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1. Background

A vast number of important integer and combinatorial problems in
areas such as distribution, communications, transportation, and
facilities location can be viewed as fixed charge flow problems on graphs
or networks, i.e. flow problems with fixed costs incurred on arcs
with positive flow. On May 1, 1980 Drs. Ronald L. Rardin and R. Gary
Parker proposed to the National Science Foundation a line of
research on such fixed charge problems entitled, "Tight Relaxation
Approaches to Fixed Charge Problems on Graphs and Networks." Their
proposal envisioned a program of research on forming, and implementing in
algorithms, non-standard relaxations of fixed charge problems on networks
and graphs. More specifically, the proposal contemplated study of both
tight linear programming relaxations of fixed charge problems on graphs
and networks, and investigation of combinatorial relaxations for the same
problems. Total funding sought was $152,080.

At the request of the National Science Foundation, a revised
proposal was submitted on January 13, 1981 for a reduced scope effort
considering only the linear programming relaxations. That revised scope
was funded as Grant Number ECS-8018954 for two years beginning March,
1981, in the amount of $49,951. This report briefly summarizes progress
on the planned research during the first grang year and activities

contemplated for the second.

2. Progress during the First Grant Year

As noted above research planned under the grant centers on tight

non-standard linear programming relaxations for fixed charge problems on

graphs and networks. The relaxations are tight in the sense that




solutions obtained from such relaxations closely approximate optimal
solutions for the underlying mixed—-integer programming problems.

The proposed method of approach anticipated a combined computational and
theoretical investigation of such relaxations, with computational phases
seeking effective strategies for dealing with the massive linear prograums
involved in such relaxations and theoretical studies aimed at

sharpening the relaxations and proving their effectiveness on restricted
classes of problems.

The attached working papers detail how substantial progress has bezen
achieved on both these fronts during the first grant year. Attachment 1
"Tight Relaxations of Fixed Charge Network Flow Problems"
merely summarizes work prior to the beginning of the grant. It has been

submitted for publication in Operations Research Letters. Attachment 2,

"Development of a Progressive Disaggregation Approach
to Fixed Charge Network Flow Problems"

centers on new computational aspects. Attachment 3,

""Some Polynomially Solvable Multi~Commodity Fixed
Charge Network Flow Problems'

includes new theoretical developments. The latter paper has been

submitted for publication in Discrete Applied Mathematics.

Briefly, the achievements reported in the papers are the following:
® A variant on our earlier formulation has been discovered
which leads to both a tighter linear programming formulation
of the problem and (generally) fewer linear programming
constraints. Attachment 2, Section 2 provides details.
® Central 1ssues have been isolated, and algorithmic strategies

for dealing with them proposed, to implement the disaggregation




concept on our linear programming rzlaxations progressively.

The relaxations involve disaggregation of flows into
components tracking the supply point at which the flow began
and the demand point to which it is destined. Raéher

than dealing with all such variables, and associated
constraints, at one time, the progressive approach

treats flows 1in increasingly more detailed supply and demand
groupings. Ultimately, a full disaggregation to individual
supplies and demands may be reached, but it is hoped that

the progressive strategy will lead to less total computations
by diminishing the effort expanded on early iterations. Among
the issues dealt with in Attachment 2 are the form supply and
demand groups should take, and how the progressive approach

can be integrated in Lagrangean relaxation of the tight form.

- T N B S I B D I e

e Our relaxations have been proved exact on a significant class
of problems arising on graphs with specific étructure.
Attachment 3 details a proof that the linear programming
relaxation we have been studying yields an integer solution
for uncapacitated problems on series-parallel graphs—-—an
important subset of planar graphs. The tight linear programming
relaxaticn for such fixed charge network problems is unimodular,
regardless of the number of commodities considered. Thus,
polynomial procedures for linear programming yield polynomial
time algorithms for all such fixed charge cases.

We noted above that two of the attached papers have already been

submitted for publication. It is also anticipated that work on

-3-




computational phases will be published, but submission awaits
computational testing of concepts developed in the research.
Beyond these efforts to disseminate results through scholarly
journals, six seminars have been presented by investigators on the work:
® "Progressive Relaxation of Fixed Charge Network Flow
Problems," presented to the Fall Joint National meeting
of the Operations Research Society of America and The
Institute of Management Sciences, Toronto, Canada, April,
1981.
c "Tight Relaxations of Fixed Charge Network Problems",
presented in seminars at
a. Department of Industrial Engineering, Auburn
University, April, 1981
b. Department of Industrial Engineering, State University

of New York at Buffalo, April, 1981

¢. Department of Industrial Engineering and‘Operations
Research, Virginia Polytechnic and State University,
February, 1982
d. School of Industrial Engineering, Purdue University,
March, 1982
© "Lagrangean Relaxation with Application to Fixed Charge
Network Flows", presented to the Applied Mathematics Round

Table, Exxon Corporation, March, 1982.

3. Anticipated Activities for the Second Grant Year

Planned activities for the second grant year will be directed toward




completing and extending the achievements described above. More

specifically,

Computational Testing. Algorithmic strategies for the

progressive strategy presented in Attachment 2 are being
implemented in a computer code so that they can be empircally
tested. This computational activity has proceeded more slowly
than originally planned because of inadequate availability of
computer resources at Georgia Tech. However, satisfactory
arrangments have now been made and testing is advancing. By
the end of the project both a code and an empirical evaluation
of the progressive strategy should be available.

Polynomial Algorithm. Attachment 3 shows that a significant

class of fixed charge problems can be solved exactly via our
linear programming relaxation. By appeal to tha availability
of polynomially-bounded algorithms for linear programming,
that result proves the indicated problems aré polynomially
solvable. However, we believe there should be more direct
combinatorial algorithms for the relaxation in such cases.
Theoretical effort in the remaining part of the project will

be directed toward the discovery of such algorithms.
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TIGHT RELAXATIONS OF FIXED
CHARGE NETWORK FLOW PROBLEMS

by

Ronald L. Rardin®

* Associate Professor, School of Industrial and Systems Engineering,
Georgia Institute of Technology, Atlanta, Georgia 30332

Abstract: A vast number of important engineering and management problems can
be viewed as network flow problems with fixed charges for opening arcs. This
research derives new, tight, linear programming relaxations for such problems
based on a disaggregation of flows. The concenpt behind such relaxations is
presented, and an algorithm for their solution is discussed.

This material is based upon work partially supported by the National Science
Foundation under Grant Number ECS-801954.




1. Introduction

A vast number of important engineering and management problems in dis-
tribution, communication, transportation, and facilities location can be viewed
as single or multi-commodity network flow problems with fixed charges for con-
structing/setting up/installing arcs. Such problems with commodities in P

can be stated in mixed-integer form as follows:

min ) vPxP + £y 1

pEP
(MFP) s.t. ExP = bP for all pep’ 2)
x¥ 20 for all peP ' &))
(l/uj) Z X? pS Yj for all jeA (%)

peP

0y <1 (5)
Y intéger (6)

Here E is the vertex-arc incidence matrix of a directed graph, G(V,A), xF

P is the variable (per unit)

is the flow of commodity p on that network, v
cost of such flow, bP is a requirements vector for commodity p (having com-
ponents summing to zero), u, is the capacity of arc j of A, fj is the fixed
charge on arc j, and yj is a 0-1 variable switching "on" the fixed charge
when flow through arc j is allowed. I assume throughout that all fj are
nonnegative. If capacities, uj, are not naturally apparent in the problem
setting, they can usuallybe generated as any number greatér than or equal to
the maximum flow through the arc.

Figure 1 shows a simple numerical example with [P[ = 1 commodity. All 10

units of flow originate at vertex 1; 5 are required at vertex 3 and 5 at vertex

4., Tt is easy to check that an optimal solution sends one unit 1-4, 4 units

-1




Figure 1. An Example Network




1-2-4, and 5 units 1-2-3. Total cost is 63.

2. The Standard Relaxation

Since the early work of Balinski [1, 2] a standard approach to dealing
with problems (MFP) has been to solve linear programming relaxations (MFP)
obtained when constraints (6) are dropped. Such relaxations provide both
bounds for branch-and-bound schemes and a source of approximate solutions;
given an (MFP) optimum, one need only round "up" all positive, but fractional
yj to obtain a feasible solution to (MFP).

For the above example this (ﬁfﬁ) relaxation is solved by sending 1 unit
1-4, 4 units 1-2-4, and 5 units 1-3; total cost is 54 (83% of the optimal 63).
When rounded ''up' this solution costs 104 (165% of optimal).

Neither of these values is very satisfactory, and actual experience is
often much worse. To see why, observe that the constraints (4) will always

be tight in some optimal solution for (MFP); where f, > 0, slack in such

k|
constraints implies unnecessary cost. Since constraints (4) will be equalities

in (ﬁfﬁ), their effect is to prorate the fixed cost, fj’ over the corresponding
capacity. For example, in are (1-2) of Figure 1, 4/10 of the fixed cost,40,
would be paid in the (MFP) optimum because 4/10 of the capacity, 10,is used by

tﬁe optimal flow. 1If capacities are large, it is easy to see that this pro-
ration process would soon negate, or nearly negate, the impact of fixed costs

on (MFP) optima. Optimal relaxation solutions tend to use many arcs at relatively

small fractions of capacity. This is particularly so when capacities are arti-

ficially created as maximum possible flows.

3. A Disaggregated Formulation

In a number of special cases, including warehouse location problems (Balinski
[2], Davis and Ray [4], Erlenkotter [5], Bilde and Krarup [3],Geoffrion and Graves

[7]) and uncapacitated problems (Magnanti and Wong [8]), various researchers have

-3~




shown the merit of disaggregating (MFP) flows to obtain linear programming
relaxations that more closely approximate the mixed-integer problems. One
can retrieve these special cases and extend the notion to all (MFP) by
recognizing that flow in any commodity can always be disaggregated into
separate commodity flows between origin-destination pairs 6f the requirements
vector, bP. Specifically, let xp[s,t] be a vector showing the flow of the
portion of commodity p originating at source s and destined for sink t. Then

an equivalent mixed-integer form to (MFP) is

min Z ' z z vxp[s,t] + f w (7
peP |seS_  teT
D D
s.t. EPxP[s,t] =0 for all peP, sESp, t€Tp (8)
z z x,[s,t] = pP for all peP, se$ (9)
teTp {j leaving s} s P
-7 y x,Ts,t] = b®  for all peP, teT (10)
. . J t P
seSp {j entering t}
(DFP) xp[S,t] >0 for all peP, sesp, t€T§ (11)
(1/u.) Z z z x?[s,t] < w, for all jeA ' 12)
] peP seS  teT J J
P D
1/-69) ] ARy <w, for all jeA, peP, teT (13)

seS




.
(1/b§) L x?[s,t] <w, forall jeA, peP, se:Sp (14)

teTb
0 cw<l (iS)
w integer (16)
Here Sp = {sources for commodity p} = {s: bg > 0}
Tp = {sinks for commodity p} = {t:—bE > 0}

EP = the 'row submatrix of E containing row 1 € {i:bg = 0}

In this new form w corresponds directly to y of (MFP), and flow variables

are related by

P_ ) }oo.p
X5 0= seS tETp x; [s,t] an

Relaxations (7), (8) through (10), (11), (12), (15), and (16) of (DFP) corres-
pond to (1), (2), (3), (4), (5), and (6) of (MFP), respectively. Denote by
v(*) the value of an optimal solution to problem (+) and by (DFP) the linear
programming relaxation of (DFP). Then this correspondence and the fact that
(DFP) ‘and (5?5) have extra constraints (13) and (14) lead to the following
conclusion:

Proposition 1. Solution values for (MFP), (DFP), (MFP) and (DFP) satisfy

V(MFP) < V(DFP) < V(DFP) = v (MFP) (18)

The new elements in the (DFP) formulation are systems (13) and (14).
Intuitively, (13) requires that , wj, the portion of the fixed charge paid on

arc j, must equal or exceed the fraction of a demand satisfied through arc j.

-5-




Similarly, (14) forces wj to match the portions of each supply directed through
arc j. The extra constraints are implied by (12) when integrality, (16), is
enforced. But they may significantly improve the linear programming relaxation (DFP)
because f, is now prorated over both uj and all relevant supplies and demands.
The latter are often much smaller than capacities.

The example of Figure 1 illustrates. An optimal solution to the linear
programming relaxation (DFP) sends 1 unit 1-4, 4 units 1-2-4, and 5 units
1-2-3, The relaxation cost is 62, 987% of the optimal 63. When all fractional
wj in the relaxation are rounded "up",a feasible solution is obtained that
is indeed the (DFP) optimum. The effect of the disaggregation is seen on arc
(1,2). The (DFP) optimum pays the entire fixed charge, 40, because all demand
at vertex 3 is satisfied through (1,2). From this example we may draw the

further conclusion:

Proposition 2: In selected problems both inequalities of (18) may be strict.

4, Solving the Tighter Relaxation

If the strength of the (DFP) relaxation is to be realized, an approach
must be found for solving or nearly solving that massive linear program. Three

cases can be identified. Uncapacitated cases have neither binding arc capacities,

uj, nor limits on supply at sources. Equivalently they are problems where con-
straints (12) are unnecessary and each requirements vector has only one positive

component at the commodity's single source. Weakly capacitated cases admit

supply limits, but do not have binding arc capacities. They include the capaci-

tated warehouse location problem. Finally, fully capacitated problems have

binding arc capacities, and possibly also binding supplies.
In both the uncapacitated and the weakly capacitated cases we can ignore

constraints (12) of (DFP). Suppose we 'dualize" (13) and (14), i.e. place them

—6-
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in the objective function with nonnegative dual multipliers 6§[t] and

0?[

F s], respectively, to obtain

min 2 vP 2' 2 xp[s,t] + fw
peP seSp teTp

ore, ) + T 1 881l | —— I <Pls,t) - w, (197
peP jeA teT I -t se§ ]
P t P
+ 11 L% | —— I sl -,
peP  jeA ssSp J bz tsTE ] J

s.t. (8), (9), (10), (11), (15) and (16)

For fixed § and ¢ variables in (DFP60) the commodities are linked only at
sources and sinks (through (9) and (10)). Moreover, each origin-destination
commodity problem is essentially one of picking a single path along which to
ship from source to sink. Thus, one can approach (DFP) by trying to maximize

V(DFPGO) over nonnegative values of the dual variables as follows:

Step 0: Initialization. Set all 6§[t] and 0?[5] to zero, and fix dual and

* *
primal incumbent solution values VD + - o, VP'* + @

Step 1: Implicit Costs. Determine (19) objective function coefficients

£.o«f, - 7 § ofs)- 7 1 &°[e] (20)
I 1 LeP oges peP teT
P p
P « P P p p P
vj[s,t] vy + Oj[s]/bS + Gj[t]/( bt) (21)

Step 2: Shortest Paths. Yor each peP, sESp, tETp compute the shortest
path from s to t over arc lengths ;§[s,t]. Let Rp[s,t] be the set of

arcs in that path and cP[s,t] its length.

-7-
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Step 3: Transportation Problems: For each commodity peP, solve a trans-

portation problem from sources sESp to sinks tETb with costs cP[s,t].
Supplies are {bz > 0} and demands {—bz > 0}. Denote by zp[s,t] an optimal

flow from s to t in that transportation problem.

Step 4: Flow Solution: Construct and optimal flow for (DFPac) by

assigning for each p, sESp, teTp, zp[s,t] units of flow along all arcs

in the corresponding shortest path Rp[s,t].

Step 5: 0-1 Problem. Compute relaxation optimal wvalues for the wj

variables via
;j +~ 1 if Ej < 0 and 0 otherwise.

Step 6: Dual Solution. Compute a dual solution,vD,as the sum of the

‘ *
(DFPSG) costs of the optima in Steps 4 and 5. If Vp > Y, save a new

*
dual incumbent vD < vD.

Step 7: Primal Solution. Create a feasible solution to (DFP) by paying

full fixed charges on any arc used in the flow of Step 4. Let VP be its
%

*
cost, and if Vp < Vp, save a new primal incumbent Vo + vP.

* *
Step 8: Dual Update. If Vp is sufficiently close to Vp» Stop and accept

the primal incumbent as an approximate (DFP) optimum. If not, modify
duals Sy[t] and G§[s] by taking a finite step along a subgradient of the

function v(DFPSG) at the current dual point. Then return to Step 1.

Since every problem <DFP60) is a Lagrangean relaxation of (DFP) (see
Fisher [6] for details of such relaxations and subgradient search), and every
flow of Step 4 is primal feasible we have:.

Proposition 3: At any stage of the above algorithm

oL

* %
vy < v(DFP) < Vg - (22)

-8-




5. Preliminary Computational Experience

To see whether values in (22) coéould be brought close enough together to
solve problems without the need for branch and bound, 15 random
test problems were generated and approximately solved by the above algorithm.
The problems were uncapacitated, l-true-commodity cases with relatively high
fixed charges on all arcs.

Table 1 summarizes problem characteristics and results obtained for the
three problems of each size group. As indicated,the ordinary (MFP) relaxations
provide very poor information. Relaxation solution values are only 25-50%7 of
optima.

The above (DFP) algorithm was set to stop when either v;/v; < 102.5% or
a 15 minute time limit (CDC Cyber 74) was reached. All problems of less than
1000 arcs stopped before time limit. As indicated, the 1000 are cases reached
solutions provably within 4-8% of optimal in the 15 minutes.

Although this amount of computer time is not insignificant, and results are
highly preliminary, values in Table 1 strongly suggests that disaggregated re-
laxation approaches to fixed charge network problems have great promise. Exist-
ing branch-and-bound algorithms for such problems (e.g: Rardin and Unger [9])
are taxed at 100-200 fixed charge arcs because of poor (MFP) bounds. With (DFP)

it appears 1,000 or more arc problems are within range.




Table 1. Preliminary Computational Results

Estimated % CDC Seconds to
— % %
Problem Size © v(MFP) : Reduce vP/vD
Arcs Nodes Demands Forms of V(MFP) < 102.5% with (DFP)
50 20 5 43.57 0.8
23.27% 0.8
54.6% 5.3
100 36 10 47 .37
37.1%
36.9%
200 67 20 36.1% 23.5
37.0% 19.2
41.3% , 19.6
500 157 50 35.9% 416.5
40.1% 353.2
47 .67 237.6
1000 308 100 37.9% 105.5% in 900
29.3% 107.7% in 900
41.0% 103.8% in 900

~10-
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Abstract

Fixed charge network flow problems model network design and location
settings by allowing both fixed and variable charges for arc flow. Recent
research has shown that very close approximations to mixed-integer solutions
for each problems can be obtained from massive linear programs wherein flows
are artificially disaggregated into separate components for each origin - des-
tination pair. This paper develops the strategy of a progressive disaggregation
algorithm employing the latter linear programming relaxation. However, flows
are initially undisaggregated. As computation proceeds, supply and demand sub-
sets are further and further partitioned to tighten the relaxation as required

without incurring the computational burden of a complete disaggregation into

supply~demand pairs.



1. 1Introduction

The fixed charge network flow problem in one commodity is typically form-

ulated
min ) ) oh)
ee T @ pee 7Y
s.t. 2 b4 8 = d £ 11 ) .
(1,8)¢E i B or a Be (2)
X < s for all aeS (3)
(a,j)eE @
(¥C)
Z X,. - z x, =0 for all 2eT (4)
(2,9)eE (1,2)eE **
le/uij < ylj for all (i,j)eE (5)
%55 >0 for all (i,j)eE (6)
12y, 20 for all (i,i)eE (7
Vi3 integer for all (i,j)et (8)

Here E is the arc set of a specified network; xij is the flow from i to j;
S, Dand T are the supply point, demand point and transshipment point subsets of

nodes respectively; S, is the supply at point a; d, is the demand at point B8;

B

and uij is a capacity of are (i,j) flow. Costs (1) include a variable (per unit

flow) cost vij and a fixed charge £

. "switched on'" by the 0-1 variable y,,
1] ij
whenever xij > 0. We assume throughout that all fij and vij are nonnegative
although the latter requirement can be relaxed in some cases.

Formulation (FC) gives a correct mixed-integer statement of the fixed charge

network flow problem, but its linear programming relaxation, (obtained by deleting




constraint (8)) often provides only a very poor approximation to the mixed in-
teger form. Rardin and Choe (1979) and Rardin (1982) demonstrated that a much
better linear programming approximation is obtained by disaggregating flows
xij into components xij[a,B] distinguished by the supply point o at which the
flow originated and the demand point B to which it is defined.

Such a multi-commodity formulation is

min ) v.. ) ) x,.la,8] + ) - f.. v,
(i,i)eE 9 aeS gep M (i,9)ef 13 74

§F N A T Gl T T 0

s.t. E . Z xiB[a,B] = dB for all ReD
aeS (i,B)et
) ) x .[la,B] <5 for all aeS
3eD (a,j)eE @
(MC)
) Xz.[a,B] - ) x.z[a,B] =0 for all aeS
(2,5)eE (1,2)eE 1 BeD, 2eT
(1/u.)) Y J =x,.[0,B] =y, for all (4i,j)eE
1 aeS ged 13
xi,[a,B] >0 for all (i,j)eE
J aeS, BReD
1= Yij >0 for all (i,j)eE
yij integer for all (i,j)et
xij[a,B]

IA

—_— Yi4 for all (i,j)et
min{sa,ds} J aeS, BeD

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

an



As mixed-integer programs, forms (FC) and (MC) are equivalent. However,
disaggregation of (FC) flows xij into separate commodities xij[a,B] leads to a
tighter linear programming relaxation in (MC) because of the new constraints
(17). With fij > 0 the linear programming relaxation, say (FC), of
(FC) will always have an optimal solution with no slack in (5). Thus, (FC)

solutions incur only the fraction X, . of the fixed charge fij that flow x

3743 13
forms of its capacity uij' Equation (13) enforces the same limit in (MC), the
linear programming, relaxation of (MC). However, (17) also forces yij to be as
large as the fraction of any source a or sink B flow passing through (i,j).
The improved linear programming relaxation follows when (as is usually the

B

Although providing generally much tighter linear programming approximations,

case), S, and/or d, are much smaller than uij'

the (MC) form is an enormous linear program. For a case with 750 arcs, 25
supplies, 100 demands, and 125 transshipment nodes, (MC) has over 400 thousand
main constraints and approximately 2.2 million variables. The dual ascent scheme
proposed by Rardin and Choe (1979) exploits problem structure in a Lagrangean
relaxation, (we give details below), but a typical iteration still involves
shortest path problems for each (a,B) pair, and search over dual variables for
all constraints (17). For the problem size just described, there would be
2500 such shortest ‘path problems and approximately 1.9 million searchable dual
variables. |

However, the formulations (FC) and (MC) may be viewed as endpoints of a
disaggregation continuum. Form (FC) treats all flows in a single commodity;
(MC) disaggregates flows info artificial commodities for each origin - destination
pair. Certainly, there are intermediate possibilities wherein flow isbtreated
in groups, (Ak’Bk) with Ak c S, Bk c D.

In this paper we first sharpen the (MC) formulation and then develop
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strategies for an algorithm exploiting a progressive disaggregation of SxU

flows. The algorithm generally follows the Lagrangean relaxation philosophy of
Rardin and Choe (1979), but processing begins with the undisaggregated form (FC),
i.e. with one supply group Al = S and one demand group Bl = D, As com-

putation proceeds supply and demand groups are progressively partitioned to

create new artificial commodity structures. It is hoped that computational testing

now underway will demonstrate such a progressive approach reduces total calcu-

lation to obtain a satisfactory approximation to an (MC) optimum.



T T T T T T T aEw

2. An Improved Formulation

Flow in our given network can be conceptualized as the rectangle of Figure 1.
Sides reflect supplies and demands respectively. Formulation (FC), which uses
only one commodity, views the rectangle of flows on are (i,j) as a single unit
xij' In (MC), each supply, demand cell of the rectangle is tabulated separately
as xij[a,B]. At disaggregation levels between these extremes, supplies and demands
are grouped in a rectangle (Ak,Bk) collecting all flows from origins asAk to
destinations BsBk.

The analog of Rardin and Choe's (MC) comstraint (17) for such a commodity

(Ak,Bk) is

. ij
agA BeB :
:\k K ;< vy forall (L) (18)
min Z s , z d8 and all %k
?asAk BsBk ‘

However, by treating supplies and demands separately we can expand the sums

in the numerator and thus sharpen the relaxation.

Lemma 1: Improved Formulation. Let xij[a,B], Sy dB’ S and D be as in formu-

lation (MC), Ak a nonempty subset of S and Bk a nonempty subset of ?. Then the

following constraints are satisfied by every feasible (integer) solution to (FC)

oe gep ™

A\k ERRLT for all (i,7)eE (19)
min ¢ z Sy? X dB J and all k

JaeAk BeD \
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an intermediate grouping (Ak,Bk)

.« e d LI T dlD'

total flow x..
1]

s x;.[a,8]

°|sl

Figure 1: Total Flow as a Supplies by Demands Rectangle




aeS BeB2

< y,. for all (i,j)eE andall 2 (20)
min ) ) a Y s { 1]
)BaB2 aeS

Furthermore, for specified Sq > 0, 4, > 0, xij[a,B],

B
A{yij satisfying (18)} o (yij satisfying (19) and (20)} (21)

Proof: It is clear that (19) and (20) are valid in (MC); they simply require
that yij be at least the fraction of supply in Ak or demand in B2 passing through
(i,j), respectively. To see (21) observe that if z Sy < z dB’ (19) has
' aeAk BeB,
the same denominator as (18), and at least as great a numerator. If
7 s 2 Y a,, (20) dominates (18).
aeAk @ geB g
k
>

B),..

For a system of q commodities (Al, B.), (Az, 5

.,(A-, B) there are
1 qQ q

q constraints of type (18) and potentially 2q like (19) and (20).- However,

any commodities k and 2 with Ak = Az or Bk = B2 have the same constraint (19)

or (20) respectively. The result can be a considerable reduction in the possible
number of (19) and (20). 1In the extreme case where every {(a,8) e SxD forms a
separate commodity, there are |S| + |D] constraints (19) and (20), but [S]| - |D|
limits (18). Thus, at least, as this complete disaggregation is approached,

use of (19) and (20) results in both a substantial saving of constraints and a

gain In formulation tightness.




3. The Lagrangean Relaxation Setting

With even a partial digaggregétion of problem flows into artificial
commodities, one obtains a formidable linear program relaxation to be solved.
If arc capacities (13) (or (5)) are nonbinding, Rardin and Choe (1979) showed
how an effective Lagrangean relaxation of the remaining problem could be structured

by summing constraints (19) and (20) in the objective function with nonnegative

-+

dual multipliers. Le Aé{Ak} be the list of distinct supply subsets of current
artificial commodities, {cij[kl: AkeA,(i,j)sE} be the nonnegative dual multipliers on
corresponding constraints (19), BQ{BQ} the 1list of distinct demand subsets of

current commodities, and {Sij[ﬂ]: BQEB, (i,j)eE}l be the dual variables on their

constraints (20). Then the implied Lagrangean relaxation 1s as follows:

min ¥ v,, z z x,.[la,B) + z f

) . oY
(i,70eE ™ aeSpep (i,j)eE 1

+

.5 (k]

)} o - -v.. | (22)
(i,3)eE AksA ] min { ) dB} 1J _

BRI »
aeS BsBk gij[a’s] , T ;
+ ) 16, 1a] : - 9..
(i,)eE ByeB ™ min{z dg. 7 s } ij
- BEBQ acS ©
e -
s.t. ) y x..la,8] = d for all BeD ©@3)

aeS (i,B)sE J




(2 _s[A.BD) ) Y x .[a,8] £s  for all aeS

BeD (a,j)eE H @
) XQ.[G,B] - ) X,R[G,B] = 0 for all aeS,
(2,3)eE I (i,8)eE 7 geD, 2eT
Xij[a,B] >0 for all (i,j)ek,

aeS, BeD
12 Vi5 2 0 for all (i,j)eE’

Yy integer for all (i,j)eE

For any choice of nonnegative Gij[k] and oij[z] formulationg(PoG[A,B])

(24)
(25)
(26)

(27)

(28)

gives a valid lower bound on the cost of an (FC) or (MC) optimum. A~search is,

of course, necessary to find good dual values.

The advantage of the (PGG[A’B]> form lies with the faect that [a,R] systems

are linked only through the objective function. Thus, for fixed dual wvalues,

(PGS[G,B]) separates into a series of shortest path problems for [a,B] pairs,

followed by an S to D transportation problem.

Including subgradient steps to improve duals and revise the present commodi-

tization, a full procedure employing (PGS[A,fﬂ)iS as follows:

Step 0: Initialization. Fix dual and primal incumbent values

% %
Vp =, Vp * e

Step 1: TInitial Disaggregation. Partition the source mode by desti-

nation node set SxD into an initial series of artifiecial supply-demand

commodities, and let A be the list of distinct supply subsets, Ak’




and B the corresponding list of distinct demand subsets,Bz. Fix
all duals o..[k] and & .[2] at zero.
ij ij

Step 2: Implicit Costs. Determine (22) objective function coefficients

-~

« I

cij[k] - BEEB Gij[i]

-~

v..[o,8] « v, + ) (o, [kl/s[k]) + ) (6,.081/d[2])
1] 1] 1] ) 1] .
{AkeA:aeA.k} {BQEB:BEBQ}

where s[k] é=min ) z s , z d f

A . {
dl 2] min | z d,, z s (
gBEBQ 8 aeS as

(29)

(30)

(31)

(32)

Step 3: Shortest Paths. For each pair (a,B) of a source and a destination

node, compute the shortest path from every a to every B over arc lengths
vij[a,B]. Let R[oa,R] be the set of arcs in the shortest path from node
a to node B and c[w,B8] its length.

Step 4: Transportation Problem. Using costs c¢[«,R], suppliers Sy and

demand dB’ solve an S to U transportation problem. Denote by z[a,B] an
optimal flow from a to B obtained in the solution to the transportation

problem.

Step 5: TFlow Solution: For each a and B , assign z[a,B] units of flow

to all arcs (i,j) in the corresponding set of shortest path arcs R[a,B].

Step 6: 0-1 Problem. Compute relaxation optimal values for the Yij

variables via

-~

v., <1 if £,, € 0 and 0 otherwise.
ij ij
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Step 7: Dual Solution. Compute a dual solution, vD, as the sum of

*

the costs of the optima in Steps 5 and 6. If vy > v, save a new dual

*
incumbent v_ <« v_.
D b

Step 8: Primal Solution. Create a feasible solution to (DC) by paying

full fixed :charges on any arc used in the flow of Step 5. Let Vp be

Ja
-~

its cost. If vP < vP’ save a new primal incumbent as an approximate

optimum to (FC). If not, check whether the rate of improvement in the

N
~

%
ratio vP/vD is satisfactory. If so, go to Step 10.

Step 10: Dual Update. Modify duals Gij[k], and Bij[i] by taking a finite

step along a subgradient of the Lagrangean dual function at the current
dual point and projecting to restore nonnegativity (see for example
Bazaraa and Goode (1979) for details on subgradient schemes). Then return
to Step 2.

Step 11: Disaggregation. Further subdivide the present artificial commodi-

tization of SxP. Add any newly created distinct supply subset Ak to A and
pick an appropriate nonnegative starfing value for corresponding dual
variables'{cij[k]:(i,j)sE}. Similarly, add newly created distinct demand
subsets Bl to B and choose nonnegative'{Sij[i]:(i,j)eE}. Then, return to

Step 2.

4. Artificial Commodity Structures

One important set of issues surrounding the implementation of the above
algorithm concerns the family of artificial commodity structures employed. The
algorithm is impacted by commodity structure in several ways.

® Relaxatjon Tightnaess. One aspect is the degree to which the linear

programming relaxation of problem (9) - (16), (19), (20) tightly

-11-




approximates the underlying integer problem. Commodities impact
relaxation tightness through the fact that there is one set of
constraints (19) for each distinct supply set (i.e. each AkeA)

and one set of constraints (20) for each distinct demand set (each
BQEB). Relaxations associated with different commodity structures

differ only in the limitations imposed by these constraints.

Dual Variables. The number of dual variable sets-{cij[k]:(i,j)éE}
andb{Sij[Q]:(i,j)eE} which must be stored and searched over in any
commoditization is also controlled by the dimension of the distinct
supply and demand subset sets A and B. For each AkeA and e?ch
BQeB there is a set of constraints (19) or (20) and an associated

set of dual variables.

Shortest Path Problems. Stép 3 of the algorithm calls for finding

shortest paths between all supply-demand pairs. Arc lengths

Gij[a,B] for shortest path problems are as in (30). Assume, as is
usually the case, that there are many fewer supply nodes than demand
nodes (Symmetric arguements could be given for the opposite case).
Then, noting all ;ij[a,B] are maintained nonnegative throughout pro-
cessing, a version of the efficient Dijkstra (1959) algorithm should
be employed to compute shortest paths. But the Dijstra algorithm can
compute simultaneously the shortest path from one node to all other
nodes. Thus, if ;ij[a,B] is independent of B, the Dijstra procedure
needs to be invoked only once per aeS. However, if the'Z(éij[Q]/d[Q])
term of (30) creates different ;ij[a,B], the procedure must be applied

~

once per aeS and per demand subset with distinct vij[a,B]. In total

|SI . [ number of combinations of

BQSB to which any g (33)

simultaneously belongs

shortest path will be ‘required per execution of Step 3.
-12-~ '




From the above it is clear that all impacts of artificial commodity struc-
ture are controlled by the supply subset list A é:'{:Z\k} with each Ak S and
the demand subset 1list B é;{Bg} with each Bg « D. To compare possibilites,

define a structure [A,B] to be tighter than another [A,B]

Vi satisfying (19) for AgeA Y4 satisfying (19) for AkeA

and (20) for égeé and (20) for B B

That is, [A,B] is tighter than [A,B] if it provides at least as tight a linear
programming relavation. We can then obtain some simple dominance results.

Lemma 2: Dominance of Covering Subsets. Let [A,B] be a commodity structure for

flows in SxD, i.e. A a list of distinct nonempty subsets of S and B a similar

1ist of subsets of D. Also, define A c S - u Ak and Bc D - v B Then both
A B

[AU{R},B]and [A,BU{é}] are tighter than [A,B]. Also, [Au{A}, Bu{B}] is tighter
than either [AU{Z},B] or [A,Bb{é}]. That is, extending the parts of S and D

covered by A and B tightens the formulation.

Proof: ~Tmmediate from the fact that new constraints (19) for A and/or (20) for

B are added, without deleting any others.

Lemma 3: Dominance of Partitioning Subsets. As above let [A,B] be a commodity

structure for flow in SxD, and pick any AkeA such that X X d and any
aeA BeD

B eB with X d < X s . Then both [A B], and [A,%] are tighter than [A,B]
~ ~ BeD B aeS © ’
and [A,B] is tighter than [A B] or [A, B] where

~13-




F THEESSE TS TS TS TaSSS aaaS EaaSaS

A=A-1AY UlA: all A < Ao Ao Ai=¢ for i#j,:;A;

Ak} (34)

B,} (35)

n
2 e v 2

PR Crpll i i J_ PR |
B =B {Bl} U {Bl' all Bl < B, B BR—¢ for 1#],;{32
That is, replacing such Ak and BR by a partition of them yields a tighter
relaxation.
Proof: We shall show only the case of [A,B] tighter than [A,B] where
y : 1,2 . 1 2 1 2 1 2
= A - with . = A : = .
A=A-{AYu A A AccAs A A, An A 0, and L VAL = A
All other cases follow by analogous :arguement for B and straightforward
induction on the number of-{Ai} or.{B;} respectively.

For our case the only difference in formulations [A,B} and [A,B] is the

former contain

— < y.. for all (i,j)eE (36)
min { ) S ) dB} H
aeAk BeD
versus the latter's
1. 1 =x..la,8]
acAr gep
<vy.,. for all (i,j)eE (37)

min{ z s , Z d } H
@ geD B

ekl

and Z Z x..[ass]
aeAi gep I
< Y. for all (i,j)eE (38)
. 1]
min { 2 9 Sq X dB}
ae > geD

By the hypothesis that Z s Z dB’ the supply sum provides the minimum,

aeAk geD

in denominations of (36) - (38). Thus, noting Ai and Ai partition Ak’ the

<
o

proof reduces to showing

~1b—




) ) [a,B] ) 1 x..[a,B]
aeAi BeD . aaAi el 1]
max . >
Z 1 SOL ZAZ Sa
| G.EAk ae K
A
z Z x . [a,B] + z z x,,[a,B]
aaAk geD aaAk Be k|
z s + v (39
A S
L at—:’Al:t * qui o

Assume the Ai term provides the max on the left in (39). Then if (39) fails

1 Loxy5la,8] Dy 1 oxlel+ o ] ox . la,8]
aaAk 8eD | aaAk BeD aaAk BeD
zls+zzs

1 % o o
aaAk aaAk aaAk

Cross multiplying and simplifying leads to

B R P R U

) Xy [a B] 22 ) Xy [a,B]
VY BeD ae BeD
. Ak : A
s
aaAi o aaAi

. . . . 1 . .
Since this contradicts the assumption that Ak provides the maximum in (39), we

can conclude (39) holds, and the Lemma follows.




Lemma 2 makes it clear that tighter relaxations will result if we con-

sider only commodity structures with [A,B] covering [S,P], i.e.

u Ak = S (40)
A .
uB =D (41)
B
There could, of course, be a price in terms of dual wvariables and shortest
path problems for demanding a cover. However, at most one new supply group
S-uvu Ak’ and one new demand group D - u Bz, would have to be added to a non-
A
covering [A,B]. Thus, only two new sets of dual variables and perhaps
no new shortest path calculations are implied. For these reasons we enforce
(40) and (41) in all further discussion.
We shall also demand commodity structures be nonoverlapping i.e.
Ak,n Ai = for all Ak’AiEA’ i#k | (42)
Bz n EE =p for all Bz,Bst, J#L (43)

Lemma 3 provides part of the arguement for the latter restrictions. That lemma
shows relaxations are usually tightened when a supply set Ak (or a demand set
Bz) is partitioned. It also follows, for example, that when Al c Az, it is
preferable to include sets Al and A2—Al in the commodity structure instead of

Al and A2' We see that there is usually a gain in relaxation tightness when
supply or demand sets do not overlap. In the Al c A2 example there was not even
an increase in dual variables. However, replacing an arbitrary Al and A2

by (Al—Az), (Al n AZ)’ and (A2-A1) would tighten the relaxation only by a net

increase of one system of dual variables.

~16~




The other arguement for nonoverlapping sets as -in (42) and (43) relates
to the number of shortest path problems (33). Since subsets in any list B are
distinct, (33) cannot be less than |S| . |B|. Any B satisfying (43) achieves

that lower limit.

5. Implementation Issues

Based on the analysis of the previous section, we propose to implement
the Lagrangean relaxation zlgorithms of Section 3 via'supply group and demand
group lists A and B that always partition S and D as in (40) - (43). Step 1
will create initial partitions, and each time disaggregation Step 11 is executed
either some Ak e A will be replaced by two nonoverlapping sets Ai and Ai , Or
some B2 e B will be replaced by a similarly partitioning pair Bi, B;.

Even within this approach to disaggregation, there remain many issues re-—
garding implementation of the algorithm of Section 3. When the algorithm starts,
a decision must be made with regard to the initial number of subsets in A and B
and the elements of each of these subsets. Then, at every iteration it must be
decided whether to further the disaggregation by partitioning an Ak e Aor
B2 ¢ B. When the decision to proceed with the disaggregation is made, a series
of additional decisions are confronted, including selection of the subset to be
partitioned, the assignment of its elements to the new sﬁbsets, and the

~initialization of the dual variables corresponding to the new subsets.

5.1 TInitial Generation of Artificial Commodities

At the start of the procedure it could be decided to have one or more
elements in partitioning lists Aand B. If the decision is to start with
singletons A = {S}, B = {D}, all further partitioning of the original source node
set and the original destination node set will be performed in the disaggre-

gation Step 11.

17—




 An alternative is to partially partition S and D from the beginning. In
general more dual variables and more shortest path problems will result in
early iteration. However, if the source nodes and the destination nodes are
initially grouped based on a careful analysis of the problem to be solved,
the relaxation may be much tighter so that progress on the dual bound in the
initial stages of the procedure is faster, favorably compensating the additional
computational burden brought on by handling more artificial commodities from
the beginning. Tt is also possible that by starting from an "intelligent”
list of supply and demand subsets, further disaggregation of these initial
subsets would be more beneficial because the initial grouping has already con-
sidered concerns too bulky to include each disaggregation step. Finally, an
initial subdivision of S and D obviously implies the number of times the
disaggregation step will later be invoked by the algorithm is significantly
reduced. Thus results may be less sengitive to the effectiveness and efficiency
of Step 11 calculationms. .

In light of these potential advantages non-singleton initial disaggregations
are being tried in computational testing presently underway. In picking initial
groups the goal is to quickly reach a tight relaxation without producing too
many elements of the initial Aand B lists. Noting the form of constraints (19)
and (20) it appears we would like to segregate supply and demand points with

large S and d_, respectively. Otherwise, their presence in the denominator of

B8
(19) or (20) dilutes the impact of other flows on Yi5 Similarly, if a node
is isolated, and thus particularly expensive to service, it seems reasonable
to employ a strong relaxation in regard to it, i.e. isolate it in a separate
supply or demand set.

For these reasons the initial diéaggregation Step 1 being tested auto-

matically segregates in one-point sets any supplies and demands with unusually high

servicing cost or supply/demand. TFor remaining supply and demand points,
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constraints (19) and (20) will be strongest if flows tending to have a

common shortest supply-demand path are grouped. In the algorithms initial

groups are formed so that ones with the most common path elements are.together.
Figure 2 shows a single-supply example of these initial disaggregation

notions. Since there is only one supply,A = S={1}. The initialization rules

we have outlined would create a starting partition of D ='{2,4,5,6,7,8} as

B = {{5}, {6}, {2,4},'{7,8}}. Node 5 is isolated because of its high demand,

node 6 because arcs entering it are particularly costly. Among the remaining

nodes, 2 is placed with 4 because all paths to 4 pass through 2,and 7 with 8

because many paths to 8 transit 7.

5.2 Selections of the New Partition

In the dual ascent procedure, used in conjunction with the progressive
disaggregation procedure described herein, whenever the rate of improvement on
the bound of the optimal solution to (P06[A,B]) does not meet the minimum
standards set beforehand, it signals the need to further disaggregate some of
the current artificial commodities. This is carried out by partitioning one or
more supply and/or destination node subsets. As noted above we have chosen to parti-
tion only one subset at any one time. The main reason for such choice is to
keep the procedure simple while still achieving the goals of the disaggregation.

The selection of the subset to be partitioned involves ranking the current
subsets according to some criterion that matches our strategic'objective -
significiant improvement of the dual bound. As we have explained earlier, the
disaggregation pattern affects the dual bound only through constraints (19)
and (20). In the algorithm of Sectioﬁ 3, those constraints are included in the

(PGGIA’BJ) objective function as terms
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Figure 2. Initial Disaggregation Example




) ) xij[a,B]
z o ] fij aeAk BeD _ (645
(i J)EE ij m[kT S[k] ij
-
, Y x..[a,B]
£ s -
and P A1 s i M -y 45)
) (1.5)cE 13"\ nlk] are] i3

i

where s[k] and d[#] are as in (31) and (32).

greater subgradient search efficiency.

magnitude to s[k], and n[2] to d[2].

One new element is nonnegative

weights (fij/m[k]) and (fij/n[l]) used to scale constraints (19) and (20) for

Generally, m[k] is similar in

Since the expressions in (44) and (45) are less than or equal to zero

in feasible solutions, minimizing their absolute value will tend to improve

the dual bound quality.

Consequently, we select for partition the subset for

which the corresponding expression (44) or (45) is the most mnegative. The

implementation
any additional
always readily

evaluating the

of this selection rule is very simple and it does not involve
calculations, since the values of expressions (44) and (45) are
available in the dual ascent procedure where they are used in

objective function.

Once the subset to be partitioned is identified, it is necessary to deter-

mine how to partition it.

This includes deciding how many new subsets to

create and which elements of the subset being partitioned to assign to the

new subsets.
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With regard to the composition of the two new subsets, a criterion similar
to the one used in selecting the subset to be partitioned is applied. For each
element of the selected subset, its contribution to the expression in (44) for
a source node subset, or to (45) for a destination node subset, is evaluated.
Based on these contributions, the elements with the highest contributions
will be assigned to one of the subsets, and the rest of the elements will be
assigned to the other. Each c¢f the new subsets is required to have the same
number of elements, so that all singletons will be reached in the minimum number
of partitions. Again, these decision rules are quite simple to implement
because (44) and (45) are readily available.

5.3 Initjalizing Dual Variables

Once it has been decided to partition a supply group Ak or demand group
Bl,initial values must be chosen for dual varialbes Gij[k] or Sij[l] and for
scaling coefficients m[k] or n[2]. We shall discuss the case of partitioning a
demand set BQ into two new sets Bp and Bq for which we seek new duals
{Gij[p] and Gij[q]: (i,i)eE} and scaling weights nl[p] and nl[q]. The case of
partitioning a supply subset Ak is completely analogous.

In the previous section we showed how the goal in selecting Bp and B
was one of maximizing the short term improvement in dual bound. We would, of
course, like initial dual variables to also advance the dual soclution. But
there is another important issue: we desire stability in the dual search so that
any poorly chosen duals will quickly be corrected by Step 10 of the algorithm.
To obtain stability, we seek to assure that the x and y primal solutions
of Steps 5 and 6 of the algorithm (Section 3) will not decrease violently in
the first iteration after disaggregation. (If group selection was sound the

dual value should improve).

iy B




At Step 6, yij +~ 1 if fij < 0 and 0 otherwise, where (including the

scaling factor fij/n[l])

fij = fij 1 - AEEA cij[k]/m[k] - BEEB sij[z]/n[z] (46)

Dividing B

. into Bp and B in the B list will merely replace
q

Sii[z] Gij[p] 6ij[q]
ni] with n[pl + nlql

Thus, the yi% solution will be unchanged if

6ij[2] _ Sij[p] Sij[q]

= + 47
al2l ~ Talpl * Taldl 7
To similarly preserve the xij[a,B] solution of algorithm Steps 3-5, we
desire to leave unchanged shortest path arc lengths
~ Gij[k] aij[z]
Vij[a’ﬁ] Vi3 £43 ! & k]s(k] ) alZ1d12] (48)
{AkeA:ueAk} {BgeB:BsBz}
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After partition each 8 will belong to Bp or Bq’ but not both. Thus, either

5., [p) 545lal 8, 18]

— S 37T wi 11 .
nipldlp] or alqlalq] will replace a[e)die] it {48),

The dual selection we propose is fixing

nfp] < nf2] (49)
nlql <« n[2] (50)
. - dip]
cij[p] 6ij[2] ;E;; (51)
5. [q) <6, [o 4l (52)
ij ij are]

Substitution in (47) gives

Spsted 8yglal 8551 Fapppiarg)) | Sas™*!
n[p] n[(ﬂ n[l] d[&’] n[ﬂ]d[ﬂ]

the last because Bpand Bq partition demands in B,. Also, (49)-(52) yield

Gij[p] _ 6ij[2] (d[p]) . 6ij[2]
n{pldlp] =nlfldlp] df2]1/ = =nleld[2]
and
Gij[q] _ 6ij[2] (d[q]) _ Gij[R]
n[qldlq] nl2]d[q] \d[2] n[2]d[2]

as required to preserve the vij[a,B] of (48).
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6. Experimentation

Previous sections outlined the development of a strategy for implementing
progressive disaggregation in the context of a Lagrangean relaxation algorithm
for tight formulations of fixed charge network flow problems. Justifications
provided for details of the algorithm do consider problem properties, but their

true effectiveness can only be measured empirically. Thus, a series of experiments

involving variants of these strategic decisions is presently underway.
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ABSTRACT

Recent developments have shown that many uncapacitated multi-commodity
fixed charge network flow problems admit very tight linear programming re-
laxations in the sense that continuous solutions closely approximate discrete
ones. In this paper we show that on series-parallel graphs those linear
programming relaxations are perfect, i.e. they yield discrete optima. We
also illustrate how a number of known combinatorial optimization problems
can be formulated in this fixed charge format. The implication is that all

the indicated fixed charge problems, including the specified combinatorial

cases, are solvable in polynomial time via linear programming.




1. Introduction

The Uncapacitated p-Commodity Fixed Charge Network Flow Problem can

be stated
P ~pn~
. k"k 0

min kgl vx + fx (1-1)
s.t, E xk = £ for k=1,2,...,p (1-2)

k
x =20 for k=1,2,...,p 1-3)

P

px, = kgl xJ for j=1,2,...,n (1-4)
x? = 0 or 1 for j=1,2,...,n (1-5)

where E is the vertex-arc incidence matrix of an n-arc directed network,
"k, . . "k .
x 1is the flow vector of commodity k in the network, v is the vector of
. "k ko, . .
varlable costs per unit for flow x , r 1is a requirements vector on commodity
k, fj is a fixed cost incurred when at least one commodity uses arc j, x
is a vector of 0-1 variables switching "on'" and "off" the fixed charges, P
is a largeconstant, and 0 and 1 represent appropriate vectors or matrices
of 0's and 1's respectively. We assume throughout that f > 0 and that the
~k . . . ,

sum of vj around any directed cycle in the commodity k network is nonnegative.
Under these assumptions, Xj = 1, and fj is paid, exactly when constraint
(1-4) allows flow.

Unlike the usual multi-commodity flow problem (see for example Kemnington

and Helgason (1980)) commodities do not compete for am arc capacity. Instead,

they interact through the shared fixed installation/construction/setup cost,

f..
]




We term the problem "single-source' because we shall assume that each
commodity is supplied at a single vertex, although this vertex may vary with
commodity. This assumption implies that each ; is a vector with components
summing to zerowhich has a unique positive component at the supply peoint,
negative entries at various deménd points, and zero entries where the
commodity is only transhipped. Of course, any uncapacitated commodity flow
problem can be placed in single source form by adding an "super source" if
required. However, this transformation would change the form of the graph--the
issue to which we will shortly direct our interest.

Although formulation (1-1) - (1-5) is a correct mixed-integer statement
of the problem, previous work (see Rardin and Chou (1979)) has shown
that its linear programming relaxation (replacing (1-5) by 0 < xo < 1) often
gives a very poor approximation to an optimal solution. Much better results
are obtained if each commodity is subdivided into separate commodities for

each demand point. One can then rescale flows, requirements, and variable

costs so that all demands are unity. The result has the form

min gl‘vk xk + fx (1-6)
k k
(MCFC) s.t. Ex =r for k=1,2,...,q9 (1-7)
L =50 for k=1,2,...,q (1-8)
0,
x integer (1-9

with each rk having exactly one +1 and one -1, and q the revised number
of commodites.

In this paper we investigate cases for which the linear programming
relaxation of (MCFC) is "perfect'", i.e. cases for which the integrality
requirement (1-9) is redundant. In Section 2 we use results in Truemper‘
(1977) and Truemper and Soun (1979) to show that if the graph associated

~2-




with matrix ﬁ has ‘a certain series-parallel property, (1-6) through (1-8)
will always solve in integers. Thus, since linear programming problems can
be solved in polynomially-bounded time (Khachian (1979)), it follows that
all such (MCFC) are polynomially solvable. Section 3 shows how several
familiar combinatorial optimization problems can be formulated as (MCFC), in

which case, they too are polynomially solvable on the indicated graphs.

2. Unimodular Cases

A matrix M can be termed unimodular if-the determinant of every maximal
nonsingular square submatrix M (denoted det (M)) is + 1. Unimodularity is
a weaker property than total unimodularity for which all square submatrices

M have det (M) = 0, + 1. Still, it is well known (see Vienott and Dantzig

(1968)) that a linear constraint system

Ax

]
o

v
(@]

X

has integer extreme points if A is unimodular, and A and b are integer; basic
solutions computed by Cramer's rule will have unit denominators.
Suppose E is the vertex-arc incidence matrix of a directed graph,

T. Thus, if arc a. = (i,j) belongs to T, column k of E has a +1 in row i

k
and a -1 in row j. Such E are well known to be totally unimodular. Truemper
(1977) investigated conditions under which constraints Ex = b may be supplimented
with additional linear constraints Dx + s = d while keeping the corresponding
constraint matrix at least unimodular.

A subgraph of a graph, say T, is said to be Euler if every vertex of T is

incident to an even number of arcs of T. A vector X is a circulation vector

on a subgraph T of T if Ex = 0 and ;j
of T does not belong to T. In terms of these definitions, Truemper's main result

0 whenever the corresponding edge j

can be stated as follows:




Lemma 1. Unimodularity of Networks with Side Constraints (Truemper (1977)).

Let E be the vertex—-arc incidence matrix of a directed graph T and D a matrix

of integers. Then the matrix

is unimodular if and only if

(i) There exists a spanning forest of T such that for every cycle Ck
formed by adding arc k to the forest there is a nonzero circulation
vector xk with 0, + 1 components such that ka is a vector with
0, + 1 components; and

(ii) For every Euler subgraph T of T with nonempty arc set, there is

a nonzero circulation x on T such that components (Dx)i = 0 whenever

TOW sum (Dl)i is even.

Our interest here is in the unimodularity of the comnstraint system for problem
(MCFC). As stated in (1-7) and (1-8), the vector xo is mnot subject to balance

of flow restrictions,

Exo =r (2-1)

However, it will be convenient to add such constraints for the moment. Now
k . . .
when slacks, s , are also added in the constraints (1-8), the matrix of

interest becomes




LN S ¥ s s s |
E ! ’
| i
1
E i
]
I
i
E I
. I
]
. I
i
. ]
g
E
I e »____JI. ___________________________ -
-I I I I
|
-I I E I
] .
i
|
. | ¢
| .
. i
-1 I { I
;
| |
i H
! ;

The graph, T, of Lemma 1 is simply q+1 copies of the directed graph G over which
(MCFC) is defined.

A connected, undirected graph U is said to be series-parallel if it
can be reduced to a tree by sequential application of the following operations:

series reduction: Replace a degree-2 vertex j and incident edges

(i,3j) and (j,k) by a single edge (i,k).

parallel reductjon: Eliminate one of any two parallel edges connecting

the same pair of vertices.
Observe that the operation of these equations is well-defined (i.e. unambiguous).

An equivalent definition (see Duffin (1965)) is that U is series-parallel if and

only if it possesses no subgraph that can be reduced to K4 (the complete graph on

4 vertices) by using only series reduction. Clearly, the latter assures all series-

parallel graphs are planar, but planar graphs need not be series parallel. Some

useful examples are given in Figure 1.




(a) Some Series-Parallel Graphs

(b) Some Planar, but Non-Series-Parallel Graphs

Figure 1: Examples of Series-Parallel and Non-Series-Parallel Graph




With these definitions we can now state our main result.

Theorem 2: Unimodularity of Series Parallel (MCFC) with xo Flow Balance:

Let E be the vertex-arc incidence matrix of a directed graph G. Then the
undirected graph obtained by ignoring direction in G is series-parallel if
and only if every matrix of the above form M is unimodular.
Proof: We shall apply Lemma 1. The graph T of that lemma is the union of
(q+1) disjoint copies of the G for this theorem. Thus, any spanning forest
will include a spanning forest from each of the (q+l1) components. Also, cycles
of Lemma 1 part (i) will belong entirely to one component. Since the lower, D-
section of matrix M consists entirely of zero and identity sub-matrices
corresponding to the components,it follows that any 0, +1, -1 circulation on a
cycle will yield a 0, +1, -1 total below. This establishes condition (i) of
Lemma 1.

To show the series-parallel property is necessary to condition (ii) of

the lemma, considerthe K, example of Figure 2, and pick the 4-edge cycles

4
4-1-3-2-4 and 4-1-2-3-4 as Euler Subgraphs in the xo and x1 commodities res-
pectively. The two cycles share arcs (4,1) and (2,3), and condition (ii) will
be satisfied only if we can find a nonzero circulation in the two commodities
that agrees on the two arcs. However, it is easy to check that any circu-
lation (i.e. weighting which sums to- zero at each vertex) must have xo weights
on (4,1) and (2,3) with opposite signs, while such a circulation for the
xl subgraph must have matching weights on the two arecs.

To prove the series-parallel property is sufficient for property
(ii) of Lemma 1, we proceed inductively by reversing the defining reductions
of series-parallel graphs. Property (ii) holds trivially for trees since
trees have no Euler subgraphs with nonempty edge sets. By definition of

series-parallel graphs, more complex cases can be reduced to trees by a

sequence of series and parallel reductions. Thus, by reversing the

7=




demand = 1

(1, 0, 0, 0)

demand = 1 demand = 1

Figure 2: Example Failing Unimodularity When Not Series-Parallel




sequence of such reductions, any series-parallel graph can be reconstructed

from a tree. We shall show that if a given graph G satisfies property (ii),

" any graph, G, obtained from G by reversing either a series or a parallel reduction

also satisfies the property. Thus, inductively, the property will be seen
to hold for all series-parallel graphs.

Assume that property (ii) holds for a present graph G and let G be the
next graph in this reverse reduction order. Since the graph, T, of Lemma 1,
property (ii) corresponding to G is the union of (q+1) identical copies of G,
any Euler subgraph, H, of T will decompose into Euler subgraphs HO, Hl,...,Hq
of the components. The lower D-section of matrix, M, can have even row total
(Dl)i only if some arc, e, belongs to both Ho and at least one of the
ut; i=1,2,...,q}.

The case of reversing a series reduction to move from G to G is straight-
forward. Suppose arc e = (i,k) of G is to be restored to the arc sequence
{e,f} of G joined at new degree-2 vertex j. For i=0,1,...,q define at
as the graph obtained from Hi by substituting e for {e,f}. Clearly each such
fi' is an Euler subgraph of G. Thus, by induction there is a nonzero circulation
{Ei: i=0,1,...,q} on the ﬁi that cancels as required in property (ii). Let
Eé be the weight in that circulation for edge e. We need only duplicate it on

both of e and f to have a circulation that cancels for the {H'} in G. Specifically,

if both e and f have the same direction as e we choose xi + x; + Eé for ali i.

If both have the opposite orientation to e, we make x: < i; < —Eé . Similarly,
i i i i, 1

. . . . i =
if e and f have opposite directions, we select X, € X5, Xg + - XJ OT X, +-x§,

f

x> + xs .
e e
Now consider reversing a parallel reduction, i.e., adding an arc, e, in G
that parallels another , e, already in G. We shall assume e and e have the
same direction because one needs only to reverse the sign of the circulation

value for e in the opposed direction case.
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As before let {H: 1=0,1,...,q} be (not all empty) subgraphs of the (g+1)
copies of G. If HO has empty arc set, there is no cancellation to prove. If

0 .
H™ has nonempty arc set, we consider three cases:

Case 1: HO jncludes only e and e. Create a circulation in HO by xg « +1,
xg + -1. For any other Hi containing both e and e, cancel this HO circulation
by duplicating it. Any Eulerién Hi that contains e or e, but not both,
necessarily includes a cycle Ci includingbe (respectively e). Choose xi + +1
(respectively xg + -1) and then pick *1 orientation for other arcs of Ci to

. . . i . s -
form a circulation. The resulting X  cancels as required on e (respectively e).

Case 2: HO includes e and e and other edges of G. For i=0,1,...q, con-

struct Euler subgraphs of G as follows:

" H' less e and e if H® contains both & and e
‘ i . i . i . -
ﬁi - H™ less edges in C if H~ contains e or e, but
not both
i .
\. H otherwise,

Here, as above, ct is any cycle of Hi containing e (or e).

The H systems is Euler because each construction removed a cycle from an Euler
subgraph. Moreover, at least ﬁo is nonempty because HO had more than e and e.
Thus, the ﬁi are a system of Euler subgraphs of G to which property (ii) inductively
applies. Let {ii} be the implied nonzero circulation. Choosing xi + ii for all i and -
t gives the required cancelling circulation for the ﬁi of G. Zero xi and xé have

been chosen for all i, and thus, cancellation as in property (ii) is achieved.

. . =i . i
S5till, since the x~ are not all zero, neither are the x .
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Case 3: HO includes at most one of e and e. For i=0,1,...,q con-

struct Euler subgraphs of G as follows:

r H' less e and e if HT contains both e and e
—1 i - i R =
H <« ﬁ H™ less e plus e if H contains, e but not e
i
L H otherwise.

As above the H' are Euler subgraphs because we have only substituted parallel

arcs or deleted cycles. Also, the H system is not all empty because the edges
- 0 -

of HO are the same as those in H . Thus, the H system is again one to which

property (ii) inductively applies in G. Let {x'} be the implied circulation

and pick
i i -
xé if t=e and H contains e but not e
0 if t=e and H" contains e but not e
-0 . i . - -
X if H contains both e and e, t=e
R 0 . - 0
x1 - and H  contains e or t=e and H
t
contains e
-0 . i -
—Xg if H contains both e and e, t=e
0 . - - 0
and H contains e or t=e and H
contains e
-1 .
X otherwise
N~ T

The effect is to shift e circulation to e when e replaced e in constructing
the H system. That revised circulation is nonzero because the x one was.
Also, the circulation must cancel in G because it cancelled on e in G. If
the implied circulation was nonzero on the at most one of é and e in H , we
have also balanced it with a circulation on the {e, e} eycle in each Hi con-

. iy .
taining that cycle. We conclude that the new circulation {x"} is the ome re-
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quired for property (ii).

Since Cases1-~3 are exhaustive, the proof is complete.

Theorem 2 shows that constraint matrices, M, for versions of (MCFC) also

requiring balance of flow in the'x0 variables are unimodular if the associ-~ (2-1)

ated graph is series-parallel. To see that the result can be extended to the

ordinary (MCFC) formulation (1-6) to (1-9) consider the replacing (2-1) by

Exo - Ey =0 (2-2)
y20 (2-3)
0
Here new zero-cost variables y negate the effect of the x so that a zero

. 0
balance of flow can be achieved at no cost for any choice of x .

The corresponding contraint matrix for this new form is

2
XO Xl xz « e e z{_q _s_l _s_ . - . §_q Yy
|
. o
E 1| % E
:
E |
1
|
E I
|
|
|
1
]
. 1
e
I — —
N = e e e e
-1 1 ! 1 : -l
I 1
| I
-1 1 I I. l
. ! {
-1 . ! . !
] i
1 . !
] I I
-1 I : :
' \
i V]
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The following corollary shows N is unimodular whenever M is.

Theorem 3: Unimodularity of Series-Parallel (MCFC) Without xo Flow Balance.

Let E be the vertex-arc incidence matrix of a directed graph G. Then the
undirected graph obtained by ignoring direction in G is series parallel if and
only if every matrix of the above form N is unimodular.
Proof: The only difference from Theorem 2 is that the xO/y component of
Truemper's graph T no longer matches that of the other xk. However, it is
series-parallel whenever G is because it merely duplicates each arc with
one oriented in the opposite direction.

To prove the present theorem we can extend the strategy used for
Theorem 2, Necessity is exactly as before. For sufficiency, suppose we re-
build G from a tree in step-by-step order without restoring any y-arcs. All
arguements of the proof of Theorem 2 apply. After G is constructed, we add
the y-arc system by reversing parallel reductions. Since the new arcs have
no coefficients in the lower, D-system of N,no new conflicts of Euler subgraphs
will need to be resolved.
&2

Theorems 2 and 3 are both necessary and sufficient because
the conditions of Lemma 1 are. However, it is conceivable that all non-
unimodular bases are dominated or infeasible for (MCFC). The example of
Figure 2 shows that if there are at least q=3 commodities,a minimal counter-—
example is possible. TFor the indicated cost, the unique optimal solution
to the linear programming relaxation of (MCFC) is to make all XO variables %,
and to send % unit of flow in each demand commodity direct from vertex 4 and the
other % via the demand point's predecessor in the circuit 1-2-3-1. This
solution costs 9/2, while every integer optimum costs 5.

A final note should be added regarding direction. 1In the proof of our
results we have been concerned mainly with the undirected version of our
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series~parallel graphs, G. Our only requirement is that whatever orientation
is given to an edge, it have the same orientation in all commodities.

It is reasonable to ask whether one could mix orientations with, for
example, some commodities having edge L directed (i,j) and others having
it directed (j,i). Figure 3 gives a trivial case for which such an extension
fails. 1In order to achieve the canéellation on Euler subgraphs required for
Lemma 1 condition (ii), circulations must match on the two k arcs as should
those on the two 2 arcs. Such circulations cannot both sum to zero at the

two vertices.

3. Implications for Certain Combinatorial Problems

Results of the previous section show that any (MCFC) on a series-parallel
graph can be solved by linear programming. That is, such (MCFC) can be solved
in polynomial time. It follows that any problem that can be formulated as
(MCFC) (or (MCFC) with flow balance in xo) is polynomially solvable on series-
parallel graphs.

For some combinatorial problems fitting naturally ih the fixed charge
format the fact that series-parallel cases are polynomially solvable is already
known, although not in those general terms. For example, the uncapacitated
warehouse location problem (choosing which of several possible "warehouses" to
build as sources in a bipartite graph) is unimodular if there are at most 2 sources
or 2 sinks (see Cho, Johnson, Padberg and Rao (1981)). Also, many of the one-
commodity forms of Erickson (1978) are series-parallel without the "supersink."”

However, the opportunity for multi-commodities -- whether natural or
artificially induced -- raises many new possibilities. We have outlined below
‘how some typical problems can be placed in (MCFC) form. In each case we believe
the resuit that the problem is polynomially solvable for directed series-parallel

graphs is new, although other special cases have been polynomially solved.
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Figure 3. Example Showing Directions Must Match in Commodity Networks
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(Readers are referred to Garey and Johnson (1979) for details on particular
problem's status). Naturally since all our formulations are weighted, they
implicitly include cardinality analogs (i.e. equal weights). Also note that
the formulations imply (MCFC) on general graphs is NP-Hard because each problem
listed is known to be NP-Hard in the worst case.

In all the definitions to follow we assume G is a directed graph with
arc set A and vertex set V. If the given problem is defined on an undirected
graph with edge set E, we create a directed case by putting (i,i) and (j,1i)
in A whenever (i,j) € E. Weights on the two arcs match that on the edge.

Steiner Tree Problem (Nonnegative Edgeé/Arc Weights).

Problem is to find a minimum total weight (directed or undirected) tree spanning
a subset &.of V. The problem is easily solved when V=V (see Lawler (1976))
but generally difficult if V% V. To formulate the case where weights are
nonnegative as (MCFC), we merely pick some vertex t € 6 to be the root of the
tree (for directed cases all the lalchoices of t might have to be tried in turn).
All vertices in U—{t} are then treated as demand points, each with its own
commodity. Weights on edges are the fixed costs, £, and all variable costs,

vk, are zero. The optimal Steiner tree will consist of those arcs £ for which
xo = 1 in the (MCFC) optimum.

2
Minimum Equivalent Graph Problem (Nomnegative Edge/Arc Weights) The Mini-

mum Equivalent Graph Problem is to find a minimun total weight system of edges
or arcs that includes a directed path between all ordered pairs of vertices
(t,u) ¢ Vx V. Clearly, a minimum spanning tree provides an optimum for the
undirected case, but the directed case is NP-Hard (on general graphs). To
formulate the nonnegative weight directed problem as (MCFC) we need only create
one commodity for each pair (t,u) € Vx V. Fixed costs, f, are set to the arc
welghts and variable costs, vk, are zero. An optimal solution uses all arcs

L for which xo

2 = 1 in the (MCFC) optimum.
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Shortest Total Path Spanning Tree (Nonnegative Edge Weights). The Shortest

Total Path Spanning Tree Problem seeks a spanning tree of G for which the sum

of the lengths of paths between all paris of vertices is minimal. The problem
makes sense only for undirected G. For such G with nonnegative edge weights,

the problem can be formed as (MCFC). We adopt virtually the same formulation

as the Minimal Equivalent Graph Problem with commodities for each ordered vertex
pair. However, this time variable costs, vk, are set equal to edge weights.
Thus, the sum of the variable costs will equal total path length. A spanning
tree is the minimal cardinality system connecting all vertices. Thﬁs, we can
force the paths to all travel through a tree by making all fixed costs, fl’

equal to a very large constant, p. Every tree solition will have 2 (vl - v
copies of p (both forward and reverse arcs will be needed along the tree). Thus,
variable costs will determine optimality. An optimal tree will be férmed by choosing
edges corresponding to arcs £ with xg = 1 in the (MCFC) optimum.

Minimum Spanning Fuler Subgraph (Directed Graphs with Nommegative Edge Weights).

A subgraph G of G with vertex and arc sets V and A is Euler if the numbBriof arcs in
R directed intoc each vertex in 0.equals the number directed out. The subgraph

is spanning if every vertex of V is joined by some arc of ;. The Minimum Spanning
Euler Subgraph Problem seeks the least total weight such subgraph. The nonnegative
cost case of this problem is reduced to an (MCFC)-like form in the same general

way as the Minimum Equivalent Graph Problem. Commodities are formed for each
ordered vertex pair; weights become fixed charges.

The new feature here is that the arcs £ with xg = 1 must form an Euler

subgraph. To enforce that requirement we add two new constraint systems:

ExO =0 (3-1)

xO <1 (3-2)

System (3-1) assures equal in and out degree, and (3-2) prevents duplicate
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use of arcs. Recall that Theorem 2 proved (MCFC) with (3-1) is unimodular.
Simple integer upper bounds such as (3-2) cannot change the unimodularity re-
sult., The determinant of every basis of the problem including (3-2) is decided
by the determinant of an essential basis from matrix M of Theorem 2. (See, for
example, Bazaraa and Jarvis (1977) for details).

Travelling Salesman Problem. The famous Travelling Salesman Problem seeks

a minimun total length circuit visiting each t € U exactly once. An optimal

solution is a spanning Fuler subgraph with one "in" and one "

"

out"” arc at each
vertex. Thus, it is a minimum spanning Euler subgraph among those of minimum

cardinality. To make the above formulation compute a travelling salesman tour,

we need only add a large constant,p, to each fixed charge. Every feasible tour

will dincur |V| copies of this constant, so that optimality is determined by

total weight. ©Note that this constant can also assure all costs are nonnegative.
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SUMMARY

Fixed charge network flow problems model network design and

location settings‘by allowing both fixed and variable charges for

arc flow. Recent research has shown that very close approximations
to mixed-integer solutions for each problem can be obtained from

~~ - - massive linear programs wherein flows are artificially disaggregétqd
into separate components for each origin-destination pair. This |
paper develops the strategy of a pfogressive disaggregation algorithm |
employing the latte;'linear programming relaxation. Howéver, flows
are initially undisaggregated. As computation proceeds, supply and
demand subsets are further anq further partitioned to tighten the
relaxation as requirad without incurring the computational burden

of a complete disaggregation into supply-demand pairs.
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TECHNICAL SUMMARY

A vast number of important optimization problems in areas such as
distribution, communication, transportation and facilities location can
be viewed 43 flow problems on graphs or networks, where flow is permitted

in certain arcs/edges, (i,j) only when a fixed charge, f is paid.

ij’
Flow originates at known supply points in the graphs, and distributes to

demand points of known requirements while satisfying some balance of flow

considerations at intermediate transshipment points. Flow may be in a

single or in multiple commodities, and flow capacities may or may not be
present.

When the graph is directed, such fixed charge network flow problems

may be formulated as

min 7T b vp.xp. + T f,.y (1)
peP (1, 1ee 3 (4, e 3H
s.t. T xP, =af for all peP, RelP (2)
(1i,R)eE ”
b =, <P for all pe?p, ae SP (3)
(e, e ¢
(NP)
r xP,. - @ P for all peP, LT’ (%)
(2, nee 23 (1,0yee 70
(r xij)/uij < Y13 for all (k,j)eE (5)

peP




x. >0 for all (i,3)eE, peP (6)

ij
1> y1j >0 for all (i,j)eE (7
yij integer for all (i,j)eE (8)

Here E is the arc set of the specified structure; P is the set of

commodities; xf, is the flow of commodity p from 1 to j; SF, TP and TP

P
1j
are the supply point, demand point, and transshipment point subsets for

P

o is the commodity p supply at point a; aP is

B

is a flow capacity for arc

commodity p, respectively; s

the commodity p demand at point B; and uij

(1,j). Costs in (1) include a variable (per unit flow) cost v and a

P
ij

fixed charge £ "switched on" by the 0-1 variable y1j whenever any

1]

xij > 0. We assume throughout that all fij and vij are nonnegative

although the latter requirement can be relaxed in some cases.

We term problems of the form (NP) uncapacitated if the optimal

solution set would not change when all sg in (2) and u in (5) were

1]

replaced by a large constant, M (say T b dg). The problems are

peP BetP

weakly capacitated if only the u,_  may be replaced by such an M, and

13
capacitated if both the sg and the uij restrict solutions.

One particularly straightforward example of a problem which takes on

form (NP) is the classic warehouse location problem. However, numerous

other well-known discrete optiization problems can be easily, although

sometimes less obviously, cast in the (NP) form. Among these is the




Steiner tree problem, the minimum weight equivalent subgraph problem, and

the traveing salesman problem.

Unfortunately, most interesting models of the (NP) form are
difficult integer and combinatorial prograﬁming problems. 1In fact, many
can be shown to helong to the notorious class NPLComplete. Thus, almost
all research on practical algorithms for such problems centers on
either enumerative, branch—and-bound schemes or approximate procedures
ylelding feasible, but not provably optimal solutioms. Such techniques
rely, in turn, on relaxations of the originmal problem, i.e., problems
with feasible solution sets ineluding that of (NP) and cost or objective
funetions underestimating (1). Such relaxations may, of course, be much
easier to solve than the original problem. Accordingly, if they are
sufficiently tight (i.e., they closely approximate the original problem),
relaxations can provide useful lower bounds for branch-and-bound
algorithms and serve as the core of heuristie procedures for constructing
good feasible solutions to (NP).

The majority of solution procedures draw on the linear programming
relaxations obtained when the integrality requirements (8) are discarded.
Substantial research has been done, accordingly, relative to the

formulation of tigher relaxations. Rardin and Choe (1979) pursued this

p

13 for each true commodity peP are

line of investigation. There, flows x

disaggregated into components xij[a,B] distinguished by the suply point a
at which the flow originated and the demand point R to which it is
destined. Viewing each o,8,p combination as a separate comodity yields

the formulation:




min % v P, [ 5 5
peP (1,1)€E «eSP peDP

g.t. by T
oeSP (1,R)eE

p _ P
XiglosBl = dg

P

b3 b xaj[a,B] < s,

8eDP (o, §)eE

(MC)
v %0 o8]~ T xP [a,R] =0
(2, * (1,06
(l/uij) A b xgj[a,ﬁ] < yij

peP aeSP gerP

P
xij[a,B] >0

15> yij >0

yij integer

xij[a,s]
< yij

P ,P
min{sa,ds}

p
X .[a,Bi] + ¥ £,. v
1] (1,peg 1741

for all peP, BepP
for all peP, assp

for all peP, aeSP

geDP, 2eTP

for all (1,j)eE

for all (i,j)eE,

peP, aeSP, gepP
for all (i,j)et

for all i,j)eE

for all (4i,j)eE,

peP, aeSP, geDP

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)




Of course, the linear programming relaxation of (MC) need not yield an
(MC) optimum, but preliminary testing in Rardin and Choe (1979) indicated
the relaxed formulation could provide a very tight relaxation for at
least the uncapacitated and weakly capacitated cases.

Now, constraints (18) of the tight (MC) formulation requires yij to
equal or exceed the fraction of anysupply sz or demand dg flowing as

xfj[a,B]. However, the formulation can be sharpened if (18) is replaced

by

p
P xij[a,B]

gelP for all (i,3)ek, (19)

< ¥Y,.
p 2 1]
min {Sa’ t ds} peP, aeSP
reTP

. _P
X xij[a,B]

p
ac$S for all (i,j)eE (20)

<y
P ,P ij
min ( r o Sa? ds} peP, BeDP
aeS

These new constraints treat supplies and demands separately, summing
flows in one of the two dimensions.

Denote by (MC') the version of formulation (MC) using (19) and (20)
in place of (18). It is easy fo show that the (MC') formulation
dominates (MC) in the sense that every solution feasible in (MC') is
feasible for (MC). However, (MC') 1is also more compact. For every

commodity p there is one constraint (18) for each (a,B) € Sp, Dp, i.e.,

p p
S |*|P | 1n all. The stronger (MC') formulation is achieved with |SP| +




|Dp| constraints (19) and (20).

Of course, linear relaxation of tight formulations (MC) and (MC')
are enormous linear programs requiring specially st?uctured algorithms.
For a case with 5 commodities, 350 arcs, 10 supplies, 50 demands and 130
transshipment vertices, (MC') has over 425 thousand main constraints and
875 thousand variables.

The early (Rardin and Choe (1979)) paper detailed a Lagrangean
relaxation strategy for the (MC') linear relaxation of the uncapacitated
and weakly capacitated cases. For those cases, counstraints (14) may be
deleted. Dualization of constraints (19) and (20) with Lagrange_
nultipliers leaves a separate flow problem for each a,B,p combination.
The latter can be solved by a series of shortest path calculations
followed by a transportation problem. Search over dual multipliers for
constraints (19) and (20) leads to a relaxation solution.

The formulation (NP) and (MC) (or (MC')) may be viewed as endpoints
or a disaggregation continuum. Form (NP) treats all flows of commodity p
és a single unit; (MC') disaggregates flows for each p into separa&e
artificial commodities for origin-destination pairs. Clearly, there are
intermediate possibilities wherein commodity p flows are treated in
groupings, say (Ap,BE) with Aﬁ c Sp, BE c 7P,

The concept of progressive disaggregation suggested in the funded

proposal sought to exploitrthese intermediate possibilities in order to
speed computation. Flows might 5egin in fully aggregated form (NP). As
computation proceeds, and dual variables are better estimated, smaller
supply and demand groups could be attempted in order to improve the

quality of the relaxation.




A major part of the present resssearch effort has been devoted to
developing such a progressive approach for implementing the Lagrangean
dual algorithm on uncapacitated and weakly capacitated cases. Various
issues are analyzed among which are

* Which are the most desirable forms of supply group—demand group

commodizations?

* How can an initial list of artificial commodities be generated?

* How should supply or demand groups be selected for partition as

disaggregation proceeds?

* When should additional disaggregation be involved?

. Ho; can dual variables for new commodity groups be effectively

initialized from ones for groups they replace?

Tables 1 and 2 summarize computational results. Twelve different
uncapacitated and weakly ¢apacitated fixed charge network flow problems
were randomly generated with all combinations of three types of
capacitization (uncapacitated, weakly capacitated with relatively loose
capacity, weakly capacitated with tight capacity), two problem sizes (175
and 350 arcs), and two levels of fixed charge contribution to cost (30-
407 versus 60-70Z). All problems are sparse. The problems were solved
with 6 algorithmic strategies (only 3 are applicable to uncapacitated
cases) involving all combinations of initial supply disaggregation (no
initial disaggregation, full initial disaggregation) and initial
disaggregation (no initial disaggregation, selected initial group
formulation, full initial disaggregation) alternatives. Since the goal
was comparisoﬁ of strategies, all cases were terminated when a primal

solution and a lower bound were known to differ by at most 25Z.




Table 1. Medium Problem Results
(175 arcs, 5 supplies, 25 demands, 75 nodes)
Weakly Weakly
Initial Initial Uncapacitated Capacitated (Loose) | Capacitated (Tight)_
Supply Demand Moderate High Moderate High Moderate High
Disaggr. Disaggr. Fixed Fixed Fixed Fixed Fixed Fixed
None 3 3 7 7 7 8
None Selected 5 8 13 11 18 12
Full 7 12 32 34 32 29
_ None 19 6 9 11
Full Selected 12 12 13 19
Full 22 27 .24 18
’ 1,2/
Table 2. Large Problem Results——
(350 arcs, 10 supplies, 50 demands, 150 nodes)
Weakly Weakly
Initial Initial Uncapacitated Capacitated (Loose) | Capacitated (Tight)
Supply Demand Moderate High Moderate High Moderate High
Disaggr.| Disaggr. Fixed Fixed Fixed Fixed Fixed Fixed
None 3 8 60 64 60 109
None Selected 8 27 >180 >180 122 >180
Full 14 40 >180 >180 >180 >180
None >180 >180 174 >180
Full Selected 93 >180 179 >180
Full >180 >180 >180 >180
1/ . ] -
Typically 8-107% was CPU with the

—="All times in Univac 1100/81 minutes.
residual being disk operations.

2/

— Times reflect solution to provable 25% optimality.




Results in the tabhles clearly demonstrate the merit of the
progressive disaggregation approach. All progressive strategies produced
better results than the "brute force” approach which fully disaggregates
supplies and/or demands before computation begins. The best progressive
strategy—-—-starting with no disaggregation of supplies or demands-—was 2
to 4 times more efficient than the complete disaggregation approach and
on some alrge problems, the only method to yleld results within the time
limit.

Of course we would like to have a relaxation (say (MC')) which under
fairly mild restrictions was perfect in the sense that its“;olution was
integer-optimal. However, even if such a development was in hand,appeal
to the polynomial solvability of linear programs vis—a-vis the ellipsoid
algorithm would not, presently, have great practical value. Rather more
direct, combinatorial approaches would be sought.

Accordingly, thls research also examines the development of such
efficlent procedures for problems defined on a restricted class of graphs
known as series-parallel. Such research has appeared elsewhere in
various forms. Notable in this regard 1s the ;ork reported in
Takamlizawa, Nlshlzekl and Saito (1982).

A graph 1Is series-parallel 1f and only 1If it contains no subgraph
homeomorphic from K4 (the complete graph on four vertices). Other
specifications of series-parallel also exist, their equivalence being
shown in the unifying paper by Rardin, Parker and Wagner (1982).

Polynomial-time algorithms have been given for welghted versions of
the Stelner tree problem and the minimum equivalent subgraph problem.
these procedures are detalled in other aattachments. Also included is

the problem of deciding hamiltonicity 1in series-parallel graphs. Here,




we prove that such graphs have at most one such cycle and we characterize
those that are hamiltonian.

Finally, the notion of nonexact analysis is considered relative to
non-series—parallel structures. Our interest is confined to those
procedures which are not improvable by alternative, polynomial schemes in
terms of their performance guarantees.

Our principle finding along these lines is somewhat negative. For
the so-called bottleneck traveling salesman problem (BTSP), we were able
to produce a nonexact procedure having worse-case bound of two which is
realizable and not improvable by any polynomial alternative unless and

are equivalent. The stated algorithm is based on the'notion of
squares of bicoﬁnected graphs. Such graphs (squares) are known to be

hamiltonian. In the attachments, we give an algorithm for finding such a

cycle as well as the nonexact analysis for the BTSP.
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ABSTRACT

Series-parallel graphs form an important subset of plénar graphs
defined in terms of arrangements of edges and subgraphs in a manner
corresponding to series and parallel connection in electrical networks.
In this paper we review a host of alternative definitions of such graphs
and show that if properly specified, all definitions are equivalent. We

also exhibit a linear-time algorithm for checking such properties.



1. Introduction

Series-parallel graphs are an important subset of planar graphs de-
fined in terms of arrangements of edges or.subgraphs in a fashion corres-—
.ponding to the intuitive notion of series and parallel connection in elec-
trical networks. A classic study of such graphs is Duffin (1965), and recent
results are contained in Takamizawa; Nishizeki, and Saito (1982), and Valdes,
Tarjan, and Lawler (1982), Rardin, Parker; and Wang (1982); and Rardin,
Parker, . and Rickey (1982). -
Unfortunately, there are some disparaties regarding definitions of
such graphs. The purpose of this note is to verify that, when carefully
specified, the concepts behind all these definitions can be made to con-
form, i.e. all such characterizations are equivalent. We also exhibit
a linear-time algorithm for implementing one of the definitions and .
indicate how it implicitly tests several others.
Neither the algorithm nor any of our characterizations is entirel&,
or even mostly new, Rather; our objective i;-only to make precise, matters
which are more often hinted at than exposited in the extensive literature

of series-parallel graphs.

2, Main Definition

We consider an undirected, looplessl/ multigraph G with finite vertex
set V and finite edge set £, such that V contains no isolated vertices, ye

shall say that sich a G is series-pzrzllel if and only if some sequence of

applications of the following three reductions converts G into a dis-

joint collection of edges.

1/ Results are easily extended to encompass self loops by introducing an
artificial, degree-2 vertex into each loop before applying our results.




e series reduction: replace any degree-2 vertex j and its incident

edges e = (i,j), £ = (j,k) such that i # k, by new edge g (i,k).

(1,3)

e parallel reduction: replace any two edges e = (i,j) and f

joining the same vertices by a new edge g (1,3).

e jackknife reduction: replace any degree~1 vertex i, its incident

edge e = (i,j), and any other edge f = (j,k) meeting vertex j by

a new edge g = (j,k).

Figure 1 illustrates the three types of reducfions, and Figure 2
shows a (not unique) sequence reducing a given graph to a single edge.
Observe that the three reductions are well-defined in that any'suitable
sequence will produce the correct conclusion regarding a given input graph.

Series and parallel reductions are well known and common to all
definitions; However, confusion arises when G is not connected or is
not biconnected. "Two-terminal series parallel" in Takamizawa et al
(1982), "edge series-parallel"” in Valdez et al (1982) and "closed graphs”
of Duffin (1965) are constrictions to distinguish various cases. We in-
troduce jackknife reductions to encompass non-biconnected situations such

.as that of Figure 3. It is easy to verify that all three of the above

reductions are needed to reduce the graph of Figure 3 to a single edge.

3. Forbidden Homeomorphic Subgraphs

A subgraph H of G is said to be homeomorphic from a graph Q@ if and

only if some sequence of applications of series reduction to H produces
a graph isomorphic to Q. Series-parallel graphs can be characterizad in

terms of forbidden homeomorphic subgraphs.

Theorem 1: Series—-Parallel Graphs and K&' A loopless, undirected, multi-

graph G with no isolated vertices is series-parallel if and only if
G contains no subgraph homeomorphic from K4 (the complete graph on 4

vertices).

2
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Figure 3. A Graph Requiring Series, Parallel and
Jackknife Reductions to be Reduced to
an Edge.




Proof: First observe that we need consider only connected graphs G.

If any subgraph homeomorphic from K4 exists, one will certainly lie in a
single component of G. Conversely, series, parallel and jackknife re-
ductions neither combine nor create disjoint components, so that G is
series—parallel if and only if every connected component can be reduced
to a single edge.

Assume G is connected, and let H be a subgraph of G homeomorphic
from K4. Any G' obtained from G by a single series, parallel or jackknife
reduction must also contain a subgraph H' homeomorphic to K4. This is
true because if all reduced edges belong to E(G)\E(H) the&uH' =H
(note that we symbolize the edge and vertex sets of a graph G by E(G)
and V(G) respectively). 1If not, H' is either the product of a series
reduction of K, or the result of replacing an edge e or f of H by a
new edge g joining the same vertices.

Applying this observation at each step of series, parallel, or jackknife
reduction, we see that every sequence of such reductions must terminate
before or upon reducing G to a graph isomorphic to K4. Since K4 admits no
further reduction, we can conclude that if the original G contains a sub-
graph homeomorphic from K4, no sequence of reductions wili reduce G.to
a single edge, i.e. G is not series-pzarallel.

For the converse, we must show that if G is not series-parallel, i.e.
reduction terminates before G has been reduced to an edge, then G con-
tains a subgraph homeomorphic from K&' The algorithm of Section 4 and
Lemma 3 will demonstrate constructively that if reduction terminates on
a reduced form G' of G, then G' contains a subgfaph H' homeomorphic from K4.

By the same arguement as above, it follows that G must have contained a

corresponding subgraph H that has been reduced to H' in G'.




We call a vertex, c, a cut-vertex of a graph G if c separates G

into subgraphs Gl and G2 with nonempty edge set, and such that

G = E(Gl) U E(Gz) and V(Gl) n V(Gz) {c}. A cut-pair is a pair of

vertices ¢ and d of G that separates G into subgraphs G; and G2 with
nonempty edge sets such that G = E(Gl) u E(GZ)’ V(Gl) n U(GZ)-= {c,d}.

A graph is triconnected if it is connected, contains at least 4 vertices,

and possesses no cut-vertex and no cut-pair that separates G into Gl and

G2 with both Gl and G2 having at least three vertices.

The graph K4 of Theorem 1 is triconnected. We can apply Theorem 1
to see that series-parallel graphs forbid any triconnected homeomorphic

subgraphs,

Corollary 2: Triconnectivity and Series-Parallel Graphs. A loopless,

undirected graph & with no isolated vertices is series-parallel if and

only if it contains no subgraph_homeomorphic from a triconnected graph.

Proof: If G is not series-parallel, Theorem 1 shows G contains a subgréph
H homeomorphic from K4. Since K4 is triconnected, G does indeed have a
subgraph homeomorphic from a triconnected graph.

For the converse suppose G contains a subgraph H homeomdrphic‘from
a triconnected graph Q. Then G must also contain such a subgraph H homeo-
morphic from a triconnected graph 6 having no multiedges. Removal of
edges in QO 4 Q would either produce the needed'E or generate a graph
with degree-2 vertices which is itself homeomorphic from some triconnected
Ql. If Ql has multiedges, we repeat the process.

Let a'be a triconnected graph with no wmultiedges from which sub-

graph H of G is homeomorphic. Clearly the minimum degree in Q is three;




neighbors of degree-1 and degree-2 vertices form cut vertices and cut-
pairs respectively. But then neither series, parallel nor jackknife

reduction of a'is possible. By Theorem l,a'contains a subgraph homeo-

morphic from K4. But since H is homeomorphic from Q amd Q is homeomorphic

from K4, we see H is homeomorphic from K4. By Theorem 1, G is not series-

parallel.

4, A Linear Time Algorithm

One version of the problem of finding a linear time algorithm for de-
tecting series-parallel graphs is posad as an eiercise in Aho, Hopcroft and
Ullman (1974). Although no solution is given, Valdes et al (1982) pro-
vide one for grapvhs that can be fully reduced by just series and parallel
reduction, and they indicafe Valdes (1978) contains another. Takamizawa
et al (1982) reference a Japanese-language publication, Nishizeki et al
(1976) in asserting linear time testability of their forms of series-
parallel graphs.

We shall show in Section 6 that none of these papers seems to deal
with the full family of graphs we term series—parallel. Thus we shall
present here our own linear time scheme. The algorithm is strongly
based on Hopcroft and Tarjan's (1973) approach to the closely related
problem of identifying triconnected components of a graph. As in the
proof of Theorem 1, an algorithm to either reduce a given graph G
satisfying the hypothesis of the theorem to a collection of disjoint
edges, or demonstrate that G contains a subgraph homeomorphic to K4 needs

only to deal with connected components, one at a time. Thus we shall



take G to be a connected multigraph encoded by a list of pairs

{ule],v[e]: ec E} recording the two vertices joined by each e, and a

set of star lists {s[v,i]: i=1,2,...,d[v]} showing indices of the d[v]
edges joining each vertex v € V. For simplicity of presentation we will
also assume G contains a degree-l vertex r. Obviously, if no such vertéx
existed, we could augment G with an artifical edge joining an artificial
vertex without impacting whether gr not G contained a subgraph homeomorphic
from K4.

The algorithm proceeds in up to four stages. The first stage
searches G from r in depth first sequence, labeling vertices and edges
for sorting at Stage II. Vertices are labeled with 2[v] a the depth of
vertex v in the éearch, and t{v] £ the edge through which vertex v is
first visited. ¥hen the search is completed, edges of {t[v] : v ¢ V}
yield a spanning tree of G with nontree edges forming backedges, i.e.
(u,v) € € such that if 2[u] > £[v], v lies along the tree path from u
to the root vertex r. Similarly, if £[v] > £[u), u lies along the tree
path from v to r. (See for example Aho, Hopcroft and Tarjan (1974}, p.
178 for verification of thié property of depth«first search.) . |

All vertices deeper in the tree than a given tree edge, t, are
called descendents of t, including the v such that t = t[v]. Back
edges have no descendents.

The edge labels b[e] that we compute reflect the minimum depth 2[w]
of a vertex w reachable through a path beginning with e and using only

decendents of e and their backedges. Specifically, for e = (u,v),

2[u] < 2[v]
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£[u] if e is a backedge

A
ble] =
min{2[v], min{2[w]: (x,w) is a backedge, x is a descendent of e}}

if e is a tree edge

Stage II of the algorithm performs a radix sort to rearrange star edge
numbers e e{s[v,i]} at each vertex in decreasing b[e] order. All edges,
e, are linked into one of the |V[ chains according to their b[e] labels.
Chains are then unloaded in reverse depth order to create new reordered
stars {s[v,1]: i=1,2,...,n[v]} containing only the n[v] < d[v] edges
searched from v at Stage I. The effect is that the depth first search
of Stage III will come last to portions of the tree with backedges reach-
ing nearest the root. Figure 4 shows both the Stage I and Stage III1
sequence of first visits to edges in the example of Figure 2,

The Third Stage of the algorithm actually performs series, parallel
and jackknife reductions until either G has been reduced to a single
edge or we are able to conclude G contains a subgraph homeomorphic
from K4. G 1s searched in depth first fashion from the same root, thus
building the same tree as in Stage I. waever, this time stars have
been sorted by Stage II.

Tree edges leading to degrse-1 vavrtices are immediately jackknife-
reduced with their predecessors in the tree. Whenever a degree-2 vertex
is encountered in the search, it is immediately series-reduced. Parallel
reductions are detected when existing or created backedges duplicate

either the tree edge t[v] or an already passed over back edge from v.

If a back edge is encountered that is parallel to neither t[v] nor the

passed over back edge, we are able to conclude G contains a subgraph

homeomorphic from K4.
11
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Figure 4: Depth First Search of
Example in Figure 2




As reductions develop, new edges are added to E. We

dynamically update star values s[v,i] and free pointers t[v] to the new

numbers, and record reductions in a binary tree. Specifically, we save
(ufe], v[e], plel, cle,1], cle,2])

for each edge e=1,2,... where u[e] and v[e] are the two vertices
joined by e, pl[e] is the parent of e in the binary tree (the edge into
which e is later reduced if any), and c[e,l], c[e,2] are the two edges
from which e was created. Figure 5 shows the tree implied by reductions
of Figure 2. The binary tree obtained could, itself, late;rbe (linear
time) searched in depth-first order to construct any original graph
entity reduction has proved to be of interest.

If G is series-parellel, processing stops after Stage III returns
to the root vertex r. However, if Stage III terminates with the con-
clusion that G contains a subgraph homeomorphic from K&’ Stage IV is
applied to exhibit such a forbidden subgraph of the current G%/ The sub-
graph has the form shown in Figure 6. The single additional path needed to
complete the homeomorph is identified by a partial comtinuation of the

depth first search aborted in Stage III. The explicit statement of the
algorithm can now be given. ‘

Stage I: Edge Depth Labels

Step 0: 1Initialization. Tag 2ll vertices as unvisited by setting

2[k] + -1 for all ke V

1/ Backtracking in the binary tree might be required to exhibit a
corresponding homeomorph from K, in the original (unreduced) G,
but this is easily accomplished in O(|U| + E[) time.
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K4 Identified at Stage IV




and all edges as unprocessed by
ble] + -1 for all e e E

Then initialize the search at (any degree-1l) root vertex r by & + 0,

t[x] « 0, 2[r] <« O, i[r] = 1, h « r.

Step 1l: Process an Edge at h. If i[h] > d[h] go to Step 2 and

backtrack. Otherwise, define e & s[h, i[h]] and k 4 the end of e

other than h.
la: If e is an unprocessed back edge (b[e] < 0 and 2[k] > 0), .
set ble] « 2[k] and swap as necessary so that uf[e] = h,
vle] = k. Also, if h # r, update b[t[h]] + min{b[t[h]],ble]}.
1b: If e leads to an unvisited vertex k (d[k] < 0), initialize
vertex k by i ~ i+1, ¢(kj < 7, t[k] « &, ble] « &, i[k] « 0.

Then swap as necessary so that ul[e] = h, v[e] = k, and advance

to k by h « k.

Set i[h] « i[h]+1 and repeat Step 1.

=

Step 2: Backtrack. Define k = u[t[h]]. If k = r, Stage I is

complete., If not, update b[tfk]] « min{b[t[k]], b[t[h]]} and de-
cline to k by & « %&~1, h « k. There, advance i[h] « i[h]+1 and

return to Step 1.

Stage I1: Radix Sort of Stars

Step 0: Initialization. For d=1,2,..., |V| , initialize list

L[dj « &. Also set n[v] « 0 for all v e V.




Step 1: List Loading. For e=1,2,...,|E|, add edge e to list

L(ble]].

Step 2: List Unloading. For d = |V|, |V|-1, ..., 1 unload list

L[d] into stars by for each ee L[d] setting n[u[e]] + n[uf[e]l+l ,

s[ule], n[ule]]] « e.

Stage I1I: Reduction

Step O0: Initialization. Initialize the next edge pointer, g + IEI,
and edge tree variables ple] « 0, c[e,1] « 0, c[e,2] + O for all

e € |E|]. Then start a new search at root vertex r via i[r]+1, h+r.

\

Step l: FEdge Processing. If i[h] n[hl, go to Step 2 and backtrack.

Otherwise, define e 4 s[h,i[h]], k

ne

v([e].

la: If e is a back edge parallel to t[h] (e # t[k],
v[e] = ul[t[h]]) , advance i[h] « i[h]+1 and go to Step 4

to parallel reduce with & « e, £ « t[h], h « u[t[h]].

1b: If e is a back edge not parallel to t[h] and there is

no passed over edge at h ( e # t[k], o[h] = 0), advance
i[h] « i[h]+1 and make e the passed over back edge via

o[h] =« i[h].

lc: If e is a back edge parallel to the passed over edge
£ 2 slh,olh]] (e # t[k], vle] = v[£]), advance o[h] « i[h],

i[h] + i[h]+1l, and go to Step 4 to parallel reduce with

e+e, f+« f, h+h,

17



1d: If e is a back edge parallel to neither t[h] nor the
passed over edge at h, G contains a subgraph homeomorphic

from K&' Proceed to Stage IV.

le: If e is a tree edge and k is a degree-1 vertex
(e = t[k], d[k] = 1) advance i[h] « i[h]+1, and go to Step

5 to jackknife reduce with @ « e, £ « t[h], h « u[t[h]].

1f: If e is a tree edge, k is a degree-2 vertex and
f & s[k,n[k]] is not parallel to e (e = t[k],d[k] = 2,
v[f] # ule]) go to Step 3 and series reduce with € <« e,

f <« f, h <« n.

lg: If e is a tree edge (e = t[k]) and either d[k] > 2 or
f g sik,n[k]] 1is parallel to e (v[f] = u[e]), advance to

vertex k¥ oy h « Kk, o[h] <« 9, i[h] « 1.

Repeat Step 1.

e~

Step 2: Backtracking. Define e = t[h], k 4 ule].

2a If k = r, stop; G is series-parallel because it has been

reduced to the single edge e.

2b: If k # r, decline to vertex k by h + k, and return to

Step 1.

Step 3: Series Reduction. Advance g + g+l and series reduce edge

2 and f into g by
u[g] « ufe]
v[g] « v[f]

s[h,i[h]] « g

18




d[v[e]] « d[v[e]]-2

ple]l « g

!

plf] «

4

cl[g,1] e
clg,2] « £
tlv[E]]l « § if £ = t[v[f]]

Then return to Step 1.

Step 4: Parallel Reduction. Advance g + g+l and parallel reduce
€ and f into g by

ulg] « u[f]

v[g] + v[f]

slh,i[h]] « &

dlulgly « ¢lufg]l-1

dfv[gl] « dlv(gl]-1

plel « g

plE] «

ol

clg,1] « e

clg,2] « F

elv(E]] « § if E = tlv[E]]
Then if a new degree-2 vertex has been created other than at search
vertex h (d[h] = 2, g = t[v[3]],d[vI[g]] > 1), go to Step 3 and

series reduce the new degree-2 vertex via € « t[h],f+ g,h+ u[&].

If no such vertex was created, return to Step 1.




Step 5: Jackknife Reduction. Advance g + g+l and jackknife reduce

€ and f into g by
ulg] « ulf]
v[g] « v[f]
s[h,i[h]] « g
d[u[g]] « dfu[e]]-1

d[v[el] « d[v[ell-1

[12]

ple] «

plf]l « &

o}

c(g,1] «

Fhi

clg,2] «
tiv[(£]] ~ g if £ = t[v[f])

Then return tc Step 1.

Stage IV: Homeomorphic Subgraph Idencification

Step 0: Initialization. Save the search vertex h, the current

search edge e, and gssociated entities on which Stage III terminated
as elements of the homeomorphic subgraph depicted in Figure 6.
Specifically,

e, +e

e, < s[h,o[h]]

e, « t[h]

]

v, « vie

1
v, « v[ez]
v, * u[e3]
v, * h

Then restart the search at the tree predecessor of h by h « Vg,

i[h] « i[h]+1.

20




Step 1: Edge Processing. If i[h] > n[h] go to Step 2 and backtrack.

Otherwise define e 4 s[h,i[h]],k 4 viel].

la: 1If e is a back edge touching below v, in the tree

(e # t[k],2(k] < 2[v,], go to Step 3 to complete the

forbidden subgraph.

1b: If e is a tree edge (e = t[k]

h « k,i[h] « O.

Increment i[h] + i[h]+1 and repeat Step 1.

Step 2: Backtracking. Decline to vertex u[t[h]] by setting h « u[t[h]].

Then return to Step 1.

Step 3: Path Identification. Save Wy ulel], W, * vlel, e, * e.

Then trace backwards through the tree from W, tow, by following
labels tfk] until a path WiseenaVgseersVnyeeesVyaens, Wy has been

identified. When LY is reached stop; this path completes the re-

quired homeomorphic subgraph of Figure 6.

The principal issue of correctness that must be established for our
algorithm is that it stops only with G fully reduced or with a subgraph

homeomorphic from K4.

Lemma 3: Algorithm Stopping. Let G be a connected, undirected, loopless

graph with degree-1 vertex r. Then application of the above algorithm

to G leads to either termination of Stage IIT with the correct conclusion

that G is series-parallel or termination at Stage IV with a subgraph H'




of the current reduced version G' of G that is homeomorphic from K,,

4

Proof.: Consider Stage III of the algorithm. It is easily checked that
all reductions undertaken from the differegt cases of Step 1 are valid
series, parallel or jackknife reductions. Furthermore, no vertex is
departed via Step 2 until it is either degree-l or degree-2, i.e.
certain to be immediately eliminated by jackknife (reSpectivelf series)
reduction, Thus if backtracking proceeds until we are ready to return
to the root, only r, its incident edge, and the adjacent vertex can
remain. (The latter vertex is degree-1 because r is degree-1l.) Clearly
the final reduced graph G' is a single edge and G is series-parallel. |
I1f, on the other hand, Stage IIT searching is aborted at Step 14,
entities constructed at Step O of Stzge IV must be as illustrated in
Figure 6. Current search vertex h = v, is joined to its immediate tree
predecessor Vg by tree edge ey, and to vertices v, and vy by the passed

over and current back edges e, and ¢ = e,. Necessarily v., v

1 2

are distinct because otherwise e = e would have been parallel reduced.

1 and Vq

Moreover, we have i[vl]_i Z[v,] becausz the passed over back edge e, was

encountered before e in the processing of the Stage-II-ordered star

of h=v

4.

Most important for the entities recorded at Stage IV, Step O is that

V3 the tree predecessor of h = v4, is at least degree-3 and is joined

via some descendent vertex wl and & back edge e, to a vertex v, be-

longing to the tree path from vy to r. These claims must hold because
had V3 been degree-2 when first encountered in Stage III it would have

been series-reduced by Step 1f, and if it were later made degree-2 by

parallel reduction, Step 4 would have passed to Step 3 and series-reduced
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it. Moreover, the star ordering introduced at v, by Stage II assures

3

that, since the search passed first to e3 instead of the next listed edge at

Vas the latter edge has a descendent-back-edge path reaching at least

as close to the root as the one (e3,el) encountered through e Since

3
the subgraph H' of Figure 6 is clearly homeomorphic from K4, this com-

pletes the proof.

Theorem 4: Correctness of the Algorithm. Let G be as in Lemma 3 with

vertex set V and edge set E. Then application of the above algorithm to
G either exhibits a sequence of series, parallel and/or jackknife re-
ductions convertinz G to a single edge or produces a subgraph H' of a
series, parallel and/or jackknife reduced form G'of G such that H' is
‘homeomorphic from K4' Moreover,.all computation is accomplished in

time linear in |V| and [E| (o(|VI+[E]).

Proof: Lemma 3 established all needed properties for correct convergence
of the algorithm that do not follow automatically for the nature of
depth-first search. To complete the theorem we need oniy to show com-
putation is in the worst case 0(|V[+!E{). We analyze computatidn by
stages:
Stage I. The depth-first search of Stage I begins with O(|V|+|E[)
initialization of Step 0. It encounters each edge of E twice at
Step 1, once at each vertex of the edge. The O(IV[) tree edges
are also backtracked through once each by Step 2. Since all

processing is clearly in constant time, computation for Stage I

totals o(|V|+]El).




Stage II. Stage II begins with O(]V[) initialization and then un-—

loads and reloads each edge of E. Total time is O(|V|+|E]).

Stage III. Initialization of Stage III is 0(|E|). As the graph

is examined each edge is either 2 treé edge, a back edge saved as

the passed over edge, a back edze leading to an immediate parallel
reduction, or a back edge causing processing to pass to Stage IV.

The O(IVl) tree and passed over back edges are elither series or jack-
knife reduced at once, or so reduced upon backtracking at Step 2.
Moreover, each reduction replaces 2 edges'by 1 so there are at most
0([E|) reductions. We can conclude Stage ITII requires at most

o(|V]) + O(|E}) edge searching plus O(|E|) reductions. Since all
component calculations clearly reguire constant time, total effort

¢

is o(|Vv|+lE!).

Stage IV. Stage IV

o requires at most O(JE|) edge examinations and

0(|V]) backtracks before it reaches Step 3. There an Q([V[) backtrack

through the tree completes processing and total time is O(IU]+‘E}).

5. Terxminal Subzraphs

Clearly any edge created by series, parallel or jackknife reduction
represents a subgraph of the originzl G. Denote the graph represented
by e in a feduced graph G as G[e]. If e belonged to the original G,
cle] & e.

We call G[e] a terminal subgranh of G because it is characterized

by terminal vertices ul[e] and v[e]. These vertices are the only ones of

G[e) that persist in reduced graph G. That is, G[e] is joined to the




rest of G only through terminal vertices ule] and/or v[e].

Reversing this perspective, we can develop an equivalent charac-
terization of series-parallel graphs in terms of terminal subgraph
separations . Cut vertices and cut pairs were defined in Section 3. A

terminal graph G[u,v] is any graph with distinct vertices u and v

identified as terminals. We consider the separation of loopless terminal
multigraphs G[u,v] containing no isolated vertices into two loopless
terminal multisubgraphs Gl[ul,vl] and Gz[uz,vz] containing no isolated

vertices and satisfying G[u,v] = E(Gl[ul,vl])UE(Gz[uz,vz]).

e series separation: separate G[u,v] at a cut vertex ¢ # u,v into

terminalsubgraphscl[u,c]andGz[c,vl,suchthat V(Gl[u,c])nV(Gz[c,v])=r{c}.

e parallel separation: separate G[u,v] at (terminal) cut pair into

terminel suhgzrazins Gl{u,v]zxuicz[u,v], such that V(Gl[u,v])nU(Gz{u,vj) =, v},

e jackknife separation: separate G[u,v] at (terminal) cut vertex u

(respectively (terminal) cut vertex v) into terminal subgraphs
Gl[u,v] and G2[u,t] (respectively Gz[t,v]) satisfying
V(Gl[U,V])ﬂV(GZ[U,t]) = <u} (respectively V(Gl[u,v])n V(Gz[t,v]) = {v})

and t is any vertex of G, except u or v.

Theorem 5: Separation Characterizaticn. A loopless, undirected multigraph

G with no isolated vertices is series-parallel if and only if every con-
nected component of G can be separated into a collection of disjoint edges
by designating an appropriate pair of distinct vertices of the component
as terminals and applying some sequence of series, parallel and jackknife

separatiocns.




Proof: First assume G is series-parallel and consider a connected com~-
ponent G. By applying the algorithm of Section 4 we can construct a binary
tree of reductions with corresponding terminal subgraphs such that G[g]

is the parent of G[e] and G[f] in the tree if e and f were series or
parallel or jackknife-reduced to g. Ends of this binary tree are single
edges, and the last-constructed, root vertex of this binary tree has

Glg] = G.

Viewing this binary tree from its root, we want to show it corres-
ponds exactly to a sequence of series, parallel and jackkq?fe seﬁarations
leading to a disjoint collection of edges. We begin by choosing as term-
inals of the root graph the two vertices of the edge to which it was
reduced. Now proceed inductively through the binary tree. If a G[g]
was formed by series reduction of G{e] and G[f], each of G[e] and G[f]
has exactly ome terminal in common with Glgl, and V(G[e])nV(G[f]) is their
common terminal (which is not a terminal of G[g]). These are exactly the
requirements for a series separation.

If G[g] was formed by parallel reduction of G[e] and G[f], all three
have the same terminals and V(G[e])-V(G[£]) = {ule],v[e]}. Re&ersal of
the reduction is a parallel separation;

Finally, suppose G[g] was creatad by jackknife reduction of G[e] and
G[f]. G[e] and G[f] intersect onlyv at their common terminal, G[f] has
the same terminals as G[g], and G[e] has as terminals the one it shares
with G[f] and some other vertex. Clearly G[g] jackknife separates into
G[e] and G[f].

For the converse we apply Theorem 1. If G is not series-parallel

we know from the earlier result that G has a connected component G with a
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subgraph H homeomorphic for K We will show this implies no sequence

4° .
of series, parallel and jackknife éeparations can divide G into a collec-
tion of disjoint edges.

Consider a sequence of series, parallel and jackknife separations
of G, and let G0 be the last one containing every edge of H. That is

E(ﬁ)cE(GO[u,v]), but separation of Go[u,v] into Gl[ul’vl] and G2[u2,v2] will

leave E(ﬁ)¢E«;f E(ﬁ)¢E(G?). Now H is homeomorphic from K4’ so it contains no

cut vertices. Also, cut pairs are possible only for pairs of vertices
both belonging to a path of H corresponding to a single edge of K4. It
follows that the separation was of the parallel type, that both terminals

of GO’ Gl and G, belong to such a path of H, and that one of G

2 and G2

1

contains all of H éxcept a path through degree-2 vertices. That is, one
of Gl and G2, say Gl’ contains a subgraph of the form H depicted in Fig-
ure 7.

Further parallel separation of Gl will leave terminals unaltered and
H' entirely in one or the other created subgraph. Jackknife separations
are possible if u or v is a cut vertex, but again, all of H' must belong
to one of the successors and terminals will be undisturbed. Series
separations do move terminals, but only to cut vertices dividing the graph
so that one original terminal belongs to each successor.

We can conclude that only with series separations can a subsequent
sequence of series, parallel and/or jackknife reductions not leave H'
entirely contained in one of the two resultant subgraphs. But all
possible cut vertices of a graph like H' belong to either the path
(a,...,u) or the path (v,...,c). It follows that any sequence of such
separations will eventually lead to a descendent containing the subgraph
H'' of Figure 7,
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Further separation of H'' is impossible. Thus, we can conclude that

if G originally contained an H homeomorphic from K,, G cannot be separated

4?

by any sequence of series, parallel and/or jackknife separations into a

collection of disjoint edges. This completes the proof.

6. Comparison to Other Definitions

The fundamental Duffin (1965) paper on series-parallel graphs sought

to clarify relations between alternative definitions in the earlier work
of Riordan and Shannon (1942). Duffin defined series-parallel graphs as
those for which resistance between any adjacent pair of terminals could
be computed by Ohm's laws:

® Resistance is additive for resistors in series

e Reciprocal resistance is additive for resisters in parallel
Duffin also defined confluent graphs as graphs having no cycles C, and

1

C2 that cannot be oriented in such a way that all common edges have like

direction.

Any distinct 4-vertex cycles of K4 fail the confluence property.
More generally Duffin-proved (his Theorem 1) that a graph is confluent if
and only if it contains no subgraph homezomorphic from K4. Furthermore,
in his Theorem 3 he established that a'graph is serieé—parallel if and

only if it is confluent.

We can thus conclude via our Theorem 1 that both our Hefinition and
Duffin's definition of series-parallel graphs are equivalent. However,
Duffin defined only two reductions--equivalent to our series and parallel.

Consequently, he only gave a reduction characterization of the case
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where G is biconnected. The simple graph of Figure 3 illustrates that

cases lacking a subgraph homeomorphic from K4 but still not completely reduc-

ible by series and parallel operations, are possible when G is not biconnected.
The recent paper by Valdes, Tarjan and.Lawler (1982) is primarily

concerned with a vertex form of series-parallel graphs. However, these

authors do define and employ edge series-parallel digraphs. Lemma 2 of

their work references Duffin in asserting digraphs are edge-series-parallel
if and only if they can be reduced to single edges by series and parallel
reductions. Thus their definition is limited to graphs reducible by

series and parallel operetions alone, and excludes, for example, the

graph of Figure 3.

Another recent and important paper on sSeries-parallel graphs is that
of Takamizawa, Nishizeki and Saito (1982). These authors define series-
parallel graphs as those reducible bv series and parallel reductions to
a two-edge cycle. It is easy to see that this limits their series-parallel
graphs to the biconnected ones since series and parallel reductions
preserve biconnectivity.

More importantly, however, Takamizawa et al treat a more general form

called two-terminal series—-parallel. Like our Section 5, two-terminal

series-parallel graphs are deiined in terms of separations of a given
graph G. The process begins with up to two vertices of G designated as

terminals. New graphs produced by separating G also have two terminals.

-However, one or both may be virtuzl (i.e. artificial). If we adopt

the equivalent notion that single terminal and no terminal graphs are
allowed, two terminal series-parallel graphs are those which can be de-
composed into a collection of disjoint edges by any sequence of applica-

tion of the series (tvpe I) and parallel separations tabulated in our Table 1.
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Table 1: Classification of Separations in

Two-Terminal Series-Parallel Graphsl/
2
Separation Key Gg/ Key Gl—j Key ngj
Separation Form Vertex(s) Vertices Vertices Vertices
Series (Type I) b a,b,c a,b b,c
b ab 2,b b
b b b b
Parallel ab a,b a,b a,b
2 a,b a,b ab
none no terminals no terminals no terminals

1/ Adapted from Takamizawa et al (1982)

2/ Underlined vertices are terminals.
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Series (type I) separations divide G at a cut-vertex, ¢, into two

parts Gl and G2. The cut-vertex c is not a terminal of G but becomes a
terminal of both Gl and G2. Terminals of G are also terminals of which-
ever of Gl and G2 they belong to. 1In particular, if G had two terminals

one must be part of G, and the other part'of G

1 27

 Parallel separations have three purposes. If G has no terminals,
parallel separation merely divides G into one collection G1 and another
G2 of discomnnected components of G. If G has one terminal and it is a
cut-vertex, parallel separation creates new one-terminal sgbgraphs sepa-
rated at that cut-vertex. If G has two terminals, parallel separation
divides G at the terminals when they form a cut-pair.

Clearly, series (type I) and parallel separations with two terminals
perform substantizily the same functions as our series and parallel
scparations of Secticn 5. Parallel separations with no terminals merely
isolate connected components.

Parallel sepafations with one terminal are more interesting. They
effect part of what we do by jackknife separétion ~- divide graphs at a
cut-vertex that is also a terminal. However, two-terminal series-parallel
graphs still do not appear to cover the full range of our series—parallel
graphs. It is not hard to varifv that separation of the graph in Figure
3 by methods of Table 1 eventually halts with a subgraph consisting of a
3 vertex path having 2 adjacent terminal vertices. Thus the graph of
Figure 3 is not two-terminal series-parallel even though it conforms to
our definition of series-—parallel. On the other hand, a proof like that

of the converse of Theorem 5 can show that if G is not (our) series-

parallel, it is not two-terminal, series-parallel. The subgraph H'' of




Figure 7 admits no Table 1 separation. But just as in the proof of
Theorem 5, it must eventually be encountered. Whether we start with 0,
1 or 2 terminals, H can be first disturbed only by the two-terminal,
cut- pair form of parallel separation at which our proof begins.

Finally, we note that our own work in Rardinm, Parker, and Wang (1982)
and Rardin, Parker, and Richey (1982) use still a different definitiom of
series-parallel graphs. We described such graphs as those feducible by
series and parallel reduction to a tree. Clearly, the example of Figure

3 fails this test even though it satisfies the definition of Section 2.

7. Conclusion

Our afm in this paper has been to clarify and synthesize knowledge
about series-parallel graphs. Ve can sunmarize our conclusions by the

following:

Theorem 6: Equivalent Characterizations. Let G be a loopless, undirected

multigraph with no isolated vertices. Then the following are equivalent:

(i) G can be reduced to a collection of disjoint edges by some
sequence of applications of series, parallel and jackknife
reductions (as defined in Section 2).

(ii) G contains no subgraph homeomorphic from K4.
(iii) G contains no subgraph homeomorphic from anybtriconnected
graph.
(iv) Every connected component of G can be separated into a
collection of disjoint edges by designating an appropriate

pair of vertices of the component as terminals and applying
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some sequence of series, parallel and jackknife separations
(as defined in Section 3).
(v) G contains no cycles Cl and C2 that cannot be oriented in

such a way that all comzon edges have like direction.

Furthermore, whether G satisfies (i) - (iv) can be tested in time linear

in the number of its edges and vertices.
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ABSTRACT
In this paper, we address the following problem. Given an undirected
graph G(V,E) with arbitrary edge weights, determine a minimal weight subset
of edges which forms é tree and which includes a specific subset of vertices
in V. It is well known tﬁat finding such a subgraph, referred to as a
Steiner tree, is formally difficult for arbitrary G(V,E). On the other hand,
if we confine our attention to a class ofvgraphs éommonly referred to as

series—parallel, the problem can be solved. We demounstrate this in the pre-

sent paper.




1. INTRODUCTION
Consider an undirected graph G(V,E) with vertex and edge sets I/ and E
respectively. We shall assume throughout that G(V,E) is loopless but may

possess multiple edges. The Steiner tree problem on graphs seeks a subset

E < E forming a tree which includes all vertices in a specified subset

S c U and which has minimum total edge weight. Note that we specifically
define the problem on graphs in order to differentiate it from the classic
version defined on the Euclidean plane. In the latter case, the problem is
a well-known one in geometry which asks fof a set‘of lines (also in the
plane) which connect a set of points aﬁd does so with minimum ;;tal length.
Hereafter, we will simply refer to our problem by STP.

The difficulty of the STP has been established, its NP-Gompleteness (for
the decision analog) fellowing via a transformation from EXACT‘COVER BY
3-SETS (Karp (1972)). Even various special cases remain intractable. Among
these are problems with equal edge weights (Garey and Johnson (1979)) as well
as problems defined on planar graphs (Garey and Johnson (1977))5

On the other hand, there are some easily resolvable casés. Clearly, when
S =V, the STP trivially reduces to thg minimum weight spanning‘tree problem
for which highly efficient algorithms are known and when |S| = 2, the problem
becomes one of finding the shortest path in a graph which connects the vef—
tices in S. This also is well-solved sb long as edge weights are non-negative.
0f course, general (nonpolynomial) algorithms have also been developed. We. .
direct the interested reader to Lawler (1976) for coverage of these, in parti-
cular the work of Dreyfus and Wagner (1972). An interesting survey of the
STP can also be found in Hakimi (1971) and recently, a branch and bound
procedure was presented by>Shore, et. al., (1982).

In this paper, we give a procedure for solving the STP on a restricted

class of graphs referred to as series-parallel. Our algorithm is based, in




part, on notions developed in Takamizawa, et. al. (1982) as well as on im- i
plications arising from earlier results in Rardin, et. al. (1982). Fol-
lowing, we characteriie the class of series—pargllel graphs of interest

after which we motivate the development of the algorithm. The procedure

is formwally stated and demonstrated with a small problem. We next

establish the algorithm's polynomiality and finally, we conclude with some

general observations.

2. SERIES-PARALLEL GRAPHS

The notion of series-parallelism in graphs is not of recent vintage. It
also is a concept which has found its way into a host of problem settings
dealing with graphs and networks. Included are classic problems in electri-
cal engineering, routing and transportation problems, problems imn netwofk
design and various precedence constrained scheduling problems.

Accompanying this range of settings hasvbeen a concomittant growth in
the literature of the various fields. This, in turn, has crgated a somewhat
confusing situation insofar as a unified view of series—parallel structures
is concerned. An early attempt at resolving this appeared in the work of
Duffin (1965), and later, in Lawler (1978).

For our pﬁrposes, the following definition of series-parallel graphs
will suffice. In particular, we will say that a loopless, undirected graph,
G(V,E) is seriés—parallel if it can be reduced to a fores£ by the sequential

application of the following elementary operations.

(1) series reduction: Replace any degree-~2 vertex k, and the

‘incident edges (or pseudo-edges) e and f connecting k to

vertices i and j # i respectively, by a new pseudo-edge g -

incident to i and j.




(ii) parallel reduction: Replace two edges (either or both of

which may be pseudo-edges) e and £, both incident to vertices

i and j, by a new pseudo-edge g incident to i and j.

An alternative, and more familiar definition suégests that G(V,E) is
series—-parallel if and only if it possesses no subgraph homeomorphic to K4
(the complete graph on four vertices). This definition assures that all
conforning graphs are planar but not the converse since K4 itself is planar.
Regardless, it is easy to show that these two views of the series“parallél
property are not equivalent, e.g., any l-tree satisfying the latter defini-
tion and which has no degree~2 vertices is not reducible by operatioms (i)
and (ii) above.

With no additionzal specifications on G(V,E), our class of serieg—parallel
graphs can accurately be viewed as a restricted class of those conforming to
the definition employing the forbidden K4 subgraphs (pr homeomorphs of K4)'
However, if we take our graphs to be 2-connected then the definitions are
equivalent. Récall that a graph is 2-connected if every pair of vertices lies
on a cycle. Further, under 2-comnectivity any valid sequence of operations (i)
and (ii) will reduce such a graph (if and only if it is series-parallel) to
a single edge or pseudo-edge ([2]).

Note that ﬁe have introduced the term pseudo-edge in order to signify

artificial edges which result from series and parallel reductiomns. These

artificial edges, of course, represent subgraphs of G(V,E). Let us denote

by G(e) the subgraph associated with pseudo-edge e and by V(e) and E(e), the
vertex and edge sets of G(e), respectively. The vertices to which e is in-

cident will be termed the terminals of G(e).




When e €¢ E (i.e., e is a "true" ‘edge in G) and e is incident to vertices
say 1 and j, we shall set V(e) < {i, j} and E(e) + {e} where e & (i, j).
When e and f are series or parallel reduced to g, the associated G(g) is ob-
tained via V(g) + V(e) v V(f) and E(g) « E(e) u E(f). The key observatioms

leading to the development of an algorithm for the STP on series—parallel

graphs can now be stated.

Lemma 1: Common Elements of Series or Parallel-Reduced Subgraphs. Suppose

edges or pseudo-edges e and f are series or parallel-reduced to pseudo-edge

g. Then

la: E(e) n E(f)

$

1b: V(e) n U(fj = {k} where k is the common tgrminél of G(e) and
G(f), if the reductiqn is series.

le: V{(e) n V(£) = {i, j} where i and j are the two terminals of

G(e) and G{f), if the reduction is parallel.

Proof: All edges and a2ll non-terminal vertices of G(e) and G(f) have been

| absorbed in one of e or f before the two are combined as g. Hence, no such’
edge or non-terminal vertex could belong to both G(e) and G(f), In addi-
tion, G(e) and G(f) have exactly one (for series) or two (for parallel) ver-
tices in common which follows by definition of series and parallel reduction.
R -

It is obvious that the series and parallel reduction operations neither

create not join disconnected components of G. Thus reduction will lead to

a forest which is a tree exactly when G is connected. In dealing with the

STP, we need consider only this case since G(V/,E) admits a Steiner tree on

vertices S ¢ V if and only if vertices in S belong to a single component.




Earlier we stated that under the assumption that the original graph is:
2-connected, the reduction process always leads to a single (pseudo) edge.

In order to simplify the ensuing presentation of cases, we will assume

such a reduction to an edge always occurs. In cases where reduction

yields a tree of 2 or more edges (the original graph may even be a tree) we
- can induqe 2—connectivity'by adding an artificial, non-Steiner vertex,:s, to
the current, reduced graph and connecting it to evefy vertex of the tree by
artificial edges having weight +=. Clearly, such an edge and hence, ;,»will
not be part of an optimal Steiner tree. The next lemma assures that this con-
struction results in a 2-connected graph and more importantly, that it pre-

serves the series-parallel property.

Lemma 2: Artificizl 2-Connection of Tree Cases. Let T be a tree on vertex

PN

set V(T). Then the graph H formed by connecting a new vertex v to each

i ¢ V(T) is 2-connected, series-parallel.

Proof: That H is 2-connected is clear since every pair i, j € V(T) lies on
the cycle formed by edges (G, i), (G, j) and the unique path in T connecting

i and j. To see that H is also series-parallel observe that if this were mnot
so, then H would necéssarily contain a subgraph homeomorphic to K4. One ver-
tex in such a subgraph might be G but at least three would belong to V(T).
‘However, this would imﬁly the presence of Ky (or a homeomorph of'K3) in T and
hence, a cycle, which is not possible if T is a tree. Thus H contains no such
homeomorph and is indeed series—parallel.

We are now in a position to develop an algorithm for the STP under the

stated series-parallel assumption.




3. DEVELOPMENT OF AN ALGORITHM

Qur aim is to develop an inductive procedure. That is, we wish to express
optimal Steiner solutions in a subgraph, say G(g). This subgraph results from .
a series or parallel reduction as a function of‘its antecedent subgraphs, say
G(e) and G(f). From Lemma 1, we observed that G(e) and G(f) ﬁhare no edges
énd have only terminal vertices in common. As a consequence, there are rela-
tively few cases to consider. The next lemma lists the possibilities for a
series reduction.

Lemma 3: Antecedents of a Tree Produced by Serjes Reduction. Suppose degree-

2 vertex k, and edges or pseudo-edges e and f connecting k to i and j # 1 re-
spectively, are series-reduced to pseudo-edge g. Then every tree, T, of
G(g) satisfies one cf the following:

3a: T is a tree of G(e)

3b: T is a treas of G(f)

(o]
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3c: T is the union of a tree of G(e) and a tree of G(f), both

of which include vertex k.

To produce a similar classification of cases under parallel reductiom,

we require an additional concept. B is a terminal biforest of the subgraph

G(g) associated with pseudo-edge g if B comsists of two disjoint trees,

each including exactly one of the terminals of g. Accordingly, we have

Lemma 4: Antecedents of a Tree Produced by Parallel Reduction. Suppose two

edges or pseudo-edges e and f, both connecting vertices i and j, are paral-

lel-reduced forming pseudo-edge g. Then every tree, T, of G(g) satisfies

one of the following:




4a: T is a tree of G(e).

4b: T is a tree of G(f).

4e: T is the union of trees of G(e) and G(f) both of which
contain i and neither of which contains j.

4d: T is the union of trees of G(e) and G(f) both of which
contain j and neither of which contains i.

4e: T is the union of a tree of G(e) containing both i and

j with a terminal biforest of G(f).

4f: T is the union of a tree of G(f) containing both i and

j with a terminal biforest of G(e).

Having introduced the terminal biforest cases, we must now consider how
they might occur ir rz=cductions. The next two lemmas treat the series and

parallel cases.

Lemma 5: Antecedents of a Terminal Biforest Produced by Series Reduction.

Suppose degree-2 vertex k, and edges or pseudo-edges e and f connecting k to
i and j # 1 respectively, are series reduced to pseudo-edge g. Then every
terminal biforest, B, of G(g) satisfies one of the following.
Sa: B is the union of a tree of G(e) including vertex i but
not k, and a‘tree of G(f) including vertex j but not k.
5b: B is the union of a tree of G(e) including both vertices RS
i and k and a terminal biforest of G(f).

5¢: B is the union of a tree of G(f) including both vertices

j and k and a terminal biforest of G(e).




Lemma 6: Antecedents of a Terminal Biforest Produced by Parallel Reduction.

Suppose two edges or pseudo-edges e and f, both connecting vertex i to vertex
j, are parallel reduced to a new pseudo-edge g. Then every terminal biforest,
B, of G(g) satisfies the following.

pa: B is the union of terminal biforests of G(e) and G(f).

The previous four lemmas demonstrate that trees and terminal biforests
of new pseudo-edge subgraphs can be derived from similar resulté which exist
relative to their antecedents. We need only exercise some care in recording
which terminals belong to various trees. To specialize the results to
Steiner trees aﬁd Steiner terminal Eiforests (terminal biforests for which
all Steiner vertices belong to one of the two trees), we need only check
whether the antecedesnt structures can contain all required Steiner vertices.
Also, since structurss obtained by union in various cases of Lemmas 3-6 rep-
resent the union of edge-disjoint entitites, the optimal union will possess
total weight equivalent to the sum of the weight of optimal antecedents of
the specified types. |

With these observatioﬁs, an algorithm for the STP can be stated in terms
of edge (or pseudo-edge) labels. We define these below.

t(e, -) 8 the weight of a minimum Steiner tree on G(e) that

uses neither terminal.

t(e, k) £ the weight of a minimum Steiner tree on G(e) that
uses only terminal k (one label for each terminmal).

t(e, +) 4 the weight of a minimum Steiner tree on G(e) that
uses both terminals.

te, |) 8 the weight of a minimum Steiner terminal biforest

on G(e).




We can now state the algorithm formally. In the following, we denote the
Steiner vertices by set S and edge weights, which may be arbitrary, by w(e)

for e & (1, j) € E.

Step 0: Label Edges in £. To each edge e = (i,j) in E assign the labels

t(e’ ") - +=

o 1if j e S
te, 1) «

0 otherwise

+= if i e 8§ ' — : -
tle, 3) : -

0 otherwise

t(e, +) +— w(e)
te, |} ~— o©

Step 1l: Stoprinz. If the present graph is a single (pseudo) édge,

e = (i,j), stop; the weight of an optimal Steiner tree in G is

min{t(e, -), t(e, 1), t(e, j), t(e, +)}-

Otherwise, if a series reduction is possible, go to Step 2 and if a
parallel reduction is possible, go to Step 3.

Step 2: Series Reduction. Select any degree-~2 vertex k of the

present graph and let e be the edge (or pseudo-edge) connecting

k to i and f, the edge (or pseudo-edge) connecting k to j. Replace

k, e and f by a new pseudo-edge, g, with labels
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min { t(e,k) + t(f,k), t(e,-)} if V(e) n S # ¢
. and V(f) n S = ¢
min { t(e,k) + t(f,k), t(f,-)} if V() n S # ¢
t(g, =) +— and V(e) n 8 = ¢
min { t(e,k) + t(f,k), t(e,-), t(£,-)} if {V(e) v V(E)} n S = ¢
t(e,k) + t(f,k) otherwise
t(e,+) + t(f,k) if V() n S # ¢
t(g, i) + .
min { t(e,1i), t(e,+) + t(f,k)} ' otherwise
£,4) + t(e,k) if V(e) n S # ¢
t(g, j) +—
min Tf(f,J), t(f,+) + t(e,k)} otherwise

t(g, +) +— t(e,—I-) + t(f,+)

tg, |) — miz (tle, ) + t(£,]), te,|) + t(E,4), tle,i) + £(£,9)}

Return to Step 1.

Step 3: Parzllel Reduction. Select any two edges or pseudo-edges e

and f connecting the same pair of vertices i1 and j in the present

graph. Replace e and f by a new pseudo-edge, g, with labels

t(e,~) if V(e) n S # ¢ and V(f) n S = ¢
E(E,-) 1f V() nS# ¢ and V(e) nS=¢p

t(g) —) A T
min { t(e,-), t(£,-)} if {(V(e) u V(E)} n S =9

4 otherwise

t(g, i) «+— t(e,i) + t(f,1)

t(g: J) A t(e9j) + t(f’j)

i e v e e
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t(g, +) < min {t(e,|) + t(f,+), t(£,|) + t(e,+)}

t(g, |) — tle,|) + t(£,])

Return to Step 1.

Prior to demonstrating the algorithm, we establish with the next result

the validity as well as the efficiency of the procedure. We have

Theorem: Correctness and Efficiency. Let G be a 2-connected and series-

parallel graph. The stated algorithm computes the weight of an optimal
Steiner tree in G in time growing as a polyncmial in the number of edges

and vertices in G.

Proof: To see that thz azlgorithm is polynomial, we observe that each re-
duction of either type reduces the number of edges and pseudo—edgeé by one.
In addition, computation associated with a reduction involves only scans for
reducible cases and within each, label updates. Hence, the algoriphm is
clearly polynomial in [V| and |E].

To show that the procedure always yields the correct solution value (or
4+ if G has no Steiner treej we can proceed inductively. Observe that
straightforward application of the label definitions establishes that ini-
tial assignments are correct.

Now, assume that labels do reflect the desired optimal values for edges
. or pseudo-edges e and f being series-reduced as in Step 2 of the algorithm.
Label rules of Step 2 merely enumerate the antecedent combinations contem-
plated by Lemmas 3 and 5 in order to produce optimal labels for the new pseudo-
edge g. Similarly, if a parallel reduction is performed at Step 3, labeling
enumerates the cases of Lemmas 4 and 6. Since these are the only cases, cor-

rect labels must result.




Of course determining the weight of an optimal Steiner tree is not the
same as "'solving" the STP. To accomplish this, we must produce an appro-
priate subgraph having the optimal weight. The issue, however, is no dif-
ferent than that in say, shortest path anaiysis where a particular path is
easily reconstructed from its length calculations by a simple backtracking
scheme. The following ¢xample serves as an illustration.

Suppose G(V,E) is given as in Figure la where edge weights, w(e), are
given on the figure. Llet § = {2, 3, 7} and for ease, denote thé edge labels
by the format shown in Figure 1b. Proceeding in step-by-step fashion we

have

Step 0: 1Initizllwr, the labels on all edges are set and appear

as shown in Figure 2,

Step 1: Consicer vertex 6 which is of degree two. Letting
e = (5,6) and f = (5,4) we performn a series reduction, re-
placing e and f by g = (5,4). The labels for g are calculated

and we have

t(g, =) ~— min {t(e,6) + t(£,6), t(e,-), t(f,-)

min {0 + 0, +=, +=}

0

min { t(e,5), t(e,+) + t(£f,6)}

= min {0, 10 + 0O}

=0
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t(g, j) «— min { t(f,4), t(f,+) + t(e,6)}

min {0, 5 + 0}

=0

t(g, +) «— t(e,+) + t(f,+) =15
t(g, |) +— min {t(e,+) + t(£,]), tle,|) + t(f,+), tle,i) + t(£,3)}

= min {0, 4=, 0} = 0

Step 1: Replacing edges (5,6) and (6,4) by pseudo-edge (5,4)

clearly does not produce a single edge graph and we continue.

Step 2: Vertex 5 is now a degree-2 vertex and we can perform
a series reduction again. Letting e + (3,5) and f « (5,4) in

the present graph, we create the new pseudo-edge g « (3,4). The

labels on g are +=, 0, +=, 19 and 0 for t(g, -), t(g, i), tlg, j),

t(g, +) and t(g, l) respectively.

Step 1, 3: A pair of parallel edges now connect vertices 3 and 4.
One of these is a real edge and the other is the result of the pre-

' viéus two series reductions.  Letting the pseudo-edge be the latter,
denote it by e and the true edge by £. Forming the new pseudo-edge,

g 8 (3,4) by parallel reduction produces the following labels
t(g, =) «—— += (note: V(e) and V'(f) share Steiner vertex 3)

t(g, 1) +— t(e,3) + t(f,1)

=0
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t(g, j) + t(e,4) + t(f,4)

= 4o

t(g, +) +— min {t(e,|) + t(£,4), t(f,]) + t(e,H)}

min {0 + 3, 0 + 19}

=3

t(g, |) — tle,]) + t(£,])

=0

The procedure continues in this manner until stopping occurs with a single
edge. This is guaranteasd since the original graph is 2-connected.
Regardless, we summarize the entire calculation in Figure 3 where at each
iteration the new labz=ls are given along with the associated subgraph G(g).
The reader will observe that when Step 1 is finally invoked an optimal weight

~

resulcts as min {t(e, -}, t(e, 8), t(e, 9), t(e, )} =min{3, 1, 5, -2} = -2

where the e & (8, 9). The optimal tree is shown in Figure 4.

4. SUMMARY AND CONCLUSIONS
In this paper we have presented a polynomial algorithm for treating the
Steiner tree problem defined on graphs which possess a series-parallel struc-

ture. When our graphs are 2-connected-series-—parallel on equivalent‘chéracter—
ization is that they contain no subgraph homeomorphic to K4.

This work on Steiner trees stems directly from a more general context in
which it has been shown by the first two authors that a rather rich class of
combinatorial problems are efficiently solvable when the series—parallel

property is present. In particular, it is kmown that numerous such problems
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can be formulated as multi-commodity fixed charge network flow problems, the
linear programming relaxation of which is perfect, i.e., integer. This latter
condition results from a unimodularity property and polynomiality follows from
the application of the ellipsoid algorithm [7].

Of course, from an algorithmic perspective, resting the case for formal
efficiency on the solvability of linear programs is not at present very in-
sightful. However, we observe that when such a phenomenon has occurred pre-
viously, efficient combinatorial algorithms have generally resulted (e.g.,
matching). This, as much as any other reason has provided the motivation
for the present algorithm for the Steiner tree problem. To this extent, it
is anticipated that coatinued research will produce similar results for other

interesting problems dsfined on the class of series-parallel graphs.
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ABSTRACT

The problem of finding a minimum cardinality subset A < A such
that the subgraph; G(U,K), preserves the reachability properties of digraph
G(V,A) is well known to be difficult. 1In this paper, we consider a
generalization which seeks a minimum weight subset A satisfying the
stated conditions where the weights of arcs in A are assigned arbitrary
integer values. A polynomial time algorithm is given for the case
where the underlying, undirected graph is séries—parallel. Naturally,

the stated algorithm subsumes the cardinality case on such graéﬁs as

well.




1. INTRODUCTION

In this paper we consider the following problem: given a directed
graph, G(V,A), where arcs, e € A are assigned arbitrary integer
weights, c(e), find a minimum weight subset Z < A such that the graph,
G(V;Z) possesses a directed path between vertices u and v in V if an
only if G(V,A) does. When c(e) are identical, the problem reduces to
one of determining a minimum cardinality subset, and is known accor-
dingly, as the minimum equivalent graph problem (MEGP). Relativising,.
we shall refer to our problem as the weighted version of the MEGP and
hereafter denote it by MWEGP. The corresponding graphs are denoted gy
MEG and MWEG, respectively.

Relatively little has been done on the MEGP, although three not-
able papers have appezred: Moyles and Thompson (1969), Hsu (1975) and
most recently, Martello and Toth (1982). Regardless, the MEGP is known
to be difficult, its intractability having been established in Sahni
(1974). Thus, since an algorithm for the MWEGP would trivially solve
the MEGP, the former is difficult, as well, for instances defined on
arbitrary directed graphs (the problem is uninteresting on undirected
graphs since a minimum weight spanning tree provides the solutioa).
However, in what follows we shall demonstrate that when the underlying
simple graph of G(V,A) is in the class of graphs referred to as series-
parallel, the MWEGP can be solved in polynomial time.

Following, we review some basic notions regarding series—parallel
graphs, after which we motivate the development of an algofithm. We
then provide a formal statement of the procedure and demonstrate it

with a sample problem. After establishing the efficiency of the




algorithm we conclude with some comments regarding other solvable

problems on series-parallel graphs.

2. BACRGROUND
Let G(V,A) be a directed graph aad denoté by G(V,E), its undirected
counterpart. That is, G(V,E) is obtained from G(V,A) by simply negecting
the orientation of arcs in A. We then have that G(V,E) is series—
parallel if and only i1f it can be reduced fo an edge by the sequential
application of the following elementary operations:

(i) Series—reduction: replace any degree-2 vertex, k, and its

incident edges (or pseudo-edges), e and f, connecting k to
vertices 1 and j#i, by a pseudo—edge, g, incident to i and j.

(ii) Parallel-reduction: replace any two edges (either or both of

which ma~ b2 pseudo-edges), e and £, both incident to vertices
i and j, v a pseudo-edge, g, incident to i and j.

(1i1) Jackknif=-reduction: replace any degree-l vertex, k, its

incident edge e=(j,k), and any other edge, f=(i,j), incident to
e, by a pseudo-~edge, g=(i,3).
Alternately, Duffin (1965) has given the following characterization
of series—parallel graphs.
Theorem l: A loopless, undirected graph is series—-parallel if and only
if it possesses no subgraph homeomorphic to K4 (the complete graph on 4
vertices).

PO

There are also other specificatiosns of series—parallel graphs whose
equivalence with either of thes two a2bove is established in Rardin, Parker
and Waguer (1982). Ragardless, it is obvious that series-parallel graphs
form a subset of planar graphs since K& itself 1s plamar. Tt is also
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worth observing that 2-connected graphs free of X, homeomorphs are reduc-

4
ible to an edge by invoking only the series and parallel reductions.

The latter observation above is important since it allows a slight
simplification for the MWEGP. Clearly, any degree-l vertex in a graph
(either the original graph or one which has been reduced) implies the
existence of a cut-vertex. Hence, if any pair of vertices (neither of
which 1s the cut-vertex) in the two blocks induced by the cut-vertex are
connected by a path, the path must include the cut-vertex. This, ia
turn, implies that there is no loss of generality if we consider pnly
instances of the MWEGP which are defined on 2-coannected graphs. To be
consistent, we simply modify Theorem 1 accordingly and eliminate reduc-
tion operation (iii).

Of course, there is discretion in how the series and parallel opera-
tions are applied on a graph. As it turns out, however, this application
can be arbitrary. We have
Theorem 2: If G(V,E) is a 2—connected, series—parallel graph, then any
admissable sequence of operations (i) and (ii) will reduce G to a single
edge.

Proof: See Richey, et.al. (1982).

In Figure 1, we 1llustate the reduction process. Here, the directed
graph, G(V,A) 1s converted to its underlying, undirected counterpart,
G(V,E) after which reductions (1) and (1i) are applied, culminating with

a single edge.




@ B @ ‘

G(V,A) G(V,E)

(i) @ (55" D (i), D
(1) % (i1) / (i1) /

Figure 1. Series and Parallel Reductions




3. DEVELOPMENT OF THE ALGORITHM

3.1 General Concepts

During the reduction process, pseudo-edges are formed by the series
and parallel reduction operations. Each pseudo—-edge represents a
subgraph of the original graph. Of course, asce:taining the relationship
between the MWEGs of these subgraphs énd the MWEGs of thelr series and
parallel combinations is at the heart of the ensuing algorithm.

Suppose we let Gr(l;,Er) denote the graph resulting from the
application of a segqusnce of series and parallel reductions to the
underlying, undirectad counterpart of a directed graph, G(V,A). In
addition, define G[z2] to be the subgraph of G(V,A) with vertex and edge
sets [e] and E[e] respectively, corresponding to eefi.

Now, a MWZG of Gle] must possess a path between any two vertices of
G[e] 1f the ver:izess are connected by a path in G[e}. 1In particular,
consider paths beiwzen a terminal of G[e] (L.e. an element of V[e] n V})
and some other vertex in V[e]. Clearly, any path between i ¢ {[e] and
j € V\V[e] must use at least one terminal of G[e]. Thus, if i apd j#£ 1
are elements of V[e], then any path batween them which Is not contained
in Gf[e] must pass through both terminals of G[e]. This is so since a
path passing through cone terminal twice can be considered as two separate

pieces, the cycle exterior to G[e] and the path interior to G[e]. We are

lead to the following lemma:

Lemma 3: If the values of the minimun weight subgraphs of G[e] are
known with respect to the following properties for every e ¢ Er’ then the

value of.the MWEG of G(V,A) can be determined.

= g A e




(i): Subgraph equivalent to G[e], denoted by {(MWEG)
(1ii): Subgraph equivalent to G[e] which has a path from terminal i
to terminal j (both of G[e]), denoted by -»
(iii): Subgraph equivalent to G[e] which has a path from terminal j
to terminal i (both of G[e]), denoted by ]

(iv): Subgraph equivalent to G[e] which has a path from i to j and a
path from j to i, denoted by , (o)

(v): Subgraph which would be equivalent to G[e] if a path from i to

j were added to the subgraph, denoted by | . e

(vi): Subgraph which would be equivalent to G[e] if a Eath from j to
i1 were added to the subgraph, denoted by b

(vii): Subgraph which would be equivalent to G[e] if a path from i to

D)

j and a pzath from j to 1 were added to the subgraph, denoted
by ‘ (et)
(viii): Subgraph which has a path from i to j and would be equivalent
to Glel 1f 3 path from j to 1 were added, denoted by )
(ix): Subgraph which has a path from j to i and would be equivalent
to G[e]) if a path from 1 to j were added, denoted by buras]
Note: In (v)-(ix), subgraphs which "would be equivalent to Gle] 1if-..." include
subgraphs which are equivalent to G[e] without the specified path(é).
Proof: Coasider vertices it U[el] and je V [el] such that there exists
a path from 1 to j in G(V,A) which passes through edges (in order)
1,808, € E where & > 1. Our proof will be hy induction on 2.

Clearly, the lemma is true when £ = 1 for by the discussion

proceeding the lemma, each path between i and j must be entirely in G[el]'
or else counsist of arcs in E[el] added to a simple path between the

terminals of ok Since all possible combinations of paths between the

terminals are included in the nine specified subgraphs, every possible

subzraph of G[el] which could include a path from 1 to j ian the MWEG of
6




G(V,A) is accounted for.

Now, assume the lemma to be true for £ = k. Then for £ =k + 1, let
t be the terminal vertex shared by ey and RE Since t £ G[ek], all‘
possible paths betweea i and t which could be in the MWEG of G(V,A) have

been considered. 1In addition, since t and j are in G[e , all

k1)
possible paths between t and j have been considered as well. Further,
this is true for all possible terminals t, and hence all possible paths
between the stated vertices 1 and j are accounted for by the nine
specified subgraphs. This completes the proof.

o3,

As It turns out, 1t 1s convenleant to think of nine subgraphs not as
separate cases bui rather in terms of thelr interrelationships. That is,
a given case can be viewed in terms of those cases which are restrictions
of it. This leads to the hierarchy in Figure 2. Interpreting, a given
case denoted by ncde i includes another, 1i' if there is a directed path
from node 1 to node 1' in the figure.

Of course, no minor question at this point is that regarding the
actual calculation of the subgraph labels specified in Lemma 3. That is,
how are such values determined for a pseudo-edge from its constituent
real edges?

Let L[e] be a nine-tuple for pseudo- edge e with elements
related as

[ ,5, ¢ MUEG, Ty f> o o4 )
and denoted by %£(e,*) a given value in the nine-tuple, i. e.
* g{+»,» ...,+/}. Then the next two lemmas show how pseudo- edges

iateract.




Figure 2. Hiearchy of Subgraph Labels




Lemma 4: Let pseudo- edges e and f be series-reduced, forming pseudo-
edge g. Then

2(g, <) = 2(e, ) + 2(f,+)

2(g,*) = 2(e,») + i(f,»)

2(g,¢) = 2(e,¢) + 2(f,+)

2(g,MWEG) = $(e,MWEG) + L(f,MWEG)

208 2p) = (e, + L(£,<P)
L(g2m) = L(e, % + U,
r 2(ey€) + L(f,/)
| agey +206,5)
2(g,#*) = min ﬂ
| L(e, %) + L(E%%)
\ 9. (g, MWEG)
F2(ey>) + (A
£(e;+%) + 2(f,»)
(g, ) = min {
[ 2(e,dp) + A(E,5F
U (g mvmc)
r 2e, ) + L(£,+5)
! S (e, ) + L(f,>)
2(g,+) = min Q
L 2(g, )
\
N 2(g,<F)

Proof: In Table 1, the potential resulting graph from each of the 81

label combinations are shown. Observe that crossed-out cells indicate
subgraphs which cannot become part of the MWEG of the original graph due

to Lemma 3. Cells marked by asterisks indicate subgraphs which dominate




the others in Figure 2. These coambinations have simply been re-organized

to produce the list given by the lemma.

The reader may note that the series combinations preserve symmetry. For
parallel reduction, we have
Lemma 5: Let pseudo- edges e and f be parallel-reduced, forming pseudo—
edge g. Then

L(e,+) + L(f,+F)

Lle,«F) + 9(£,+>)

Lled) + UEZR)

(e + Lr, oD

2(g,+) = min

2(ey>) + L(E,4)

TN

2(g,*) = nin 2(e,?) + 2(f,*)

2(g,+)

f.(e,*+) + 2(f,«F)
2(g,+) = min l(e:++) + 2(£,+)

2(g,+*)

2 (e, MWEG) + 2(f,MWEG)
2(g,MWEG) = min 2(g,*) |

2(g,+) _

5.(e, %) + L(f,+F)
2(g,+f) = min

f(e, ) + 2(£,27)

50, %) + 2(E,+F)
i(g,‘:‘;ﬂ = min {

2(e,+>) + J?o(f,z)

10




[ 2(e, /) + L(£,%)

1}

min

2(g)7 )
L 9,(0
o,—f’)

Il

S.(e,gF) + L(f,+F)
2(g,+#) = min {

2(g,%
2(g,4) = L(e, ) + L(f,«M)

Proof: Employing Table 2 rather than Table 1, the proof follows in
analogous fashion to that of Lemma 4. We leave the details to the

reader.

3.2 The Algorithm

We are now in 2z position to state a computational procedure. We

present the schexzz in step-~by-step fashion.

Step 0: Initizlization. For the given instance, G(V,A) let Gr((é’E}) be
the assccizted indirected graph. Denote as é[e] the weight
of arc e corresponding to edge e eE% and let vertex i be the
left vertex of e and j, the right vertex. Initialize L[e] as
follows:

L(e,>) = 4=

c(e) if e = L1,3>
2(e,*) = {

+ o if e = {j,1>

+ o if e = <1,3>
2(e,*) =

c(e) 1f e = <j,i>
9.{e ,MWEG) = c(e)

2(e, e = 2(e,*)

2(e,33) = t(e,*)

11




min(c(e),N) if e = <1,3>
2e, ) = {
c(e) if e = {j,i>
c(e) if e = <i,3>
(e, ) = { :
nin(c(e),0) if e = <j,i>
L(e,++) = min(c(e),0)

Note that <i,j> denotes the ordered pair defining an element of A.

Step 1: Reduction. Beginning with the initial Gr and referring to

Lemmas 4 and 5, perform series and parallel reductions

I arbitrarily, updating Gr after each. When Gr can be reduced no
further, go to Step 2.

Step 2: Stopping. If Gr is a single pseudo— edge, stop; the problem

soluticn is at hand. The MJEG of G can be obtained by
backtracikzing through the sequence of reductions which produced

G_. If G_ is not a single edge, then the underlying undirected

a
la]

~r

graph of Z{V,A) is not series—parallel.
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Table 1.

Series Reduction
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3.3 An Example

In order to demonstrate the algorithm, consider the graph shown in

Figure 3. Weights are specified directly on the arcs. Initializing we

have:
L[1’2]=(m,_lsm,_ls—lyw’_1"1’-1) L[7,9]=(m,w,_4,_A,w,_é,_é,-4,_4)
L[1,3]=(»,»,-3,-3,~,-3,-3,-3,-3) L[7,10)=(»,»,5,5,»,5,5,0,0)

L[1,4]=(m,4,w,4,4,m,0,4,0) L[8’9]=(m’—6’w’_6,-6,w,—6,-6,_6)

L[1,5]=(®,~,6,6,2,6,6,0,0)
L[2,3]=(x,2,»,2,2,»,0,2,0)
L[3,4]=(»,»,5,5,»,5,5,0,0)
L[3,7]1=(~,7 ,»,7,7,=,0,7,0)
L[5,6]=(®y=,1,1,~,1,1,0,0)

L[5,8]=(=,3,=,3,3,=,0,3,0)

L[9,8]=(w,=,7,7,%,7,7,0,0)

L[8,11]=(W,Z,Q,Z,Z,W,O,Z,O)
L[11,8]=(»,=,9,9,=,9,9,0,0)
L[9,10]=(w,=,1,1,,1,1,0,0)
L[9,11)=(~,3,~,3,3,«,0,3,0)

L[9’12]=(m’m,3’3 ,m,3’3’0’0)

L[6,7]=(m,m,2,2,w,2,2,0,0) L[11,12]}=(w,=,1,1,=,1,1,0,0)

The entire computation can be summarized by Table 3 where specific choices for
reduction are shown in the first column with the pseudo-edge creation

and label ccmputation in the second and third. Observe that we denote
series and parallel reduction as S and P respectively. The backtracking
process is depicted by the boxed label components and the resulting

MWEG is shown in Figure 4.

=
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Figure 3 Graph of Example




Table 3.

Summary of Computation for Example Problem

) O——O——0
© O——O—=0
" O—O—0

AN

TTQ

T

i T
O PEEOE

@T
(©)

1)

Lla]=(x,1,,1{1],»,1,1,1)

: L[b]=@:—2;"2r—2:—2’_2s—2s"2a"2)

L[C]=(°°,°°’°°,9’°°,°°a5,4’@
L[d]=(2,@,2,2,2,2,2,2,2)

Lle]=(=,8,~,8,8,,2,8,2)
L[f]=(=,[3,»,15,15,»,15,15,15)
Llgl=(=,=,3,3,=,3,3]3,3)
L[h)=(18,08,18,18,18,18,18,18,18)
L{i]=(»,®,=,6,0,0,1,[5,1)
L{il=(w,=,M,1,»,-3,-3,1,-3)
L{k]=(~,»,21,21,»,21,21,[i8,18)
L[1]=(w,»,»,22,m,2,22,19,[T9)
L[m]=(1,1,1,1,F8,1,1,-6,-6)
L[n]=(20,20,20,20i3],20,20,13,13)
L{p]=(11,11,11,11,28l9,2,0)
L{q]=(31,31,31,31 7%, 22,22,22,20)
Lir]=(=,=,4,4,=Gl.4,4,4)
Lis]=(7,7,7,7,7 @ 4,7,4)

L[t1=(26,26,26,26],26,24,24,26,24)
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Figure 4 MWEG of Example
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3.4 Discussion

Of course, crucial issues regarding the algorithm presented are
its correctness as well as its computational requirements. Accordingly,
the following theorem summarizes:

Theorem 6: The MWEG algorithm will, in polynomial time, correctly
produce a desired subgraph or stop with the conclusion that the input
(undirected) graph is not series-parallel.

Proof: First consider stopping and suppose that step 2 1s reached with
Gr not. an edge. Then the minimum vertex degree in Gr is three and thus,

Gr must possess a subgraph homemorphic to K4 [e.g. Dirac (1952), Richey,

et. al. (1982)]. But this must mean that the original graph G(V,E)
possesses a subgraph homeomorphic to K4 and by Theorem 1 is not series-
parallel. Regzardlisss, step 2 must be reached after polynomially many
series and/or parallzl reductions which is immediate since simply testiag
if an arbitrary graph is serles—-parallel can be done in O(|U|-+ |E| )
steps as shown in Rardin, et. al. (1982).

A correct structure must be produced by the algorithm since in the
proofs of Lemmas 3-5, all possibilities for subgraph construction via the
reduction process are accounted for. 1In addition, the pseudo~edge label
updates require computation independent of instance size leaving in tact

the stated polynomiality of the procedure.

We observe that alternative statements of polynomial time series—~
parallel testing are available in the literature in addition to that
alluded to in the proof above. Among these are Liu and Geldmacher (1980)

and Takamizawa, Nishizeki and Saito (1932).

18




4.  SIMMARY
In this paper, we have confined our interest to a specific problem

on series-parallel grapis. Other results have.emerged in this regard as well,
notable among which are Takamizawa, et.al. (1982) and Wald and Colbourn (1983).
In the latter, an algorichm is presented for the Steiner tree problem-

a result also obtained (independently) by the present authors (see Rardin,et.al.
(1982)5. Regardless, the impetus for our specific development here per-
taining to the MWEGP is basad largely on the requirement that instances

be defined on directed graphs. That is, the dimension of direéﬁionality
inherent in the problem clearly gives rise to a degree of complication

which may not be pressnt in many problems defined on undirected
(series-parallel) grazhs.

Of course, it Zs wirchwhile to think of specific algorithmic strategies

for other problems wiiz: =might also be rasolvable on series-parallel

graphs. To this extent, it is also interesting to think of ones which
‘might be intractable {ys:t solvable on trees, say). Even so, a fund-

amental question which is worthy of pursuit pertains to the gap between
series-parallel and planar graphs. It appears that the former class of

graphs is rich in terms of interesting problems which are amenable

to efficient solution procedures while for the latter, many problems are
known to be difficult. An investigation of the territory between these

two classes would seen t: be an interesting undertaking.




o
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ABSTRACT

We show that for the class of graphs referred to as series-parallel

at most one hamiltonian cycle is present. A linear time algorithm is
proposed for producing such a cycle or alternately, concluding that the
input graph is not hamiltonian. In fact, we decide the hamiltonicity

issue on series—parallel graphs and in so doing, provide a proper

characterization of when such graphs are hamiltonian. --




1. PRELIMINARIES
Iﬁ this note we consider the problem of deciding hamiltonicity on a

class of biconnected graphs which are referred to as series-—parallel.

One source of interest stems from the variety of problems which, although
difficult in general, are resolvable on graphs in the stated class.
Illustrations can be found in Valdes, et. al. (1982), Takamizawa, et. al.

(1982), and Rardin and Parker (1982).

Formally, a biconnected graph without loops is_series—paréllel if and
only if it can be reduced to an édge by the sequential application of

the followlng elementary operations:

(1) Series reduction: Replace any degree-~2 vertex, k, and the

incident edges (or pseudo—edges) e and f connecting k to
vertices i and j # 1, by a pseudo-edge, g, incident to i
and j.

(1i) Parallel reduction: Replace two edges (either or both of

which may be pseudo-edges) e and f, both incident to vertices

i and j, by a new pseudo-edge, g, incident to i and j.

Alternately, Duffin (1965) has given the following characterization

of series-parallel graphs which shall prove useful in this work. -

Theorem 1: A biconnected graph G is series-parallel if and only if it

possesses no subgraph homeomorphic from Fﬁf

-




Clearly, the conforming class of graphs is a proper subset of planar
graphs since K4 itself is plamar. It is also worth observing that

biconnected graphs free of K, homeomorphs are reducible to an edge by

4
the series and parallel operations. It is aiso true that relaxation
of the biconnectivity assumption produces graphs which are series-
parallel per Theorem 1, yet cannot be reduced to an edge. This is of no )
real consequence here, however, since biconnectedness is a trivial
necessary condition for hamiltonicity.

Also supporting subsequent developments is the next result which we

state and prove as a2 lemma. Letting § denote the minimum vertex degree

in a graph, we have:

Lerma 2. If GIV,E} is a biconnected graph without loops or multiple edges
and with §(G) > 3, then G possesses a subgraph homeomorphic from K&.
Proof: Let G be z subgraph in G satisfying the following property: ¢
consists of a cycle, C* and a path connecting a pair of vertices in C# and
passing through a nonempty set of vertices o where o N C* = ¢. Let this
path be sz = (k,0,%) where k,2 ¢ C*. Such a subgraph must exist in any
graph satisfying the theorem. Let us denote by C1 and Cz, the two sub-
cycles in G sharing pkl' Initially, let Q@ A {i: i € Ci\Pkl} and select a
vertex x € 0. Since the degree of x is 2 in é, there must exist an edge
(x,3j) in é\E(é). If j € Q we are done, having formed the desired homeo-
morph. So assume j & . Since G is bicomnected, G - x is connected, so
there must be a path from j, and hence from x to some y € @, say P .

For ny = (x,0,y), if o N V(a) = ¢ or if t, the first vertex of inter-
section with é, is in Q, we are also finished, having produced K4

homeomorph. If, however, o I V(G) # ¢ and the first point of intersection




is not in @, then this vertex, t, must lie on the path sz (see Figure 1).
However, in this case we can reduce the problem to one defined on a new
graph given as either Cl or C2 appended with ny. New subcycles Cl and
C2 are defined accordingly, vertices x and t are relabeled as k and £,

the new graph is G and the process is repeated with augmented set Q (see
Figure 2). Since Q's cardinality increases by at least one each time a
reduced problem is created, we must reach a point where, for a specific
choice of x, the path from x to some y € @ first intersects G at a vertex

t € §. In such a case we have formed a K, homeomorph and we are finished.

There will naﬁurally be some discretion in applyiﬁg the series and
parallel operations in a2 typical graph. Regardless, the next theorem
establishes that this application can be arbitrary, i.e. the series and

parallel operations are well-defined.

Theorem 3, TLet G(V,E) be a ‘loopless biconnected, series—-parallel graph. Then
any sultable sequence of operations (i) and (ii) will reduce G to an edge.
Proof: Suppose we have for a graph satisfying the theofem, a sequence of
reduction operations giyen as (rl,rz,...,rk) where the sequence stops after
the kth operation. Let us assume that the graph produced at this pdint G!

is not an edge. Then since no further reductions are possible, G' contaiﬁs‘
no degree-2 vertices; that is, &(G') > 3. However, from Lemma 2, thi§

means that G' and thus G, possesses a subgraph homeomorphic :fromK.4 and

we contradict the assumption that G is series-—parallel. Hence, for a

given G, any suitable sequence of reductions will produce an edge exactly

when G is series-parallel.

B
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2, MAIN RESULTS
OQur principal result can be summarized by the following theorem:

Theorem 4. If a graph is series-parallel, then it has at most one

hamiltonian cycle.

Proof. Let G(V,E) be any graph having two or more hamiltonian cycles

and denote two of these cycles by the vertex sequences T = (il,iz,...,ip)_

and T” = (ii,ii,...,ig), where we can assumed without loss of generality
that i1 = ii. let the edges implied by T and T* be E(T) and E(T"). respec~

tively. Now, denote by 9, the subsequence of vertices which T and T*

have in common, beginning with il, i.e., 8 = {il,iz,...,it}; t < p~1. For

-

- = - . D
i # i1 let u il € U\? and create sets Q1 and Q2 where

1
i

{i,:

. ol k<, 4, =ul

Q, = {i,: 241 <k < p}

2

Since T” is a hamiltonian cycle, it must contain at least two edges
which are incident to one vertex in Q_l and one vertex in V\Ql. At most
one of these edges is incident to u because edée (it,u) is in E{T”). So,
let (v,w) be an edge in E(T”) such that w # u, w € U\Ql and Vv € Ql' Also,

we have that w # it since (it—l’it) and (it,u) are already in the cycle

given by T~. -

Hence, it, u, v and w are distinct vertices and (it,u) and (Q,ﬁ) éfe in
E(T*). Thus, E> E(T) u {(it,U), (v,w)}. However, these edges form.a
subgraph homeomorphic from K_,+ (see Figure 3) and the other edges of E cannot
destroy this property. Therefore, G is not series parallel, which
establishes that no series-parallel graph can possess more than one hamilton-

ian cycle and the proof is complete.




Figure 3.




The result in Theorem 4 trivially carries over for directed graphs.
Here, we will call such a graph series-parallel if its underlying, undirect-
ed graph is series-parallel. Obviously, thi; underlying graph must be
hamiltonian if the directed counterpart, G(V;A), is to be as wel}. In such
a case, we need only check the orientation around the cycle relative to A.

We have, then, that for a series—parallel graph G(V,E), which is hamil-
tonian, the corresponding cycle is unique. Following, we state an algorithm
which produces such a cycle if it exists, or conciudes that the graph is
not hamiltonian. In essence, the procedure decides hamiltonicity for

series—parallel graphs.

Algorithm SPHAM

Step 0: Imitizlization. Let G(V,E) be a series-parallel graph

and label each edge, e € E by £(e) = {e}.

Step 1: Series Reduction. Locate (if possible) a degree-2

vertex in G, say Kk, and denote the edges (one or both

of which may be pseudo) incident to k by e A (1,K)

and e, 4 (k,3). Replace ey and e, having labels l(el) = 51 and
E(ez) =z, respectively, by a pseudo-edge having

1label Ly U Ly Call the new graph G.

Step 2: Parallel Reduction. Locate (if possible) a pair of

parallel edges in G, say ey and e,y and let the
incident vertices be i and j. If e; and e, are both
pseudo (i.e., min(lz(el)],|2(e2)|) > 2) and G is not

of order two, stop; the original graph is not ham-

iltonian. If one or both of the edges are pseudo

and these are the only edges in G, go to (3).




Finally, if one edge is pseudo and the other is not,
keep the pseudo-edge and its label, discard the
other edge and let the new graph be G. Repeat this
step until no parallel edges remain then return to
().

Step 3: Stopping. The original graph has been reduced to a

cycle on two vertices where either one edge 1is pseudo
and the other is real or both are pseudo. 1In either
case, a hamiltonian cycle in the orginal graph is ~

obtained from the labels of the final two edges.

Note that the issue regarding the actual construction of a hamiltonian
cycle is left open. Clearly, ordering can be preserved and updated during
the course of the algorithm or it can be accomplished at termination of the
reduction operations. The efficiency of the procedure is unaffected in
either case.

The correctness of SPHAM follows rather easily ffom earlier results

in conjunction with the lemma below:
Lemma 5: Any graph H, which is homeomorphic from K2 3 cannot be hamiltonian.
2

Proof. Since K is bipartite, it cannot have an odd cycle, which certainly

2,3
precludes it from being hamiltonian. Likewise, any graph homeomorphic from

K2 3 cannot be hamiltonian either, since arbitrary vertex insertions cannot
2

possibly alter this condition.

B
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Thus we have:
Theorem 6. Algorithm SPHAM will correctly produce a hamiltonian cycle in
a biconnected, series-parallel graph, G, or -will conclude that none exists.
Proof: If the algorithm reaches Step 3, we clearly have decided that G is
hamiltonian. Since each label represents a hamiltonian path on the subgraph
corresponding to its pseudo-edge, and since all vertices of G must be in one
of the two subgraphs, the desired hamiltonian cycle is easily found from the
final labels.

Otherwise, the only way the algorithm can stop is in Séép 2. Here, a
reduced graph of order greater than two, results with two pseudo-edges in
parallel. But this means that the original graph possesses a subgraph homoeo-
morphic from K2,3. Let this subgraph be H (see Figure 4a) and assume without
loss of generality that G itself is not homeomorphic from H since lemma 5
would preclude G from being hamiltonian. Rather, assume G to be hamiltonian
and denote the vertices lying on the path from v, tou tov, iq H by Vl.
Now, for G to be hamiltonian, there must exist at least one path from some u
to a vertex v € V(H)\yl (there may, of course, be other paths as well). Llet
this path be given by edge set Euv (see Figure 4b). It is clear that the
graph H appended by edges in Euv forms a subgraph homeomorphic from
K4,which denies that G is series-parallel. Hence, no series-parallel graph

possessing a subgraph homeomorphic from K2 3 can be hamiltonian. This com~
b

pletes the proof.
i

Algorithm SPHAM can be applied in such a way so as to require effort
bounded by a function which is linear in the number of vertices and edges
of the input graph. This follows from developments in Rardin and Parker

(1982).

We conclude the current section with the following useful characterization.
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(a)

(b)

Figure 4.
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Theorem 7. A biconnected, series-parallel graph G(V,E) not isomorphic to

K4 - e,is hamiltonian if and only if G has no subgraph homeomorphic from

K2’3.
Proof. We exclude the graph K4 - e since it is obviously hamiltonian and
yet is homeomorphic from K2’3. So in the ensuing proof, any reference to
biconnected series—-parallel graphs is understood to exclude K4 - e.

First, suppose G is biconnected and series-parallel and ﬁossesses a
subgraph homeomorphic from K2,3. Then if G is hamiltonian,we observed
from the proof of Theorem 6 that G would necessarily have a subgraph
homeomorphic f£rom K4,contradicting the assumption that it is series-paral-
lel.

Conversely, assume that G is not hamiltonian. Then from SPHAM, we
have that termimation must occur with a reduced graph on three or more
vertices with two parzllel pseudo-edges. Again, we saw earlier that this would
mean G has a subgraph homeomorphic from K

2,3°

We have, then, that G is hamiltonian precisely when it has no K2 3
3

homeomorph as a subgraph and is not hamiltonian when such a subgraph is

present. This establishes the characterization and the proof is complete.

3. SUMMARY
We have shown that deciding hamiltonicity on series—parallel graphs
is an easily resolvable issue. Further, if such a graph is hamiltonian,
we know that its cycle is unique. This, in turn, implies that solving
a traveling salesman problem on a series-parallel graph is indistinguish-
able from determining whether or not the graph is hamiltonian. Interestingly,

this latter property may hold wmerit in the context of generating hard test

problems for genmeral-purpose traveling salesman algoritlms. Some work has
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been done in this area and additional insight might be available from

results we have presented here.
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ABSTRACT
We consider constzat-performance, polynomial-time, unonexact algorithms
for the minimax or bottleneck version of the Traveling Salesman Problem.
It is first shown that no such 2lgorithm can exist for problems with
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alternative can improve on this value.
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1. INTRODUCTION
Let G(V,E) be a complete undirected graph of order |V|> 3 with
weights cij on every edge (i,j) in E. Traveling Salesman Problems are
defined over hamiitonian cycles in G (i.e. simple cycles including all
vertices). The classic minisum version of the problem is

min{ ¥ cij

H is the edge set of a hamiltonian cycle of G}
(1,3)eH

Its cousin, the minizax or Rottlemeck Traveling Salesman Problem (BTSP)

is

nin may c., * His the edge set of a hamiltonian cycle of G}

It is easy to s=e that a polynomial-time algorithm for (BTSP) would
provide a polynomial-time mechanism for testing whether arbitrary graphs
ars hamiitonian. Since the latter is a classic and formally difficult
problem, exact polynomial-time algorithms for (BTSP) cannot exist unless
P=NP.

It is natural, then, to seek poiynomial-time, nonexact algorithms

with constant performance bounds, i.e. worst-case bounds independent of

problem parameters. In spite of the wide literature of such algorithms

for the minisum Traveiing Salesman Prohlem (see for example Parker and

Rardin (1983a)), and the treatment of heuristic algorithms for (BTSP) in

Garfinkel and Gilbert (1978), we know of no previous constant-—

performance~bound, polynomial-time heuristic for (BTSP).




In this note we investigate such algorithms. Our main result is a

procedure with worst-case bound 2 holding when costs are positive and
satisfy the triangle inequality. We also show that it is not likely that

this bound will be reduced by any alternative, polynomial algorithm.

2. ARBITRARY COSTS

Sahni and Gonzales (1976) demonstrated that, unless P=NP, the
minisum Traveling Salesman Problem admits no constant—performance-bound,
polynomial-time algorithm when costs are arbitrary. A corresponding
result holds for (BTISP).
Theorem 1: There can exist no polynomial—-time, constant—performance-
bound algorithm for an arbitrary instance of (BTSP), unless P=NP.
Proof: We procesdi by showing that if the indicated algorithm, A, with
finite bhound p did exiét, it could be ewmployed to test hamiltonicity in
arbitrary graphs— proving P=NP. Assume QA/Q* € p { + = yhere QA is the
value produced by algorithm A and Q* is an optimal value. Now, for an
arbitrary graph G(V,E), we can construct a corresponding instance of

(BTSP) by completing the graph and assigning weights

1 4if (i,7) et

17
p+l if (1,7) ¢ E

Suppose G is hamiltonian. Then in the corresponding instance of (BTSP)

we have Q* = 1 and hence QA < p. Conversely, if G is not hamiltomnian,

then O% = p+l which implies that QA > p. Thus G is hamiltonian precisely

when QA is not greater than p, and algorithm A provides a polynomial-time



procedure for deciding which graphs are hamiltonian.
o
3. AN ALGORITHM
The negative result of Theorem 1 makes Qery unlikely a polynomial
time, constant-performance-bound algorithm for arbitrary instances of
(BTSP). However, we can derive one under more restricted costs.

3.1 Biconnected Subgraphs

A graph is said to be biconnected if every pair of its vertices
belong to at least one common cycle. For a given biconnected graph

G(V,E) we can define the Bottleneck Biconnected Subgraph problem (BBS)

as

win | max c, .: G(V,S ) is biconnected, SC:E}

i(i,j) es 1ol

It is easy to seg tnzt (BBS) provides a lower bound on (BISP).

Lerma 1: For O* = the optimal value of (BTSP) and QBB optimal in (BBS),

Y £ 0%
BB

Proof: Immediate from the fact that every hamiltonian cycle of a G(V,E)

is a bhiconnected subgraph.

Problem (BBS) is also very easily solved. A straight—forward greedy
procedure gives a polynomial-time algorithm:

Algorithm BB(weighted biconnected grapnh G(V,E))

Step 0: Initiaiization. Sort edges of E into nondecreasing order by

edge weight ¢, ., and initialize solution set EEB-+ $.
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Step 1: Augmentation. Select the next edge in order of the sorted

list and place it in EBB'

Step 2: Stopping. Test whether G(V, EBB) is biconnected. If so,

compute

QBB + max {cij: (i,3) € EEB}

and stop. Otherwise, repeat Step 1.

Lemma 2: Algorithm RR correctly computes an Eﬁ optimal in (BBS) in time

B
bounded by a poiynomial in IEI.

Proof: The EBB solution obtained from Algorithm BB is obviously optimal
because G(V,EBB) is biconnected and construction shows every subgraph
with lesser bottleneck cost is not. For polynomiality, note that Step O
is a sort requiring (|E| log |E]) time. vSteps 1 and 2 are executed on at
most |E| occasions, and the required check of biconnectedness at Step 2

can be done in O(|E|) time (see e.g. Aho, Hopcroft and Ullman(1976)).

Thus, the algorithm completes in at most 0([E|2) time.

3.2 Hamiltonlian Cycles in the Squares of Graphs

2
For an arbitrary graph G(V,E) the Square G (V,E 2) is the graph

formed by adding "short cut” edges for every two edge path. That is,

2 2
G (V,E) has the same vertex set as G, and edge set




2 é Eul(ik¥): (i,3,k) is a path of G(V,E)

for some j e

E

The two graphs in Figure 1 illustrate the councept.

Neither the first graph in Figure 1 nor its square are hamiltonian.
In fact, the tree shown establishes that connectivity in a graph 1is not
enough to guarantee hamiltonicity of its square. If we require G to be
biconnected however, the matter is different.

Lemma 3 (Fleishner (1974b)): The square of any biconunected graph 1is

hamiltonian.

The fact that Lemma 3 holds was conjectured by Nash-Williams and
later proved by Fieischner.. Fleischner's proof is an existence one, but
it yields algorithizic insights. In Rardin and Parker (1983b), we show
explicitly how an zigorithm can be devised from those insights to exhibit
a hamiltonian circuit in the square of any biconnected graph.

Details of the procedure are far to bulky to include hgre. However,
the approach is to derive from the given biconnected graph a particular
connected and spauning subgraph possessing structural properties
sufficient to make easy the construction of a hamiltonian cycle in its
square. These subgraphs are defined by the edge-disjoint union of an
Euler subgraph and a forest of vertex—~disjoiant paths. Fleishner (1974a)
proved that any biconnected, bridgeless graph possesses such a subgraph
and outlined how to identify a hamiltonian cycle In its (and thus the
original graph's) square when, In addition, every edge meets at least one

Aegree-2 vertex. The companion paper (1974b) inductively treats a large




number of cases 1n demonstrating that subgraphs with the needed degree-—2
property can be obtained via suitahbhle contraction.

Discussion in Rardin and Parker (1983b) shows that at each step of
these constructions, the cardinality of at least one specified edge on
vertex subset is reduced. Since steps themselves involve only polynomial
exercises such as identifying the biconnected blocks of a graph, finding
shortest paths and exhibiting Euler traversals of given Euler subgraphs,
polynomiality of the entire algoritham is guaranteed. We summarize:
Lemma 4: Given any biconnected graph G(,E), a hamiltonian cycle H(:Ez
can be produced in the squaré GZ(V,EZ) of G in time bounded by a
polynomial in | V| and |El.

3.3 The Algorith=

We are now rsady to specify our nonexact algorithm for (BTSP)..

Algorithm BT (Weighted Complete graph G( V,E):

Step 1: Bottleneck—optimal Biconnected Subgraph. Apply Algorithm BB
ahbove to obtain G(V,EBB), a bottleneck-optimal biconnected subgraph
of G(V,E).

Step 2: Tour. Identify an approximate optimal tour for (BTSP) by

tracing a hamiltonian cycle, HRT’ in the square Gz((ﬁng) of the

result from Step 1, and define

A .
QBT = max {cij' (i, §) € HﬁT}




The algorithm certainly produces a feasible solution to (BTSP).

Moreover, its polynomiality follows from Lemmas 2 and 4.

4. PERFORMANCE BOUNDS UNDER THE TRIANGLE INEQUALITY

Costs satisfy the triangle inequaltiy if cij + cjk P ik for all

1,3,k € V. Results of the previous section allow us to establish a
constant worst-case bound on the performance of Algorithm BT invthe
presence of the triancle inequality.

Theorem 2: Let G (VY,Z) be a complete undirected graph with positive

weights ¢, , satisfving the triangle inequality. Then, if Q%* is the

ij

optimal value of (BISP) on G, and Q@ T the value produced by applying

B
Algorithm BT to G,

a T / 0% < 2

Proof: By Lemma 1, QBB’ the value of the hottleneck—optimal bicounected
subgraph produced at Step 1 of Algorithm BT satisfies QBB < Q% or ZQBBIQ*
< 2. But edges of ng, the hamilitonian cycle obtained from Algorithm BT,
either belong to EBB’ the optimal edge set from Algorithm BB, or

correspond to two-edge paths of EB Under the triangle inmequality no

B.
edge of f%T can thus cost more than 2 BB That is, OBT < ZQBBand the

proof is complete.




One needs only to assign weights 1 and 2 suitably to show the bound
of Theorem 2 is realizable. Naturally, of course, we would prefer a
smaller value than 2. Our 1ast.resu1t shows none 1is likely.
Theorem 3: Let A be any polynomial-time algorithm yielding nonexact
solutions for (BTSP) and QA the value of solutions produced by A. 1If
there exists a constant p such that QA / 9* < p for all (BTSP) instances
satisfying the hypothesis of Theorem 2, then, uunless P=NP, p > 2.
Proof: As with Theorem 1, we show that an Algorithm A with worst-case
performance bound p ¢ 2 could be used to test hamiltonicity of

arbitrary graphs——proving P=NP . Here we choose costs

c =

1 1if (i,3) €E
ij {

2 otherwise

in completing the greph. Clearly, the indicated ¢ satisfy the triangle

i3
inequality. Over these costs an Algorithm A with bound p < 2 would yield

QA < 2 precisely when the given graph is hamiltonian and QA > 2

otherwise.
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ABSTRACT

It is known thzt the square of any biconnected graph is hamiltoanian.
The proof estabiishing thls property 1s given in Fleischner (1974).
Unfortunately, however, Fleischner's proof is somewhat indirect and thus not
immediately amenable to algorithmic implementation. In this paper, we
provide a more constructive interpretation of the Fleischner result by
exhibiting an efficient algorithm for producing the existing hamiltonian
cycle in the stated class of graphs. Such an algorithm is important since
it can he used to obtain certain polynomial-time approximation procedures

possessing finite bhut unimprovable performance guarantees.
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1. INTRODUCTION

In 1974, H. Fleischner (Fleischner (1974)) proved that the square of
every biconnected graph is hamiltouian. With this result Fleischner
resolved a conjecture of Nash-Williams (1966) (and independently, of L. V.
Belneke and M. D. Plummer). While not completely existential, Fleischumer's
proof 1s indirect, leaving vague the issue regarding the actual coustruction
of a hamlltonlian cycle in graphs satisfying the stated conditions. In the
present paper, We rectify this by giving an algorithm which efficiently
produces a hamiltonlan cycle in the square of any bicomnnected graphvand in
this sense, makes coustructive the proof of Fleischner.

Our prime Interest Iin exhibiting such an algorithm is somewhat
pragmatic. In Parker and Rardin (1983), a result is given pertaining to the
absolute performancs guarantee regarding any nonexact procedure for the
bottleneck traveling salesman problem. This guarantee is 2, which 1s shown
to be unimprovable by anv polynomlal approximation procedure unless P and NP
are equivalent. The value of 2 can be acheived by employing‘a scheme which
first constructs a bottleneck—optimal hiconuected spanning subgraph after
which a hamiltonian cycle in 1Its square is sought. We discuss this notion
in a subsequent sectlon. Regardless, from Fleischner we know that such a
cycle 1s present but less regarding a method for producing it. This paper

resolves the latter issue.

2. BASIC CONCEPTS AND DEFINITIONS
Let G(V,E) be a conunected graph without loops or multiple edges. We .

say that G 1s blconnected if every pair of vertices lies on a cycle.

Alternatively, if G 1is biconnected, then it possesses no cut—vertex} that

is, no vertex whose removal discounnects G. Similarly, amn edge In G whose




removal disconnects it is referred to as a bridge. Clearly, any connected
graph having a bridge, also possesses a cut—vertex.
A connected, nontrivial graph without cut-vertices 1s said to bhe

nonseparable and for a given graph, G, a maximal nonseparahle subgraph 1s

called a block. A block is edge—critical if the removal of any edge results

in a subgraph which is not biconnected and finally, 1f every edge in G is
incident to a vertex of degree two, then following Fleischner, we shall call
G a DT-graph.

Now, consider any connected graph, G, define& on vertex and“edgersets v
and E respectively and let the distance between two vertices i and j in V be

given as d_, ., where d,

i1 i3
j. Note that the iength of a path is the number of edges In the path.

is the length of the shortest path connecting i and

Clearly, for any coanected graph, dii is a wetric. Now, we can define the
kth power of G, given as G(k); to be a graph on vertex set Ifk) = (/ and edge
set gk 4 {¢1,4): dij € k in G}. The graphs in Figure 1 illustrate the
notion for the case k = 2. From the figure, it 1Is clear that connectivity
alone is not enough to insure that a graph's square Is hamiltonlan. On the
other hand, 1t 1s true that the cube (k=3) of any connected graph is(

hamiltonian and further, a cycle in the cube can be easily constructed

(e.g., Rosenstiehl (1971)).

3. THE ALGORITHM
The ensuing algorithm is fairly heavy in technical detail and quite
lengthy to state. To this extent, it should bhe useful to begin with a
concise and overly simplified statement regarding the algorithm's

obijective.




(2)

Figure 1. A Graph and Its Square




Essentially, Fleischner made use of the fact that every connected,
bridgeless graph possesses a connected, spanning subgraph defined by the
edge—disjoint union of a graph consisting of even—-degree vertices only, with

a forest each component of which is a path. Referred to as an EPS—-subgraph,

the existence of such structures in the stated class of graphs, was also
established by Fleischner (1974a). Important in this regard is that a
hamiltonian cycle can always be traced in the square of an EPS-subgraph and
hence, in the square of the original, biconnected graph. In large measure,
the bulk of the following algorithm is devoted to constructing an EPS—- ~
subgraph and the subseguent hamiltonian cycle in its_square. We also note

that an alternative EPS-subgraph construction is suggested in the nlce paper

by Lau (1981).

3.1 M™Main Procedure

Let the input to the algorithm be a biconnected graph Gl(Ul,E 1). That
we assume biconnectivity of G1 is not limiting since checking for
biconnectedness is easily accomplished (e.g., see &ho, et. al (1976)).

letting k be an index and initlalizing with, k¥ + 1 we can proceed.

Step 1t Case Checking. For the current graph Gk(uk,Ek), set Dk +

{e=(x,w) € k: degk(x) > 2 and degk(w) > 2} where degk(i) denotes the
degree of vertex i1 Indicent to an edge in Ek.
la: If Gk is a DT-graph, i.e., Dk = ¢, go to Step 3 and begin building
a hamiltonian cycle. |
1b: If Dk # ¢ and there is any edge e € Dk such that Gk(Uk,Ek\e)
remains biconnected, remove e from-sets Ez, 1 € 2 < k and repeat
Step 1. |

If neither la nor 1b applies, proceed to Step 2 and shrink.




X .
Step 2: DT-Block Shrinking. Each edge e € U 1is critical in that Gk(UkEk\e)

is not biconnected. For each e € Dk denote by Bl[e] and Bz[e] the
biconnected blocks of Gk(Vk,Ek\e) containing the defining vertices of edge
e.
k 1 2 ,
2a: Select as B the biock B [e] or B [e] having minimum cardinality
vertex set among all e € Dk. Denote by ek the edge for which Bk =
k
Bl[ek] or B = Bz[ek} and by Vs the vertex of e belonging to
Bk.
' k
2b: Select as Vi the (unique) cut-vertex of B that separates it from e
the remainder of Gk(Vk,Ek\ek).
K+
2¢c: Create granh c< 1 by replacing Bk in Gk with the path
. (wk’ak’bk’vk) where 2 and bk are artifical vertices. Set k + k+l

and return ts Step 1.

Step 3: Cycle Construction. Use procedure DTHAM to construct a hamlltonian

s : k
cycie, Hk, in the sguzre of DT-graph, G .

Step 4: Stopping. If k = 1, stop; Hl is a hamiltonian cycle in the square

of G. Otherwise, go teo Step 5 and restore a block.

Step 5: Block Piecing. Construct a hamiltonian cycile, Hk-1 by first

applying DTHAM to DI-graph Bk—l and then piecing together the result with
HC. Specific cases depend on how Hk meets vertices of the artificial path
(wk’ak’bk’vk) of Gk. The appropriate treatment for each pattern is given in

Tahie 1. After ﬁk—L is complete, set k + k-1 and return to Step 4.

Observe that Figures 2 and 3 are useful in interpreting various cases

detailed in Table 1.




k-1 <—
Table 1: Constructing H from Hk and Bk L

Caseéj

k 1
Number H Pattern on Artificial Path—j Required Actionlzzj

la ce.Wea,b,v,... Use DTHAM for a hamiltonian
path and replace path (w,a,b,v)
of HK by path P(w,v).

1b ee.sWob,a,v,... Replace path (w,b,a,v) in HK
: by path (w,a,b,v). Then apply
Case la.
~ 2a eseyW,a,b,y,... : Use DITHAM for a hamiltonian

path and replace path (w,a,b,y)
of HX by P'(w,t), (t,y).

2b ceesX,a,W,b,v, ... Replace path (x,a,w,b) in Hk
by path (x,w,a,b). Then apply
Case 1la. '
2c teesX;a,W,b,Y5... Replace path (x,a,w,b) in HK
' by path (x,w,a,b). Then apply
Case 2a. -
3a e-e3Xy8,b,v,...,5,Ww,8", ... Replace path (s,w,s') by edge

(s,s") and edge (x,a) by path
(x,w,a) in H%. Then apply Case

la.

3b eeerX,2,v,by,00.0,8,w,8. .. Replace path (a,v,b,y) in u®
by path (a,b,v,y). Then apply
Case 3a. ~

1/ Here a 4 ak_i, b £ bk—l’ W 4 Wi 1s V 4 Vk-1, X is tze non Bk-1 end of
€ 1> S and s’ are neighbors Ef x other than w in G, and y and y' are
neighbors of v other than b in 6. See Figure 2,
2/ Here DTHAM produces either a hamiltonian path from w to v in the square
of Bk_l with nonsquare edge (t,v) or a hamiltonian cycle in the square
of Bk-l with nonsquare edges (w,z), (u,v) and (v,t). Symbols P(p,q) and
P'(p,q) refer to paths in these hamiltonian entities taken counter-clockwise

and clockwise around the cycle of Figure 3, respectively.

3/ Case numbering preserves that of Fleischner (1974b).




Table 1 (continued)

3/
Case— .
Number Hk Pattern on Artificial Pathlj Required Actionlizj

- x
3c eessW,a,v,b,y,... Replace path (a,v,b,y) in H
: by path (a,b,v,y). Then apply
Case 1la.
4 ceesX,a,b,¥,.0..,8,W,s',. .. Replace path (s,w,s') by

edge (s,s'),and edge (x,a)
by path (x,w,a) in HX. Then
apply Case 2a. - -
5  eeesyXyabiw,.ll,v,. .. Use DTHAM for a hamiltonian
: cycle and replace path (x,a,b,w)
by (x,z), P(z,u), (u,t), P(t,w).

6a ceesV,8,D, Y 003X, WySy0en Replace path (x,w,s) by (x,s),
and (a,b) by path (a,w,b) in
H*~, Then apply Case 10.

6b eeesV,2,b, ¥, . ,8, W, X, Replace path (s,w,x) by (s,x),
and (a,b) by path (a,w,b) in
HK. Then apply Case 10.

6c e Ty

[§1]

RS- 15 7% - R Replace path (s,w,s') by (s,s"),
and (a,b) by path (a,w,b) in
HKX. Then apply Case 10.

7 e 3Ky B, VyeaayYyDaWyenn Use DTHAM for a hamiltonian
cycle and replace path (x,a,v)
by (x,z), P(z,v) and path
(y,b,w) by (y,t), P(t,w).

8 eesXy@yVyaeasW,D,¥,... Use DTHAM for a hamiltonian
cycle and replace path (x,a,v)
by (x,z), P(z,v) and path
(w,b,y) by P'(w,t), (t,y).

9 eeeyX,8,V,bu,... Use DTHAM for a hamiltonian
cycle and replace path
(x,a,v,b,w) by (x,z), P(z,w).

10 ces,Y,bw,a,v,. .. Use DTHAM for a hamiltonian
cycle and replace path
(y,b,w,a,v) by (y,t), P(t,v).

1la cer sW,d, %, 00, Y D3 Vyeen Replace path (y,b,v) by (y,v)
and (w,a) by path (w,b,a) in
HK. Then apply Case 5.




Table 1 (continued)

3/

Case—
. 1 . ., 1,2
Number Hk Pattern on Artificial Path—/ Required Actlon———/

11b RN 4 - W T 0 - 0, R Replace path (v,b,y) by (v,y),
and (w,a) by path (w,b,a)
in H*, Then apply Case 5.

1lc ---,W,a,x,-u,}’,b,}",--- Replace Path (Y,b,}") by (y’y')’
and (w,a) by path (w,b,a) in
HK. Then apply Case 5.

12 e e W @,V,ee.sY,byt, .. Replace path (y,b,y') by (v,y'")
and . (a,v) by path (a,b,v) in
HK. Then apply Case la.

13 ceesX,2,V,...,¥,D,¥" ... Replace path (y,b,y") by (¥,7'),
and (a,v) by path (a,b,v) in
BK. Then apply Case 3a.




Figure 2:

Vertex Arrangement Around
Artificial Path
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Figure 3. Vertex Sequence of Hamiltonian Paths
and Circuits in the Square of pk-1
Produced by DTHAM




3.2 Procedure DTHAM

Clearly, Step 3 of the main procedure is crucial. In this section, we

specify the relevant routine, DTHAM.

Step 0: Initialization. Let GD be the current DT—graph and denote two

distinguished vertices, say v and w which are in the same block of GD and

have only degree~2 neighbors. If a hamiltonian path is desired, add (unless

it is already preseat) an artificial edge, (wv,w), to GD.

Step 1: EPS-Subgraph Construction. Yse procedure EPS to find a spanning

subgraph S of GD such that L
(1) S is the union of an Euler subgraph E and a forest of (vertex)
disjoint paths P
(ii1) E and P zrs edge-disjoint
(1ii) Given vartex v beipngs to E, but not to P.
(iv) Given verzexz w belongs to £, and Is not an Interual vertex of P.

(v) If v 2nd w are adjacent in G_, then v and w are adjacent in E.

D,

Step 2: Reduction. TIf every edge of P separates S into disjoint

components, proceed to Step 3. Otherwise delete an edge that does not and
repeat this step.

Step 3: Mate Edges. Subgraph S can now be viewed as consisting of a tree

of c¢omponents of E linked by segments of paths in P. Select a minimum
cardinality set M of edges in P which breaks all such links, i.e., divides S
into components each containing exactly one component of E. Then construct

suhgraphs § S of S from the c¢components El’EZ""’En and P_,P P

1,..., a 12722 n

induced by M, dupiicating edges of M so that each belongs to both its

ad jacent Pi'

Step 4: Cycles in Components. For each component S, of Step 3 determine a

i

o

hamiltonian cvcle H, in the square of e as follows:

i




ba. If Si contaians artificial edge (v,w) pick as t an artificial

vertex Inserted in edge (v,w). Otherwise t 1s any degree-2 vertex
of the Euler component Ei'in Si.

4b. Construct an Euler tour Ti of the subgraph Ei so that Ti begins

and ends at t.

32: Beginning with to + t trace Ti until t recurs, constructing Hi as

indicated below (deg(*) refers to degree in Si; tD,tl,t2 are the

present and next two vertices of Tj)

Case on tC’tLLEZ EQolution o;-H;
(1) deg(z,) = 2 ' O (tget)) B
(11) deg{e,) > 2, t  # t, and t, will (ty»t,)
be revisited in Ti or has already
heen visited in Hi
(1i1) deg(tl) >2, £ =t ort, will not (to,tl)(tl,tzg
he revisited in Ti’ and t:1 > Ei Pi
(iv) deg(tl) > 2, t = to or tlwill not (see Figure 4)
be revisited in Ti’ and t1 is an end
vertex of Pi
(v) deg(tl) > 2, t= toor tl will not (see Figure 5)

be revisited in Ti’ and tlis an
internal vertex of Pi
3tep 5: Solution. By constructions of Figures 4 and 5, each Hi contains

inciuding those in M. Construct a hamiltonian cycle H

all end edges of Si

n
in the square of S (and thus in GD) by H = y Hi\H. If only a hamiltonian
i=1 ‘

path 1is desired, reduce H to a path by removing the artificial path

(v,t,w).
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3.3 EPS - Subgraph Construction.

Just as DTHAM acts as a subroutine to the main procedure, Step 1 of
DTHAM can be treated similarly. Below, we gibe routine EPS.

Step 0: Initialization. Let G = GD he a bhiconnected graph with two

distinguished vertices v and w. Operationally, v and w are the two
specified vertices of GD from Step 0 of DTHAM. Begin a list of unprocessed

subgraph sets given by the 4—tuple (G’,Vp,wl,cl) where initially,

C1 + any cycle of G containing v and w,
and edge (v,w) if present in G.

Step 1: Decompositiocn Stopping. If the 1ist of unprocessed subgraph sets

contains only G, that zre cycles or single edges, go to Step 4 and hegin

£

reassembly. Otherwise, oick (E, ;, ;, 5) from the list with G not an edge
or 2 cycle.

Step 2: Preprocessing. If G contains an edge e such that G - e is

biconnected, remove e from G and repeat thils step.

Step 3: Decomposition. If G is not now only the cycle E, process G by

decomposing it into two or more mnew entries in the unprocessed subgraph

list as follows:

23: If G-C is hiconnected add Go and G1 to the list with

<
*
<1

£
+
£1




(@]}

G, + G -

1 .
v if v belongs to C - E, or
Vl"
any vertex of G - C except w otherwise
w if w belongs to G - C, or
wy ¢
any vertex of G - T except v; otherwise
Cl any cvcle of G1 containingAvl and wl

22: If G - C has disconnected components C-)l,QZ,...,Qq add

Gl’GZ""’Gq to the unprocessed suhgraph list with

GgeQque '
vy + v
W, ¢ W
1
Ci + C
2_: If G - C i5 connected but not biconnected and one end block Bl of
¢-2¢

(i.2., one block with a single cut-vertex cl) does not

contain v or w except possibly as its cut-vertex, ((Bl—cl) n {v,w}

f

), choose the least cardinality block chain B Bz,...,B of G -

1 b
_ _ b
C beginning with Bl and leaving G - U Bi biconnected. Let g be
1=]1
any vertex of B, except cl; <5 be the cut vertex joining Bi to
Fy
b
Bi+l’ i=1,2,...,b-1; and ch be the cut vertex joining u Bi to
i=1

the remainder of G — C. Then create h or b+1 new entries in the

unprocessed suhgraph list by




o
4
ol
I
I c oo

[

€
+
€1

(2]
+
Ol

and for i=1,2,...,b or 1=1,2,...,h-1 if B is a single edge

b

17 %41

(any cycle.of G contéining v, and w, if G, is

i i i i

hiconnected, or
Ci+<
. é 1f G

1 is a singie edge

(@1

3d: If G - is conmnected but not biconnected and its only two end

blocks each countain one of v and w at other than thelr cut

points, let B,B,,...,B be the block chain forming G-Cwithv e

+

b

Bl and v € Bb. Also define cy * v, cy +_;.and for 1=1,2,...,b-1

pick ¢y as the cut vertex joining blocks B, and B Then

1 1-1°
ct :ate b or b+l new entries in the unprocessed subgraph list
exictly as In Step 3c.

After processing G in one of the above ways or skipping G if it is only the

cycle C, return to Step 1.

Step 4: Initial EP-Subgraphs. Each subgraph Gz in the unprocessed list is

now either a cycle 09 or an edge e - Generate spanning EP (Euler-path)

subgraphs for each as follows:

ba: 1If G, = C,, choose Euler subgraph E

4a 9 9 , and path forest

« C

2 L




subgraph P2 + b.

4h: If G2 = e, choose Euler subgraph EP = ¢, and path forest subgraph

Step 5: EP-Subgraph Reassembly. Taking the processed subgraphs G’ in

/]

reverse order of thelr creation, construct a spannling EP-subgraph for each
Gp by taking the unlon of all Et and Pt where Gt was created by decomposing

UE, P

"G,. Specifically, E2 =Y E., B

=y
. ¢ Pt except that any paths pi € P and

i

n
i Gj are replaced

by the single path pi U pj. o

pi € Pj sharing a common (end in both paths) vertex of G

B
4. AN EXAMPLE

We can demonstréte the algorithm detaiied in the previous three
subsections by considering the hiconnected graoh in Figure 6. Letting this
graph be denocted by Gl(Vl,El) we proceed in step-by-step fashion.
Sten 1. Initially, we have Dl = {(4,7), (10,16), (12,13)}. Removing edge
(4,7) ieaves a hiconnected graph and thus we set Dl < Dl\(4,7) and El + El\
(4,7). Relative to the new Gl, removing either edge (10,16) or (12,13) A
destroys hlconnectedness and since E; # ¢ we perform a shrinking operation.
Step 2. We have for each edge in ﬂ;, the two blocks shown in Figure 7. Let
us select arbitrarily the minimum cardinality one induced by ey 4 (12,13);

that is, let Bl be the cycle (13,14,16,15). Accordingly, we have w1=13 and

v1=16. Graph G2 appears as 1n Figure R/ where Bl is replaced by the

artificial path (wl,

as bl, vl) as depicted.

2
Step 1. Since Dz =&, G 1s a DT-graph and we can proceed with the

construction of a hamiltonian cycle.

Step 3. We seek cycle H2 in the square of G2 and thus, call routine DTHAM




using 02 as input. Accordingly, we proceed to Step 1 of DTHAM which

2
requires the construction of an EPS-subgraph in G .

Step 0 (EPS). Let us denote the first unprocessed subgraph set hy the 4-—

are as shown in Gz, and C1 is

tuplie (Gl,v Cl) where G, = G2, vy and w

1°71° 1
the eycle (12,11,10,v1,b1,a1,w1).

1

Step 1 (EPS). Selecting the unprocessed subgraph set just constructed, we

have G = Gl = G and G is decomposed.

Step 3¢ (EPS). We identify blocks B

1 1 <1< 6 relative to.Gz\E(Cl) as

shown in Figure 9. We also denote the respective vertices ;i for

3=0,1,...,6. Since 86 is a single edge, we create new subgraph set entriles

(GO,VO,WO,CO),...,(GS,VS,WS,CS)- These are shown in Figure 10 where, for

ease, only the relevant subgraphs are displayed.

Step 1 (EPS). 3Since the new list of unprocessed sets contain only cycles

or edges we can hegin the reassembly processa.

Step & (EPS). Relative to the graphs displayed in Figure 10 we can

construct E, and P, for 2=0,1,.4.,5 using the rules 4a and 4h. We have:

L
£ = 0: Eq = (G By =9
2 = 1: E =4, P, = (5:12)
2 = 2: g, = ¢, P, = (2,5
£ = 3: Ey = (Cy), Py=¢
2 = 4; E4 = (Ca), P4 = ¢
£ = 5 B, =0, P = (7,9)

Step 5 (EPS). Since the only processed subgraph was the original ome

(Figure 8), the desired EP-subgraph is easily reconstructed as shown in

Figure 11. We now return to DTHAM.

in

Step 3 (DTHAM). 1In S, let us form M as the singie edge denoted by P2




Figure 11. This induces (per the stated coanstruction of the step) subgraphs

S. and S, shown in Figure 12.

1 2
Step 4 (DTHAM). We denote (arbitrarily) by t, a degree-2 vertex in S1 and
52 aund construct eulerian cycles T1 and T?.accordingly. These cycles are

denoted by dotted edges in Filgure 12. The cycles H, and H? are generated

1

using the stated rules and result as shown 1n Figure 13.

Step 5 (DTHAM). Patching together Hl and H2 as speclified, ylelds

hamiltonian cycle H2 as shown in Figure 1l4.

Step 4 (Main). Since k # 1, we must restore a shrunken block. -

Step 5(Main). Since Bl was shrunk earlier and replaced by an artificial

path, creating Gz, we observe from case la of Table‘l that a hamiltonian
path from vertex wl to vertex vl through the square of }31 is needed. We can
find such a path by emsloving DTHAM; however, for ease we shall simply
select the path (13,15,14,16). Here, wl=13 and v1=16. Finally, replacing
the artificial path (w ,a ,b ,v ) by the stated one, produces cvcle Hl in
G1 and the procedure is complete. We leave 1t to the reader to make this
replacement and moreover, to verify that Hl is a sultable hamiltonian cyele
in the square of Gl.
B
5. EVALUATION OF THE ALGORITHM

In this section, we examine the veracity and computational requirements

of the algorithm detailed earlier. 1In both, we concentrate only oun the more

cruclal polnts of verificatione.

5.1 Validity of the Procedure

Our discussion is organized around the three-component breakdown by
which the algorithm was presented previously.

1
Mailn procedure. Graph G 1s biconnected by construction. It possesses




no multiedges because G doesn”t and no bridges because it would not then be
biconnected. After finitely many applications of Steps 1 and 2 a DT-graph
must result. This follows since Steps 1lb and 2 both reduce'Dk. In the
latter case edge ey is in Dk and after step 2,'it is not because wk is now
degree 2.

Now, to allow the construction of Step 5, it must be true of each Bk

that

#
(i) wk Vi . N
(ii) Bk contzins only one cut vertex of Gk(Vk,Ek\ek)
k

(iii) B is a IT-graph
(iv) all neighbors of vy in Bk have degree 2 there

(v) all neighbors of v, in Bk have degree 2 there

k
Fleischner (1974&b) establisheé these properties in Theofem 1 and Remark 1.
Furthermore, the cases in Table 1 are derived from ones given by Fleischner
except for cases 1b, 2b, 2c¢, 3b, and 3¢ which have been added in order to
enumerate ones excluded (in Fleischner (1974b)) by Figure 2.

DTHAM. The mating process of Step 5 is valid because edges of M may be
viewed as edges of a tree linking components Si. Also, Figures 3 and 4 show
end edges are always part of the tour. The implied hamiltonian cycle has 2

true edges meeting v because property (iii) of Step 1 assumes v is not

connected with any path. Thus on the last visit to v, case (iii) of Step 4c

will apply. Similarly, the computed hamiltonian cycle will have at least

By (iv) of Step 1, w is either an identical case

one true edge meeting w.

to v or at the "foot" of a structure like that in Figure 3.




Addition of the artificial edge in hamiltonian path cases assures v and
w are both at least degree 3 without destroying the DT structure since all
neighbors of v and w are degree 2. 1In hamiltonian path cases we start at
the middle of (v,w) and proceed first to v. Thus (t,v) ig in H. When we
return through w, either case (iii) or case (iv) of Step 4 applies and both
place (w,t) in the tour. Thus, (v,t,w) is in the tour to delete at Step 5.
There is aiso one other nonequal edge at v.

EPS. Cycles C, of the original subgraph and all subsequent ones always

k
recur in the generated Fuler system Ek' Thus, particular, v and w end in Ek
and so does edge (v,w) if present in G.
The unioning process of Step 5 always combines Si A Ei v P1 and Sj 4
Ej U Pj into an EP-sébgraph Sk 4 Eli Pk either because Pi and Pj are vertex
‘igjoint and S1 n Sj is a subset of vertices or an Euler subgraph Ei n ej’
because Si n Sj is a single vertex not internal to a path of either P1 or

In Fleischner {1%87%4a) Lemmas 1, 2 and 3 verify these facts.

-~

Specifically, when we restore a Step 3a decomposition, one of Si and S, is a

i

cycle. Thus P1 n Pj = @ and Si n Sj is subset of vertices. If the
decomposition was by Step 3b, the subgraphs have only cycle C in their
intersection -- an Euler subgraph. This is true because the remainder of
the Si belong to disjoint Qi. If the decomposition was at Step 3c, we first
union EP-subgraphs for each block into say Sl and then combine with So of

GO. The block subgraphs have only a single cut-vertex in common, and it is

always a v-vertex in one, implying it not to be path internal. Finally,

SO n Sl is a subset of vertices of C plus (if b+l subgraphs were generated)

the vertex cb. We have chosen cb as a vb so that it cannot be an internal

path vertex. Also, vertices of C common to B. are degree 2 in G0 and thus

1




cannot have incident paths. The decomposition of Step 3d is similar to 3a

and 3c. Blocks are combined as in 3c; S, is a cycle as in case 3a.

0

The entire decomposition stops because all subgraphs Gl produced in

processing (6,;,;,6) have [GQ—E] < [5—E|.

Finally, we want w and v in the "E-part” of the final subgraph, v

incident to no path of p and w at most a path end. These properties follow

because we always keep v and w on the cycle Ck when both are present in a Gk

‘and Ck < Ek' Moreover, our choice of v and w as lone cycle vertices or cut

vertices in the various decompositions always avoids undesired paths.

5.2 Computational Requirements

The graph produced after the (finite) application of Steps 1 and 2
contains entirely orgginal edges or a mixture of original and artificial
ones created by block shrinking. Here, for each block shrunk, a 3-edge path
is created and thus ths respective Dk is reduced. Biconnectedness checking
can be efficiently performed and hence, DT-graph construction requires
effort bounded by a polynomial in |V| and [E].

Now, for a given EPS—subgraph (of a DT-graph), the construction of a
hamiltonian cycle in its square requires first a reduction and edge mating
process (Steps 2 and 3 of routine DTHAM) both of which are clearly
polynomial in the size of P, the path component in the EPS-subgraph. Of
course, we must produce eulerian cycles in subgraphs E1 but this is easy and
finally, for each subgraph Si induced in step 3 of DTHAM, a hamiltonian

cycle in its square is obtained from the eulerian cycles in the respective

Eiand the rules of step 4 (DTHAM) and Figures 4 and 5. This along with the

Step 5 (DTHAM) patching process 1s certainly polynomial in the number of

edges in the EPS-subgraph.




Turning specifically to the EPS-subgraph construction (routine EPS), we
see that crucial in the entire process is the decomposition step (step 3).
Throughout, biconnectedness checking is performed but as before, this does
not affect overall polynomiality. We need only demonstrate that the number
of unprocessed subgraphs formed in step 3 is polynomial in the size of the
input DT-graph. Let us take the component steps in order.

In 3a, one finished (cycle) graph is produced as well as one
biconnected subgraph in which a new cycle 1s selected. Hence, the number of
non-cycle edges will decrease by at least 3. 1In 3b, the set of non-cycle
edges 1s gq-sected and by the construction in this step, (61 u E)—edges may
be added. However, each unproceséed subgraph created in this manner must
next be processad by one of the other three cases. 1In 3c, the set of non-
cycle edges is b-sectad and edges are simply transferred to new cycles or to
bicoanected blocks. Mo edges.are added by the unprocessed subgraph
creztion. Step 32 is similar to 3c differing only in the block-chain
specification. Important in this regard is that no edges are added in the
unprocessed subgraph construction.

Now, in order to evaluate the overall effort of step 3 in procedure
EPS, we can consider a simple progress measure (x,y) where x is the number
of non-cycle edges in 2all unprocessed subgraph 4-tuples and y, the number of
subgraphs into which non-cycle edges are subdivided. Clearly, x is of Size
O([E|) and within each, y can be this large as well, rendering total
computation for this step at worse, O(|E|2).

Of course, the entire process must be repeated k times'per steps 4 and
5 of the main procedure. This however, clearly preserves the arder of the

overall algorithm since the block-piecing computation requires only case




checking which is detailed in Table 1. We may thus conclude that the entire
procedure can be performed in time bounded by a polynomial in the size of

the 1nput graph.

6. EMPLOYMENT OF THE ALGORITHM

We suggested at the outset that a principal interest in producing
(efficiently) hamiltonian cycles in the stated class of graphs was to permit
construction of approximation algorithms for various hard combinatorial
optimization probléms. In this section, we briefly describe ome such
construction which originated with the authors ([7]). We alég note that the
basic approach using the guarantee of hamiltonicity in biconnected squares
has been employed elgewhere (e.g. Hochbaum and Shmoys (1983)).

The bottlemeck traveling salesman problem (BTSP) seeks a hamiltonian
cycle in a weighted graph the largest edge weight of which is ninimized.

The problem is known to be difficult - indeed it can be easily shown to be
equivalent to the problem of deciding which graphs are hamiltonian.

The formal intractibility of the (BTSP) makes its treatment by
approximation schemes particularly legitimate. Accordingly, for such
nonexact procedures we would like to fix (finite) bounds on their worst-case
performances. It is here that we can employ our algorithm of Section 3.

First, it 1s easy to show that no finite bound for any (polynomial)
heuristic can exist for instances of (BTSP) without edge weights satisfying
the triangle inequality unless P and NP are equivalent. Thus, we can
consider our instances to be defined on complete graphs, Kn’ where edge

weights in fact satisfy the triangle inequality.




Now, since any hamiltonian cycle is biconnected but not the converse,

let us construct an optimal bottleneck biconnected (spanning) subgraph of

‘
Kn. Thus, if a is the value of the maximum weight edge in this subgraph
then the bottleneck optimal value of the correéponding instance of the BTSP
on Kn can be no less than a. Most important here is that the stated
bottleneck optimal biconnected subgraph is easy to obtain. We simply apply
a greedy procedure to the list of edges in Kn arranged in nondecreasing
order of edge weights. Beginning with the empty graph on n vertices, edges
are added in order with termination occurring when the first spanning,
biconectedvsubgraph is constructed. Clearly, such a scheme is optimal and
its efficiency follows since checking for biconnectivity is easy.

Letting G be cur bottleneck optimal subgraph, then G 1s suitable input
to the algorithm cf Zection 37 That is, 8'5 bicénnectivity guarantées
hamil "onicity of its square and such a cycle, ﬁ, will be efficiently
procduz d by the algorithm. Moreover, ﬁ is an approximate solution io the
givea instance of the BTSP. If we let v(BTSP) be the optimal BTSP value and
v(ﬁ) the value produced by the heuristic, then v(ﬁ) < 2a which follows from
the triangle inequality and thus v(ﬁ) £ 2v(BTSP).

So, as claimed in the introduction, we can produce a solution to any
instance of the stated BTSP in polynomial time which differs from an optimal
solution by a factor at most 2. Ve also claimed that this bound was
unimprovable by any polynomial alternative unless P = NP. That this must be
so, follows from the obvious use of any alternative BTSP heuristic for
deciding hamiltonicity in arbitrary graphs. We simply create a
corresponding BTSP instance, weighting edges by 1 or 2 depending on whether
or not an edge is present in an instance upon which hamiltonicity is to be

tested. Such edge weights clearly satisfy the triangle inequality and we




would apply the hypothesized BTSP heuristic. If the graph in question is
hamiltonian then the optimal bottleneck value would be 1 and the assured
heuristic would produce it (recall, such a procedure is assumed to have
worst—case bound strictly less than 2). Altermnately, if the graph is not
hamiltonian, then the corresponding optimal BTSP value would be 2 which must
again be the value produced by the heuristic (edges have weights confined to
1 or 2). Thus, we need ony observe the value produced by the heﬁristic and
the hamiltonicity of the original graph is decided accordinglv. This
problem is NP-complete however, and the existence of such a BTSP heuristic

would render P and NP equivalent.

7. SIXMARY

In this papsr, w2 have addressed ourselves primarily to the problem of
producing hamiltonizan cycles in the squares of biconnected graphs.
Existence of such cycles was resolved earlier by Fleiscshner, but their
explicit construction was less obvious. The computatiounal procedure given
here rectifies this.

We also have demonstrated (without detail) how the stated.algorithm -
indeed, the Fleischner result itself, can be used in the development of
nonexact or approximation procedures. 1In this regard, it would appear that

further exploration is warranted, especially in the context of performance

bound coustruction.




Figure 6. Graph of Example




Figure 7. Blocks B. and B, defined for
edges (10,16} and (%2,13)







Figure 9. Blocks Induced by GZ\E(Cl)




G : Gyt G,:
o
Y1 Y2
Co = Cl (Go)
G3: G4:
C3 = G, C, = G4

Figure 10. Unprocessed Subgraph Sets Formed
by Decomposition of Step 3c(EPS)




Figure 11. EP-Subgraph, S




Figure 12. Subgraphs S, and S, and

Eulerian Cycles T %nd T2 2

1




Figure 13. Hamiltonian Cycles in the

Squares of Sl and S2



Figure 14. Hamiltonian Cycle H2 in the
Square of EP -subgraph S.




8. REFERENZCES

Aho, A., J.E. Hopcroft, and J.D. Ullman (1976), The Design and Analysis
of Computer Algorithms, Addison-Wesley, Reading, MA.

Fleischner, H. (1974a), "On Spanning Subgraphs of a Connected
Bridgeless Graph and Their Appliication to DT-Graphs,” J. Comb. Theory

(B), 16, pp. 17-28.

Fleischner, H. (1974B), "The Square of Every 2-Connected Grasph is
Hamiltonian,” J. Comb. Theory (B), 16, pp. 29-34.

Hochbaum, D.S. and D.B. Shmoys (1983), "Best Possible Heuristics for
the Bottleneck Wandering Salesperson and Bottleneck Vehicle Routing
Problems,” No. University of California, Berkeley, unpublished
manuseript.

Lau, R.T. (1981), "Finding EPS-Graphs,” Monatshefte fiir Mathematik,
92, pp. 37-40,

Nash-Williams, €. St. J. A. (1968), Problem No. 48, Theory of Graphics
(P. Erdos and G. Kantona, Eds.) Academic Press, New York.

Parker, R.G. and R.R. Rardin, (1983), "Guaranteed Performance
Heuristics for the Bottleuneck Traveling Salesman Problem,” Operations
Research Letters, to appear.

Rosenstiehl, P. (1971), "Labryinthologie Mathematique,”™ Math. Sci.
Humaines, 33.




Industrial and Systems Engineering
Report Series J-82-4
June, 1982

DEVELQOPMENT CF A PRCGRESSIVE DISAGGREGATION
ALGORTI T FOz FIXED CHARGE
NEIWQORX TLOW PROBLEMS
by
Ronzld L. Rardin*
and

Oscar Adaniya®#®

3
>

ate Professor, School of Industrial and Systems Engineering, Georgia Institute
chnology, Atlanta, Georgia 30332

=% Assistant Professer, Industrial Engineering, University of Miami, Box 248294,
Coral Gables, Floridz 33124

This paper describes preliminary research still in progress. Do notreference or quote
without the expressed consent of the authors. ' :

This material is based upon work partially supported by the National Science Foundation
under Crant Number ECS-801954




Abstract

Fixed charge network flow problems model network design and location
settings by allowing both fixed and variable charges for arc flow. Receat
research has shown that very close approximations to mixed-integer solufions
for each problems can be obtained from mz2ssive liﬁear programs wherein flows
are artificially disaggregated into separate components for each origin - des-
tinatiorn pair. This paper daveiops tha strategy of =a progfess%ye disaégregation
algorithm employing thz latter linear programming relaxation. However, £flows
are initially undisagzregzted. As computation proceeds, supply and demand sub-

sats are further and

h
=
"
~t

har partitioned to tighten the relaxation as required
without incurring the ccmputational burden of a complete disaggregation into

supply-damand pairs.




1. TIntroduction

The fixed charge network flow problen in one commodity is typically form--

ulated
min A TP N P (1)
s s (i,j)eE '
(i,3)<E
s.t. X, = d N . . .
(i,8)eE id B for all BeD | )
Z\— o < s, for 211 @eS (3)
(':I,J-/t.E
(FC)
Y X,., - ) x., =0 for all %eT )
5,3k (i,8)eE -
x. . [fu,. Sy.. for all (i,j)eE . (5)
ij’ i3 ij : . )
x..20 for all (i,j)eE (6)
1]
12 i3 20 for all (i,j)eE ¢))
vy integer for all (i,j)eE (8)

Here E is the arc set of a specified network; xij is the flow from i to j;
S, Dand T are the supply point, demand point and transshipment point subsets of

nodes respectively; S, is the supply at point o; d, is the demand at point B8;

B

and Uy is a capacity of arec (i,j) flow. Costs (1) include a variable (per unit

flow) cost v..

.. and a fixed charge f_,. "switched on" by the 0-1 variable y_,
ij 1) 1]

vhenever xij > 0. We assume throughout that all fij and v;s are nonuegative
although the latter requirement can be relaxed in some cases.
Formulation (FC) gives a correct mixed-integer statement of the fixed charge

netwvork flow problem, but its linear programning relaxation, (obtained by deletiug




constraint (8)) often provides only a very poor approximation to the mixed in-
teger éorm. Rardin arnd Choa (1979) and Rardin (1982) deménstrated that a much
better linear programming approximation is obtained by disaggregating flous
xij into components xij[a,B] distinguished by the supply point a at whiéh the
flow originated and the demand point B to which it is defined.

Such a nulti-commoditv formulation is

min ) v,. 1 1 x, . [e,B] + ) - f.. .. (9)
(i,5¢E 2 aeS 8cD i,j)eE ¥ M

for all BeD (10)

s.t. ) z x. [e,8] =4
acS (i,2)=E i3 8
z x ,[e,B] €5 for all «eS ' (11)
geD (e,i)eE ¢
(1C)
) x,. fa,8] -} x.z[c,B] =0 for all ceS - (12)
(,5)eE I (i,2)eE * BeD, 2eT
<y.. 11 (1,5 , - |
(lluij) aZS ng IACHI for all (i,i)eE | 13y
xi_[a,B] >0 for all (i,j)eE - (14)
J aeS, Rel -
12 Yi 20 for all (i,j)eE - (15)
yij integer - for all (i,j)eE (16)
xi.[a,B]
__72—————— < Y44 for all (i,j)eE (17)
min{sa,ds} J aeS, BeD ;
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As mixed-integer programs, forms (FC) and (MC) are equivalent. However,
disaggregation of (FC) flows xij into separate commodities xij[a,B] leads to a
tighter linear programming relaxation in (MC) because of the new constraints
(17). With fij > 0 the linear programming relaxation, say (FC), of
(FC) will 2lways have an optimal solution with no slack in (5). Thus, (Fc)
solutions incur only the fraction xij/uij of the fixed charge fij-that flow x_.

forms of its capacity u,,. Equation (13) enforces the same limit in (MC), the

linear programming, relaxztion of (MC). However, (17) also forces yij to be as

(a4}

large as the fraction of any source ¢ or sink B flow passing through (i,j).
The improved linear pregrazz=ing relaxation follows when (as is usuéily the
case), S, andlor 4, are much gmaller than u .

Aithough providing genarzlly nmuch tighter linear prograrming approximations,
the (MC) form is an enormous linear program. For a case with 750’arcs,725
supplies, 100 dezands, and 125 transshipment nodes, (MC) has over 400 thousand
main constraints ard approximately 2.2 million variablés._ The dual ascent scheme
proposed by Rardin and Choe (1979) exploits problem structure in a Lagrangean
relaxation, (we give detzils balow), but a typical iteration still involves
shortest path problems for each («,8) pair, and search over dual variables for
all constraints (17). TFor the problem size just described, there would be
2500 such shortest path problems and approximately 1.9 million searchable dual
variables.

However, the formulations (FC) and (¥C) mey be viewed as endpoints of a
disaggregation continuum. TForm (FC) treats 21l flows in a single.commodity;

(MC) disaggregates flows into artificial commodities for each origin ~ destimation
pair. Certainly, there are intermediate possibilities wherein flow is treated
in groups, (Ak’Bk) with Ak c S, Bk c D.

In this paper we first sharpen the (AC) formulation and then develop

-3-




strategies for an algorithm exploiting a progressive disaggregation of Sx
flows. The algorithm generally follows the Lag;angean relaxation philosophy of
Rardin and Choe (1979), but processing begins with the undisaggregated form (FC),
i.e. with ona supply group Al = S and one demand group Bl = 0. As com- -
putation proceads supply and demand groups are progressively-partitioned to

create new artificial cozmodity structures. It is hoped that computational testing

now underway will demoustrate such a progressive approach reduces total calcu-

lation to obtain a sztisfzctory approximetion to an c) optimum..




2. An Tmproved Formulation

Flow in our given network can be conceptualized as the rectangle of Figure 1.
Sides reflect supplies and demands respectively. Formulation (rFC), which uses
only one commodity, views the rectangle of flows on arc (i,j) as a single unit
xij' In (MC), each supply, demand cell of the rectanglé is tabulatéd separately
as xij[a,B}. At disaggrezation levels betéeen these extremes, supplies and derands
are grouped in a re;tangla (Ak,Bk) collecting 211l flows from origins asAk to

destinations 633k.

The analog of Rardin and Choe's (#C) constraint (17) for such a cormodity

(Ak,Bk) is

1t~
M
Lo ]
Q
v
¢
Al

ij
BI»:
c )

1
aaik 8

.. for all (i,j)eE (18)

min\ z s ad 4 and all k

zaeAk BeBk By

However, by treatinjz supplies and demands separately we can expand the sums

in the numarator znd thes sharpen the relaxation.

Lemma 1: TImproved Formulation. Let xij[a,s], Sq> dB’ S and D be as in formu-
lation (MC), Ak a nonempty subset of S and Bk a nonempty subset of 7. Then the

following constraints are satisfied by every feasible (integer) solution to (FC)

) Zv xij[d,B]
acA, Bel.
. AL <vy.. 3 for all (i,j)eE (19)
R { ij
nin ¢ 2 Sy> z B\ and all k
'asAk ©  BeD s
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an intermediate grouping (Ak,Bk)

o a4 a4, d _-- )

1 2 4/ '
O 7|
1 reammnne . e
g" R ERE é
S, 3 - ¥
EoT H
: Ho-o - L8
g. R o g total flow x_.
34 5;,;_ A ~ :
s, xii[a,B]
®|s]

Figure 1: Total Flow as a Supplies by Demands Rectangle




ceS 3882
< y.. for a1l (i/j)eE and all & (20)
min ) Z dB’ Z s , ]
. )BsBE weS
Furthermore, for specified Sy’ > 0, dB > 0, x4 [a 81, .. o
'{yij satisfying (18)} o {yij satisfying (19) and (20)} (21)

Proof: It is clear that {(1S) and (20) are valid in (MC); they simply require
that yij be at least the fraction of supply inm Ak or demand in B passing through

(i,j), respectively. To s22 (21) observe that if ) < ) B’
aeAk BeBz

the same denominater as {(i8), and azt least as great a numerator. If

(19) has

T s 2 ] g (20) cerminates (18).
& a
pEB

azAk X .

Yor a system of g commodities (Al, Bl), (Az, 32),...,$Aq, Bq) there are
q constraints of type (18) and potentially 2q like (19) and (20). However,

any commodities k and Z with A, = A or B = Bz have the same constraint (19)

k L k
or (20) respectively. The result can be a considerable reduction_in the possible
number of (19) and (20). 1In the extreme case where every {a,B) € SxD forms 2
separate commodity, there arte IS] + [D] constraints (19) and (20),-But lSl . lD]
lirmits (18). Thus, at least, a2s this complete disaggreéation is approached,-

use of (19) and (20) zesults in both a substantial saving of constraints and a

gain in formulation tightness.




3. Tbke Lagrangean Relaxation Setting

With even a partial digaggrégation of problem flows into artificial
commodities, one obtains a formidable linear program relaxation to be solved.
If arc capacities (13) (or (5)) are nonbinding, Rardin and Choe (1979) showed
how an effective lagrangzean relaxation of the remaining problem could be structured

by summing constraints (19) and (20) in the objective function with nonnegatlve

. ‘ A _
‘dual multipliers. Let Aiiik} be the list of distinct supply subsets of current

artificial comzadities, {o,.[k]l: A an (1,7)<E} be the nonnegative dual multipliers on

. . o A . cps :
corresponding comstraints (19) B~{B 1 the list of dlstlnct demand subsets of
current commodities, and {3,_[2]: B eB, (i,3)eE} be the dual variables on their

constraints {(20). Then the implied Lagrangean relaxation is as follows:

min )} v.. ) ) x, [a 81+ ) f_.y..
(1,532 3 aeS geD (1,5)eg H74J

r‘ —
) 1 x_.le,8] \
C!E.Ak ge? 1] N R :
+ X z C.. [k] - - yi- . (22)
OEAk ¢ geD
aeS BEB .-[t! S]
+ 5. [2] _y
(i,3)cE B, =B 1] mln{z dS’ X s } ij
geB acS ©
s.t. Z Z xij[&’g] =d for all Sev 123)

~8-




(¢_.[A,BD) ) ) Ka.{ﬁ,B] <s for all aeS (24)
oé 8D  (a,j)cE 23

4 xz_[c,,.] - %, %,8] = 0 for 211 aeS, (25).
(2,5)eE (i,0)eE 7 BeD, 2T 2k
x..[a,8] 20 for all (i,j)ek, (26)

33 acS, BeD
12 Vi3 20 for all (i,j)eE - 27)
Vi3 integer for all (i,j)eE : (28)

For any choice of nonnegative Gij[k] end Gij[l} formulati;?,t(Pua[A,B])
gives z valid lower bouzd on the cost of an (FC) or (MC) optimum. A-search is,
of course, necessary tc £ird gocd dual values. '

The advantage of tha (Pos[A,B]) fora lies with the fact that [«,B] systems
are linked only through the objective function. Thus, for fixed dual values,
(Pos[a,B]) separates into 2 series of shortest path problems for [o,B] pairs,
followed by an S to U tramsportation problem. |

Intluding subgradient steps ta improve duals and revise the present commodi-
tization, a full procedure employing (PGSIA,Eﬂ)iS és follows:

Step 0: Initialization. Fix dual and primal incumbent values

ota
-~

*
vD “+ - vP + e,

Step 1: Initial Diszzgregation. Partition the source mode by desti-

nation node set SxD into zn initial series of artificial supply-demand

?

commodities, and let A be the list of distinct supply subsets, Ak




and B the corresponding list of distinct demand subsets,Bz. Fix
21l duzls Gij[k] and Eij[ﬁ] at zero.

Step 2: Implicit Cecsts. Determine (22) objective function coefficients

H

35 * 55y T ZEA 0,51k ~ BZSB 854101 (29)
L
visles8l = v, + ) (@, [K1/s1xD) * 27(5ij[21/d[2]) (30)
{AksA:asAk} {BlsBzBsBz}
w1 Lo | -
where s{k] = amin z s z d (31)

i aeh ¢’ gD Bf .

d,, 1 s | - (32)
8 aesS a‘

p‘
=
B

2]

{88,

13

Step 3: Shortest Paths. For eack pair (u,B) of a source and a destination
node{ compute the shortest path from every a'tobévery B over arc lengths
;ij{a,B]. Let Riw«,2] be the set of arcs in the shortest path-from node

o to node 8 and cle,8] its length.

Step 4: Transportation Problexz. Using costs cla,RB]l, suppliers Sy and

denand dB, solve an S to U transportation problem. Denote by z[u,8) an
optiral flow from ¢ to B obtained in the solution to the transportation

problem.

Step 5: Flow Solution: For each ¢ and B , assign z[«,B] units of flow

to all arcs (i,j) in the correspoading set of shortest path arcs R[e,B].

Step 6: 0-1 Problem. Compute relaxation optimal values for the yij

variables wvia

y.. +1 if £.. € 0 and 0 otherwise.
ij ij .

~10-




Step 7: Dual Solution. Compute a dual solution, v, as the sum of

D

*
the costs of the optima in Steps 5 and 6. If vD-> v, save a new dual

go

incumbent vD < vD.

Step 8: Primal Solution. Create a2 feasible solution to (DC) by paying

full fixed :charges on any arc used in the flow of Step 5. Let vP-be
. ‘ .

i . v, <v
its cost. If P p>

save a new primal incumbent as an approximate
optimum to (FC). If mot, check whether the rate of improvement in the

is satisfectory. If so, go to Step 10.

ual Update. Modify duals Gij[k], and Gij[l] by taking a finite .
step along a subgzgradient of the Lzgrangean dwal function at the current
dual point and prol
Bazaraa aznd Coods (1873) for details on subgradient s;hemes). Then return
to Step 2.

Step 11: Diszgzrezation. Further subdivide the present artificial comrmodi~

tization of SxP. Add zny newly created distinct supply subset Ak fo A and
pick an appropriate nonnegative étarting value for corresponding dual
variablesA{Uij[k]:(i,j)af}. Similarly, add newly created distinct demand
subsets BE to B and choose nonnegative {Gij[R]:(i,j)eE}. Thgn, return to

Step 2,

L, Artificial Commoditvy Structures

One important set of issues surroundinz the implementation of the above

algorithm concerns thz family of artificial commodity structures employed. The

a2lgorithm is impacted by commodity structure in several ways.

e Relaxation Tightness. One aspect is the degree to which the linear

progranming relaxation of problem (9) - (16), (19), (20) tightly

~11-




approxizates the underlying integer problem. Commodities impact
relaxation tightness through the fact that there is one set of
constraints (19) for each distinct supply set (i.e. each AkeA)
and one set of constraints (20) for each distimct demand set (each
BieE). Relaxations associated with different commodity structures
differ only in the limitations imposed by these comstraints.

® Duzal Variables. Th2 number of dual variable sets'{oij[k]:(i,j)éE}

and {513[2]:(i,j)sf} which must be stored and searched over in any

commoditization is 2ls0 controlled by the dimension of the distinct

supply and demznd subszt sets A znd B. TFor each AkeA and each

BASB there is 2 set of constrazints (19) or (20) and an assocjated

set of dual variables.

¢ Shortest Path Problezz. Step 3 of the algorithm calls for finding

shortest paths between all supply-demand pairs. Arc lengths

Gij[a,B] for shortest path problems are as in (30). Assume, as is
usually tha case2, that there are meny fewer supply nodes than demand

nodes (Syrmmetric argzuemants could be given for the opposite case).

e A
~

Then, noting all vij[a,a} are maintained nonnegative throughout pro-~
cessinz, a version of the efficient Dijkstra (1959) algorithm sﬁould
be employed to compute shortest paths. But the Dijstra algorithm can
compute simultaneously the shortest path from one node to all othe;

nodes. Thus, if vij[u,s] is independent of B, the Dijstra procedure
=2d

needs to be invoked only once per ceS. However, if the‘Z(Sij[l]/d[Q])

term of (30) creates different vij[a,B], the procedure must be applied

once per ceS and per demand subset with distinct'vij[a,s]. In total

'number of combinations of
s - BieB to which any B (33?

simultaneously belongs

shortest path will be required per execution of Step 3.
-12-




From the above it is clear that all impacts of artificial commodity struc—
ture are controlled by the supply subset iist A ég{Ak} with each Ak c 8 and
the demand subset list B {B } with each 3 < D. To compare possibilites,

define 2 structure [A,B] to be tighter thaa another [A,B]

Vi3 satisfying (19) for AxcA Yi' satisfying (19) for AkFA

0]

4]

[sH)
-

48]

o
L

+h

[a}

[a]
ot
[\
o3t

n

...../\-...

and (20) for B eB

it provides at least as tlght 2 linear

rh

That is, [A,B] is tighter than [A,B] i
T

programming relaxatica. e can then obtain some simple dominance results.

Lerma 2: Dominance of Coverinz Subsats. Let [A,B] be a commodity structure for

flows in Sx¥, i.e. A a list of distiact nonempty subsets of § and B 2 similar

list of subsets of T'. Alss, define AcS-u Ak and B © =D - Bk Then both
B

[AU{A},B] and [A,Bu{B}] zre tighter than [A,B]. Also, [AU{A}, BU{B}] is tighter

than eith [AU{A} B} or {A,Bu{B}]. That is, extending the parts of S and D

covered by A and B tightens the formuletijon.

Proof: Irmediate from the fact that new constraints (19) for A and/or (20) for

B are added, without deleglnv any others.

E3

Lewma 3: Dominance of Partitioning Subsets. As above let [A,B] be 2 commodity

structure for flow in SxD, and pick any ALEA such that ) s < J d  and any
. o 8 ;
ae BeD
B eB with ) dB < ) s, Then both [A,B], and [A,B] are tighter than [A,B]
~ ~ Bel «eS
and [A,B] is tighter than [A B] or [A, B] vhare

-13-




* - i i i j i
A=h-dAYu A5 all A <A, A; n Ai':,;, for i#j, Em; = A} (34)
o ‘ro - i i i '] .7 . i : .

B=B-{B}u {B: all B B, B n B{;=¢ for ifj,; uB; = B} 35)

i
That is, replacing such Ak and 32 by a partition of them yields a tighter

relaxation.

Proof: We shall show only the case of [A,B] tighter than [A,B] where

A = A ,'rAk} u {4 A}} Ai c A_, i c Ak A n Ak ¢ and Al U Ak Ak

All other cases follow by znalogous :arguement for B and straightforward

c

. [ . i .
induction on the numbar of {A} or {BQ} respectively.
Lk .
For our cas2 the only difference in formulations [A,B] and [A,B] is the

former contain

3 ¥ X [a Bl

o geD _ .
M <y, for all (i,j)eE 36)
1y : 1]
nir { 4 }
£ B
caA, ;D
versus the latter's
) 1 } x..le,8]
ccA  BeD ' . L
<vy.. i,jdeE -
— - . 24 . } Yij for all (i,j)e (37
1 Loy " ]
csAP gelD
and ] Z Z x.-[a’B]
ceAi gsp I 4 ‘ T
<y, for all (i,j)eE (3%

By the hypothesis that z s < z d the supply sum provides the miniwmun,

aeh @ P,

in denominations of (36) -~ (38). Thus, noting Ai and Ai partition Ak’ the

proof reduces to showing

—14-




x,.[e,B] x..la,B)
agr\.l]; B?:ZD +J azki BED
rax ’ >
Z 1 scz z 2 sa
L asAk aAk :

c AL' 8 C‘.—:Aizc Be iJ
(39
Z 1 Sq + 2 9 S _ )
aEfAk . Czr»‘.Ak @

Assuia tha Ai tern provides the max on tha left in (39). Ther if (39) fails

I x..le,8] ) } x..le,8]l + § Y x,.lc,B]
aeAi gep I . asAt geD v asAi geD
2’1 Se , Z 1% + 1 2 S
ceA, c;Ak aeAk

Cross multiplying and simplifying leads to

J

. . . 8 1 . . .
Since this contradicts the assumption that Ak provides the maximum in (39), we

can conclude (39) holds, and the Lemwna follous.
E,j
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Lemma 2 makes it clear that tighter relaxations will result if we con-

sider only comnodity structures with [A,B] covering [S,71, i.e.

[
>

It
7]

(40)

<
o]
Il

Lo

(41)

There couléd, of course, bz z price in terms of dual variables znd shortest
path problems for dezznding 2 cover. However, at most one new supply group

S -wvu Ak’ and cne new dexand group U - u B,, would have to be added to a non-

'g
A B

covering [A,B]. Thus, caly two new sets of dual variables and perhaps

no naw shortest path cazleculations are implied. For these reasons we enforce

(40) znd (41) in =211 furthsr discussion.

Ve shall also dermand commodity structures be nonoverlapping i.e.

fl

i

AP n A 3] for all Ak’AiEA’ itk | (42)

B2 n E%

1l
o

for all B, BjeB, j#e _ ' (43)

Lemma 3 provides part of the arguement for the latter restrictions.  That leﬁma
shows relaxations are usually tightened when a supply set Ak (pr~a demand set
Bl) is partitioned. It also follows, for example, that when Al CAA?’ iﬁ is
preferable to include sets Al and A2—Al in the commodity structure instead of

Al ané A_. We see that there is usually a gain in relaxation tigﬁtness whe;
supply or demand sets do not overlap. In the Al c A2 example there was not even -
an increase in dual variables. However, replacing an arbitrary Al and A2

by (Al—AZ), (A, n AZ), and (AZ—AI) would tighten the relaxation only by a net

1

increase of one system of dual variables.

~16-




The othez" zrguement for nonoverlazping s2ts as in (42) and (43) relates
to the number =Zf shortest path problezs (33'. Since subsets in any list B are

distinct, (32 zznnot be less than [S[ . ]B_. Any B satisfying (43) achieves

that lower 1li—I=.

5. Implementztion Issues

Based om =22 anzlysis of the previous saction, we propose to implexment

rt
=
4]
d
3
1]
f
1]
4]
aq
e
I
X
|
fod
v
o
)
[
[e]
i
it}
)
3
Q
(21
fobo
[
o
LJ
)
o]
[m}}
]

Section 3 via supply group and demand

wzys partition S 2nd D as in (40) - (43). Step 1

will create f=Z-iz21 pzrtitioms, and each tima disaggregation Step 11 is executed
y 3 171 . . e AL 2
either some Al.£ z A will b2 replaced by two nonoverlapping sets Ak and Ak s Or
fagd - - - ’ B‘lz
some B, ¢ B wi_Z be replzced by a similarly partitioning pair 0 BE'

Even witlkZa this approach to disaggregation, there remain many issues re-
garding implexmzmiation of the algorithz of Saction 3. When the algorithm starts,
a decision mus* be mede with regard to the initiallnumbei of subsets in A and B
and the elemenis of each of these subsets. Taen, at every iteration it must be
decided whethar to further the disaggregztion by partitioﬁing an Ak e Aor
Bg € B. When the éecision to proceed with the disaggregation‘is made, z series
of additional decisions are confronted, including selection of the subset to be
partitioned, the assignment of its elements to the new sﬁbsets, and the
initialization of the dual variables corresponding to the new subsets.

5.1 Initial Generation of Artificial Co——modities

At the start of the procedure it could be decided to have one or more
elements in partitioning lists Aand B. If the decision is to start with
singletons A = {S}, B = {D}, all further partitioning of the original source node
set and the original destination node set will be performed in the disaggre-

gation Step 11.
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An alternative is to partially partition S and D from the beginning. In
general more dual variatles and more shortest path problems will result in
early iteration. However, if the source nodes and the destination nodes are
initially grouped based on a careful analysis of the problem to be solved,
the relaxation may be wmuch tighter so that progress on the dual bound ip the
initial stages of the procedure is faster, favorab;y compensating the additional

computational burden brecught on by handling more artificial commodities from

the beginning. It is zlsc possible that by starting from an "intelligent”

D i

list of supply and decand subsets, further disaggregation of these initial

subsets would be more banzficial because the initial grouping has already con-
siderad concerns too bulky to include each disaggregation step. Finally, an

and U obviously implies the number of times the

e
o}
I
rr
"8
(W]
et
0]
[
o
i
<
[N
(/]
[ 8
[e]
8
[w]
h
¥,

disaggregation step will later be invoked by the algorithm is significantly

La]
m
[m Wy
]
0
o
[an
=
o
©
1]
n
1
1]
[
[o¥]
rr
W
%)
'Y
L
Dl

e less sensitive to the effectiveness and efficiency
of Step 11 ca2lculations. .

In light of thess peotential advantages non-singleton initial disaggregations
are being tried in computational testing presently underway. In picking initial
groups the goal is to quickly reach a tight relaxation without prodﬁcing too
many elements of the initial Aand B lists. Noting the form of constraints (19)
and (20) it appears we would like to segregate supply and demand points with

.

large S, and dB resnectively. Otherwise, their presence in tﬁe denominator of
(19) or (20) diluteé the impact of other flows onm yij' Similarly, if a node
is isolated, and thus particularly expensive to service, it. seems reasonable
to employ a strong relaxation in regard to it, i.e. isolate it in a separate
sﬁpply or demand set.

For these reasons the initial disaggregation Step 1 being tested auto-

matically segrezates in onz-point sets any supplies and demands with unusually high

servicing cost or supply/demand. For remaining supply and demand points,

-18-




constraints (19) and (20) will be strongest if flows tending to have a

common shortest supply-demand path are grouped. Imn the algorithms initial

groups are formed so that ones with the rost common path elements are.together.
Figure 2 shows a single-supply example of these initial disaggregation

notions. Sincethere is only one supply,A = S={1}. The initialization rules

we have outlined would create a starting partition of D =“{2,4,5,6;7,8} as

B = {{5},.{6}, {2,4},'{7,8}}. Node SIis isolated because of its high demand, .

node 6 because arcs eatering it are particularly costly. Among the remaining

nodes, 2 is placed with 4 beczuse all paths to 4 éass through 2, and 7 with 8

because many paths to 8 transit 7.

5.2 Selections of the Few Partition

In the dual ascen ccedure, used in conjunction with the progressive

1
o)
]
Q

disaggregation procedure described herein, whenever the rate of improvement on
[ & 2 ) 2

the bound of the optimzl solution to (PGGIA’B]) does not meet the minimun
standards set baforehznz, it signzls the nzed to further disaggregate same of

the current artificial commodities. This is carried out by partitioming one or

n

more supply and/or destination node subsets. As noted above we have chosen to parti-
tion only one subset at any one time. The main reason for such choice is to
keep the procedure simple while still achieving the goals of the disaggregation.
The selection of the subset to be partitioned involves ranking the current
subsets accordiungz to some criterion that matches our strategic-objective‘-r
significiant improvement of the dual bound. As we have explained earlier, the
digaggrezation pattern affecté the dual bound only through constraiants (19)

and (20). 1In the algorithm of Section 3, those coustraints are included in the

(PGGIA’B]) objective function as terms

~-19-
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Fizure 2. 1Initial Disaggregation Example
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\ Z ) xij [a,B]

oe Bel
I o Bl o g - Y., (44)
(i,j)eE I t}m L’/ s[k] {J

[21;

and Z é.i
: (i,5)eE

| B

. ) ) x..[e,B]
(- f..\ g8eB.  weS
i
L

where s{k] ané d[i] zr2 as iIn (31) and (32). One new element is nonnegative
waights (fij/m{k]) and (£../nf2]) used to scale constraints (19) and (20) for
greater subgradient ssarch efficiency. Generally, m[k] is similar in

magnitude to sik], and nli] to d[L].

Since the exprassions in (44) and (45) are less than or equal to zero

in feasible solutions, minimizing their absolute value will tend to improve

the dual bound quality. Conssguently, we select for partition the subset for

implementation of this se
any additional calculaticns, since the values of expressions (44) and (45) are
albays readily available in the dual ascent procedure where they are used in
evaluating the objective function. .

Once the subset to be partitioned is identified, it is necessary fo deter-
mine how to partition it. This includes deciding how many new subsets to
create and which elements of the subset being partitioned to assign to the

new Subsets.

~21-
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With regard to the composition of the two new subsets, a criterion similar
to the one used in selecting the subset to be partitioned is applied. For each
element of the selected subset, its contribution to fhe expression in (44) for
a source node subset, or to (45) for a destination node subset, is evaluated.
Based on these contributions, the elements with the highest contributions
will be assigned to onz of the subsets, and the rest of the elements will be
assigned to the other. Ezch cf £he new subsets is required to have the same
number of elements, so thzat 211 singletons will be reached in the minimum number
of partitions. Again, thesz decision rules are quite simple to implement

becausz (44) and (45) zre readily available.

Once it has baen decicdad to partition a supply group Ak or demand group

Blainitial values must be chesen for dual varialbes Gij[k] or Sij[ll and for

={%] or n[2]. We shall discuss the case of partitioning a

©»
!

scaling coefficient
demand set BE inte two newv sets Bp and Bq for which we seek new duals
'{Gij[p] and éij[q]: (i,3)=E} and scaling weights nlp] and nlql. The case of

partitioning a supply subsst Ak is completely analogous.
In the previous section we showad how the goal j.n selecting Bp and B
was one of maximizing the short term improvement in dual bound. We would, of
course, like imitial dual variables to also advance the dual solution. But
there is another imporiant issue: we desire stability im the dual search so that
any poorly chosen duals will quickly be corrected by Step 10 of the algorithm.
To obtaiﬁ stability, we seek to assure that the x and y primal solutions
of Steps 5 and 6 of the algorithm (Section 3) will not decrease violently in

the first iteration after disaggregation. (If group selection was sound the

dual value should inmprove).
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. £ 0 and 0 otherwise, vhere (including the

. +« 1 if £
At Step 6, yij i i3

scaling factor fij/n[ﬁ])

55 = Eis AEE:A oj5 K1/l = 1 8,51)/nla) 46)

L

-~

Dividing B£ into Bp and E§ in the B list will merely replace

Thus, the yij soluticn will be unchanged if

8..081 &..[p)l 6..1q]
a[3] ~ wlpl T mlql | (47>

To similarly preserve the xij[a,B] solution of algorithm Steps 3-5, we

desire to leave unchanged shortest path arc lengths

- . [ Gij[k] Gij[zl |
Vij [0.:8] = vij + fij Z nTr—-—r—*k]s ] + Z m_mm (48)
T{A cAsach ' . '
tAk_A.u_\k} {3258.3382}
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After partition each 8 will belong to Bp or Bq’ but not both. Thus, either

6..[?] 6..[([] 6._[9‘]
13 - lJ__ 3 : —__1:]__— . A
alpldlp] or nlqldlq] will replace N EYETES in (48),

The dual selection we propose is fixing .

nlp] < nl2] - | 49)
nlq] « n[2] . ; (50)

- roq dlp]
3. .0pl « 5,127 —= 51
3 J die] (51)

g, Lol « 6, 12) 214 (52)
1] J dafel
Substitution in (47} gives
t Y .=
Sisfed Sugfal 85501 Cappaarer) | Syt
nip] nigj n(2] L d[&] _J nl21de]

the last because Bpand,Bq partition demands in BZ' Also, (49)-(52) yield

Gij[p] _ aij[z] (d[p]) ) 6ij[z]
nlpldlp?  nlg2ldlp] \a[2] n[2]d[2]
and
Gijlq] . Siitil (d[ql) 3 Gij[Z]
niqldliq]l = n[2]dlql \d[2] n[2]d[2]

as required to preserve the vij[a,a] of (48).
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6. FExperimentation

Previous sections outlined the development of a strategy for implementing
progressive disaggregation in the context of a Lagrangean relaxatién algorithm'
for tight formulations of f{ixed charge network flow problems. Justifications
provided for details of the algorithm do consider problem properties, but their
true effectiveness can only be measured ermpirically. Thus, a series of experiments

involving variants of thes2 strategic decisions is presently underway.
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1. Introduction

A vast number of important engineering and maﬁagement problems in dis-
tribution, communication, transportation, and facilities_locatibn can be viewed
as single or mulfi—commodi:y network flow problems with fixed charges for con-
structing/setting up/installing arcs. Such problems with commodities in P

can be stated in mixed-integer form as follows:

min Z vPxP + £y E - S B ¢ )
p?.? .
(MFP) s.t. ExP = b° for all pep | (2)
x 20 for all peP 3)
(I/uj) z X? < ¥y for all jeA A )
peP ' ’ '
0<ys1 ‘ (5)
Y intéger : (6)

Here E is the vertex-arc incidence matrix of a directed graph, G{V,A), xP

is the flow of commodity p on that network, vP

is the variable (per unit)
cost of such flow, bP is a requirements vector for commodity p (having com-
ponents sumning to zero), uj is the capacity of arc j.of A, fj is the fixed
charge on arec j, and ¥y is a 0-1 variable switcﬁiﬁg Yon" the fixed chargé
when flow through arc j is allowed. I assume throughout that all ?j are
nonnegative. If capacities, uj, are not naturally apparen£ in the problem
setting, they can usuzallvbe generated as any number greater than or equal to
the maximum flow through tha arc.

Figure 1 shows a simple nume%ical example with IP[ = 1 commodity. All 10

units of flow originate at vertex 1; 5 are required at vertex 3 and 5 at vertex

4. 1t is easy to check that an optimal solution sends one unit 1-4, 4 units
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Figure 1. An Example Network




1-2-4, and 5 units 1-2-3. Total cost is 63.

2. The Standard Pa=laxation

Since the early work of Balinski [1, 2] a standard approach to dealing

with problems (¥FP) has been to solve linear programming relaxatjons (MFP)
obtained when constraints (6) are dropped. Such relaxations provide both
bounds for branch-and-bound schemes a2nd z source of approximate solutions;
given an (1FP) optimum, on= need only round "up"‘all positive, but fraétional
yj to obtain a2 feasible solution to (MFP).

For the above example this (MFP) relzxztion is solved by sending i unit
1-4, 4Aunits 1-2-4, and 5 units 1-3; total cost is 54 (83% of the optimal 63).
When rounded "up" this solution costs 104 (1657 of optimal).

Neither of these values is very satisfzctory, and actual experience is
often much worse. To seaz why, observe that the constraints (4)-will always
be tight in some optimal solution for (E??); whefe fj > 0, slack in such
constraints implies unnecessary cost. Since constraiunts (4) will'Se equalities
in (ﬁ?ﬁ), their effect is to prorate the fixed cost, fj’ over ;he.éor?esponding
capacity. For example, in arc (1-2) of Figure 1, 4/10 of the fixed cost,40,
would be paid in the (MFP) optimum becausz 4/10 of ths capacity, 10,is used by
the optimal flow. If capacities are large, it is easy to see th;t this pro-
ration process would soon negate, or nearly negate, the Impact of fixed costs
on (MFP) optima. Optimal relaxation solutionms tend to use many arcs at relatively
small fractions of capacity. This is particularly so when capacities are arti-

ficially created as maxiwmun possible flows.

P
a

3. A Diszggregat=d Formulation

In a number of specizl cases, including warehouse location problems (Balinski
(2], Davis and Ray [4), Erlenkotter [5)}, Bilde and Krarup [3),Géoffrion and Graves

[71) and uncapacitated problems (Magnanti and Wong [8]), various researchers have

-3-




shown the merit of disaggregating (MFP) flows to obtain linear programming
relaxations that more closely approximate the mixed-integer problems. One
can retrieve these special cases and extend the notion to all (MFP) by
recognizing thzat flow in any commodity can always be disaggregatgd into.
separaté commodity flows between origin-destination pairs‘éf the requirements
vector, b. Specifically, let xp[s,t] be a vector showing the flow of the
portion of comzodity p originating at source s and destined for sink t.” Then

an equivalent mixed-integer form to (MFP) is

~

min ) xP[s,:1]+ £w 7
pe? (seS_  teT
P P
s.t. EPx"[s,t] =0 for all peP, sssp, teTﬁ (8)
y I = bP eP -
L. xjts,t] bs for all peP, sESp (9

teT {j leaving s!
P

—Z z x.Is,t] = bi for all peP, teT (10)
s€S_ 4 entering t} 3 P
(DFP) xp[s,t] >0 for all peP, seSp, tETé (11)
(/u.) ) ) ) ®Pls,t] <w, for all jeA (12)
J peP seS  teT 3 J
P P
(1/-b%) §  xPls,t) < w, for all jeA, peP, telT a3)
£ ees 3 P
P
b




(1/bz) gT X?[S,t] s v for all jeA, peP, seSp (14)

w integer ' (16)

Here Sp = {sources for commodity p} = {s: bz > 0}
Tp = {sinks for commodity p} = {t:—bz > 0}
EP = the -row submatrix of E containing row 1 € {i:b? = 0}

In this new form w corzesponds directly to y of (MFP), and flow variables

are related by

) I .p | |
xj - ssSp teT% xj[s,t] ' (17)

Relaxations (7), (8) throuvgh (10), (11), (12), (15), and (16) of (DFP) corres—
pond to (1), (2}, (33, (&), (3), ané (6) of (MFP), respecﬁivelf. Denote by
v(*) the vzlue of 2n optimal solution to probiem (-) and by (DFP) the linear.
programning relaxation of (DFP). Then this correspondence and-tﬁe fact that
(DFP) 2nd (DFP) have extra constraints (13) and (14) lead td the.following
conclﬁsion:

Proposition 1. Solution values for (MFP), (DFP), (MFP) and (DFP) éatisfy

v(FP) < v/DFP) < v(DFP) = V(MFP) (18)

The new elements in the (DFP) formulation are systems (13) and (14).
Intuitively, (13) requires that , Vi the portion of the fixed charge paid on

arc j, must equal or exceed the fraction of a demand satisfied through arc j.

-5




Similarly, (14) forces wj to match the portions of each supply directed through
arc j. The extra constraints are implied by (12) wher integrality, (16), is
enforced. But they may significaantly improve the linear programming relaxation (DFP)
because fj is now prorated over both uj and 211 relevant supplies and demands. =
The latter are often much smaller than capacities.

The example of Figure 1 illustrates. An optiﬁal solutjon to the linear
programming relaxation (DFP) sends 1 unit 1-4, 4 units 1-2-4, and 5 units
1-2-3. The relaxation cost is 62, 987 of the optimal 63. When all fractional

"up", 2 feasible solution is obtained that

wj in the relaxation zrs rounded
is indeed the (DFP) optimum. The effect of the disaggregation is seen on arc
(1,2). The (DFP) optizum pays the entire fixed charge, 40, because all demand
at vertex 3 is satisfied fhrough (1,2). From this example we may draw the

further conclusion:

Proposition 2: In selected problems both inequalities of (18) may be strict.

4. Solving the Tighter Relaxation

If the strength of the (DFP) relaxation is to be realized, an approach

must be found for solving or nearly solving that massive linear program. Three

cases can be identified. Uncapacitated cases have neither binding arc capacities,
uj, nor limits on supply at sources. Equivalently they are problems where con-
straints (12) are unnecessary and each requirements vector has only one positive

component at the comnodity's single source. MYeakly capacitated cases admit

supply limits, but do rot have binding arc capacities. They include the capaci-

tated warehouse location problem. Finally, fully capacitated problems have

binding arc capacities, and possibly also binding supplies.
In both the uncapacitated and the weakly capacitated cases we can ignore
constraints (12) of (DFP). Suppose we "dualize" (13) and (14), i.e. place them
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in the objective function with nonnegative dual multipliers Gg[t] and

G?[s], respectively, to obtain
J

min Z vF [-z' z xp[s,t]} + fw
pe?P sE:Sp teTb j

i p

(re, ) + § 1 1 6§[t]

x[s,t] - w. ' (19)
peP jeA t€T§ 3 :

’ ———
n’UlH
m t~1

Py ( — 1 x[s,t] - w.
peP jeA se8 3 [ b2 teT I J
P \ § P

s-t. (8), (9), (20), (11), (15) 2nd (16)

For fived § and ¢ varisbles in (DFP..) the commodities are linked only at

S

sources and sinks {through (39) and (10)). oreover, each origin-destination
commodity problem is essentially one of picking a single path along which to
ship from source to sink. Thus, one can zpproach (DFP) by trying to maximize

V(DFPSG) over nonnegative values of the dual variables as follows:

Step 0: Initislization. Set zll 5§[t] and Gg[s] td.zero, and fix dual and

* %
primal incumbent solution values Vp + —~ o, VP-+ + >,

Step 1: Implicit Costs. Determine (19) objective function coefficients

£« f, - oPrs1- ¥ 1 &P[e] . 0)
J J pEP sgsp 3 peP teT_

P <« P P P P P

vj[s,t] vj + Oj[S]/bS + Sj[t]/( bt) (21)

Step 2: Shortest Paths. Yor each pz?, sESp, teTgvcompute the shortest

path from s to t over arc lengths G?[S,t]- Let RP[s,t] be the set of

arcs in that path and cP[s,t] its lensth.
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Step 3: Transportation Problems: For each commodity peP, solve a trans-

portation problem from sources SESP to sinks tET; with costs cp[s,t].
Supplies are {bz > 0} and demands {—bs > 0}. Deoote by zP[s,t] an optimal

flow from s to t in that transportation problem. . - x

Step 4: TFlow Solution: Construct and optimal flow for (DFPGG) by
assigning for each p, szSp, tsTb, zp[S,t] units of flow along all ares

in the corresponding shortest path RP{s,tl.

Step 5: 0-1 Problem. Compute relaxation optimal values for the w

3

variables via , - .

w. +1 4f £. €0 and O otherwise.

Step 6: Dual Solution. Compute a dual solution,vD,as the sum of the

. *
(DFPGG) costs of the optima in Steps 4 and 5. If vD_> vD, save a new

‘ e
dual incumbent vD “~ Vv _.

Step 7: Primal Solutisn. Create a feasible solution to (DFP) by paying
full fixed charges on zny arc used in the flow of Step 4. Let UP be its
* *

cost, and if Vo < Vp, save a new primal incumbent VP +“VP.

r3

‘ * *x
Step 8: Dual Update. If Vp is sufficiently close to VD’ stop and accept

the primal incumbent 2s an approximate (DFP) optimum. If not, modify
duals 5§[t] and G§[s] by taking a finite step along a subgradient of the

function U(DFPar) a2t the current dual point. Then return to Step 1.
9

Since every problexn (DFPGr) is a Lagrangean relaxation of (DFP) (see
5
Fisher [6] for details of such relaxations and subgradient search), and every
flow of Step 4 is primal feasible we have:

Proposition 3: At any stage of the above algorithm

&

* *
UD < v(DFP) < v

» (22)
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5. Preliminary Computational Experience

To see whether values in (22) could be brought closé enough together to
solve problems without the need for branch and bound, 15 random
test problems ware generated and approximatgly solved by the above algorithm.
The problems were uncapacitated, l-true-commodity cases with relatively ﬁigh
fixed charges on all arcs. ‘ ‘

Table 1 suzmarizes problem c¢haracteristics and results obtdined for the
three problems of each size group. As indicated,the ordinéry (ﬁfﬁ) reléxations
provide very poor information. Relaxation solution values are only 25-50% of
optima.

* %

The above (DFP) zlgorichm was set to stop when either VPIvD' < 102.5% or
a 15 minute time limit (CDC Cyber74) was reached. All problems of less than
1000 arcs stopped before timz limit. As indicated, the 1000 arc cases reached
solutions provably within 4-8% of optimal in the ls'minutes.

Although this a=ount oI computer time is not insignificant, and results are
highly preliminary, vaiues in Table 1 strongly suggests that disaggregated re-
laxation approachazs to fixed charge network problems have great promise. Exist-
ing branch-and-bound z2lgorithms for such problems (e.g: Rardin and Unger [s1)

are taxed at 100-200 fixed charge arcs beczuse of poor (MFP) pounds. With (DFP)

it appears 1,000 or more arc problems are within range.

L




Table 1. Preliminary Computational Results

Estimated % CDC Seconds to

e % =%

Problem Size © vQIFP) . Reduce vP/vD

xcs Nodes Demands Forms of V(MFP) < 102.5% with (DFP)

50 20 5 43 .57 . 0.8
| 23.2% - 0.8
5% .6% . . 5.3
100 36 10 47 .3% ’ . 1.5
37.1% - 3.8
36.9% 2.7
200 67 20 36.1% . 23.5
37.0% 19.2
41.37% . 19.6
500 157 50 ~ 35.9% 416.5
40.1% _ 353.2
47.6% ‘ 237.6

1000 308 100 37.9% _ 105.5% in 900

29.3% 107.7% in 900

41.0% 103.8% in 900
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