
GEORGT7 INSTITUTE OF TECHNOLOGY OFFICE Or CONTRACT ADMINISTRATION
• -

E-24-631

PROJECT ADMINISTRATION DATA SHEET
ORIGINAL

REVISION NO.

DATE: 	4/3/81 Project No.

Project Director: 	Dr. R. L. Rardin 	School/ be 	

sponsor: 	National Science Foundation; Washington, D. C. 20550

ISyE

Tyne Agreement: Grant No. ECS-8018954

Award Period: From 	3/15/81 	To 8231/83* 	(Performance) 	 (Reports)

Sponsor Amount: 	$49,951

Cost Sharing: 	$6,399 (E-24-347)
Title: 	Tight Relaxation Approaches to Fixed Charge Problems on Graphs and Networks

Contracted through:

GTRI/ 4 '', 11114",

?7MINISTRATIVE DATA
	

OCA CONTACT 	Duane Hutchison 	x 4820
1) Snonsor Technical Contact:. A. H. Haddad, NSF Program Officer; System Theory and Operatio

Research; Division of Electrical) Computer, and Systems Engineering; Directorate for Engin-

eering and Applied Science ., - NSF; Washington, D.C. 20550 (202) 357-9618

2) Snonsor Admin./Contractual Contact: W. A. Bryant, NSF Grants Official; Section II;

AAEO/EAS Branch; Division of Grants and Contracts; Directorate for Administration;

NSF; Washington, D.C. 20550; (202) 357-9602

P.-snorts: See Deliverable Schedule 	Security Classification: 	None

Defense Priority Rating:
	None

RESTRICTIONS

See Attached' 	NSF

Supplemental Information Sheet for Additional Requirements.

Travel: Foreign travel must have prior approval - Contact OCA in each case. Domestic
travel requires sponsor approval where total will exceed greater of $500 or
125% of approved proposal budget category

Ecuipment: Title vests with GIT.

1211110811116111016111MERMINIMIML 	

COMMENTS: , 	Includes the usual six (6) month unfunded flexibility period.

COPIES TO:

Aeministrative Coordinator
Research Property Management. -
Accounting Office

Procurement Office

Research Security ServiceS
Rep6rts Coordinator (OCA)
Legal Services (OCA)

Library, Technical Reports

EES Information Office (2)
Project File (OCA)
Other:

GEORGIA INSTITUTE OF TECHNOLOGY 	 OFFICE OF CONTRACT ADMINISTRATION

SPONSORED PROJECT TERMINATION/CLOSEOUT SHEET

Date February 13, 1984

Project No. E-24-631 	 School/445E ISyE

Includes Subproject No.(s)

Project Director(s) Dr. R. L._ Rardin

GTRI /

Sponsor

National Rrienre Fonndatinn; Waghingi- nn n_c_ 9(199n

Title 	Tight Relaxation Approaches to Fixed Charge Problems on Graphs apd Networks

Effective Completion Date:

Grant/Contract Closeout Actions Remaining:

None

(Performance) 11/30/83 * 	(Reports)

* no charges allowed past
8/31/83 even though 90
days are allowed for sub-
missive of final report.

8/31/83

F1 Final ktektabgiiiiiiiietkReport FCTR

Closing Documents

Final Report of Inventions

Govt. Property Inventory & Related Certificate

ri Classified Material Certificate

Other

Continues Project No. 	 Continued by Project No.

COPIES TO:

I I

Project Director

Research Administrative Network

Research Property Management

Accounting

ProcurernentJEES Supply Services

Research Se

eports oordinat

Legal Services

Library

GTRI

Research Communications (2)

Project File

Other

Form OCA 60:1028

SCHOOL OF INDUSTRIAL
AND
SYSTEMS ENGINEERING

GEORGIA INSTITUTE
OF TECHNOLOGY
ATLANTA, GEORGIA 30332

June 1982

PROGRESS REPORT:

Tight Relaxation Approaches to
Fixed Charge Problems on Graphs

and Networks

(Grant No. ECS-8018954)

by

Ronald L. Rardin, Ph.D
Principal Investigator

and

R. Gary Parker, Ph.D
Co-Principal Investigator

for

Dr. Abe Haddad
Electrical, Computer and Systems Engineering

National Science Foundation

1. Background

A vast number of important integer and combinatorial problems in

areas such as distribution, communications, transportation, and

facilities location can be viewed as fixed charge flow problems on graphs

or networks, i.e. flow problems with fixed costs incurred on arcs

with positive flow. On May 1, 1980 Drs. Ronald L. Rardin and R. Gary

Parker proposed to the National Science Foundation a line of

research on such fixed charge problems entitled, "Tight Relaxation

Approaches to Fixed Charge Problems on Graphs and Networks." Their

proposal envisioned a program of research on forming, and implementing in

algorithms, non-standard relaxations of fixed charge problems on networks

and graphs. More specifically, the proposal contemplated study of both

tight linear programming relaxations of fixed charge problems on graphs

and networks, and investigation of combinatorial relaxations for the same

problems. Total funding sought was $152,080.

At the request of the National Science Foundation, a revised

proposal was submitted on January 13, 1981 for a reduced scope effort

considering only the linear programming relaxations. That revised scope

was funded as Grant Number ECS-8018954 for two years beginning March,

1981, in the amount of $49,951. This report briefly summarizes progress

on the planned research during the first grant year and activities

contemplated for the second.

2. Progress during the First Grant Year

As noted above research planned under the grant centers on tight

non-standard linear programming relaxations for fixed charge problems on

graphs and networks. The relaxations are tight in the sense that

-1-

solutions obtained from such relaxations closely approximate optimal

solutions for the underlying mixed-integer programming problems.

The proposed method of approach anticipated a combined computational and

theoretical investigation of such relaxations, with computational phases

seeking effective strategies for dealing with the massive linear programs

involved in such relaxations and theoretical studies aimed at

sharpening the relaxations and proving their effectiveness on restricted

classes of problems.

The attached working papers detail how substantial progress has been

achieved on both these fronts during the first grant year. Attachment 1

"Tight Relaxations of Fixed Charge Network Flow Problems"

merely summarizes work prior to the beginning of the grant. It has been

submitted for publication in Operations Research Letters. Attachment 2,

"Development of a Progressive Disaggregation Approach
to Fixed Charge Network Flow Problems"

centers on new computational aspects. Attachment 3,

"Some Polynomially Solvable Multi-Commodity Fixed
Charge Network Flow Problems"

includes new theoretical developments. The latter paper has been

submitted for publication in Discrete Applied Mathematics.

Briefly, the achievements reported in the papers are the following:

• A variant on our earlier formulation has been discovered

which leads to both a tighter linear programming formulation

of the problem and (generally) fewer linear programming

constraints. Attachment 2, Section 2 provides details.

O Central issues have been isolated, and algorithmic strategies

for dealing with them proposed, to implement the disaggregation

concept on our linear programming relaxations progressively.

The relaxations involve disaggregation of flows into

components tracking the supply point at which the flow began

and the demand point to which it is destined. Rather

than dealing with all such variables, and associated

constraints, at one time, the progressive approach

treats flows in increasingly more detailed supply and demand

groupings. Ultimately, a full disaggregation to individual

supplies and demands may be reached, but it is hoped that

the progressive strategy will lead to less total computations

by diminishing the effort expanded on early iterations. Among

the issues dealt with in Attachment 2 are the form supply and

demand groups should take, and how the progressive approach

can be integrated in Lagrangean relaxation of the tight form.

co Our relaxations have been proved exact on a significant class

of problems arising on graphs with specific structure.

Attachment 3 details a proof that the linear programming

relaxation we have been studying yields an integer solution

for uncapacitated problems on series-parallel graphs--an

important subset of planar graphs. The tight linear programming

relaxation for such fixed charge network problems is unimodular,

regardless of the number of commodities considered. Thus,

polynomial procedures for linear programming yield polynomial

time algorithms for all such fixed charge cases.

We noted above that two of the attached papers have already been

submitted for publication. It is also anticipated that work on

-3-

computational phases will be published, but submission awaits

computational testing of concepts developed in the research.

Beyond these efforts to disseminate results through scholarly

journals, six seminars have been presented by investigators on the work:

• "Progressive Relaxation of Fixed Charge Network Flow

Problems," presented to the Fall Joint National meeting

of the Operations Research Society of America and The

Institute of Management Sciences, Toronto, Canada, April,

1981.

• "Tight Relaxations of Fixed Charge Network Problems",

presented in seminars at

a. Department of Industrial Engineering, Auburn

University, April, 1981

b. Department of Industrial Engineering, State University

of New York at Buffalo, April, 1981

c. Department of Industrial Engineering and Operations

Research, Virginia Polytechnic and State University,

February, 1982

d. School of Industrial Engineering, Purdue University,

March, 1982

o "Lagrangean Relaxation with Application to Fixed Charge

Network Flows", presented to the Applied Mathematics Round

Table, Exxon Corporation, March, 1982.

3. Anticipated Activities for the Second Grant Year

Planned activities for the second grant year will be directed toward

-4-

completing and extending the achievements described above. More

specifically,

• Computational Testing. Algorithmic strategies for the

progressive strategy presented in Attachment 2 are being

implemented in a computer code so that they can be empircally

tested. This computational activity has proceeded more slowly

than originally planned because of inadequate availability of

computer resources at Georgia Tech. However, satisfactory

arrangments have now been made and testing is advancing. By

the end of the project both a code and an empirical evaluation

of the progressive strategy should be available.

• Polynomial Algorithm. Attachment 3 shows that a significant

class of fixed charge problems can be solved exactly via our

linear programming relaxation. By appeal to the availability

of polynomially-bounded algorithms for linear programming,

that result proves the indicated problems are polynomially

solvable. However, we believe there should be more direct

combinatorial algorithms for the relaxation in such cases.

Theoretical effort in the remaining part of the project will

be directed toward the discovery of such algorithms.

ATTACHMENT 1

Industrial Systems and Engineering
Report Series No. J-82-3
January, 1982

TIGHT RELAXATIONS OF FIXED

CHARGE NETWORK FLOW PROBLEMS

by

Ronald L. Rardin*

* Associate Professor, School of Industrial and Systems Engineering,
Georgia Institute of Technology, Atlanta, Georgia 30332

Abstract: A vast number of important engineering and management problems can
be viewed as network flow problems with fixed charges for opening arcs. This
research derives new, tight, linear programming relaxations for such problems
based on a disaggregation of flows. The concenpt behind such relaxations is
presented, and an algorithm for their solution is discussed.

This material is based upon work partially supported by the National Science
Foundation under Grant Number ECS-801954.

1. Introduction

A vast number of important engineering and management problems in dis-

tribution, communication, transportation, and facilities location can be viewed

as single or multi-commodity network flow problems with fixed charges for con-

structing/setting up/installing arcs. Such problems with commodities in P

can be stated in mixed-integer form as follows:

min 	1 vPxP + fy 	 (1)
pCP

(MFP) 	s.t. 	 Exp = by 	for all p£1:" 	 (2)

xP > 0 	for all pep 	 (3)

(1/11.) 1 xP _- v

	

_ . 	for all jcA 	 (4)

pet"
..., J 	'J

0 s y s 1

y integer

Here E is the vertex-arc incidence matrix of a directed graph, G(V,A), xP

is the flow of commodity p on that network, v P is the variable (per unit)

cost of such flow, by is a requirements vector for commodity p (having com-

ponentssummingtozero),u.isthecapacityofarcjalli,f.is the fixed

charge on arc j, and y. is a 0-1 variable switching "on" the fixed charge Yj

when flow through arc j is allowed. I assume throughout that all f. are

nonnegative. If capacities, u., are not naturally apparent in the problem

setting, they can usually be generated as any number greater than or equal to

(5)

(6)

the maximum flow through the arc.

Figure 1 shows a simple numerical example with IP! = 1 commodity. All 10

units of flow originate at vertex 1; 5 are required at vertex 3 and 5 at vertex

4. It is easy to check that an optimal solution sends one unit 1-4, 4 units

-1-

10

Figure 1. An Example Network

1-2-4, and 5 units 1-2-3. Total cost is 63.

2. The Standard Relaxation

Since the early work of Balinski [1, 2] a standard approach to dealing

with problems (MFP) has been to solve linear programming relaxations (MFP)

obtained when constraints (6) are dropped. Such relaxations provide both

bounds for branch-and-bound schemes and a source of approximate solutions;

given an (MFP) optimum, one need only round "up" all positive, but fractional

y. to obtain a feasible solution to (MFP). Yj

For the above example this (MFP) relaxation is solved by sending 1 unit

1-4, 4 units 1-2-4, and 5 units 1-3; total cost is 54 (83% of the optimal 63).

When rounded "up" this solution costs 104 (165% of optimal).

Neither of these values is very satisfactory, and actual experience is

often much worse. To see why, observe that the constraints (4) will always

be tight in some optimal solution for (MFP); where f j > 0, slack in such

constraints implies unnecessary cost. Since constraints (4) will be equalities

in(MFP),theireffectistoproratethefixedcost,f.,over the corresponding

capacity. For example, in arc (1-2) of Figure 1, 4/10 of the fixed cost,40,

would be paid in the (MFP) optimum because 4/10 of the capacity, I0,is used by

the optimal flow. If capacities are large, it is easy to see that this pro-

ration process would soon negate, or nearly negate, the impact of fixed costs

on (MFP) optima. Optimal relaxation solutions tend to use many arcs at relatively

small fractions of capacity. This is particularly so when capacities are arti-

ficially created as maximum possible flows.

3. A Disaggregated Formulation

In a number of special cases, including warehouse location problems (Balinski

[2], Davis and Ray [4], Erlenkotter [5], Bilde and Krarup [3],Geoffrion and Graves

[7])and uncapacitated problems (Magnanti and Wong [8]), various researchers have

-3-

shown the merit of disaggregating (MFP) flows to obtain linear programming

relaxations that more closely approximate the mixed-integer problems. One

can retrieve these special cases and extend the notion to all (MFP) by

recognizing that flow in any commodity can always be disaggregated into

separate commodity flows between origin-destination pairs of the requirements

vector, bp . Specifically, let xP fs,t1 be a vector showing the flow of the

portion of commodity p originating at source s and destined for sink t. Then

an equivalent mixed-integer form to (MFP) is

min G xP [s,t]1+ f w
[sES

(7)
peP teT

s.t. EPxP [s,t] = 0 for all pEP, scS , tET
P 	P

(8)

/ x.[s,t] 	= bP for all peP, sESp (9)
teT 	{j leaving sl

-/ x.rs,t] 	= by for all peP, teT (10)
seS 	fj entering t} j

(DFP) 	 xP[s,t] ?_ 0 	 for all peP, seS
P
 , teT

P 	
(11)

(1/u.) 	/ 	xl,) [s t] 	w, 	for all jeA (12)
peP sESp tcTp

(1/ -bP) 	XP:[s,t]
seq

< w. for all jeA, peP, tcT
p

(13)

- 	7
(1/b') 	L 	xl.) [s t]

s 	tEt 	3 	,
w. for all jcA, pcP, scS (14)

0 	1
	

(15)

w integer
	

(16)

Here S = {sources for commodity p} = {s: bP > 0}
P 	 s

T = {sinks for commodity p} 	= {t:-b > 0}
P 	 t

El) = the row submatrix of E containing row 	i Ef 1 : 111) = 0 / 1

In this new form w corresponds directly to y of (MFP), and flow variables

are related by

x. = 	 xp [s,t]
scSp tcT

P j
(17)

Relaxations (7), (8) through (10), (11), (12), (15), and (16) of (DFP) corres-

pond to (1), (2), (3), (4), (5), and (6) of (MFP), respectively. Denote by

v(•) the value of an optimal solution to problem (-) and by (DFP) the linear

programming relaxation of (DFP). Then this correspondence and the fact that

(DFP) 'and (DFP) have extra constraints (13) and (14) lead to the following

conclusion:

Proposition 1. Solution values for (MFP), (DFP), (MFP) and (DFP) satisfy

v(M7FP) 5 v()FP) 	v(DFP) = V(MFP) 	 (18)

0

The new elements in the (DFP) formulation are systems (13) and (14).

Intuitively, (13) requires that , w., the portion of the fixed charge paid on

arc j, must equal or exceed the fraction of a demand satisfied through arc j.

-5-

Bimilarly,(10forcesw.to match the portions of each supply directed through

arc j. The extra constraints are implied by (12) when integrality, (16), is

enforced. But they may significantly improve the linear programming relaxation (DFP)

becausef.isnowproratedoverbothu.and all relevant supplies and demands.

The latter are often much smaller than capacities.

The example of Figure 1 illustrates. An optimal solution to the linear

programming relaxation (DFP) sends 1 unit 1-4, 4 units 1-2-4, and 5 units

1-2-3. The relaxation cost is 62, 98% of the optimal 63. When all fractional

w. in the relaxation are rounded "up",a feasible solution is obtained that

is indeed the (DFP) optimum. The effect of the disaggregation is seen on arc

(1,2). The (DFP) optimum pays the entire fixed charge, 40, because all demand

at vertex 3 is satisfied through (1,2). From this example we may draw the

further conclusion:

Proposition 2: In selected problems both inequalities of (18) may be strict.

4. Solving the Tighter Relaxation

If the strength of the (DFP) relaxation is to be realized, an approach

must be found for solving or nearly solving that massive linear program. Three

cases can be identified. Uncapacitated cases have neither binding arc capacities,

u., nor limits on supply at sources. Equivalently they are problems where con-

straints (12) are unnecessary and each requirements vector has only one positive

component at the commodity's single source. Weakly capacitated cases admit

supply limits, but do not have binding arc capacities. They include the capaci-

tated warehouse location problem. Finally, fully capacitated problems have

binding arc capacities, and possibly also binding supplies.

In both the uncapacitated and the weakly capacitated cases we can ignore

constraints (12) of (DFP). Suppose we "dualize" (13) and (14), i.e. place them

-6-

in the objective function with nonnegative dual multipliers S P [t] and

5. [s], respectively, to obtain

min 1 vP 	 xP [s,t]) + fw
pEP 	sES tsTp

(DFP SQ) + G 	G 	G (S[t] 	1 	xl?[s,t] - w.1
pEP jcA tET -bP sES

h9j

	

+///e[t] 	1 X 	x11) fs,t1 - W.
pEP jEA SES J 	bP 	tET J 	 J1

	

s.t. 	(8), (9), (10), (11), (15) and (16)

For fixed cS and u variables in (DPP) the commodities are linked only at

sources and sinks (through (9) and (10)). Moreover, each origin-destination

commodity problem is essentially one of picking a single path along which to

ship from source to sink. Thus, one can approach (DFP) by trying to maximize

v(DFP
du

) over nonnegative values of the dual variables as follows:

StepO:Initialization.Setall t [t] ande[s] to zero, and fix dual and 8i

primal incumbent solution values v D
- °, v 	+ m .

Step 1: Implicit Costs. Determine (19) objective function coefficients

	

f. 	f. - 	1 	&?[s] - 	 81:1 [0

	

J 	J pEP sESp 	pEP tel

vP [s
'
 t] 	v1;) + GI:ts1/13 13 + e[t]/(-14)

J 	J 	s

Step 2: Shortest Paths. For each pEP, sES , teT compute the shortest

path from s to t over arc lengths 171:) [s,t]. Let efs,t1 be the set of

arcs in that path and cP [s,t] its length.

(20)

(21)

-7-

Step 3: Transportation Problems: For each commodity pelt', solve a trans-

portation problem from sources seS to sinks tET with costs cP [s,t].

Supplies are {bP > 0} and demands {-bP > 0}. Denote by zP [s,t] an optimal

flow from s to t in that transportation problem.

Step 4: Flow Solution: Construct and optimal flow for (DFP ocy) by

assigning for each p, sES , teT , zP [s,t] units of flow along all arcs

in the corresponding shortest path R P [s,t].

Step 5: 0-1 Problem. Compute relaxation optimal values for the w.
3

variables via

	

w. 	1 if f. s 0 and 0 otherwise.

	

3 	3

Step 6: Dual Solution. Compute a dual solution,Vir as the sum of the

(DFP) costs of the optima in Steps 4 and 5. If vD > vD'
save a new

dual incumbent v
D

v
D*

Step 7: Primal Solution. Create a feasible solution to (DFP) by paying

full fixed charges on any arc used in the flow of Step 4. Let v be its

*
cost, and if v < v P' save a new primal incumbent v t v

P .

	

* 	 *
Step 8: Dual Update. If v is sufficiently close to v

D'
stop and accept

the primal incumbent as an approximate (DFP) optimum. If not, modify

duals (5 1.([t] and a[s] by taking a finite step along a subgradient of the
3

function N)(DFP
(Sa

) at the current dual point. 	Then return to Step 1.

Since every problem (DFP6a) is a Lagrangean relaxation of (DFP) (see

Fisher [6] for details of such relaxations and subgradient search), and every

flow of Step 4 is primal feasible we have:.

Proposition 3: At any stage of the above algorithm

*
v
D 	v (DFP)- P

(22)

-8-

5. Preliminary Computational Experience

To see whether values in (22) could be brought close enough together to

solve problems without the need for branch and bound, 15 random

test problems were generated and approximately solved by the above algorithm.

The problems were uncapacitated, 1-true-commodity cases with relatively high

fixed charges on all arcs.

Table 1 summarizes problem Characteristics and results obtained for the

three problems of each size group. 	As indicated,the ordinary (MFP) relaxations

provide very poor information. Relaxation solution values are only 25-50% of

optima.

* *
The above (DFP) algorithm was set to stop when either v

P
/v
D 	

102.5% or

a 15 minute time limit (CDC Cyber74) was reached. All problems of less than

1000 arcs stopped before time limit. As indicated, the 1000 arc cases reached

solutions provably within 4-8% of optimal in the 15 minutes.

Although this amount of computer time is not insignificant, and results are

highly preliminary, values in Table 1 strongly suggests that disaggregated re-

laxation approaches to fixed charge network problems have great promise. Exist-

ing branch-and-bound algorithms for such problems (e.g. Rardin and Unger [91)

are taxed at 100-200 fixed charge arcs because of poor (MEP) bounds. With (DFP)

it appears 1,000 or more arc problems are within range.

Table 1. Preliminary Computational Results

Arcs

Problem Size

Demands

Estimated % CDC Seconds to

Reduce vP/vD
102.5% with (DFP)

v(MFP)

Forms of v(MFP) Nodes

50 20 5 43.5% 0.8

23.2% 0.8

54.6% 5.3

100 36 10 47.3% 7.5

37.1% 3.8

36.9% 2.7

200 67 20 36.1% 23.5

37.0% 19.2

41.3% 19.6

500 157 50 35.9% 416.5

40.1% 353.2

47.6% 237.6

1000 308 100 37.9% 105.5% in 900

29.3% 107.7% in 900

41.0% 103.8% in 900

REFERENCES

1. M.L. Balinski, "Fixed Cost Transportation Problems," NRLQ, 8, 41-54, (1961).

2. M.L. Balinski, "Integer Programming: Method's, Uses , Computation,"

Vanagement Science, 12, 253-313, (1965).

3. 0. Bilde and J. Krarup, "Sharp Lower Bounds and Efficient Algorithms for

the Simple Plant Location Problem," Annals o W4cketelAathematiu 1,

(1977). (Based on a 1967 technical report in Danish).

4. P. S. Davis and T. L. Ray, "A 'Branch-Bound Algorithm for the Capacitated

Facilities Location Problem," NRLQ, 16, 331-344, (1969).

5. D. Erlenkotter, "A Dual-Based Procedure for Uncapacitated Facility Location,"

working paper No. 261, Western Management Science Institute, University of

California, Los Angeles, (July 1977).

6. Marshall L. Fisher, "The Lagrangian Relaxation Method for Solving Integer

Programming Problems," Vanagement Science, 27, 1-18, (1981).

7. A.M. Geoffrion and G.W. Graves, "Multicommodity Distribution System Design

by Benders Decomposition," 14anapement Science, 20, 822-844, (1974).

8. T. L. Magnanti and R. T. Wong, "Accelerating Benders Decomposition: Enhance-

ment and Model Selection Criteria," Opeitation4 Remaxch, 29 464-484, (1981).

9. R. L. Rardin and V. E. Unger, "Solving Fixed Charge Network Problems with

Group Theory Based Penalties," Nava. Reiseatch Logistin QualEtetty, 23

67-84, 01976).

ATTACHMENT 2

Industrial and Systems Engineering
Report Series J-82-4
June, 1982

DEVELOPMENT OF A PROGRESSIVE DISAGGREGATION
ALGORITHM FOR FIXED CHARGE

NETWORK FLOW PROBLEMS

by

Ronald L. Rardin*

and

Oscar Adaniya**

* Associate Professor, School of Industrial and Systems Engineering, Georgia Institute
of Technology, Atlanta, Georgia 30332

** Assistant Professor, Industrial Engineering, University of Miami, Box 248294,
Coral Gables, Florida 33124

This paper describes preliminary research still in progress. Do not reference or quote
without the expressed consent of the authors.

This material is based upon work partially supported by the National Science Foundation
under Grant Number ECS-801954

Abstract

Fixed charge network flow problems model network design and location

settings by allowing both fixed and variable charges for arc flow. Recent

research has shown that very close approximations to mixed-integer solutions

for each problems can be obtained from massive linear programs wherein flows

are artificially disaggregated into separate components for each origin - des-

tination pair. This paper develops the strategy of a progressive disaggregation

algorithm employing the latter linear programming relaxation. However, flows

are initially undisaggregated. As computation proceeds, supply and demand sub-

sets are further and further partitioned to tighten the relaxation as required

without incurring the computational burden of a complete disaggregation into

supply-demand pairs.

s.t. 	 x. a =

(i, 8)6E 	1

(1)

(2)

(3)

1. Introduction

The fixed charge network flow problem in one commodity is typically form-

ulated

min 	 y • .x.. + 	I 	f_y..
1.] 	

(i,j)cE
1J 1J

for all REV

	

x. 	s
a 	

for all acS
(a,DEE 	et3

(n)

	

x z . - = 0 	for all ter

(9„DEE 	3 	(1. 5 9...)cE 1

x
13
./u

13
. 	

13
y.. 	for all (i,j)EE

x.. 	0
	

for all (i,j)cE

1 	y.. 	0
	

for all (i,j)cE

y.. integer
	for all (i,j)cE

Here E is the arc set of a specified network; x,. is the flow from i to j;
3.3

S, Dand T are the supply point, demand point and transshipment point subsets of

nodes respectively; s a is the supply at point a; d a is the demand at point (3;

and u.. is a capacity of arc (i,j) flow. Costs (1) include a variable (per unit
3.3

flow) cost v.. and a fixed charge f.. "switched on" by the 0-1 variable y..
1J 	 1J 	 1J

whenever x.. > 0. We assume throughout that all f.. and v.. are nonnegative

although the latter requirement can be relaxed in some cases.

Formulation (FC) gives a correct mixed-integer statement of the fixed charge

network flow problem, but its linear programming relaxation, (obtained by deleting

(i,j)cE

OeD (a,j)eE °J
y 	x .[a,8] < s

a 	
for all aES 	 (11)

(Mc)

constraint (8)) often provides only a very poor approximation to the mixed in-

teger form. Rardin and Choe (1979) and Rardin (1982) demonstrated that a much

better linear programming approximation is obtained by disaggregating flows

x. j into components x..[a,8] distinguished by the supply point a at which the

flow originated and the demand point 8 to which it is defined.

Such a multi-commodity formulation is

min v. 	 y 	- f.. Y..
(i,j)cE 	aES '360 1.3 	(i,j)cE iJ 1.]

(9)

s.t. 	 x„ [a,12.] = d
o 	

for all 8ED 	 (10)
acS (i,B)cE 1 '

(12) xv [a,8] - 	x. ,[a,8] = 0 	for all aES
(2.,DEE 3 	(1,0EE 	 RED, keT

(1/u. 4) 	y x..[a,8] 	
Y

1J aES 	13 	
13

x..fa,81 	0

1 > y., ?_ 0
1J

integer yij

for all (i,j)EE

for all (i,j)EE
acS, RED

for all (i,j)cE

for all (i,j)cE

y
ij 	

for all (i,DEE 	 (17)
min{sa' d

}
	 aeS, RED

As mixed-integer programs, forms (FC) and (MC) are equivalent. However,

disaggregation of (FC) flows x. j into separate commodities x
ij
 [a,c3] leads to a

tighter linear programming relaxation in (MC) because of the new constraints

(17). With f., 	0 the linear programming relaxation, say (f), of

(FC) will always have an optimal solution with no slack in (5). Thus, (FC)

solutions incur only the fraction x„/u.. of the fixed charge f.. that flow
13 13 	

xij

forms of its capacity u... Equation (13) enforces the same limit in (MC), the
iJ

linear programming, relaxation of (MC). However, (17) also forces y., to be as
ij

large as the fraction of any source a or sink f3 flow passing through (i,j).

The improved linear programming relaxation follows when (as is usually the

case), s
a
and/or are much smaller thanu ii .

Although providing generally much tighter linear programming approximations,

the (NC) form is an enormous linear program. For a case with 750 arcs, 25

supplies, 100 demands, and 125 transshipment nodes, (MC) has over 400 thousand

main constraints and approximately 2.2 million variables. The dual ascent scheme

proposed by Hardin and Choe (1979) exploits problem structure in a Lagrangean

relaxation, (we give details below), but a typical iteration still involves

shortest path problems for each (a,0 pair, and search over dual variables for

all constraints (17). For the problem size just described, there would be

2500 such shortest path problems and approximately 1.9 million searchable dual

variables.

However, the formulations (FC) and (MC) may be viewed as endpoints of a

disaggregation continuum. Form (FC) treats all flows in a single commodity;

(MC) disaggregates flows into artificial commodities for each origin - destination

pair. Certainly, there are intermediate possibilities wherein flow is treated

in groups, (Ak ,Bk) with Ak c S, Bk c D.

In this paper we first sharpen the (MC) formulation and then develop

-3-

strategies for an algorithm exploiting a progressive disaggregation of SxV

flows. The algorithm generally follows the Lagrangean relaxation philosophy of

Rardin and Choe (1979), but processing begins with the undisaggregated form (FC),

i.e. with one supply group Al = S and one demand group 13 1 = D. 	As com-

putation proceeds supply and demand groups are progressively partitioned to

create new artificial commodity structures. It is hoped that computational testing

now underway will demonstrate such a progressive approach reduces total calcu-

lation to obtain a satisfactory approximation to an (MC) optimum.

y 	x ja,f31
aeAk se$k

Y 	
for all (i,j)cE 	(18)

d 	ij and all k
facA

k
a (3cB

k

13

2. An Improved Formulation

Flow in our given network can be conceptualized as the rectangle of Figure 1.

Sides reflect supplies and demands respectively. Formulation (FC), which uses

only one commodity, views the rectangle of flows on arc (i,j) as a single unit

x... In (MC), each supply, demand cell of the rectangle is tabulated separately

as x..[a,P]. At disaggregation levels between these extremes, supplies and demands

are grouped in a rectangle (A
k

,73
k
) collecting all flows from origins acAk to

destinations f3eBk .

The analog of Rardin and Choe's (MC) constraint (17) for such a commodity

k'k
) is

However, by treating supplies and demands separately we can expand the sums

in the numerator and thus sharpen the relaxation.

Lemma 1: Improved Formulation. Let x..[a,S], sa , 	S and 1) be as in formu-
j

lation (MC), Ak a nonempty subset of S and Bk a nonempty subset of D. Then the

following constraints are satisfied by every feasible (integer) solution to (FC)

I 	I x. 4 [a,S1
acAk Sep 1-I

L
	

(Yij min 	s , I d o
/ acAk CI (30) '

for all (i,j)cE
and all k

(19)

an intermediate grouping (Ak ,Bk)

. . .

• • •

dl v l

total flow x,.
ij

x..
11

[ct,3]

SI

Figure 1: Total Flow as a Supplies by Demands Rectangle

	

/ 	x..[a,8]
acS BcB 	1J

	

min) I 	do , I s
laEBz P acS `24

y.. 	for all (i,j)cE and all k (20)

s> >0,da >0,xij [a, 8 ,

ij satisfying(18)1D{y ij satisfying (19) and (20)1
	

(21)

Proof: It is clear that (19) and (20) are valid in (MC); they simply require

that yij be at least the fraction of supply in Ak or demand in 	passingg through

(i,j), respectively. To see (21) observe that if I 	s
a

5_ I 	d0 , (19) has
acA

k
acB2

the same denominator as (18), and at least as great a numerator. If

acAk a ae8
k

s 	d
6,

(20) dominates (18).

For a system of q commodities (A 1 , B1), (A2 , B2),...,(A
q
 , B

q
) there are

q constraints of type (18) and potentially 2q like (19) and (20). However,

any commodities k and SZ, with Ak = Az or Bk = 89, have the same constraint (19)

or (20) respectively. The result can be a considerable reduction in the possible

number of (19) and (20). In the extreme case where every (a,a) c Sx1) forms a

separate commodity, there are ISI + IDI constraints (19) and (20), but ISI • IDI

limits (18). Thus, at least, as this complete disaggregation is approached,

use of (19) and (20) results in both a substantial saving of constraints and a

gain in formulation tightness.

3. The Lagrangean Relaxation Settini

With even a partial disaggregation of problem flows into artificial

cottuttodities, one obtains a formidable linear program relaxation to be solved.

If arc capacities (13) (or (5)) are nonbinding, Rardin and Choe (1979) showed

how an effective Lagrangean relaxation of the remaining problem could be structured

by summing constraints (19) and (20) in the objective function with nonnegative

A dual multipliers. Let A=4.4.0 be the list of distinct supply subsets of current

artificial commodities, {a
ij

[ic]: A
k
eA,(i,j)en be the nonnegative dual multipliers on

A corresponding constraints (19), B----{Bt the list of distinct demand subsets of

current commodities, and {S ii [k]: Bz EB, (i,j)cE} be the dual variables on their

constraints (20). Then the implied Lagrangean relaxation is as follows:

min 	V 	v. 	 + 	/ 	f
"y • • (i,j)cE 1J aES Bev 1J 	(i,j)cE 33 1J

X x., a,f31
•asAk acD 1'

min 	s , 	d 	Yij
aC Ak a REV

+
(i,j)cE Ak6A 1J a

(22)

/ 	X 	[t]
(i,j)cE BzeB

aeS 13E8k xii [c] /
	/

min{ 	d s
a) 1(36 	aeS Bz

s.t. 	 x..ta,al = d 	for all aa 	 (23)
acs (i,ocE J

x 	a,13] 	s
a 	

for all aeS 	 (24)
(3eD (a,j)cE 	° jJ

(13
a6

[A
'
B])

xja,31 - 	x.,[a,f3] = 0 	for all aES,
(Z,DEE 	 (i,k)eE 	1' 	 8cD, tET

(25)

	

x..[a43] 	0 	for all (i,j)ct, 	(26)
acS, ficD

	

1 ?- y ij 	0 	for all (i,j)cE 	(27)

integer 	for all (i,j)cE 	(28)
Y ij

For any choice of nonnegative
ij

[k] and
ij

[t] formulation,i(P
a6

[AA])

gives a valid lower bound on the cost of an (Pc) or (KC) optimum. A-search is,

of course, necessary to find good dual values.

The advantage of the (P66 [A,13]) form lies with the fact that [a,(31 systems

are linked only through the objective function. Thus, for fixed dual values,

(Pa6 [a,S]) separates into a series of shortest path problems for [a,$] pairs,

followed by an S to D transportation problem.

InCluding subgradient steps to improve duals and revise the present commodi-

tization, a full procedure employing (P as [A,g])is as follows:

Step 0: Initialization. Fix dual and primal incumbent values

vD 	vP 	"f° '

Step 1: Initial Disaggregation. Partition the source mode by desti-

nation node set SxD into an initial series of artificial supply-demand

commodities, and let A be the list of distinct supply subsets, Ale

and 8 the corresponding list of distinct demand subsets . Fix

all duals a. ..[k] and (S..[9.] at zero.

Step 2: Implicit Costs. Determine (22) objective function coefficients

f. 	f 	- X 	a. [k] - / 	(3..[Z] 	 (29)
AkcA 	 a 13

v..[a,M + 	+ 	/ (a[k]/s[k]) + 	y (6..w/d[z],
1, 	

vij 	 ..
1, 	 ", 	1,

AkeA:aeAk1 	 {13t '
03.f303

t
 }

(30)

where s[k]AminX 	s, 	 (31)
1 acAk a 1303 P

d[2] 	min 1 	 X sj 	 (32)

6 8t 	
acS

Step 3: Shortest Paths. For each pair (a,(3) of a source and a destination

node, compute the shortest path from every a to every S over arc lengths

v • Ja,(31. Let R[a,f3] be the set of arcs in the shortest path from node

a to node (3 and c[a,f3] its length.

Step 4: Transportation Problem. Using costs c[a,f3], suppliers s a and

demand d S , solve an S to D transportation problem. Denote by z[a,5] an

optimal flow from a to 13 obtained in the solution to the transportation

problem.

Step 5: Flow Solution: For each a and 13 , assign z[a,f3] units of flow

to all arcs (i,j) in the corresponding set of shortest path arcs R[a,(3].

Step 6: 0-1 Problem. Compute relaxation optimal values for the y ij

 variables via

	

y.. 	1 	if f.. 	0 and 0 otherwise.

	

lj 	 1J

-10-

Step 7: 	Dual Solution. Compute a dual solution ,
v
D,

as the sum of

the costs of the optima in Steps 5 and 6. If v
D

v
D

save a new dual

incumbent v
D

v
D.

Step 8: Primal Solution. Create a feasible solution to (DC) by paying

full fixed :charges on any arc used in the flow of Step 5. Let v p be

its cost. If v
P
 < vP' save a new primal incumbent as an approximate

optimum to (FC). If not, check whether the rate of improvement in the

* *
ratio

vP/vD
is satisfactory. If so, go to Step 10.

Step 10: Dual Update. Modify duals a ii [k], and d..[Z] by taking a finite ij

step along a subgradient of the Lagrangean dual function at the current

dual point and projecting to restore nonnegativity (see for example

Bazaraa and Goode (.1979) for details on subgradient schemes). Then return

to Step 2.

Step 11: Disaggregation. Further subdivide the present artificial commodi-

tization of Sxp. Add any newly created distinct supply subset Ak to A and

pick an appropriate nonnegative starting value for corresponding dual

variables {a
ij

[k]:(1,j)cEl. Similarly, add newly created distinct demand

subsets
2, to B and choose nonnegative ij

[2]:(i,j)ce. Then, return to

Step 2.

4. Artificial Commodity Structures

One important set of issues surrounding the implementation of the above

algorithm concerns the family of artificial commodity structures employed. The

algorithm is impacted by commodity structure in several ways.

• Relaxation Tightness. One aspect is the degree to which the linear

programming relaxation of problem (9) - (16), (19), (20) tightly

approximates the underlying integer problem. Commodities impact

relaxation tightness through the fact that there is one set of

constraints (19) for each distinct supply set (i.e. each AkeA)

and one set of constraints (20) for each distinct demand set (each

k
eB). Relaxations associated with different commodity structures

differ only in the limitations imposed by these constraints.

oDuallIariables.Thenumberofdualvariablesetsfa..[M:(i,j)cEl

and -(8..[SO:(i,j)zEl which must be stored and searched over in any
1J

commoditization is also controlled by the dimension of the distinct

supply and demand subset sets A and B. For each AkEA and each

BEB there is a set of constraints (19) or (20) and an associated

set of dual variables.

o Shortest Path Problems. Step 3 of the algorithm calls for finding

shortest paths between all supply-demand pairs. Arc lengths

v..[ct,f3] for shortest path problems are as in (30). Assume, as is

usually the case, that there are many fewer supply nodes than demand

nodes (Symmetric arguements could be given for the opposite case).

Then, noting all v..[a,r3] are maintained nonnegative throughout pro-

cessing, a version of the efficient Dijkstra (1959) algorithm should

be employed to compute shortest paths. But the Dijstra algorithm can

compute simultaneously the shortest path from one node to all other

nodes. Thus, if 	fa,$) is independent of 	the Dijstra procedure

However , if the

termof(20)createsdifferentv..[a,(3], the procedure must be applied

onceperaESsrldperdemandsubsetwithdistinctv..[a,S]. In total

number of combinations of
13 03 to which any

simultaneously belongs

shortest path will be 'required per execution of Step 3.

-12-

From the above it is clear that all impacts of artificial commodity struc-

ture are controlled by the supply subset list A {Ak} with each Ak c S and

the demand subset list B =18 1 with each B c D. To compare possibilites,
Q . .

define a structure [A,B] to be tighter than another [A,B]

(

satisfying (19) for AkeA 	 satisfying (19) for A
k
EA yid

	
yid

 and (20) for 8Q e8 	 and (20) for B
i
a

That is, [A,B] is tighter than [A,B] if it provides at least as tight a linear

programming relaxation. We can then obtain some simple dominance results.

Lemma 2: Dominance of Covering Subsets. Let [A,B] be a commodity structure for

flows in Ski), i.e. A a list of distinct nonempty subsets of S and B a similar

list of subsets of D.

[Au 	, 8] and [A,Buriill

than either [Au{X),B]

Also, defineAcS-uA, and8cD-uB, . Then both
A 	 B K

are tighter than [A,8]. Also, [Au{A}, 8u{/7}] is tighter

. -
or [A,Bu{B}]. That is, extending the parts of S and D

covered by A and B tightens the formulation.

Proof: 	Immediate from the fact that new constraints (19) for A and/or (20) for

B are added, without deleting any others.

Lemma 3: Dominance of Partitioning Subsets. As above let [A,B] be a commodity

structure for flow in SxD, and pick any AkcA such that I s 	I d„, and any
asAk 'a 	13eD

B a with 	d s 	s. Then both [A,B], and [A,B] are tighter than [A,B]
BeD 	aeS a

and [A,B] is tighter than [A,B] or [A,B] where

A = 	 u {At: all Ak c Ak , Ak n A1=4) for ij,u
" =
	 (34)

B=6— 6 1 U {Bi - all Bi c 6 	BI- n 0=4) for iij, u 	= 6 1 	(35)
2, 	k

That is, replacing such Ak and 6ft, by a partition of them yields a tighter

relaxation.

Proof: We shall show only the case of {AA tighter than [A,6] where

1 	2
A = A - {Ak} u 	A.12(1 with Al

k
 c Ak,
	k A

2 c Ak , Ak n Ak= (!l, and Ak u Ak

All other cases follow by analogous arguement for B and straightforward

i induction on the number of {Ak} or {8 } respectively.

For our case the only difference in formulations [A,B] and [A,B] is the

former contain

versus the latter's

and

xii [a,8]
aeAk seD

min
 {

1 	s, X
aeAk a 13e1)

5 Y
min 	s , y 1J

aeAk a f3eD

 x..ice,81
aeAk I3eD 13

yi] min { y 2 sa 	
d

aeAk 	' (3ED

for all (i,j)cE (36)

for all (i,j)eE (37)

for all 	(i,j)eE (38)

X Ic.J04,al
aeAk ' REV 13

By the hypothesis that 	sa
5 y d

$'
the supply sum provides the minimum,

aeAk 	(30)

proof reduces to showing

2
in denominations of (36) - (38). Thus, noting Ak and Ak partition Ak , the

-14-

X x..[a,P.] 	 X 	x..[(1,]
13ED 	1J 	aEA

2
SO) 	1]

max
s

aEA
k

a

2 sa

aeA
k

1 	
+ 	2 	X x..[a0]

aEA
k 	3 	aeA

k SED 13

s

	

1 	a 	L.2 	a aeAk 	apA
k

Assume the Ak term provides the max on the left in (39). Then if (39) fails

/ 	/ 2tij ta,fil 	/ 1 	/ 	 + 	2 	/ x. i [a,]

	

cLEAk $eD 	 aEA
k

BED 1- 	aEA
k
 Sea 1J

X l sa + 	s

	

1 sa 	 2 a

	

acAk 	 aeAk 	aeAk

Cross multiplying and simplifying leads to

	

/ 2 s I{ / 1 	xi* ra ' l 	1 s][2 	/ 1" a 'l
aEA

k
a aeAk BED J 	< aeAk a aeAk 13eD 1J3

Or

y x..[a,] 	X 	X x..[a,f3]

	

aeAk f3eD 13 	 CtEAft 	c't)

s2 sa

	

aeA
k

a 	 aEAk

k
Al Since this contradicts the assumption that A provides the maximum in (39), we

can conclude (39) holds, and the Lemma follows.

nit

(39)

-15-

Lemma 2 makes it clear that tighter relaxations will result if we con-

sider only commodity structures with (A,B] covering [S,D], i.e.

u Ak = S
A

uBQ = V

There could, of course, be a price in terms of dual variables and shortest

path problems for demanding a cover. However, at most one new supply group

S - u Ak , and one new demand group V - u BQ , would have to be added to a non-
A

covering [A,13]. Thus, only two new sets of dual variables and perhaps

no new shortest path calculations are implied. For these reasons we enforce

(40) and (41) in all further discussion.

We shall also demand commodity structures be nonoverlapping i.e.

	

Ak n Ai = 0 	for all Ak ,AicA, i k 	 (42)

	

n 13j = 0
	

for all B
R.
, $, c$, jfi, 	 (43)

Lemma 3 provides part of the arguement for the latter restrictions. That lemma

shows relaxations are usually tightened when a supply set A k (or a demand set

) is partitioned. It also follows, for example, that when Al c A2, it is

preferable to include sets Al and A2-A1 in the commodity structure instead of

Al and A2 . We see that there is usually a gain in relaxation tightness when

supply or demand sets do not overlap. In the A
l c A2 example there was not even

an increase in dual variables. However, replacing an arbitrary Al and A2

by (A1-A2), (A1 n A2), and (A2-A1) would tighten the relaxation only by a net

increase of one system of dual variables.

(40)

(41)

-16-

The other arguement for nonoverlapping sets as in (42) and (43) relates

to the number of shortest path problems (33). Since subsets in any list B are

distinct, (33) cannot be less than ISI • W. Any 8 satisfying (43) achieves

that lower limit.

5. Implementation Issues

Based on the analysis of the previous section, we propose to implement

the Lagrangean relaxation algorithms of Section 3 via supply group and demand

group lists A and B that always partition S and D as in (40) - (43). Step 1

will create initial partitions, and each time disaggregation Step 11 is executed

2
either some Ak c A will be replaced by two nonoverlapping sets A k and Ak , or

1 	1
some B e B will be replaced by a similarly partitioning pair B B.

k

Even within this approach to disaggregation, there remain many issues re-

garding implementation of the algorithm of Section 3. When the algorithm starts,

a decision must be made with regard to the initial number of subsets in A and

and the elements of each of these subsets. Then, at every iteration it must be

decided whether to further the disaggregation by partitioning an Ak s A or

8k c 8. When the decision to proceed with the disaggregation is made, a series

of additional decisions are confronted, including selection of the subset to be

partitioned, the assignment of its elements to the new subsets, and the

initialization of the dual variables corresponding to the new subsets.

5.1 Initial Generation of Artificial Commodities

At the start of the procedure it could be decided to have one or more

elements in partitioning lists Aand B. If the decision is to start with

singletons A ={S}, 8 = {D}, all further partitioning of the original source node

set and the original destination node set will be performed in the disaggre-

gation Step 11.

-17-

An alternative is to partially partition S and V from the beginning. In

general more dual variables and more shortest path problems will result in

early iteration. However, if the source nodes and the destination nodes are

initially grouped based on a careful analysis of the problem to be solved,

the relaxation may be much tighter so that progress on the dual bound in the

initial stages of the procedure is faster, favorably compensating the additional

computational burden brought on by handling more artificial commodities from

the beginning. It is also possible that by starting from an "intelligent"

list of supply and demand subsets, further disaggregation of these initial

subsets would be more beneficial because the initial grouping has already con-

sidered concerns too bulky to include each disaggregation step. Finally, an

initial subdivision of S and 17 obviously implies the number of times the

disaggregation step will later be invoked by the algorithm is significantly

reduced. Thus results may be less sensitive to the effectiveness and efficiency

of Step 11 calculations.

In light of these potential advantages non-singleton initial disaggregations

are being tried in computational testing presently underway. In picking initial

groups the goal is to quickly reach a tight relaxation without producing too

many elements of the initial bland 13 lists. Noting the form of constraints (19)

and C20) it appears we would like to segregate supply and demand points with

large s
a

and d
8
 respectively. Otherwise, their presence in the denominator of

(19) or (20) dilutes the impact of other flows on y id . Similarly, if a node

is isolated, and thus particularly expensive to service, it seems reasonable

to employ a strong relaxation in regard to it, i.e. isolate it in a separate

supply or demand set.

For these reasons the initial disaggregation Step 1 being tested auto-

matically segregates in one-point sets any supplies and demands with unusually high

servicing cost or supply/demand. For remaining supply and demand points,

-18-

constraints (19) and (20) will be strongest if flows tending to have a

common shortest supply-demand path are grouped. In the algorithms initial

groups are formed so that ones with the most common path elements are-together.

Figure 2 shows a single-supply example of these initial disaggregation

notions. Since there is only one supply,A = S={1}. The initialization rules

we have outlined would create a starting partition of V = {2,4,5,6,7,8} as

= {{5}, {6}, {2,4}, {7,8}.. Node 5 is isolated because of its high demand,

node 6 because arcs entering it are particularly costly. Among the remaining

nodes, 2 is placed with 4 because all paths to 4 pass through 2,and 7 with 8

because many paths to 8 transit 7.

5.2 Selections of the New Partition

In the dual ascent procedure, used in conjunction with the progressive

disaggregation procedure described herein, whenever the rate of improvement on

the bound of the optimal solution to (P a6 fA,M) does not meet the minimum

standards set beforehand, it signals the need to further disaggregate some of

the current artificial commodities. This is carried out by partitioning one or

more supply and/or destination node subsets. As noted above we have chosen to parti-

tion only one subset at any one time. The main reason for such choice is to

keep the procedure simple while still achieving the goals of the disaggregation.

The selection of the subset to be partitioned involves ranking the current

subsets according to some criterion that matches our strategic objective --

significiant improvement of the dual bound. As we have explained earlier, the

disaggregation pattern affects the dual bound only through constraints (19)

and (20). In the algorithm of Section 3, those constraints are included in the

(pas jA,131) objective function as terms

=20
s1=700

(3,20) 	W 	(2,30)

d 5=500

=10 	 d =30 	 d6=80

"e

d
7
=30

Figure 2. Initial Disaggregation Example

Ex..
(f ij) BeSt aeS xij

and
(i,j)cE

6 -Ti [Z]

e-

Yij
(45)

n[t] 	d[t]

m[k] s[k] 	 Yij
f.)(eAk BEDBED 1J

	

lj 	

/

a.[k]
(i,j)eE 1.3

(40

where s[k] and d[t] are as in (31) and (32). One new element is nonnegative

weights (f../m[k]) and (f ij /n[t]) used to scale constraints (19) and (20) for

greater subgradient search efficiency. Generally, m[k] is similar in

magnitude to s[k], and n[t] to d[tl.

Since the expressions in (44) and (45) are less than or equal to zero

in feasible solutions, minimizing their absolute value will tend to improve

the dual bound quality. Consequently, we select for partition the subset for

which the corresponding expression (44) or (45) is the most negative. The

implementation of this selection rule is very simple and it does not involve

any additional calculations, since the values of expressions (44) and (45) are

always readily available in the dual ascent procedure where they are used in

evaluating the objective function.

Once the subset to be partitioned is identified, it is necessary to deter-

mine how to partition it. This includes deciding how many new subsets to

create and which elements of the subset being partitioned to assign to the

new subsets.

With regard to the composition of the two new subsets, a criterion similar

to the one used in selecting the subset to be partitioned is applied. For each

element of the selected subset, its contribution to the expression in (44) for

a source node subset, or to (45) for a destination node subset, is evaluated.

Based on these contributions, the elements with the highest contributions

will be assigned to one of the subsets, and the rest of the elements will be

assigned to the other. Each of the new subsets is required to have the same

number of elements, so that all singletons will be reached in the minimum number

of partitions. 	Again, these decision rules are quite simple to implement

because (44) and (45) are readily available.

5.3 Initializing Dual Variables

Once it has been decided to partition a supply group A k or demand group

Be initial values must be chosen for dual varialbes a ii [k] or 8 ij [2,] and for

scaling coefficients m[k] or n[t]. We shall discuss the case of partitioning a

demand set B into two new sets B and B for which we seek new duals

f8ij
[p] and 8

ij
 [q]: (i,j)cE} and scaling weights n[p] and n[q]. The case of

partitioning a supply subset Ak is completely analogous.

In the previous section we showed how the goal in selecting B and B

was one of maximizing the short term improvement in dual bound. We would, of

course, like initial dual variables to also advance the dual solution. But

there is another important issue: we desire stability in the dual search so that

any poorly chosen duals will quickly be corrected by Step 10 of the algorithm.

To obtain stability, we seek to assure that the x and y primal solutions

of Steps 5 and 6 of the algorithm (Section 3) will not decrease violently in

the first iteration after disaggregation. (If group selection was sound the

dual value should improve).

At Step 6,Y
j
 4- 1 if f

ij 	
0 and 0 otherwise, where (including the

scaling factor f../n[9,])

fij
. = f

ij .
	1 - X 	oil [k]/m[k] - X 	(5..[9,]/n[Z]

AkeA IJ 	 B e8

Dividing 8
9,

into 13 and R in the B list will merely replace

8. [Q]
15 	6. [P] P, 	S. [q

]

n[Q] 	
ij

n[p] 	n[q]

Thus, the yii solution will be unchanged if

8..[p] 	6 ..[q] 3.3
n[k] = n[p] 	n[q]

Tosimilarly preservethex.Ja,a1 solution of algorithm Steps 3-5, we

desire to leave unchanged shortest path arc lengths

(46)

(47)

= v.. + f.,
1,1 	 13

a ij [k]

/ m[k]s[k] 	n[9.1d[9,]
(48)

{A EA:acA } 	{8QeB:WBQ
}

After partition each 8 will belong to 8 or 8 , but not both. Thus, either
P 	q

ts ij fpl 	6 ij [q] 	
S
ij [2]

or 	 will replace 1.1[2, , , 	in .08),
n[p]d[p] 	

n[q]d[q]
	

n[Q] d[Q]

The dual selection we propose is fixing

n[P] f n[2]

n[q] f n[2]

Sid [p]
	S id [2] d[p]

d[t]

d.,[q] f 8..[t] d[q]
1J 	d[k]

Substitution in (47) gives

s..rpl 	
$..[q]
	6..[z] _

-17171--+ 71-7-J- 	n[2]
r

6..[Zi
d[P]+d[q] 	-

d[R] n[2]d[i]

the last because Bp and 8 partition demands in 8 . Also, (49)-(52) yield

5..
[P] 	 (d[p]) 	8..[z]

n[p]d[p] 	n[i]d[p] kcl[k] 	n[2]d[Z]

and

5..[4:1] 	(3..[9,] 	d[q] 	d..fil

n[q]d[q] 	n[Z]d[q] (d[2,]) 	n[k]d[2]

(49)

(50)

(51)

(52)

as required to preserve the v
ij

[a,8] of (48).

6. Experimentation

Previous sections outlined the development of a strategy for implementing

progressive disaggregation in the context of a Lagrangean relaxation algorithm

for tight formulations of fixed charge network flow problems. 	Justifications

provided for details of the algorithm do consider problem properties, but their

true effectiveness can only be measured empirically. Thus, a series of experiments

involving variants of these strategic decisions is presently underway.

REFERENCES

Bazaraa, M.S. and J.J. Goode (1979) "A Survey of Various Tactics for Generating
Lagrangian Multipliers in the Context of Lagrangian Duality," European Journal
of Operations Research, 3, 322-338.

Dijkstra, E.W. (1959), "A Note on Two Problems in Connexion with Graphs," Numer
Math, 1, 269-271.

Rardin, R.L.(1982), "Tight Relaxations of Fixed Charge Network Flow Problems,"
Industrial and Systems Engineering Report Series No. 3-82-3, January.

Rardin, R.L. and Ui Choe. (1979), "Tighter Relaxations of Fixed Charge Network Flow
Problems," Industrial and Systems Engineering Report Series J-79-18, May.

ATTACHMENT 3

Industrial and Systems Engineering
Report Series J-82-2
March, 1982

SOME POLYNOMIALLY SOLVABLE MULTI-001240DITY

FIXED CHARGE NETWORK FLOW PROBLEMS

by

Ronald L. Rardin
R. Gary Parker

and

Wang Kyu Lim

This material is based upon work partially supported by the National Science

Foundation under Grant Number ECS - 8018954

ABSTRACT

Recent developments have shown that many uncapacitated multi-commodity

fixed charge network flow problems admit very tight linear programming re-

laxations in the sense that continuous solutions closely approximate discrete

ones. In this paper we show that on series-parallel graphs those linear

programming relaxations are perfect, i.e. they yield discrete optima. We

also illustrate how a number of known combinatorial optimization problems

can be formulated in this fixed charge format. The implication is that all

the indicated fixed charge problems, including the specified combinatorial

cases, are solvable in polynomial time via linear programming.

1. Introduction

The Uncapacitated p-Commodity Fixed Charge Network Flow Problem can

be stated

min kL, vk xk + fx
o

"
s.t. 	E x

k
 = r

k
	 for k=1,2,...,p

k
x > 0 	 for k=1,2,...,p

0 	V k

	

Px. >kE1 x. 	for j=1,2,...,n j 	= 	j

0

	

xj = 0 or 1 	for j=1,2,...,n

where E is the vertex-arc incidence matrix of an n-arc directed network,

k
x is the flow vector of commodity k in the network, v is the vector of

variable costs per unit for flow x
k
 , r is a requirements vector on commodity

k, f. is a fixed cost incurred when at least one commodity uses arc j, x0

is a vector of 0-1 variables switching "on" and "off" the fixed charges, P

is a large constant, and 0 and 1 represent appropriate vectors or matrices

of 0's and l's respectively. We assume throughout that f 	0 and that the

sum of -v. k around any directed cycle in the commodity k network is nonnegative.

Under these assumptions, x. = 1, and f. is paid, exactly when constraint

(1-4) allows flow.

Unlike the usual multi-commodity flow problem (see for example Kennington

and Helgason (1980)) commodities do not compete for an arc capacity. Instead,

they interact through the shared fixed installation/construction/setup cost,

f..

We term the problem "single-source" because we shall assume that each

commodity is supplied at a single vertex, although this vertex may vary with

commodity. This assumption implies that each r
lc
 is a vector with components

summing to zero which has a unique positive component at the supply point,

negative entries at various demand points, and zero entries where the

commodity is only transhipped. Of course, any uncapacitated commodity flow

problem can be placed in single source form by adding an "super source" if

required. However, this transformation would change the form of the graph--the

issue to which we will shortly direct our interest.

Although formulation (1-1) - (1-5) is a correct mixed-integer statement

of the problem, previous work (see Rardin and Chou (1979)) has shown

that its linear programming relaxation (replacing (1-5) by 0 5 x
0
 5 1) often

gives a very poor approximation to an optimal solution. Much better results

are obtained if each commodity is subdivided into separate commodities for

each demand point. One can then rescale flows, requirements, and variable

costs so that all demands are unity. The result has the form

q k k 	0
min

k E 1
 v x + fx

=
(1-6)

(MCFC) 	s.t. Exk = rk

x0 > x
k

0

0 .
x integer

for k=1,2,...,q

for k=1,2,...,q

(1-7)

(1-8)

(1-9)

with each r
k
having exactly one +1 and one -1, and q the revised number

of commodites.

In this paper we investigate cases for which the linear programming

relaxation of (MCFC) is "perfect", i.e. cases for which the integrality

requirement (1-9) is redundant. In Section 2 we use results in Truemper

(1977) and Truemper and Soun (1979) to show that if the graph associated

-2-

with matrix E has a certain series-parallel property, (1-6) through (1-8)

will always solve in integers. Thus, since linear programming problems can

be solved in polynomially-bounded time (Khachian (1979)), it follows that

all such (MCFC) are polynomially solvable. Section 3 shows how several

familiar combinatorial optimization problems can be formulated as (MCFC), in

which case, they too are polynomially solvable on the indicated graphs.

2. Unimodular Cases

A matrix M can be termed unimodular if the determinant of every maximal

nonsingular square submatrix M (denoted deb (M)) is f 1. Unimodularity is

a weaker property than total unimodularity for which all square submatrices

R have deb (Si) = 0, + 1. Still, it is well known (see Vienott and Dantzig

(1968)) that a linear constraint system

Ax = b

x 0

has integer extreme points if A is unimodular, and A and b are integer; basic

solutions computed by Cramer's rule will have unit denominators.

Suppose E is the vertex-arc incidence matrix of a directed graph,

T. Thus, if arc a k = (i,j) belongs to T, column k of E has a +1 in row i

and a -1 in row j. Such E are well known to be totally unimodular. Truemper

(1977) investigated conditions under which constraints Ex = b may be supplimented

with additional linear constraints Dx + s = d while keeping the corresponding

constraint matrix at least unimodular.

A subgraph of a graph, say T, is said to be Euler if every vertex of T is

incident to an even number of arcs of T. A vector x is a circulation vector

onasubgraphiofTifEX=Oandx.=0 whenever the corresponding edge j

of T does not belong to T. In terms of these definitions, Truemper's main result

can be stated as follows:

-3-

Lemma 1. Unimodularity of Networks with Side Constraints (Truemper (1977)).

Let E be the vertex-arc incidence matrix of a directed graph T and D a matrix

of integers. Then the matrix

E 0

D I

is unimodular if and only if

(i) There exists a spanning forest of T such that for every cycle C
k

formed by adding arc k to the forest there is a nonzero circulation

vector x
k
with 0, ± 1 components such that Dx

k
is a vector with

0, ± 1 components; and

(ii) For every Euler subgraph T of T with nonempty arc set, there is

-
arlonzerocirculationxonTsuchthatcomponents020.=0 whenever

row sum (D1), is even.

Our interest here is in the unimodularity of the constraint system for problem

(MCFC). As stated in (1-7) and (1-8), the vector x ° is not subject to balance

of flow restrictions,

Ex0 = r 0 	
(2-1)

However, it will be convenient to add such constraints for the moment. Now

when slacks, s
k
, are also added in the constraints (1-8), the matrix of

interest becomes

I

I

•I

x0
	

x
1 	

x
2 	

xq 	s
1 s 2 	

sq
E

E

E

E

M =

-I 	 I

The graph, T, of Lemma 1 is simply q+1 copies of the directed graph G over which

(MCFC) is defined.

A connected, undirected graph U is said to be series-parallel if it

can be reduced to a tree by sequential application of the following operations:

series reduction: Replace a degree-2 vertex j and incident edges

(i,j) and (j,k) by a single edge (i,k).

parallel reduction: Eliminate one of any two parallel edges connecting

the same pair of vertices.

Observe that the operation of these equations is well-defined (i.e. unambiguous)

An equivalent definition (see Duff in (1965)) is that U is series-parallel if and

only if it possesses no subgraph that can be reduced to K
4

(the complete graph on

4 vertices) by using only series reduction. Clearly, the latter assures all series-

parallel graphs are planar, but planar graphs need not be series parallel. Some

useful examples are given in Figure 1.

-5 -

(a) Some Series-Parallel Graphs

(b) Some Planar, but Non-Series-Parallel Graphs

Figure 1: Examples of Series-Parallel and Non-Series-Parallel Graph

With these definitions we can now state our main result.

Theorem 2: Unimodularity of Series Parallel (MCFC) with x
0
 Flow Balance:

Let E be the vertex-arc incidence matrix of a directed graph G. Then the

undirected graph obtained by ignoring direction in G is series-parallel if

and only if every matrix of the above form M is unimodular.

Proof: We shall apply Lemma 1. The graph T of that lemma is the union of

(q+1) disjoint copies of the G for this theorem. Thus, any spanning forest

will include a spanning forest from each of the (q+1) components. Also, cycles

of Lemma 1 part (i) will belong entirely to one component. Since the lower, D-

section of matrix M consists entirely of zero and identity sub-matrices

corresponding to the components,it follows that any 0, +1, -1 circulation on a

cycle will yield a 0, +1, -1 total below. This establishes condition (i) of

Lemma 1.

To show the series-parallel property is necessary to condition (ii) of

the lemma, consider the K4
example of Figure 2, and pick the 4-edge cycles

4-1-3-2-4 and 4-1-2-3-4 as Euler Subgraphs in the x
o

and x
1
 commodities res-

pectively. The two cycles share arcs (4,1) and (2,3), and condition (ii) will

be satisfied only if we can find a nonzero circulation in the two commodities

that agrees on the two arcs. However, it is easy to check that any circu-

lation (i.e. weighting which sums to zero at each vertex) must have x
0
 weights

on (4,1) and (2,3) with opposite signs, while such a circulation for the

x
1
subgraph must have matching weights on the two arcs.

To prove the series-parallel property is sufficient for property

(ii) of Lemma 1, we proceed inductively by reversing the defining reductions

of series-parallel graphs. Property (ii) holds trivially for trees since

trees have no Euler subgraphs with nonempty edge sets. By definition of

series-parallel graphs, more complex cases can be reduced to trees by a

sequence of series and parallel reductions. Thus, by reversing the

-7-

demand = 1

demand = 1 	 demand = 1

Figure 2: Example Failing Unimodularity When Not Series-Parallel

sequence of such reductions, any series-parallel graph can be reconstructed

from a tree. We shall show that if a given graph G satisfies property (ii),

any graph, G, obtained from E by reversing either a series or a parallel reduction

Also satisfies the property. Thus, inductively, 	the property will be seen

to hold for all series-parallel graphs.

Assume that property (ii) holds for a present graph a and let G be the
next graph in this reverse reduction order. Since the graph, T, of Lemma 1,

property (ii) corresponding to G is the union of (q+1) identical copies of G,

any Euler subgraph, H, of T will decompose into Euler subgraphs H
0
, H

1

of the components. The lower D-section of matrix, M, can have even row total

(D1). only if some arc, e, belongs to both H
0
 and at least one of the

{Hi : i=1,2,...,q}.

The case of reversing a series reduction to move from a to G is straight-
forward. Suppose arc e = (i,k) of G is to be restored to the arc sequence

{e,f} of G joined at new degree-2 vertex j. For i=0,1,...,q define Hi

as the graph obtained from H i by substituting e for fe,f}. Clearly each such

H

- 1

 is an Euler subgraph of G. Thus, by induction there is a nonzero circulation

fx1:
i=0,1,...,q} on the Ri that cancels as required in property (ii). Let

x
E-
 be the weight in that circulation for edge e. We need only duplicate it on

both of e and f to have a circulation that cancels for the fH il in G. Specifically,

i
if both e and f have the same direction as e we choose x i 4 xf x- for all i.

If both have the opposite orientation to e, we make x
e
i
 4

 x
f

-x- . 	Similarly,

i
if e and f have opposite directions, we select x

e
_
e

x
'
x
f 	

xe or x
f

X
i'

1 	- i x
e
4 xe .

Now consider reversing a parallel reduction, i.e. adding an arc, e, in G

that parallels another , e, already in G. We shall assume e and e have the

same direction because one needs only to reverse the sign of the circulation

value for e in the opposed direction case.

-9-

As before let {Hi : i=0,1,...,q) be (not all empty) subgraphs of the (q+1)

copies of G. If H
o has empty arc set, there is no cancellation to prove. If

0
H has nonempty arc set, we consider three cases:

0 	 0 	0
Case 1: H includes only e and e. Create a circulation in H by x

e
+1,

0 	 0 x 4 -1. For any other H
i
containing both e and e, cancel this H circulation

by duplicating it. Any Eulerian H i that contains e or e, but not both,

necessarily includes a cycle C i including e (respectively e). Choose x
e

+1

(respectively xe 4 -1) and then pick ±1 orientation for other arcs of C i to

form a circulation. The resulting x i cancels as required on e (respectively

Case 2: H
0
 includes e and e and other edges of G. For i=0,1,...q, con-

struct Euler subgraphs of 6 as follows:

H
i

less e and e 	 if Hi contains both a and e

H1 less edges in C i if H1 contains a or e, but

H1

not both

otherwise,

Here, as above, C 1 is any cycle of H i containing e (or e).

The H systems is Euler because each construction removed a cycle from an Euler
0

subgraph. Moreover, at least H is nonempty because H
0
 had more than a and e.

Thus, the Ei are a system of Euler subgraphs of E to which property (ii) inductively

applies. Let fRi l be the implied nonzero circulation. Choosing xt
i
 4

 x
t

for all i and

t gives the required cancelling circulation for the H
i
of G. Zero xe

and xi have
e

been chosen for all i, and thus, cancellation as in property (ii) is achieved.

Still, since the x are not all zero, neither are the x
i

.

H

Case 3: H
0
 includes at most one of e and e. For i=0,1,...,q con-

struct Euler subgraphs of G as follows:

H1 less e and e 	if Hi contains both e and e

H
i

less e plus e 	if H1 contains, e but not e

H
i

otherwise.

As above the H1 are Euler subgraphs because we have only substituted parallel

arcs or deleted cycles. Also, the H system is not all empty because the edges

0
of H are the same as those in H 0 . Thus, the H system is again one to which

property (ii) inductively applies in G. Let 6c il be the implied circulation

and pick

xe 	if t=e and H1 contains e but not e

0 	if t=e and Hi contains e but not e

0
)c 	if H1 contains both e and e, t=e

and H
0
 contains e or t=e and H0

contains e

-0
if H

i
contains both e and e, t=e

e

and H
0
 contains a or t=e and H0

contains e

x
t 	

otherwise

The effect is to shift e circulation to e when e replaced e in constructing

the H system. 	That revised circulation is nonzero because the x one was.

Also, the circulation must cancel in G because it cancelled on e in G. If

the implied circulation was nonzero on the at most one of e and a in H0 , we

have also balanced it with a circulation on the fe, el cycle in each H
i
con-

H

x
i
t

r
t taining that cycle. We conclude that the new circulation X is the one re-

Y_

quired for property (ii).

Since Cases1-3 are exhaustive, the proof is complete.

Theorem 2 shows that constraint matrices, M, for versions of (MCFC) also

requiring balance of flow in the x
0
 variables are unimodular if the associ -, (2-1)

ated graph is series-parallel. To see that the result can be extended to the

ordinary (MCFC) formulation (1-6) to (1-9) consider the replacing (2 -1) by

Ex0 - Ey = 0 (2-2)

	

y 0 	 K2-3)

Here new zero-cost variables y negate the effect of the x
0 so that a zero

balance of flow can be achieved at no cost for any choice of x
0

.

The corresponding contraint matrix for this new form is

x1 	 sq

	

x
2
• • • x 	s

l
s
 2

E

E

E

x
0

E

N

I

I

r 	 r
I

I

The following corollary shows N is unimodular whenever M is.

Theorem 3: Unimodularity of Series-Parallel (MCFC) Without x
0
 Flow Balance.

Let E be the vertex-arc incidence matrix of a directed graph G. Then the

undirected graph obtained by ignoring direction in G is series parallel if and

only if every matrix of the above form N is unimodular.

Proof: The only difference from Theorem 2 is that the x
0
 /y component of

Truemper's graph T no longer matches that of the other x
k
. However, it is

series-parallel whenever G is because it merely duplicates each arc with

one oriented in the opposite direction.

To prove the present theorem we can extend the strategy used for

Theorem 2. Necessity is exactly as before. For sufficiency, suppose we re-

build G from a tree in step-by-step order without restoring any y-arcs. All

arguements of the proof of Theorem 2 apply. After G is constructed, we add

the y-arc system by reversing parallel reductions. Since the new arcs have

no coefficients in the lower, D-system of N,no new conflicts of Euler subgraphs

will need to be resolved.

SR

Theorems 2 and 3 are both necessary and sufficient because

the conditions of Lemma 1 are. However, it is conceivable that all non-

unimodular bases are dominated or infeasible for (MCFC). The example of

Figure 2 shows that if there are at least q=3 commodities,a minimal counter-

example is possible. For the indicated cost, the unique optimal solution

to the linear programming relaxation of (MCFC) is to make all x
0
 variables -X2- ,

and to send i unit of flow in each demand commodity direct from vertex 4 and the

other 1/2 via the demand point's predecessor in the circuit 1-2-3-1. This

solution costs 9/2, while every integer optimum costs 5.

A final note should be added regarding direction. In the proof of our

results we have been concerned mainly with the undirected version of our

-13-

series-parallel graphs, G. Our only requirement is that whatever orientation

is given to an edge, it have the same orientation in all commodities.

It is reasonable to ask whether one could mix orientations with, for

example, some commodities having edge 9 directed (i,j) and others having

it directed (j,i). Figure 3 gives a trivial case for which such an extension

fails. In order to achieve the cancellation on Euler subgraphs required for

Lemma 1 condition (ii), circulations must match on the two k arcs as should

those on the two 2 arcs. Such circulations cannot both sum to zero at the

two vertices.

3. Implications for Certain Combinatorial Problems

Results of the previous section show that any (MCFC) on a series -parallel

graph can be solved by linear programming. That is, such (MCFC) can be solved

in polynomial time. It follows that any problem that can be formulated as

(MCFC) (or (MCFC) with flow balance in x
0
) is polynomially solvable on series-

parallel graphs.

For some combinatorial problems fitting naturally in the fixed charge

format the fact that series-parallel cases are polynomially solvable is already

known, although not in those general terms. For example, the uncapacitated

warehouse location problem (choosing which of several possible "warehouses" to

build as sources in a bipartite graph) is unimodular if there are at most 2 sources

or 2 sinks (see Cho, Johnson, Padberg and Rao (1981)). Also, many of the one-

commodity forms of Erickson (1978) are series-parallel without the "supersink."

However, the opportunity for multi-commodities -- whether natural or

artificially induced -- raises many new possibilities. We have outlined below

how some typical problems can be placed in (MCFC) form. In each case we believe

the result that the problem is polynomially solvable for directed series-parallel

graphs is new, although other special cases have been polynomially solved.

-14-

0
x network x

1
network

k

Figure 3. Example Showing Directions Must Match in Commodity Networks

(Readers are referred to Garey and Johnson (1979) for details on particular

problem's status). Naturally since all our formulations are weighted, they

implicitly include cardinality analogs (i.e. equal weights). Also note that

the formulations imply (MCFC) on general graphs is NP-Hard because each problem

listed is known to be NP-Hard in the worst case.

In all the definitions to follow we assume G is a directed graph with

arc set A and vertex set V. If the given problem is defined on an undirected

graph with edge set E, we create a directed case by putting (i,j) and (j,i)

in A whenever (i,j) e E. Weights on the two arcs match that on the edge.

Steiner Tree Problem (Nonnegative Edge/Arc Weights).

Problem is to find a minimum total weight (directed or undirected) tree spanning

a subset V of V. The problem is easily solved when V = V (see Lawler (1976))

but generally difficult if V V. To formulate the case where weights are

nonnegative as (MCFC), we merely pick some vertex t E V to be the root of the

tree (for directed cases all the IVIchoices of t might have to be tried in turn).

All vertices in V-{t) are then treated as demand points, each with its own

commodity. Weights on edges are the fixed costs, f, and all variable costs,

v
k
, are zero. The optimal Steiner tree will consist of those arcs t for which

0
= 1 in the (MCFC) optimum.

Minimum Equivalent Graph Problem (Nonnegative Edge/Arc Weights) The Mini-

mum Equivalent Graph Problem is to find a minimun total weight system of edges

or arcs that includes a directed path between all ordered pairs of vertices

(t,u) E V x V. Clearly, a minimum spanning tree provides an optimum for the

undirected case, but the directed case is NP-Hard (on general graphs). To

formulate the nonnegative weight directed problem as (MCFC) we need only create

one commodity for each pair (t,u) E V x V. Fixed costs, f, are set to the arc

weights and variable costs, v
k , are zero. An optimal solution uses all arcs

Q for which x
k
= 1 in the (MCFC) optimum.

-16-

Shortest Total Path Spanning Tree (Nonnegative Edge Weights). The Shortest

Total Path Spanning Tree Problem seeks a spanning tree of G for which the sum

of the lengths of paths between all paris of vertices is minimal. The problem

makes sense only for undirected G. For such G with nonnegative edge weights,

the problem can be formed as (MCFC). We adopt virtually the same formulation

as the Minimal Equivalent Graph Problem with commodities for each ordered vertex

pair. However, this time variable costs, v
k
, are set equal to edge weights.

Thus, the sum of the variable costs will equal total path length. A spanning

tree is the minimal cardinality system connecting all vertices. Thus, we can

force the paths to all travel through a tree by making all fixed costs, f i ,

equal to a very large constant, p. Every tree solution will have 2 (IV! - 1) -

copies of p (bath forward and reverse arcs will be needed along the tree). Thus,

variable costs will determine optimality. An optimal tree will be formed by choosing

edges corresponding to arcs 2, with x
0
 = 1 in the (MCFC) optimum.

Minimum Spanning Euler Subgraph (Directed Graphs with Nonnegative Edge Weights).

A subgraph G of G with vertex and arc sets V and A is Euler if the numbkrlof arcs in

A directed into each vertex in V equals the number directed out. The subgraph

is spanning if every vertex of V is joined by some arc of A. The Minimum Spanning

Euler Subgraph Problem seeks the least total weight such subgraph. The nonnegative

cost case of this problem is reduced to an (MCFC)-like form in the same general

way as the Minimum Equivalent Graph Problem. Commodities are formed for each

ordered vertex pair; weights become fixed charges.

The new feature here is that the arcs k with x
0
 = 1 must form an Euler

subgraph. To enforce that requirement we add two new constraint systems:

	

Ex0 = 0
	

(3-1)

	

x
0

5 1
	

(3-2)

System (3-1) assures equal in and out degree, and (3-2) prevents duplicate

-17-

use of arcs. Recall that Theorem 2 proved (MCFC) with (3-1) is unimodular.

Simple integer upper bounds such as (3-2) cannot change the unimodularity re-

sult. The determinant of every basis of the problem including (3-2) is decided

by the determinant of an essential basis from matrix M of Theorem 2. (See, for

example, Bazaraa and Jarvis (1977) for details).

Travelling Salesman Problem. The famous Travelling Salesman Problem seeks

a minimun total length circuit visiting each t c V exactly once. An optimal

solution is a spanning Euler subgraph with one "in" and one "out" arc at each

vertex. Thus, it is a minimum spanning Euler subgraph among those of minimum

cardinality. To make the above formulation compute a travelling salesman tour,

we need only add a large constant,p, to each fixed charge. Every feasible tour

will incur IVI copies of this constant, so that optimality is determined by

total weight. Note that this constant can also assure all costs are nonnegative.

REFERENCES

1. Bazaraa, M.S. and J.J. Jarvis (1977), Linear Programming and Network Flow,

John Wiley and Sons, New York.

2. Cho, D. Chinhyung, Ellis L. Johnson, Manfred Padberg, and M.R. Rao (1981)

"On the Uncapacitated Plant Location Problem I: Valid Inequalities and Facets,"

Working paper series #8I-18, Faculty of Business Administration, New York

University, May.

3. Erickson, Ranel (1978),"Minimum Concave-Cost Single-Source Network Flows,"

Ph.D. dissertation, Stanford University.

4. Garey, Michael R. and David S. Johnson (1979), Computers and Intractability:

A Guide to the Theory of NP-Completeness, W.H. Freeman and Company, San

Francisco.

5. Kennington, Jeff L. and Richard V. Helgason (1980) Algorithms for Network

Programming, John Wiley and Sons, New York.

6. Khachian, L.G. (1979) "A Polynomial Algorithm in Linear Programming,"

Doklady, Akademii Nank,SSSR, 244.

7. Rardin, R. L. and Vi Choe (1979) "Tighter RelaxatiOns of Fixed Charge

Network Flow Problems," Industrial and Systems Engineering Report Series

Number J-79-18, Georgia Institute of Technology, May.

8. Truemper, K. (1977) "Unimodular Matrices of Flow Problems with Additional

Constraints," Networks, 7, 343-358.

9. Truemper, K. and Y. Soun (1979), "Minimal Forbidden Subgraphs of Unimodular

Multicommodity Networks," Mathematics of Operations Research, 4, 379-389.

10. Vienott, A.F., Jr., and G. B. Dantzig (1968), "Integer Extreme Points,"

SIAM Review, 10, 371-372.

-19-

FOR NSF USE ONLY
DIRECTORATE/DIVISION PROGRAM OR SECTION PROPOSAL NO. F.Y.

NOTICE OF RESEARCH PROJECT

SCIENCE INFORMATION EXCHANGE

SMITHSONIAN INSTITUTION

NATIONAL SCIENCE FOUNDATION

PROJECT SUMMARY

SIE PROJECT NO.

NSF AWARD NO.

NAME OF INSTITUTION (INCLUDE BRANCH/CAMPUS AND SCHOOL OR DIVISION)

Georgia Institute of Technology
School of Industrial and Systems Engineering

ADDRESS (INCLUDE DEPARTMENT)

225 North Avenue, N.W.
Atlanta, GA 	30332

PRINCIPAL INVESTIGATOR(S)

Robert G. Parker

TITLE OF PROJECT

, 	Tight Relaxation Approaches to Fixed Change Problems on Graphs and Networks

TECHNICAL ABSTRACT (LIMIT TO 22 PICA OR 18 ELITE TYPEWRITTEN LINES)

Previous results by the authors have demonstrated the solvability of certain combina-
torial problems which can be formulated in a fixed charge network flow format. 	In
particular, problems defined on series-parallel graphs can be solved in polynomial time
since their linear programming relaxation is perfect. 	This research is directed at
extending these promising results to include the enlargement of the class of problems
having perfect relaxations as well as the development of more direct, cominatorial
procedures. 	The latter has already been accomplished (by the authors) 	for the Steiner 	•
tree problem. 	Also, we propose an investigation of the applicability of employing the
existing relaxation methodology to non-series-parallel structures in order to obtain
fast nonexact procedures having finite worst-case bounds on their performance.

The present document is a slight modification of an earlier proposal (ECS 8300533)
submitted by R. L. Rardin and R. G. Parker to the National Science Foundation and which
was favorably reviewed. 	The modification stems from two sources. 	The first is Dr. Rardin's
acceptance of a new position at Purdue University and the second, a request by NSF to reduce
the scope of the earlier proposal. 	Accordingly, the new proposed effort is reduced to 1
year and $57,644 	($26,745 at Georgia Tech and $30,899 at Purdue). 	The technical content
in the earlier proposal remains in tact with both investigators 	working jointly on all
phases of the research.

1. Proposal Folder 	3. Division of Grants & Contracts 5. Principal Investigator

2. Program Suspense 4. Science information Exchange 6. Off. of Govt. & Pub. Progs.

F Form 4 (8-80)
	

2

JOINT STATEMENT

Our proposal "Tight Relaxation Approaches to Fixed Charge Prob-

lems on Graphs and Networks", (ECS 8300533) was submitted to the

National Science Foundation (NSF) in fall 1982. (A copy of the

technical section is attached.) It envisioned a 2 year program of

research budgeted at $174,956 with Dr. Ronald L. Rardin as Principal

Investigator and Dr. R. Gary Parker as Co-Principal Investigator --

both working at the Georgia Institute of Technology.

Since that time the proposal has been favorably reviewed by

NSF. At the same time Dr. Rardin has accepted a new position as

Professor of Industrial Engineering at Purdue University.

This statement accompanies two modifications of the earlier

proposal. one provides support for Dr. Parker at Georgia Institute

of Technology; the other for Dr. Rardin at Purdue. We intend the

two proposals to together address the same technical content as

the earlier one and request that they be evaluated together.

At the request of NSF, the total scope of the earlier proposed

effort has been reduced to 1 year and $57,644 ($26,745 at Georgia

Tech and $30,899 at Purdue). To accomodate this shorter time we

have deleted all implementation of results as computer algorithms,

emphasizing instead the extension of theory on which future algor-

ithms will depend. We expect to pursue all theoretical aspects of

the earlier proposed work -- including direct combinatorial algor-

ithms, polyhedral properties, and nonexact algorithms. However,

priority will be given to direct algorithms because they are neces-

sary components of other developments.

Although working at different institutions, we expect to close-

ly coordinate our activities and take joint part in all phases of

the research. However, there will be some difference of emphasis.

Dr. Rardin will concentrate his research on polyhedral properties

and expansion of the class of tractable problems. Dr. Parker will

emphasize underlying combinatorial structure and nonexact algorithms.

Travel funds provided in our respective budgets will provide for

sufficient joint meetings at our campuses or during research con-

ferences to effect required coordination.

Ronald L. Rardin, Ph.D.
Principal Investigator
Purdue University

R. Gary Parker, Ph.D.
Principal Investigator
Georgia Institute of Technology

FINAL PROJECT REPORT
NSF FORM 98A

'ATIONAL SCIENCE FOUNDATION
Washington, D.C. 20550

PLEASE READ INSTRUCTIONS ON REVERSE BEFORE COMPLETING

PART I—PROJECT IDENTIFICATION INFORMATION
. Institution and Address

Nprgia Institute of Technology
:lanta, Georgia 	30332

2. NSF Program Syst ems Theory
and Operations Research

3. NSF Award Number 	•
ECS-8018954

4. Award Period
From 3/15/81 	T 8/31/83

5. Cumulative Award Amount
$49,951

. Project Title
right Relaxation Approaches to Fixed Charge 	Problems on Graphs and Networks"

PART II—SUMMARY OF COMPLETED PROJECT (FOR PUBLIC USE)

The principal focus of this research is on the development of effective solution
:rategies for dealing with hard combinatorial problems which can be formulated generally,
fixed charge flow problems on graphs and networks. 	Numerous examples fit this des-

:iption among which are the Steiner tree problem, the minimum equivalent subgraph problem
Id the traveling salesman problem. 	In the earlier stages of the grant period, effort was
yncentrated on more global issues regarding non-standard linear programming relaxation
)r general fixed charge formulations. 	Here, the notion of progressive linear pro-
:aiming relaxation involving a disaggregation strategy was developed and tested. 	Follow-
ig this, research shifted to direct, combinatorial approaches for problems of the
!orementioned type. 	Important in this regard is that when instances of such problems
Ind others) are defined on the class of graphs known as series-parallel, exact solutions
to be obtained in polynomial time. 	Exploiting this, numerous algorithms were developed
)r weighted versions of various problems thus subsuming cardinality cases as well. 	The
search concluded with some treatise of heuristic analysis in non-series-parallel
!ttings,specific emphasis being placed on the construction of (unimprovable) performance
Iarantees. 	Here, such a result was established for the bottleneck traveling salesman
:oblem using notions pertaining to the square of biconnected graphs.

PART III—TECHNICAL INFORMATION (FOR PROGRAM MANAGEMENT USES)

ITEM (Check appropriate blocks) NONE ATTACHED PREVIOUSLY
FURNISHED

TO BE FURNISHED
SEPARATELY TO PROGRAM

Check(I) Approx. Date

Abstracts of Theses
Publication Citations . X
Data on Scientific Collaborators
Information on Inventions
Technical Description of Project and Results
Other (specify)

•
Principal Investigator/Project Director Name (Typed)

R. Gary Parker

3, p 	w aos...v.ci;c, 	r iect D' 	Signature 4. Date

1/9/84

Form 98A (5-78) Supersedes All Previous Editions
	

Form Approved OMB Nu. 99Reel 3

•

ATTACHMENT 1

Thesis Abstract

Thesis summary for: "Progressive Disaggregation for Fixed Charge Network
Flow Problems", by Oscar Adaniya

Advisor: Dr. R. L. Rardin

SUMMARY

Fixed charge network flow problems model network design and

location settings by allowing both fixed and variable charges for

arc flow. Recent research has shown that very close approximations

to mixed-integer solutions for each problem can be obtained from

massive linear programs wherein flows are artificially disaggregated

into separate components for each origin-destination pair. This

paper develops the strategy of a progressive disaggregation algorithm

employing the latter linear programming relaxation - However, flows

are initially undisaggregated. As computation proceeds, supply and

demand subsets are further and further partitioned to tighten the

relaxation as required without incurring the computational burden

of a complete disaggregation into supply-demand pairs.

ATTACHMENT 2

Publication Citations

Rardin, R. L., R. G. Parker, and D. Wagner (1983), "Definitions,

Properties and Algorithms for Detecting Serids-Parallel Graphs," ISyE

Report Series, Georgia Inst. Tech., Atlanta, GA.

Rardin, R. L., R. G. Parker and M. B. Richey (1982), "A Polynomial-Time

Algorithm for the Steiner Tree Problem on Graphs," ISyE Report Series J-

82-5, Georgia Inst. Tech., Atlanta, GA.

Richey, M. B., R. G. Parker and R. L. Rardin (1983), "A Solvable Case of

the Minimum Weight Equivalent Subgraph Problem," ISyE Report Series,

Georgia Inst. Tech., Atlanta, GA. (Submitted to Networks)

Richey, M. B., R. G. Parker and R. L. Rardin (1982), "On a Class of

Graphs Having at Most One Hamiltonian Cycle," ISyE Report Series, J-82-

11, Georgia Inst. Tech., Atlanta, GA.

Parker, R. G. and R. L. Rardin (1983), "Guaranteed Performance Heuristics

for the Bottleneck Traveling Salesman Problem," Operations Research

Letters, (to appear).

Rardin, R. L. and R. G. Parker (1983), "On Producing a Hamiltonian Cycle

in the Square of a Biconnected Graph: An Algorithm and Its Use," ISyE

Report Series, J-83-01, Georgia Inst. Tech., Atlanta, GA. (Submitted to

Math. of O.R.)

Rardin, R. L. and O. Adaniya (1982), "Development of a Progressive

Disaggregation Algorithm for Fixed Charge Network Flow Problems," ISyE

Report Series J-82-4 , Georgia Inst. Tech., Atlanta, GA.

Rardin, R. L. (1982), "Tight Relaxations of Fixed Charge Network Flow

Problems," ISyE Report Series, J-82-3, Georgia Inst. Tech., Atlanta, GA.

ATTACHMENT 3

Collaborators

R. L. Rardin, Professor

School of Industrial Engineering

Purdue University

W. Lafayette, IN 47907

Oscar Adaniya, Assistant Professor

Industrial Engineering Department

University of Miami

Coral Gables, Florida 33124

(Dr. Adaniya was a graduate student at the time his effort was realized

on the project.)

M. B. Richey, Graduate (Ph.D.) Student

School of Industrial and Systems Engineering

Georgia Institute of Technology

Atlanta, Georgia 30332

ATTACHMENT 4

Technical Summary

TECHNICAL SUMMARY

A vast number of important optimization problems in areas such as

distribution, communication, transportation and facilities location can

be viewed as flow problems on graphs or networks, where flow is permitted

in certain arcs/edges, (i,j) only when a fixed charge,f ij , is paid.

Flow originates at known supply points in the graphs, and distributes to

demand points of known requirements while satisfying some balance of flow

considerations at intermediate transshipment points. Flow may be in a

single or in multiple commodities, and flow capacities may or may not be

present.

When the graph is directed, such fixed charge network flow problems

may be formulated as

min F P xP 7 7 	v.„ + fy
Pc P(ipn 	i j cE 	 (i,J)cE " ij

(1)

s.t. 	7 	xis = - e 	for all peP, SEEP 	(2)
(i,P)EE

7 	xP < sP 	for all pep, neSP 	(3) aj 	a
(a,neE

(NP)

7 	xP

•

- 	E 	xP 	 for all peP, ter 	(4)
(2, ,i)eE 	

• 	

(1,0eE it = 0

(7 xP)/u 	< 	 for all (k,j)6E 	(5)

	

pep ij 	ij 	Yij

p > o xij

1> y . > 0

integer Yij

for all (i,j)eE, peP (6)

for all (i,j)eE 	(7)

for all (i,j)eE 	(8)

Here C is the arc set of the specified structure; P is the set of

commodities; xP
j
 is the flow of commodity p from i to j; 	and DP and TP

 i

are the supply point, demand point, and transshipment point subsets for

commodity p, respectively; sP is the commodity p supply at point a; dP is
a 0

the commodity p demand at point 0; and u
13
 is a flow capacity for arc

(i,j). Costs in (1) include a variable (per unit flow) cost vij and a

fixed charge f
ij

"switched on" by the 0-1 variable y
ij

whenever any

xPj > O. We assume throughout that all f ij
and v

ij
are nonnegative

i

although the latter requirement can be relaxed in some cases.

We term problems of the form (NP) uncapacitated if the optimal

solution set would not change when all s lc: in (2) and uij in (5) were

replaced by a large constant, M (say E r 	do). The problems are

pePfleDP

weakly capacitated if only the u ij may be replaced by such an M, and

capacitated if both the s P and the u
ij

restrict solutions. a

One particularly straightforward example of a problem which takes on

form (NP) is the classic warehouse location problem. However, numerous

other well-known discrete optiization problems can be easily, although

sometimes less obviously, cast in the (NP) form. Among these is the

Steiner tree problem, the minimum weight equivalent subgraph problem, and

the traveing salesman problem.

Unfortunately, most interesting models of the (NP) form are

difficult integer and combinatorial programming problems. In fact, many

can be shown to belong to the notorious class NP-Complete. Thus, almost

all research on practical algorithms for such problems centers on

either enumerative, branch-and-bound schemes or approximate procedures

yielding feasible, but not provably optimal solutions. Such techniques

rely, in turn, on relaxations of the original problem, i.e., problems

with feasible solution sets including that of (NP) and cost or objective

functions underestimating (1). Such relaxations may, of course, be much

easier to solve than the original problem. Accordingly, if they are

sufficiently tight (i.e., they closely approximate the original problem),

relaxations can provide useful lower bounds for branch-and-bound

algorithms and serve as the core of heuristic procedures for constructing

good feasible solutions to (NP).

The majority of solution procedures draw on the linear programming

relaxations obtained when the integrality requirements (8) are discarded.

Substantial research has been done, accordingly, relative to the

formulation of tigher relaxations. Rardin and Choe (1979) pursued this

line of investigation. There, flows x P • for each true commodity peP are ij

disaggregated into componentsx ij [a,8] distinguished by the suply point a

at which the flow originated and the demand point p to which it is

destined. Viewing each a,P,p combination as a separate comodity yields

the formulation:

(MC)

min 	7 	7 	vP
PO' (1,D 	

ij
EE

s.t. 	F 	F

aES P (i,R)EE

7 	r

Reg (a,j)EE

) 	 xP [a
'
 R] - 	7

(t,D 	
tj

EE 	 (1 ,t)eE

(1/nij) 	F 	7 	F

pEP aESP OOP

7 	7 	xP [a,R]
acsp REAPREAP

ij

xPa [a,S] = dPR

	

xaj [a,R] 	a

	

x
it

[a
'

Ft] 	= 0

	

Pj [a,(4] 	4 	
yij

xi

	

xPj [a,S] 	0 i

1 > y
ij 	

0

y
ij

integer

xP
ij 	<

+ 	7 	f 	y
(1,DEE 	

ij 	ij

for all pEP, BEDP

 for all 13E1', aESP

 for all pEP, ace

LETP

for all (1,DEE

for all (i,j)EE,

pEP, aES P , SEPP

 for all (i,j)EE

for all i,j)EE

for all (1,DEE,

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18) y
ij

minfs P el a' S

pEP, aES P, See

Of course, the linear programming relaxation of (MC) need not yield an

(MC) optimum, but preliminary testing in Rardin and Choe (1979) indicated

the relaxed formulation could provide a very tight relaxation for at

least the uncapacitated and weakly capacitated cases.

Now, constraints (18) of the tight (MC) formulation requires y id to

equal or exceed the fraction of any supply spa 	 0
or demand dP flowing as

xP
j
 ra,81. However, the formulation can be sharpened if (18) is replaced

i

by

E 	xP
j
 [a,81

i
BEDP 	< y 	for all (i,j)cE,

iJ min sa , T d B pe P, aESP
8EDP

aESP
c Y4 	for all (i,j)EE 	(20)

min (7 	sPa' d ip}
4

8 	 pep, BE OP
aESP

These new constraints treat supplies and demands separately, summing

flows in one of the two dimensions.

Denote by (MC') the version of formulation (MC) using (19) and (20)

in place of (18). It is easy to show that the (MC') formulation

dominates (MC) in the sense that every solution feasible in (MC') is

feasible for (MC). However, (MC') is also more compact. For every

commodity p there is one constraint (18) for each (a,S) c SP, DP , i .e.,

(19)

xP
j
 [a ' 01 i

P 	P
IS l'IP 1 in all. The stronger (MC') formulation is achieved with 'S P ! +

101 constraints (19) and (20).

Of course, linear relaxation of tight formulations (MC) and (MC')

are enormous linear programs requiring specially structured algorithms.

For a case with 5 commodities, 350 arcs, 10 supplies, 50 demands and 130

transshipment vertices, (MC') has over 425 thousand main constraints and

875 thousand variables.

The early (Rardin and Choe (1979)) paper detailed a Lagrangean

relaxation strategy for the (MC') linear relaxation of the uncapacitated

and weakly capacitated cases. For those cases, constraints (14) may be

deleted. Dualization of constraints (19) and (20) with Lagrange

multipliers leaves a separate flow problem for each a,S,p combination.

The latter can be solved by a series of shortest path calculations

followed by a transportation problem. Search over dual multipliers for

constraints (19) and (20) leads to a relaxation solution.

The formulation (NP) and (MC) (or (MC')) may be viewed as endpoints

or a disaggregation continuum. Form (NP) treats all flows of commodity p

as a single unit; (MC') disaggregates flows for each p into separate

artificial commodities for origin—destination pairs. Clearly, there are

intermediate possibilities wherein commodity p flows are treated in

groupings, say (A:,13:) with A: c Sr', Bli) c DP .

The concept of progressive disaggregation suggested in the funded

proposal sought to exploit these intermediate possibilities in order to

speed computation. Flows might begin in fully aggregated form (NP). As

computation proceeds, and dual variables are better estimated, smaller

supply and demand groups could be attempted in order to improve the

quality of the relaxation.

A major part of the present resssearch effort has been devoted to

developing such a progressive approach for implementing the Lagrangean

dual algorithm on uncapacitated and weakly capacitated cases. Various

issues are analyzed among which are

• Which are the most desirable forms of supply group-demand group

commodizations?

• How can an initial list of artificial commodities be generated?

• How should supply or demand groups be selected for partition as

disaggregation proceeds?

• When should additional disaggregation be involved?

• How can dual variables for new commodity groups be effectively

initialized from ones for groups they replace?

Tables 1 and 2 summarize computational results. Twelve different

uncapacitated and weakly capacitated fixed charge network flow problems

were randomly generated with all combinations of three types of

capacitization (uncapacitated, weakly capacitated with relatively loose

capacity, weakly capacitated with tight capacity), two problem sizes (175

and 350 arcs), and two levels of fixed charge contribution to cost (30-

40% versus 60-70%). All problems are sparse. The problems were solved

with 6 algorithmic strategies (only 3 are applicable to uncapacitated

cases) involving all combinations of initial supply disaggregation (no

initial disaggregation, full initial disaggregation) and initial

disaggregation (no initial disaggregation, selected initial group

formulation, full initial disaggregation) alternatives. Since the goal

was comparison of strategies, all cases were terminated when a primal

solution and a lower bound were known to differ by at most 25%.

Table 1. Medium Problem Results
(175 arcs, 5 supplies, 25 demands, 75 nodes)

Initial
Supply

Disaggr.

Initial
Demand
Disaggr.

Uncapacitated
Weakly

Capacitated (Loose)
Weakly

Capacitated (Tight)
Moderate

Fixed
High

Fixed
Moderate
Fixed

High
Fixed

Moderate
Fixed

High
Fixed

None 3 3 7 7 7 8

None Selected 5 8 13 11 18 12

Full 7 12 32 34 32 29

None 19 6 9 11

Full Selected 12 12 13 19

Full 22 27 24 18

Table 2. Large Problem Results
1
—L-

2/

(350 arcs, 10 supplies, 50 demands, 150 nodes)

Initial
Supply

Disaggr.

Initial
Demand
Disaggr.

Uncapacitated
Weakly

Capacitated (Loose)
Weakly

Capacitated (Tight)
Moderate

Fixed
High
Fixed

Moderate 	High
Fixed 	Fixed

Moderate
Fixed

High
Fixed

None 3 8 60 64 60 109

None Selected 8 27 >180 >180 122 >180

Full 14 40 >180 >180 >180 >180

None >180 >180 174 >180

Full Selected 93 >180 179 >180

Full >180 >180 >180 >180

All times in Univac 1100/81 minutes. Typically 8-10% was CPU with the
residual being disk operations.

?/Times reflect solution to provable 25% optimality.

Results in the tables clearly demonstrate the merit of the

progressive disaggregation approach. All progressive strategies produced

better results than the "brute force" approach which fully disaggregates

supplies and/or demands before computation begins. The best progressive

strategy--starting with no disaggregation of supplies or demands--was 2

to 4 times more efficient than the complete disaggregation approach and

on some alrge problems, the only method to yield results within the time

limit.

Of course we would like to have a relaxation (say (MC')) which under

fairly mild restrictions was perfect in the sense that its solution was

integer-optimal. However, even if such a development was in hand,appeal

to the polynomial solvability of linear programs vis-a-vis the ellipsoid

algorithm would not, presently, have great practical value. Rather more

direct, combinatorial approaches would be sought.

Accordingly, this research also examines the development of such

efficient procedures for problems defined on a restricted class of graphs

known as series-parallel. Such research has appeared elsewhere in

various forms. Notable in this regard is the work reported in

Takamizawa, Nishizeki and Saito (1982).

A graph is series-parallel if and only if it contains no subgraph

homeomorphic from K
4

(the complete graph on four vertices). Other

specifications of series-parallel also exist, their equivalence being

shown in the unifying paper by Rardin, Parker and Wagner (1982).

Polynomial-time algorithms have been given for weighted versions of

the Steiner tree problem and the minimum equivalent subgraph problem.

these procedures are detailed in other aattachments. Also included is

the problem of deciding hamiltonicity in series-parallel graphs. Here,

we prove that such graphs have at most one such cycle and we characterize

those that are hamiltonian.

Finally, the notion of nonexact analysis is considered relative to

non-series-parallel structures. Our interest is confined to those

procedures which are not improvable by alternative, polynomial schemes in

terms of their performance guarantees.

Our principle finding along these lines is somewhat negative. For

the so-called bottleneck traveling salesman problem (BTSP), we were able

to produce a nonexact procedure having worse-case bound of two which is

realizable and not improvable by any polynomial alternative unless and

are equivalent. The stated algorithm is based on the notion of

squares of biconnected graphs. Such graphs (squares) are known to be

hamiltonian. In the attachments, we give an algorithm for finding such a

cycle as well as the nonexact analysis for the BTSP.

REFERENCES

Rardin, R. L. and Ui Choe (1979), "Tighter Relaxations of Fixed Charge

Network Flow Problems," ISyE Report Series . J-79-18, Georgia Flnst. Tech.,

Atlanta, GA.

Rardin, R. L., R. G. Parker, and D. Wagner (1983), "Definitions,

Properties and Algorithms for Detecting Series-Parallel Graphs," ISyE

Report Series, Georgia Inst. Tech., Atlanta, GA.

Takamizawa, K., T. Nishizeki, and N. Saito (1982), "Linear-Time

Computability of Combinatorial Problems on Series-Parallel Graphs," JCAM,

 29, 3, pp. 623-641.

ATTACHMENT 5

Technical Reports

DEFINITIONS, PROPERTIES AND ALGORITHMS

FOR DETECTING SERIES-PARALLEL

GRAPHS

by

*
R. L. aardin , R. Cary Parker' and D. K. Wagner

Department of Industrial Engineering
Purdue University
W. Lafayette, IN 47907

tSchool of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, GA 30332

This material is based upon work partially supported by the National
Science Foundation under Grant Number ECS-8018954

ABSTRACT

Series-parallel graphs form an important subset of planar graphs

defined in terms of arrangements of edges and subgraphs in a manner

corresponding to series and parallel connection in electrical networks.

In this paper we review a host of alternative definitions of such graphs

and show that if properly specified, all definitions are equivalent. We

also exhibit a linear-time algorithm for checking such properties.

1. Introduction

Series-parallel graphs are an important subset of planar graphs de-

fined in terms of arrangements of edges orsubgraphs in a fashion corres-

ponding to the intuitive notion of series and parallel connection in elec-

trical networks. A classic study of such graphs is Duff in (1965), and recent

results are contained in Takamizawa, Nishizeki, and Saito (1982), and Valdes,

Tarjan, and Lawler (1982), Rardin, Parker, and Wang (1982), and Rardin,

Parker,.and Rickey (1982).

Unfortunately, there are some disparaties regarding definitions of

such graphs. The purpose of this note is to verify that, when carefully

specified, the concepts behind all these definitions can be made to con-

form, i.e. all such characterizations are equivalent. We also exhibit

a linear-time algorithm for implementing one of the definitions and

indicate how it implicitly tests several others.

Neither the algorithm nor any of our characterizations is entirely,

or even mostly new, Rather, our objective is only to make precise, matters

which are more often hinted at than exposited in the extensive literature

of series-parallel graphs.

2. Main Definition

We consider an undirected, looplessli multigraph G with finite vertex

set V and finite edge set E, such that V contains no isolated vertices, We

shall say that such a G is series-parallel if and only if some sequence of

applications of the following three reductions converts G into a dis-

joint collection of edges.

1,/ Results are easily extended to encompass self loops by introducing an
artificial, degree-2 vertex into each loop before applying our results.

1

•

• series reduction: replace any degree-2 vertex j and its incident

edges e = (i,j), f = (j,k) such that i # k, by new edge g = (i,k).

• parallel reduction: replace any two edges e = (i,j) and f = (i,j)

joining the same vertices by a new edge g = (i,j).

• jackknife reduction: replace any degree-1 vertex i, its incident

edge e = (i,j), and any other edge f = (j,k) meeting vertex j by

a new edge g = (j,k).

Figure 1 illustrates the three types of reductions, and Figure 2

shows a (not unique) sequence reducing a given graph to a single edge.

Observe that the three reductions are well-defined in that any suitable

sequence will produce the correct conclusion regarding a given input graph.

Series and parallel reductions are well known and common to all

definitions. However, confusion arises when G Is not connected or is

not biconnected. "Two-terminal series parallel" in Takamizawa et al

(1982), "edge series-parallel" in Valdez et al (1982) and "closed graphs"

of Duffin (1965) are constrictions to distinguish various cases. We in-

troduce jackknife reductions to encompass non-biconnected situations such

as that of Figure 3. It is easy to verify that all three of the above

reductions are needed to reduce the graph of Figure 3 to a single edge.

3. Forbidden Homeomorphic Subgraphs

A subgraph H of G is said to be homeomorphic from a graph Q if and

only if some sequence of applications of series reduction to H produces

a graph isomorphic to Q. Series-parallel graphs can be characterized in

terms of forbidden homeomorphic subgraphs.

Theorem 1: Series-Parallel Graphs and K4 . A loopless, undirected, multi-

graph G with no isolated vertices is series -parallel if and only if

G contains no subgraph homeomorphic from K
4

(the complete graph on 4

vertices).

Replace

deg (j) =2

With

a. Series
Reduction

e

b. Parallel
Reduction

deg(i)=1

0 	® c. Jackknife
Reduction

Figure 1: Defining Reductions of
Series-Parallel Graphs

3

series

parallel

jackknife

series

parallel

Figure 2: A Sequence of Reductions Showing
a Given Graph is Series Parallel

4

series

new
r edge

parallel

parallel

series

vole■■••••••••••■••■•

parallel

parallel 	 series

71 	-0

Figure 2 (continued)

5

Figure 3. A Graph Requiring Series, Parallel and
Jackknife Reductions to be Reduced to
an Edge.

6

Proof: First observe that we need consider only connected graphs G.

If any subgraph homeomorphic from K4
exists, one will certainly lie in a

single component of G. Conversely, series, parallel and jackknife re-

ductions neither combine nor create disjoint components, so that G is

series-parallel if and only if every connected component can be reduced

to a single edge.

Assume G is connected, and let H be a subgraph of G homeomorphic

from K4 . Any G' obtained from G by a single series, parallel or jackknife

reduction must also contain a subgraph H' homeomorphic to K 4 . This is

true because if all reduced edges belong to E(G)\E(H) then H' = H .

(note that we symbolize the edge and vertex sets of a graph G by E(G)

and V(G) respectively). If not, H' is either the product of a series

reduction of H, or the result of replacing an edge e or f of H by a

new edge g joining the same vertices.

Applying this observation at each step of series, parallel, or jackknife

reduction, we see that every sequence of such reductions must terminate

before or upon reducing G to a graph isomorphic to K 4 . Since K4 admits no

further reduction, we can conclude that if the original G contains a sub-

graph homeomorphic from K
4' no sequence of reductions will reduce G to

a single edge, i.e. G is not series-parallel.

For the converse, we must show that if G is not series-parallel, i.e.

reduction terminates before G has been reduced to an edge, then G con-

tains a subgraph homeomorphic from K 4 . The algorithm of Section 4 and

Lemma 3 will demonstrate constructively that if reduction terminates on

a reduced form G' of G, then G' contains a subgraph H' homeomorphic from K
4

.

By the same arguement as above, it follows that G must have contained a

corresponding subgraph H that has been. reduced to H' in G'.

7

We call a vertex, c, a cut-vertex of a graph G if c separates G

into subgraphs G 1 and G2 with nonempty edge set, and such that

G = E(G 1) u E(G 2) and V(G1) n V(G2) = {c}. A cut-pair is a pair of

vertices c and d of G that separates G into subgraphs G 1 and G2 with

nonempty edge sets such that G = E(G 1) u E(G2), V(G1) n V(G2) = {c,d}.

A graph is triconnected if it is connected, contains at least 4 vertices,

and possesses no cut-vertex and no cut-pair that separates G into G
1
and

G2 with both G 1 and G2 having at least three vertices.

The graph K4 of Theorem 1 is triconnected. We can apply Theorem 1

to see that series-parallel graphs forbid any triconnected homeomorphic

subgraphs.

Corollary 2: Triconnectivity and Series-Parallel Graphs. A loopless,

undirected graph G with no isolated vortices is series-parallel if and

only if it contains no subgraph homeomorphic from a triconnected graph.

Proof: If G is not series-parallel, Theorem 1 shows G contains a subgraph

H homeomorphic from K4 . Since K4 is triconnected, G does indeed have a

subgraph homeomorphic from a triconnected graph.

For the converse suppose G contains a subgraph H homeomorphic from

7 a triconnected graph Q. Then G must also contain such a subgraph H nomeo-

morphic from a triconnected graph Q having no multiedges. Removal of

edges in Q0
A
= Q would either produce the needed Q or generate a graph

with degree-2 vertices which is itself homeomorphic from some triconnected

Q
1
. If Q

1
has multiedges, we repeat the process.

Let Q be a triconnected graph with no multiedges from which sub-

graph H of G is homeomorphic. Clearly the minimum degree in Q is three;

8

neighbors of degree-1 and degree-2 vertices form cut vertices and cut-

pairs respectively. But then neither series, parallel nor jackknife

reduction of Q is possible. By Theorem 1,Q contains a subgraph homeo-

morphic from K4 . But since H is homeomorphic from amd Q is homeomorphic

from K4, we see H is homeomorphic from K 4. By Theorem 1, G is not series-

parallel.

4. A Linear Time Algorithm

One version of the problem of finding a linear time algorithm for de-

tecting series-parallel graphs is posed as an exercise in Aho, Hoperoft and

Ullman (1974). Although no solution is given, Valdes et al (1982) pro-

vide one for graphs that can be fully reduced by just series and parallel

reduction, and they indicate Valdes (1978) contains another. Takamizawa

et al (1982) reference a Japanese-language publication, Nishizeki et al

(1976) in asserting linear time testability of their forms of series-

parallel graphs.

We shall show in Section 6 that none of these papers seems to deal

with the full family of graphs we term series-parallel. Thus we shall

present here our own linear time scheme. The algorithm is strongly

based on Hoperoft and Tarjan's (1973) approach to the closely related

problem of identifying triconnected components of a graph. As in the

proof of Theorem 1, an algorithm to either reduce a given graph G

satisfying the hypothesis of the theorem to a collection of disjoint

edges, or demonstrate that G contains a subgraph homeomorphic to K4 needs

only to deal with connected components, one at a time. Thus we shall

9

take G to be a connected multigraph encoded by a list of pairs

iu[e],v[e]: ec E} recording the two vertices joined by each e, and a

set of star lists {s[v,i.]: i=1,2,...,d[v]) showing indices of the d[v]

edges joining each vertex v c V. For simplicity of presentation we will

also assume G contains a degree-1 vertex r. Obviously, if no such vertex

existed, we could augment G with an artifical edge joining an artificial

vertex without impacting whether gr not G contained a subgraph homeomorphic

from K4 .

The algorithm proceeds in up to four stages. The first stage

searches C from r in depth first sequence, labeling vertices and edges

for sorting at Stage II. Vertices are labeled with 9.[v] = the depth of

vertex v in the search, and t[v] - the edge through which vertex v is

first visited. nen the search is completed, edges of 4.t[v] : v c V}

yield a spanning tree of G with nontree edges forming backedges, i.e.

(u,v) e E such that if i[u] > 9[v], v lies along the tree path from u

to the root vertex r. Similarly, if Z[v] > k[u], u lies along the tree

path from v to r. (See for example Aho, Hoperoft and Tarjan (1974), p.

178 for verification of this property of depth-first search.)

All vertices deeper in the tree than a given tree edge, t, are

called descendents of t, including the v such that t = t[v]. Back

edges have no descendents.

The edge labels b[e] that we compute reflect the minimum depth Z[w]

of a vertex w reachable through a path beginning with e and using only

decendents of e and their backedges. Specifically, for e = (u,v),

Z[u] < 2.[v]

10

{ i[u] if e is a backedge

min{Z[v], min{t[w]: (x,w) is a backedge, x is a descendent of el)

if e is a tree edge

b[e]

Stage II of the algorithm performs a radix sort to rearrange star edge

numbers e cfs[v,i]l at each vertex in decreasing b[e] order. All edges,

e, are linked into one of the IVI chains according to their b[e] labels.

Chains are then unloaded in reverse depth order to create new reordered

stars {s[v,i]: i=1,2,...,n[v]l containing only the n[v] < d[v] edges.

searched from v at Stage I. The effect is that the depth first search

of Stage III will come last to portions of the tree with backedges reach-

ing nearest the root. Figure 4 shows both the Stage I and Stage III

sequence of first visits to edges in the example of Figure 2.

The Third Stage of the algorithm actually performs series, parallel

and jackknife reductions until either G has been reduced to a single

edge or we are able to conclude G contains a subgraph homeomorphic

from K4'
G is searched in depth first fashion from the same root, thus

building the same tree as in Stage I. However, this time stars have

been sorted by Stage II.

Tree edges leading to degree-1 vertices are immediately jackknife-

reduced with their predecessors in the tree. Whenever a degree-2 vertex

is encountered in the search, it is immediately series-reduced. Parallel

reductions are detected when existing or created backedges duplicate

either the tree edge t[v] or an already passed over back edge from v.

If a back edge is encountered that is parallel to neither t[v] nor the

passed over back edge, we are able to conclude G contains a subgraph

homeomorphic from K 4 .

11

(2,2) I

(12,7) / 	(11,6)

(tree

	

..„ 	 edge -'■ 	 \
\(7,13) 	 (14,9)

1 	\ 	
‘

‘
	 (10,5) /

/ /

	

1
,(5,1 	 /

(6,14) 1 	0 	 /(13,8) 	i'
(14,11) 	 / 	//

	

1 	 / 	
,e(15,o)

	

t 	 (9,4) 	
/
/

/ 1

	

1 	
/ 	z,.. ,....)

 / 	/
/ (3,3) if 	J/ 	,

	

‘ 	(8,15)/ / ,/
1 	 1/ 	 \..„ back

/ 	 edge

Stage I 	Stage III
1

)
Sequence ' Sequence

root

Figure 4: Depth First Search of
Example in Figure 2

12

As reductions develop, new edges are added to E. We

dynamically update star values s[v,i] and free pointers t[v] to the new

numbers, and record reductions in a binary tree. Specifically, we save

(u[e], v[e], p[e], c[e,1], c[e,2])

for each edge e=1,2,... where u[e] and v[e] are the two vertices

joined by e, p[e] is the parent of e in the binary tree (the edge into

which e is later reduced if any), and c[e,1], c[e,2] are the two edges

from which e was created. Figure 5 shows the tree implied by reductions

of Figure 2. The binary tree obtained could, itself, later be (linear

time) searched in depth-first order to construct any original graph

entity reduction has proved to be of interest.

If G is series-parallel, processing stops after Stage III returns

to the root vertex r. However, if Stage III terminates with the con-

clusion that G contains a subgraph homeomorphic from K 4, Stage IV is

applied to exhibit such a forbidden subgraph of the current G4J The sub-

graph has the form shown in Figure 6. The single additional path needed to

complete the homeomorph is identified by a partial continuation of the

depth first search aborted in Stage III. The explicit statement of the

algorithm can now be given.

Stage I: Edge Depth Labels

Step 0: Initialization. Tag all vertices as unvisited by setting

9.,[k] 	-1 for all k e V

1/ Backtracking in the binary tree might be required to exhibit a
corresponding homeomorph from K4 in the original (unreduced) G,
but this is easily accomplished in 0(IVI + 1E1) time.

13

Figure 5: Binary Tree of Reduction Produced for Example of Figure 2

Figure 6. Homeomorphic Subgraph from
K4

Identified at Stage IV

15

and all edges as unprocessed by

b[e] 4- -1 for all e c E

Then initialize the search at (any degree-1) root vertex r by t 	0,

t[r] f 0, Mr] t 0, i[r] F 1, h F r.

Step 1: Process an Edge at h. If i[h] > d[h] go to Step 2 and

backtrack. Otherwise, define e A = s[h, i[h]] and k = the end of e

other than h.

la: If e is an unprocessed back edge (b[e] < 0 and t[k] > 0),

set b[e] t Z[k] and swap as necessary so that u[e] = h,

v[e] = k. Also, if h 	r, update b[t[h]] 	min{b[t[h]],b[e]l.

lb: If e leads to an unvisited vertex k (d[k] < 0), initialize

vertex k by 	 '),Ek] 	", [Lk] 	b[e] 	i[k] 	0.

Then swan as necessary so that u[e] = h, v[e] = k, and advance

to k by h k.

Set i[h] 	i[h]+1 and repeat Step 1.

Step 2: Backtrack. Define k a u[t[h]]. If k = r, Stage I is

complete. If not, update b[t[k]] 	minfb[t[k]], b[t[h]]) and de-

cline to k by t 	h k. There, advance i[h] f i[h]+1 and

return to Step 1.

Stage II: Radix Sort of Stars

Step 0: Initialization. For d=1,2,..., tVI , initialize list

L[d] 	4. Also set n[v] 	0 for all v c V.

16

Step 1: List Loading. For e=1,2,...,IEI, add edge e to list

L[b[e]].

Step 2: List Unloading. For d = IVI, IVI-1, ..., 1 unload list

L[d] into stars by for each es L[d] setting n[u[e]] + n[d[e]]+1 ,

s[u[e], n[u[e]]] + e.

Stage III: Reduction

Step 0: Initialization. Initialize the next edge pointer, I*, IEI,

and edge tree variables p[e] + 0, c[e,l] + 0, c[e,2] 	0 for all

e e IEI. Then start a new search at root vertex r via i[r]-4-1, 10-r.

Step 1: Edge Processing. If i[h] > n[h], go to Step 2 and backtrack.

Otherwise, define e A = s[h,i[h]], k = v[e].

la: If e is a back edge parallel to t[h] (e 0 t[k],

v[e] = u[t[h]]) , advance i[h] + i[h]+l and go to Step 4

to parallel reduce with E + e, f + t[h], 	u[t[h]].

lb: If e is a back edge not parallel to t[h] and there is

no passed over edge at h (e 0 t[k], o[h] = 0), advance

i[h] + i[h]+1 and make e the passed over back edge via

o[h] 	i[h].

lc: If e is a back edge parallel to the passed over edge

f
A
= s[h,o[h]] (e 0 t[k], v[e] = v[f]), advance o[h] + i[h],

i[h] 4 i[h]+1, and go to Step 4 to parallel reduce with

+ e, 	f, 	+ h.

17

ld: If e is a back edge parallel to neither t[h] nor the

passed over edge at h, G contains a subgraph homeomorphic

from K4 . Proceed to Stage IV.

le: If e is a tree edge and k is a degree-1 vertex

(e = t[k], d[k] = 1) advance i[h] 	i[h]+1, and go to Step

5 to jackknife reduce with E 	e, f t t[h], h t u[t[h]].

lf: If e is a tree edge, k is a degree-2 vertex and

f 	s[k,n[k]] is not parallel to e (e = t[k],d[k] = 2,

v[f] 	u[e]) go to Step 3 and series reduce with i 	e,

? 	f, 	-4- h.

lg: If e is a tree edge (e = t[k]) and either d[k] > 2 or

A ,
f = sLk,n[k]] is parallel to e (v[f] = u[e]), advance to

vertex k by n 	k, o[h] - 0, i[h] 4-- 1.

Repeat Step 1.

Step 2: Backtracking. Define e t t[h], k - u[e].

2a If k = r, stop; G is series-parallel because it has been

reduced to the single edge e.

2b: If k r, decline to vertex k by h k, and return to

Step 1.

Step 3: Series Reduction. Advance g g+1 and series reduce edge

E and T into g by

u[g] u[E]

y[E] 4- 1/[?]

s[17,i[i;]] g

18

d[v[E]] 4- d[v[E]]-2

p[e] f g

p[f] f E

c[g,1] 	E

c[g,2] 	7

t[v[1]] t g if 1 = t[[1]]

Then return to Step 1.

Step 4: Parallel Reduction. Advance g i+1 and parallel reduce

E and f into E by

u[E] 	u[T]

v[i] 	v[T]

s[FIMF1]]

d[u[g]] 	d[uii]1-1

d[v[g]] 	d[v[i]]-1

p[E] 	E

p[T] F i

c[g,1] f E

c[g,2] T

t[v[T]] t i if F = trv[F]l

Then if a new degree-2 vertex has been created other than at search

vertex h (CFI] = 2, g = t[v[v],d[v[g]] > 1), go to Step 3 and

series reduce the new degree-2 vertex via E 	t[T-1],T÷g,171-4--u[E].

If no such vertex was created, return to Step 1.

19

Step 5: Jackknife Reduction. Advance g 01 and jackknife reduce

E and f into g by

u[g] 4- urn

v[g] 4- v[I]

d[u[e]] 	d[u[e]]-1

d[v[E]] 	d[v[i]]-1

p[e]+g

p[f] 	g

c[g,1] 	E

c[E,2] 4- T

t[v[F]j — g if ? = t[v[?]]

Then return tc Step 1.

Stage IV: Horeororphic Subgraph Identification

Step 0: Initialization. Save the search vertex h, the current

search edge e, and associated entities on which Stage III terminated

as elements of the homeomorphic subgraph depicted in Figure 6.

Specifically,

e 1 4- e

e2 4- s[h,o[h]]

e
3 	

t[h]

v
1 	

v[e
1

]

v
2
	v[e2]

v
3 	u[e3]

v
4

4- h

Then restart the search at the tree predecessor of h by h + v 3,

i[h] + i[h]+1.
20

Step 1: Edge Processing. If i[h] > n[h] go to Step 2 and backtrack.

AA
Otherwise define e = s[h,i[h]],k = v[e].

la: If e is a back edge touching below v
1

in the tree

(e 	t[k],t[k] < 2,[17 1], go to Step 3 to complete the

forbidden subgraph.

lb: If e is a tree edge (e = t[k]

h 	k,i[h] 	0.

Increment i[h] + i[h]+1 and repeat Step 1.

Step 2: Backtracking. Decline to vertex u[t[h]] by setting h + u[t[h]].

Then return to Step 1.

Step 3: Path Identification. Save w l + u[e], w2 + v[e], e4 + e.

Thcn trace b. ,-Awards thros:gh the tree from w
1

to w
2
by following

labels t[k] until a path w1 ,...,v3 ,...,v2 ,...,v1 ,...,w2 has been

identified. When w 2 is reached stop; this path completes the re-

quired homeomorphic subgraph of Figure 6.

The principal issue of correctness that must be established for our

algorithm is that it stops only with G fully reduced or with a subgraph

homeomorphic from K4 .

Lemma 3: Algorithm Stopping. Let G be a connected, undirected, loopless

graph with degree-1 vertex r. Then application of the above algorithm

to G leads to either termination of Stage III with the correct conclusion

that G is series-parallel or termination at Stage IV with a subgraph H'

21

of the current reduced version G' of G that is homeomorphic from K
4

,

Proof.: Consider Stage III of the algorithm. It is easily checked that

all reductions undertaken from the different cases of Step 1 are valid

series, parallel or jackknife reductions. Furthermore, no vertex is

departed via Step 2 until it is either degree-1 or degree-2, i.e.

certain to be immediately eliminated by jackknife (respectively series)

reduction. Thus if backtracking proceeds until we are ready to return

to the root, only r, its incident edge, and the adjacent vertex can

remain. (The latter vertex is degree-1 because r is degree-1.) Clearly

the final reduced graph G' is a single edge and G is series-parallel.

If, on the other hand, Stage III searching is aborted at Step ld,

entities constructed at Step 0 of Stage IV must be as illustrated in

Figure 6. Current search vertex h = v, is joined to its immediate tree 4

predecessor v 3
 by tree edge e

3'
and to vertices v

2 	v1 and 	by the passed -

over and current back edges e 2 and e = e
1
. Necessarily v

1,
v
2

and v3

are distinct because otherwise e = e
1
would have been parallel reduced.

Moreover, we have Z[v 1] < Z[v 2] because the passed over back edge e 2 was

encountered before e
1
in the processing of the Stage-II-ordered star

of h = v,.
4

Most important for the entities recorded at Stage IV, Step 0 is that

v
3'

the tree predecessor of h = v4, is at least degree-3 and is joined

via some descendent vertex w 1
and a back edge e

4
to a vertex w

2 be-

longing to the tree path from v 1 to r. These claims must hold because

had v
3
been degree-2 when first encountered in Stage III it would have

been series-reduced by Step lf, and if it were later made degree-2 by

parallel reduction, Step 4 would have passed to Step 3 and series-reduced

22

it. Moreover, the star ordering introduced at v
3
by Stage II assures

that, since the search passed first to e
3

instead of the next listed edge at

v3, the latter edge has a descendent-back-edge path reaching at least

as close to the root as the one (e 3 ,e 1) encountered through e 3 . Since

the subgraph H' of Figure 6 is clearly homeomorphic from K 4, this com-

pletes the proof.

Theorem 4: Correctness of the Algorithm. Let G be as in Lemma 3 with

vertex set V and edge set E. Then application of the above algorithm to

G either exhibits a sequence of series, parallel and/or jackknife re-

ductions converting G to a single edge or produces a subgraph H' of a

series, parallel and/or jackknife reduced form G' of G such that H' is

homeomorphic from K4 . Moreover, all computation is accomplished in

time linear in IV1 and 1E1 (0(1V!+1E1).

Proof: Lemma 3 established all needed properties for correct convergence

of the algorithm that do not follow automatically for the nature of

depth-first search. To complete the theorem we need only to show com-

putation is in the worst case 0(1V1+IE:). We analyze computation by

stages:

Stage I. The depth-first search of Stage I begins with 0(1V1+1E1)

initialization of Step 0. It encounters each edge of E twice at

Step 1, once at each vertex of the edge. The 0(1V1) tree edges

are also backtracked through once each by Step 2. Since all

processing is clearly in constant time, computation for Stage I

totals 0(1V1+1E!).

23

Stage II. Stage II begins with 0(IVI) initialization and then un-

loads and reloads each edge of E. Total time is 0(IV1+1E1).

Stage III. Initialization of Stage III is 0(1E1). As the graph

is examined each edge is either a tree edge, a back edge saved as

the passed over edge, a back edge leading to an immediate parallel

reduction, or a back edge causing processing to pass to Stage IV.

The 0(IVI) tree and passed over back edges are either series or jack-

knife reduced at once, or so reduced upon backtracking at Step 2.

Moreover, each reduction replaces 2 edges by 1 so there are at most

0(1E1) reductions. We can conclude Stage III requires at most

0(IVI) + 0(1E) edge searching plus 0(1E1) reductions. Since all

component calculations clearly require constant time, total effort

is 0(1V1+1E').

Stage IV. Stage IV requires at most 0(1E1) edge examinations and

0(IVI) backtracks before it reaches Step 3. There an 0(1V1) backtrack

through the tree completes processing and total time is 0(1V1+1E1).

5. Terminal Subgraphs

Clearly any edge created by series, parallel or jackknife reduction

represents a subgraph of the original G. Denote the graph represented

by e in a reduced graph G as G[e]. If e belonged to the original G,

G[e]
A
= e.

We call G[e] a terminal subgraph of G because it is characterized

by terminal vertices u[e] and v[e]. These vertices are the only ones of

G[e] that persist in reduced graph E. That is, G[e] is joined to the

rest of G only through terminal vertices u[e] and/or v[e].

Reversing this perspective, we can develop an equivalent charac-

terization of series-parallel graphs in terms of terminal subgraph

separations . Cut vertices and cut pairs were defined in Section 3. A

terminal graph G[u,v] is any graph with distinct vertices u and v

identified as terminals. We consider the separation of loopless terminal

multigraphs G[u,v] containing no isolated vertices into two loopless

terminal multisubgraphs G
1
[uv

1
] and G2[u2,v2] containing no isolated

vertices and satisfying G[u,v] = E(G1 [urvi])uE(G2 [u 2 , 2]).

• series separation: separate G[u,v] at a cut vertex c # u,v into

terminalsubgraphsyu,c]andG2 fc,v1,such that V(G1 ru,cpnV(G2 [c,v])

• parallel separation: separate G[u,v] at (terminal) cut pair into

terninalsura71., ,;
1
 ,v] and G 2 [u,v], such that V(0

1
[u,v])nV(G2 [11,v1) ,---,: u,v).

• jackknife separation: separate G[u,v] at (terminal) cut vertex u

(respectively (terminal) cut vertex v) into terminal subgraphs

G i [u,v] and G 2 [u,t] (respectively G 2 [t,v]) satisfying

V(G1 [u,v])nV(G2 [1.1,t]) = _u.} (respectively V(G i [u,v])n V(G 2 [t,v]) = (v))

and t is any vertex of G 9 except u or v.

Theorem 5: Separation Characterization. A loopless, undirected multigraph

G with no isolated vertices is series-parallel if and only if every con-

nected component of G can be separated into a collection of disjoint edges

by designating an appropriate pair of distinct vertices of the component

as terminals and applying some sequence of series, parallel and jackknife

separations.

25

Proof: First assume G is series-parallel and consider a connected com-

ponent E. By applying the algorithm of Section 4 we can construct a binary

tree of reductions with corresponding terminal subgraphs such that G[g]

is the parent of G[e] and G[f] in the tree' if e and f were series or

parallel or jackknife-reduced to g. Ends of this binary tree are single

edges, and the last-constructed, root vertex of this binary tree has

G[g] = G.

Viewing this binary tree from its root, we want to show it corres-

ponds exactly to a sequence of series, parallel and jackknife separations

leading to a disjoint collection of edges. We begin by choosing as term-

inals of the root graph the two vertices of the edge to which it was

reduced. Now proceed inductively through the binary tree. If a G[g]

was formed by series reduction of G[e] and G[f], each of G[e] and G[f]

has exactly one terminal in common with G[g], and V(G[e])nV(G[f]) is their

common terminal (which is not a terminal of G[g]). These are exactly the

requirements for a series separation.

If G[g] was formed by parallel reduction of G[e] and G[f], all three

have the same terminals and V(G[e]) - V(G[f]) = lu[e],v[e]}. Reversal of

the reduction is a parallel separation.

Finally, suppose G[g] was created by jackknife reduction of G[e] and

G[f]. G[e] and G[f] intersect only at their common terminal, G[f] has

the same terminals as G[g], and G[e] has as terminals the one it shares

with G[f] and some other vertex. Clearly G[g] jackknife separates into

G[e] and G[f].

For the converse we apply Theorem 1. If G is not series-parallel

we know from the earlier result that Chas a connected component G with a

26

subgraph H homeomorphic for K
4'

We will show this implies no sequence

of series, parallel and jackknife separations can divide G into a collec-

tion of disjoint edges.

Consider a sequence of series, parallel and jackknife separations

of G, and let G
0 be the last one containing every edge of H. That is

E(R)cE(Go [u,v1), but separation of G o [u,v] into yuvvi l and G2 [u2 ,v2] will

leave E(R)OE(Gi, E(H)0E(G 9). Now U is homeomorphic from K4 , so it contains no

cut vertices. Also, cut pairs are possible only for pairs of vertices

both belonging to a path of H corresponding to a single edge of K4 . It

follows that the separation was of the parallel type, that both terminals

of Go , G1 and G2 belong to such a path of H, and that one of G 1 and G2

 contains all of H except a path through degree-2 vertices. That is, one

of G
1

and G
2'

say G , contains a subgraph of the form H depicted in Fig-

ure 7.

Further parallel separation of G
1
will leave terminals unaltered and

entirely in one or the other created subgraph. Jackknife separations

are possible if u or v is a cut vertex, but again, all of H' must belong

to one of the successors and terminals will be undisturbed. Series

separations do move terminals, but only to cut vertices dividing the graph

so that one original terminal belongs to each successor.

We can conclude that only with series separations can a subsequent

sequence of series, parallel and/or jackknife reductions not leave

entirely contained in one of the two resultant subgraphs. But all

possible cut vertices of a graph like H' belong to either the path

(a,...,u) or the path (v,...,c). It follows that any sequence of such

separations will eventually lead to a descendent containing the subgraph

R" of Figure 7.

27

terminals

H'

Figure 7: Failure of Separation on
Subgraphs Homeomorphic from
K4

Further separation of R" is impossible. Thus, we can conclude that

if a originally contained an H homeomorphic from K4, 	cannot be separated
by any sequence of series, parallel and/or jackknife separations into a

collection of disjoint edges. This completes the proof.

6. Comparison to Other Definitions

The fundamental Duffin (1965) paper on series-parallel graphs sought

to clarify relations between alternative definitions in the earlier work

of Riordan and Shannon (1942). Duffin defined series-parallel graphs as

those for which resistance between any adjacent pair of terminals could

be computed by Ohm's laws:

• Resistance is additive for resistors in series

• Reciprocal resistance is additive for resistors in parallel

Duffin also defined confluent graphs as graphs having no cycles C
1

and

C2 that cannot be oriented in such a way that all common edges have like

direction.

Any distinct 4-vertex cycles of K 4 fail the confluence property.

More generally Duffin proved(his Theorem 1) that a graph is confluent if

and only if it contains no subgraph homeomorphic from K 4 . Furthermore,

in his Theorem 3 he established that a graph is series-parallel if and

only if it is confluent.

We can thus conclude via our Theorem 1 that both our definition and

Duffin's definition of series-parallel graphs are equivalent. However,

Duffin defined only two reductions--equivalent to our series and parallel.

Consequently, he only gave a reduction characterization of the case

29

where G is biconnected. The simple graph of Figure 3 illustrates that

cases lacking a subgraph homeomorphic from K
4
but still not completely reduc-

ible by series and parallel operations, are possible when G is not biconnected.

The recent paper by Valdes, Tarjan and Lawler (1982) is primarily

concerned with a vertex form of series-parallel graphs. However, these

authors do define and employ edge series-parallel digraphs. Lemma 2 of

their work references Duff in in asserting digraphs are edge-series-parallel

if and only if they can be reduced to single edges by series and parallel

reductions. Thus their definition is limited to graphs reducible by

series and parallel operations alone, and excludes, for example, the

graph of Figure 3.

Another recent and important paper on series-parallel graphs is that

of Takamizawa, Nishizeki and Saito (1982). These authors define series-

parallel graphs as those reducible by series and parallel reductions to

a two-edge cycle. It is easy to see that this limits their series-parallel

graphs to the biconnected ones since series and parallel reductions

preserve biconnectivity.

More importantly, however, Takamizawa et al treat a more general form

called two-terminal series-parallel. Like our Section 5, two-terminal

series-parallel graphs are defined in terms of separations of a given

graph G. The process begins with up to two vertices of G designated as

terminals. New graphs produced by separating G also have two terminals.

However, one or both may be virtual (i.e. artificial). If we adopt

the equivalent notion that single terminal and no terminal graphs are

allowed, two terminal series-parallel graphs are those which can be de-

composed into a collection of disjoint edges by any sequence of applica-

tion of the series (type I) and parallel separations tabulated in our Table 1.

30

Table 1: Classification of Separations in 1
 Two-Terminal Series-Parallel Graphs—/

Separation Form

Series (Type I)

	

Gl/ 	
2/ 	

G 2.1 Separation 	Key 	 Key --i

	

G1 	Key 2
Vertex(s) 	Vertices 	Vertices 	Vertices

b 	 a,b,c 	 a,b 	 b,c

b 	 a,b 	 a b 	 .,b 	 b

b 	 b 	 b b

Parallel

	

!,.11 	 a,b , 	 a,b , 	 a,b ,_

	

a 	 a,b , 	 a,b 	 a,b

	

none 	no terminals no terminals no terminals

1/ Adapted from Takamizawa et al (1982)

21 Underlined vertices are terminals.

31

Series (type I) separations divide G at a cut-vertex, c, into two

parts G 1 and G 2 . The cut-vertex c is not a terminal of G but becomes a

terminal of both G1 and G 2 . Terminals of G are also terminals of which-

ever of G
1
and G

2 they belong to. In particular, if G had two terminals

one must be part of G 1 and the other part of G 2 .

Parallel separations have three purposes. If G has no terminals,

parallel separation merely divides G into one collection G and another

G2 of disconnected components of G. If G has one terminal and it is a

cut-vertex, parallel separation creates new one-terminal subgraphs sepa-

rated at that cut-vertex. If G has two terminals, parallel separation

divides G at the terminals when they form a cut-pair.

Clearly, series (type I) and parallel separations with two terminals

perform substantially the same functions as our series and parallel

separations of Section 5. Parallel separations with no terminals merely

isolate connected components.

Parallel separations with one terminal are more interesting. They

effect part of what we do by jackknife separation -- divide graphs at a

cut-vertex that is also a terminal. However, two-terminal series-parallel

graphs still do not appear to cover the full range of our series-parallel

graphs. It is not hard to verify that separation of the graph in Figure

3 by methods of Table 1 eventually halts with a subgraph consisting of a

3 vertex path having 2 adjacent terminal vertices. Thus the graph of

Figure 3 is not two-terminal series-parallel even though it conforms to

our definition of series-parallel. On the other hand, a proof like that

of the converse of Theorem 5 can show that if G is not (our) series-

parallel, it is not two-terminal, series7parallel. The subgraph R" of

32

Figure 7 admits no Table 1 separation. But just as in the proof of

Theorem 5, it must eventually be encountered. Whether we start with 0,

1 or 2 terminals, H can be first disturbed only by the two-terminal,

cut-pair form of parallel separation at which our proof begins.

Finally, we note that our own work in Rardin, Parker, and Wang (1982)

and Rardin, Parker, and Richey (1982) use still a different definition of

series-parallel graphs. We described such graphs as those reducible by

series and parallel reduction to a tree. Clearly, the example of Figure

3 fails this test even though it satisfies the definition of Section 2.

7. Conclusion

Our aim in this paper has been to clarify and synthesize knowledge

about series -ID:Ira -1.1cl graphs. We can summarize our conclusions by the

following:

Theorem 6: Equivalent Characterizations. Let G be a loopless, undirected

multigraph with no isolated vertices. Then the following are equivalent:

(i) G can be reduced to a collection of disjoint edges by some

sequence of applications of series, parallel and jackknife

reductions (as defined in Section 2).

(ii) G contains no subgraph homeomorphic from K4 .

(iii) G contains no subgraph homeomorphic from any triconnected

graph.

(iv) Every connected component of G can be separated into a

collection of disjoint edges by designating an appropriate

pair of vertices of the component as terminals and applying

33

some sequence of series, parallel and jackknife separations

(as defined in Section 5).

(v) G contains no cycles C l and C2 that cannot be oriented in

such a way that all common edges have like direction.

Furthermore, whether G satisfies (i) - (iv) can be tested in time linear

in the number of its edges and vertices.

34

REFERENCES

Aho, A. V., J. E. Hoperoft and J. D. Ullman (1974), The Design and
Analysis of Computer Algorithms, Addison-Wesley, Reading MA.

Duff in, R.J. (1965), "Topology of Series-Parallel Networks", Journal of
Mathematical Analysis and Applications, 10, 303-318.

Hoperoft, J.E. and R. E. Tarjan (1973), "Dividing a Graph into Triconnected
Components", SIAM Journal on Computing, 2, 135-158.

Nishizeki, T., K. Takamizawa and N. Saito (1976), "Algorithms for Detecting
Series Parallel Graphs and D-Charts", Trans. Inst. Elect. Commun. Eng.
Japan, 59, 259-260.

Rardin, R.L., R.G. Parker and W.Y. Lim (1982), "Some Polynomially Solvable
Multi-Commodity Fixed Charge Network Flow Problems", Industrial and
Systems Engineering Report Series J-82-2, Georgia Institute of Tech-
nology, March.

Rardin, R.L., R.G. Parker and M.B. Richey (1982), "A Polynomial Algorithm
for a Class of Steiner Tree Problems on Graphs", Industrial and Systems
Engineering Report Series J-82-5, Georgia Institute of Technology,
August.

Riordan, J. and C. E. ::::lannn (1942), "The Number of Two-Terminal Series-
Parallel Networks", J. Math. Phys.,21, 83-93.

Takamizawa, K., T. Nishizeki and N. Saito (1982), "Linear-Time Computability
of Combinatorial Problems on Series-Parallel Graphs", Journal of the
ACM, 29, 623-641.

Valdes, J. (1978), "Parsing Flowcharts and Series-Parallel Graphs,"
Technical Report STAN-CS-78-682, Stanford University.

Valdes, J., R.E. Tarjan and E.L. Lawler (1982), "The Recognition of Series
Parallel Digraphs", SIAM J. Computing, 11, 298-313.

35

Industrial'and Systems Engineering
Report Series J-82-5
August, 1982

A POLYNOMIAL ALGORITHM FOR A

CLASS OF STEINER TREE PROBLEMS

ON GRAPHS

by

Ronald L. Rardin

R. Gary Parker

Michael B. Richey

J-82-5

This material is based in part upon work partially supported by the
National Science Foundation under Grant Number ECS-8018954.

ABSTRACT

In this paper, we address the following problem. Given an undirected

graph G(V,E) with arbitrary edge weights, determine a minimal weight subset

of edges which forms a tree and which includes a specific subset of vertices

in V. It is well known that finding such a subgraph, referred to as a

Steiner tree, is formally difficult for arbitrary G(V,E). On the other hand,

if we confine our attention to a class of graphs commonly referred to as

series-parallel, the problem can be solved. We demonstrate this in the pre-

sent paper.

1. INTRODUCTION

Consider an undirected graph G(V,E) with vertex and edge sets V and E

respectively. We shall assume throughout that G(V,E) is loopless but may

possess multiple edges. The Steiner tree problem on graphs seeks a subset

E c E forming a tree which includes all vertices in a specified subset

S c V and which has minimum total edge weight. Note that we specifically

define the problem on graphs in order to differentiate it from the classic

version defined on the Euclidean plane. In the latter case, the problem is

a well-known one in geometry which asks for a set of lines (also in the

plane) which connect a set of points and does so with minimum total length.

Hereafter, we will simply refer to our problem by STP.

The difficulty of the STP has been established, its NP -Completeness (for

the decision analog) following via a transfOrmation from EXACT COVER BY

3-SETS (Karp (1972)). Even various special cases remain intractable. Among

these are problems with equal edge weights (Carey and Johnson (1979)) as well

as problems defined on planar graphs (Garey and Johnson (1977)).

On the other hand, there are some easily resolvable cases. Clearly, when

S = V, the STP trivially reduces to the minimum weight spanning tree problem

for which highly efficient algorithms are known and when IS1 = 2, the problem

becomes one of finding the shortest path in a graph which connects the ver-

tices in S. This also'is well-solved so long as edge weights are non-negative.

Of course, general (nonpolynomial) algorithms have also been developed. We

direct the interested reader to Lawler (1976) for coverage of these, in parti-

cular the work of Dreyfus and Wagner (1972). An interesting survey of the

STP can also be found in Hakimi (1971) and recently, a branch and bound

procedure was presented by Shore, et. al., (1982).

In this paper, we give a procedure for solving the STP on a restricted

class of graphs referred to as series-parallel. Our algorithm is based, in

2

part, on notions developed in Takamizawa, et. al. (1982) as well as on im-

plications arising from earlier results in Rardin, et. al. (1982). Fol-

lowing, we characterize the class of series-parallel graphs of interest

after which we motivate the development of the algorithm. The procedure

is formally stated and demonstrated with a small problem. We next

establish the algorithm's polynomiality and finally, we conclude with some

general observations.

2. SERIES-PARALLEL GRAPHS

The notion of series-parallelism in graphs is not of recent vintage. It

also is a concept which has found its way into a host of problem settings

dealing with graphs and networks. Included are classic problems in electri-

cal engineering, routing and transportation problems, problems in network

design and various precedence constrained scheduling problems.

Accompanying this range of settings has been a concomittant growth in

the literature of the various fields. This, in turn, has created a somewhat

confusing situation insofar as a unified view of series-parallel structures

is concerned. An early attempt at resolving this appeared in the work of

Duff in (1965), and later, in Lawler (1978).

For our purposes, the following definition of series-parallel graphs

will suffice. In particular, we will say that a loopless, undirected graph,

G(V,E) is series-parallel if it can be reduced to a forest by the sequential

application of the following elementary operations.

(i) series reduction: Replace any degree-2 vertex k, and the

incident edges (or pseudo-edges) e and f connecting k to

vertices i and j # i respectively, by a new pseudo-edge g

incident to i and j.

3

(ii) parallel reduction: Replace two edges (either or both of

which may be pseudo-edges) e and f, both incident to vertices

i and j, by a new pseudo-edge g incident to i and j.

An alternative, and more familiar definition suggests that G(V,E) is

series-parallel if and only if it possesses no subgraph homeomorphic to K 4
(the complete graph on four vertices). This definition assures that all

conforming graphs are planar but not the converse since K4 itself is planar.

Regardless, it is easy to show that these two views of the series-parallel

property are not equivalent, e.g., any 1-tree satisfying the latter defini-

tion and which has no degree-2 vertices is not reducible by operations (i)

and (ii) above.

With no additional specifications on G(V,E), our class of series-parallel

graphs can accurately be viewed as a restricted class of those conforming to

the definition employing the forbidden K4 subgraphs (or homeomorphs of K4
).

However, if we take our graphs to be 2-connected then the definitions are

equivalent. Recall that a graph is 2-connected if every pair of vertices lies

on a cycle. Further, under 2-connectivity any valid sequence of operations (i)

and (ii) will reduce such a graph (if and only if it is series-parallel) to

a single edge or pseudo-edge ([2]).

Note that we have introduced the term pseudo-edge in order to signify

artificial edges which result from series and parallel reductions. These

artificial edges, of course, represent subgraphs of G(V,E). Let us denote

by G(e) the subgraph associated with pseudo-edge e and by V(e) and E(e), the

vertex and edge sets of G(e), respectively. The vertices to which e is in-

cident will be termed the terminals of G(e).

4

When e E E (i.e., e is a "true"-edge in G) and e is incident to vertices

say i and j, we shall set V(e) 	 and E(e) t {e} where e A (1, j).

When e and f are series or parallel reduced to g, the associated G(g) is ob-

tained via V(g) t V(e) u V(f) and E(g) 	E(e) u E(f). The key observations

leading to the development of an algorithm for the STP on series-parallel

graphs can now be stated.

Lemma 1: Common Elements of Series or Parallel-Reduced Subgraphs. Suppose

edges or pseudo-edges e and f are series or parallel-reduced to pseudo-edge

g. Then

la: E(e) n E(f) =

lb: V(e) n V(f) = ikl where k is the common terminal of G(e) and

G(f), if the reduction is series.

lc: V(e) n V(f) = 	j} where i and j are the two terminals of

G(e) and G(f), if the reduction is parallel.

Proof: All edges and all non-terminal vertices of G(e) and G(f) have been

absorbed in one of e or f before the two are combined as g. Hence, no such

edge or non-terminal vertex could belong to both G(e) and G(f), In addi-

tion, G(e) and G(f) have exactly one (for series) or two (for parallel) ver-

tices in common which follows by definition of series and parallel reduction.

iI

It is obvious that the series and parallel reduction operations neither

create not join disconnected components of G. Thus reduction will lead to

a forest which is a tree exactly when G is connected. In dealing with the

STP, we need consider only this case since G(V,E) admits a Steiner tree on

vertices S c V if and only if vertices in S belong to a single component.

5

Earlier we stated that under the assumption that the original graph is

2-connected, the reduction process always leads to a single (pseudo) edge.

In order to simplify the ensuing presentation of cases, we will assume

such a reduction to an edge always occurs. In cases where reduction

yields a tree of 2 or more edges (the original graph may even be a tree) we
A

can induce 2-connectivity by adding an artificial, non-Steiner vertex, V, to

the current, reduced graph and connecting it to every vertex of the tree by

artificial edges having weight +co. Clearly, such an edge and hence, v, will

not be part of an optimal Steiner tree. The next lemma assures that this con-

struction results in a 2-connected graph and more importantly, that it pre-

serves the series-parallel property.

Lemma 2: Artificial 2-Connection of Tree Cases. Let T be a tree on vertex

set V(T). Then the graph H formed by connecting a new vertex v to each

i e V(T) is 2-connected, series-parallel.

Proof: That H is 2-connected is clear since every pair i, j e V(T) lies on

the cycle formed by edges (v, i), (v, j) and the unique path in T connecting

i and j. To see that H is also series-parallel observe that if this were not

so, then H would necessarily contain a subgraph homeomorphic to K
4 . One ver-

tex in such a subgraph might be v but at least three would belong to V(T).

However, this would imply the presence of K 3 (or a homeomorph of K3) in T and

hence, a cycle, which is not possible if T is a tree. Thus H contains no such

homeomorph and is indeed series-parallel.

We are now in a position to develop an algorithm for the STP under the

stated series-parallel assumption.

6

3. DEVELOPMENT OF AN ALGORITHM

Our aim is to develop an inductive procedure. That is, we wish to express

optimal Steiner solutions in a subgraph, say G(g). This subgraph results from .

a series or parallel reduction as a function of its antecedent subgraphs, say

G(e) and G(f). From Lemma 1, we observed that G(e) and G(f) share no edges

and have only terminal vertices in common. As a consequence, there are rela-

tively few cases to consider. The next lemma lists the possibilities for a

series reduction.

Lemma 3: Antecedents of a Tree Produced by Series Reduction. Suppose degree-

' 2 vertex k, and edges or pseudo-edges a and f connecting k to i and j i re-

spectively, are series-reduced to pseudo-edge g. Then every tree, T, of

G(g) satisfies one of the following:

3a; T is a tree of G(e)

3b: T is a tree of G(f)

3c: T is the union of a tree of G(e) and a tree of G(f), both

of which include vertex k.

■

To produce a similar classification of cases under parallel reduction,

we require an additional concept. B is a terminal biforest of the subgraph

G(g) associated with pseudo-edge g if B consists of two disjoint trees,

each including exactly one of the terminals of g. Accordingly, we have

Lemma 4: Antecedents of a Tree Produced by Parallel Reduction. Suppose two

edges or pseudo-edges e and f, both connecting vertices i and j, are paral-

lel-reduced forming pseudo-edge g. Then every tree, T, of G(g) satisfies

one of the following:

7

4a: T is a tree of G(e).

4b: T is a tree of G(f).

4c: T is the union of trees of G(e) and G(f) both of which

contain i and neither of which contains j.

4d: T is the union of trees of G(e) and G(f) both of which

contain j and neither of which contains i.

4e: T is the union of a tree of G(e) containing both i and

j with a terminal biforest of G(f).

4f: T is the union of a tree of G(f) containing both i and

j with a terminal biforest of G(e).

■

Having introduced the terminal biforest cases, we must now consider how

they night occur in reductions. The next two lemmas treat the series and

parallel cases.

Lemma 5: Antecedents of a Terminal Biforest Produced by Series Reduction.

Suppose degree-2 vertex k, and edges or pseudo-edges e and f connecting k to

i and j ¢ i respectively, are series reduced to pseudo-edge g. Then every

terminal biforest, B, of G(g) satisfies one of the following.

5a: B is the union of a tree of G(e) including vertex i but

not k, and a - tree of G(f) including vertex j but not k.

5b: B is the union of a tree of G(e) including both vertices

i and k and a terminal biforest of G(f).

5c: B is the union of a tree of G(f) including both vertices

j and k and a terminal biforest of G(e).

8

Lemma 6: Antecedents of a Terminal Biforest Produced by Parallel Reduction.

Suppose two edges or pseudo-edges e and f, both connecting vertex i to vertex

j, are parallel reduced to a new pseudo-edge g. Then every terminal biforest,

B, of G(g) satisfies the following.

6a: B is the union of terminal biforests of G(e) and G(f).

The previous four lemmas demonstrate that trees and terminal biforests

of new pseudo-edge subgraphs can be derived from similar results which exist

relative to their antecedents. We need only exercise some care in recording

which terminals belong to various trees. To specialize the results to

Steiner trees and Steiner terminal biforests (terminal biforests for which

all Steiner vertices belong to one of the two trees), we need only check

whether the antecedent structures can contain all required Steiner vertices.

Also, since structures obtained by union in various cases of Lemmas 3-6 rep-

resent the union of edge-disjoint entitites, the optimal union will possess

total weight equivalent to the sum of the weight of optimal antecedents of

the specified types.

With these observations, an algorithm for the STP can be stated in terms

of edge (or pseudo-edge) labels. We define these below.

t(e, -) A the weight of a minimum Steiner tree on G(e) that

uses neither terminal.

t(e, k) A the weight of a minimum Steiner tree on G(e) that

uses only terminal k (one label for each terminal).

t(e, +) 0 the weight of a minimum Steiner tree on G(e) that

uses both terminals.

t(e, I) 	the weight of a minimum Steiner terminal biforest

on G(e).

9

We can now state the algorithm formally. In the following, we denote the

Steiner vertices by set S and edge weights, which may be arbitrary, by w(e)

for e A (1, j) e E.

Step 0: Label. Edges in E. To each edge e = (i,j) in E assign the labels

t(e, -) 	-1-°°

if j e S
t(e, i) 4-

0 otherwise

+03 if i e S
t(e, j)

0 otherwise

t(e, +) 	w(e)

t(e, I) 4— 	0

Step 1: StoDp.in7i. If the present graph is a single (pseudo) edge,

e = (i,j), stop; the weight of an optimal Steiner tree in G is

min {t(e, -), t(e, 1), t(e, j), t(e, +)}.

Otherwise, if a series reduction is possible, go to Step 2 and if a

parallel reduction is possible, go to Step 3.

Step 2: Series Reduction. Select any degree-2 vertex k of the

present graph and let e be the edge (or pseudo-edge) connecting

k to i and f, the edge (or pseudo-edge) connecting k to j. Replace

k, e and f by a new pseudo-edge, g, with labels

10

t(g, -) 4---

min ft(e,k) + t(f,k), t(e,-)} 	if V(e) n S 	(1)

and V(f) n S= 4,

min { t(e,k) + t(f,k), t(f,-)} 	if V(f) n S

and V(e) n S = $

min ft(e,k) + t(f,k), t(e,-), t(f,-)} if fV(e) u V(f)} n S

t(e,k) + t(f,k) 	 otherwise

t(e,+) + t(f,k)
t(g, i) 4--

min ft(e,i), t(e,+) + t(f,k)}

t(f,+) + t(e,k)
t(g, j) 4--

min ft(f,j), t(f,+) + t(e,k)}

if V(f) n S

otherwise

if V(e) n S # $

otherwise

t(g, +) 	t(e,+) + t(f,+)

t(g, 	min ft(e,+) + t(f,!), t(e,l) + t(f,+), t(e,i) + t(f,j)}

Return to Step 1.

Step 3: Parallel Reduction. Select any two edges or pseudo-edges e

and f connecting the same pair of vertices i and j in the present

graph. Replace e and f by a new pseudo-edge, g, with labels

t(g, -)

if V(e) n S 	s and V(f) n S= 4,

if V(f) n S 	(I) and V(e) n S= 4,

min ft(e,-), t(f,-)} if (V(e) u V(01 n S

otherwise

t(g, i) 4-- 	t(e,i) + t(f,i)

t(g, j) 	t(e,j) + t(f,j)

11

t(g, +) 4- 	min {t(e,l) + t(f,+), t(f,l) + t(e,+)}

t(g, 1) 4- 	t(e,I) + t(f,l)

Return to Step 1.

Prior to demonstrating the algorithm, we establish with the next result

the validity as well as the efficiency of the procedure. We have

Theorem: Correctness and Efficiency. Let G be a 2-connected and series-

parallel graph. The stated algorithm computes the weight of an optimal

Steiner tree in G in time growing as a polynomial in the number of edges

and vertices in G.

Proof: To see that the algorithm is polynomial, we observe that each re-

duction of either type reduces the number of edges and pseudo-edges by one.

In addition, computation associated with a reduction involves only scans for

reducible cases and within each, label updates. Hence, the algorithm is

clearly polynomial in IVI and 1E1.

To show that the procedure always yields the correct solution value (or

+00 if G has no Steiner tree) we can proceed inductively. Observe that

straightforward application of the label definitions establishes that ini-

tial assignments are correct.

Now, assume that labels do reflect the desired optimal values for edges

or pseudo-edges e and f being series-reduced as in Step 2 of the algorithm.

Label rules of Step 2 merely enumerate the antecedent combinations contem-

plated by Lemmas 3 and 5 in order to produce optimal labels for the new pseudo-

edge g. Similarly, if a parallel reduction is performed at Step 3, labeling

enumerates the cases of Lemmas 4 and 6. Since these are the only cases, cor-

rect labels must result.

12

Of course determining the weight of an optimal Steiner tree is not the

same as "solving" the STP. To accomplish this, we must produce an appro-

priate subgraph having the optimal weight. The issue, however, is no dif-

ferent than that in say, shortest path analysis where a particular path is

easily reconstructed from its length calculations by a simple backtracking

scheme. The following example serves as an illustration.

Suppose G(V,E) is given as in Figure la where edge weights, w(e), are

given on the figure. Let S = {2, 3, 7} and for ease, denote the edge labels

by the format shown in Figure lb. Proceeding in step-by-step fashion we

have

Step 0: Initially, the labels on all edges are set and appear

as shown in Figure 2.

Step 1: Consider vertex 6 which is of degree two. Letting

e = (5,6) and f = (6,4) we perform a series reduction, re-

placing e and f by g = (5,4). The labels for g are calculated

and we have

t(g, -) 	min ft(e,6) + t(f,6), t(e,-), t(f,-)

= min {0 + 0, +.0, +...)

= 0

t(g, i) 	min ft(e,5), t(e,+) + t(f,6)}

= min {0, 10 + 01

= 0

t(g, j) 4— min (t(f,4), t(f,+) + t(e,6)}

= min {O, 5 + 0}

= 0

t(g, 	t(e,+) + t(f,+) = 15

t(g, I) 4-- min {t(e,+) + t(f,I), t(e,I) + 	t(e,i) + t(f,j)}

= min {0, +o, 0} = 0

Step 1: Replacing edges (5,6) and (6,4) by pseudo-edge (5,4)

clearly does not produce a single edge graph and we continue.

Step 2: Vertex 5 is now a degree-2 vertex and we can perform

a series reduction again. Letting e A- (3,5) and f 	(5,4) in

the present gra177., we create the new pseudo-edge g 4 (3,4). The

labels on g are +=, 0, +0., 19 and 0 for t(g, -), t(g, i), t(g, j),

t(g, +) and t(g, I) respectively.

Step 1, 3: A pair of parallel edges now connect vertices 3 and 4.

One of these is a real edge and the other is the result of the pre-

vious two series' reductions. Letting the pseudo-edge be the laiter, -

 denote it by e and the true edge by f. Forming the new pseudo-edge,

g
A= (3,4) by parallel reduction produces the following labels

t(g, -) 	-1.-co 	(note: V(e) and V(f) share Steiner vertex 3)

t(g, i) 	t(e,3) + t(f,i)

13

= 0

14

t(g, j) 	t(e,4) + t(f,4)

+co

t(g, +) 4— min [t(e,l) + t(f,+), t(f,I) + t(e,+)}

= min {0 + 3, 0 + 19}

= 3

t(g, I) 4— t(e,I) + t(f,I)

= 0

The procedure continues in this manner until stopping occurs with a single

edge. This is guaranteed since the original graph is 2-connected.

Regardless, we summarize the entire calculation in Figure 3 where at each

iteration the new labels are given along with the associated subgraph G(g).

The reader will observe that when Step 1 is finally invoked an optimal weight

results as min {t(e, -), t(e, 8), t(e, 9), t(e, +)} = min f3, 1, 5, -2} = -2

where the e 4 (8, 9). The optimal tree is shown in Figure 4.

4. SUMMARY AND CONCLUSIONS

In this paper we have presented a polynomial algorithm for treating the

Steiner tree problem defined on graphs which possess a series-parallel struc-

ture. When our graphs are 2-connected-series-parallel on equivalent character-

ization is that they contain no subgraph homeomorphic to K4 .

This work on Steiner trees stems directly from a more general context in

which it has been shown by the first two authors that a rather rich class of

combinatorial problems are efficiently solvable when the series-parallel

property is present. In particular, it is known that numerous such problems

15

can be formulated as multi-commodity fixed charge network flow problems, the

linear programming relaxation of which is perfect, i.e., integer. This latter

condition results from a unimodularity property and polynomiality follows from

the application of the ellipsoid algorithm [7].

Of course, from an algorithmic perspective, resting the case for formal

efficiency on the solvability of linear programs is not at present very in-

sightful. However, we observe that when such a phenomenon has occurred pre-

viously, efficient combinatorial algorithms have generally resulted (e.g.,

matching). This, as much as any other reason has provided the motivation

for the present algorithm for the Steiner tree. problem. To this extent, it

is anticipated that continued research will produce similar results for other

interesting problems defined on the class of series—parallel graphs.

t(e, +)

t(e, -) t(e, j)

t(e,

16

(a)

(b)

Figure 1. Sample Problem

Figure 2. Original Edge Labels for Sample Problem

+0.

2

Reduction Subgraph

Figure 3. Sequence of Reductions for Sample Problem

Subgraph Reduction

Figure 3. (cont)

19

0 0 0

Reduction 	 Subgraph 	20

Figure 3. (cont)

21

Figure 4. Optimal Steiner Tree for Sample Problem

22

5. REFERENCES

1. Dreyfus, S. E. and R. A. Wagner, "The Steiner Problem in Graphs,"

Networks, Vol. 1, No. 3, pp. 195-207, (1972).

2. Duffin, R. J., "Topology of Series-Parallel Networks," J. Math. Anal

Appl., Vol. 10, pp. 303-318, (1965).

3. Garey, M. R. and D. S. Johnson, "The Rectilinear Steiner Tree Problem

is NP-Complete," SIAM J. Appl. Math., Vol. 32, No. 4, pp. 826-834,

(1977).

Garey, M. R. and D. S. Johnson, Computers and Intractability: A Guide

to the Theory of NP-Completeness, W. H. Freeman and Co., San Fran-

cisco, (1979).

5. Hakimi, S. L., "Steiner's Problem in Graphs and Its Implications,"

Networks, V:1. 1, No. 2, pp. 113-133, (1971).

6. Karp, R. M., "Reducibility Among Combinatorial Problems," in R. E. Miller

and J. W. Thatcher (eds.), Complexity of Computer Computations, Plenum

Press, New York, pp. 85-103, (1972).

7. Khachian, L. G., "A Polynomial Algorithm in Linear Programming," Doklady,

Akademii Nank, SSSR, 244, (1979).

8. Lawler, E. L., Combinatorial Optimization: Networks and Matroids, Holt,

Rinehart and Winston, New York, (1976).

9. Lawler, E. L., "Sequencing Problems with Series-Parallel Precedence

Constraints," Proceedings, Conf. on Combinatorial Optimization,

Urbino, Italy, (1978).

10. Rardin, R. L., R. G. Parker, and W. K. Lim, "Some Polynomially Solvable

Multi-Commodity Fixed Charge Network Flow Problems," ISyE Report

Series J-82-2, Georgia Institute of Technology, Atlanta, GA, (1982).

11. Shore, M. L., L. R. Foulds, and P. B. Gibbons, "An Algorithm for the

Steiner Tree Problem on Graphs," Networks, Vol. 12, No. 3. pp. 323-

334, (1982).

12. Takamizawa, K., T. Nishizeki, and N. Saito, "Combinatorial Problems

on Series-Parallel Graphs," JACK, Vol. 29, No. 3, (1982).

March 1983
Revised: August 1983

A SOLVABLE CASE OF THE
MINIMUM WEIGHT EQUIVALENT SUBGRAPH PROBLEM

by

M. B. Richey and R. Gary Parker
School of Industrial and Systems Engineering

Georgia Institute of Technology
Atlanta, GA 30332

R. L. Rardin
School of Industrial Engineering

Purdue University
W. Lafayette, Indiana 47907

This material is based upon work partially supported by the National Science
Foundation under Grants ECS-8018954, ECS-8300533 and ECS-8312755.

ABSTRACT

The problem of finding a minimum cardinality subset A c A such

that the subgraph, G(V,X), preserves the reachability properties of digraph

G(V,A) is well known to be difficult. In this paper, we consider a

generalization which seeks a minimum weight subset A satisfying the

stated conditions where the weights of arcs in A are assigned arbitrary

integer values. A polynomial time algorithm is given for the case

where the underlying, undirected graph is series—parallel. Naturally,

the stated algorithm subsumes the cardinality case on such graphs as

well.

1. INTRODUCTION

In this paper we consider the following problem: given a directed

graph, G(V,A), where arcs, e s A are assigned arbitrary integer

weights, c(e), find a minimum weight subset —A c A such that the graph,

G(V,A) possesses a directed path between vertices u and v in V if an

only if G(V,A) does. When c(e) are identical, the problem reduces to

one of determining a minimum cardinality subset, and is known accor-

dingly, as the minimum equivalent graph problem (MEGP). Relativising,

we shall refer to our problem as the weighted version of the MEGP and

hereafter denote it by MWEGP. The corresponding graphs are denoted by

MEG and MWEG, respectively.

Relatively little has been done on the MEGP, although three not-

able papers have appeared: Moyles and Thompson (1969), Hsu (1975) and

most recently, Martello and Toth (1982). Regardless, the MEGP is known

to be difficult, its intractability having been established in Sahni

(1974). Thus, since an algorithm for the MWEGP would trivially solve

the MEGP, the former is difficult, as well, for instances defined on

arbitrary directed graphs (the problem is uninteresting on undirected

graphs since a minimum weight spanning tree provides the solution).

However, in what follows we shall demonstrate that when the underlying

simple graph of G(V,A) is in the class of graphs referred to as series—

parallel, the MWEGP can be solved in polynomial time.

Following, we review some basic notions regarding series—parallel

graphs, after which we motivate the development of an algorithm. We

then provide a formal statement of the procedure and demonstrate it

with a sample problem. After establishing the efficiency of the

algorithm we conclude with some comments regarding other solvable

problems on series-parallel graphs.

2. BACKGROUND

Let G(V,A) be a directed graph and denote by G(V,E), its undirected

counterpart. That is, G(V,E) is obtained from G(V,A) by simply negecting

the orientation of arcs in A. We then have that G(V,E) is series-

parallel if and only if it can be reduced to an edge by the sequential

application of the following elementary operations:

(i) Series-reduction: replace any degree-2 vertex, k, and its

incident edges (or pseudo-edges), e and f, connecting k to

vertices i and jyki, by a pseudo-edge, g, incident to i and j.

(ii) Parallel-reduction: replace any two edges (either or both of

which may be pseudo-edges), e and f, both incident to vertices

i and j, by a pseudo-edge, g, incident to i and j.

(iii) Jackknife-reduction: replace any degree-1 vertex, k, its

incident edge e=(j,k), and any other edge, f=(i,j), incident to

e, by a pseudo-edge, g=(i,j).

Alternately, Duffin (1965) has given the following characterization

of series-parallel graphs.

Theorem 1: A loopless, undirected graph is series-parallel if and only

if it possesses no subgraph homeomorphic to X
4

(the complete graph on 4

vertices).

I:1

There are also other specifications of series-parallel graphs whose

equivalence with either of the two above is established in Rardin, Parker

and Wagner (1982). Regardless, it is obvious that series-parallel graphs

form a subset of planar graphs since '<. 4 itself is planar. It is also

2

worth observing that 2-connected graphs free of K
4
homeomorphs are reduc-

ible to an edge by invoking only the series and parallel reductions.

The latter observation above is important since it allows a slight

simplification for the MWEGP. Clearly, any degree-1 vertex in a graph

(either the original graph or one which has been reduced) implies the

existence of a cut-vertex. Hence, if any pair of vertices (neither of

which is the cut-vertex) in the two blocks induced by the cut-vertex are

connected by a path, the path must include the cut-vertex. This, in

turn, implies that there is no loss of generality if we consider only

instances of the MWEGP which are defined on 2-connected graphs. To be

consistent, we simply modify Theorem 1 accordingly and eliminate reduc-

tion operation (iii).

Of course, there is discretion in how the series and parallel opera-

tions are applied on a graph. As it turns out, however, this application

can be arbitrary. We have

Theorem 2: If G(V,E) is a 2-connected, series-parallel graph, then any

admissable sequence of operations (i) and (ii) will reduce G to a single

edge.

Proof: See Richey, et.al. (1982).

In Figure 1, we iliustate the reduction process. Here, the directed

graph, G(V,A) is converted to its underlying, undirected counterpart,

G(V,E) after which reductions (i) and (ii) are applied, culminating with

a single edge.

3

(i)

G(V,A)
	

G(V,E)

ii

Figure 1. Series and Parallel Reductions

3. DEVELOPMENT OF THE ALGORITHM

3.1 General Concepts

During the reduction process, pseudo-edges are formed by the series

and parallel reduction operations. Each pseudo-edge represents a

subgraph of the original graph. Of course, ascertaining the relationship

between the MWEGs of these subgraphs and the MWEGs of their series and

parallel combinations is at the heart of the ensuing algorithm.

Suppose we let G r (Vr' E r) denote the graph resulting from the

application of a sequence of series and parallel reductions to the

underlying, undirected counterpart of a directed graph, G(V,A). In

addition, define C[e] to be the subgraph of G(V,A) with vertex and edge

sets V[e] and E[e] respectively, corresponding to ee F.

Now, a MWEG of G[e] must possess a path between any two vertices of

G[e] if the vertizes are connected by a path in G[e]. In particular,

consider paths between a terminal of G[e] (i.e. an element of V[e] n V
;
)

and some other vertex in V[e]. Clearly, any path between i E V[e] and

j E V\V[e] must use at least one terminal of G[e]. Thus, if i and j # i

are elements of V[e], then any path between them which is not contained

in G[e] must pass through both terminals of G[e]. This is so since a

path passing through one terminal twice can be considered as two separate

pieces, the cycle exterior to G[e] and the path interior to G[e]. We are

lead to the following lemma:

Lemma 3: If the values of the minimum weight subgraphs of G[e] are

known with respect to the following properties for every e E E
,

then the

value of the MWEG of G(V,A) can be determined.

5

(i): Subgraph equivalent to G[e], denoted by
	

(MWEG)

(ii): Subgraph equivalent to G[e] which has a path from terminal i

to terminal j (both of G[e]), denoted by

(iii): Subgraph equivalent to G[e] which has a path from terminal j

to terminal i (both of G[e]), denoted by 	 (44

(iv): Subgraph equivalent to G[e] which has a path from i to j and a

path from j to i, denoted by

(v): Subgraph which would be equivalent to G[e] if a path from i to

j were added to the subgraph, denoted by

(vi): Subgraph which would be equivalent to G[e] if a path from j to

i were added to the subgraph, denoted by

(vii): Subgraph which would be equivalent to C[e] if a path from i to

j and a path from j to i were added to the subgraph, denoted

by 	 (-4741')

(viii): Subgraph which has a path from i to j and would be equivalent

to G[e] if a path from j to i were added, denoted by 47 4,

(ix): Subgraph which has a path from j to i and would be equivalent

to G[e] if a path from i to j were added, denoted by

Note: In (v)-(ix), subgraphs which "would be equivalent to Gje] if•..." include

subgraphs which are equivalent to G[e] without the specified path(s).

Proof: Consider vertices is Ne i] and j c V [ed such that there exists

a path from i to j in G(V,A) which passes through edges (in order)

e 1 ,e2 ,...,e 2 c Er where Z > 1. Our proof will be by induction on k.

Clearly, the lemma is true when 2. = 1 for by the discussion

proceeding the lemma, each path between i and j must be entirely in G[e
1

]

or else consist of arcs in E[e
1
] added to a simple path between the

terminals of el . Since all possible combinations of paths between the

terminals are included in the nine specified subgraphs, every possible

subgraph of G[e l] which could include a path from i to j in the MWEG of
6

G(V,A) is accounted for.

Now, assume the lemma to he true for 1 = k. Then for 9, = k + 1, let

t he the terminal vertex shared by e k and e k+1 . Since t c G[ek], all

possible paths between i and t which could be in the MWEG of G(V,A) have

been considered. In addition, since t and j are in GCek+lj , all

possible paths between t and j have been considered as well. Further,

this is true for all possible terminals t, and hence all possible paths

between the stated vertices i and j are accounted for by the nine

specified subgraphs. This completes the proof.

As it turns out, it is convenient to think of nine subgraphs not as

separate cases but rather in terms of their interrelationships. That is,

a given case can be viewed in terms of those cases which are restrictions

of it. This leads to the hierarchy in Figure 2. Interpreting, a given

case denoted by node i includes another, i' if there is a directed path

from node i to node i' in the figure.

Of course, no minor question at this point is that regarding the

actual calculation of the subgraph labels specified in Lemma 3. That is,

how are such values determined for a pseudo-edge from its constituent

real edges?

Let L[e] be a nine-tuple 	for pseudo- edge e with elements

related as

and denoted by X(e,*) a given value in the nine-tuple, i. e.

* Ef++,+,...,44.}. Then the next two lemmas show how pseudo- edges

interact.

7

Figure 2. Hiearchy of Subgraph Labels

8

Lemma 4: Let pseudo- edges e and f be series-reduced, forming pseudo-

edge g. Then

t(g0-4-) = ge,*--*) + t(f)-4-+)

t(g,+) = 9(e,+) t(f,+)

1 (g2+) = 2(e,+) + k(f,+)

£(g,MWEG) = ge,MWEG) + t(f,MWEG)

t(g2) = ge,74) + 1..(f,;147:)

= 	 + gf,17-0..)

r 9,(e,+) + /(f,74)

t(ed.+) + t(f,-;)
t(g,4-4-) = min

9(e,t6i7•) + 2.(f;4717.)

k(g,MWEG)

9 (e,+) + 9 (f, 4-4)

9 (e2 44) + i(f,+)
9.(g2 4-i") = min

k(e,-.474) + t(f,..74)

t(g,MWEG)

r k(e2++) + 9 (f,÷4÷)

9(e, 4-74) + t(f,'-+)
t(g,-4-4+) = min el

t(g, 4-71-)

Proof: In Table 1, the potential resulting graph from each of the 81

label combinations are shown. Observe that crossed-out cells indicate

subgraphs which cannot become part of the MWEG of the original graph due

to Lemma 3. Cells marked by asterisks indicate subgraphs which dominate

9

the others in Figure 2. These combinations have simply been re-organized

to produce the list given by the lemma.

The reader may note that the series combinations preserve symmetry. For

parallel reduction, we have

Lemma 5: Let pseudo- edges e and f be parallel-reduced, forming pseudo-

edge g. Then

2.(g,4-4.) = min

t(g,+) = min

t(g,+) = min

i(e,++) + gf,474)

z(e,4-74) + t(f,÷÷)

2.(e,„Ttt) + t(f;470

9(e;17;.) + t(r, -.47)

z(e0.) + t(f0)

t(e,4+) + l(f,+)

R.(g,+-÷)

(

t(e,+) + k(f,+.71..)

k(e) -4-74) ÷ k(f24')

l(g1+4')

(t(e,MWEG) + i(f,MWEG)

i(g,MWEG) = min 	t(g,+)

t(g,+)

t(e,;;t) + 2(f,+744)
£(g, 4) = min

t(e,+4+) + t(f,:1:)

(+ t(f,471.)
1/(g440 = min

t(e04) + Z(f,";"(...)

10

r 9 (e,-4-4.) + 9.(f) -71')
9(g,44.) = min 	/,

9(g)

9(e,g4-71) + 9,(f,471.)
9(g,+.74) = min 	

.9.(gA)

9(g0-74) = ge0-74) 	9(f0.44.)

Proof: Employing Table 2 rather than Table 1, the proof follows in

analogous fashion to that of Lemma 4. We leave the details to the

reader.

3.2 The Algorithm

We are now in a position to state a computational procedure. We

present the scheme in step-by-step fashion.

Step 0: 	 For the given instance, G(V,A) let Gr(lr ,Er) be

the associated indirected graph. Denote as c[e] the weight

of arc e corresponding to edge e eEr and let vertex i be the

left vertex of e and j, the right vertex. Initialize L[e] as

follows:

ge,++) = +m

t(e,-0.) =

.st(e,-(-) =

c(e) if e = <i,j>

\„. + 0. if e = <j,i>

+ co if e = <i,j>

c(e) if e = <j,i>

ge,MWEG) = c(e)

9(e4) = 9(e,4.)

t(e47;) = 9,(e,-4-)

11

min(c(e),0) if e = <i,j>

(
t(e,71.4-) =

c(e) 	if e = <j,i>

c(e) 	if e = <i,j>
9.(e,44-) =

min(c(e),0) if e = <j,i>

ge,4- 4) = min(c(e),0)

Note that <i,j> denotes the ordered pair defining an element of A.

Step 1: Reduction. Beginning with the initial G r and referring to

Lemmas 4 and 5, perform series and parallel reductions

arbitrarily, updating Gr after each. When Gr can be reduced no

further, go to Step 2.

Step 2: Stopping. If Gr is a single pseudo- edge, stop; the problem

solution is at hand. The MWEG of C can be obtained by

backtracAing through the sequence of reductions which produced

C . If G
r

is not a single edge, then the underlying undirected

graph of G(V,A) is not series-parallel.

12

Table 1. Series Reduction

• — ► MWEG .4-74-Or

—. --A. MEG FWEG ::;:: lirlitirliir 11111111 ..-71-

Milai3e.
wirwow

MWEG M jEG p■ -■ko loW34Ww_
..--2_-

% V h . 4 w oo 1 to . 	-4 I ■ 1 -4 0 -
0101

. . . - I L 	. _,44■4/ ..4.1w
El■ W4-4 0-_,4■_■111■11-41

Mt■

Table 2. Parallel Reduction

MWEG --el. -4—
---44-4••

04--4b. .14----Pb ■01---bw ■4.--ttim• .44--Ii■

1,--■..

TEG H
I

1111-1C11

-9
b.

p
i[ilt

	

.- ".111, .111,

	

$1

.
•••10-74--•

— tr

-b.
.----.4b.

.4F-i--

.-4-71--
---at.

•■•■-•.--o..-

-- 1w.

---4-44..
..41----

F--

13

3.3 An Example

In order to demonstrate the algorithm, consider the graph shown in

Figure 3. Weights are specified directly on the arcs. Initializing we

have:

1,[1,41=(03,4,03,4,4,03,0,4,0)

1,[2,3]=(c0,2,c0,2,2,c0,0,2,0)

L[3,4]=(co,c0,5,5,03,5,5,0,0)

1,[6,7]=(c0,03,2,2,0.,2,2,0,0)

L[9,8]=(00,c0,7,7,c0,7,7,0,0)

L[8,11]=(c0,2, ,,, ,2,2,03,0,2,0)

I[11,8]=0D,c0,9,9,03,9,9,0,0)

L[9,10]=(x,03,1,1,03,1,1,0,0)

L[9,11]=(c,3,00,3,3,c0,0,3,0)

L[9,12]=(c0,00,3,3,..,3,3,0,0)

L[11,12]=(co,c0,1,1,=0,1,1,0,0)

The entire computation can be summarized by Table 3 where specific choices for

reduction are shown in the first column with the pseudo-edge creation

and label computation in the second and third. Observe that we denote

series and parallel reduction as S and P respectively. The backtracking

process is depicted by the boxed label components and the resulting

MWEG is shown in Figure 4.

14

Figure 3 Graph of Example

15

a

P U1 b 0

P 1Q
d 0
e 0
f

S O5 	g
P 5O h

0
i

	0

S 80 k
(1)

P

q

r

s ®

j

Table 3. Summary of Computation for Example Problem

L[a]=(c0,1,00,14],c0,1,1,1)

• L[b]=(,-2,-2,-2,-2,-2,-2,-2,-2)

Lici=(cW,9,°D,c°,5,44

L[d]=(2,212,2,2,2,2,2,2)

L[f]=(o,3,a,15,15,co,15,15,15)

L[g]=(°',c°,3,3,° 3 ,3 C3,3)

L[h]=(18,02,18,18,18,18,18,18,18)

L[i]=(0.,c0,0.,6,0.,03,143,1)

1..[Icj=(0.,c0,21,21,c0,21,210,18)

L[1]=(.0,coo.,22,c0,0, ,22,19,[11D

L[m]=(1,1,1,1,0,1,1,-6,-6)

L[n]=(20,20,20,201131,20,20,13,13)

L[p]=(11,11,11,11,21/.9,2,0)

1.(q1=(31,31,31,31 	,22,22,22,20)

L[s]=(7,7,7,7,7124,7,4)

L[tj=(26,26,26,51,26,24,24,26,24)

16

Figure 4 MWEG of Example

17

3.4 Discussion

Of course, crucial issues regarding the algorithm presented are

its correctness as well as its computational requirements. Accordingly,

the following theorem summarizes:

Theorem 6: The MEG algorithm will, in polynomial time, correctly

produce a desired subgraph or stop with the conclusion that the input

(undirected) graph is not series-parallel.

Proof: First consider stopping and suppose that step 2 is reached with

Cr not an edge. Then the minimum vertex degree in Gr is three and thus,

Cr must possess a subgraph homemorphic to K 4
[e.g. Dirac (1952), Richey,

et. al. (1982)]. But this must mean that the original graph G(V,E)

possesses a subgraph homeomorphic to K4 and by Theorem 1 is not series-

parallel. Regardless, step 2 must be reached after polynomially many

series and/or parallel reductions which is immediate since simply testing

if an arbitrary graph is series-parallel can be done in 0(1 V1 + I El)

steps as shown in Rardin, et. al. (1982).

A correct structure must be produced by the algorithm since in the

proofs of Lemmas 3-5, all possibilities for subgraph construction via the

reduction process are accounted for. In addition, the pseudo-edge label

updates require computation independent of instance size leaving in tact

the stated polynomiality of the procedure.

Ea
We observe that alternative statements of polynomial time series-

parallel testing are available in the literature in addition to that

alluded to in the proof above. Among these are Liu and Geldmacher (1980)

and Takamizawa, Nishizeki and Saito (1982).

18

4. SUMMARY

In this paper, we have confined our interest to a specific problem

on series-parallel graphs. Other results have emerged in this regard as well,

notable among which are Takamizawa, et.al. (1982) and Wald and Colbourn (1983).

In the latter, an algorithm is presented for the Steiner tree problem-

a result also obtained (independently) by the present authors (see Rardin,et.al.

(1932)). Regardless, the impetus for our specific development here per-

taining to the MWEGP is based largely on the requirement that instances

be defined on directed graphs. That is, the dimension of directionality

inherent in the problem clearly gives rise to a degree of complication

which may not be presen: in many problems defined on undirected

(series-parallel)

Of course, it is w:r:hwhile to think of specific algorithmic strategies

for other problems wl:ffb. :night also be resolvable on series-parallel

graphs. To this extent, it is also interesting to think of ones which

might be intractable (ye: solvable on trees, say). Even so, a fund-

amental question which is worthy of pursuit pertains to the gap between

series-parallel and planar graphs. It appears that the former class of

graphs is rich in terms of interesting problems which are amenable

to efficient solution . procedures while for the latter, many problems are

known to be difficult. An investigation of the territory between these

two classes would seem t be an interesting undertaking.

19

REFERENCES

1. Dirac, G. A. (1982), "A Property of 4-Chromatic Graphs and Some

Remarks on Critical Graphs", J. London Math. Soc., 27, 85-92.

2. Duffin, R.J. (1965), "Topology of Series-Parallel Networks", J.

Math. Anal. Appl., 10, 303-318.

3. Hsu, H.T. (1975), "An Algorithm for Finding a Minimum Equivalent

Graph of a Digraph", J. of the ACM, 22, 11-16.

4. Liu, P. C. and R. C. Geldmacher,(1980),"An 0(max(m,n)) Algorithm

for Finding a Subgraph Homeomorphic to K 4" Proc. 11th Southeastern

Conf, on Combinatorics, Graph Theory, and Computing, 597-609.

5. Martello, S. and P. Toth (1982),"Finding a Minimum Equivalent Graph

of a Digrap,. . Networks, 12, 89-100.

6. Moyles, D.M. ani G.L. Thompson (1969), "An Algorithm for Finding a

Minimum Equivalent Graph of a Digraph," J. of the ACM, 16, 455-460.

7. Rardin, R.L., R.G. Parker, and M.B. Richey (1982), "A Polynomial.

Algorithm for a Class of Steiner Tree Problems on Graphs," ISyE

Report Series J-82-5, Georgia Tech, August.

8. Rardin, R.L., R.G. Parker, and D.K. Wagner, (1982), "Definitions,

Properties and Algorithms for Detecting Series-Parallel Graphs,"

Technical Report, Department of Industrial Engineering, Purdue

University, W. Lafayette, IND.

9. Richey, M.B., R.G. Parker, and R.L. Rardin, (1982) "On a Class of

Graphs Possessing at Most One Hamiltonian Cycle", ISyE Report Series

J-82-11, Georgia Tech., November.

10. Sahni, S., (1974), "Computationally Related Problems,' SIAM J.

Computing, 3, 262-279.

20

11 	Takamizawa, K., T. Nishizeki and N. Saito (1982), "Linear-Time

Computability of Combinatorial Problems on Series-Parallel Graphs",

J. of the ACM, 29, 623-641.

12. Wald, J.A. and C.J. Colbourn (1983), "Steiner Trees, Partial 2-

Trees, and Minimum IFI Networks", Networks, 13, 159-167.

21

ON A CLASS OF GRAPHS HAVING
AT MOST ONE HAMILTONIAN CYCLE

by

M. B. Richey
t

R. Gary Parker'
and

R. L. Rardin
t

J-82-11

Industrial and Systems Engineering
Report Series J-82-11
November, 1982

tSchool of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332

This material is based in part upon work partially supported by the
National Science Foundation under grant number ECS-8018954.

ABSTRACT

We show that for the class of graphs referred to as series-parallel

at most one hamiltonian cycle is present. A linear time algorithm is

proposed for producing such a cycle or alternately, concluding that the

input graph is not hamiltonian. In fact, we decide the hamiltonicity

issue on series-parallel graphs and in so doing, provide a proper

characterization of when such graphs are hamiltonian.

1

1. PRELIMINARIES

In this note we consider the problem of deciding hamiltonicity on a

class of biconnected graphs which are referred to as series-parallel.

One source of interest stems from the variety of problems which, although

difficult in general, are resolvable on graphs in the stated class.

Illustrations can be found in Valdes, et. al. (1982), Takamizawa, et. al.

(1982), and Rardin and Parker (1982).

Formally, a biconnected graph without loops is series-parallel if and

only if it can be reduced to an edge by the sequential application of

the following elementary operations:

(i) Series reduction: Replace any degree-2 vertex, k, and the

incident edges (or pseudo-edges) e and f connecting k to

vertices i and j 	i, by a pseudo-edge, g, incident to i

and j.

(ii)Parallel reduction: Replace two edges (either or both of

which may be pseudo-edges) e and f, both incident to vertices

i and j, by a new pseudo-edge, g, incident to i and j.

Alternately, Duffin (1965) has given the following characterization

of series-parallel graphs which shall prove useful in this work.

Theorem 1: A biconnected graph G is series-parallel if and only if it

possesses no subgraph homeomorphic from K
4

.

Clearly, the conforming class of graphs is a proper subset of planar

graphs since K
4
itself is planar. It is also worth observing that

biconnected graphs free of K
4
homeomorphs are reducible to an edge by

the series and parallel operations. It is also true that relaxation

of the biconnectivity assumption produces graphs which are series-

parallel per Theorem 1, yet cannot be reduced to an edge. This is of no

real consequence here, however, since biconnectedness is a trivial

necessary condition for hamiltonicity.

Also supporting subsequent developments is the next result which we

state and prove as a lemma. Letting IS denote the minimum vertex degree

in a graph, we have:

Ler'ma 2. If G(V,E) is a biconnected graph without loops or multiple edges

and with d(G) > 3, then G possesses a subgraph homeomorphic from K
4

.

Proof: Let 8 be a subgraph in G satisfying the following property: a

consists of a cycle, C* and a path connecting a pair of vertices in C* and

passing through a nonempty set of vertices a where a fl C* 4. Let this

path be Pkk
= (k,a,t) where k,t e C*. Such a subgraph must exist in any

graph satisfying the theorem. Let us denote by C1
and C2, the two sub-

cycles in a sharing Pm: Initially, let Q. 1_1_ {i: i e C 4N2ki} and select a

vertex x e a. Since the degree of x is 2 in a, there must exist an edge

(x,j) in i\E(a). If j c Q. we are done, having formed the desired homeo-

morph. So assume j 	O. Since G is biconnected, G - x is connected, so

there must be a path from j, and hence from x to some y e Q, say P P.
xy

For Pxy
 = (x,a,y), if a fl v(a) = or if t, the first vertex of inter-

section with G, is in Q, we are also finished, having produced K4

 homeomorph. If, however, a fl v(a) # $ and the first point of intersection

2

3

is not in 0, then this vertex, t, must lie on the path Pla (see Figure 1).

However, in this case we can reduce the problem to one defined on a new

graph given as either C1
or C

2
appended with Pxy

. . New subcycles C
1 and

C
2
are defined accordingly, vertices x and t are relabeled as k and 2.,

the new graph is a and the process is repeated with augmented set Q -(see

Figure 2). Since Q's cardinality increases by at least one each time a

reduced problem is created, we must reach a point where, for a specific

choice of x, the path from x to some y E Q. first intersects a at a vertex
t E Q. In such a case we have formed a K

4
homeomorph and we are finished.

There will naturally be some discretion in applying the series and

parallel operations in a typical graph. Regardless, the next theorem

establishes that this application can be arbitrary, i.e. the series and

parallel operations are well-defined.

Theorem 3, let G(V,E) be a loopless biconnected, series-parallel graph. Then

any suitable sequence of operations (i) and (ii) will reduce G to an edge.

Proof: Suppose we have for a graph satisfying the theorem, a sequence of

reduction operations given as (ri ,r2 ,...,rk) where the sequence stops after

the kth operation. Let us assume that the graph produced at this point G'

is not an edge. Then since no further reductions are possible, G' contains

no degree-2 vertices; that is, S(G') > 3. However, from Lemma 2, this

means that G' and thus G, possesses a subgraph homeomorphic from K
4
and

we contradict the assumption that G is series-parallel. Hence, for a

given G, any suitable sequence of reductions will produce an edge exactly

when G is series-parallel.

4

Figure 1.

5

old £

Q + Q u { old k, old

Figure 2.

6

2. MAIN RESULTS

Our principal result can be summarized by the following theorem:

Theorem 4. If a graph is series-parallel, then it has at most one

hamiltonian cycle.

Proof. Let G(V,E) be any graph having two or more hamiltonian cycles

and denote two of these cycles by the vertex sequences T =

and T' = 	 where we can assumed without loss of generality

that i1 = ii. Let the edges implied by I and T' be E(T) and E(T') respec-

tively. Now, denote by 6, the subsequence of vertices which T and T'

have in common, beginning with i 1 , i.e., 8 = {i 1 ,i2 ,...,i t }, t < p-1. For

it+1 t+1 , 	i';+1
let u = 	c V),9 and create sets Qi and Q2 where

= 	t+1 < k < k, II = ul

7 = {ik
: 2+1 < k < p} -

Since T' is a hamiltonian cycle, it must contain at least two edges

which are incident to one vertex in 	and one vertex in kr. At most

one of these edges is incident to u because edge (i t ,u) is in E(T'). So,

let (v,w) be an edge in EIT') such that w # u, w c VV.]. and v c Q1 . Also,

we have that w # i
t

since
(it-l'it)

 and (i
t
,u) are already in the cycle

given by T'.
■

Hence, it , u, v and w are distinct vertices and (i t ,u) and (v,w) are in

E(T'). Thus, E 0 E(T) u [(i ,u), 	,w)}. However, these edges form a

subgraph homeomorphic from K 4 (see Figure 3) and the other edges of E cannot

destroy this property. Therefore, G is not series parallel, which

establishes that no series-parallel graph can possess more than one hamilton-

ian cycle and the proof is complete.

7

Figure 3.

8

The result in Theorem 4 trivially carries over for directed graphs.

Here, we will call such a graph series-parallel if its underlying, undirect-

ed graph is series-parallel. Obviously, this underlying graph must be

hamiltonian if the directed counterpart, G(V,A), is to be as well. In such

a case, we need only check the orientation around the cycle relative to A.

We have, then, that for a series-parallel graph G(V,E), which is hamil-

tonian; the corresponding cycle is unique. Following, we state an algorithm

which produces such a cycle if it exists, or concludes that the graph is

not hamiltonian. In essence, the procedure decides hamiltonicity for

series-parallel graphs.

Algorithm SPHAM

Step 0: Initialization. Let G(V,E) be a series-parallel graph

and label each edge, e e E by 2.(e) = {e}.

Step 1: Series Reduction. Locate (if possible) a degree-2

vertex in G, say k, and denote the edges (one or both

of which may be pseudo) incident to k by e l d (i,k)

and e2 	(k,j). Replace e l and e2 having labels ge l) = Cl and

k(e2) = 2 respectively, by a pseudo-edge having

label cl u 	Call the new graph G.

Step 2: Parallel Reduction. Locate (if possible) a pair of

parallel edges in G, say e
1

and e2, and let the

incident vertices be i and j. If el and e2 are both

pseudo (i.e., min(12(e1)1,12(e2)1) > 2) and G is not

of order two, stop; the original graph is not ham-

iltonian. If one or both of the edges are pseudo

and these are the only edges in G, go to (3).

9

Finally, if one edge is pseudo and the other is not,

keep the pseudo-edge and its label, discard the

other edge and let the new graph be G. Repeat this

step until no parallel edges remain then return to

(1).

Step 3: Stopping. The original graph has been reduced to a

cycle on two vertices where either one edge is pseudo

and the other is real or both are pseudo. In either

case, a hamiltonian cycle in the orginal graph is -

obtained from the labels of the final two edges.

Note that the issue regarding the actual construction of a hamiltonian

cycle is left open. Clearly, ordering can be preserved and updated during

the course of the algorithm or it can be accomplished at termination of the

reduction operations. The efficiency of the procedure is unaffected in

either case.

The correctness of SPHAM follows rather easily from earlier results

in conjunction with the lemma below:

Lemma 5: Any graph H, which is homeomorphic from K23 cannot be hamiltonian. ,

Proof. Since K23
is bipartite, it cannot have an odd cycle, which certainly

precludes it from being hamiltonian. Likewise, any graph homeomorphic from

K
23

cannot be hamiltonian either, since arbitrary vertex insertions cannot
,

possibly alter this condition.

10

Thus we have:

Theorem 6. Algorithm SPHAM will correctly produce a hamiltonian cycle in

a biconnected, series-parallel graph, G, or-will conclude that none exists.

Proof: If the algorithm reaches Step 3, we clearly have decided that G is

hamiltonian. Since each label represents a hamiltonian path on the subgraph

corresponding to its pseudo-edge, and since all vertices of G must be in one

of the two subgraphs, the desired hamiltonian cycle is easily found from the

final labels.

Otherwise, the only way the algorithm can stop is in Step 2. Here, a

reduced graph of order greater than two, results with two pseudo-edges in

parallel. But this means that the original graph possesses a subgraph homoeo-

morphic from K23 . Let this subgraph be H (see Figure 4a) and assume without

loss of generality that G itself is not homeomorphic from H since lemma 5

would preclude G from being hamiltonian. Rather, assume G to be hamiltonian

and denote the vertices lying on the path from v l to u to v2 in H by V1 .

Now, for G to be hamiltonian, there must exist at least one path from some u

to a vertex v e V(H)\V1 (there may, of course, be other paths as well). Let

this path be given by edge set Euv (see Figure 4b). It is clear that the

graph H appended by edges in E forms a subgraph homeomorphic from
uv

K4,which denies that G is series-parallel. Hence, no series-parallel graph

possessing a subgraph homeomorphic from K23 can be hamiltonian. This com-

pletes the proof.

I

Algorithm SPHAM can be applied in such a way so as to require effort

bounded by a function which is linear in the number of vertices and edges

of the input graph. This follows from developments in Rardin and Parker

(1982).

We conclude the current section with the following useful characterization.

11

(a)

42

(b)

Figure 4.

12

Theorem 7. A biconnected, series-parallel graph G(V,E) not isomorphic to

K4
- e,is hamiltonian if and only if G has no subgraph homeomorphic from

K2,3.

Proof. We exclude the graph K4 - e since it is obviously hamiltonian and

yet is homeomorphic from K23 . So in the ensuing proof, any reference to

biconnected series-parallel graphs is understood to exclude K 4 - e.

First, suppose G is biconnected and series-parallel and possesses a

subgraph homeomorphic from K2,3 . Then if G is hamiltonian,we observed

from the proof of Theorem 6 that G would necessarily have a subgraph

homeomorphic from K4,contradicting the assumption that it is series-paral-

lel.

Conversely, assume that G is not hamiltonian. Then from SPHAM, we

have that termination must occur with a reduced graph on three or more

vertices with two parallel pseudo-edges. Again, we saw earlier that this would

mean G has a subgraph homeomorphic from K 2,3 .

We have,then,that G is hamiltonian precisely when it has no K 2,3

 homeomorph as a subgraph and is not hamiltonian when such a subgraph is

present. This establishes the characterization and the proof is complete.

3. SUMMARY

We have shown that deciding hamiltonicity on series-parallel graphs

is an easily resolvable issue. Further, if such a graph is hamiltonian,

we know that its cycle is unique. This, in turn, implies that solving

a traveling salesman problem on a series-parallel graph is indistinguish-

able from determining whether or not the graph is hamiltonian. Interestingly,

this latter property may hold merit in the context of generating hard test

problems for general-purpose traveling salesman algorithms. Some work has

13

been done in this area and additional insight might be available from

results we have presented here.

4. REFERENCES

1. Duff in, R. J., "Topology of Series-Parallel Networks", J. Math. Anal.

Appl., Vol. 10, pp. 303-318, (1965).

2. Rardin, R. L. and R. G. Parker, "Definitions, Properties, and Algorithms

for Detecting Series-Parallel Graphs", ISyE Report Series, J-83,

Georgia Institute of Technology, Atlanta, Ga.

3. Takamizawa, K., T. Nishizaki, and N. Saito, "Linear-Time Computability

of Combinatorial Problems on Series-Parallel Graphs", J. Assoc. Comp.

Mach., Vol. 29, No. 3, pp. 623-641, (1982).

4. Valdes, J., R. E. Tarjan, and E. L. Lawler, "The Recognition of Series-

Parallel Digraphs", SIAM J. Computing, 11, pp. 298-313, (1982).

GUARANTEED PERFORMANCE HEURTISTICS FOR
THE BOTTLENECK TRAVELING SALESMAN PROBLEM

by

R. Gary Parker
School of Industrial and Systems Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332

and

Ronald L. Rardin
School of Industrial Engineering

Purdue University
W. Lafayette, Indiana 47907

ABSTRACT

We consider constant-performance, polynomial-time, nonexact algorithms

for the minimax or bottleneck version of the Traveling Salesman Problem.

It is first shown that no such algorithm can exist for problems with

arbitrary costs unless P=NP. However, when costs are positive and

satisfy the triangle inequality, we use results pertaining to the squares

of biconnected graphs to produce a polynomial-time algorithm with worst-

case bound 2 and show further that, unless P=NP, no polynomial

alternative can improve on this value.

Key words: graphs, combinatorics, traveling salesman, heuristic

The work reported was partially supported by the National Science
Foundation under grant ECS-S0152954

1. INTRODUCTION

Let G(V,E) be a complete undirected graph of order IVI) 3 with

weights c..
ij
 on every edge (i,j) in E. Traveling Salesman Problems are

defined over hamiltonian cycles in G (i.e. simple cycles including all

vertices). The classic minisum version of the problem is

1
min 	7 	c i : H is the edge set of a hamiltonian cycle of G

(i,j)EH 	J

Its cousin, the minimax or Bottleneck Traveling Salesman Problem (BTSP)

is

i

min 	max : c 	: H is the edge set of a hamiltonian cycle of G
(1,1) : 	ii

It is easy tc see that a polynomial-time algorithm for (BTSP) would

provide a polynomial-time mechanism for testing whether arbitrary graphs

are hamiltonian. Since the latter is a classic and formally difficult

problem, exact polynomial-time algorithms for (BTSP) cannot exist unless

P= NP.

It is natural, then, to seek polynomial-time, nonexact algorithms

with constant performance bounds, i.e. worst-case bounds independent of

problem parameters. In spite of the wide literature of such algorithms

for the minisum Traveling Salesman Problem (see for example Parker and

Rardin (1983a)), and the treatment of heuristic algorithms for (BTSP) in

Garfinkel and Gilbert (1978), we know of no previous constant-

performance-bound, polynomial-time heuristic for (BTSP).

1

c
ij

p+1 if (i,j) 	E 1 1 if (i,j) c E

In this note we investigate such algorithms. Our main result is a

procedure with worst-case bound 2 holding when costs are positive and

satisfy the triangle inequality. We also show that it is not likely that

this hound will be reduced by any alternatiVe, polynomial algorithm.

2. ARBITRARY COSTS

Sahni and Gonzales (1976) demonstrated that, unless P=NP, the

minisum Traveling Salesman Problem admits no constant-performance-bound,

polynomial-time algorithm when costs are arbitrary. A corresponding

result holds for (BTSP).

Theorem 1: There can exist no polynomial-time, constant-performance-

bound algorithm for an arbitrary instance of (BTSP), unless P=NP.

Proof: We proceed 777 showing that if the indicated algorithm, A, with

finite hound p did exist, it could be employed to test hamiltonicity in

arbitrary graphs-- proving P=NP. Assume PAP* < p < + co where nA is the

value produced by algorithm A and n* is an optimal value. Now, for an

arbitrary graph G(V,E), we can construct a corresponding instance of

(BTSP) by completing the graph and assigning weights

Suppose G is hamiltonian. Then in the corresponding instance of (BTSP)

we have n* = 1 and hence
A

< p. Conversely, if G is not hamiltonian,

then n* = p+1 which implies that nA
> p. Thus G is hamiltonian precisely

when 52
A

is not greater than p, and algorithm A provides a polynomial-time

procedure for deciding which graphs are hamiltonian.

a

3. AN ALGORITHM

The negative result of Theorem 1 makes very unlikely a polynomial

time, constant-performance-bound algorithm for arbitrary instances of

(BTSP). However, we can derive one under more restricted costs.

3.1 Biconnected Subgraph-s

A graph is said to be biconnected if every pair of its vertices

belong to at least one common cycle. For a given biconnected graph

G(V,E) we can define the Bottleneck Biconnected Subgraph problem (BBS)

as

7.1:1 	 max c .. : G(V,S) is biconnected, SC E
(i,j) € S 	1 ' 1

It is easy to see that (BBS) provides a lower bound on (BTSP).

Lemma 1: For 0* = the optimal value of (BTSP) and SI
BB Optimal in (BBS),

51
BB

4 Mr

Proof: Immediate from the fact that every hamiltonian cycle of a G(V,E)

is a biconnected subgraph.

a

Problem (BBS) is also very easily solved. A straight-forward greedy

procedure gives a polynomial-time algorithm:

Algorithm BB(weighted biconnected graph G(V,E))

Step 0: Initialization. Sort edges of E into nondecreasing order by

edge weight c if and initialize solution set E 	0.
BB

3

Step 1: Augmentation. Select the next edge in order of the sorted

list and place it in EBB .

Step 2: Stopping. Test whether G(V, E BB) is biconnected. If so,

compute

BBB + max f c ij : (i, j) c EBB) -

and stop. Otherwise, repeat Step 1.

111

Lemma 2: Algorithm BB correctly computes an EBB optimal in (BBS) in time

bounded by a polynomial in !E!.

Proof: The E
B3

solution obtained from Algorithm BB is obviously optimal

because G(V,_
F1313'

) is biconnected and construction shows every suhgraph

with lesser bottleneck cost is not. For polynomiality, note that Step 0

is a sort requiring (1E1 log 1E1) time. Steps 1 and 2 are executed on at

most 1E1 occasions, and the required check of biconnectedness at Step 2

can be done in 0(1E11 time (see e.g. Aho, Hoperoft and Ullman(1q76)).

1
Thus, the algorithm completes in at most 0(1E1

2
) time.

3.2 Hamiltonian Cycles in the Squares of Graphs

For an arbitrary graph G(V,E) the Square G (V,E 2) is the graph

formed by adding "short cut" edges for every two edge path. That is,

2 (V 2 ,E G) has the same vertex set as G, and edge set

4

2 A
E = 	 (i,j,k) is a path of G(V,E))

for some j E V

The two graphs in Figure 1 illustrate the concept.

Neither the first graph in Figure 1 nor its square are hamiltonian.

In fact, the tree shown establishes that connectivity in a graph is not

enough to guarantee hamiltonicity of its square. If we require G to be

biconnected however, the matter is different.

Lemma 3 (Fleishner (1974b)): The square of any biconnected graph is

hamiltonian.

The fact that Lemma 3 holds was conjectured by Nash-Williams and

later proved by Fleischner. Fleischner's proof is an existence one, but

it yields algorithmic insights. In Rardin and Parker (1983b), we show

explicitly how an algorithm can be devised from those insights to exhibit

a hamiltonian circuit in the square of any biconnected graph.

Details of the Procedure are far to bulky to include here. However,

the approach is to derive from the given biconnected graph a particular

connected and spanning subgraph possessing structural properties

sufficient to make easy the construction of a hamiltonian cycle in its

square. These subgraphs are defined by the edge-disjoint union of an

Euler subgraph and a forest of vertex-disjoint paths. Fleishner (1974a)

proved that any biconnected, bridgeless graph possesses such a subgraph

and outlined how to identify a hamiltonian cycle in its (and thus the

original graph's) square when, in addition, every edge meets at least one

degree-2 vertex. The companion paper (1974b) inductively treats a large

5

number of cases in demonstrating that subgraphs with the needed degree-2

property can be obtained via suitable contraction.

Discussion in Rardin and Parker (1983b) shows that at each step of

these constructions, the cardinality of at least one specified edge on

vertex subset is reduced. Since steps themselves involve only polynomial

exercises such as identifying the biconnected blocks of a graph, finding

shortest paths and exhibiting Euler traversals of given Euler subgraphs,

polynomiality of the entire algorithm is guaranteed. We summarize:

Lemma 4: Given any biconnected graph G(l4E), a hamiltoniancycle HCE2

can beproduced in the square G
2 (V,E2) of Gin time bounded by a

polynomial in IVI and lEl.

m

3.3 The Algorithm

We are now ready to specify our nonexact algorithm for (BTSP).

Algorithm BT (Weighted Complete graph G(V,E);

Step 1: Bottleneck—optimal Biconnected Subgraph. Apply Algorithm BB

above to obtain G(V,EBB), a bottleneck—optimal biconnected subgraph

of G(V,E).

Step 2: Tour. Identify an approximate optimal tour for (BTSP) by

tracing a hamiltonian cycle, HBT, in the square G
2 (1.;E2 BB) of the

result from Step 1, and define

PBT A = max {cif : (i,i) E HRT

6

The algorithm certainly produces a feasible solution to (BTSP).

Moreover, its polynomiality follows from Lemmas 2 and 4.

4. PERFORMANCE BOUNDS UNDER THE TRIANGLE INEQUALITY

Costs satisfy the triangle inequaltiy if c ij + c ik cik for all

i,j,k E V. Results of the previous section allow us to establish a

constant worst-case bound on the performance of Algorithm BT in the

presence of the triangle inequality.

Theorem 2: Let G (V,E) be a complete undirected graph with positive

weights c ii satisfying the triangle inequality. Then, if n* is the

optimal value of (BTSP) on G, and (I n the value produced by applying

Algorithm BT to G,

" BT
/ n* < 2

Proof: By Lemma 1, n B3 , the value of the bottleneck-optimal biconnected

subgraph produced at Step 1 of Algorithm BT satisfies nm < n* or 2n BB/n*

4 2. But edges of iisT , the hamiltonian cycle obtained from Algorithm BT,

either belong to E BB , the optimal edge set from Algorithm BB, or

correspond to two-edge paths of EBB
. Under the triangle inequality no

edge of H T can thus cost more than 2S1 BB
. That is, 0.

BT
< 251

BB
and the B

proof is complete.

113

7

One needs only to assign weights 1 and 2 suitably to show the bound

of Theorem 2 is realizable. Naturally, of course, we would prefer a

smaller value than 2. Our last result shows none is likely.

Theorem 3: Let A be any polynomial—time algorithm yielding nonexact

solutions for (BTSP) and QA the value of solutions produced by A. If

there exists a constant p such that P
A

/ 	< p for all (BTSP) instances

satisfying the hypothesis of Theorem 2, then, unless P=NP, p > 2.

Proof: As with Theorem 1, we show that an Algorithm A with worst—case

performance bound p < 2 could be used to test hamiltonicity of

arbitrary graphs--proving P=NP . Here we choose costs

if (i,j) c E
c =
ij

2 otherwise

in completing the graph. Clearly, the indicated c 	satisfy the triangle
13

inequality. Over these costs an Algorithm A with bound p < 2 would yield

CI
A

< 2 precisely when the given graph is hamiltonian and fa A > 2

otherwise.

N

8

REFERENCES

1. Aho, A., J.E. Hoperoft, and J.D. Ullman (1976), The Design and
Analysis of Computer Algorithms, Addison-Wesley Publishing Co.,
Reading, MA.

2. Fleischner, H. (1974a), "On Spanning Subgraphs of a Connected
Bridgeless Graph and Their Application to DT-Graphs", J. Comb.
Theory (B), 16, 17-
28.

3. Fleischner, H. (1974b), "The Square of Every 2-Connected Graph is
Hamiltonian", J. Comb. Theory (B), 16, 29-24.

4. Garfinkel, R.S. and K.C. Gilbert (1978) "The Bottleneck Travelling
Salesman Problem:Algorithms and Probabilistic Analysis", J. Assoc.
Comp. Mach., 25, 435-448.

5. Parker, R. G. and R. L. Rardin, (1983a) "The Traveling Salesman
Problem:An Update of Research," Naval Research Logistics Quarterly,
30, 69-96

6. Rardin, R. and P.G. Parker (1q83b), "An Efficient Algorithm for
Producing a Hamiltonian Cycle in the Square of a Biconnected Graph",
Industrial and Systems Engineering Report Series, J-82, Georgia
Institute of Technology.

7. Sahni, S. and T. Gonzalez (1976), "P-Complete Approximation
Problems", J. Assoc. Comput. Math., 23, 555-565.

9

ON PRODUCING A HAMILTONIAN CYCLE IN THE
SQUARE OF A BICONNECTED GRAPH:

AN ALGORITHM AND ITS USE

by

R. L. Rardin
School of Industrial Engineering

Purdue University
West Lafayette, IN 47907

and

R. Gary Parker
School of Industrial and Systems Engineering

Georgia Institute of Technology
Atlanta, GA 30332

ABSTRACT

It is known that the square of any biconnected graph is hamiltonian.

The proof establishing this property is given in Fleischner (1974).

Unfortunately, however, Fleischner's proof is somewhat indirect and thus not

immediately amenable to algorithmic implementation. In this paper, we

provide a more constructive interpretation of the Fleischner result by

exhibiting an efficient algorithm for producing the existing hamiltonian

cycle in the stated class of graphs. Such an algorithm is important since

it can he used to obtain certain polynomial-time approximation procedures

possessing finite but unimprovable performance guarantees.

This material is based in part upon work partially supported by the National
Science Foundation under grant ECS-8018954 and ECS-8300533.

1. INTRODUCTION

In 1974, H. Fleischner (Fleischner (1974)) proved that the square of

every biconnected graph is hamiltonian. With this result Fleischner

resolved a conjecture of Nash-Williams (1966) (and independently, of L. W.

Beineke and M. D. Plummer). While not completely existential, Fleischner's

proof is indirect, leaving vague the issue regarding the actual construction

of a hamiltonian cycle in graphs satisfying the stated conditions. In the

present paper, we rectify this by giving an algorithm which efficiently

produces a hamiltonian cycle in the square of any hiconnected graph and in

this sense, makes constructive the proof of Fleischner.

Our prime interest in exhibiting such an algorithm is somewhat

pragmatic. In Parker and Rardin (1983), a result is given pertaining to the

absolute performance guarantee regarding any nonexact procedure for the

bottleneck traveling salesman problem. This guarantee is 2, which is shown

to he unimprovable by any polynomial approximation procedure unless P and NP

are equivalent. The value of 2 can be acheived by employing a scheme which

first constructs a bottleneck-optimal hiconnected spanning subgraph after

which a hamiltonian cycle in its square is sought. We discuss this notion

in a subsequent section. Regardless, from Fleischner we know that such a

cycle is present but less regarding a method for producing it. This paper

resolves the latter issue.

2. BASIC CONCEPTS AND DEFINITIONS

Let G(V,E) be a connected graph without loops or multiple edges.

say that G is biconnected if every pair of vertices lies on a cycle.

Alternatively, if G is biconnected, then it possesses no cut-vertex; that

is, no vertex whose removal disconnects G. Similarly, an edge in G whose

removal disconnects it is referred to as a bridge. Clearly, any connected

graph having a bridge, also possesses a cut-vertex.

A connected, nontrivial graph without cut-vertices is said to be

nonseparable and for a given graph, G, a maximal nonseparable subgraph is

called a block. A block is edge-critical if the removal of any edge results

in a subgraph which is not biconnected and finally, if every edge in G is

incident to a vertex of degree two, then following Fleischner, we shall call

G a DT-graph.

Now, consider any connected graph, G, defined on vertex and edge sets V

and E respectively and let the distance between two vertices i and j in V be

given as d
ij
 where di . is the length of the shortest path connecting i and

1. Note that the length of a path is the number of edges in the path.

Clearly, for any connected graph, d ii is a metric. Now, we can define the

kth power of G, given as G(k) , to be a graph on vertex set V(k) = V and edge

set E(k) 	f(i,i): (1
ij
 4 k in Cl. The graphs in Figure I illustrate the -

notion for the case k = 2. From the figure, it is clear that connectivity

alone is not enough to insure that a graph's square is hamiltonian. On the

other hand, it is true that the cube (k=3) of any connected graph is

hamiltonian and further, a cycle in the cube can be easily constructed

g., Rosenstiehi (1971)).

3. THE ALGORITHM

The ensuing algorithm is fairly heavy in technical detail and quite

lengthy to state. To this extent, it should he useful to begin with a

concise and overly simplified statement regarding the algorithm's

objective.

G
G (2)

Figure 1. A Graph and Its Square

Essentially, Fleischner made use of the fact that every connected,

bridgeless graph possesses a connected, spanning subgraph defined by the

edge-disjoint union of a graph consisting of even-degree vertices only, with

a forest each component of which is a path. Referred to as an EPS-subgraph,

 the existence of such structures in the stated class of graphs, was also

established by Fleischner (1974a). Important in this regard is that a

hamiltonian cycle can always be traced in the square of an FPS-subgraph and

hence, in the square of the original, hiconnected graph. In large measure,

the bulk of the Following algorithm is devoted to constructing an EPS-

subgraph and the subsequent hamiltonian cycle in its square. We also note

that an alternative EPS-subgraph construction is suggested in the nice paper

by Lau (inn).

3.1 Main Procedure

Let the input to the algorithm be a biconnected graph G 1 (V1,E 1). That

we assume biconnectivity of G
1
is not limiting since checking for

biconnectedness is easily accomplished (e.g., see Itho, et. al (1976)).

Letting k be an index and initializing with, k f 1 we can proceed.

Step 1: Case Checking. For the current graph Gk (Vk ,Ek), set Dk

 {e=.(x,v) E
k

: deg
k
(x) > 2 and dea

k
(w) > 2} where deg

k
(i) denotes the

degree of vertex i indicent to an edge in E •

la: If G
k

is a DT-graph, i.e., D = 4), go to Step 3 and begin building

a hamiltonian cycle.

lb: If Dk * cl) and there is any edge e E p it such that Gk (Vk ,Ek\e)

remains hiconnected, remove e from sets El , 1 < / 4 k and repeat

Step 1.

If neither la nor lb applies, proceed to Step 2 and shrink.

Step 2: DT-Block Shrinking. Each edge e E D
k

is critical in that Gk(VkEk\e)

is not biconnected. For each e E Dk denote by B
1
[e] and B

2
[e] the

biconnected blocks of G
k (Vk ,Ek \e) containing the defining vertices of edge

e.

2a: Select as B
k

the block B
1
[el or B

2
rel having minimum cardinality

vertex set among all e e D
k . Denote by e

k
the edge for which B

k
=

Bl [ek] or B
k

= B 2 [ek] and by wk , the vertex of ek belonging to

Bk .

2b: Select as v
k

the (unique) cut-vertex of B
k

that separates it from e

the remainder of Gk(Vk ,Ek\ek).

2c: Create graph Gk+1 by replacing Bk in Gk with the path

(wk ,ak ,b,,v,) where ak and bk are artifical vertices. Set k + k+1

and return to Step 1.

Step 3: Cycle Construction. Use procedure DTHAM to construct a hamiltonian

cycle, H
k
, in the square of DT-graph, G

k .

Step 4: Stopping. If k = 1, stop; 1 1 is a hamiltonian cycle in the square

of G. Otherwise, go to Step 5 and restore a block.

Step 5: Block Piecing. Construct a hamiltonian cycle, H
k-1

by first

applying DTHAM to DT-graph B k-1 and then piecing together the result with

H
k
. Specific cases depend on how S meets vertices of the artificial path

(wk ,ak ,bk ,vk) of G. The appropriate treatment for each pattern is given in

Table 1. After Ilk 1 is complete, set k t k-1 and return to Step 4.

Observe that Figures 2 and 3 are useful in interpreting various cases

detailed in Table 1.

Case--
3/

Number 	H
k
Pattern on Artificial Path

1/

la

lb

2a

2b

2c

3a

Table 1: Constructing H
k-1

from H
k

and B
k-1

3b 	...,x,a,v,b,y,...,s,w,s...

Required Action1222

Use DTHAM for a hamiltonian
path and replace path (w,a,b,v)
of Hk by path P(w,v).

Replace path (w,b,a,v) in Hk
 by path (w,a,b,v). Then apply

Case la.

Use DTHAM for a hamiltonian
path and replace path (w,a,b,y)
of Hk by P'(w,t), (t,y).

Replace path (x,a,w,b) in Hk

by path (x,w,a,b). Then apply
Case la.

Replace path (x,a,w,b) in Hk
by path (x,w,a,b). Then apply
Case 2a.

Replace path (s,w,s e) by edge
(s,s 1) and edge (x,a) by path
(x,w,a) in H. Then apply Case
la.

Replace path (a,v,b,y) in Hk
 by path (a,b,v,y). Then apply

Case 3a.

AA lj Here a = a
k-1'

b = , uk_l , w A = wk_l , v = 	x is the non B
k-1
 end of

e
k-1'

s and s' are neighbors of x other than w in G
k
, and y and y' are

neighbors of v other than b in G
k
 . See Figure 2.

2/ Here DTHAM produces either a hamiltonian path from

of B
k-1 with nonsquare edge (t,v) or a hamiltonian

of Bk-1 with nonsquare edges (,7,z), (u,v) and (v,t).

P'(p,q) refer to paths in these hamiltonian entities taken counter-clockwise

and clockwise around the cycle of Figure 3, respectively.

3/ Case numbering preserves that of Fleischner (1974b).

w to v in the square

cycle in the square

Symbols P(p,q) and

Case-
3/

Number

3c

Table 1 (continued)

H
k Pattern on Artificial Path

lj
Required Action 	

...,w,a,v,b,y,... Replace path (a,v,b,y) in Hk
by path (a,b,v,y). Then apply
Case la.

4 	...,x,a,b,y,...,s,w,s',... 	Replace path (s,w,s') by
edge (s,s'),and edge (x,a)
by path (x,w,a) in Hk. Then
apply Case 2a.

5 	...,x,a,b,w,...,v,... 	 Use DTHAM for a hamiltonian
cycle and replace path (x,a,b,w)
by (x,z), P(z,u), (u,t), P(t,w).

6a 	...,v,a,b,y,...,x,w,s,... 	 Replace path- (x,w,$) by (x,$),
and (a,b) by path (a,w,b) in
Hk. Then apply Case 10.

6b 	...,v,a,b,y,...,s,w,x,... 	 Replace path (s,w,x) by (s,x),
and (a,b) by path (a,w,b) in
Hk. Then apply Case 10.

6c 	...,7,a,b,y,...,s,w,s',... 	Replace path (s,w,s') by (s,s'),
and (a,b) by path (a,w,b) in
Hk. Then apply Case 10.

7 	...,x,a,v,...,y,b,w,... 	 Use DTHAM for a hamiltonian
cycle and replace path (x,a,v)
by (x,z), P(z,v) and path
(y,b,w) by (y,t), P(t,w).

8 	 Use DTHAM for a hamiltonian
cycle and replace path (x,a,v)
by (x,z), P(z,v) and path
(w,b,y) by P'(w,t), (t,y).

9

10

lla

Use DTHAM for a hamiltonian
cycle and replace path
(x,a,v,b,w) by (x,z), P(z,w).

Use DTHAM for a hamiltonian
cycle and replace path
(y,b,w,a,v) by (y,t), P(t,v).

Replace path (y,b,v) by (y,v)
and (w,a) by path (w,b,a) in
Hk. Then apply Case 5.

01.

Table 1 (continued)

Case-
3/
	 1

Required Actioj
,2/

Number 	H
k

Pattern on Artificial Path —/

llb 	...,w,a,x,...,v,b,y,... 	 Replace path (v,b,y) by (v,y),
and (w,a) by path (w,b,a)
in Hk . Then apply Case 5.

llc 	...,w,a,x,...,y,b,y',... 	 Replace path (y,b,y') by (y,y'),
and (w,a) by path (w,b,a) in
Hk. Then apply Case 5.

12 	...,w,a,v,...,y,b,y',... 	 Replace path (y,b,y') by (y,y')
and (a,v) by path (a,b,v) in
Hk. Then apply Case la.

13 	...,x,a,v,...,y,b,y,... Replace path (y,b,y') by (y,y'
and (a,v) by path (a,b,v) in
Hk. Then apply Case 3a.

Figure 2: Vertex Arrangement Around
Artificial Path

. •

.1

both path and cycle

cycle only -`

Figure 3 : Vertex Sequence of Hamiltonian Paths
and Circuits in the Square of Bk-1

 Produced by DTHAN

3.2 Procedure DTHAM

Clearly, Step 3 of the main procedure is crucial. In this section, we --------

specify the relevant routine, DTHAM.

Step 0: Initialization. Let G D be the current DT-graph and denote two

distinguished vertices, say v and w which are in the same block of G D and

have only degree-2 neighbors. If a hamiltonian path is desired, add (unless

it is already present) an artificial edge, (v,w), to GD .

Step 1: EPS-Subgraph Construction. '?se procedure EPS to find a spanning

subgraph S of GD such that

(i) S is the union of an Euler subgraph E and a forest of (vertex)

disjoint paths P

(ii) E and P are edge-disjoint

(iii) Given ver:ex v belongs to E, but not to P.

(iv) Given verrex w belongs to E, and is not an internal vertex of P.

(v) if v 	w are adjacent in GD, then v and w are adjacent in E.

Step 2: Reduction. If every edge of P separates S into disjoint

components, proceed to Step 3. Otherwise delete an edge that does not and

repeat this step.

Step 3: Mate Edges. Subgraph S can now be viewed as consisting of a tree

of components of E linked by segments of paths in P. Select a minimum

cardinality set M of edges in P which breaks all such links, i.e., divides S

into components each containing exactly one component of E. Then construct

suhgraphs 	 of S from the components El ,E2 ,...,En and P1 ,P2 ,...,P
n

induced by M, duplicating edges of M so that each belongs to both its

adjacent Pi .

Step 4: Cycles in Components. For each component S
i
of Step 3 determine a

hamiltonian cycle H
i
in the square of S

i
as follows:

4a. If S
i

contains artificial edge (v,w) pick as t an artificial , 	,

vertex inserted in edge (v,w). Otherwise t is any degree-2 vertex

of theEulercomponentE.'in S..
1 	1

4b. Construct an Euler tour T
i
of the subgraph E so that T

i
begins

and ends at t.

4c. Beginning with t
0 	

t trace T
i
until t recurs, constructing H

i
as

indicated below (deg(•) refers to degree in S i ; t 0 ,t 1 ,t 2 are the

present and next two vertices of T i)

Case on t o ,t i ,t 2

(i) deg(c1) = 2

(ii)deg(t i) > 2, t o * t, and t 1 will

herevisitedinT.or has already

Evolution of H.
1

(t t)
0' 1

(t0 ,t 2)

been visited in H
i

(iii)deo(t 1) > 2, t = to or t 1
 will not 	(t0,t 1)(t 1 ,t 2 3

he revisited in T i ,and t E E. P
1 	i

(iv) deg(t
1
) > 2, t = t

o
or t

1
 will not 	(see Figure 4)

be revisited in T i, and t
1
 is an end

vertex of P
i

(v) deg(t
1
) > 2, t = t 0

or t
1
will not 	(see Figure 5)

be revisited in Ti ,and t
1
is an

internal vertex of P
i

Step 5: Solution. By constructions of Figures 4 and 5, each H
i
contains

all end edges of S
i
including those in M. Construct a hamiltonian cycle H

in the square of S (and thus in C D) by H = u Hi \M. If only a hamiltonian
i=1

path is desired, reduce H to a path by removing the artificial path

(v,t,w).

Even

Path

Length

Figure 4: Pattern of Traversal
When t 1 is Path End

Odd

Path

Length \

\

V.:1"

even
length case

even
length case

Figure 5: Pattern of Traversal When
t1 Is an Internal Path Vertex

3.3 EPS — Subgraph Construction.

Just as DTHAM acts as a subroutine to the main procedure, Step 1 of

DTHAM can be treated similarly. Below, we give routine EPS.

Step 0: Initialization. Let G = GD be a biconnected graph with two

distinguished vertices v and w. Operationally, v and w are the two

specified vertices of GD from Step 0 of DTHAM. Begin a list of unprocessed

subgraph sets given by the 4—tuple (G,,v 9 ,wt ,Cz) 	where initially,

G
1
+ G

v
I
+ v

w, + w

C
I
+ any cycle of G containing v and w,

and edge (v,w) if present in C.

Step 1: Decomposition Stopping. If the list of unprocessed subgraph sets

contains only Gt that are cycles or single edges, go to Step 4 and begin

reassembly. Otherwise, Dick (G, v, w, C) from the list with G not an edge

or a cycle.

Step 2: Preprocessing. If E contains an edge e such that a — e is

biconnected, remove e from G and repeat this step.

Step 3: Decomposition. If G is not now only the cycle C, process G by

decomposing it into two or more new entries in the unprocessed subgraph

list as follows:

3a: If G-C is biconnected add G0 and GI
to the list with

G
0
 + C

0
 +

v0 + v

w 0 + W

G 	E - E

v if v belongs to C - C, or

any vertex of C - C except W otherwise

W if W belongs to C - C, or

W1 +
any vertex of C - C except vl otherwise

C 1

any cycle of G
1
 containing v

1
and w

1

3b: If G - C has disconnected components Q 1 ,Q2' ...,Qq add

G1 , G 	Gq to the unprocessed suhgraph list with

v
i
+ v

wi W

C
i
+ C

3c: If G - C is connected but not biconnected and one end block B
1

of

- C (i.e., one block with a single cut-vertex c1) does not

contain v or w except possibly as its cut-vertex, ((B
1
-c

1
) n fv,w1

= 0, choose the least cardinality block chain B B
2' .. " Bb of E

b
C beginning with B1

and leaving G - u B
i biconnected. Let c 0 be 1=1

any vertex of B, except c
11

 ; c. be the cut vertex joining B
i

to

b
B
i+1'

i=1
'
2
''

b-1
;

and c
b
be the cut vertex joining u B

i to
i=1

the remainder of a - C. Then create h or b+1 new entries in the

unprocessed suhgraph list by

G o
+ G - u B.

1
i=1

v 0 + V

w
0
 + W

C
0

and for i=1,2,...,b or i=1,2,...,b-1 if B b is a single edge

G
i
+ B

i

v i + c i

wi
+ C

1-1

tany cycle of G
i
containing v

i
and w

i
if G

i
is

hiconnected, or

C

dp if Gi is a single edge

_ -
3d: If G - C is connected but not biconnected and its only two end

blocks each contain one of v and w at other than their cut

points, let B I ,B 2 ,...,Bb he the block chain forming a - C with W
B1 and v E Pb . Also define c o + w, c b + v and for i=1,2,...,b-1

pick ci as the cut vertex joining blocks B i and B i_1 . 	Then

ct .ate b or b+1 new entries in the unprocessed subgraph list

exictly as in Step 3c.

After processing G in one of the above ways or skipping a if it is only the
cycle C, return to Step 1.

Step 4: Initial EP-Subgraphs. Each subgraph G t in the unprocessed list is

now either a cycle C9 or an edge e t . Generate spanning EP (Euler-path)

suhgraphs for each as follows:

4a: If Gt = C
9, choose Euler subgraph E 9 + C9, and path forest

subgraph Pi + O.

4b: If Gi = et' choose Euler subgraph E
9 = 4), and path forest subgraph

Pt = e9 .

Step 5: EP-Subgraph Reassembly. Taking the processed subgraphs Gy in

reverse order of their creation, construct a spanning EP-subgraph for each

G
t
by taking the union of all E

t
and P

t
where G

t
was created by decomposing

Gt . Specifically, Et = y Et , Pt = t Pt except that any paths pi c Pi and
p. c P. sharing a common (end in both paths) vertex of G

i
(1G

j
are replaced

by the single path n u p . .

4. AN EXAMPLE

We can demonstrate the algorithm detailed in the previous three

subsections by considering the biconnected graph in Figure 6. Letting this

graph be denoted by G- (V

1
 ,E

1
) we proceed in step-by-step fashion.

Step 1. Initially, we have p l = {(4,7), (10,16), (12,13)1. Removing edge

(4,7) leaves a hiconnected graph and thus we set D 1 D1 \(4,7) and El 4- El \

(4,7). Relative to the new G i , removing either edge (10,16) or (12,13)

destroys biconnectedness and since DO . # 4) we perform a shrinking operation.

Step 2. We have for each edge in Dl , the two blocks shown in Figure 7. Let

us select arbitrarily the minimum cardinality one induced by e = (12,13);

that is, let B
1
 be the cycle (13,14,16,15). Accordingly, we have w 1=13 and

v
1
=16. Graph G

2
appears as in Figure R where B 1

is replaced by the

artificial path (w
I
, a

l
, b

l
, v

1
) as depicted.

Step 1. Since e = 4), G2 is a DT-graph and we can proceed with the

construction of a hamiltonian cycle.

Step 3. We seek cycle H
2

in the square of G
2
and thus, call routine DTHAM

using G
2 as input. Accordingly, we proceed to Step 1 of DTHAM which

requires the construction of an EPS-subgraph in G.

Step 0 (EPS). Let us denote the first unprocessed subgraph set by the 4-

tuple (GvwC
1
) where G

1
= G2, v

1
and w

1
are as shown in G

2
, and C

1
 is

the cycle (12,11,10,vb
l'

a
l'
w
1
).

Step 1 (EPS). Selecting the unprocessed subgraph set just constructed, we

have 6 = G
1
 = G2 and 6 is decomposed.

Step 3c (EPS). We identify blocks B i , 1 4 i 4 6 relative to G 2\E(C1) as

shown in Figure 9. We also denote the respective vertices C. for

j=0,1,...,6. Since B 6 is a single edge, we create new subgraph set entries

(G
0
,v
0
,w0 ,C0),...,(G 5 ,v5 ,w5 ,C 5). These are shown in Figure 10 where, for

ease, only the relevant subgraphs are displayed.

Step 1 (EPS). Since the new list of unprocessed sets contain only cycles

or edges we can begin the reassembly process.

Step 4 (EPS). Relative to the graphs displayed in Figure 10 we can

construct E t
and P for t=0,1,...,5 using the rules 4a and 4b. We have:

= 0: E
0 = 	(C0) , P0

 = (f)

= 1: E1 = b , P
1
= (5,12)

= 2:
2 2 = $'

P
2
= (2,5)

t =

=

3:

4:

E
3

= 	(C
3
),

E 4 = 	(C4),

P
3

=

P4 = (f)

R. 	= 5: E 5 = b, P5 = (7,9)

Step 5 (EPS). Since the only processed subgraph was the original one

(Figure 8), the desired EP-subgraph is easily reconstructed as shown in

Figure 11. We now return to DTHAM.

Step 3 (DTHAM). In S, let us form M as the single edge denoted by P 2 in

Figure 11. This induces (per the stated construction of the step) subgraphs

S
1
 and S

2
shown in Figure 12.

Step 4 (DTHAM). We denote (arbitrarily) by t, a degree-2 vertex in S1 and

S
2
and construct eulerian cycles T

1
 and T accordingly. These cycles are

denoted by dotted edges in Figure 12. The cycles H i and 119 are generated

using the stated rules and result as shown in Figure 13.

Step 5 (DTHAM). Patching together H
1
and H

2
as specified, yields

hamiltonian cycle H
2
as shown in Figure 14.

Step 4 (Main). Since k * 1, we must restore a shrunken block.

Step 5(Main). Since B
I
was shrunk earlier and replaced by an artificial

path, creating G
2
, we observe from case la of Table 1 that a hamiltonian

path from vertex w to vertex v
1
 through the square of B

1
 is needed. We can

find such a path by eTnloying DTHAM; however, for ease we shall simply

select the path (13,15,14,16).: Pere, w1=13 and v1=16. Finally, replacing

the artificial path (w ,a ,b ,v) by the stated one, produces cycle H
I
in

GI and the procedure is complete. We leave it to the reader to make this

replacement and moreover, to verify that 11 / is a suitable hamiltonian cycle

in the square of GI .

RI

5. EVALUATION OF THE ALGORITHM

In this section, we examine the veracity and computational requirements

of the algorithm detailed earlier. In both, we concentrate only on the more

crucial points of verification.

5.1 Validity of the Procedure

Our discussion is organized around the three-component breakdown by

which the algorithm was presented previously.

Main procedure. Graph G
1
is biconnected by construction. It possesses

no multiedges because C doesn't and no bridges because it would not then be

biconnected. After finitely many applications of Steps 1 and 2 a DT-graph

must result. This follows since Steps lb and 2 both reduce D
k
. In the

latter case edge e
k

is in 90 and after step 2, it is not because wk is now

degree 2.

Now, to allow the construction of Step 5, it must be true of each B
k

that

(i) w
k
* v

k

(ii) Bk contains only one cut vertex of Ck(U k ,Ek\ek)

(iii) B
k

is a TYT-graph

(iv) all nei1hors of wk in B
k

s:',
	
have degree 2 there

(v) all neicors of v
k

in B
k

have degree 2 there

Fleischner (1974b) establishes these properties in Theorem 1 and Remark 1.

Furthermore, the cases in Table I are derived from ones given by Fleischner

except for cases lb, 2b, 2c, 3b, and 3c which have been added in order to

enumerate ones excluded (in Fleischner (1974b)) by Figure 2.

DTHAM. The mating process of Step 5 is valid because edges of M may be

viewed as edges of a tree linking components S
i
. Also, Figures 3 and 4 show

end edges are always part of the tour. The implied hamiltonian cycle has 2

true edges meeting v because property (iii) of Step 1 assumes v is not

connected with any path. Thus on the last visit to v, case (iii) of Step 4c

will apply. Similarly, the computed hamiltonian cycle will have at least

one true edge meeting w. By (iv) of Step 1, w is either an identical case

to v or at the "foot" of a structure like that in Figure 3.

Addition of the artificial edge in hamiltonian path cases assures v and

w are both at least degree 3 without destroying the DT structure since all

neighbors of v and w are degree 2. In hamiltonian path cases we start at

the middle of (v,w) and proceed first to v. Thus (t,v) is in H. When we

return through w, either case (iii) or case (iv) of Step 4 applies and both

place (w,t) in the tour. Thus, (v,t,w) is in the tour to delete at Step 5.

There is also one other nonequal edge at v.

EPS. Cycles Ck of the original subgraph and all subsequent ones always

recur in the generated Euler system F.,. Thus, particular, v and w end in E
k

and so does edge (v,w) if present in G.

The unioning process of Step 5 always combines Si
A
= E

i
U P

i and Sj

E. u P into an EP-subgraph Sk
A

 = Ek U Pk either because Pi and Pj are vertex

'isjoint and S
i
n S is a subset of vertices or an Euler subgraph E

i
n e

j,

because Si n S. is a single vertex not internal to a path of either Pi or

In Fleischner (1974a) Lemmas 1, 2 and 3 verify these facts.

Specifically, when we restore a Step 3a decomposition, one of S
i
and S is a

cycle. Thus P
i

n P = 0 and S
i

n S is subset of vertices. If the

decomposition was by Step 3b, the subgraphs have only cycle C in their

intersection -- an Euler subgraph. This is true because the remainder of

theSi belongtodisioint Qi . If the decomposition was at Step 3c, we first

union EP-subgraphs for each block into say S
1
and then combine with S

0
 of

Go . The block subgraphs have only a single cut-vertex in common, and it is

always a v-vertex in one, implying it not to be path internal. Finally,

S
0
 n S

I
is a subset of vertices of C plus (if b+1 subgraphs were generated)

the vertex cb . We have chosen cb as a vb so that it cannot be an internal

path vertex. Also, vertices of C common to E
I are degree 2 in G0 and thus

cannot have incident paths. The decomposition of Step 3d is similar to 3a

and 3c. Blocks are combined as in 3c; S o is a cycle as in case 3a.

The entire decomposition stops because all subgraphs C t produced in

processing (E, -v07T,E) have IGt-E1 < 16-El.
Finally, we want w and v in the "E-part" of the final subgraph, v

incident to no path of p and w at most a path end. These properties follow

because we always keep v and w on the cycle C
k

when both are present in a G
k

and Ck C Ek. Moreover, our choice of v and w as Ione cycle vertices or cut

vertices in the various decompositions always avoids undesired paths.

5.2 Computational Requirements

The graph produced after the (finite) application of Steps 1 and 2

contains entirely original edges or a mixture of original and artificial

ones created by block shrinking. Here, for each block shrunk, a 3-edge path

is created and thus the respective Dk is reduced. Biconnectedness checking

can be efficiently performed and hence, DT-graph construction requires

effort bounded by a polynomial in !VI and [El.

Now, for a given EPS-subgraph (of a DT-graph), the construction of a

hamiltonian cycle in its square requires first a reduction and edge mating

process (Steps 2 and 3 of routine DTHAM) both of which are clearly

polynomial in the size of P, the path component in the EPS-subgraph. Of

course, we must produce eulerian cycles in subgraphs E i but this is easy and

finally, for each subgraph Si induced in step 3 of DTHAM, a hamiltonian

cycle in its square is obtained from the eulerian cycles in the respective

E.and the rules of step 4 (DTHAM) and Figures 4 and 5. This along with the

Step 5 (DTHAM) patching process is certainly polynomial in the number of

edges in the EPS-subgraph.

Turning specifically to the EPS-subgraph construction (routine EPS), we

see that crucial in the entire process is the decomposition step (step 3).

Throughout, biconnectedness checking is performed but as before, this does

not affect overall polynomiality. We need only demonstrate that the number

of unprocessed subgraphs formed in step 3 is polynomial in the size of the

input DT-graph. Let us take the component steps in order.

In 3a, one finished (cycle) graph is produced as well as one

biconnected subgraph in which a new cycle is selected. Hence, the number of

non-cycle edges will decrease by at least 3. In 3b, the set of non-cycle

edges is q-sected and by the construction in this step, (Q
i u C)-edges may

be added. However, each unprocessed subgraph created in this manner must

next be processed by one of the other three cases. In 3c, the set of non-

cycle edges is b-sec:ed and edges are simply transferred to new cycles or to

biconnected blocks. No edges are added by the unprocessed subgraph

creation. Step 3d is similar to 3c differing only in the block-chain

specification. Important in this regard is that no edges are added in the

unprocessed subgraph construction.

Now, in order to evaluate the overall effort of step 3 in procedure

EPS, we can consider a simple progress measure (x,y) where x is the number

of non-cycle edges in all unprocessed subgraph 4-tuples and y, the number of

subgraphs into which non-cycle edges are subdivided. Clearly, x is of size

0(1E1) and within each, y can be this large as well, rendering total

computation for this step at worse, O(IEI
2).

Of course, the entire process must be repeated k times per steps 4 and

5 of the main procedure. This however, clearly preserves the order of the

overall algorithm since the block-piecing computation requires only case

checking which is detailed in Table 1. We may thus conclude that the entire

procedure can be performed in time bounded by a polynomial in the size of

the input graph.

6. EMPLOYMENT OF THE ALGORITHM

We suggested at the outset that a principal interest in producing

(efficiently) hamiltonian cycles in the stated class of graphs was to permit

construction of approximation algorithms for various hard combinatorial

optimization problems. In this section, we briefly describe one such

construction which originated with the authors ([7]). We also note that the

basic approach using the guarantee of hamiltonicity in biconnected squares

has been employed elsewhere (e.g. Hochbaum and Shmoys (1983)).

The bottleneck traveling salesman problem (BTSP) seeks a hamiltonian

cycle in a weighted graph the largest edge weight of which is minimized.

The problem is known to be difficult - indeed it can be easily shown to be

equivalent to the problem of deciding which graphs are hamiltonian.

The formal intractibility of the (BTSP) makes its treatment by

approximation schemes particularly legitimate. Accordingly, for such

nonexact procedures we would like to fix (finite) bounds on their worst-case

performances. It is here that we can employ our algorithm of Section 3.

First, it is easy to show that no finite bound for any (polynomial)

heuristic can exist for instances of (BTSP) without edge weights satisfying

the triangle inequality unless P and NP are equivalent. Thus, we can

consider our instances to be defined on complete graphs, K n , where edge

weights in fact satisfy the triangle inequality.

Now, since any hamiltonian cycle is biconnected but not the converse,

let us construct an optimal bottleneck biconnected (spanning) subgraph of

K. Thus, if a is the value of the maximum weight edge in this subgraph

then the bottleneck optimal value of the corresponding instance of the BTSP

on K
n
can be no less than a. Most important here is that the stated

bottleneck optimal biconnected subgraph is easy to obtain. We simply apply

a greedy procedure to the list of edges in K
n

arranged in nondecreasing

order of edge weights. Beginning with the empty graph on n vertices, edges

are added in order with termination occurring when the first spanning,

biconected subgraph is constructed. Clearly, such a scheme is optimal and

its efficiency follows since checking for biconnectivity is easy.

Letting G be cur bottleneck optimal subgraph, then G. is suitable input
A

to the algorithm of Section 3. That is, G's biconnectivity guarantees

A
hamfl'onicity of its square and such a cycle, H, will be efficiently

produ-.: d by the algorithm. Moreover, H is an approximate solution to the

givca inqtance of the BTSP. If we let v(BTSP) be the optimal BTSP value and

v(H) the value produced by the heuristic, then v(H) 4 2a which follows from

A
the triangle inequality and thus v(H) 4 2v(BTSP).

So, as claimed in the introduction, we can produce a solution to any

instance of the stated BTSP in polynomial time which differs from an optimal

solution by a factor at most 2. We also claimed that this bound was

unimprovable by any polynomial alternative unless P = NP. That this must be

so, follows from the obvious use of any alternative BTSP heuristic for

deciding hamiltonicity in arbitrary graphs. We simply create a

corresponding BTSP instance, weighting edges by 1 or 2 depending on whether

or not an edge is present in an instance upon which hamiltonicity is to be

tested. Such edge weights clearly satisfy the triangle inequality and we

would apply the hypothesized BTSP heuristic. If the graph in question is

hamiltonian then the optimal bottleneck value would be 1 and the assured

heuristic would produce it (recall, such a procedure is assumed to have

worst-case bound strictly less than 2). Alternately, if the graph is not

hamiltonian, then the corresponding optimal BTSP value would be 2 which must

again be the value produced by the heuristic (edges have weights confined to

1 or 2). Thus, we need ony observe the value produced by the heuristic and

the hamiltonicity of the original graph is decided accordingly. This

problem is NP-complete however, and the existence of such a BTSP heuristic

would render P and ,k:P equivalent.

7. SUMMARY

In this paper, we have addressed ourselves primarily to the problem of

producing hamiltonia-1 cycles in the squares of biconnected graphs.

Existence of such cycles was resolved earlier by Fleiscshner, but their

explicit construction was less obvious. The computational procedure given

here rectifies this.

We also have demonstrated (without detail) how the stated algorithm -

indeed, the Fleischner result itself, can be used in the development of

nonexact or approximation procedures. In this regard, it would appear that

further exploration is warranted, especially in the context of performance

bound construction.

Figure 6. Graph of Example

Figure 7. Blocks B and B o defined for
edges (10,161 and (12,13)

Figure 8. G
2

\ o
B
5 .41

e'

B
6

/\
\ B3

/

/
e

/ 	 '■

i

I 7Z-,— -- –•
B
2 	/ 	/

/ 	 i

l'i
I 	 1

/ /

c
o

B
4

Figure 9. Blocks Induced by G
2\E(C1)

G
2

:

w
1 	 w

2

G
o

:
G

1
:

C
o

= C 1 (Go)

G3 :
G

4
:

C
3

=G
3
	 C

4
= G

4

G
5

:

17 5

Figure 10. Unprocessed Subgraph Sets Formed
by Decomposition of Step 3c(EPS)

Figure 11. EP-Subgraph, S

Figure 12. Subgraphs S and S2 and
Eulerian Cycles Tl lnd T 2

Figure 13. Hamiltonian Cycles in the
Squares of S 1 and S

2

Figure 14. Hamiltonian Cycle H
2

in the
Square of EP -subgraph S.

8. REFERENCES

1. Aho, A., J.E. Hoperoft, and J.D. Ullman (1976), The Design and Analysis
of Computer Algorithms, Addison-Wesley, Reading, MA.

2. Fleischner, H. (1974a), "On Spanning Suhgraphs of a Connected
Bridgeless Graph and Their Application to DT-Graphs," J. Comb. Theory
(B), 16, pp. 17-28.

3. Fleischner, H. (1974B), "The Square of Every 2-Connected Grasph is
Hamiltonian," J. Comb. Theory (B), 16, pp. 29-34.

4. Hochbaum, D.S. and D.B. Shmoys (10 83), "Best Possible Heuristics for
the Bottleneck Wandering Salesperson and Bottleneck Vehicle Routing
Problems," No. University of California, Berkeley, unpublished
manuscript.

5. Lau, R.T. (1981), "Finding EPS-Graphs," Monatshefte fur Mathematik,
92, pp. 37-40.

6. Nash-Williams, C. St. J. A. (1968), Problem No. 48, Theory of Graphics
(P. Erdos and G. Kantona, Eds.) Academic Press, New York.

7. Parker, R.G. and R.R. Rardin, (1983), "Guaranteed Performance
Heuristics for the Bottleneck Traveling Salesman Problem," Operations
Research Letters, to appear.

8. Rosenstiehl, P. (1971), "Labryinthologie Mathematique," Math. Sci.
 Humaines, 33.

Industrial and Systems Engineering
Report Series J-82-4
June, 1982

DEVELOPZIENT OF A PROGRESSIVE DISAGGREGATION
ALGORITHM FOR FD ED CHARGE

NETWORK FLOW PROBLEMS

by

Ronald L. Rardin*

and

Oscar Adaniya**

	41. 	

Associate Professor, School of Industrial and Systems Engineering, Georgia Institute
of Technology, Atlanta, Georgia 30332

Assistant Professor, Industrial Engineering, University of Miami, Box 248294,
Coral Gables, Florida 33124

This paper describes preliminary research still in progress. Do not reference or quote
without the expressed consent of the authors.

This material is based upon work partially supported by the National Science Foundation
under Grant Number ECS-801954

Abstract

Fixed charge network flow problems model network design and location

settings by allowing both fixed and variable charges for arc flow. Recent

research has shown that very close approximations to mixed-integer solutions

for each problems can be obtained from massive linear programs wherein flows

are artificially disaggregatea into separate components for each origin - des-

tination pair. This paper develops the strategy of a progressive disaggregation

algorithm employing the latter linear programming relaxation. However, flows

are initially undisagc-rPg= 1-AA. As computation proceeds, supply and demand sub-

sets are further and further partitioned to tighten the relaxation as required

without incurring the computational burden of a complete disaggregation into

supply-demand pairs.

1. Introduction

The fixed charge network flow problem in one commodity is typically form-'

ulated

min 	v..x. • + 	f.y..
3.3 2.3

(i,j)EE 13 13
(i,j)sE

s.t. 	
xis 	

dg
for all 8cV

(1.,)EE

(FC)

/ 	x. 	sa 	
for all aES 	 (3)

0,DEE et3

I x,. — 	1 	x, n . 0 	for all tET 	 (4)
(Z,DEE '3 	(iMaE -"'"

x../u.. 5 g. 	for all (i,j)EE 	 (5)
3_3 	2.3 	ij

x., .. 0 	for all (i,j)EE 	 (6)
1.:]

1 .?.. y ij _?_ 0 	for all (i,j)EE 	 (7)

yij integer 	for all (i,j)EE 	 (8)

lierefisthearcsetofaspacified,rietwek;x
1j
 is the flow from i to j;

S, Vend T are the supply point, demand point and transshipment point subsets of

nodes respectively; s
a

is the supply at point 'a; d is the demand at point 0;

and u. j is a capacity of arc (i,j) flow. Costs (1) include a variable (per unit

flow) cost v
ij

and a fixed charge f
ij

"switched on" by the 0-1 variable. Ylj

whenever x..> 0. we assume throughout that all fij and vij are nonnegative

although the latter requirement can be relaxed in some cases.

Formulation (FC) gives a correct mixed-integer statement of the fixed charge

network flow problem, but its linear programming relaxation, (obtained by deleting

(1)

(2)

constraint (8)) often provides only a very poor approximation to the mixed in-

teger form. Rardin and Choe (1979) and Rardin (1982) demonstrated that a much

better linear programming approximation is obtained by disaggregating flows

x.. into components x..1a,31 distinguished by the supply point a at which the

flow originated and the demand point to which it is defined.

Such a multi-commodity formulation is

min 	
(i,j)cE I' acS 	I" 	(i,j)cE ' 	1i

/ 	/ x., 	
3

[a,a1 + 	_ f.. y. 	 (9)

s.t. 	 / 	x.,ja,81 = d 	for all OED 	 (10)
acS (i,S)F.E 1P

Yja,s] 	s 	for all acS 	 (11)
eeD (a,1)EE a3 	a

(NC)

- 	x.,[a,B) = 0 	for all aeS
(9,,DeE 	 (iMeE 	 RED, IcT

(12) *

(1/u..) 	x..fa,81 	yij 	f or all (i,j)eE 	 (13)
2'3 aeS f,!--D 13

xij la,$) 	0 	for all (i,j)eE 	 (14)
aeS, BED

1 	y.
l
, > 0 	for all (i,j)eE 	 (15)

integer 	for all (i,j)cE 	 (16)
Y13

Yl

	

. i 	for all (i,j)cE 	 (17)
min(s

a' d S }
	 aES, SED

As mixed-integer programs, forms (FC) and (MC) are equivalent. However,

disaggregation of (FC) flows x ij into separate commodities x..[a,B] leads to a

tighter linear programming relaxation in (MC) because of the new constraints

(17)..vitlif...?..0 the linear programming relaxation, say (FC), of

(FC) will always have an optimal solution with no slack in (5). Thus, (FC)

solutions incur or_ly the fraction 13 lj 	 flow x.

forms of its capacity u... Equation (13) enforces the same limit in (MC), the
:13

ring , relax tip of 	Yij .to be as

large as the fraction of any source a or sink B flow passing through (i,j).

The improved linear programming relaxation follows when (as is usually the

case), sa
and/or S are muchsmaller than u .

ij-

Although providing generally nuch tighter linear programming approximations,

the (mC) form is an enormous linear program. For a case with 750 arcs, 25

supplies, 100 demands, and 125 transshipment nodes, (MC) has over 400 thousand

main constraints and approximately 2.2 pillion variables.. The dual ascent scheme

proposed by Rardin and Choe (1979) exploits problem structure in a Lagrangean

relaxation, (we give details below), but a typical iteration still involves

Shortest path problems for each (a,8) pair, and search over dual variables for

all constraints (17). For the problem size just described, there would be

2500 such shortest path problems and approximately 1.9 million searchable dual

variables.

However, the formulations (FC) and (NC) may be viewed as endpoints of a

disaggregation continuum. Form (FC) treats all flows in a single commodity;

(MC) disaggregates flows into artificial commodities for each origin - destination

pair. Certainly, there are intermediate possibilities wherein flow is treated

in groups, (Ak,S) with Ak c S,$k c D.

In this paper we first sharpen the (NC) formulation and then develop

strategies for an algorithm exploiting a progressive disaggregation of SO

flows. The algorithm generally follows the Lagrangean relaxation philosophy of

Rardin and Choe (1979), but processing begins with the undisaggregated form (FC),

i.e. with one supply group Al = S and one demand group B1 = D. As com-

putation proceeds supply and demand groups are progressively partitioned to

create new artificial co=dity structures. It is hoped that computational testing

now underway will deaonstrate such a progressive approach reduces total calcu-

lation to obtain a satisfactory approximation to an (MC) optimum.

minl X 	y d o 	
y . 	for all (i,j)EE

and all k
(aEAk (1' 8EBk P

CC
	17...Ia,S1

aeAk asik 1.]
(18)

i 5 Y"
min), 	s , 	A.,

o.eAk 	8,ED

x. [«,a?
ocAk 8ED. 1J

for all (i,j)EE
	(19)

and all k

2. An Improved Formulation

Flow in our given network can be conceptualized as the rectangle of Figure 1.

Sides reflect supplies and demands respectively. Formulation (FC), which uses

only one commodity, views the rectangle of flows on arc (i,j) as a single unit

x. . In (Mc), each supply, demand cell of the rectangle is tabulated separately
lj

as xti fa,B). At Aisaggregation levels between these extremes, supplies and demands

are grouped in a rectangle (A,,8
4
) collecting all flows from origins aeAk to

destinations $5-.B
k.

The analog of Rardin and Choe's (MC) constraint (17) for such a commodity

(A
k'k

) is

However, by treating supplies and demands separately we can expand the sums

in the numerator and thus sharpen the relaxation.

Lemma 1: Improved Formulation. Let x ii [a,81, sa , dB , S and V be as in formu-

lation (MC), Ak a nonempty subset of S and Bk a nonempty subset of D. Then the

following constraints are satisfied by every feasible (integer) solution to (FC)

an intermediate grouping CA)
° k k

a 	a 	a 	d. 	 d
	

a

. 	%

..

- 	 ,

t..

TT

. k

=- ...1.-

i x
ii

a,$)

total flow x..
3.3

Figure 1: Total Flow as a Supplies by Demands Rectangle

X 	X 	x ,[a,$)
aPS 8eB 	iJ 9.

for all (iXeE and all (20) r
nin 	 , X 	(

1 6_$z 	aeS 9 	
Y.

Furthermore, for specified s
a
> 0, d > 0, x.

lj

satisfying (18)) D fyij satisfying (19) and (20)) 	 (21)

Proof: It is clear that (15) and (20) are valid in (MC); they simply require

that yij be at least the fraction of supply in Ak or demand in Et passing through

(i,j), respectively. To see (21) observe that if X s 5 X d(19) has
ac Ak a BEB2. °,

the same denominator as (18), and at least as great a numerator. If

X 	s 	7 	d0 , (20) dominates (18).
acAk a 8e8

k

Fin. a system'of q commodities (A1 , Bi), (A2 , 	 , B) there are q q

q constraints of type (18) and potentially 2q like (19) and (20). However,

any commodities k and 2. with Ak = Ai or Bk = Bt have the same constraint (19)

or (20) respectively. The result can be a considerable reduction in the possible

number of (19) and (20). In the extreme case where every (a,13) e SxV forms a

separate commodity, there are !Si + ID! constraints (19) and (20), but is! • ID!

limits (18). Thus, at least, as this complete disaggregation is approached,

use of (19) and (20) results in both a substantial saving of constraints and a

gain in formulation tightness.

3. The Lagrangean Relaxation Setting

With even a partial diiaggregation of problem flows into artificial

cor -riodities, one obtains a formidable linear program relaxation to be solved.

If arc capacities (13) (or (5)) are nonbinding, Rardin and Choe (1979) showed

how an effective Lagrangean relaxation of the remaining problem could be structured'

by summing constraints (19) and (20) in the objective function with nonnegative

dual multipliers. Let kr'-c. 	be the list of distinct supply subsets of current

artificial commodities, laij fkq: AkeA,(i,j)sEll be the nonnegative dual multipliers on

corresponding constraints (19), S, -{B } the list of distinct demand subsets of

currentcommodities,anal8.[Z]: Ef eB, (i,j)cE) be the dual variables on their
ij

constraints (20). Than the implied Lagrangean relaxation is as follows:

min 	L -v., I 	x. [a,$) + 	f .y
(i,j)cE 	aeS f3eD 1J 	(i,j)eE 	ij

÷ 	X 	/ 	
o..[k]

(i,j)sE AksA
13 	min { 	s , 	d

a ae
Ak 	651°

x. la , sl
ttsAk Be D 1'

— Y•- 3.3 (22)

OM,

/ 	/ 	x[a s] aeS aeBk ij '

÷ 	 S..[Z]
(i,j)eE 8£s8 13

Yij

min{ 	dX s
a
} a ,

E aE t 	aeS

s.t. 	 x..io,51 = d 	 for all 00 	 (23)
asS (i,S)eE i3

x tam < sa

/ 	xv [aM - 	/
(2,,j)EE 	3 	(i,t)eE

x, 	[::,8)
"

x..[a,S]

1Y 13

= 0

0

0

integer Yij

for all aeS (24)

for all asS, (2 5).
BO, ZeT

for all (i,j)er,
aeS, Sep

for all (i,j)eE •

(26)

(27)

for all (i,j)eE (28)

(Pos [A,B]) 	
BED (a,j)EE

ForanychoiceofnormegativeS.[k] and a.
j
 [t] formulation,l(P

06
 [A,M)

gives a valid lower bound on the cost of an (PC) or (Mc) optimum. A-2search is,

of course, necessary to fine_ good dual values.

The advantage of the (P 0.6.[A,S]) form lies with the fact that ULM systems

are linked only through the objective function. Thus, for fixed dual values,

(Pacs [a,$)) separates into a series of shortest path problems for [a,$) pairs,

followed by an S to 13 transportation problem.

In•cluding subgradient steps to improve duals and revise the present commodi-

tization, a full procedure employing (P as [A,Mis as follows:

Step 0: Initialization. Fix dual and primal incumbent values

v ' vP
 -4- 4-=.

Step 1: Initial Disa74gregation. Partition the source mode by desti-

nation node set Sx1) into an initial series of artificial supply-demand

commodities, and let A be the list of distinct supply subsets, Ak,

a..[k] — 	6..[2.]
AlccA 1.] 	8 c8 13

f..
13

(2 9)

and 	the corresponding list of distinct demand subsets , 8 . Fix

all duals a..[k] and 6..[2.] at zero.
3.3

Step 2: Implicit Costs. Determine (22) objective function coefficients

V..[CL,B1 -4- v..
3.3 sti 	13 r kv s r k 	

13 i) + 	X - 05. . i /drzi (30)

AkeA:aeAk) 	 {BL- 03 -8:8 I

where sfIc.1 =4-'1' min 	L 	s 	do l.
aEA, 	Bet) P i

:c

(31)

A
=min d R / s

i BES 	aES
(32)

Step 3: Shortest Paths. For each pair (a,$) of a source and a destination

node, compute the shortest path from every a - to every a over arc lengths

vii ia,$). Let R[a,S] be the set of arcs in the shortest path from node

a to node $ and c[a,e] its length.

Step 4: Transportation Problem. Using costs cra,$), suppliers s
a

and

demand d
B'

solve an S to 'V transportation problem. Denote by z[a,$] an

optimal flow from a to $ obtained in the solution to the transportation

problem.

Step 5: Flow Solution: For each a and B , assign z[a,13] units of flow

to all arcs (i,j) in the corresponding set of shortest path arcs R[a,B].

Step 6: 0-1 Problem. Compute relaxation optimal values for the Yij

variables via

y.. 4- 1 	if f 5 0 and 0 otherwise.
13 	 ij

-10-

Step 7: 	Dual Solution. Compute a dual solution, v u, as the sum of

the costs of the optima in Steps 5 and 6. If v
D

•> v
D

save a new dual

incumbent v
D

v
D

.

Step 8: Primal Solution. Create a feasible solution to (DC) by paying

full fixed :charges on any arc used in the flow of Step 5. Let V be

its cost. If v < VP, save a new primal incumbent as an approximate

optimum to (FC). If not, check whether the rate of improvement in the

ratio v
P/vD

is satisfactory. If so, go to Step 10.

Step 10: Dual Update- Modify duals a
ij

[k], and S
j
[Y.] by taking a finite

i

step along a subgradient of the Lagrangean dual function at the current

dual point and projecting to restore nonnegativity (see for example

Bazaraa and Goode (1979) for details on subgradient schemes). Then return

to Step 2.

Step 11: Disagzrezation. Further subdivide the present artificial commodi-

tization of SX0. Add any newly created distinct supply subset A k to A and

pick an appropriate nonnegative starting value for corresponding dual

variables (11..
1.3

rki:(i,j)en. Similarly, add newly created distinct demand

subsets B to B and choose nonnegative {S
ij

[2]:(1,j)cEl. Then, return to

Step 2.

4. Artificial Commodity Structures

One important set of issues surrounding the implementation of the above

algorithm concerns the family of artificial commodity structures employed. The

algorithm is impacted by commodity structure in several ways.

o Relaxation Tightness. One aspect is the degree to which the linear

programming relaxation of problem (9) - (16), (19), (20) tightly

approximates the underlying integer problem. Commodities impact

relaxation tightness through the fact that there is one set of

constraints (19) for each distinct supply set (i.e. each AkEA)

and one set of constraints (20) for each distinct demand set'(each

B cB). Relaxations associated with different commodity structures

differ only in the limitations imposed by these constraints.

e a alvariables.rneromberofdual variablesets filipc]:(1,j)en

and fa
ij

[9]:(i,j)EE} which must be stored and searched over in any

commoditizatioa is also controlled by the dimension of the distinct

supply and demand subset sets A and B. For each AkcA and each

BzcB there is a set of constraints (19) or (20) and an associated

set of dual variables.

o Shortest Path Problems. Step 3 of the algorithm calls for finding

shortest paths between all supply-demand pairs. Arc lengths

vij
ta,e1 for snortest path problems are as in (30). Assume, as is

usually the case, that there are many fewer supply nodes than demand

nodes (Symmetric arguements could be given for the opposite case).

Then, noting all v..
.)
1c4,81 are maintained nonnegative throughout pro-

1

cessing, a version of the efficient Dijkstra (1959) algorithm should

be employed to compute shortest paths. But the Dijstra algorithm can

compute simultaneously the shortest path from one node: toall other

nodes. Thus, if v
i3
 .[a,5] is independent of 8, the Dijstra procedure

n 	
1

]/d[t])

term of (30) creates different v
ij

[a,$], the procedure must be applied

•
once per acS and per demand subset with distinct v..fa,81. In total 3.3

(

I S ! . 	number of combinations of
B
Z
 EB to which any 8

simultaneously belongs

shortest path will be 'required per execution of Step 3.

-12-

From the above it is clear that all impacts of artificial commodity struc-

ture are controlled by the supply subset list A 11 {A,} with each Ak c S and

the demand subset list B
4_ {8) with each 82. c D. To compare possibilites,

define a structure [A,B] to be tighter than another [A,8]

(y.,
13
 satisfying (19) for AkEA ryij satisfying (19) for AkEA

and (20) forEB
2.

and (20) for 2.
ES

That is, [AA] is tighter than [A,13] if it provides at least as tight a linear

programming relaxation. 	can then obtain some simple dominance results.

Lemma 2: Dominance of Covering Subsets. Let (A,E) be a commodity structure for

flows in SxD, i.e. A a list of distinct nonempty subsets of S and B a similar

list of subsets of D. Also, defineAcS - uAk andBcD - uB 	Then both
A 	 B It.

[A41,S]and[A,Eu{S}1 are tighter than [A,8]. Also, [AUCA1, Buan is tighter

- 	 . -
than either [Au(A),E] or [A,Eu{S)]. That is, extending the parts of S and D

covered 1py A and B tightens the formulation.

Proof: 	Twmediate fro= the fact that new constraints (19) for 'A and/or (20) for

are added, without deleting any others.

Lemma 3: Dominance of Partitioning Subsets. As above let [A,13] be a commodity

structure for flow in SZO, and pick any AkEA such that X s 5 X d and any
acAk a BED '

E
R.
ES with 1 d < X s

B 	a
. Then both [A,S], and [AA] are tighter than [A,E]

,. ,. RED 	acS 	. 	.
and [A,B] is tighter than [AA or [A,B] where

y.
s 	d}

jlq, a' E'D Si

x.fa,f31
asAk ReD 1-

A . A - 	 u {At: all Alic. c Ak , At n 	for iij,u Ak .--- 	 (34)

= B - ISk 	k .
) UfSi all 81 c st , sl n 131. for 	 = 82,1 	"05) - 	

i

That is, replacing such Ak and 82. by a partition of them yields a tighter

relaxation.

Proof: We shall show only the case of [A,B) tighter than IAA where

A l 	.4. A l 	2 	2 	 1 	2
A = A - tAk) u 	Ai.) w-_7 - - , 	c Ak , Ak c Ak , Ak n Ak = ??, and Ak u Ak = Ak.

A

All other cases follow by analogousarguement for B and straightforward

• , 	i
induction on the number of tr or {13} respectively.

For our case the only eifference in formulations [A,B] and [A,B] is the

former contain

versus the latter's

and

xij ra8) aeAk e:-1)
. Yli

=in 	s, Xd4
acA, 	SeD

y.
min ijc 2 sa d

e aeAk 	' $eD

for all (i,j)sE 	 (36)

for all (i,j)EE - 	(37)

for all (i,j)cE 	(38)

, 	x..fa,BI
acA'k $=D 1-3

By the hypothesis that 	s
a

5. 1 d
s'

the supply sum provides the minimum,
acAk 	eeD

2
in denominations of (36) - (38). Thus, noting Ak and Ak partition Ak, the

proof reduces to showing

s
asA

1 a

1 2 sa aeAk

acAk BED
2G 17...(a313]

y 	x..fc„B, 	 x..fa,S)
f3E-D 	13 	aeAk 00 	1.3

max

{I /.1

	/ x..fa,01 + 1 2 	1 xij Ia,0]
asAk

BED 13 	aeAk BED

X s + 1 1 a2 s A aeAk 	. aF.ti
k

1
Assume the Ak term provides the max on the left in (39). Then if (39) fails

(39)

/ 	X
aeAk 00 13

Al s a
cork

1
	

X x..fa,01 + X 2 	Ic..t A 01
aeAk BED 13 	aeAk BED 13

1 s +Xs 1 a • 	2 a
acAk 	aeA

k

Cross multiplying and simplifying leads to

{ I 2 sal{ 	11
 s 	2 	xii [a ,0])

aeAk 	acAk 00 	 < acAk a aeAk 00 -
J

, 	 x 4 tajil
aeAk BED 1J

or
s

acA a

Since this contradicts the assumption that 	provides the maximum in (39), we

can conclude (39) holds, and the Lemma follows.

-15-

Lemma 2 makes it clear that tighter relaxations will result if we con-

sider only commodity structures with [A,13] covering [S,19], i.e.

u Ak = S
A

u B = D

There could, of course, be a price in terms of dual variables and shortest

path problems for demanding a cover. However, at most one new supply group

S - u Ak, and one new demand group V -
U
 B , would have to be added to a non-

A
covering [AA]. Thus, only two new sets of dual variables and perhaps

no new shortest path calculations are implied. For these reasons we enforce

(40) and (41) in all further discussion.

We shall also demand commodity structures be nonoverlapping i.e.

Ak n A. = 0 	for all Ak ,AjEA, ilk 	 (42)

n 8 . = 	for all 8 ,B.E13, jil 0 (43)

Lemma 3 provides part of the arguement for the latter restrictions. That lemrt

 shows relaxations are usually tightened when a supply set Ak (or a demand set

13) is partitioned. It also follows, for example, that when Al c A2, it is

preferable to include sets Al
and A2-A1 in the commodity structure instead of

Al and A2 . We see that there is usually a gain in relaxation tightness when

supply or demand sets do not overlap. In the Al c A2 example there was not even

an increase in dual variables. However, replacing an arbitrary A / and A2

by (A1-A2), (Al n A2), and (A2-A1) would tighten the relaxation only by a net

increase of one system of dual variables.

(40)

(41)

-16--

The of r. arguement for nonoverla2pins sets as in (42) and (43) relates

to the number of shortest path problems (33. Since subsets in any list B are

distinct, (3:: marmot be less than Is! • I Any B satisfying (43) achieves

• that lower Tian -.

5. Implementation Issues

Basel on maa analysis of the previous section, we propose to implement

the lagrangea:-...- relaxation algorithms of Section 3 via supply group and demand

group lists A =a E that always partition S and D as in (40) - (43). Step 1

will create fete.ltial partitions, and each time disaggregation Step 11 is executed

1 	2
either some A. 	A will be replaced by two nonoverlapping sets A k and Ak , or

some 	eBwi.L1 be replaced by a similarly partitioning pair E
,

132 .
k

Even witt.afm. this approach to disaggregation, there remain many issues re-

garding implememtation of the algorithm of Section 3. When the algorithm starts,

a decision must be made with regard to the initial number of subsets in A and B

and the elements of each of these subsets. Then, at every iteration it must be

decided whether to further the disaggregation by partitioning an A, E A or

E E B. When the decision to proceed with the disaggregation is made, a series

of additional decisions are confronted, including selection of the subset to be

partitioned, the assignment of its elements to the new subsets, and the

initialization of the dual variables corresponding to the new subsets.

5.1 Initial Generation of Artificial Commodities

At the start of the procedure it could be decided to have one or more

elements in partitioning lists Aand B. If the decision is to start with

singletons A = fSl, B = Ws, all further partitioning of the original source node

set and the original destination node set will be performed in the disaggre-

gation Step 11.

-17 -

An alternative is to partially partition S and P from the beginning. In

general more dual variables and more shortest path problems will result in

early iteration. However, if the source nodes and the destination nodes are

initially grouped based on a careful analysis of the problem to be solved,

the relaxation may be much tighter so that progress on the dual bound in the

initial stages of the procedure is faster, favorably compensating the additional

computational burden brought on by handling more artificial commodities from

the beginning. It is also possible that by starting from an "intelligent"

list of supply and de:_-and subsets, further disaggregation of these initial

subsets would be more beneficial because the initial grouping has already con-

sider ,,A concerns too bulky to include each disaggregation step. Finally, an

initial subdivision of S and D obviously implies the number of times the

disaggregation step will later be invoked by the algorithm is significantly

reduced. Thus results may be less sensitive to the effectiveness and efficiency

of Step 11 calculations.

In light of these potential advantages non-singleton initial disaggregations

are being tried in computational testing presently underway. In picking initial

groups the goal is to quickly reach a tight relaxation without producing too

many elements of the initial Aand$ lists. Noting the form of constraints (19)

and (20) it appears we would like to segregate supply and demand points with

large s
a

and d8 respectively. Otherwise, their presence in the denominator of

(19) or (20) dilutes the impact of other flows on y id ,Similarly, if a node

is isolated, and thus particularly expensive to service, it seems reasonable

to employ a strong relaxation in regard to it, i.e. isolate it in a separate

supply or demand set.

For these reasons the initial disaggregation Step 1 being tested auto-

matically segregates in one-point sets any supplies and demands with unusually high

servicing cost or supply/demand. For remaining supply and demand points,

-18-

constraints (19) and (20) will be strongest if flows tending to have a

common shortest supply-demand path are grouped. In the algorithms initial

groups are formed so that ones with the most common path elements are.•together.

Figure 2 shows a single-supply example of these initial disaggregation

notions. Sincethere is only one supply,A = S={1}. The initialization rules

we have outlined would create a starting partition of V = -(2,4,5,6,7,8) as

= 1{5}, (6), (2,4): {7,8}1. Node 5 is isolated because of its high demand, .

node 6 because arcs entering it are particularly costly. Among the remaining

nodes, 2 is placed with 4 because all paths to 4 pass through 2,and 7 with 8

because many paths to 8 transit 7.

5.2 Selections of the New Partition

In the dual ascent procedure, used in conjunction with the progressive

disaggregation procedure described herein, whenever the rate of improvement on

the bound of the optimal solution to (1) 06 (A,8]) does not meet the minimum

standards set beforehand, it signals the need to further disaggregate some of

the current artificial commodities. This is carried out by partitioning one or

more supply and/or destination node subsets. As noted above we have chosen to parti-

tion only one subset at any one time. The main reason for such choice is to

keep the procedure simple while still achieving the goals of the disaggregation.

The selection of the subset to be partitioned involves ranking the current

subsets according to some criterion that matches our strategic objective ---

significiant improvement of the dual bound. As we have explained earlier, the

disaggregation pattern affects the dual bound only through constraints (19)

and (20). In the algorithm of Section 3, those constraints are included in the

(Pas IA,73]) objective function as terms

3,20) 	 (2,30)

d5=.500

d6=80

•

d7---30

Figure 2. Initial Disaggregation Example

 /
	/ 	81

a..1,41 11-(f i)

(i,j)cE
i,[m[k],/ 	 s[k]

and
fij 	

aES I
[1

X 	6 	[=-1
(i,j)eE 	

n(2.1) 	d[Z] 	 Yii

where stk] and d[2.] are as in (31) and (32). One new element is nonnegative

weights (f
ij
 /m[k])and(fin[Z]) used to scale constraints (19) and (20 - for

greater subgradient search efficiency. Generally, m[k] is similar in

magnitude to s[k], and uf7,1 to d[2.].

Since the expressions in (44) and (45) are less than or equal to zero

in feasible solutions, minimizing their absolute value will tend to improve

the dual bound quality. Consequently, we select for partition the subset for

which the corresponding expression (44) or (45) is the most negative. The

implementation of this selection rule is very simple and it does not involve

any additional calculations, since the values of expressions (44) and (45) are

always readily available in the dual ascent procedure where they are used in

evaluating the objective function.

Once the subset to be partitioned is identified, it is necessary to deter-

mine how to partition it. This includes deciding how many new subsets to

create and which elements of the subset being partitioned to assign to the

new subsets.

yij (44)

(45)

With regard to the composition of the two new subsets, a criterion similar

to the one used in selecting the subset to be partitioned is applied. For each

element of the selected subset, its contribution to the expression in (44) for

a source node subset, or to (45) for a destination node subset, is evaluated.

Based on these contributions, the elements with the highest contributions

will be assigned to one of the subsets, and the rest of the elements will be

assigned to the other. Each cf the new subsets is required to have the same

number of elements, so that all singletons will be reached in the minimum number

of partitions. Again, these decision rules are quite simple to implement

because (44) and (45) are readily available.

5.3 Initializing al

Once it has been decided to partition a supply group Ak or demand group

B initial values must be chosen for dual varialbes a. [k] or 	[1] and for
9.? 	 lj

scaling coefficients m[k] or n[k]. We shall discuss the case of partitioning a

demand set 8 into two mew sets B and 8 for which we seek new duals

ij
[p] and

ij
[6: (i,j)i.E) and scaling weights n[p] and n[q]. The case of

partitioning a supply subset Ak is completely analogous.

In the previous section we showed how the goal in selecting B and B

was one of maximizing the short term improvement in dual bound. We would, of

course, like initial dual variables to also advance the dual solution. But

there is another important issue: we desire stability in the dual search so that

any poorly chosen duals will quickly be corrected by Step 10 of the algorithm.

To obtain stability, we seek to assure that the x and y primal solutions

of Steps 5 and 6 of the algorithm (Section 3) will not decrease violently in

the first iteration after disaggregation. (If group selection was sound the

dual value should improve).

v. 	kt,8] = v. vii + f.
a..[k] I 	Y 	1J +

m[k]sik]

(A
k-

 A:a.-A 1

[(S., t]
X 	1.J

n[Z]d[kT

8 E8:Se8 1

(48)

At Step 6, yid ÷1 if f
ij
 5 0 and 0 otherwise, where (including the

scaling factorf ij /n[t])

	

f.. = f.. 	1- 5' 	a. i fkl/ra[k] - X 	6..itlintki

	

1-.1 	AkcA 	 8
9.c8

Dividing 8 into 8 and S in the 8 list will merely replace

6,,f;=.1
	 with

ij Ipiijfql

n[Zi 	n[p] 	n[q]

Thus, they., solution will be unchanged if
3.3

	

6..[Z]_
 1.]
6..40 	8 ..tql

2.3
ETTT 	n[p] 	-niql

ij
TosimilarlypreserveVnex..[a,B] solution of algorithm Steps 3-5, we

desire to leave unchanged shortest path arc lengths

(46)

(47)

After partition each $ will belong to B or 8 , but not both. Thus, either
P 	q

n[p]d[p]

ii [0 6 ii 10 	d[q]
	

8[Z]

or n[q] 	
will replace nitj

ii
d[t] in (48),

The dual selection we propose is fixing

n[p] f n[t]

n[q] 4- n[t]

i..[p] f a..1-2.1 d[p]
3.3 	13 	dm

6..(0 f 8..f2,1
atii

Substitution in (47) gives

ij
fp]

+ 	
[q]

ij
[9.]

id[p]+d[q]]
n[p] 	ntqj 	n[k] 	L 	d[z]

2-3

 n[t]d[t]

	

the last because S and 	partition demands 	in 8 . Also, (49)-(52) yield
ft

	

&JO 	6ii lkl td[p]\ 	Sim[R]

n[p]d[p] 	n[t]d[p] kd[t]i 	n[t]d[t]

arid

6..[q] 	 6..111
3-3 	(dE4

n[q]d[q] 	n[i]d[q] VIM/ 	n[t]d[t]

as required to preserve the v.. [a,8] of (48).

6. Experimentation

Previous sections outlined the develop -2ent of a strategy for implementing

progressive disaggregation in the context of a Lagrangean relaxation algorithm

for tight formulations of fixed charge network flow problems. Justifications

provided for details of the algorithm do consider problem properties, but their

true effectiveness can only be measured empirically. Thus, a series of experiments

involving variants of these strategic decisions is presently underway.

REFERENCES

Bazaraa, M.S. and J.J. Goode (1979) "A Survey of Various Tactics for Generating
Lagrangian Multipliers in the Context of Lagrangian Duality," European Journal
of Operations Research, 3, 322-333.

Dijkstra, E.W. (1959), "A Note on Two Problems in Connexion with Graphs," Numer
Math, 1, 269-271.

Rardin, R.L.(1982), "Tight . Relaxations of Fixed Charge Network Flow Problems,"
Industrial and Systems Engineering Report Series No. J-82-3, January..

Rardin, R.L. and Ui Choe. (1979), "Tighter Relaxations of Fixed Charge Network Flow
Problems," Industrial and Systems Engineering Report Series J-79-18, May.

Industrial Systems and Engineering
Report Series No. J-82-3
January, 1982

TIGHT RELAXATIONS OF FIXED

CHARGE NETWORK FLOW PROBLEMS

by

Ronald L. Rardin*

* Associate Professor, School of Industrial and Systems Engineering,
Georgia Institute of Technology, Atlanta, Georgia 30332

Abstract: A vast number of important engineering and management problems can
be viewed as network flow problems with fixed charges for opening arcs. This
research derives new, tight, linear programming relaxations for such problems
based on a disaggregation of flows. The concenpt behind such relaxations is
presented, and an algorithm for their solution is discussed.

This material is based upon work partially supported by the National Science
Foundation under Grant Number ECS-801954.

1. Introduction

A vast number of important engineering and management problems in dis-

tribution, communication, transportation, and facilities location can be viewed

as single or multi-commodity network flow problems with fixed charges for con-

structing/setting up/installing arcs. Such problems with commodities in P

can be stated in mixed-integer form as follows:

min 	7 vP3cP + fy
	

(1)
n=T7

(MFP) 	s.t. 	 EXP = by 	for all pEP' 	 (2)

xP > 0 	for all pep 	 (3)

(1/u.) 	x! 5 v.
J 	

for all jEA 	 (4)
J

pEY

0 y 1 	 (5)

y integer 	 (6)

Here E is the vertex-arc incidence matrix of a directed graph, G(V,A), x P

 is the flow of co,altudity p on that network, vP is the variable (per unit)

cost of such flow, by is a requirements vector for commodity p (having com-

ponentssummingtozero,uisthecapacityofarcjofik,f.is the fixed
3

chargeonarcj,andy.is a 0-1 variable switching "on" the fixed charge

whenflowthrougharcjisallowed.. throughoutthatallf.are
3

nonnegative.Ifcapacities,u.,are not naturally apparent in the problem

setting, they can usuallvbe generated as any number greater than or equal to

the maximum flow through the arc.

Figure 1 shows a simple numerical example with IN = 1 commodity. All 10

units of flow originate at vertex 1; 5 are required at vertex 3 and 5 at vertex

4. It is easy to check that an optimal solution sends one unit 1-4, 4 units

-1-

Figure 1, An Example Network

-2-

1-2-4, and 5 units 1-2-3. Total cost is 63.

2. The Standard Relaxation

Since the early work of Balinski [1, 2] a standard approach to dealing

with problems (MFP) has been to solve linear programming relaxations (MFP)

obtained when constraints (6) are dropped. Such relaxations provide both

bounds for branch-and-bound schemes and a source of approximate solutions;

given an (1:7P) optimum, one need only round "up" all positive, but fractional

y. to obtain a feasible solution to (147P).

For the above example this (MFP) relaxation is solved by sending 1 unit

1-4, 4 units 1-2-4, and 5 units 1-3; total cost is 54 (83% of the optimal 63).

When rounded "up" this solution costs 104. (165% of optimal).

Neither of these values is very satisfactory, and actual experience is

often much worse. To see wIly, observe that the constraints (4) will always

betightinsomeoptimalsolutionfor wheref.>0, slack in such

constraints implies unnecessary cost. Since constraints (4) will'be equalities

in(MIT),theireffectistoproratethefixedcost,f.over the corresponding

capacity. For example, in arc (1-2) of Figure 1, 4/10 of the fixed cost,40,

would be paid in the (MFP) optimum because 4/10 of the capacity, 10,is used by

the optimal flow. If capacities are large, it is easy to see that this pro-

ration process would soon negate, or nearly negate, the impact of fixed costs

on (M-FP) optima. Optimal relaxation solutions tend to use many arcs at relatively

small fractions of capacity. This is particularly so when capacities are arti-

ficially created as maximum possible flows.

3. A Disag2regated Formulation

In a number of special cases, including warehouse location problems (Balinski

[2], Davis and Ray [4], Erlenkotter [5], Blida and Krarup [3],Geoffrion and Graves

[7])and uncapacitated problems (Magnanti and Wong [8]), various researchers have

-3-

shown the merit of disaggregating (MFP) flows to obtain linear programming

relaxations that more closely approximate the mixed-integer problems. One

can retrieve these special cases and extend the notion to all (*•IFP) by

recognizing that flow in any commodity can always be disaggregated into

separate commodity flows between origin-destination pairs of the requirements

vector, b'. Specifically, let x P [s,t] be a vector showing the flow of the

portion of commodity p originating at source s and destined for sink 	Then

an equivalent mixed-integer form to (MFP) is

min
pEP

XP [s,t]y f w [
sES 	tET

(7)

s.t. EP x-iDr s,t3 = 0 for all pEP, sES
'

 teT (8)
13 P

x[s,t) 	= by for all pEP, seS (9)
teT 	{j 	leaving s:t. p

—/ 	 x.(s,t) 	= bP
seS 	 tl

for all pEP, teT (10)

(DFP) 	 xP [s,t] 	0 	 for all pEP, sESteT
P' 	P

(1/u.) 	1 	I 	1J!fs
'
 tl 5 w. 	for all jEA

peP scS tET 	3
p 	p

(1/-bP) 1 	xl:'(s,t)
	

w. 	for all iEA, pcP , tET
	

(13)
sEC

(n)

(12)

(1/hi's) t c-r xps,t]
P

0 < w < 1

w integer

't,, .for all jcA, pcP, scS 	(14)

(15)

(16)

Here S = {sources for commodity p} ={s: b y > 0}

T = {sinks for commodity p} = {t:-bP > 01

7..

EP = the-xow submatrix of E containing row E 	P 01

In this new form w corresponds directly to y of MP), and flow variables

are related by

xF = / P
sE...S 	x. ts,t1 	 (17)

P j

Relaxations (7), (8) through (10), (11), (12), (15), and (16) of (DFP) corres-

pond to (1), (2), (3), (4), (5), and (6) of (MFP), respectively. Denote by

v(•) the value of an optimal solution to problem (-) and by (DFP) the linear

programming relaxation of (DFP). Then this correspondence and the fact that

(DFP) and (DFP) have extra constraints (13) and (14) lead to the following

conclusion:

Proposition 1. Solution values for (HFP), (DFP), (MTP) and (DFP) satisfy

v(MFP) < v0:)FP) < v(DFP) = V(MFP) 	 (18)

tp

The new elements in the (DFP) formulation are systems (13) and (14).

Intuitively, (13) requires that , w., the portion of the fixed charge paid on

arc j, must equal or exceed the fraction of a demand satisfied through arc j.

-5-

simi larly,a0forcesw .to match the portions of each supply directed through

arc j. The extra constraints are implied by (12) when integrality, (16), is

enforced. But they may significantly improve the linear programming relaxation (DFP

becausef.isnowproratedoverbothu.and all relevant supplies and demands.

The latter are often much smaller than capacities.

The example of Figure 1 illustrates. An optimal solution to the linear

programming relaxation (DFP) sends 1 unit 1-4, 4 units 1-2-4, and 5 units

1-2-3. The relaxation cost is 62, 98% of the optimal 63. When all fractional

w. in the relaxation are rounded "up",a feasible solution is obtained that

is indeed the (DFP) optimum. The effect of the disaggregation is seen on arc

(1,2). The (DFP) optimum pays the entire fixed charge, 40, because all demand

at vertex 3 is satisfi - through (1,2). From this example we may draw the

further conclusion:

Proposition 2: In selected problems both inequalities of (18) may be strict.

4. Solving the Tighter Relaxation

If the strength of the (DFP) relaxation is to be realized, an approach

must be found for solving or nearly solving that massive linear program. Three

cases can be identified. Uncapacitated cases have neither binding arc capacities,

u., nor limits on supply at sources. Equivalently they are problems where con-
.]

straints (12) are unnecessary and each requirements vector has only one positive

component at the commodity's single source. Veakly capacitated cases admit

supply limits, but do not have binding arc capacities. They include the capaci-

tated warehouse location problem. Finally, fully capacitated problems have

binding arc capacities, and possibly also binding supplies.

In both the uncapacitated and the weakly capacitated cases we can ignore

constraints (12) of (DFP). Suppose we "dualize" (13) and (14), i.e. place them

-6-

in the objective function with nonnegative dual multipliers e[t] and

a. [s] ,
respectively, to obtain

min 1 vP 	1 . 	xP [s,t]) 	fw
pEP 	sES tET

(DFp.,) 4. 	1 	1 e[t] 	1

pEP jcik ter 3 	{ -bP 	sl 	xP. ts' ti. - 1.7 eS 3 	j

(195

2 	y c![t] 	1 	 xP
pcP jEA sESp 	by tPT 3

s

- w.

s.t. 	(8), (9), (10), (11), (15) and (16)

For fixed 6 and a variables in (DFP ;) the commodities are linked only at

sources and sinks (through (9) and (10)). Moreover, each origin-destination

commodity problem is essentially one of picking a single path along which to

ship from source to sink. Thus, one can approach (DPP) by trying to maximize

V(DFP
Scr

) over nonnegative values of the dual variables as follows:

StepO:Initialization.Setall ande[s] to zero, and fix dual and

* 	"
primal incumbent solution values v

D
- co, v 	+-Do .

Step 1: Implicit Costs. Determine (19) objective function coefficients

f
j 	J

	

f. 	 e[s] - 	/ e[t]

	

pEP sES J 	pEP tET 3
p 	 p

vP[s t] t vP + 01.1 [s]/0 + 6:[t]/(-0)
J 	J 	s 	3

Step 2: Shortest Paths.)or each pEP, sES , tET compute the shortest

path from s to t over arc lengths ; 1°.[s,t]. Let RP [s,t] be the set of

arcs in that path and c P [s,t1 its length.

(20)

(21)

-7-

Step 3: Transportation Problems: For each commodity pEP, solve a trans-

portation problem from sources sES to sinks ter with costs cP [s,t].

Supplies are {bP > 0} and demands f-bP > 0). Denote by zP [s,t] an optimal

flow from s to t in that transportation problem.

Step 4: Flow Solution: Construct and optimal flow for (DFP66) by

assigning for each p, sES , tET , z P [s,t] units of flow along all arcs

in the corresponding shortest path e[s,t].

Step 5: 0-1 Problem- . -Compute relaxation optimal values for the wj

 variables via

w. 4-- 1 if f. < 0 and 0 otherwise.
3

Step 6: - Dual Solution. Compute a dual solution,VD,as the sum of the

(DFP
6a

) costs of the optima in Steps 4 and 5. If v D > v
D, save-a new

dual incumbent v
D

v
D .

Step 7: Primal Solution. Create a feasible solution to (DFP) by paying

full fixed charges on any arc used in the flow of Step 4. Let V be its

cost, and if v < v P, save a new primal incumbent v
P' 	 P.

-
Step 8: Dual Update. If v is sufficiently close to vD'

stop and accept

the primal incumbent as an approximate (DFP) optimum. If not, modify

dualsal,[t]andcr[s] by taking a finite step along a subgradient of the
3

function
v(DFP6a)

 at the current dual point. 	Then return to Step I.

Since every problem (DFP
du

) is a Lagrangean relaxation of (DFP) (see

Fisher [6] for details of such relaxations and subgradient search), and every

flow of Step 4 is primal feasible we have:

Proposition 3: At any stage of the above algorithm

V 5 V(DFP) 5 V . 	 (22)

-8-

5. Preliminary Computational Experience

To see whether values in (22) could be brought close enough together to

solve problems without the need for branch and bound, 15 random

test problems were generated and approximately solved by the above algorithm.

The problems were uncapacitated, 1-true-commodity cases with relatively high

fixed charges on all arcs.

Table 1 summarizes problem Characteristics and results obtadned for the

three problems of each size group. As indicated,the ordinary (MFP) relaxations

provide very poor information. Relaxation solution values are only 25750% of

optima.

* *
The above (DF?) algorithm was set to stop when either

P
 iv

D 	
102.5% or

a 15 minute time limit (CDC Cyber74) was reached. All problems of less than

1000 arcs stopped before time limit. As indicated, the 1000 arc cases reached

solutions provably within 4-8% of optimal in the 15 minutes.

Although this amount of computer time is not insignificant, and results are

highly preliminary, values in Table 1 strongly suggests that disaggregated re-

laxation approaches to fixed charge network problems have great promise. Exist-

ing branch-and-bound algorithms for such problems (e.g. Rardin and Unger t91)

are taxed at 100-200 fixed charge arcs because of poor eiFP) bounds. With (DFP)

it appears 1,000 or more arc problems are within range.

Table 1. Preliminary Computational Results

Arcs

Problem Size

Demands

Estimated % CDC Seconds to

Reduce P/vD
102.5% with (DFP)

• 	v(MFP)

Forms of v(MFP) Nodes

50 20 5 43.5% 0.8

23.2% 0.8

54.6% 5.3

100 36 10 47.3% 7.5

37.1% 3.8

36.9% 2.7

200 67 20 36.1% 23.5

37.0% 19.2

41.3% 19.6

500 157 50 35.9% 416.5

40.1% 353.2

47.6% 237.6

1000 308 100 37.9% 105.5% in 900

29.3% 107.7% in 900

41.0% 103.8% in 900

REFERENCES

1. M.L. Balinski, "Fixed Cost Transportation Problems," RRLQ, 8, 41-54, (1961)-

2. M.L. Balinski, "Integer Programming: Method's, Uses , Computation,"

Vanagement Science, 12, 253-313, (1965).

3. 0. Elide and J. Krailip, "Sharp Lower Bounds and Efficient Algorithms for

the Simple Plant Location Problem," Annatz 	DiActetekiathematicA 1,

(1977). (Based on a 1967 technical report in Danish). "

4. P. S. Davis and T. L. Ray, "A-Branch-Bound Algorithm for the Capacitated

Facilities Location Problem," HRLQ, 16, 331-344, (1969).

5. D. Erlenkotter, "A Dial-Based Procedure for Uncapacitated Facility Location,"

working paper No. 261, Western Management Science Institute, University of

California, Los Angeles, (July 1977).

6. Marshall L. Fiser, "The Lagrangian Relaxation Method for Solving Integer

Programming Proble=s,"kfanagement Science, 27, 1-18, (1981) -

7. A.M. Geoffrion and G.W. Graves, "Multicommodity Distribution System. Design

by Benders Decompositinn,"qanagement Science, 20, 822-844, (1974).

8. T. L. Magnanti and R. T. Wong, "Accelerating Benders Decomposition: Enhance-

ment and Model Selection Criteria," Opetations Reseatch, 29 464-484, (1981).

9. R. L. Rardin and V. E. Unger, "Solving Fixed Charge Network Problems with

Group Theory Based Penalties," Nava_ Peseatch Logistics Quattetty, 23

67-84, (1976)-

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285

