, we have confined our interest to a specific problem 

on series-parallel graphs. Other results have emerged in this regard as well, 

notable among which are Takamizawa, et.al. (1982) and Wald and Colbourn (1983). 

In the latter, an algorithm is presented for the Steiner tree problem- 

a result also obtained (independently) by the present authors (see Rardin,et.al. 

(1932)). Regardless, the impetus for our specific development here per- 

taining to the MWEGP is based largely on the requirement that instances 

be defined on directed graphs. That is, the dimension of directionality 

inherent in the problem clearly gives rise to a degree of complication 

which may not be presen: in many problems defined on undirected 

(series-parallel) 

Of course, it is w:r:hwhile to think of specific algorithmic strategies 

for other problems wl:ffb. :night also be resolvable on series-parallel 

graphs. To this extent, it is also interesting to think of ones which 

might be intractable (ye: solvable on trees, say). Even so, a fund-

amental question which is worthy of pursuit pertains to the gap between 

series-parallel and planar graphs. It appears that the former class of 

graphs is rich in terms of interesting problems which are amenable 

to efficient solution .  procedures while for the latter, many problems are 

known to be difficult. An investigation of the territory between these 

two classes would seem t be an interesting undertaking. 

19 



REFERENCES  

1. Dirac, G. A. (1982), "A Property of 4-Chromatic Graphs and Some 

Remarks on Critical Graphs", J. London Math. Soc., 27, 85-92. 

2. Duffin, R.J. (1965), "Topology of Series-Parallel Networks", J. 

Math. Anal. Appl., 10, 303-318. 

3. Hsu, H.T. (1975), "An Algorithm for Finding a Minimum Equivalent 

Graph of a Digraph", J. of the ACM, 22, 11-16. 

4. Liu, P. C. and R. C. Geldmacher,(1980),"An 0(max(m,n)) Algorithm 

for Finding a Subgraph Homeomorphic to K 4" Proc. 11th Southeastern  

Conf, on Combinatorics, Graph Theory, and Computing, 597-609. 

5. Martello, S. and P. Toth (1982),"Finding a Minimum Equivalent Graph 

of a Digrap,. . Networks,  12, 89-100. 

6. Moyles, D.M. ani G.L. Thompson (1969), "An Algorithm for Finding a 

Minimum Equivalent Graph of a Digraph," J. of the ACM, 16, 455-460. 

7. Rardin, R.L., R.G. Parker, and M.B. Richey (1982), "A Polynomial. 

Algorithm for a Class of Steiner Tree Problems on Graphs," ISyE 

Report Series J-82-5, Georgia Tech, August. 

8. Rardin, R.L., R.G. Parker, and D.K. Wagner, (1982), "Definitions, 

Properties and Algorithms for Detecting Series-Parallel Graphs," 

Technical Report, Department of Industrial Engineering, Purdue 

University, W. Lafayette, IND. 

9. Richey, M.B., R.G. Parker, and R.L. Rardin, (1982) "On a Class of 

Graphs Possessing at Most One Hamiltonian Cycle", ISyE Report Series 

J-82-11, Georgia Tech., November. 

10. Sahni, S., (1974), "Computationally Related Problems,' SIAM J.  

Computing, 3, 262-279. 

20 



11 	Takamizawa, K., T. Nishizeki and N. Saito (1982), "Linear-Time 

Computability of Combinatorial Problems on Series-Parallel Graphs", 

J.  of the ACM,  29, 623-641. 

12. Wald, J.A. and C.J. Colbourn (1983), "Steiner Trees, Partial 2-

Trees, and Minimum IFI Networks", Networks, 13, 159-167. 

21 



ON A CLASS OF GRAPHS HAVING 
AT MOST ONE HAMILTONIAN CYCLE 

by 

M. B. Richey
t 

R. Gary Parker' 
and 

R. L. Rardin
t 

J-82-11 

Industrial and Systems Engineering 
Report Series J-82-11 
November, 1982 

tSchool of Industrial and Systems Engineering 
Georgia Institute of Technology 
Atlanta, Georgia 30332 

This material is based in part upon work partially supported by the 
National Science Foundation under grant number ECS-8018954. 



ABSTRACT 

We show that for the class of graphs referred to as series-parallel  

at most one hamiltonian cycle is present. A linear time algorithm is 

proposed for producing such a cycle or alternately, concluding that the 

input graph is not hamiltonian. In fact, we decide the hamiltonicity 

issue on series-parallel graphs and in so doing, provide a proper 

characterization of when such graphs are hamiltonian. 
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1. PRELIMINARIES 

In this note we consider the problem of deciding hamiltonicity on a 

class of biconnected graphs which are referred to as series-parallel.  

One source of interest stems from the variety of problems which, although 

difficult in general, are resolvable on graphs in the stated class. 

Illustrations can be found in Valdes, et. al. (1982), Takamizawa, et. al. 

(1982), and Rardin and Parker (1982). 

Formally, a biconnected graph without loops is series-parallel if and 

only if it can be reduced to an edge by the sequential application of 

the following elementary operations: 

(i) Series reduction:  Replace any degree-2 vertex, k, and the 

incident edges (or pseudo-edges) e and f connecting k to 

vertices i and j 	i, by a pseudo-edge, g, incident to i 

and j. 

(ii)Parallel reduction:  Replace two edges (either or both of 

which may be pseudo-edges) e and f, both incident to vertices 

i and j, by a new pseudo-edge, g, incident to i and j. 

Alternately, Duffin (1965) has given the following characterization 

of series-parallel graphs which shall prove useful in this work. 

Theorem 1:  A biconnected graph G is series-parallel if and only if it 

possesses no subgraph homeomorphic from K
4

. 



Clearly, the conforming class of graphs is a proper subset of planar 

graphs since K
4 
itself is planar. It is also worth observing that 

biconnected graphs free of K
4 
homeomorphs are reducible to an edge by 

the series and parallel operations. It is also true that relaxation 

of the biconnectivity assumption produces graphs which are series- 

parallel per Theorem 1, yet cannot be reduced to an edge. This is of no 

real consequence here, however, since biconnectedness is a trivial 

necessary condition for hamiltonicity. 

Also supporting subsequent developments is the next result which we 

state and prove as a lemma. Letting IS denote the minimum vertex degree 

in a graph, we have: 

Ler'ma  2.  If G(V,E) is a biconnected graph without loops or multiple edges 

and with d(G) > 3, then G possesses a subgraph homeomorphic from K
4

. 

Proof:  Let 8 be a subgraph in G satisfying the following property: a 

consists of a cycle, C* and a path connecting a pair of vertices in C* and 

passing through a nonempty set of vertices a where a fl C* 4. Let this 

path be Pkk 
= (k,a,t) where k,t e C*. Such a subgraph must exist in any 

graph satisfying the theorem. Let us denote by C1 
and C2, the two sub-

cycles in a sharing Pm:  Initially, let Q. 1_1_ {i: i e C 4N2ki} and select a 

vertex x e a. Since the degree of x is 2 in a, there must exist an edge 

(x,j) in i\E(a). If j c Q. we are done, having formed the desired homeo-

morph. So assume j 	O. Since G is biconnected, G - x is connected, so 

there must be a path from j, and hence from x to some y e Q, say P P. 
xy 

For Pxy 
 = (x,a,y), if a fl v(a) = or if t, the first vertex of inter- 

section with G, is in Q, we are also finished, having produced K4 

 homeomorph. If, however, a fl v(a) # $ and the first point of intersection 

2 
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is not in 0, then this vertex, t, must lie on the path Pla (see Figure 1). 

However, in this case we can reduce the problem to one defined on a new 

graph given as either C1 
or C

2 
appended with Pxy

. . New subcycles C
1 and 

C
2 
are defined accordingly, vertices x and t are relabeled as k and 2., 

the new graph is a and the process is repeated with augmented set Q -(see 

Figure 2). Since Q's cardinality increases by at least one each time a 

reduced problem is created, we must reach a point where, for a specific 

choice of x, the path from x to some y E Q. first intersects a at a vertex 
t E Q. In such a case we have formed a K

4 
homeomorph and we are finished. 

There will naturally be some discretion in applying the series and 

parallel operations in a typical graph. Regardless, the next theorem 

establishes that this application can be arbitrary, i.e. the series and 

parallel operations are well-defined. 

Theorem 3, let G(V,E) be a loopless biconnected, series-parallel graph. Then 

any suitable sequence of operations (i) and (ii) will reduce G to an edge. 

Proof: Suppose we have for a graph satisfying the theorem, a sequence of 

reduction operations given as (ri ,r2 ,...,rk) where the sequence stops after 

the kth operation. Let us assume that the graph produced at this point G' 

is not an edge. Then since no further reductions are possible, G' contains 

no degree-2 vertices; that is, S(G') > 3. However, from Lemma 2, this 

means that G' and thus G, possesses a subgraph homeomorphic from K
4 
and 

we contradict the assumption that G is series-parallel. Hence, for a 

given G, any suitable sequence of reductions will produce an edge exactly 

when G is series-parallel. 
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Figure 1. 
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2. MAIN RESULTS 

Our principal result can be summarized by the following theorem: 

Theorem 4. If a graph is series-parallel, then it has at most one 

hamiltonian cycle. 

Proof.  Let G(V,E) be any graph having two or more hamiltonian cycles 

and denote two of these cycles by the vertex sequences T = 

and T' = 	 where we can assumed without loss of generality 

that i1  = ii. Let the edges implied by I and T' be E(T) and E(T') respec-

tively. Now, denote by 6, the subsequence of vertices which T and T' 

have in common, beginning with i 1 , i.e., 8 = {i 1 ,i2 ,...,i t }, t < p-1. For 

it+1 t+1 , 	i';+1 
let u = 	c V),9 and create sets Qi  and Q2  where 

= 	t+1 < k < k, II  = ul 

7 = {ik
: 2+1 < k < p} - 

Since T' is a hamiltonian cycle, it must contain at least two edges 

which are incident to one vertex in 	and one vertex in kr. At most 

one of these edges is incident to u because edge (i t ,u) is in E(T'). So, 

let (v,w) be an edge in EIT') such that w # u, w c VV.].  and v c Q1 . Also, 

we have that w # i
t 

since 
(it-l'it) 

 and (i
t
,u) are already in the cycle 

given by T'. 
■ 

Hence, it , u, v and w are distinct vertices and (i t ,u) and (v,w) are in 

E(T'). Thus, E 0 E(T) u [(i ,u), 	,w)}. However, these edges form a 

subgraph homeomorphic from K 4  (see Figure 3) and the other edges of E cannot 

destroy this property. Therefore, G is not series parallel, which 

establishes that no series-parallel graph can possess more than one hamilton-

ian cycle and the proof is complete. 



7 

Figure 3. 
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The result in Theorem 4 trivially carries over for directed graphs. 

Here, we will call such a graph series-parallel if its underlying, undirect-

ed graph is series-parallel. Obviously, this underlying graph must be 

hamiltonian if the directed counterpart, G(V,A), is to be as well. In such 

a case, we need only check the orientation around the cycle relative to A. 

We have, then, that for a series-parallel graph G(V,E), which is hamil-

tonian; the corresponding cycle is unique. Following, we state an algorithm 

which produces such a cycle if it exists, or concludes that the graph is 

not hamiltonian. In essence, the procedure decides hamiltonicity for 

series-parallel graphs. 

Algorithm SPHAM  

Step 0:  Initialization. Let G(V,E) be a series-parallel graph 

and label each edge, e e E by 2.(e) = {e}. 

Step 1: Series Reduction.  Locate (if possible) a degree-2 

vertex in G, say k, and denote the edges (one or both 

of which may be pseudo) incident to k by e l  d  (i,k) 

and e2 	(k,j). Replace e l  and e2  having labels ge l) = Cl and 

k(e2 ) = 2  respectively, by a pseudo-edge having 

label cl  u 	Call the new graph G. 

Step 2: Parallel Reduction.  Locate (if possible) a pair of 

parallel edges in G, say e
1 

and e2, and let the 

incident vertices be i and j. If el  and e2  are both 

pseudo (i.e., min(12(e1)1,12(e2 )1) > 2) and G is not 

of order two, stop;  the original graph is not ham- 

iltonian. If one or both of the edges are pseudo 

and these are the only edges in G, go to (3). 
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Finally, if one edge is pseudo and the other is not, 

keep the pseudo-edge and its label, discard the 

other edge and let the new graph be G. Repeat this 

step until no parallel edges remain then return to 

(1). 

Step 3: Stopping.  The original graph has been reduced to a 

cycle on two vertices where either one edge is pseudo 

and the other is real or both are pseudo. In either 

case, a hamiltonian cycle in the orginal graph is - 

obtained from the labels of the final two edges. 

Note that the issue regarding the actual construction of a hamiltonian 

cycle is left open. Clearly, ordering can be preserved and updated during 

the course of the algorithm or it can be accomplished at termination of the 

reduction operations. The efficiency of the procedure is unaffected in 

either case. 

The correctness of SPHAM follows rather easily from earlier results 

in conjunction with the lemma below: 

Lemma 5:  Any graph H, which is homeomorphic from K23 cannot be hamiltonian. ,  

Proof.  Since K23 
is bipartite, it cannot have an odd cycle, which certainly 

precludes it from being hamiltonian. Likewise, any graph homeomorphic from 

K
23 

cannot be hamiltonian either, since arbitrary vertex insertions cannot 
, 

 

possibly alter this condition. 
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Thus we have: 

Theorem 6.  Algorithm SPHAM will correctly produce a hamiltonian cycle in 

a biconnected, series-parallel graph, G, or-will conclude that none exists. 

Proof:  If the algorithm reaches Step 3, we clearly have decided that G is 

hamiltonian. Since each label represents a hamiltonian path on the subgraph 

corresponding to its pseudo-edge, and since all vertices of G must be in one 

of the two subgraphs, the desired hamiltonian cycle is easily found from the 

final labels. 

Otherwise, the only way the algorithm can stop is in Step 2. Here, a 

reduced graph of order greater than two, results with two pseudo-edges in 

parallel. But this means that the original graph possesses a subgraph homoeo-

morphic from K23 . Let this subgraph be H (see Figure 4a) and assume without 

loss of generality that G itself is not homeomorphic from H since lemma 5 

would preclude G from being hamiltonian. Rather, assume G to be hamiltonian 

and denote the vertices lying on the path from v l  to u to v2  in H by V1 . 

Now, for G to be hamiltonian, there must exist at least one path from some u 

to a vertex v e V(H)\V1  (there may, of course, be other paths as well). Let 

this path be given by edge set Euv  (see Figure 4b). It is clear that the 

graph H appended by edges in E forms a subgraph homeomorphic from 
uv 

K4,which denies that G is series-parallel. Hence, no series-parallel graph 

possessing a subgraph homeomorphic from K23 can be hamiltonian. This com-

pletes the proof. 

I 

Algorithm SPHAM can be applied in such a way so as to require effort 

bounded by a function which is linear in the number of vertices and edges 

of the input graph. This follows from developments in Rardin and Parker 

(1982). 

We conclude the current section with the following useful characterization. 
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Theorem 7. A biconnected, series-parallel graph G(V,E) not isomorphic to 

K4 
- e,is hamiltonian if and only if G has no subgraph homeomorphic from 

K2,3. 

Proof. We exclude the graph K4  - e since it is obviously hamiltonian and 

yet is homeomorphic from K23 . So in the ensuing proof, any reference to 

biconnected series-parallel graphs is understood to exclude K 4  - e. 

First, suppose G is biconnected and series-parallel and possesses a 

subgraph homeomorphic from K2,3 . Then if G is hamiltonian,we observed 

from the proof of Theorem 6 that G would necessarily have a subgraph 

homeomorphic from K4,contradicting the assumption that it is series-paral-

lel. 

Conversely, assume that G is not hamiltonian. Then from SPHAM, we 

have that termination must occur with a reduced graph on three or more 

vertices with two parallel pseudo-edges. Again, we saw earlier that this would 

mean G has a subgraph homeomorphic from K 2,3 . 

We have,then,that G is hamiltonian precisely when it has no K 2,3 

 homeomorph as a subgraph and is not hamiltonian when such a subgraph is 

present. This establishes the characterization and the proof is complete. 

3. SUMMARY 

We have shown that deciding hamiltonicity on series-parallel graphs 

is an easily resolvable issue. Further, if such a graph is hamiltonian, 

we know that its cycle is unique. This, in turn, implies that solving 

a traveling salesman problem on a series-parallel graph is indistinguish-

able from determining whether or not the graph is hamiltonian. Interestingly, 

this latter property may hold merit in the context of generating hard test 

problems for general-purpose traveling salesman algorithms. Some work has 
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been done in this area and additional insight might be available from 

results we have presented here. 
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1. INTRODUCTION 

Let G(V,E) be a complete undirected graph of order IVI) 3 with 

weights c..
ij 
 on every edge (i,j) in E. Traveling Salesman Problems are 

defined over hamiltonian cycles in G (i.e. simple cycles including all 

vertices). The classic minisum version of the problem is 

1 
min 	7 	c i  : H is the edge set of a hamiltonian cycle of G 

(i,j)EH 	J  

Its cousin, the minimax or Bottleneck Traveling Salesman Problem (BTSP) 

is 

i 

min 	max : c 	: H is the edge set of a hamiltonian cycle of G 
(1,1) : 	ii  

It is easy tc see that a polynomial-time algorithm for (BTSP) would 

provide a polynomial-time mechanism for testing whether arbitrary graphs 

are hamiltonian. Since the latter is a classic and formally difficult 

problem, exact polynomial-time algorithms for (BTSP) cannot exist unless 

P= NP. 

It is natural, then, to seek polynomial-time, nonexact algorithms 

with constant performance bounds, i.e. worst-case bounds independent of 

problem parameters. In spite of the wide literature of such algorithms 

for the minisum Traveling Salesman Problem (see for example Parker and 

Rardin (1983a)), and the treatment of heuristic algorithms for (BTSP) in 

Garfinkel and Gilbert (1978), we know of no previous constant-

performance-bound, polynomial-time heuristic for (BTSP). 

1 



c
ij 

 

p+1 if (i,j) 	E 1 1 if (i,j) c E 

In this note we investigate such algorithms. Our main result is a 

procedure with worst-case bound 2 holding when costs are positive and 

satisfy the triangle inequality. We also show that it is not likely that 

this hound will be reduced by any alternatiVe, polynomial algorithm. 

2. ARBITRARY COSTS 

Sahni and Gonzales (1976) demonstrated that, unless P=NP, the 

minisum Traveling Salesman Problem admits no constant-performance-bound, 

polynomial-time algorithm when costs are arbitrary. A corresponding 

result holds for (BTSP). 

Theorem 1: There can exist no polynomial-time, constant-performance-

bound algorithm for an arbitrary instance of (BTSP), unless P=NP. 

Proof: We proceed 777 showing that if the indicated algorithm, A, with 

finite hound p did exist, it could be employed to test hamiltonicity in 

arbitrary graphs-- proving P=NP. Assume PAP* < p < + co where nA  is the 

value produced by algorithm A and n* is an optimal value. Now, for an 

arbitrary graph G(V,E), we can construct a corresponding instance of 

(BTSP) by completing the graph and assigning weights 

Suppose G is hamiltonian. Then in the corresponding instance of (BTSP) 

we have n* = 1 and hence
A 

< p. Conversely, if G is not hamiltonian, 

then n* = p+1 which implies that nA 
> p. Thus G is hamiltonian precisely 

when 52
A 

is not greater than p, and algorithm A provides a polynomial-time 



procedure for deciding which graphs are hamiltonian. 

a 

3. AN ALGORITHM 

The negative result of Theorem 1 makes very unlikely a polynomial 

time, constant-performance-bound algorithm for arbitrary instances of 

(BTSP). However, we can derive one under more restricted costs. 

3.1 Biconnected Subgraph-s 

A graph is said to be biconnected if every pair of its vertices 

belong to at least one common cycle. For a given biconnected graph 

G(V,E) we can define the Bottleneck Biconnected Subgraph problem (BBS) 

as 

7.1:1 	 max c .. : G( V,S ) is biconnected, SC E 
(i,j) € S 	1 ' 1  

It is easy to see that (BBS) provides a lower bound on (BTSP). 

Lemma 1: For 0* = the optimal value of (BTSP) and SI
BB Optimal in (BBS), 

51
BB 

4 Mr 

Proof: Immediate from the fact that every hamiltonian cycle of a G(V,E) 

is a biconnected subgraph. 

a 

Problem (BBS) is also very easily solved. A straight-forward greedy 

procedure gives a polynomial-time algorithm: 

Algorithm BB(weighted biconnected graph G(V,E)) 

Step 0: Initialization. Sort edges of E into nondecreasing order by 

edge weight c if and initialize solution set E 	0. 
BB 

3 



Step 1: Augmentation. Select the next edge in order of the sorted 

list and place it in EBB . 

Step 2: Stopping. Test whether G(V, E BB) is biconnected. If so, 

compute 

BBB  + max f c ij  : (i, j ) c EBB)  -  

and stop. Otherwise, repeat Step 1. 

111 

Lemma 2: Algorithm BB correctly computes an EBB  optimal in (BBS) in time 

bounded by a polynomial in !E!. 

Proof: The E
B3 

solution obtained from Algorithm BB is obviously optimal 

because G(V,_ 
F1313' 

 ) is biconnected and construction shows every suhgraph 

with lesser bottleneck cost is not. For polynomiality, note that Step 0 

is a sort requiring (1E1 log 1E1) time. Steps 1 and 2 are executed on at 

most 1E1 occasions, and the required check of biconnectedness at Step 2 

can be done in 0(1E11 time (see e.g. Aho, Hoperoft and Ullman(1q76)). 

1 
Thus, the algorithm completes in at most 0(1E1

2 
 ) time. 

3.2 Hamiltonian Cycles in the Squares of Graphs  

For an arbitrary graph G(V,E) the Square G (V,E 2 ) is the graph 

formed by adding "short cut" edges for every two edge path. That is, 

2 (V 2 ,E G 	) has the same vertex set as G, and edge set 

4 



2 A 
E = 	 (i,j,k) is a path of G(V,E)) 

for some j E V 

The two graphs in Figure 1 illustrate the concept. 

Neither the first graph in Figure 1 nor its square are hamiltonian. 

In fact, the tree shown establishes that connectivity in a graph is not 

enough to guarantee hamiltonicity of its square. If we require G to be 

biconnected however, the matter is different. 

Lemma  3 (Fleishner (1974b)):  The square of any biconnected graph is 

hamiltonian. 

The fact that Lemma 3 holds was conjectured by Nash-Williams and 

later proved by Fleischner. Fleischner's proof is an existence one, but 

it yields algorithmic insights. In Rardin and Parker (1983b), we show 

explicitly how an algorithm can be devised from those insights to exhibit 

a hamiltonian circuit in the square of any biconnected graph. 

Details of the Procedure are far to bulky to include here. However, 

the approach is to derive from the given biconnected graph a particular 

connected and spanning subgraph possessing structural properties 

sufficient to make easy the construction of a hamiltonian cycle in its 

square. These subgraphs are defined by the edge-disjoint union of an 

Euler subgraph and a forest of vertex-disjoint paths. Fleishner (1974a) 

proved that any biconnected, bridgeless graph possesses such a subgraph 

and outlined how to identify a hamiltonian cycle in its (and thus the 

original graph's) square when, in addition, every edge meets at least one 

degree-2 vertex. The companion paper (1974b) inductively treats a large 

5 



number of cases in demonstrating that subgraphs with the needed degree-2 

property can be obtained via suitable contraction. 

Discussion in Rardin and Parker (1983b) shows that at each step of 

these constructions, the cardinality of at least one specified edge on 

vertex subset is reduced. Since steps themselves involve only polynomial 

exercises such as identifying the biconnected blocks of a graph, finding 

shortest paths and exhibiting Euler traversals of given Euler subgraphs, 

polynomiality of the entire algorithm is guaranteed. We summarize: 

Lemma 4: Given any biconnected graph G(l4E), a hamiltoniancycle HCE2 

can beproduced in the square G
2 (V,E2 ) of Gin time bounded by a 

polynomial in IVI and lEl. 

m 

3.3 The Algorithm  

We are now ready to specify our nonexact algorithm for (BTSP). 

Algorithm BT (Weighted Complete graph G(V,E); 

Step 1: Bottleneck—optimal Biconnected Subgraph. Apply Algorithm BB 

above to obtain G(V,EBB), a bottleneck—optimal biconnected subgraph 

of G(V,E). 

Step 2: Tour. Identify an approximate optimal tour for (BTSP) by 

tracing a hamiltonian cycle, HBT, in the square G
2 (1.;E2 BB) of the 

result from Step 1, and define 

PBT A = max {cif : (i,i) E HRT 

6 



The algorithm certainly produces a feasible solution to (BTSP). 

Moreover, its polynomiality follows from Lemmas 2 and 4. 

4. PERFORMANCE BOUNDS UNDER THE TRIANGLE INEQUALITY 

Costs satisfy the triangle inequaltiy  if c ij  + c ik  cik  for all 

i,j,k E V. Results of the previous section allow us to establish a 

constant worst-case bound on the performance of Algorithm BT in the 

presence of the triangle inequality. 

Theorem 2: Let G (V,E) be a complete undirected graph with positive 

weights c ii  satisfying the triangle inequality. Then, if n* is the 

optimal value of (BTSP) on G, and (I n  the value produced by applying 

Algorithm BT to G, 

" BT 
/ n* < 2 

Proof: By Lemma 1, n B3 , the value of the bottleneck-optimal biconnected 

subgraph produced at Step 1 of Algorithm BT satisfies nm < n* or 2n BB/n* 

4 2. But edges of iisT , the hamiltonian cycle obtained from Algorithm BT, 

either belong to E BB , the optimal edge set from Algorithm BB, or 

correspond to two-edge paths of EBB
. Under the triangle inequality no 

edge of H T  can thus cost more than 2S1 BB
. That is, 0.

BT 
< 251

BB
and the B 

proof is complete. 

113 
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One needs only to assign weights 1 and 2 suitably to show the bound 

of Theorem 2 is realizable. Naturally, of course, we would prefer a 

smaller value than 2. Our last result shows none is likely. 

Theorem 3:  Let A be any polynomial—time algorithm yielding nonexact 

solutions for (BTSP) and QA  the value of solutions produced by A. If 

there exists a constant p such that P
A 

/ 	< p for all (BTSP) instances 

satisfying the hypothesis of Theorem 2, then, unless P=NP, p > 2. 

Proof: As with Theorem 1, we show that an Algorithm A with worst—case 

performance bound p < 2 could be used to test hamiltonicity of 

arbitrary graphs--proving P=NP . Here we choose costs 

if (i,j) c E 
c = 
ij 

2 otherwise 

in completing the graph. Clearly, the indicated c 	satisfy the triangle 
13 

inequality. Over these costs an Algorithm A with bound p < 2 would yield 

CI
A 

< 2 precisely when the given graph is hamiltonian and fa A > 2 

otherwise. 

N 

8 
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1. INTRODUCTION 

In 1974, H. Fleischner (Fleischner (1974)) proved that the square of 

every biconnected graph is hamiltonian. With this result Fleischner 

resolved a conjecture of Nash-Williams (1966) (and independently, of L. W. 

Beineke and M. D. Plummer). While not completely existential, Fleischner's 

proof is indirect, leaving vague the issue regarding the actual construction 

of a hamiltonian cycle in graphs satisfying the stated conditions. In the 

present paper, we rectify this by giving an algorithm which efficiently 

produces a hamiltonian cycle in the square of any hiconnected graph and in 

this sense, makes constructive the proof of Fleischner. 

Our prime interest in exhibiting such an algorithm is somewhat 

pragmatic. In Parker and Rardin (1983), a result is given pertaining to the 

absolute performance guarantee regarding any nonexact procedure for the 

bottleneck traveling salesman problem. This guarantee is 2, which is shown 

to he unimprovable by any polynomial approximation procedure unless P and NP 

are equivalent. The value of 2 can be acheived by employing a scheme which 

first constructs a bottleneck-optimal hiconnected spanning subgraph after 

which a hamiltonian cycle in its square is sought. We discuss this notion 

in a subsequent section. Regardless, from Fleischner we know that such a 

cycle is present but less regarding a method for producing it. This paper 

resolves the latter issue. 

2. BASIC CONCEPTS AND DEFINITIONS 

Let G(V,E) be a connected graph without loops or multiple edges. 

say that G is biconnected if every pair of vertices lies on a cycle. 

Alternatively, if G is biconnected, then it possesses no cut-vertex; that 

is, no vertex whose removal disconnects G. Similarly, an edge in G whose 



removal disconnects it is referred to as a bridge. Clearly, any connected 

graph having a bridge, also possesses a cut-vertex. 

A connected, nontrivial graph without cut-vertices is said to be 

nonseparable and for a given graph, G, a maximal nonseparable subgraph is 

called a block. A block is edge-critical if the removal of any edge results 

in a subgraph which is not biconnected and finally, if every edge in G is 

incident to a vertex of degree two, then following Fleischner, we shall call 

G a DT-graph. 

Now, consider any connected graph, G, defined on vertex and edge sets V 

and E respectively and let the distance between two vertices i and j in V be 

given as d
ij 
 where di . is the length of the shortest path connecting i and 

1. Note that the length of a path is the number of edges in the path. 

Clearly, for any connected graph, d ii  is a metric. Now, we can define the 

kth power of G, given as G(k) , to be a graph on vertex set V(k)  = V and edge 

set E(k) 	f(i,i): (1
ij 
 4 k in Cl.  The graphs in Figure I illustrate the -  

notion for the case k = 2. From the figure, it is clear that connectivity 

alone is not enough to insure that a graph's square is hamiltonian. On the 

other hand, it is true that the cube (k=3) of any connected graph is 

hamiltonian and further, a cycle in the cube can be easily constructed 

g., Rosenstiehi (1971)). 

3. THE ALGORITHM 

The ensuing algorithm is fairly heavy in technical detail and quite 

lengthy to state. To this extent, it should he useful to begin with a 

concise and overly simplified statement regarding the algorithm's 

objective. 



G 
G (2) 

Figure 1. A Graph and Its Square 



Essentially, Fleischner made use of the fact that every connected, 

bridgeless graph possesses a connected, spanning subgraph defined by the 

edge-disjoint union of a graph consisting of even-degree vertices only, with 

a forest each component of which is a path. Referred to as an EPS-subgraph, 

 the existence of such structures in the stated class of graphs, was also 

established by Fleischner (1974a). Important in this regard is that a 

hamiltonian cycle can always be traced in the square of an FPS-subgraph and 

hence, in the square of the original, hiconnected graph. In large measure, 

the bulk of the Following algorithm is devoted to constructing an EPS-

subgraph and the subsequent hamiltonian cycle in its square. We also note 

that an alternative EPS-subgraph construction is suggested in the nice paper 

by Lau (inn). 

3.1 Main Procedure 

Let the input to the algorithm be a biconnected graph G 1 (V1,E 1). That 

we assume biconnectivity of G
1 
is not limiting since checking for 

biconnectedness is easily accomplished (e.g., see Itho, et. al (1976)). 

Letting k be an index and initializing with, k f  1 we can proceed. 

Step 1: Case Checking.  For the current graph Gk (Vk ,Ek ), set Dk 

 {e=.(x,v) E 
k

: deg
k
(x) > 2 and dea

k
(w) > 2} where deg

k
(i) denotes the 

degree of vertex i indicent to an edge in E • 

la: If G
k 

is a DT-graph, i.e., D = 4), go to Step 3 and begin building 

a hamiltonian cycle. 

lb: If Dk  * cl) and there is any edge e E p it  such that Gk (Vk ,Ek\e) 

remains hiconnected, remove e from sets El , 1 < / 4 k and repeat 

Step 1. 

If neither la nor lb applies, proceed to Step 2 and shrink. 



Step 2: DT-Block Shrinking. Each edge e E D
k 

is critical in that Gk(VkEk\e) 

is not biconnected. For each e E Dk denote by B
1
[e] and B

2
[e] the 

biconnected blocks of G
k (Vk ,Ek \e) containing the defining vertices of edge 

e. 

2a: Select as B
k 

the block B
1
[el or B

2
rel having minimum cardinality 

vertex set among all e e D
k . Denote by e

k 
the edge for which B

k 
= 

Bl [ek ] or B
k 

= B 2 [ek ] and by wk , the vertex of ek  belonging to 

Bk . 

2b: Select as v
k 

the (unique) cut-vertex of B
k 

that separates it from e 

the remainder of Gk(Vk ,Ek\ek). 

2c: Create graph Gk+1  by replacing Bk  in Gk  with the path 

(wk ,ak ,b,,v,) where ak  and bk  are artifical vertices. Set k + k+1 

and return to Step 1. 

Step 3: Cycle Construction. Use procedure DTHAM to construct a hamiltonian 

cycle, H
k
, in the square of DT-graph, G

k . 

Step 4: Stopping. If k = 1, stop; 1 1  is a hamiltonian cycle in the square 

of G. Otherwise, go to Step 5 and restore a block. 

Step 5: Block Piecing. Construct a hamiltonian cycle, H
k-1 

by first 

applying DTHAM to DT-graph B k-1  and then piecing together the result with 

H
k
. Specific cases depend on how S meets vertices of the artificial path 

(wk ,ak ,bk ,vk) of G. The appropriate treatment for each pattern is given in 

Table 1. After Ilk 1  is complete, set k t  k-1 and return to Step 4. 

Observe that Figures 2 and 3 are useful in interpreting various cases 

detailed in Table 1. 



Case-- 
3/ 

Number 	H
k 
Pattern on Artificial Path

1/ 

la 

lb 

2a 

2b 

2c 

3a 

Table 1: Constructing H
k-1 

from H
k 

and  B
k-1 

3b 	...,x,a,v,b,y,...,s,w,s... 

Required Action1222  

Use DTHAM for a hamiltonian 
path and replace path (w,a,b,v) 
of Hk by path P(w,v). 

Replace path (w,b,a,v) in Hk 
 by path (w,a,b,v). Then apply 

Case la. 

Use DTHAM for a hamiltonian 
path and replace path (w,a,b,y) 
of Hk by P'(w,t), (t,y). 

Replace path (x,a,w,b) in Hk 

by path (x,w,a,b). Then apply 
Case la. 

Replace path (x,a,w,b) in Hk 
by path (x,w,a,b). Then apply 
Case 2a. 

Replace path (s,w,s e ) by edge 
(s,s 1 ) and edge (x,a) by path 
(x,w,a) in H. Then apply Case 
la. 

Replace path (a,v,b,y) in Hk 
 by path (a,b,v,y). Then apply 

Case 3a. 

AA  lj Here a = a
k-1' 

b = , uk_l , w A = wk_l , v = 	x is the non B
k-1 
 end of 

e
k-1' 

s and s' are neighbors of x other than w in G
k
, and y and y' are 

neighbors of v other than b in G
k 
 . See Figure 2. 

2/ Here DTHAM produces either a hamiltonian path from 

of B
k-1 with nonsquare edge (t,v) or a hamiltonian 

of Bk-1 with nonsquare edges (,7,z), (u,v) and (v,t). 

P'(p,q) refer to paths in these hamiltonian entities taken counter-clockwise 

and clockwise around the cycle of Figure 3, respectively. 

3/ Case numbering preserves that of Fleischner (1974b). 

w to v in the square 

cycle in the square 

Symbols P(p,q) and 



Case- 
3/ 

Number 

3c 

Table 1 (continued) 

H
k Pattern on Artificial Path

lj 
Required Action 	 

...,w,a,v,b,y,... Replace path (a,v,b,y) in Hk  
by path (a,b,v,y). Then apply 
Case la. 

4 	...,x,a,b,y,...,s,w,s',... 	Replace path (s,w,s') by 
edge (s,s'),and edge (x,a) 
by path (x,w,a) in Hk. Then 
apply Case 2a. 

5 	...,x,a,b,w,...,v,... 	 Use DTHAM for a hamiltonian 
cycle and replace path (x,a,b,w) 
by (x,z), P(z,u), (u,t), P(t,w). 

6a 	...,v,a,b,y,...,x,w,s,... 	 Replace path- (x,w,$) by (x,$), 
and (a,b) by path (a,w,b) in 
Hk. Then apply Case 10. 

6b 	...,v,a,b,y,...,s,w,x,... 	 Replace path (s,w,x) by (s,x), 
and (a,b) by path (a,w,b) in 
Hk. Then apply Case 10. 

6c 	...,7,a,b,y,...,s,w,s',... 	Replace path (s,w,s') by (s,s'), 
and (a,b) by path (a,w,b) in 
Hk. Then apply Case 10. 

7 	...,x,a,v,...,y,b,w,... 	 Use DTHAM for a hamiltonian 
cycle and replace path (x,a,v) 
by (x,z), P(z,v) and path 
(y,b,w) by (y,t), P(t,w). 

8 	 Use DTHAM for a hamiltonian 
cycle and replace path (x,a,v) 
by (x,z), P(z,v) and path 
(w,b,y) by P'(w,t),  (t,y). 

9 

10 

lla 

Use DTHAM for a hamiltonian 
cycle and replace path 
(x,a,v,b,w) by (x,z), P(z,w). 

Use DTHAM for a hamiltonian 
cycle and replace path 
(y,b,w,a,v) by (y,t), P(t,v). 

Replace path (y,b,v) by (y,v) 
and (w,a) by path (w,b,a) in 
Hk. Then apply Case 5. 

01. 



Table 1 (continued) 

Case-
3/ 
	 1 

Required Actioj
,2/ 

Number 	H
k 

Pattern on Artificial Path —/  

llb 	...,w,a,x,...,v,b,y,... 	 Replace path (v,b,y) by (v,y), 
and (w,a) by path (w,b,a) 
in Hk . Then apply Case 5. 

llc 	...,w,a,x,...,y,b,y',... 	 Replace path (y,b,y') by (y,y'), 
and (w,a) by path (w,b,a) in 
Hk. Then apply Case 5. 

12 	...,w,a,v,...,y,b,y',... 	 Replace path (y,b,y') by (y,y') 
and (a,v) by path (a,b,v) in 
Hk. Then apply Case la. 

13 	...,x,a,v,...,y,b,y,... Replace path (y,b,y') by (y,y' 
and (a,v) by path (a,b,v) in 
Hk. Then apply Case 3a. 



Figure 2: Vertex Arrangement Around 
Artificial Path 
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cycle only -` 

Figure 3 :  Vertex Sequence of Hamiltonian Paths 
and Circuits in the Square of Bk-1 

 Produced by DTHAN 



3.2 Procedure DTHAM  

Clearly, Step 3 of the main procedure is crucial. In this section, we -------- 

specify the relevant routine, DTHAM. 

Step 0: Initialization. Let G D  be the current DT-graph and denote two 

distinguished vertices, say v and w which are in the same block of G D  and 

have only degree-2 neighbors. If a hamiltonian path is desired, add (unless 

it is already present) an artificial edge, (v,w), to GD . 

Step 1: EPS-Subgraph Construction. '?se procedure EPS to find a spanning 

subgraph S of GD  such that 

(i) S is the union of an Euler subgraph E and a forest of (vertex) 

disjoint paths P 

(ii) E and P are edge-disjoint 

(iii) Given ver:ex v belongs to E, but not to P. 

(iv) Given verrex w belongs to E, and is not an internal vertex of P. 

(v) if v 	w are adjacent in GD, then v and w are adjacent in E. 

Step 2: Reduction.  If every edge of P separates S into disjoint 

components, proceed to Step 3. Otherwise delete an edge that does not and 

repeat this step. 

Step 3: Mate Edges. Subgraph S can now be viewed as consisting of a tree 

of components of E linked by segments of paths in P. Select a minimum 

cardinality set M of edges in P which breaks all such links, i.e., divides S 

into components each containing exactly one component of E. Then construct 

suhgraphs 	 of S from the components El ,E2 ,...,En  and P1 ,P2 ,...,P
n 

induced by M, duplicating edges of M so that each belongs to both its 

adjacent Pi . 

Step 4: Cycles in Components. For each component S
i 
of Step 3 determine a 

hamiltonian cycle H
i 
in the square of S

i 
as follows: 



4a. If S
i 

contains artificial edge (v,w) pick as t an artificial , 	, 

vertex inserted in edge (v,w). Otherwise t is any degree-2 vertex 

of theEulercomponentE.'in S.. 
1 	1 

4b. Construct an Euler tour T
i 
of the subgraph E so that T

i 
begins 

and ends at t. 

4c. Beginning with t
0 	

t trace T
i 
until t recurs, constructing H

i 
as 

indicated below (deg(•) refers to degree in S i ; t 0 ,t 1 ,t 2  are the 

present and next two vertices of T i) 

Case on t o ,t i ,t 2  

(i) deg(c1 ) = 2 

(ii)deg(t i ) > 2, t o  * t, and t 1  will 

herevisitedinT.or has already 

Evolution of H. 
1 

(t t ) 
0' 1 

(t0 ,t 2 ) 

been visited in H
i  

(iii)deo(t 1 ) > 2, t = to or t 1 
 will not 	(t0,t 1 )(t 1 ,t 2 3 

he revisited in T i ,and t E E. P 
1 	i 

(iv) deg(t
1 
 ) > 2, t = t

o 
or t

1 
 will not 	(see Figure 4) 

be revisited in T i, and t
1 
 is an end 

vertex of P
i 

(v) deg(t
1
) > 2, t = t 0

or t
1 
will not 	(see Figure 5) 

be revisited in Ti ,and t
1
is an 

internal vertex of P
i 

Step 5: Solution. By constructions of Figures 4 and 5, each H
i 
contains 

all end edges of S
i 
including those in M. Construct a hamiltonian cycle H 

in the square of S (and thus in C D) by H = u Hi \M. If only a hamiltonian 
i=1 

path is desired, reduce H to a path by removing the artificial path 

(v,t,w). 
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Path 
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Figure 4: Pattern of Traversal 
When t 1 is Path End 

Odd 

Path 

Length \ 
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Figure 5: Pattern of Traversal When 
t1 Is an Internal Path Vertex 



3.3 EPS — Subgraph Construction. 

Just as DTHAM acts as a subroutine to the main procedure, Step 1 of 

DTHAM can be treated similarly. Below, we give routine EPS. 

Step 0: Initialization. Let G = GD  be a biconnected graph with two 

distinguished vertices v and w. Operationally, v and w are the two 

specified vertices of GD  from Step 0 of DTHAM. Begin a list of unprocessed  

subgraph sets given by the 4—tuple (G,,v 9 ,wt ,Cz ) 	where initially, 

G
1 
+ G 

v
I 
+ v 

w, + w 

C
I 
+ any cycle of G containing v and w, 

and edge (v,w) if present in C. 

Step 1: Decomposition Stopping.  If the list of unprocessed subgraph sets 

contains only Gt  that are cycles or single edges, go to Step 4 and begin 

reassembly. Otherwise, Dick (G, v, w, C) from the list with G not an edge 

or a cycle. 

Step 2: Preprocessing. If E contains an edge e such that a — e is 

biconnected, remove e from G and repeat this step. 

Step 3: Decomposition. If G is not now only the cycle C, process G by 

decomposing it into two or more new entries in the unprocessed subgraph 

list as follows: 

3a: If G-C is biconnected add G0  and GI 
to the list with 

G
0 
 + C

0 
 + 

v0  + v 

w 0  + W 



G 	E - E 

v if v belongs to C - C, or 

any vertex of C - C except W otherwise 

W if W belongs to C - C, or 

W1 + 
any vertex of C - C except vl  otherwise 

C 1 
 

any cycle of G
1 
 containing v

1 
and w 

1 

3b: If G - C has disconnected components Q 1 ,Q2' ...,Qq  add 

G1 , G 	Gq  to the unprocessed suhgraph list with 

v
i 
+ v 

wi  W 

C
i 
+ C 

3c: If G - C is connected but not biconnected and one end block B
1 

of 

- C (i.e., one block with a single cut-vertex c1) does not 

contain v or w except possibly as its cut-vertex, ((B
1
-c

1
) n fv,w1 

= 0, choose the least cardinality block chain B B 
2' .. " Bb of E  

b 
C beginning with B1 

and leaving G - u B
i biconnected. Let c 0  be 1=1 

any vertex of B, except c
11 

 ; c. be the cut vertex joining B
i 

to 

b 
B
i+1' 

i=1
'
2
''

b-1
; 

and c
b 
be the cut vertex joining u B

i to 
i=1 

the remainder of a - C. Then create h or b+1 new entries in the 

unprocessed suhgraph list by 



G o 
+ G - u B. 

1 
i=1 

v 0  + V 

w
0 
 + W 

C 
0 

and for i=1,2,...,b or i=1,2,...,b-1 if B b  is a single edge 

G
i 
+ B

i 

v i  + c i  

wi 
+ C

1-1 

tany cycle of G
i 
containing v

i 
and w

i 
if G

i 
is 

hiconnected, or 

C 

dp if Gi  is a single edge 

_ - 
3d: If G - C is connected but not biconnected and its only two end 

blocks each contain one of v and w at other than their cut 

points, let B I ,B 2 ,...,Bb  he the block chain forming a - C with W 
B1  and v E Pb . Also define c o  + w, c b  + v and for i=1,2,...,b-1 

pick ci  as the cut vertex joining blocks B i  and B i_1 . 	Then 

ct .ate b or b+1 new entries in the unprocessed subgraph list 

exictly as in Step 3c. 

After processing G in one of the above ways or skipping a if it is only the 
cycle C, return to Step 1. 

Step 4: Initial EP-Subgraphs. Each subgraph G t  in the unprocessed list is 

now either a cycle C9  or an edge e t . Generate spanning EP (Euler-path) 

suhgraphs for each as follows: 

4a: If Gt = C
9, choose Euler subgraph E 9  + C9, and path forest 



subgraph Pi  + O. 

4b: If Gi  = et' choose Euler subgraph E
9  = 4), and path forest subgraph 

Pt  = e9 . 

Step 5: EP-Subgraph Reassembly. Taking the processed subgraphs Gy in 

reverse order of their creation, construct a spanning EP-subgraph for each 

G
t 
by taking the union of all E

t 
and P

t 
where G

t 
was created by decomposing 

Gt . Specifically, Et  = y Et , Pt  = t Pt  except that any paths pi  c Pi  and 
p. c P. sharing a common (end in both paths) vertex of G

i 
(1G

j 
are replaced 

by the single path n u p . . 

4. AN EXAMPLE 

We can demonstrate the algorithm detailed in the previous three 

subsections by considering the biconnected graph in Figure 6. Letting this 

 
graph be denoted by G- (V

1 
 ,E

1 
 ) we proceed in step-by-step fashion. 

Step 1. Initially, we have p l  = {(4,7), (10,16), (12,13)1. Removing edge 

(4,7) leaves a hiconnected graph and thus we set D 1  D1 \(4,7) and El  4- El \ 

(4,7). Relative to the new G i , removing either edge (10,16) or (12,13) 

destroys biconnectedness and since DO .  # 4) we perform a shrinking operation. 

Step 2. We have for each edge in Dl , the two blocks shown in Figure 7. Let 

us select arbitrarily the minimum cardinality one induced by e = (12,13); 

that is, let B
1 
 be the cycle (13,14,16,15). Accordingly, we have w 1=13 and 

v
1
=16. Graph G

2 
appears as in Figure R where B 1 

is replaced by the 

artificial path (w
I
, a

l
, b

l
, v

1
) as depicted. 

Step 1. Since e = 4), G2 is a DT-graph and we can proceed with the 

construction of a hamiltonian cycle. 

Step 3. We seek cycle H
2 

in the square of G
2 
and thus, call routine DTHAM 



using G
2 as input. Accordingly, we proceed to Step 1 of DTHAM which 

requires the construction of an EPS-subgraph in G. 

Step 0 (EPS). Let us denote the first unprocessed subgraph set by the 4- 

tuple (GvwC
1
) where G

1 
= G2, v

1 
and w

1 
are as shown in G

2
, and C

1 
 is 

the cycle (12,11,10,vb
l'

a
l'
w
1
). 

Step 1 (EPS).  Selecting the unprocessed subgraph set just constructed, we 

have 6 = G
1 
 = G2  and 6 is decomposed. 

Step 3c (EPS). We identify blocks B i , 1 4 i 4 6 relative to G 2\E(C1) as 

shown in Figure 9. We also denote the respective vertices C. for 

j=0,1,...,6. Since B 6  is a single edge, we create new subgraph set entries 

(G
0
,v
0
,w0 ,C0 ),...,(G 5 ,v5 ,w5 ,C 5 ). These are shown in Figure 10 where, for 

ease, only the relevant subgraphs are displayed. 

Step 1 (EPS). Since the new list of unprocessed sets contain only cycles 

or edges we can begin the reassembly process. 

Step 4 (EPS). Relative to the graphs displayed in Figure 10 we can 

construct E t 
and P for t=0,1,...,5 using the rules 4a and 4b. We have: 

= 0: E
0  = 	(C0 ) , P0 

 = (f) 

= 1: E1  = b , P
1 
= (5,12) 

= 2: 
2 2 = $' 

P
2 
= (2,5) 

t = 

= 

3: 

4: 

E
3 

= 	(C
3
), 

E 4  = 	(C4), 

P
3 

= 

P4  = (f) 

R. 	= 5: E 5  = b, P5  = (7,9) 

Step 5 (EPS). Since the only processed subgraph was the original one 

(Figure 8), the desired EP-subgraph is easily reconstructed as shown in 

Figure 11. We now return to DTHAM. 

Step 3 (DTHAM). In S, let us form M as the single edge denoted by P 2  in 



Figure 11. This induces (per the stated construction of the step) subgraphs 

S
1 
 and S

2 
shown in Figure 12. 

Step 4 (DTHAM). We denote (arbitrarily) by t, a degree-2 vertex in S1  and 

S
2 
and construct eulerian cycles T

1 
 and T accordingly. These cycles are 

denoted by dotted edges in Figure 12. The cycles H i  and 119  are generated 

using the stated rules and result as shown in Figure 13. 

Step 5 (DTHAM). Patching together H
1 
and H

2 
as specified, yields 

hamiltonian cycle H
2 
as shown in Figure 14. 

Step 4 (Main).  Since k * 1, we must restore a shrunken block. 

Step 5(Main). Since B
I 
was shrunk earlier and replaced by an artificial 

path, creating G
2
, we observe from case la of Table 1 that a hamiltonian 

path from vertex w to vertex v
1 
 through the square of B

1 
 is needed. We can 

find such a path by eTnloying DTHAM; however, for ease we shall simply 

select the path (13,15,14,16).: Pere, w1=13 and v1=16. Finally, replacing 

the artificial path (w ,a ,b ,v ) by the stated one, produces cycle H
I 
in 

GI and the procedure is complete. We leave it to the reader to make this 

replacement and moreover, to verify that 11 /  is a suitable hamiltonian cycle 

in the square of GI . 

RI 

5. EVALUATION OF THE ALGORITHM 

In this section, we examine the veracity and computational requirements 

of the algorithm detailed earlier. In both, we concentrate only on the more 

crucial points of verification. 

5.1 Validity of the Procedure  

Our discussion is organized around the three-component breakdown by 

which the algorithm was presented previously. 

Main procedure. Graph G
1 
is biconnected by construction. It possesses 



no multiedges because C doesn't and no bridges because it would not then be 

biconnected. After finitely many applications of Steps 1 and 2 a DT-graph 

must result. This follows since Steps lb and 2 both reduce D
k
. In the 

latter case edge e
k 

is in 90 and after step 2, it is not because wk is now 

degree 2. 

Now, to allow the construction of Step 5, it must be true of each B
k 

that 

(i) w
k 
* v

k 

(ii) Bk  contains only one cut vertex of Ck(U k ,Ek\ek) 

(iii) B
k 

is a TYT-graph 

(iv) all nei1hors of wk in B
k 

s:', 
	
have degree 2 there 

(v) all neicors of v
k 

in B
k 

have degree 2 there 

Fleischner (1974b) establishes these properties in Theorem 1 and Remark 1. 

Furthermore, the cases in Table I are derived from ones given by Fleischner 

except for cases lb, 2b, 2c, 3b, and 3c which have been added in order to 

enumerate ones excluded (in Fleischner (1974b)) by Figure 2. 

DTHAM.  The mating process of Step 5 is valid because edges of M may be 

viewed as edges of a tree linking components S
i
. Also, Figures 3 and 4 show 

end edges are always part of the tour. The implied hamiltonian cycle has 2 

true edges meeting v because property (iii) of Step 1 assumes v is not 

connected with any path. Thus on the last visit to v, case (iii) of Step 4c 

will apply. Similarly, the computed hamiltonian cycle will have at least 

one true edge meeting w. By (iv) of Step 1, w is either an identical case 

to v or at the "foot" of a structure like that in Figure 3. 



Addition of the artificial edge in hamiltonian path cases assures v and 

w are both at least degree 3 without destroying the DT structure since all 

neighbors of v and w are degree 2. In hamiltonian path cases we start at 

the middle of (v,w) and proceed first to v. Thus (t,v) is in H. When we 

return through w, either case (iii) or case (iv) of Step 4 applies and both 

place (w,t) in the tour. Thus, (v,t,w) is in the tour to delete at Step 5. 

There is also one other nonequal edge at v. 

EPS. Cycles Ck  of the original subgraph and all subsequent ones always 

recur in the generated Euler system F.,. Thus, particular, v and w end in E
k 

and so does edge (v,w) if present in G. 

The unioning process of Step 5 always combines Si 
A 
= E

i 
U P

i and Sj 
 

E. u P into an EP-subgraph Sk 
A 

 = Ek  U Pk either because Pi and Pj  are vertex 

'isjoint and S
i 
n S is a subset of vertices or an Euler subgraph E

i 
n e

j, 

because Si  n S. is a single vertex not internal to a path of either Pi  or 

In Fleischner (1974a) Lemmas 1, 2 and 3 verify these facts. 

Specifically, when we restore a Step 3a decomposition, one of S
i 
and S is a 

cycle. Thus P
i 

n P = 0 and S
i 

n S is subset of vertices. If the 

decomposition was by Step 3b, the subgraphs have only cycle C in their 

intersection -- an Euler subgraph. This is true because the remainder of 

theSi belongtodisioint Qi . If the decomposition was at Step 3c, we first 

union EP-subgraphs for each block into say S
1 
and then combine with S

0 
 of 

Go . The block subgraphs have only a single cut-vertex in common, and it is 

always a v-vertex in one, implying it not to be path internal. Finally, 

S
0 
 n S

I 
is a subset of vertices of C plus (if b+1 subgraphs were generated) 

the vertex cb . We have chosen cb  as a vb  so that it cannot be an internal 

path vertex. Also, vertices of C common to E
I are degree 2 in G0  and thus 



cannot have incident paths. The decomposition of Step 3d is similar to 3a 

and 3c. Blocks are combined as in 3c; S o  is a cycle as in case 3a. 

The entire decomposition stops because all subgraphs C t  produced in 

processing (E, -v07T,E) have IGt-E1 < 16-El. 
Finally, we want w and v in the "E-part" of the final subgraph, v 

incident to no path of p and w at most a path end. These properties follow 

because we always keep v and w on the cycle C
k 

when both are present in a G
k 

and Ck  C Ek. Moreover, our choice of v and w as Ione cycle vertices or cut 

vertices in the various decompositions always avoids undesired paths. 

5.2 Computational Requirements 

The graph produced after the (finite) application of Steps 1 and 2 

contains entirely original edges or a mixture of original and artificial 

ones created by block shrinking. Here, for each block shrunk, a 3-edge path 

is created and thus the respective Dk is reduced. Biconnectedness checking 

can be efficiently performed and hence, DT-graph construction requires 

effort bounded by a polynomial in !VI and [El. 

Now, for a given EPS-subgraph (of a DT-graph), the construction of a 

hamiltonian cycle in its square requires first a reduction and edge mating 

process (Steps 2 and 3 of routine DTHAM) both of which are clearly 

polynomial in the size of P, the path component in the EPS-subgraph. Of 

course, we must produce eulerian cycles in subgraphs E i  but this is easy and 

finally, for each subgraph Si  induced in step 3 of DTHAM, a hamiltonian 

cycle in its square is obtained from the eulerian cycles in the respective 

E.and the rules of step 4 (DTHAM) and Figures 4 and 5. This along with the 

Step 5 (DTHAM) patching process is certainly polynomial in the number of 

edges in the EPS-subgraph. 



Turning specifically to the EPS-subgraph construction (routine EPS), we 

see that crucial in the entire process is the decomposition step (step 3). 

Throughout, biconnectedness checking is performed but as before, this does 

not affect overall polynomiality. We need only demonstrate that the number 

of unprocessed subgraphs formed in step 3 is polynomial in the size of the 

input DT-graph. Let us take the component steps in order. 

In 3a, one finished (cycle) graph is produced as well as one 

biconnected subgraph in which a new cycle is selected. Hence, the number of 

non-cycle edges will decrease by at least 3. In 3b, the set of non-cycle 

edges is q-sected and by the construction in this step, (Q
i u C)-edges may 

be added. However, each unprocessed subgraph created in this manner must 

next be processed by one of the other three cases. In 3c, the set of non-

cycle edges is b-sec:ed and edges are simply transferred to new cycles or to 

biconnected blocks. No edges are added by the unprocessed subgraph 

creation. Step 3d is similar to 3c differing only in the block-chain 

specification. Important in this regard is that no edges are added in the 

unprocessed subgraph construction. 

Now, in order to evaluate the overall effort of step 3 in procedure 

EPS, we can consider a simple progress measure (x,y) where x is the number 

of non-cycle edges in all unprocessed subgraph 4-tuples and y, the number of 

subgraphs into which non-cycle edges are subdivided. Clearly, x is of size 

0(1E1 ) and within each, y can be this large as well, rendering total 

computation for this step at worse, O(IEI
2  ). 

Of course, the entire process must be repeated k times per steps 4 and 

5 of the main procedure. This however, clearly preserves the order of the 

overall algorithm since the block-piecing computation requires only case 



checking which is detailed in Table 1. We may thus conclude that the entire 

procedure can be performed in time bounded by a polynomial in the size of 

the input graph. 

6. EMPLOYMENT OF THE ALGORITHM 

We suggested at the outset that a principal interest in producing 

(efficiently) hamiltonian cycles in the stated class of graphs was to permit 

construction of approximation algorithms for various hard combinatorial 

optimization problems. In this section, we briefly describe one such 

construction which originated with the authors ([7]). We also note that the 

basic approach using the guarantee of hamiltonicity in biconnected squares 

has been employed elsewhere (e.g. Hochbaum and Shmoys (1983)). 

The bottleneck traveling salesman problem (BTSP) seeks a hamiltonian 

cycle in a weighted graph the largest edge weight of which is minimized. 

The problem is known to be difficult - indeed it can be easily shown to be 

equivalent to the problem of deciding which graphs are hamiltonian. 

The formal intractibility of the (BTSP) makes its treatment by 

approximation schemes particularly legitimate. Accordingly, for such 

nonexact procedures we would like to fix (finite) bounds on their worst-case 

performances. It is here that we can employ our algorithm of Section 3. 

First, it is easy to show that no finite bound for any (polynomial) 

heuristic can exist for instances of (BTSP) without edge weights satisfying 

the triangle inequality unless P and NP are equivalent. Thus, we can 

consider our instances to be defined on complete graphs, K n , where edge 

weights in fact satisfy the triangle inequality. 



Now, since any hamiltonian cycle is biconnected but not the converse, 

let us construct an optimal bottleneck biconnected (spanning) subgraph of 

K. Thus, if a is the value of the maximum weight edge in this subgraph 

then the bottleneck optimal value of the corresponding instance of the BTSP 

on K
n 
can be no less than a. Most important here is that the stated 

bottleneck optimal biconnected subgraph is easy to obtain. We simply apply 

a greedy procedure to the list of edges in K
n 

arranged in nondecreasing 

order of edge weights. Beginning with the empty graph on n vertices, edges 

are added in order with termination occurring when the first spanning, 

biconected subgraph is constructed. Clearly, such a scheme is optimal and 

its efficiency follows since checking for biconnectivity is easy. 

Letting G be cur bottleneck optimal subgraph, then G. is suitable input 
A 

to the algorithm of Section 3. That is, G's biconnectivity guarantees 

A 
hamfl'onicity of its square and such a cycle, H, will be efficiently 

produ-.: d by the algorithm. Moreover, H is an approximate solution to the 

givca inqtance of the BTSP. If we let v(BTSP) be the optimal BTSP value and 

v(H) the value produced by the heuristic, then v(H) 4 2a which follows from 

A 
the triangle inequality and thus v(H) 4 2v(BTSP). 

So, as claimed in the introduction, we can produce a solution to any 

instance of the stated BTSP in polynomial time which differs from an optimal 

solution by a factor at most 2. We also claimed that this bound was 

unimprovable by any polynomial alternative unless P = NP. That this must be 

so, follows from the obvious use of any alternative BTSP heuristic for 

deciding hamiltonicity in arbitrary graphs. We simply create a 

corresponding BTSP instance, weighting edges by 1 or 2 depending on whether 

or not an edge is present in an instance upon which hamiltonicity is to be 

tested. Such edge weights clearly satisfy the triangle inequality and we 



would apply the hypothesized BTSP heuristic. If the graph in question is 

hamiltonian then the optimal bottleneck value would be 1 and the assured 

heuristic would produce it (recall, such a procedure is assumed to have 

worst-case bound strictly less than 2). Alternately, if the graph is not 

hamiltonian, then the corresponding optimal BTSP value would be 2 which must 

again be the value produced by the heuristic (edges have weights confined to 

1 or 2). Thus, we need ony observe the value produced by the heuristic and 

the hamiltonicity of the original graph is decided accordingly. This 

problem is NP-complete however, and the existence of such a BTSP heuristic 

would render P and ,k:P equivalent. 

7. SUMMARY 

In this paper, we have addressed ourselves primarily to the problem of 

producing hamiltonia-1 cycles in the squares of biconnected graphs. 

Existence of such cycles was resolved earlier by Fleiscshner, but their 

explicit construction was less obvious. The computational procedure given 

here rectifies this. 

We also have demonstrated (without detail) how the stated algorithm - 

indeed, the Fleischner result itself, can be used in the development of 

nonexact or approximation procedures. In this regard, it would appear that 

further exploration is warranted, especially in the context of performance 

bound construction. 
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Figure 11. EP-Subgraph, S 



Figure 12. Subgraphs S and S2  and 
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2 



Figure 14. Hamiltonian Cycle H
2 

in the 
Square of EP -subgraph S. 
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Abstract 

Fixed charge network flow problems model network design and location 

settings by allowing both fixed and variable charges for arc flow. Recent 

research has shown that very close approximations to mixed-integer solutions 

for each problems can be obtained from massive linear programs wherein flows 

are artificially disaggregatea into separate components for each origin - des- 

tination pair. This paper develops the strategy of a progressive disaggregation 

algorithm employing the latter linear programming relaxation. However, flows 

are initially undisagc-rPg= 1-AA. As computation proceeds, supply and demand sub-

sets are further and further partitioned to tighten the relaxation as required 

without incurring the computational burden of a complete disaggregation into 

supply-demand pairs. 



1. Introduction  

The fixed charge network flow problem  in one commodity is typically form-' 

ulated 

min 	v..x. •  + 	f.y.. 
3.3 2.3 

(i,j)EE 13 13  
(i,j)sE 

s.t. 	
xis 	

dg  
for all 8cV 

(1.,)EE 

(FC) 

/ 	x. 	sa 	
for all aES 	 (3) 

0,DEE et3 

I x,. — 	1 	x, n  . 0 	for all tET 	 (4) 
(Z,DEE '3 	(iMaE -"'" 

x../u.. 5 g. 	for all (i,j)EE 	 (5) 
3_3 	2.3 	ij 

x., .. 0 	for all (i,j)EE 	 (6) 
1.:] 

1 .?.. y ij  _?_ 0 	for all (i,j)EE 	 (7) 

yij  integer 	for all (i,j)EE 	 (8) 

lierefisthearcsetofaspacified,rietwek;x
1j 
 is the flow from i to j; 

S, Vend T are the supply point, demand point and transshipment point subsets of 

nodes respectively; s
a 

is the supply at point 'a; d is the demand at point 0; 

and u. j  is a capacity of arc (i,j) flow. Costs (1) include a variable (per unit 

flow) cost v
ij 

and a fixed charge f
ij 

"switched on" by the 0-1 variable. Ylj 

whenever x..> 0. we assume  throughout that  all fij  and vij  are nonnegative 

although the latter requirement can be relaxed in some cases. 

Formulation (FC) gives a correct mixed-integer statement of the fixed charge 

network flow problem, but its linear programming relaxation, (obtained by deleting 

(1)  

(2)  



constraint (8)) often provides only a very poor approximation to the mixed in-

teger form. Rardin and Choe (1979) and Rardin (1982) demonstrated that a much 

better linear programming approximation is obtained by disaggregating flows 

x.. into components x..1a,31 distinguished by the supply point a at which the 

flow originated and the demand point to which it is defined. 

Such a multi-commodity formulation is 

min 	
(i,j)cE I' acS 	I" 	(i,j)cE ' 	1i 

/ 	/ x., 	
3 

[a,a1 + 	_ f.. y. 	 (9) 

s.t. 	 / 	x.,ja,81 = d 	for all OED 	 (10) 
acS (i,S)F.E 1P  

Yja,s] 	s 	for all acS 	 (11) 
eeD (a,1)EE a3 	a 

(NC) 

- 	x.,[a,B) = 0 	for all aeS 
(9,,DeE 	 (iMeE 	 RED, IcT 

(12) * 

(1/u..) 	x..fa,81 	yij 	f or all (i,j)eE 	 (13) 
2'3  aeS f,!--D 13  

xij la,$) 	0 	for all (i,j)eE 	 (14) 
aeS, BED 

1 	y.
l
, > 0 	for all (i,j)eE 	 (15) 

integer 	for all (i,j)cE 	 (16) 
Y13 

Yl  

	

. i 	for all (i,j)cE 	 (17) 
min(s

a'  d S  } 
	 aES, SED 



As mixed-integer programs, forms (FC) and (MC) are equivalent. However, 

disaggregation of (FC) flows x ij  into separate commodities x..[a,B] leads to a 

tighter linear programming relaxation in (MC) because of the new constraints 

(17)..vitlif...?..0 the linear programming relaxation, say (FC), of 

(FC) will always have an optimal solution with no slack in (5). Thus, (FC) 

solutions incur or_ly the fraction 13 lj 	 flow x.  

forms of its capacity u... Equation (13) enforces the same limit in (MC), the 
:13 

ring , relax tip of 	Yij .to be as 

large as the fraction of any source a or sink B flow passing through (i,j). 

The improved linear programming relaxation follows when (as is usually the 

case), sa 
and/or S  are muchsmaller than u . 

ij- 

Although providing generally nuch tighter linear programming approximations, 

the (mC) form is an enormous linear program. For a case with 750 arcs, 25 

supplies, 100 demands, and 125 transshipment nodes, (MC) has over 400 thousand 

main constraints and approximately 2.2 pillion variables.. The dual ascent scheme 

proposed by Rardin and Choe (1979) exploits problem structure in a Lagrangean 

relaxation, (we give details below), but a typical iteration still involves 

Shortest path problems for each (a,8) pair, and search over dual variables for 

all constraints (17). For the problem size just described, there would be 

2500 such shortest path problems and approximately 1.9 million searchable dual 

variables. 

However, the formulations (FC) and (NC) may be viewed as endpoints of a 

disaggregation continuum. Form (FC) treats all flows in a single commodity; 

(MC) disaggregates flows into artificial commodities for each origin - destination 

pair. Certainly, there are intermediate possibilities wherein flow is treated 

in groups, (Ak,S) with Ak  c S,$k c D. 

In this paper we first sharpen the (NC) formulation and then develop 



strategies for an algorithm exploiting a progressive  disaggregation of SO 

flows. The algorithm generally follows the Lagrangean relaxation philosophy of 

Rardin and Choe (1979), but processing begins with the undisaggregated form (FC), 

i.e. with one supply group Al = S and one demand group B1 = D. As com-

putation proceeds supply and demand groups are progressively partitioned to 

create new artificial co=dity structures. It is hoped that computational testing 

now underway will deaonstrate such a progressive approach reduces total calcu-

lation to obtain a satisfactory approximation to an (MC) optimum. 



minl X 	y d o 	
y . 	for all (i,j)EE 

and all k 
(aEAk  (1'  8EBk  P  

CC 
	17...Ia,S1 

aeAk  asik 1.] 
(18) 

i 5  Y" 
min ), 	s , 	A., 

o.eAk 	8,ED 

x. [«,a? 
ocAk  8ED. 1J 

for all (i,j)EE 
	(19) 

and all k 

2. An Improved Formulation  

Flow in our given network can be conceptualized as the rectangle of Figure 1. 

Sides reflect supplies and demands respectively. Formulation (FC), which uses 

only one commodity, views the rectangle of flows on arc (i,j) as a single unit 

x. . In (Mc), each supply, demand cell of the rectangle is tabulated separately 
lj 

as xti fa,B). At Aisaggregation levels between these extremes, supplies and demands 

are grouped in a rectangle (A,,8
4
) collecting all flows from origins aeAk  to 

destinations $5-.B
k. 

The analog of Rardin and Choe's (MC) constraint (17) for such a commodity 

(A
k'k

) is 

However, by treating supplies and demands separately we can expand the sums 

in the numerator and thus sharpen the relaxation. 

Lemma 1: Improved Formulation. Let x ii [a,81, sa , dB , S and V be as in formu-

lation (MC), Ak  a nonempty subset of S and Bk  a nonempty subset of D. Then the 

following constraints are satisfied by every feasible (integer) solution to (FC) 
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Figure 1: Total Flow as a Supplies by Demands Rectangle 



 

X 	X 	x ,[a,$) 
aPS 8eB 	iJ 9. 

 

for all (iXeE and all (20) r 
nin 	 , X 	( 

1 6_$z 	aeS 9 	
Y. 

Furthermore, for specified s
a 
> 0, d > 0, x. 

lj 

satisfying (18)) D fyij  satisfying (19) and (20)) 	 (21) 

Proof:  It is clear that (15) and (20) are valid in (MC); they simply require 

that yij  be at least the fraction of supply in Ak  or demand in Et  passing through 

(i,j), respectively. To see (21) observe that if X s 5 X d(19) has 
ac Ak  a  BEB2.  °, 

the same denominator as (18), and at least as great a numerator. If 

X 	s 	7 	d0 , ( 20) dominates (18). 
acAk  a  8e8

k 

Fin.  a system'of q commodities (A1 , Bi), (A2 , 	 , B ) there are q q  

q constraints of type (18) and potentially 2q like (19) and (20). However, 

any commodities k and 2. with Ak  = Ai  or Bk  = Bt  have the same constraint (19) 

or (20) respectively. The result can be a considerable reduction  in the possible 

number of (19) and (20). In the extreme case where every (a,13) e SxV forms a 

separate commodity, there are !Si + ID! constraints (19) and (20), but is! • ID! 

limits (18). Thus, at least, as this complete disaggregation is approached, 

use of (19) and (20) results in both a substantial saving of constraints and a 

gain in formulation tightness. 



3. The Lagrangean Relaxation Setting  

With even a partial diiaggregation of problem flows into artificial 

cor -riodities, one obtains a formidable linear program relaxation to be solved. 

If arc capacities (13) (or (5)) are nonbinding, Rardin and Choe (1979) showed 

how an effective Lagrangean relaxation of the remaining problem could be structured' 

by summing constraints (19) and (20) in the objective function with nonnegative 

dual multipliers. Let kr'-c. 	be the list of distinct supply subsets of current 

artificial commodities, laij fkq: AkeA,(i,j)sEll be the nonnegative dual multipliers on 

corresponding constraints (19), S,  -{B } the list of distinct demand subsets of 

currentcommodities,anal8.[Z]: Ef eB, (i,j)cE) be the dual variables on their 
ij 

constraints (20). Than the implied Lagrangean relaxation is as follows: 

min 	L -v., I 	x. [a,$) + 	f .y 
(i,j)cE 	aeS f3eD 1J 	(i,j)eE 	ij 

÷ 	X 	/ 	
o..[k] 

(i,j)sE AksA 
13 	min { 	s , 	d

a  ae 
Ak 	651°  

x. la , sl 
ttsAk  Be D 1' 

— Y•- 3.3 (22) 

  

   

OM, 

 

  

/ 	/ 	x[a s] aeS aeBk ij ' 

  

÷ 	 S..[Z] 
(i,j)eE 8£s8 13  

 

Yij 

 

min{ 	dX s
a
} a , 

E aE t 	aeS 

 

     

     

s.t. 	 x..io,51 = d 	 for all 00 	 (23) 
asS (i,S)eE i3 



x tam < sa 

/ 	xv [aM - 	/ 
(2,,j)EE 	3 	(i,t)eE 

x, 	[::,8) 
" 

x..[a,S] 

1Y 13  

= 0 

0 

0 

integer Yij 

for all aeS (24) 

for all asS, (2 5). 
BO, ZeT 

for all (i,j)er, 
aeS, Sep 

for all (i,j)eE • 

(26) 

(27) 

for all (i,j)eE (28) 

(Pos [A,B]) 	
BED (a,j)EE 

ForanychoiceofnormegativeS.[k] and a.
j 
 [t] formulation,l(P

06 
 [A,M) 
 

gives a valid lower bound on the cost of an (PC) or (Mc) optimum. A-2search is, 

of course, necessary to fine_ good dual values. 

The advantage of the (P 0.6.[A,S]) form lies with the fact that ULM systems 

are linked only through the objective function. Thus, for fixed dual values, 

(Pacs [a,$)) separates into a series of shortest path problems for [a,$) pairs, 

followed by an S to 13 transportation problem. 

In•cluding subgradient steps to improve duals and revise the present commodi-

tization, a full procedure employing (P as [A,Mis as follows: 

Step 0: Initialization.  Fix dual and primal incumbent values 

v '  vP 
 -4- 4-=. 

Step 1: Initial Disa74gregation.  Partition the source mode by desti-

nation node set Sx1) into an initial series of artificial supply-demand 

commodities, and let A be the list of distinct supply subsets, Ak, 



a..[k] — 	6..[2.] 
AlccA 1.] 	8 c8 13  

f.. 
13 

(2 9) 

and 	the corresponding list of distinct demand subsets , 8 . Fix 

all duals a..[k] and 6..[2.] at zero. 
3.3 

Step 2: Implicit Costs.  Determine (22) objective function coefficients 

V..[CL,B1 -4-  v.. 
3.3 sti 	13  r kv s r k 	

13 i ) + 	X - 05. . i /drzi (30) 

AkeA:aeAk) 	 {BL- 03 -8:8 I 

where sfIc.1 =4-'1' min 	L 	s 	do  l. 
aEA, 	Bet) P i 

:c 

(31) 

A 
=min d R  / s 

i BES 	aES 
(32) 

Step 3: Shortest Paths. For each pair (a,$) of a source and a destination 

node, compute the shortest path from every a - to every a over arc lengths 

vii ia,$). Let R[a,S] be the set of arcs in the shortest path from node 

a to node $ and c[a,e] its length. 

Step 4: Transportation Problem. Using costs cra,$), suppliers s
a 

and 

demand d
B' 

solve an S to 'V transportation problem. Denote by z[a,$] an 

optimal flow from a to $ obtained in the solution to the transportation 

problem. 

Step 5: Flow Solution:  For each a and B , assign z[a,13] units of flow 

to all arcs (i,j) in the corresponding set of shortest path arcs R[a,B]. 

Step 6: 0-1 Problem. Compute relaxation optimal values for the Yij  

variables via 

y.. 4-  1 	if f 5 0 and 0 otherwise. 
13 	 ij 

-10- 



Step 7: 	Dual Solution. Compute a dual solution, v u, as the sum of 

the costs of the optima in Steps 5 and 6. If v
D

•> v
D 

save a new dual 

incumbent v
D 

v
D

. 

Step 8: Primal Solution. Create a feasible solution to (DC) by paying 

full fixed :charges on any arc used in the flow of Step 5. Let V be 

its cost. If v < VP, save a new primal incumbent as an approximate 

optimum to (FC). If not, check whether the rate of improvement in the 

ratio v
P/vD 

is satisfactory. If so, go to Step 10. 

Step 10: Dual Update- Modify duals a
ij

[k], and S 
j
[Y.] by taking a finite 

i 

step along a subgradient of the Lagrangean dual function at the current 

dual point and projecting to restore nonnegativity (see for example 

Bazaraa and Goode (1979) for details on subgradient schemes). Then return 

to Step 2. 

Step 11: Disagzrezation. Further subdivide the present artificial commodi-

tization of SX0. Add any newly created distinct supply subset A k  to A and 

pick an appropriate nonnegative starting value for corresponding dual 

variables (11..
1.3

rki:(i,j)en. Similarly, add newly created distinct demand 

subsets B to B and choose nonnegative {S
ij

[2]:(1,j)cEl. Then, return to 

Step 2. 

4. Artificial Commodity Structures 

One important set of issues surrounding the implementation of the above 

algorithm concerns the family of artificial commodity structures employed. The 

algorithm is impacted by commodity structure in several ways. 

o Relaxation Tightness. One aspect is the degree to which the linear 

programming relaxation of problem (9) - (16), (19), (20) tightly 



approximates the underlying integer problem. Commodities impact 

relaxation tightness through the fact that there is one set of 

constraints (19) for each distinct supply set (i.e. each AkEA) 

and one set of constraints (20) for each distinct demand set'(each 

B cB). Relaxations associated with different commodity structures 

differ only in the limitations imposed by these constraints. 

e a alvariables.rneromberofdual variablesets filipc]:(1,j)en 

and fa
ij

[9]:(i,j)EE} which must be stored and searched over in any 

commoditizatioa is also controlled by the dimension of the distinct 

supply and demand subset sets A and B. For each AkcA and each 

BzcB there is a set of constraints (19) or (20) and an associated 

set of dual variables. 

o Shortest Path Problems.  Step 3 of the algorithm calls for finding 

shortest paths between all supply-demand pairs. Arc lengths 

vij
ta,e1 for snortest path problems are as in (30). Assume, as is 

usually the case, that there are many fewer supply nodes than demand 

nodes (Symmetric arguements could be given for the opposite case). 

Then, noting all v.. 
.)
1c4,81 are maintained nonnegative throughout pro- 

1 

cessing, a version of the efficient Dijkstra (1959) algorithm should 

be employed to compute shortest paths. But the Dijstra algorithm can 

compute simultaneously the shortest path from one node: toall other 

nodes. Thus, if v
i3 
 .[a,5] is independent of 8, the Dijstra procedure 

n 	
1

]/d[t]) 

term of (30) creates different v
ij

[a,$], the procedure must be applied 

• 
once per acS and per demand subset with distinct v..fa,81. In total 3.3 

( 

I S ! . 	number of combinations of 
B
Z 
 EB to which any 8 

simultaneously belongs 

shortest path will be 'required per execution of Step 3. 

-12- 



From the above it is clear that all impacts of artificial commodity struc- 

ture are controlled by the supply subset list A 11  {A,} with each Ak  c S and 

the demand subset list B 
4_ {8 ) with each 82. c D. To compare possibilites, 

define a structure [A,B] to be tighter  than another [A,8] 

( y., 
13 
 satisfying (19) for AkEA ryij  satisfying (19) for AkEA 

and (20) forEB 
2. 

and (20) for 2.
ES 

That is, [AA] is tighter than [A,13] if it provides at least as tight a linear 

programming relaxation. 	can then obtain some simple dominance results. 

Lemma 2: Dominance of Covering Subsets.  Let (A,E) be a commodity structure for 

flows in SxD, i.e. A a list of distinct nonempty subsets of S and B a similar 

list of subsets of D. Also, defineAcS - uAk  andBcD - uB 	Then both 
A 	 B It. 

[A41,S]and[A,Eu{S}1 are tighter than [A,8]. Also, [AUCA1, Buan is tighter 

- 	 . - 
than either [Au(A),E] or [A,Eu{S)]. That is, extending the parts of S and D 

covered 1py A and B tightens the formulation. 

Proof: 	Twmediate fro= the fact that new constraints (19) for 'A and/or (20) for 

are added, without deleting any others. 

Lemma 3: Dominance of Partitioning Subsets.  As above let [A,13] be a commodity 

structure for flow in SZO, and pick any AkEA such that X s 5 X d and any 
acAk a  BED ' 

E
R. 
ES with 1 d < X s 

B 	a 
. Then both [A,S], and [AA] are tighter than [A,E] 

,. ,. RED 	acS 	. 	. 
and [A,B] is tighter than [AA or [A,B] where 



y. 
s 	d} 

jlq, a'  E'D Si  

x.fa,f31 
asAk ReD 1-  

A . A - 	 u {At: all Alic.  c Ak , At n 	for iij,u Ak  .--- 	 (34) 

= B - ISk 	k . 
 ) UfSi  all 81 c st , sl n 131. for 	 = 82,1 	"05) - 	

i 

That is, replacing such Ak  and 82.  by a partition of them yields a tighter 

relaxation. 

Proof: We shall show only the case of [A,B) tighter than IAA where 

A l 	.4. A l 	2 	2 	 1 	2 
A = A - tAk) u 	Ai.) w-_7 - - , 	c Ak , Ak  c Ak , Ak  n Ak  = ??, and Ak  u Ak  = Ak. 

A 

All other cases follow by analogousarguement for B and straightforward 

• , 	i 
induction on the number of tr or {13} respectively. 

For our case the only eifference in formulations [A,B] and [A,B] is the 

former contain 

versus the latter's 

and 

xij ra8) aeAk  e:-1) 
. Yli 

=in 	s, Xd4 
acA, 	SeD 

y. 
min ijc  2  sa  d

e  aeAk 	' $eD  

for all (i,j)sE 	 (36) 

for all (i,j)EE - 	(37) 

for all (i,j)cE 	(38) 

, 	x..fa,BI 
acA'k  $=D 1-3  

By the hypothesis that 	s
a 

5. 1 d
s' 

the supply sum provides the minimum, 
acAk 	eeD 

2 
in denominations of (36) - (38). Thus, noting Ak  and Ak  partition Ak, the 

proof reduces to showing 



s 
asA

1 a 

1 2 sa aeAk  

acAk  BED 
2G 17...(a313] 

y 	x..fc„B, 	 x..fa,S) 
f3E-D 	13 	aeAk  00 	1.3  

max 

{I /.1 

	/ x..fa,01 + 1 2 	1 xij Ia,0] 
asAk 

BED 13 	aeAk  BED 

X s + 1 1 a2 s A  aeAk 	. aF.ti
k 

1 
Assume the Ak  term provides the max on the left in (39). Then if (39) fails 

(39) 

/ 	X 
aeAk  00 13  

Al s  a 
cork 

1 
	

X x..fa,01 + X 2 	Ic..t A 01 
aeAk  BED 13 	aeAk  BED 13  

1 s +Xs 1 a • 	2 a 
acAk 	aeA

k 

Cross multiplying and simplifying leads to 

{ I 2 sal{ 	11 
 s 	2 	xii  [a ,0]) 

aeAk 	acAk  00 	 < acAk  a  aeAk  00 - 
J 

, 	 x 4 tajil 
aeAk  BED 1J  

or 
s 

acA a  

Since this contradicts the assumption that 	provides the maximum in (39), we 

can conclude (39) holds, and the Lemma follows. 

-15- 



Lemma 2 makes it clear that tighter relaxations will result if we con-

sider only commodity structures with [A,13] covering [S,19], i.e. 

u Ak  = S 
A 

u B = D 

There could, of course, be a price in terms of dual variables and shortest 

path problems for demanding a cover. However, at most one new supply group 

S - u Ak, and one new demand group V - 
U 
 B , would have to be added to a non-

A 
covering [AA]. Thus, only two new sets of dual variables and perhaps 

no new shortest path calculations are implied. For these reasons we enforce 

(40) and (41) in all further discussion. 

We shall also demand commodity structures be nonoverlapping i.e. 

Ak  n A. = 0 	for all Ak ,AjEA, ilk 	 (42) 

n 8 . = 	for all 8 ,B.E13, jil 0 (43) 

Lemma 3 provides part of the arguement for the latter restrictions. That lemrt 

 shows relaxations are usually tightened when a supply set Ak  (or a demand set 

13 ) is partitioned. It also follows, for example, that when Al c A2, it is 

preferable to include sets Al 
and A2-A1 in the commodity structure instead of 

Al  and A2 . We see that there is usually a gain in relaxation tightness when 

supply or demand sets do not overlap. In the Al c A2 example there was not even 

an increase in dual variables. However, replacing an arbitrary A /  and A2 

by (A1-A2 ), (Al  n A2), and (A2-A1) would tighten the relaxation only by a net 

increase of one system of dual variables. 

(40)  

(41)  

-16-- 



The of r. arguement for nonoverla2pins sets as in (42) and (43) relates 

to the number of shortest path problems (33. Since subsets in any list B are 

distinct, (3:: marmot be less than Is! • I Any B satisfying (43) achieves 

• that lower Tian -. 

5. Implementation Issues  

Basel on maa analysis of the previous section, we propose to implement 

the lagrangea:-...-  relaxation algorithms of Section 3 via supply group and demand 

group lists A =a E that always partition S and D as in (40) - (43). Step 1 

will create fete.ltial partitions, and each time disaggregation Step 11 is executed 

1 	2 
either some A. 	A will be replaced by two nonoverlapping sets A k  and Ak  , or 

some 	eBwi.L1 be replaced by a similarly partitioning pair E
, 

132 . 
k 

Even witt.afm. this approach to disaggregation, there remain many issues re-

garding implememtation of the algorithm of Section 3. When the algorithm starts, 

a decision must be made with regard to the initial number of subsets in A and B 

and the elements of each of these subsets. Then, at every iteration it must be 

decided whether to further the disaggregation by partitioning an A, E A or 

E E B. When the decision to proceed with the disaggregation is made, a series 

of additional decisions are confronted, including selection of the subset to be 

partitioned, the assignment of its elements to the new subsets, and the 

initialization of the dual variables corresponding to the new subsets. 

5.1 Initial Generation of Artificial Commodities  

At the start of the procedure it could be decided to have one or more 

elements in partitioning lists Aand B. If the decision is to start with 

singletons A = fSl, B = Ws, all further partitioning of the original source node 

set and the original destination node set will be performed in the disaggre-

gation Step 11. 
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An alternative is to partially partition S and P from the beginning. In 

general more dual variables and more shortest path problems will result in 

early iteration. However, if the source nodes and the destination nodes are 

initially grouped based on a careful analysis of the problem to be solved, 

the relaxation may be much tighter so that progress on the dual bound in the 

initial stages of the procedure is faster, favorably compensating the additional 

computational burden brought on by handling more artificial commodities from 

the beginning. It is also possible that by starting from an "intelligent" 

list of supply and de:_-and subsets, further disaggregation of these initial 

subsets would be more beneficial because the initial grouping has already con-

sider ,,A concerns too bulky to include each disaggregation step. Finally, an 

initial subdivision of S and  D obviously implies the number of times the 

disaggregation step will later be invoked by the algorithm is significantly 

reduced. Thus results may be less sensitive to the effectiveness and efficiency 

of Step 11 calculations. 

In light of these potential advantages non-singleton initial disaggregations 

are being tried in computational testing presently underway. In picking initial 

groups the goal is to quickly reach a tight relaxation without producing too 

many elements of the initial Aand$ lists. Noting the form of constraints (19) 

and (20) it appears we would like to segregate supply and demand points with 

large s
a 

and d8  respectively. Otherwise, their presence in the denominator of 

(19) or (20) dilutes the impact of other flows on y id  ,Similarly, if a node 

is isolated, and thus particularly expensive to service, it seems reasonable 

to employ a strong relaxation in regard to it, i.e. isolate it in a separate 

supply or demand set. 

For these reasons the initial disaggregation Step 1 being tested auto-

matically segregates in one-point sets any supplies and demands with unusually high 

servicing cost or supply/demand. For remaining supply and demand points, 
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constraints (19) and (20) will be strongest if flows tending to have a 

common shortest supply-demand path are grouped. In the algorithms initial 

groups are formed so that ones with the most common path elements are.•together. 

Figure 2 shows a single-supply example of these initial disaggregation 

notions. Sincethere is only one supply,A = S={1}. The initialization rules 

we have outlined would create a starting partition of V = -(2,4,5,6,7,8) as 

= 1{5}, (6), (2,4): {7,8}1. Node 5 is isolated because of its high demand, . 

node 6 because arcs entering it are particularly costly. Among the remaining 

nodes, 2 is placed with 4 because all paths to 4 pass through 2,and 7 with 8 

because many paths to 8 transit 7. 

5.2 Selections of the New Partition  

In the dual ascent procedure, used in conjunction with the progressive 

disaggregation procedure described herein, whenever the rate of improvement on 

the bound of the optimal solution to (1) 06 (A,8]) does not meet the minimum 

standards set beforehand, it signals the need to further disaggregate some of 

the current artificial commodities. This is carried out by partitioning one or 

more supply and/or destination node subsets. As noted above we have chosen to parti-

tion only one subset at any one time. The main reason for such choice is to 

keep the procedure simple while still achieving the goals of the disaggregation. 

The selection of the subset to be partitioned involves ranking the current 

subsets according to some criterion that matches our strategic objective --- 

significiant improvement of the dual bound. As we have explained earlier, the 

disaggregation pattern affects the dual bound only through constraints (19) 

and (20). In the algorithm of Section 3, those constraints are included in the 

(Pas IA,73]) objective function as terms 



3,20) 	 (2,30) 

d5=.500  

d6=80 

• 

d7---30 

Figure 2. Initial Disaggregation Example 
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a..1,41 11-( f i) 

(i,j)cE 
i,[m[k],/ 	  s[k] 

and 
fij 	

aES I  
[1 

 

X 	6 	[=-1 
(i,j)eE 	

n(2.1) 	d[Z] 	 Yii 

where stk] and d[2.] are as in (31) and (32). One new element is nonnegative 

weights (f 
ij 
 /m[k])and(fin[Z]) used to scale constraints (19) and (20 - for 

greater subgradient search efficiency. Generally, m[k] is similar in 

magnitude to s[k], and uf7,1 to d[2.]. 

Since the expressions in (44) and (45) are less than or equal to zero 

in feasible solutions, minimizing their absolute value will tend to improve 

the dual bound quality. Consequently, we select for partition the subset for 

which the corresponding expression (44) or (45) is the most negative. The 

implementation of this selection rule is very simple and it does not involve 

any additional calculations, since the values of expressions (44) and (45) are 

always readily available in the dual ascent procedure where they are used in 

evaluating the objective function. 

Once the subset to be partitioned is identified, it is necessary to deter-

mine how to partition it. This includes deciding how many new subsets to 

create and which elements of the subset being partitioned to assign to the 

new subsets. 

yij (44)  

(45)  



With regard to the composition of the two new subsets, a criterion similar 

to the one used in selecting the subset to be partitioned is applied. For each 

element of the selected subset, its contribution to the expression in (44) for 

a source node subset, or to (45) for a destination node subset, is evaluated. 

Based on these contributions, the elements with the highest contributions 

will be assigned to one of the subsets, and the rest of the elements will be 

assigned to the other. Each cf the new subsets is required to have the same 

number of elements, so that all singletons will be reached in the minimum number 

of partitions. Again, these decision rules are quite simple to implement 

because (44) and (45) are readily available. 

5.3 Initializing al  

Once it has been decided to partition a supply group Ak  or demand group 

B initial values must be chosen for dual varialbes a. [k] or 	[1] and for 
9.? 	 lj  

scaling coefficients m[k] or n[k]. We shall discuss the case of partitioning a 

demand set 8 into two mew sets B and 8 for which we seek new duals 

ij
[p] and

ij
[6: (i,j)i.E) and scaling weights n[p] and n[q]. The case of 

partitioning a supply subset Ak  is completely analogous. 

In the previous section we showed how the goal in selecting B and B 

was one of maximizing the short term improvement in dual bound. We would, of 

course, like initial dual variables to also advance the dual solution. But 

there is another important issue: we desire stability in the dual search so that 

any poorly chosen duals will quickly be corrected by Step 10 of the algorithm. 

To obtain stability, we seek to assure that the x and y primal solutions 

of Steps 5 and 6 of the algorithm (Section 3) will not decrease violently in 

the first iteration after disaggregation. (If group selection was sound the 

dual value should improve). 



v. 	kt,8] = v. vii + f. 
a..[k] I 	Y 	1J + 

m[k]sik] 

(A
k- 

 A:a.-A 1  

[ (S., t] 
X 	1.J  

n[Z]d[kT 

8 E8:Se8 1 

(48) 

At Step 6, yid  ÷1 if f
ij 
 5 0 and 0 otherwise, where (including the 

scaling factorf ij  /n[t]) 

	

f.. = f.. 	1- 5' 	a. i fkl/ra[k] - X 	6..itlintki 

	

1-.1 	AkcA 	 8
9.c8 

Dividing 8 into 8 and S in the 8 list will merely replace 

6,,f;=.1 
	 with

ij Ipiijfql 

n[Zi 	n[p] 	n[q] 

Thus, they., solution will be unchanged if 
3.3 

	

6..[Z]_ 
 1.] 
6..40 	8 ..tql 

2.3 
ETTT 	n[p] 	-niql 

ij  
TosimilarlypreserveVnex..[a,B] solution of algorithm Steps 3-5, we 

desire to leave unchanged shortest path arc lengths 

(46) 

(47) 



After partition each $ will belong to B or 8 , but not both. Thus, either 
P 	q 

n[p]d[p] 

ii [0  6 ii 10 	d[q] 
	

8[Z] 

or n[q] 	
will replace nitj

ii
d[t]  in (48), 

The dual selection we propose is fixing 

n[p] f n[t] 

n[q] 4- n[t] 

i..[p] f a..1-2.1 d[p]
3.3 	13 	dm 

6..(0 f  8..f2,1 
atii 

Substitution in ( 47 ) gives 

ij
fp] 

+ 	
[q]

ij
[9.] 

id[p]+d[q]] 
n[p] 	ntqj 	n[k] 	L 	d[z] 

2-3 

 n[t]d[t] 

	

the last because S and 	partition demands 	in 8 . Also, (49)-(52) yield 
ft 

	

&JO 	6ii lkl td[p]\ 	Sim[R] 

n[p]d[p] 	n[t]d[p] kd[t]i 	n[t]d[t] 

arid 

6..[q] 	 6..111 
3-3 	(dE4 

n[q]d[q] 	n[i]d[q] VIM/ 	n[t]d[t] 

as required to preserve the v.. [a,8] of (48). 



6. Experimentation  

Previous sections outlined the develop -2ent of a strategy for implementing 

progressive disaggregation in the context of a Lagrangean relaxation algorithm 

for tight formulations of fixed charge network flow problems. Justifications 

provided for details of the algorithm do consider problem properties, but their 

true effectiveness can only be measured empirically. Thus, a series of experiments 

involving variants of these strategic decisions is presently underway. 
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1. Introduction  

A vast number of important engineering and management problems in dis-

tribution, communication, transportation, and facilities location can be viewed 

as single or multi-commodity network flow problems with fixed charges for con-

structing/setting up/installing arcs. Such problems with commodities in P 

can be stated in mixed-integer form as follows: 

min 	7 vP3cP + fy 
	

(1) 
n=T7  

(MFP) 	s.t. 	 EXP = by 	for all pEP' 	 (2) 

xP  > 0 	for all pep 	 (3) 

(1/u.) 	x! 5 v.
J 	

for all jEA 	 (4) 
J 

pEY 

0 y 1 	 (5) 

y integer 	 (6) 

Here E is the vertex-arc incidence matrix of a directed graph, G(V,A), x P 

 is the flow of co,altudity p on that network, vP  is the variable (per unit) 

cost of such flow, by  is a requirements vector for commodity p (having com-

ponentssummingtozero,uisthecapacityofarcjofik,f.is the fixed 
3 

chargeonarcj,andy.is a 0-1 variable switching "on" the fixed charge 

whenflowthrougharcjisallowed.. throughoutthatallf.are 
3 

nonnegative.Ifcapacities,u.,are not naturally apparent in the problem 

setting, they can usuallvbe generated as any number greater than or equal to 

the maximum flow through the arc. 

Figure 1 shows a simple numerical example with IN = 1 commodity. All 10 

units of flow originate at vertex 1; 5 are required at vertex 3 and 5 at vertex 

4. It is easy to check that an optimal solution sends one unit 1-4, 4 units 
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Figure 1, An Example Network 
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1-2-4, and 5 units 1-2-3. Total cost is 63. 

2. The Standard Relaxation  

Since the early work of Balinski [1, 2] a standard approach to dealing 

with problems (MFP) has been to solve linear programming relaxations (MFP) 

obtained when constraints (6) are dropped. Such relaxations provide both 

bounds for branch-and-bound schemes and a source of approximate solutions; 

given an (1:7P) optimum, one need only round "up" all positive, but fractional 

y. to obtain a feasible solution to (147P). 

For the above example this (MFP) relaxation is solved by sending 1 unit 

1-4, 4 units 1-2-4, and 5 units 1-3; total cost is 54 (83% of the optimal 63). 

When rounded "up" this solution costs 104. (165% of optimal). 

Neither of these values is very satisfactory, and actual experience is 

often much worse. To see wIly, observe that the constraints (4) will always 

betightinsomeoptimalsolutionfor wheref.>0, slack in such 

constraints implies unnecessary cost. Since constraints (4) will'be equalities 

in(MIT),theireffectistoproratethefixedcost,f.over the corresponding 

capacity. For example, in arc (1-2) of Figure 1, 4/10 of the fixed cost,40, 

would be paid in the (MFP) optimum because 4/10 of the capacity, 10,is used by 

the optimal flow. If capacities are large, it is easy to see that this pro-

ration process would soon negate, or nearly negate, the impact of fixed costs 

on (M-FP) optima. Optimal relaxation solutions tend to use many arcs at relatively 

small fractions of capacity. This is particularly so when capacities are arti-

ficially created as maximum possible flows. 

3. A Disag2regated Formulation  

In a number of special cases, including warehouse location problems (Balinski 

[2], Davis and Ray [4], Erlenkotter [5], Blida and Krarup [3],Geoffrion and Graves 

[7])and uncapacitated problems (Magnanti and Wong [8]), various researchers have 
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shown the merit of disaggregating (MFP) flows to obtain linear programming 

relaxations that more closely approximate the mixed-integer problems. One 

can retrieve these special cases and extend the notion to all (*•IFP) by 

recognizing that flow in any commodity can always be disaggregated into 

separate commodity flows between origin-destination pairs of the requirements 

vector, b'. Specifically, let x P [s,t] be a vector showing the flow of the 

portion of commodity p originating at source s and destined for sink 	Then 

an equivalent mixed-integer form to (MFP) is 

min 
pEP 

XP [s,t]y f w [ 
sES 	tET 

(7) 

s.t. EP x-iDr s,t3 = 0 for all pEP, sES 
' 

 teT (8)  
13  P 

x[s,t) 	= by  for all pEP, seS (9) 
teT 	{j 	leaving s:t.  p  

—/ 	 x.(s,t) 	= bP  
seS 	 tl 

for all pEP, teT (10) 

(DFP) 	 xP [s,t] 	0 	 for all pEP, sESteT 
P' 	P 

(1/u.) 	1 	I 	1J!fs
' 
 tl 5 w. 	for all jEA 

peP scS tET 	3   
p 	p 

(1/-bP) 1 	xl:'(s,t) 
	

w. 	for all iEA, pcP , tET 
	

(13) 
sEC 

(n) 

(12) 



(1/hi's ) t c-r xps,t] 
P 

0 < w < 1 

w integer 

't,, .for all jcA, pcP, scS 	(14) 

(15)  

(16)  

Here S = {sources for commodity p} ={s: b y  > 0} 

T = {sinks for commodity p} = {t:-bP  > 01 

 

7.. 

EP  = the-xow submatrix of E containing row E 	P 01 

 

In this new form w corresponds directly to y of MP), and flow variables 

are related by 

xF = / P 
sE...S 	x. ts,t1 	 (17) 

P j  

Relaxations (7), (8) through (10), (11), (12), (15), and (16) of (DFP) corres-

pond to (1), (2), (3), ( 4 ), (5), and (6) of (MFP), respectively. Denote by 

v(•) the value of an optimal solution to problem (-) and by (DFP) the linear 

programming relaxation of (DFP). Then this correspondence and the fact that 

(DFP) and (DFP) have extra constraints (13) and (14) lead to the following 

conclusion: 

Proposition 1.  Solution values for (HFP), (DFP), (MTP) and (DFP) satisfy 

v(MFP) < v0:)FP) < v(DFP) = V(MFP) 	 (18) 

tp 

The new elements in the (DFP) formulation are systems (13) and (14). 

Intuitively, (13) requires that , w., the portion of the fixed charge paid on 

arc j, must equal or exceed the fraction of a demand satisfied through arc j. 
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simi larly,a0forcesw .to match the portions of each supply directed through 

arc j. The extra constraints are implied by (12) when integrality, (16), is 

enforced. But they may significantly improve the linear programming relaxation (DFP 

becausef.isnowproratedoverbothu.and all relevant supplies and demands. 

The latter are often much smaller than capacities. 

The example of Figure 1 illustrates. An optimal solution to the linear 

programming relaxation (DFP) sends 1 unit 1-4, 4 units 1-2-4, and 5 units 

1-2-3. The relaxation cost is 62, 98% of the optimal 63. When all fractional 

w. in the relaxation are rounded "up",a feasible solution is obtained that 

is indeed the (DFP) optimum. The effect of the disaggregation is seen on arc 

(1,2). The (DFP) optimum pays the entire fixed charge, 40, because all demand 

at vertex 3 is satisfi - through (1,2). From this example we may draw the 

further conclusion: 

Proposition 2: In selected problems both inequalities of (18) may be strict. 

4. Solving the Tighter Relaxation  

If the strength of the (DFP) relaxation is to be realized, an approach 

must be found for solving or nearly solving that massive linear program. Three 

cases can be identified. Uncapacitated cases have neither binding arc capacities, 

u., nor limits on supply at sources. Equivalently they are problems where con-
.] 

straints (12) are unnecessary and each requirements vector has only one positive 

component at the commodity's single source. Veakly capacitated cases admit 

supply limits, but do not have binding arc capacities. They include the capaci-

tated warehouse location problem. Finally, fully capacitated problems have 

binding arc capacities, and possibly also binding supplies. 

In both the uncapacitated and the weakly capacitated cases we can ignore 

constraints (12) of (DFP). Suppose we "dualize" (13) and (14), i.e. place them 
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in the objective function with nonnegative dual multipliers e[t] and 

a. [s] , 
respectively, to obtain 

min 1 vP 	1 . 	xP [s,t]) 	fw 
pEP 	sES tET 

(DFp.,) 4. 	1 	1 e[t] 	1 

pEP jcik ter 3 	{ -bP 	sl 	xP. ts' ti.  - 1.7  eS 3 	j 

 

(195 

 

   

2 	y c![t] 	1 	 xP  
pcP jEA sESp 	by  tPT 3  

s 

- w. 

 

    

s.t. 	(8), (9), (10), (11), (15) and (16) 

For fixed 6 and a variables in (DFP ;) the commodities are linked only at 

sources and sinks (through (9) and (10)). Moreover, each origin-destination 

commodity problem is essentially one of picking a single path along which to 

ship from source to sink. Thus, one can approach (DPP) by trying to maximize 

V(DFP
Scr

) over nonnegative values of the dual variables as follows: 

StepO:Initialization.Setall ande[s]  to zero, and fix dual and 

* 	" 
primal incumbent solution values v

D 
- co, v 	+-Do . 

Step 1: Implicit Costs. Determine (19) objective function coefficients 

f
j 	J 

	

f. 	 e[s] - 	/ e[t] 

	

pEP sES J 	pEP tET 3  
p 	 p 

vP[s t] t  vP + 01.1 [s]/0 + 6:[t]/(-0) 
J 	J 	s 	3 

Step 2: Shortest Paths. )or each pEP, sES , tET compute the shortest 

path from s to t over arc lengths ; 1°.[s,t]. Let RP [s,t] be the set of 

arcs in that path and c P [s,t1 its length. 

(20)  

(21)  
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Step 3: Transportation Problems: For each commodity pEP, solve a trans- 

portation problem from sources sES to sinks ter with costs cP [s,t]. 

Supplies are {bP  > 0} and demands f-bP  > 0). Denote by zP [s,t] an optimal 

flow from s to t in that transportation problem. 

Step 4: Flow Solution: Construct and optimal flow for (DFP66) by 

assigning for each p, sES , tET , z P [s,t] units of flow along all arcs 

in the corresponding shortest path e[s,t]. 

Step 5: 0-1 Problem- .  -Compute relaxation optimal values for the wj 

 variables via 

w. 4-- 1 if f. < 0 and 0 otherwise. 
3 

Step 6: - Dual Solution. Compute a dual solution,VD,as the sum of the 

(DFP
6a

) costs of the optima in Steps 4 and 5. If v D > v
D, save-a new 

dual incumbent v
D 

v 
D .  

Step 7: Primal Solution. Create a feasible solution to (DFP) by paying 

full fixed charges on any arc used in the flow of Step 4. Let V be its 

cost, and if v < v P, save a new primal incumbent v 
P' 	 P.  

- 
Step 8: Dual Update. If v is sufficiently close to vD' 

stop and accept 

the primal incumbent as an approximate (DFP) optimum. If not, modify 

dualsal,[t]andcr[s] by taking a finite step along a subgradient of the 
3 

function 
v(DFP6a) 

 at the current dual point. 	Then return to Step I. 

Since every problem (DFP
du

) is a Lagrangean relaxation of (DFP) (see 

Fisher [6] for details of such relaxations and subgradient search), and every 

flow of Step 4 is primal feasible we have: 

Proposition 3: At any stage of the above algorithm 

V 5 V(DFP) 5 V . 	 (22) 
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5. Preliminary Computational Experience  

To see whether values in (22) could be brought close enough together to 

solve problems without the need for branch and bound, 15 random 

test problems were generated and approximately solved by the above algorithm. 

The problems were uncapacitated, 1-true-commodity cases with relatively high 

fixed charges on all arcs. 

Table 1 summarizes problem Characteristics and results obtadned for the 

three problems of each size group. As indicated,the ordinary (MFP) relaxations 

provide very poor information. Relaxation solution values are only 25750% of 

optima. 

* * 
The above (DF?) algorithm was set to stop when either

P 
 iv

D 	
102.5% or 

a 15 minute time limit (CDC Cyber74) was reached. All problems of less than 

1000 arcs stopped before time limit. As indicated, the 1000 arc cases reached 

solutions provably within 4-8% of optimal in the 15 minutes. 

Although this amount of computer time is not insignificant, and results are 

highly preliminary, values in Table 1 strongly suggests that disaggregated re-

laxation approaches to fixed charge network problems have great promise. Exist-

ing branch-and-bound algorithms for such problems (e.g. Rardin and Unger t91) 

are taxed at 100-200 fixed charge arcs because of poor eiFP) bounds. With (DFP) 

it appears 1,000 or more arc problems are within range. 



Table 1. Preliminary Computational Results 

Arcs 

Problem Size 

Demands 

Estimated % CDC Seconds to 

Reduce P/vD 
102.5% with (DFP) 

• 	v(MFP) 

Forms of v(MFP) Nodes 

50 20 5 43.5% 0.8 

23.2% 0.8 

54.6% 5.3 

100 36 10 47.3% 7.5 

37.1% 3.8 

36.9% 2.7 

200 67 20 36.1% 23.5 

37.0% 19.2 

41.3% 19.6 

500 157 50 35.9% 416.5 

40.1% 353.2 

47.6% 237.6 

1000 308 100 37.9% 105.5% in 900 

29.3% 107.7% in 900 

41.0% 103.8% in 900 
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