

$$
205-876-4141
$$

Defense Priority Rating: DO-A2 under DMS Reg. $1 \quad$ Security Classification: Unclassified

RESTRICTIONS

See Attached Government Supplemental Information Sheet for Additional Requirements.
Travel: Foreign travel must have prior approval - Contact OCA in each case. Dornestic travel requires sponsor approval where total will exceed greater of $\$ 500$ or 125% of approved proposal budget category.
Equipment: Title vests with Government; except that items costing less than $\$ 1,000$ vests
with GIT if prior approval to purchase is obtained from the Contracting officer.

COMMENTS:

COPIES TO:

Administrative Coordinator
Research Property Management Accounting

Research Security Services
EES Public Relations (2)
Reports Covitiratu HoC)
Legal Services (OCA)
Library
Project Title: Battlefield Systems Power Network
Project No: E-24-648
Project Director: Dr. L. G. Callahan
Sponsor: Redstone Arsenal
Effective Termination Date: 9/30/82
Clearance of Accounting Charges: 11/30/82
Grant/Contract Closeout Actions Remaining:
x Final Invoice mandrelosing:DecoumeatsFinal Fiscal Report
x Final Report of Inventions
x Govt. Property Inventory \& Related Certificate
\squareClassified Material Certificate
\square Other
\qquad

Assigned to: \qquad (School/Eaboóatäry)
COPIES TO:
Administrative CoordinatorResearch Property ManagementAccountingProcurement/EES Supply Services

Research Security Services Reports Coordinator (OCA) Legal Services (OCA) Library

EES Public Relations (2)
Computer Input Project File Other \qquad
Final Summary Report
for the
United States Army Missile Command
Redstone Arsenal
Huntsville, Alabama 35898
"Battlefield Systems Power Network Optimization"
Under Contract DAAHO1-81-D-A003
Delivery Order 0035
Conducted by
The School of Industrial and Systems Engineering
Georgia Institute of Technology
Leslie G. Callahan, Project Director
Robert L. Davis, Principal Investigator
August 1982
(unclassified)

SUMMARY

This research project studies an alternative system for power distribution in a tactical environment whose goal is to improve overall reliability while reducing the total cost of generating power. As a means of accomplishing this end, we explore the concept of "common users" of generators in order to reduce system down time and optimize generator distribution.

Our approach was to develop a computer-assisted, interactive decision model which is both portable and user friendly. The computer we chose was the Chromatics Colorgraphics system which both aids in clarifying the problem and promoting user interest.

The problem we studied was fairly basic. Given an arc of operations, there are x units on the ground at given locations, interconnected by a road network. Some number of these units require varying amounts of power to be functional. Distance is used as a basis for determining the cost of providing this power.

The decision support system we developed to aid the user in finding solutions to this problem is based on solving the k-best, minimum weight spanning trees for the network. It displays the se k-trees in a tabular form which the user can then superimpose on a map and then, utilizing any additional information he may possess, decide upon a best solution.

The model is easily expandable to larger, more complex situations and is equally useful in non-tactical applications. At the end of the report, we have suggested further possible applications and expansions for this system.
Page
CHAPTER
I. INTRODUCTION I
BackgroundPurpose of ResearchApproach
II. ASSUMPTIONS AND MATHEMATICAL FORMULATION 5
Assumptions
Mathematical Formulation
The K Tree Algorithm
III. THE DECISION MAKING PROCEDURE 9
Existing System
Proposed System
IV. IMPLEMENTATION AND DOCUMENTATION 13
Instrumentation and EquipmentImplementation and Documentation
V. TEST PROBLEM AND RESUTLS 16
Test Problem
Results
VI. CONCLUSIONS AND RECOMAENDATIONS
Conclusions
Recommendations
APPENDICES 29
A Generator Requirements for Division 86 Units
B Program NTRACE
C Program SOLVE
D Power Plant and Power Line Teams
BIBLIOGRAPHY 48

CHAPTER I

INTRODUCTION

A. Background

Continuous technological advances have made the modern battlefield highly sophisticated and lethal. Everything from target acquisition and engagement systems, to communications equipment, to the First Sergeant's coffee pot and electric razor are dependent on some form of electricity to operate. A weapons sjstem capable of engaging multiple targets simultaneously is worthless if we cannot supply it with enough power to remain operational.

A possible solution, the use of comnercially produced power, is not feasible. On the one hand, we cannot depend on such a source being available in a wartime environment. Comercial power plants will be prime targets early on in any hostilities. Additionally, today's systems operate on a variety of voltages which further complicates the issue. Finally, more often than not, units can expect to be operating in remote regions where commercial power is unavailable.

The solution has been and still is generators. However, system proliferation and variation have made the types and number of generators a complex, frustrating problem. Looking at the generators required by the Heavy Division 10 the Division 86 studies (see Appendix $A-1$), one sees everything from .5 kilowatts to 100 kilowatts, 28 volts to 240 volts, 60 hertz to 400 hertz and one phase to three phase generators, in skid-mounted and trailer-mounted configurations. The quantities are staggering. Looking only at the requirements for 60 hertz, 120 volt power generator equipment, one filds the figures displayed in Appendix A-2; a total of 938 generator sets producing 4,943.5 kilowatts of power.

Associated with this vast number of generators are the further requirements for the operators, mechanics, and repair parts necessary to run and maintain these pieces of equipment.

Realizing the inherent difficulties associated with our current system, the U.S. Army Construction Engineering Research Laboratory studied the issues and presented their findings in the Electrical Power Generation Distribution (EGAD) Report in December 1975 [13]. The study essentially recognized the need for systematic optimization of electrical systems and the development of planning, design, and construction capabilities for such systems. Their recomendations were addressed toward non-tactical applications, however, we feel the ideas expressed are compatible with tactical power generation.

Presently, another option which the Corps of Engineers is researching is the possibility of providing a standard family of power generation equipment which through the use of transformers can be adapted to all systems currently found on the battlefield. It is along this vein that this study progresses toward a possible alternative to the existing doctrine.

B. Purpose of Research

The purpose of this research project is to study an alternative system for power distribution in a tactical environment which improves overall reliability while reducing the total cost of generating power. Additionally, we explore the concept of "common users" of generators as a means of reducing system down time and optimizing generator distribution.

C. Approach

Our approach was to develop a computer-assisted, interactive decision model which is both portable and user friendly. To aid in clarity and to
enhance the interest of possible users of this system, it was developed on a color-graphics computer system.

Our problem to be studied was this: Given an area of operations, there are x units on the ground at given locations. These locations can be readily identified on a map and are interconnected by a road network. Some number, n, of these units have a need for K kilowatts of power. The cost of providing this power is the distance between the units. What is needed is a system to optimize the location of a "common user" generator or a bank of generators in order to minimize the distances necessary to run power lines.

A FROTOTYPE DECISION SUPFORT SYSTEM

 FRE PONER ロISTRIEUTION SYSTEMS
CHAPTER II

ASSUMPTIONS AND MATHEMATICAL FORMULATION

A. Assumptions

In formulating this model, it was necessary to make/impase a number of assumptions:
(1) The cost of providing "common user" power is proportional to the total distance of transmission lines necessary. It should be noted that whenever two or more nodes are connected by existing power transmission lines, these can be incorporated into the model by assigning those arcs a minimal cost or no cost.
(2) Al1 needed data is available to the decision maker. Information required is a map of the area, present unit locations, unit demand in kilowatts, existing transmission lines if any, and priority of units in case total demand exceeds total supply.
(3) There is no additional fixed cost associated with providing power to one site over another.
(4) Locations and demands are considered to be relatively static. Once a generator location is chosen, it is not expected to have to be moved daily.
(5) The "common user" generators will be located at a node. That is they will be co-located with one of the demand points. This has intuitive appeal as the operators and maintenance personnel will require rations, fuel, etc.
(6) That the generator requirements shown in the unit TOE's is necessary to remain fully operational. No attempt was made to try and ascertain how much of each TO\&E was safety margin and how much was actually required.
(7) It will be aasumed that all transmission lines will run alongside existing roads. This has intuitive appeal in that existing power lines are most likely to be found along existing road networks. Also, if lines must be constructed, it would be much easier and quicker to run them along existing roads.

B. Mathematical Formulation

The mathematical formulation which comes closest to representing the Power Distribution System problem is the shortest path problem [2]. Consider a network with modes and a arcs and a cost $C_{i j}$ associated with each arc in the network. The shortest path problem is: Find the shortest (least costly) path from node 1 to node m in the network. The cost of the path is the sum of the costs on the arcs in the path.

To formulate the problem, set up a network in which we wish to send a single unit of flow from node 1 to node m at minimal cost. Thus $b_{1}=1$, $b_{m}=-1$, $b_{i}=\emptyset$ for $i \neq 1$ or m. The mathematical formulation comes from [2], page 483:

Minimize

Subject to $\sum_{j=1}^{m i m} X_{i j}-\sum_{k=1}^{m} X_{k i}=\left\{\begin{array}{r}1 \text { if } i=1 \\ \emptyset \text { if } i \neq 1 \text { or } m \\ -1 \text { if } i=m\end{array}\right.$

$$
X_{i j}=\emptyset \text { or } 1 \text { for } i, j=1,2, \ldots, m
$$

The constraints $X_{i j}=\emptyset$ or 1 indicates that each arc is either in the path or not.

In order to solve this problem, we have utilized an algorithm to find k minimum weight spanning trees for the newtork. The user determines the value of k, the number of minimum weight spanning trees he wishes to see, up to five. That is, the algorithm will select the spanning tree with the least cost, the second smallest cost, etc. until it has found the five best solutions.

A spanning tree is a nondirected tree defined as follows [6]:
(i) A connected graph of n vertices and ($n-1$) links
or (ii) A connected graph without a circuit
or (iii) A graph in which every pair of vertices is connected with one and only one elementary path.

The minimum weight or shortest spanning tree is that nondirected tree which minimizes the sum of the arcs. The shortest spanning tree of a graph has obvious applications in cases where roads (gas pipelines, electric power lines, etc.) are to be used to connect n points together in such a way so as to minimize the total length of road that has to be constructed [6, pp. 124-125].

C. The K Tree Algorithm

The algorithm implemented used the general approach suggested in Gabow's paper, "Two Algorithms for Generating Weighted Spanning Trees in Order" [24, pp. 140-147]. It utilized a three phase approach.

Step 1. The first step formed the minimum weight spanning tree by Prim's method [24, pp. 138-139]. This algorithm produces the shortest spanning tree by growing one subtree T_{S} containing more than a single vertex and considering the remaining vertices to form one subtree each. Subtree T_{S} is then grown continuously by adjoining that $\operatorname{link}\left(X_{i j}\right), X_{i} \in T_{S}, X_{j} \in T_{S}$ with the minimum cost $C_{i j}$ until ($n-1$) links are added and T_{S} becomes the required shortest spanning tree. This step is incorporated in lines 6500-6799 of Program SOLVE (Appendix C).

Step 2. Step 2 found the minimum weight exchange link subject to a set of membership constraints. A link, $X_{i j}$, not a member of spanning tree K, is eligible to enter and replace link $X_{i, k}$, an existing member of the spanning tree, provided $\operatorname{link} X_{i j}$ is not restricted from entering and link $X_{i, k}$ is not
restricted from leaving. The minimum cost replacement for all candidate entering/departing link combinations is selected. This is accomplished by lines 6800-6990 of Program SOLVE (Appendix C).

Step 3. The minimum cost new spanning tree is selected from all candidate new trees. Two disjoint sets of restrictions are generated:
(i) The parent tree has the restriction imposed that existing arc must be retained for all future candidate spanning trees generated from the parent (in additionto any previousiy imposed restrictions).
(ii) The offspring tree has the restriction imposed that the existing link may not enter any future candidate trees generated from this tree (in addition to any previously imposed restrictions on the parent tree).

This step is implemented by lines 6155-6165 of Program SOLVE (Appendix C).

CHAPTER III

THE DECISION MAKING PROCEDURE

A. Existing System

The existing decision making process for location of generators can be summarized as follows:
(1) Following established rules and regulations, the organization divisions of the directorate of Combat Developments allocates generators of various types to each unit according to their equipment requirements and power needs.
(2) Built into these figures are certain allowances for extra generators in case the primary means of power becomes nonoperational.
(3) In a field environment, as generators are lost through mechanical vailure or battlefield losses, the unit comander shifts his assets according to his own established priorities.
(4) If he should reach a point whereby he is no longer capable of accomplishing his mission, the unit commander requests additional support from his superior organization.
(5) If no additional power genration equipment is available, the unit becomes ineffective.

B. Proposed System

The Decision Support System we propose would modify this as follows:
(1) When writing the TOE's, the developers should only meet the unit's base requirements and not add all the "additional" or "safety factor" generators.
(2) In the field environment, the location of each unit requiring additional power is plotted on a scaled map no larger than eleven inches by eleven inches. This map is taped to the BITPAD, input into the computer, and stored on a disk according to the directions given by the program NTRACE. (If the network is already on disk, that disk is mounted on disk drive 非.)
(3) The decision maker knows the power requirements of each unit, the unit's priority and through some means of reporting such as readiness reports, he knows how many generators are down. He also knows how much "common user" capability is available to supply those units which are in need.
(4) If the supply cannot meet the demand, he must reduce or eliminate units according to his priorities until such time as the demand can be met.
(5) Once he has decermined that his supply is adequate to meet his demand, he utilizes the program SOLVE to produce up to the five best possible routes to take to supply the needed power.
(6) Here is where the decision maker interacts with the computed solutions. He can take the five (or however many he requested) best solutions and lay them out on his map to select the best solution. The human is capable of looking at the terrain, obstacles, the present tactical situation, anticipated actions, etc., and taking this knowledge into account, select the best solution.
(7) Onec the decision has been made, the units are connected to the "common" source and the system is monitored and changes are made as needed by following the same procedure.
(8) The user also selects the best location for the power plant(s). Again, utilizing the map and his knowledge of the units located at each point, he is able to select that unit which is best able to support the power plant and co-locates his teams with them. Due to the nature of power distribution this can be any of the points in the network. It does not have to be at the
median or center. Again, here is where the interaction between the user and the computer becomes valuable. Figure 2 depicts a flowchart of user actions.

Figure 2. Flowchart of User Actions

IMPLEMENTATION AND DOCUMENTATION

A. Instrumentation and Equipment

The primary item of equipment utilized in this model is the Chromatics color graphics minicomputer [32]. It is a wholly self-contained, high resolution (512 by 512 dot matrix) color graphics teminal with an integral $Z-80$ microprocessor, attached floppy disk drives and 64 k bytes of random access memory. It's high resolution screen provides a choice of from one to eight colors and automatically generates geometric figures as well as graphs and bar charts.

As an additional feature, the terminal is equipped with a light pen. This is a device which is capable of detecting light on the screen and relaying a signal back to the terminal. This signal is then used to pinpoint the location of the light pen relative to the screen. This is the primary device for controlling program execution.

A digitizer pad is utilized to input the nodes and arcs into the computer while displaying a visual representation of the network on the screen. This accessory to the terminal converts graphic information into a digital form suitable for use by the $Z-80$ microprocessor. It is operated by positioning the crosshairs or touching a stylus to any position on map which is affixed to the pad's surface. The x, y coordinates of that position are then transformed into their digital equivalents and transmitted to the terminal for processing.

B. Implementation and Documentation

All programming was accomplished using Chromatics Basic Language [7]. The primary blocks are: (i) map data input, (ii) menu selection control, (iii) general purpose data input, (iv) data manipulation, (v) computations execution and (vi) display of the results.

The program NTRACE is a modification of Monte Anderson's [1] program which he used for his thesis work. It is used primarily to trace in the networks and control the switching to the program SOLVE. The similarity between this model and the Water Point Model created by Cpt. Anderson constitutes the beginnings of a library of decision support systems which could be available to a Division Engineer to improve his support and assessment capabilities. NTRACE provides light pen selection of menu items to add nodes or arcs, stop program execution, save data, restart, or solve the problem which has been input into the system. A selection of menu items COMPUTE FLOW or DISPLAY ANALYSIS while under the control of program NTRACE results in all accumulated data being saved on disk automatically and program SOLVE being retrieved from the disk and execution initiated.

Program solve performs all calculations and controls the display of the results. The results of the calculations are not saved on the disk. Both programs were designed to be as user friendly as possible. The procedure for tracing a network is accompanied by detailed instructios to provide a step-by-step routine. The intent is to make it possible to operate the entire program with no background as to what the correct solution procedure should be. For further documentation of the program NTRACE, see Monte Anderson's Master's Thesis [1].

The program SOLVE is even easier to use than NTRACE. SOLVE first explains to the user that it can handle up to sixty nodes and asks the user to type in the number of nodes in his network. This accomplished, it then explains that no node can have more than twenty arcs incident to that node and prompts the user to input the maximum number of arcs incident to any node in the networks. Next, SOLVE explains that the maximum number of ares that memory will allow is 1200 and asks the user to input the total number of arcs in the network.

SOLVE now has all the data necessary to begin to solve the k minimum weight spanning tree problem. Finally, it asks the user how many trees he would
like to see (5 or less). Once this value is input, the problem is solved for the stated number of minimum weight trees as explained in Chapter II and the results are displayed in tabluar form.

CHAPTER V

TEST PROBLEM AND RESULTS

A. Test Problem

In order to demonstrate the procedure, consider the network shown in Figure 3. It depicts the locations of eight units requiring addition power and the road network which connects them. It has been entered on the BITPAD using the program NTRACE.

The corresponding costs associated with the twelve arcs are shown in Table 1. The proper procedure for inputing this network is first to input the

Arc	Starting-Ending Node	Costs
1	$1-2$	4
2	$1-3$	6
3	$1-4$	3
4	$2-4$	2
5	$4-5$	5
6	$3-5$	2
7	$4-6$	5
8	$2-6$	4
9	$5-8$	6
10	$4-8$	6
11	$7-8$	3
12	$6-7$	2

Table 1. Arcs With Associated Costs
eight nodes in order. Each time the blue button is depressed, it will increment the node counter by one. Then, beginning with node number 1 , input arc number 1 by touching the cursor to node one, depressing the green button and tracing the road to node number 2. The computer will automatically record the arc number, the beginning and ending nodes, and will computer the cost (distance) of the arc traced. The entire network was input in this manner an is now ready to be solved by switching control to program SOLVE.

Figure 3. Test Network

B. Results

The test problem was solved for the five best minimum weight spanning trees and the results as they actually appeared on the cathode ray tube of the chromatics colorgraphics terminal are shown in Tables 2 and 3 . At this point the decision maker has all the necessary information to make his selection of the best possible location(s) for his "common user" generators. He takes the five best solutions and plots them on his map. Then, utilizing his knowledge of the situation as well as the previously discussed variables, he selects his site. The five best possibie solutions for the test problem are shown as Figures 4 through 8.

SP ARC	Nooxer	Foorer	cost	ARC:
$\begin{aligned} & \frac{1}{2} \\ & 3 \\ & 6 \\ & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & 1 \\ & \frac{1}{3} \\ & \frac{3}{2} \\ & 6 \end{aligned}$	$\begin{aligned} & 2 \\ & \frac{4}{5} \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 2 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 5 \\ & 6 \\ & 6 \\ & 12 \\ & 12 \end{aligned}$
	" \because	+itat m:	22	

SP ARC	NODE\% 1	NODE\%2	cost	ARC *
$\begin{aligned} & 1 \\ & \frac{2}{3} \\ & 4 \\ & \frac{6}{6} \\ & \stackrel{3}{2} \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 2 \\ & 7 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \\ & 4 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 6 \\ & 3 \\ & 2 \\ & 2 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & \frac{2}{3} \\ & 4 \\ & 6 \\ & 8 \\ & 11 \\ & 12 \end{aligned}$
22				

Table 2. Test Results for $k=1,2,3$.

Table 3. Test results for $k=4,5$.

Figure 4. Resulting Network for $k=1$.

Figure 5. Resulting Network for $k=2$.

Figure 6. Resulting Network for $k=3$.

Figure 7. Resulting Network for $k=4$.

Figure 8. Resulting Network for $k=5$.

A. Conclusions

We realize that this is quite a departure from conventional thinking as far as power distribution systems are concerned. As this concept is delved into further, it may result in the conclusion that this is impractical and inveasible in a constantly moving tactical environment, particularly the closer the units are to the front. However, it should be noted that the idea of "common users" of generators and "power plant teams" is not new in a non-tactical situation.

The Corps of Engineers has both power plant operation and maintenance, and power line teams. These are depicted in Appendices $D-1$ and $D-2$. Their concept and mission would be particularly suited to the decision support system described here.

Although this system was originally designed with Division 86 units and their requirements in mind, it is easily extrapolated to Corps and Theater Army levels with only minimal effort. Possibly once you get as high as theater level, you may exceed the memory capability of the $Z-80$ microprocessor. There are processors available with greater memory capabiliteis and so this thinking need not be limited by the computer hardware.

Another application of this system would be with the concept of cellular division and corps headquarters. The thought here is that a division headquarters would occupy an area roughly 10 kilometers square (Corps, 15 kilometers). Within this area the various headquarters elements, although dispersed, could be connected by transmission lines to a common source of power. The optimum location of the power plant(s) could easily be determined by our decision support system.

Another concept which the Corps of Engineers is researching is that of power conditioners. As mentioned earlier, there are numerous different sizes, voltages and cycles of power generation equipment in a given unit. When an item requires, say 6 kilowatts to operate, it must use a 10 kilowatt generator (the next larger size). When you multiply this by the number of that piece of equipment in the unit, the excess power becomes even larger. Now expand that over all other items and you'11 find there exists a significant overkill.

A power conditioner is a "black box" which can convert cycles, voltages, etc. so that a common source of power can drive any of the diverse systems and thereby reduce the numbers of generator, operator, repair parts, and overall cost to the systen. Here again would be an excellent situation where our decision support systen could be utilized.

These are but a few possible applications of our system. The possibilities are many and varied.

B. Recommendations

(1) We recommend that this area be further explored to determine possible expanded applications of the process considered here. Military pipeline systems would be readily adaptable to such a decision system.
(2) Time and manpower precluded making this system any more sophisticated than presented here but there are several improvements which could be made to increase it's value.
(a) The minimum operating power requirements for each unit could be stored in computer memory. The user could take readiness and casualty/damage reports and constantly monitor each unit's present status. Thus shortages would be detected sooner to reduce system down time.
(b) Voltage losses through transmission lines could be calculated by inputing formulas to account for drops due to distances and wire sizes.
(c) Priority for each unit could be stored in computer memory thus eliminating the need for the user to manually monitor these.

APPEDDIX A

GENERATOR REQUIREIENTS FOR
DIVISION 86 UNITS

Appendix $\mathrm{A}-2$
Unit Generator Requirements

	. 5	1.5	3	5	10	15	30	45	60	100	TOTAL
1/1 Armor		3	1								7.5
2/1 Armor		3	1								7.5
3/1 Mech		8									12.0
1/2 Armor		3	1								7.5
2/2 Armor		3	1								7.5
3/2 Mech		8									12.0
1/3 Armor		3	1								7.5
2/3 Armor		3	1								7.5
3/3 Mech		8									12.0
4/3 Mech		8									12.0
Engr. Bn		13	16								64.5
Mil Intel Bn		5		41	12	1					347.5
Signal Bn		8	136	82	7						900.0
MP Company		3									4.5
NBC Company		5									7.5
HHC lst Bde		4	2	4							32.0
HHC 2nd Bde		4	2	4							32.0
HHC 3rd Bde		4	2	4							32.0
ADA Bn		50	1								78.0
HHB, Divarty		6		24	3						159.0
TGT Aqn Bty		3									4.5
1st $\mathrm{Bn}, 155 \mathrm{~mm}$		12	1	4							41.0
2nd $\mathrm{Bn}, 155 \mathrm{~mm}$		12	1	4							41.0
3 rd Bn , 155 mm		12	1	4							41.0
8 inch Bn		8									32.0
HHT, ACAB		7		6							40.5
SBT SPT AVN BN	1	28	11	7	2				3		310.5
CAV. SQDN.	1	6		2							19.0
1st Atk Bn		6		4	2						49.0
2nd Atk Bn		6		4	2						49.0
HHC STP CMD						4				2	260.0
DMMC, SPT CMD				3		7					120.0
AG Co.		2	1			3					51.0
MED Bn.		3	1		7						77.5
Maint Bn		22	12	8	19	2	3	9	1		884.0
$\mathrm{S} \& \mathrm{~T} \mathrm{Bn}$		3	1	6	5						87.5
Ist Bde Spt Bn		16		7	18	4	1				329.0
2nd Bde Spt Bn		16		7	18	4	1				329.0
3rd Bde Spt Bn		18		7	19	4	1				342.0
HHC, Dvy Div.		2	1	4		4					86.0
	1	334	195	240	114	33	6	9	4		4943.5

TOTAL NUMBER $60 \mathrm{HZ}, 120 \mathrm{~V}$ Generators $=938$

APPENDIX B

PROGRAM NTRACE


```
->H PRGTOT'GPE EECISIGN SUPPGRT SYSTEI FGR WHREHGUSE LOCATION ON A ROAD NETWORK.
#FUR IULUMENTमTIUN SEE MHSTERS THESIS BY MONTY J. FNDERSÖN, CPT, USA
*GEORGIA IMSTITUTE OF TEGH.: PPGF LONOINAN YOUNG, EHAIRIAAN
*HODIFIED EY' LPT POGEERT L. EM'\IS': HPRIL 15Sz
#r*******
HT=0:TF=0.
```



```
PRINTH4;"H"
IF B1 HND BZ THEM EI#G;BE#S:GOSUB GG巨:GOTD 4JOD CHANGE SUPPLY/DEMAND IF CHAINED FROM EOMPUTE
IF BI THEM GOSUB EEO:GOTO 4GED
IF EE THEN GOSUB EED:GOTO 471O
CLEAP:DEFINT ArI:J,N,G,S,Z
```



```
IEO PRINT"ENTER PRUBLEM NAME"
\@ LINE INPUT"ifor E|&N Storame or Data): *CS";A$
44O IF LENIN&;OU THEN 100
'REPRDMPT IF NULLL ENTRY
EIM NNSこ口;
genEral purpose storage afraay
```



```
17O ANN(1),NN(4),NN(2),NN(S;ELOWER LEFT AND UPPER PIGHT M&Y BITPAD SCALING POINT COORD RESPECTIUELY
1GU 'NN(3),NN(G)=COMPUTED S¿Y GCHLING EGNETANTS FPOM ABOUE VALUES
S.J 'NNG7;,NN:B;=# OF SGURLES AND SINKS IN PROBLEM;NN(E),NN(IO),NN(1#) =CONGTANT UALUESFROM SUBROUTINE ZGOO
152 DIM HLC100;,A2(100), DEG:60),NARCiGO,20),E(100)
O0 DIM DX(1,1),NX(1),NY(1),NS(1),NT(1),AL(1)
2lÜ DIM SR!1;,5%i1j,ISi1j,G!1;
20 [IM 5Ji1;,5Pi1;,N1;1;,IE:1,1)
```



```
40 EIM NPili,Aiti,Mil;
250' PRINT CHR*!12;;
ZGण PRIMT"IS THENE UMTH PRESENTLY STGREN UNDER NAME:
```

＇DIM ARRAYS FOR NETWORK DATA
＇ARRAYS FQR SUPPLY／DEMAND
＇ARAAYS FOR SHORTEST PATH
＇ARRAYS FOR SHORTEST PATH
＇ARRAY＇S FOR TRANSP ALGORITHM
ARRAYG FOR GRAPHING

CHANGE SUPPLY／DEMAND IF CHAINED FROM EOAPUTE MINOR RESTART IF CHAINED FROM COMPUTE ＇MAJOR RESTART IF CHAINED FROM COMPLJTE
＇INITIALIZE VARIABLEG IF NDT CHAINED FROM COMPUTE

```
                                    "C4";A*
PRIMT IS THEPE UMTH PRESENTLY STGRED UNLER NAME:
7% LINE INPUT"NEE
                ar NO=N NCS";Z*
```



```
    PRIMT" FOLLOW TRACING INETRUCTIONE"
    PRIMT C゙HR*!1Gj;"~CILO YGU WANT INSTRUCTIUNS: "CE*IYES=Y OR ND*N~2NCI~J ";
```



```
    PRINT"YOU SHUULLE NOW PPEPAPE TO ENTER THE LESIRED NETWORK.";
    PRINT"THE HREM UN THE MHP OF CONLERN MUST BE ND MORE THAN 1O INCHES BY 1O ";
    PRIMT"INEHES. EENTEP THE IDENTIFIED MREN GN THE BITPAD AND SECURE IT IN PLACE ";
    PFIMT"WITH THPE. IEENTIF'Y H POINT IN EOTH THE LOWER LEFT 'CORNER AND UPPER *P
    PFIMT"FIGHT CGRNER THHT IS NO MGRE THAN 1/4 INCH GUTGIUE BOTH THE X AND Y AXIS N:
    PRINT"BUUMDRIES DF THE IDENTIFIED AREA. "
```



```
    PRIMT"YGU TO ECALE THE SIZE GF THE IDENTIFIED ";
    PRINT"HREN TO THE FULL SIEE OF THE SCREEN."
```



```
    PRINT "TUUCH LGWER LEFT SCALE PGINT WITH ETYLLG OR DEPRESG ANY EUTTON ON THE CUREOR"
    PFINT "\dot{HFTER IT IG CEMTERED ON THE SCHLE PGINT. LISTEN FOR R BELLL. UOUIZS5~CG"}
SU PRINT IF YGU LG NOT HETAR मे BELL THEN YOU ARE GUTSIEE GF THE SENSITIUE AREA H
5ZÜ PEINT "GM THE EITPHD. DECRENEE THE SIZE UF THE MREA TU BE TRACED."
```



```
SG% PRINT "TÜULH UPPER RIGHT SLHLE POINT WITH STYLUS OR DEPRESE ANY BUTTON ON THE CURSOR"
=GO PPINT "MFTER iT IS CEMTEPED UN THE SCHLE PGINT. LISTEN FGR A BELL.*UOO1255~CG"
```



```
EEOG PRİivT "THE BITPAD. DEENEASE THE SIEE UF THE HREH TG EE TRACEN.";
```



```
G4U PRINT "LOCHTIONS OF "EG HLL~L4 PGHD INTERSECTIONS~CG AND PDAD END PGRNTS~E4 THAT EITHER: U
GSÖ PRIMT CHP#&15;:"1; LEAUE THE ENGE OF THE TPEA THATT WAS SCMLEE EARLIER."
56ü PRINT EHP#(1Dj:"Z) TEPMIMHTE NT HNY POINT INSIDE OF THE SCALED ANEA.*
G7U PRIMT UHP#\IO;;"TG EESIGNHTE N POINT AS A NONE TGU NEED ONLY";
GEU RPINT "POSITIGN THE EUPSOR UUER IT NND PRESS THE ~CIBLUE~C4 DUTTON. .:
GGU PRINT "A BELL HILL SGUND INDICHTING THAT THE NGLE WAS ACCEPTED AND ANCI ELUE"G4 M:
TUU' PRIMT "CIPGLE WILL mPPEAR UIY THE SCREEN. "GGTBKE GARE TO ENTER AS MANY NODEG ":
7UO PRINT "HS TOU LHM IDENTIF'. HLL EONNELTING RCINDS ":
7EO PRINT "MUST STHRT HNL END AT A NOLE."
7G% LINE INPUT"*CE*NOG~YOSJHIT RETUPN TO CONTINLJE.":ZB'PLAIN WAIT FOR CARIRIAGE RETURN
39 &- LONTINLE: GZ PLAIN WAIT FOR CARIRIAGE RETURN
74% HTm5:GGSUB EEO:GOTO 41口O
'SRANCH TO DIGITIZER ROLITIME
G40゙ inntPTHIS SUBPUUTINE PRINTS THE MENU AND SETG INITINL WINDOH CONDATICHG
9SO PRINT "*=";CHR$(12);
EG; PRINT CHR*i27;;"ON1~anW3以O,1005110.~R"G5";CHR&(12):
```



```
BU PRINT N*25,50,10,07550,10,12550,10.17550,10,";
E50 PRINT "EこE50.10, 二т5%0.10, ~L":CHR*iz1;;
```



```
910 PRINT "~UOS40GOSTOP OR~UOG10305AVE"UOE102ODATA";
```



```
930 PRINT "~U15408GOCOMPUTE~U163030FLOW";
```



```
E5 PAINT "NUZE4DEOPESTHRT":
GGU RETURN
GG5 '*
UUOO ;*+irTHIS i5 THE INFINATE LGOP SECTION TO WAIT FOR A LIGHT PEN HIT
```



```
1030 PRINT CHR&(10);CHR&(27);"OAONK";
lM4"j GOTG 104%
1058 **
110S ,H->THIS SECTION CONTROLS THE INPUT GIGNAL FROM THE 4 BUTTON CURSOR WITH DIGITIZER PAD
\luO TR=1:ON ERPOR#2 GOTO EODO:OUT&HEO.O
120 PRINTH4;"J":PRINT CHR&(2T);"OHO":
'SET BITPAD A 10 COORD/SEC
1\perp3Ö :RECEJVE CGLRD PLUS FLAG FROM BITPAD: IGNOR IF FE IS NOT "4" OR "g" FOR BLUE AND GREEN EUTTON RESPECTIUELY
144" IMPUT#4;%,'i,F%:IF Fw="4" OR F*="g" THEN 1159 ELSE 1140
```



```
116U : <P=FMPKiXi:OP=FNPY:Y;
1+70 iF &P<4 GP YP<Q UP NP>E11 OR YP>E11 THEN 1141
11B0' IF F%="4" THEM GOSUB 1450
190 IF F%=":" THEM EGSUB 1EDO
\0G LIGTO 114%
j已与s %
```



```
141% SHas:GUSUB 1EOO:IF SH<\OS TMEN 144U
```



```
+\mp@code{4゙う FETUF!%}
1445 Fe
<455 =
```



```
T520 5h=25:GOsub,1600
fimd distance to elosest node
```



```
1540 FPINT "~1~K'NF"CZ~Lip"
```



```
i560 PEEMT "~~~L!"::PLUT NK!CL;,NTICL;
1570 PLUT \F,OP:NO=AP:`D=%P:S=CL
158प iMPUT#4;&:I,F#
SGO XPIFNPK!X,:YP口FNPYCY
```



```
16:O IF DF:100 THEN 1580
1GZO PLUT \PP,GP
16=0 IF FW`>"G" THEN 1660
15+0 AO=xP:YO=%P:SU=SU+DI
1650 जUTO 1"&%
150% SH=2区:GOSUE 150%
1505 IF SH=25 THEN GOSUE 1490:SH=0:CL=NN(O)
1680 SUx&U+SH;PLOT NKIEL;N'NYICL;
```



```
1700 PRINT"~L":CHRs(21);
1702 L=L+1:AN=L:MNKZ1;E
17%4 H1!L;=S:mz!L;=EL:C!L;=SU
17:0 च%:S.CL;=5U:E:%CL.S;=SU:SU=0
&7i2 FüP 」\=1 TG NN!16;
1714 iF JZ.S THEN 171E ELSE 1716
```



```
171日 ír s2=CL TпEM 1719 EL5E 1720
```



```
iTZO NE:NTJZ
ITEZ PETURIT
175s '*
180: ,mothths subroutine finde the clogest node to the light pen hit
i810 FGP f=1 TO NM(心)
```



```
15EO
F Ï<<H THEN Sh=II:Claj
1940 NEKT
1840 NENT
1850 RET
150% inmirthis subroutine plots the nule number and a circle at the nodes coord
1910 PRINT "~U"::PLOT NSSEL;rNY:CL;
i5EO FRIMT CHPWIZ1;:
1950 if El<IG THEN PPINT USING "*";CL; ELSE PRINT USING "**";CL;
```



```
1GES RETUPM
15SS <-%
EugO 'mmTHIS SECTIGM LGMTPGLS THE BRANLHING TO THE APPROPRIATE SECTION AFTER A light PEM HIT
zrug iF EPr=24 THEiv zodG ELSE ON ERROP#!) GOTG i
```



```
'IGNOR All light pEN HITS
-recieive ligitt pen hit coord
IF HTK\I THEN BRANCH TO APPROPRIATE SECTION
GEAREH THROUGH MENU FOR CLOSEST POINT
```



```
zOEG OUT&HEO&G:FEGUME NOCO
2,gs -*
```



```
20}\mathrm{ PRINT"~LETHE MONIMUM NHMEER UF NOLES MEMORY WILL HLLOW 1S 60."
Z130 PRINT"~EGTHE MMIXIMLIM NHHEER UF NOLES MEMORY WILL ALLOW IS 60.:", INPUT MA
```



```
Z2GU RETURM
OSS **
Zכうり f4rirTHIS SUBROUTINE ALLOWS FOR THE MANUAL CHANGING OF A GPECIFIC ARC LENGTH
Z310 PRIMT LHR`(12);"~2";
```



```
Z34U Sa3:IMPUT"~CTENTER THE GTHRT NGLE #"C5":S:PRINT
¿350 T=0:IMPUT" ~C7ENTER THE FINISH NOLEE #NCE":T
```



```
ZG: PPINT"~LGENTER THE NEW LISTHNCE."
ESS% INPUT"~CTH Carriage peturn HLGNE RESULTS IM NO EHANGE. *1"CS";0%(S,T)
<4ÜO゙ NNNI1J)*O
く4おら GUTO zぶり
て山己゙う RETURN
2455 &
```



```
Z5&U PRIMT "Thi5 IS THE FILEE SH゙呧 ROUTINE,":PRINT
```



```
<54% PRI
¿EEj 4-%मTHIS EURSECT\UM SHVES DHTH WITHOUT PROMPTING THE USER
S5GO IF NN(7; THEN 2"T0 ELSE 20E0
```



```
Z580 IF MNIE; THEN ZS50 ELSE EGDD
```



```
2600 IF MN(7; LIR NN(E) THEN DOS"ARYSAUE "+AG+"Q G"
2515 fN!1G;:MN:DOS"HRYSNUE "+AG+"NN NN"
ZF2O PETURN
26Sg '*
エMツ! 4+->+rTHIS SUBROUTINE RETRIEVES PREUIDUSLY SAUED DATA
Z/10 PRINTM~=~K";CHRF!12;;
```



```
2740 ERASE NY:DIM NY(MA):DOS "ARYLOAD "+A$+"NY NY"
```



```
E:G0 PRINT"~CG";:FGR I=1 TO NN:T;:CL=SR:I):GOSUB 1GOD:NEXT
-7% iF M(川!&) THEN ERNSE SK:EIM SK(NN(日)+1):DOS"ARYLOAD "+A$+"SK SK" ELSE 27日0
ZGO PRINT"~C1"::FOR J=1 TO NNiEj:LL=SKiJ):GOSUB 1GOD:NEXT
Z790 ERASE Q:DIM EIMA;
ZROM IF NN:T; GR NNIG; THEN LOS"HRYLOAD "+AS+"G G*
za10 PRINT CHR&(21);
2820 HT=1:RETURM
2895 *ir
LMO :&&&HIS SUBRGUTIINE EGMPUTES THE LINKLIST DATA ARRAYS FROM THE D(I,J) MATRIX
```



```
HUUS EPHSE NSRMI;HL:LIM MSIMM+1);NT
H1E PRINT "NGW GOMPUTING LINKLIST LHTA HRRNYS FOR PROBLEM: U;AE
```



```
4025 FOR I=1 TO N:FOR J=1 TG N
```



```
4O35 NEXT J:NS(I+1)*A:NEXT I
4040 PRINT LHRO:12;;CHR5\7);"PROBLEM ";A5;" HAG";NSiN+1);"ARCS."
4045 PRINT"~XZ, "Y2, ~CGNOW SAVING LMTA"父1, ~Y1,";
4US0 चLS"APYSAUE "+A#+"D D%":DOS"ARYSAVE "+AS+"NS NS"
40S5 LGS"HPYSAUE "+AF+"NT NT":DDS"NEYSAUE "+A$+"AL AL"
405E DOS"ARYSAUE "+RЭ+"H1 H1":DOS"ARYSAME "+A#+"HZ AL2"
4UET LGS"HRYSMUE "+H゙क+"NARC NARC":DOS"ARYSAVE "+A"+"DEG DEG"
```

```
4U5B EGS"HRYSAUE "+A##"C C"
40G0 PETUPM
4059 :-
4ON ; irrotHIS SECTION CONTRQLS THE MENU SELECTION FOR THE BITPAD DATA INPUT
```



```
4110 DEF FNPGY'Y;=FIXi\Y-NN(4;i/NN(E)+.5)+100
4115 N=NN:O;
```



```
4140ं GOSUB Eこ心寻:PRINT EHP*i12;;
```



```
H15E HTェG:PRINT CHP%(12;;"NCZDIGITIZER ACTIUATED"K";CHR*(7);
```



```
317E ESS"HFOSAVE "+HS+"NA NA:":ELS"ARYSAUE "+A$+"NY NY"
4180 GOSUB BGO:GOSUB 小ら@心:PPINT CHPs,12;;
```



```
4.9G ?%
AEM, &,HTHIS EELTIUN LGMTAGLS THE MENU SELEGTION FOR THE STOPPING GF PROLIRAM EXECUTION
4210 PPINT EHRE(2%);"ON1NK":CHRS(12);
```



```
4230 OUT&HEO,U:RESUME JOZO
4299 '*
```



```
4329 PRINT CHR*(12);"~NZ,~Y2, ~CGSAUING DATA~X1,~Y1,~K":GDGUB 2550
4330 PRINT LHR#\12;;"~K~CE~1HLL. DATH HAS NOW EEEN ENTERED. ~Z~C7"
4340 HT=1:IF TR THEN OUT&HG0.0:REGUME 1020 ELSE TR=1:GITOO 10.00
4595 '*
44G +~++THI5 SECTION LONTPOLS THE MENU GELECTION FOR THE CALCULATION OF FLOW
```



```
4420' PRIAT"~NE, "Yב, ~CZPLEASE WAIT*A1, ~YI,";
4440 IF NN(B) THEN 447%
4.45.) PRINT EHR#!12;;"~LTYGU LAN NOT COMPUTE FLOW UNTIL THE NODES HAVE BEEN DESIGNATED. YOU"
4455 PRIMT"MUST ~CECHNNEE EUPPL`TILEMAND~C7 FIRST."
4450 LOTO 4450
4.470 UUT &HGら,0:RESUME 44EO
4.780 EUS"CHMIN COMPUTE"
4480 DUT&HEO,O:REEUME 10ZO
448日 '*
HGO *+~THIS SECTION LONTROLS THE MENU SELECTION FOR THE DISPLAY OF ANALYEIS
```



```
45z0 IF NN(7) AND NN(8) THEN 45E!
45J9 PRINT"*CGYOU EAN NOT EIGPLAY AN HNALYSIS UNTIL THE SUPPLY/DEMAND HAG BEEN ENTERED."
4540 PPIMT"YOU MUST "C\XiCHANGE SUPPLY/DEMANL~CE FIRGT."
4550) GUTO 4%EO
4560 OUT AHSO,0:RESUME 4570
4570 DOS"CHAIN EGMPUTE*
4ESO OUTAHEO,O:RESUME 102O
4599 %
4Gy0 '*** THIS SEETIGN CONTROLS THE MENU GELECTION FOR THE RESTART FUNCTION
4G1) PRINT CHR*(z7);"OM1";CHR&(12);
4EZO PRINT"~C7#~CSI~C7%'MCGCOMPLETE RESTART~C7..."
4G30 PRINT"~C7*~CE2~C7m. "CGMAJOR PESTART"C7."."
4G40 PRINT" ~C7"~C53~C7%", ~CGMINOR RESTART*C7.","
4550) PRINT"~C7"~CS4*C7="*GERETUPN TO MENU CONTROL"C7.'*"
4G60 INPUT"~CS"1ENTER~2*C7 YGUR SELECTION"CE*j";z:PRINT CHR&(12);
```

4670 IF Z゙1 OR こ．3 THEN 4880
4680 ON 2 LOTO 4690，4719，4550
4EGO PRINT CHRFilZj；＂＂CTH～C4CUMPLETE PESTART～C7 REGUIRES A NEW ROAD NETWORK BE～CGENTERED～C7．＂

4700 GOSUB z巳SO：PRINT＂～＂；CHR＊i12）；CHRS（27）；＂E＂

4970 GUSUB E60：PRINT CHR૬（27）；＂OA1＂：CHRf（12）；

APPENDIX C

PROGRAM SOLVE


```
* LIPMPHIC SOLUTION5"
*FOR LULUMENTMTION SEE EPECIAL PRGJECT BY' LPT ROBERT L. DAUIS
*GEORGiA INSTITUTE UF TECHNOLGG'G.FPRIL 19E2. UR L.G. CALLAHAN - ADUISOR
```



```
**
```



```
ЈIM NN(S̃%; \dot{Sil0,100;,IN(10,100;,OU(10,100),5ET(5,GO)}
```



```
PRIMT CHR*(L\Sigma);"~NZ, ~YZ, CG"G5";
PRINT"ENTER PRGBLEM NḦHE"
LIINE INPUT H~CO
IF iEN(H゙क; = & THEN E
PRINT"*Uうツもご5"
PRINT"~ETHE MȦxITUM NUMBER GF NODES NEMORY WILL HLLDW IG EO"
\betaFINT"~EこHGW MAN'r NGLES WILL BE IN PRGBLEN~C4 ";A&;"~CJJNJ::MA=O:INPUT MA
```



```
PRINT"~CE THE LIMIT GF THE NUMBER UF HRCE INCIIENT TO UNE NODE IS 20"
```



```
IF HE<'1 GR ME>E゙J THEN 4E ELSE NNIIEj=MB:PRINT"*UOOOZ56"
```



```
RIN
*** THIS SECTION REIRIEMES THE NETWGRK AND DATA
PRINT"~=~K";CHR&(12):
#DS"REFRESH "+A゙#:DOS"ARYLDHD "+A$+"NN NN":KY=NN(13)
DIM NX(MM;:DOS"ARYLDAD "+As+"NX Nr""
IOG LIM A1,MC+1;,मि\MMC+1;:DOS"ARYLOAD "+A#+"A1 A1":DOS"ARYLOAD "+A"+"AZ A2"
1;E LIM EEGiMB+1;,NHRCi(MA+1;, (MB+1; )
10 LGS"ARYLOMD "+H゙D +"LEG LEG":DOS"ARYLOAD "+A$+"NARC NARC"
LS DIH4C(MC+1):EGS"ARYLOAD "+A&+"C L"
S GGSUB GUツ!
150 ENL
5155:
EUSO &ir&THIS SUBROUTINE SOLUES THE K MINIMUM WEIGHT SPANNING TREES
GuO1
G0゙ひ
もうごす
    * ( )
\\U\mp@code{UNTHBLES}
```



```
GツJa A1iJj= NODE L GF HRC,
ETE ME!J;=NOEE Z UF MRC
EjこE C!J;= EOST UF HPC J
Eij& INNIK,J; 1 IF HRE J MUST BE H MEMBER GF THE KTH TREE: O OTHERWISE
```



```
GU4A SETiF,i;z 1 IF MGEE I iS CUNNELTED TG THE K:TH TREE; O OTHERWISE
GO4G 'EEGiI;= DEGREE OF NGLE I
EM4G :MARRGIfJjm EESIGNHTIGN GF THE JTH ARC CONNECTING NODE I
GOSO NO NUMBER GF ivOLES
EONZ M= NUMBER OF HRCSS
Erus, KK= MTH TREE
ESEG '&TH= THE HIEHEST NUMBEF KTH TREE
GO5B KMAXi= NUMBER DF MINIMUM WEIGHT TREES DESIRED
EGE"j 'LEiK;= MINIMUM wEIGHT PEPLHLEMENT FOR THE KTH TREE
G&GE BRIH; E EST INLOMING PEPLAEEMENT FUR THE KTH TREE
\XiणGA BO(K;= SEST GUTGGING REPLAGEMENT FDR THE KTH TREE
G:UGG:*
```

```
6057 
Eいだ吅
E;TG M=NN(Z1;:M=NN!1E;
E以TZ PRINT CHR&!1Z;
G%Ts PPIMT" ~GGHOW MAINY MINIMUM WEIGHT TREEG WGULD YGU LIKE TD 5EEP iS OR LESS)"::MD=O:INPUT MD
GU日O IF ML`iL GR ML'S THEN GOTV ELSE \tilde{MMME}
Gids FOR K=1 TO N'M
```



```
EIES NEAT I
EIES NETT F
```



```
G237 IF KM=1 THEN ES90 ELSE GOSUB GE@)
Eil! MI=SGE
E14F FGR I*I TO HTH
E1g% IF GE\I;<MI THEN MI*CD\IJ:TEHP=I;NEXT
G.5S KTH=NTH+1
G1G0 FGP J=1 TO M:INiKTH,Jj=INiTEMP,J;:OUiNTH,J)=OL(TEHP,J):AS(KTH,J)=AS(TEMP,J):NEXT
```



```
G170 POIMTV~LZ THE KTH MINIMUM WEIGHT SPHNHINLI TREE FGR K= MKTH
Gl75 PRINT" --m,
EIEG PRIMT"
```



```
E1G
E-% IxG:EO=!
E二心 I=&:CO=!
E210 FGR I=1 TO M
E2I=IF HSiHTH_Jj=1 THEN I=I+I:CO=CO+C(J) ELSE E225
```



```
6225 NENT J
EZ50 PRINT"*C4 THE COST OF THIS SPANNING TREE IE *CI";CD
G235 IF KTH=KM THEN EZ4%
E\SG K:TEMP:GUSUB 6E%0
ESSG K.*TEMP:GUSUB GEGO
EZ42 GOTO E145
EZみ5 PRINT"SUMMARY"
E450 PETURN
E458:"*
ESG! 'THIS SUESECTION SQLUES THE MINIMUM WEIGHT GPANNING TREE
5501
```



```
E=むら 的T!M.!I`m
E؟こう NENT I
EEE= HR=|:FGP J=1 TO M
6534 AS(K,j)=0
GSJG NENT J
E54G EETiKr1;=1
EC凹% EM=59S
EGED NE:MARC=D:FOR I=I TO N
EGTG IF SETiK.,I;=1 THEN G5BO ELSE 6640
G580 FOR IL=1 TO UEG(I)
E5G19 SPT=5PT+1:F゙=NHRC:I,IL;
EGOG IF !GETiN:HI!A;j+SET(K.,AE!A;)I=1 THEN 5PT=SPT+1 ELGE EG30
GG10 IF E{H}CGM THEN CMmEIA;:NENARC#A ELSE G63D
6GZO IF CM=1 THEN GOTD G650
GG30 NE:CT IL
EにN: NECT i
```



```
G570 IF H|{!口uIIE;-1; THEM GEEM ELSE PRINT EHRS\1z);
```



```
SJJO PRINT
```



```
E770 ME:ST \
EGEG PEIMT"~E&THE EGST OF THE SPANNING TREE IS ~CI":CO
5750 RETURN
6799 %
EE\oint@ :THIS SUESECTIGN GGMPUTES THE BEST ARC ENCHANGE
G001
EEO% MW=gSS
ESIG FGR dx| TO M
```



```
GEz.) FGR I=1 TO N: FPM(I)=,\NEXT
6825 H1=H1(J):H2*H2(J):FRM(H2)=H1
G83Ö FGP I=1 TO N
```



```
EG40 FGP L*I TO LEEG(I): ARE=NHPC:I,L)
ES45 IF HSiK.MRC;=1 THEN E848 EL5E G875
GS4日 IF FRM(Al(ARC))>0 THEN IF FRM(AZ:ARC))>O THEN 6日75
E:5S IF HI (ARCI=I THEN EGWN ELSE GBGO
G855 MEAS=MEAS+2:FRM(AZ(ARC))=I: GOTO E655
E:EO MEMS=MEHS+Z:FRM(H1 !MRE;)=I
EEGE IF AI!APC;=H1 THEN EBGO
```



```
6875 NEKT L
GBBO NE:CT I
EEG5 GЈTO EESO
```



```
EESg IF INCH:ARG;=G THEN IF LISMW THEN MW=DI:CIxJ:CT=ARC ELGE G日OS ELSE G日OS
GSOO IF MWMO THEN ESGE
EGOS IF H1!APC;=H1 THEN H1=A1!ARC; ELSE F1mHE!ARC)
6910 KE=FRM(ん1):K10KE
GG15 FGP I=1 TO LEGiN1;: TEMPmMAPC(K1:I;
ESZS IF HS:K.TEMP;=1 THEN MEAS=MENS+1 ELSE 69GO
GS25 IF A&(TEMP)=FRM(K1) THEN IF HE(TEMP;FK1 THEN 693E
```



```
6935 DI=L!Jj-L゙TTEMP;
ESNG IF IN:K.TEMP;*i THEN IF LI<゙MN THEN 6545 ELSE 655% ELSE E955
6945 MEAG=MENS+1:MW=DI:CII=J:CT=TEMP
ES50 IF MWFO THEN 5SGE
EGE! IF FPMIH,j=HE THEN GGG2 ELSE 6910
ESGO NEAT I
ESGE MEKAT
EvE= LG=0
EG70 FOR J2=1 TO M
ES75 IF MSiKrjzj=1 THEN EO=CO+CiJz)
650G NEXT J2
G9BS CD(K)j=Mw+CO:BI(k)=CI:BO(K) #CT
```



```
ESE: PRIMT "KTH= ":HTH;". TEMP* ";TEMP
-ra, or=uma
```

APPENDIX D

POWER PLANT AND POWER LINE TEAMS

Appendix D-1
g. Team HG, Power Plan Operation anã Maintenance
(I) Capabilities. Operates and maintains installed electrical power plants of at least 900 KW capacity, of up to 3 generators having combined capacity of 900 to $7,500 \mathrm{KW}$ capacity.
(2) Basis of Allocation. One per electric power generating plant of 900 to $7,500 \mathrm{KW}$ capacity.
(3) Mobility.
(a) This unit is authorized by TOE 16 personnel and approximately 1,900 pounds (100 cubic feet) of equipment requiring transportation. Nonequipment and supplies constitute approximately 1,200 pounds (50 cubic feet).
(b) On a move to a new location using one lift by organic assets, the unit can move approximately two personnel and 1,500 pounds (150 cubic feet) $1 /$ of equipment and supplies.

i. Team HI, Power Line
(1) Capabilities. Installs and maintains up to 60 miles of high voltage electrical power lines.
(2) Basis of Allocation. One per two electric power generating plants of 900 to $7,500 \mathrm{KW}$ capacity. Normally attached to an Engineer Facilities Engineer Group, TOE 5-203.
(3) Mobility.
(a) This unit is authorized by TOE 14 personnel and approximatley 7,200 pounds (950 cubic feet) of equipment requiring transportation. NonTOE equipment and supplies constitute approximately 1,000 pounds (50 cubic feet).
(b) On a move to a new location using one lift by organic assets, the unit can move approximately 14 personnel and 7,540 pounds (730 cubic feet) l/ of equipnent and supplies.

BIBLIOGRAPHY

1. Anderson, M. J., "A Prototype Decision Support System for the Location of Military Water Points," Masters Thesis, Georgia Institute of Technology, Atlanta, GA, (1980).
2. Bazaraa, Mokhtar and John J. Jarvis, Linear Programming and Network Flow, John Wiley andSons, 1977.

3 Beale, E. M. L., Editor, Applications of Mathematical Programming Techniques, The English Universities Press LTD, St. Paul's House, Warlick Lane, London E.C. 4, 1971.
4. Bit Paci One User's Manal. Summagraphics Corporation, Manual \#64, 35 Brentwood Avense, Fairfield, Connecticut, 06430 , with Revision A, August 30, 1979.
5. Changes Made from CG BASIC Version 1.0 to CG FILE HANDLING BASIC Version 3.0, Chronatics, Inc., 3923 Gatcliff Industrial Court, Atlanta, Georgia 30340 , 1979.
6. Christofides, Nicos, Graph Theory, An Algorithmic Approach, Academic Press, Inc., 1975.
7. Chromatics CG BASIC Reference Manual, Chromatics, Inc., 3923 Oakcliff Industrial Court, Atlanta, Georgia 30340, 1978.
8. Department of the Army, Army FAcilities Components Systems - Designs, TM 5-302-2, September 1973.
9. Department of the Army, Division 86 Final Report (ACN 36801) October 1981.
10. Department of the Army, Electrical Design - Electric Power Supply and Distribution, TM 5-411, 1965.
11. Department of the Army, Electrical Facilities Exterior Lighting, Repairs and Utilities, TM 5-680E, December 1947.
12. Department of the Army, Electrical Facilities, Generating Plants, Repairs and Utilities, TM 5-680-G, April 1947.
13. Department of the Army, Electrical Power Generation Distribution, (EGAD), Volume IV, December, 1975.
14. Department of the Army, Electrical Power Transmission and Distribution, TM 5-765, June 1970.
15. Department of the Army, Electric Power Generation in the Field, TM 5-766, September, 1972.
16. Department of the Army, Electric Power Supply and Distribution, TM 5-811-1, July 1965.
17. Department of the Army, Outside Utilities for Emergency Construction, Electric Power Supply and Distribution, TM 5-884-1, January 1963.
18. Department of the Army, Overhead Distribution Systems, TM 5-780-C, September, 1963.
19. Dial, R., F. Glover, D. Karney, and D. Klingman, "A Computational Analysis of Alternative Algorithms and Labeling Techniques for Finding Shortest Path Trees," Research Report CCS 291, Center for Cybernetic Studies, University of Texas at Austin, 1977.
20. Dearing, P. M., R. L. Francis, and T. J. Lowe, "Convex Location Problems on Tree Networks," Operations Research, Vol. 24, No. 4, pp. 628-642, JulyAugust, 1976.
21. Disk Software Reference Manual CG 1999, Chromatics Inc., 3923 Oakcliff Industrial Court, Atianta, Georgia 30340, 1978.
22. Elan, Joyer, D. Klingman and J. Mulvey, "An Evaluation of Mathematical Programming and Minicomputers," European Journal of Operation Research, Vol. 3, No. 1, pp. 30-39, 1979.
23. Gabow, Harold N., "Two Algorithms for Generating Weighted Spanning Trees in Order," SLAM Journal on Computing, Vol. 6, No. 1, March 1977.
24. Geffrion, A. M., "A Guide to Computer-Assisted Methods for Distribution Systems Planning," Sloan Management Review, Vol. 16, pp. 17-42, 1975.
25. Glover, Fred and Darwin Klingman, "Real World Applications of Network Related Problems and Breakthroughs in Solving Them Efficiently," ACM Transactions on Mathematical Software, Vol. 1, No. 1, pp. 47-55, March, 1975.
26. Handler, G. K. and P. B. Mirchandini, Location on Networks, Theory and Algorithms, The MIT Press, 1979.
27. Keen, Peter G. W. and Michael S. Scott Morton, Decision Support Systems: An Organizational Perspective, Addison-Wesley Publishing Company, 1978.
28. McGinnis, Leon F., "A Survey of Recent Results for a Class of Facilities Location Problems," AIIE Transactions, Vol. 9, pp. 11-18, 1977.
29. Moder, J. J., and S. E. Elmaghraby Editors, Handbook of Operations Research, Van Nostrand Reinold Company, 1978.
30. Pierce, A. R., "Bibliography on Algorithms for Shortest Path, Shortest Spanning Tree, and Related Circuit Routing Problems (1956-1974)," Networks, Vol 5, pp. 129-143.
31. Preliminary Operators Manual CG 1999, Chromatics, Inc., 3923 Oakcliff Industrial Court, Atlanta, Gerogia 30340, Revised November 1978.
32. Proctor, E. K., E. C. Wood, R. D. Williams, Power Generation and Support Systems, Standford Research Institute, October 1970.
33. Wende11, Richard E. and Arthur P. Hunter, Jr., "Optimal Locations on a Network," Transportation Science, Vol. 7, No. 1, pp. 18-33, February 1973.

