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A DERIVED THEORY OF ELASTIC-PLASTIC SHELLS 

by 

Gerald Wempner 

Summary  

A theory of shells reduces the problem of a thin, three-dimensional, 

body to a problem of two-dimensions. In practice, the essential quantities 

are computed more economically by the two-dimensional theory. 

Theories of elastic shells are well-established and generally 

adequate; but, theories of elastic-plastic shells are notably lacking: 

In 1948, Ilyushin [1] developed a deformation theory based upon the 

Mises yield condition. Recently, Robinson [2i and Crisfield [3] have 

re-examined and modified Ilyushin's work. Numerous author's have also 

studied the yield and limit conditions for shells of ideal composition. 

Yet, general formulations of the constitutive equations are needed to 

accommodate the numerous problems of inelastic deformation and cyclic 

loadings of complicated shells. 

The theories of elastic and inelastic shells may embrace certain 

common equations of kinematics and dynamics. The essential differences 

lie in the constitutive equations: Here, incremental equations are 

derived with a view toward their usage in practical computations. To 

our knowledge, the formulation constitutes an original theory of elastic-

plastic shells. 
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In most instances, the kinematical hypothesis of Kirchhoff and 

Love may suffice to describe the deformations of a thin, albeit 

inelastic, shell. Although various refinements are also admissible, 

our theory can be based upon the simple assumption for the strain: 
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where P. is the Legendre polynomial of degree i, -1 5 z 5 1 is the 

dimensionless coordinate along lines normal to the reference surface, 

e
a$ 

and ptcdi are functions of the surface ("strains" of the shell), and 

a dot (') denotes a rate or increment. A continuous stress distribution 

may be approximated [4] by the sum (i = 0,1,---,n): 
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If the power of transverse stresses (a3a  i ) is neglected, then the 

power of the relevant stresses has the dimensionless form*: 
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If the strain rate is decomposed into elastic and inelastic parts 

which follow the Hooke and Prandtl-Reuss laws, then 

YI C a + (au _ 
3 	Gas ) 

05 	05Y1  
(4) 

For simplicity the curvature is neglected in the integral (3a) as 
it is neglected in theories of plates and thin shells. 

(3a)  

(3b)  
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Here, Cis the flexibility coefficient of plane stress, G 	the 
W a -1 	 4  

component of the metric tensor and X is an invariant which depends 

upon the stress, strain path and material properties. By substituting 

(2) and (4) into (3a), we obtain* (5): 

(5) 
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The balance of (3b) and (5) is satisfied by the strain-stress 

equations: 
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and a plastic strain p
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In the spirit of the classical plasticity, elastic strain ensues 

(f.. = 0) if 
1] 

.a9 m. p < 0 
a.$ (9) 

Following Pipkin and Rivlin [5], and Valanis [C, we introduce 

a measure of strain: 

2 
	. 	$ 

C = Y a$ Yu $ 

During loading, the measure of plastic strain (X) is a monotonous function 

of C and may depend on the stress; for example, 

The simple form [67 X = P,C provides an adequate description of some materials. 

Then } is expressed in terms of the polynomials (P.) according to (1) 

and (10), and the integrals f.. are explicitly dependent upon the surface 
13 

invariants: 
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Of course, the intent of our theory is not the accurate 

$ 1 2 
representation of the stress distribution 0--

cy 
 (9 ,e ,Z), but useful 

relations between the variables of the surface, the strains (g. 	) 

ce8 

and the stresses (m0
8 
 ,m /  ). The additional variables m oi l  represent 

residual stresses which accompany the inelastic deformations. 
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ENGINEERING COLLEGE 

GEORGIA INsTITUTE OF TECHNOLOGY 

SCHOOL OF ENGINEERING SCIENCE 
AND MECHANICS 

225 NORTH AVENUE. N.W. 

ATLANTA. GEORGIA 30332 

July 25, 1978 

Dr. Clifford As till 
Solid Mechanics Program 
National Science Foundation 
Washington, DC 	20550 

Dear Cliff, 

Though we have maintained a regular exchange throughout the past year, 
let me take this occasion to summarize my research and results of the 
past year: 

Two months in the summer of 1977 were devoted to the preparation of an 
article entitled "Mechanics of Shells in the Age of Computation." That 
article summarizes the essential features of the first approximation, the 
role of nonlinearities and the evolution of various theories. It discusses 
briefly the methods for the derivation of shell theories and methods of 
discrete approximation. It concludes with commentary on the applicability 
of various theories, the roles of the continuous solution and forms of 
discrete approximation. This article will appear in the Proceedings, 
Symposium on Structural Mechanics in Earthquake Engineering, Berkeley, 1977 
(Pergamon Press). 

A theory of elastic-plastic shells has been developed from the endochronic 
theory of plasticity. The derivation employs Legendre polynomials to 
approximate the distribution of stress through the thickness. The work is 
presented in an article entitled A Derived Theory of Elastic-Plastic Shells, 
Int. Journal Solids Structures, Vol. 13, 1977. Four copies are enclosed. 

The direct theory of Bieniek and the derived theory were presented at the 
ASCE Annual. Convention, San Francisco, October 1977. The prepared article 
contains the key features of each and includes comparisons. The work is 
contained in preprint 3113. 

Attention was also given to formulations of complementary functionais and 
stationary conditions. The work included a careful examination of the 
alternative measures of stress and strain, their mathematical and physical 
meanings, and the inherent difficulties in the formulations of a comple-
mentary theorem, in which the functional depends upon stress. The results 
will appear in the Proceedings of the Symposium honoring Professor. Henry L. 
Langhaar, April 1978 (Report, Dept. Theo. Appl. Mech., U. IL). 
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Dr. Clifford Astill 
NSF 
July 25, 1978 

The approximation of the elastic plastic shell by four discrete layers has 
been completed and submitted for publication. This work was reported at 
the U. S. Nat. Cong. Applied Mechanics, June, 1978, under the title: Elasto-
plasticity of the Club Sandwich." 

Preprints of all works will be forthcoming at the earliest opportunity. 

Please advise me if you wish any additional information on my investigations. 

Let me take this opportunity to express my gratitude to you and all at the 
Foundation, who have supported my efforts. 

Sincerely, 

Gerald A. Wempner 
Professor 

/sam 

enclosure(s) 
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A DERIVED THEORY OF ELASTIC-PLASTIC SHELLS 

GERALD WEMPNER and CHAO-MENG HWANG 

E.S.M. School, Georgia Institute of Technology, Atlantia, GA 30332, U.S.A. 

(Received 28 December 1976; revised 2 May 1977) 

Abstract—The key to a theory for elastic-plastic shells is the formulation of constitutive equations. Here, 
incremental equations are derived from the Hooke, Prandtl-Reuss equations of elastic, plastic defor-
mations. The theory does not embody an initial yield condition, but admits immediate, though gradual, 
evolution of inelastic strain. Consequently, the abrupt transitions and interfaces between elastic and plastic 
regions are nonexistant. 

Legendre polynomials are employed to approximate the distribution of stresses; the polynomials of first 
and second degree are identified with the active forces and couples. Higher polynomials represent residual 
stresses. 

The balance of work and rate of dissipation serve to establish the constitutive equations and conditions 
of loading. 

NOTATION 

0' arbitrary coordinate (i = 1, 2,3); 0 3  denotes distance along normal to reference surface 
0° arbitrary coordinate of reference surface (0 3 = 0, a = 1,2) 

overdot signifies material time derivative or increment 
g, G 1  tangent vector of initial, current state 
g', G' reciprocal vector; g i  - g' 	G i  • G' 

g13, Go  component of covariant metric tensor; g o  =- 	gi, 	G, • G i  
g", 	component of contravariant metric tensor; g'' = g' • g', G" = G' • G' 

aco component of covariant, contravariant, metric tensor of reference surface (0 3 = 0); a,= g„0 (0' 02 , 0), act° –= 
g43 (0 1 , 0 2 , 0) 

g, VG metric of initial, current volume; V (g) g, • (g2  x g3 ), (G) = G, • (G 2  x 
Va. VA metric of initial, current area; a = g(0', 	0), A = G(0 1 , 02 . 0) 

component of strain tensor; -)7,i;  =- :1_,(G1;  – go ) 
t' stress vector (force/initial area) on 0' surface 

s° component of stress tensor s°  =  t` • G' -\/(g)th)  
h thickness of shell 

s, yo  yield stress, strain in simple tension 
v Poisson's ratio 
z normal coordinate; z 203 /h 

normalized component of strain; y o  = of eo  
cr" nondimensional component of stress; a° = s"/so  

o-  second invariant of stress deviator 
nondimensional component of flexibility tensor in plane stress; if isotropic. C o„ = (1 + v)a,,,,a – vaoa „ 
Legendre polynomial of degree i 

€0  strain of surface; see eqn (7) 
scto strain of surface; see eqn (7) 

airs stress of surface; see eqn (6) 
ec,',3  "elastic" strain of surface; see eqn (11a) 
p'o  "plastic" strain of surface; see eqn (11b) 

INTRODUCTION 

The theory of thin Hookean shells was set forth by Love [1, 2] in 1888 following the earlier work of 
Aron [3]. The underlying hypothesis asserts that the normal to the reference surface remains 
normal during deformation. Some discrepancies and apparent inconsistencies have been 
resolved by the works of contemporary scholars; one can trace the development through the 
works of Sanders [4], Leonard [5], Koiter [6, 7], Budiansky and Sanders [8], Reissner [9, 10] and 
Naghdi[11, 12]. The essential features of Love's first-approximation remain: Two symmetric 
second-order surface tensors of strain are expressed linearly in terms of two symmetric surface 
tensors of stress.[ Moreover, in the constitutive equations of the thin homogeneous shell, 
equations relating "extensional" strains and stresses (forces) are uncoupled from equations 
relating certain "flexural" strains and associated stresses (moments). The theory remains 

tlf the normal is not constrained to remain normal, then two components of transverse shear strain and two 
components of shear stress augment the theory of Love. 

1123 
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applicable to finite deflections, buckling and post-buckling of thin shells, if the essential 
nonlinear terms are retained in the geometrical formulations. 

The first-approximation of Love reduces the problem of a thin, but three-dimensional body, 
to the problem of a surface and to the determination of certain functions in that two-
dimensional space. Specifically, the solution determines six stress components, practically 
speaking, the forces and moments upon a section. A solution can provide no more than these 
integrals of the stress distribution. 

In the quest to bridge the gap between the first-approximation and the theory of the 
three-dimensional body, several authors [12-16] have proposed theories of higher-order mo-
ments. Such a theory of multicouples [16] includes the first-approximation (one-couple theory), 
but also provides better approximations of the three-dimensional theory (multi-couple theories). 
The constitutive equations of the elastic shell relate a number of multi-stresses to the same 
number of multi-strains. 

The essential differences between theories of elastic and inelastic shells lie in the con-
stitutive equations. Since the behaviour of the inelastic material depends upon the history of 
deformation, the constitutive equations can only be linear in the increments of the stresses and 
strains. 

Attempts to develop inelastic theories are few: In 1948 Ilyushin [17] presented stress–strain 
equations derived from the plasticity theory of Hencky [18] and the kinematical hypothesis of 
Love. Theories of plasticity are also given by Olszak and Sawczuk [19]. The yield condition of 
Ilyushin and alternatives [20-25] are discussed by Robinson [26], and the effects of transverse 
shear stresses are included in the works of Shapiro [21], Haydl and Sherbourne [27] and 
Robinson [28]. A yield criterion for steel shells is given by Crisfield [29]. Some of the foregoing 
works consider the evolution of the plastic strains and the evolution of the yield functions 
during loading; others are primarily concerned with limit analysis. Here, a two-dimensional 
theory is developed to accommodate arbitrary paths of loading and unloading. The formulation 
provides a first-approximation for elastic-plastic shells. 

Earlier investigations [30, 31] suggest that a formulation of the constitutive equations for the 
shell require higher-order stresses, though not necessarily higher-order strains. In short, the 
distributions of stress upon the section of the inelastic shell are not adequately described by the 
usual six components (forces and couples), although the six strains of Love's theory may 
suffice. Here, the stress and strain distributions through the section are represented by 
Legendre polynomials [321; the stresses, and the strains, of the first and second polynomials are 
identified with the forces and couples, and the extensional and flexural strains, respectively. 

Incremental equations are derived from the Prandtl–Reuss [33, 34] equations of elastic-
plastic deformations. The underlying theory does not embody an initial yield condition, but 
admits the immediate though gradual, evolution of inelastic strain according to the endochronic 
theory of Valanis [35]. A balance of work and energy [36] serves to establish the constitutive 
equations and the conditions of elastic unloading. The former are coupled linear equations in 
the increments of the symmetric surface tensors of stress and strain. 

THEORY OF PLASTICITY 

A theory of plasticity is given in recent papers [35, 36] and provides the foundations of our 
theory of elastic plastic shells. The essential features follow: 

The evolution of plastic strain is measured by arc length in a space of strain components. 
If dilatation is neglected, y33 = — y,", and the rate of arc length is the invariant 4: 

= 7 045 1,43  + ,ya,a,413 .  

Following Valanis [35], we introduce a "time" A such that 

dA 
—
d‘

>0 (0<0. 

The time A may also depend upon the state of stress; for our immediate needs, we take 
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(2) 

Here a is a second invariant of the stress deviator; in the case of plane stress (a" = 0), 

3 as 	1 
cr 	

( 
o-  u„s  - cr;o-„"). 	 (3) 

Our theory of plasticity and our subsequent developments are not limited to the form (2), 
however the form is especially useful in initial formulations: It provides an isotropic behavior 
which approaches ideal plasticity as n increases and, consequently, admits direct comparisons 
with results of classical ideal plasticity. 

Our plane stress-strain relation is similar to the relation of Prandtl-Reuss [33, 34]: 

P 
Y0 - Yo+ Yap 

	

= Co,07,6-" + (ac,13 1 - 	 Go) A. 

Here too, our theory is not limited to plane stress (0-'3  = 0), but the latter seems adequate for 
thin shells and serves to illustrate our formulation. 

Our theory [36] admits elastic unloading under a condition of negative dissipation, namely, 

• "" u yap < o  (5) 

STRESS AND STRAIN DISTRIBUTIONS 

One essential difference between the elastic and inelastic shell is the distribution of stress 
through the thickness. The distribution in the latter is decidedly nonlinear and requires an 
approximation of higher order. In previous studies [16, 30, 31], higher moments were proposed. 
Here, we use the Legendre polynomials P,(z) to represent the stress and strain distributions, 
and benefit from the orthogonality. The stress distribution is represented by stresses 
mio (0 1 , 02):  

	

= V(1 +20m,"P,(z) 	 (6a) 

as  _ V(1+201 1  
m, - 	 cr'3P, dz. 	 (6b) 

	

2 	-1 

Summation is implied by the repeated index (i = 0, 1, 	N). 
In most instances, the kinematical hypothesis of Kirchhoff and Love should suffice to 

describe the deformations of a thin, albeit inelastic shell. Although refinements are also 
possible, our present formulation is based upon the simple approximation of strain: 

Yap = eapPo+ 1/ (3)kapP1. (7) 

Practically speaking, the strains e o, and K„13, are the strains of the reference surface (z = 0), and 
the changes of curvature, respectively. 

INCREMENTAL RELATIONS BETWEEN STRESSES AND STRAINS 

The power of the stress (per unit of area) is given by the approximationt 

	

'w - 	cr 1,,,s  dz. 
. 	1 

2 _ 1 
	 (8a) 

(4a) 

(4b) 

tHere the curvature is neglected in the integral (8a), as it is in the theories of thin elastic shells. Since eqn (6a) is an 
approximation, the missing factor (N1(01 a) might be incorporated in the left side of (6a). 
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It follows from (6), (7) and (8a) that 

= 	+ 1711° k043. 	 (8b) 

Another form of power is obtained if (4b) is used in (8a) instead of (7); then, 

= 	 (m1 	j, 	..fij 

where 

V(1 + 2i)V(1 + 2j) 1 1  
2 

pf dz 

The balance of (8b) and (8c) is satisfied by the stress—strain equations 

1 = c.,„► o" + (m; 	- 	aa,,,,)h. 3 	0.  

1" + (m.0  —  m` a„o) 3 	IP. 

0= c„,„thir" + (mk,, - niro,,t) J i =2,..., N. 

The first sum on the right of OW is an "elastic" strain el f, and the second is a "plastic" strain 

Capyn th i" 

1 	x, 
143 (mio —  3 "1104) 

In accordance with (5), elastic unloading occurs (t o  = 0), if 

	

< 0 
	

(12) 

COMPUTATION 

Our immediate concern is the validation of the constitutive equations (10,) by comparison 
with alternatives, in particular, with results of three-dimensional theories. The equations may be 
tested in various ways: We may prescribe a path of strains (i. o, k° ,9 ) and calculated stresses 
according to (10,) or we may prescribe a path of stresses (M0', rizi 4') and calculate strains. 
Either calculation generates the nonlinear path via increments. Accuracy depends upon the size 
of the increments which depend, in turn, upon the prevailing state: For example, a simple 
tensile path (th on  0), or a simple bending path (thin 0), approaches a limit point 
(dm o n /de ll = 0, or dmi n /dk i i= 0); obviously the size of the stress increment must diminish and 
vanish as we approach the limit point. To accommodate such curved paths, we introduce an 
arc-length s; the increment of length is 

S 2 = iapi° 4-tiore° +Mi°M io. 	 (13) 

For a given path, the direction of the strain (or stress) increment is prescribed, but the 
magnitude of s is prescribed rather than the magnitude of the incremental strain (or stress). 

The initial step follows the linear equations of elasticity (0 °,1 ,9 = 0), and eqn (13) determines 
the magnitude of the strain (or stress) increment after the stress (or strain) components are 
eliminated by (100) and (101). 

If increments of strain (iao, k,,,3 ) are prescribed, then each subsequent increment of stress is 

(8c) 

(9) 

(10 1 ) 

(10,) 

(1 la) 

(11b) 
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determined by the inversion of eqns (100: 

tilo"1  — C "137n  (Er, —  11,0 ) 
	

(140) 

rh i af3 = -1 cafiyAk im _ fj 7,11 ) 	 (141) 
m as = -- 1 coYq(-15;„). 	 (14) 

The first approximation of pa s  is obtained according to (11b), (9), (2), (1) and (7) wherein the last 
values of mas  and a are employed. Recourse to (13) at each step serves to readjust the strain 
increments, to maintain the prescribed increment of length s. 

If increments of stress (rh o°, rii,"s) are prescribed, then the increments of strain (ic,s , ri,o ) 
and the remaining increments of stress (ri12° , ti1 3° ) are to satisfy (10,), but the factor h 
depends on the strain increments according (9), (2), (1) and (7). Therefore, an initial calculation 
of each subsequent step utilizes the previous increments of strain to form an initial estimate of the 
increments 4, A and f, . The calculation is repeated with successive incremental strains providing a 
new estimate of the increments ‘, A, f ii  and pls. During loading, successive increments of plastic 
strain fi c,'s  are expected to increase. Therefore, recourse to (13) is again needed to readjust the stress 
increments, to maintain the prescribed increments of lengths and to insure convergence of the 
iterative process. 

SOME RESULTS AND COMPARISONS 

Our material is determined by the functional A(cr, ‘). The particular form (2) is convenient 
because it approaches the form of the ideal elastic-plastic material in the limit, n -400.Some 
stress-strain curves are displayed in Fig. 1 (n=1,2, 5, 10). 

Stress-strain histories can be traced in two ways: 
Firstly, we can prescribe a history of strain (e o, K,,,$ ) which determine increments yas  

according to (7). The increments 4" and A are then computed by (1) and (2), the increments of 
the stress components (I- 4‘ by (4b) and, finally, the increments of stresses (m 50°) are calculated 
by (6b). These calculations require storage of the stresses vas at numerous stations through the 
shell (-1 z +1). Here 21 stations are employed. The procedure is essentially an ap-
proximation yia the three-dimensional theory; applications to practical problems are limited by 
the storage capacity of the computer: 

Secondly, we can prescribe the history of strain (Co, Ko) and calculate the incremental 
stresses (m,'5 ) according to our theory and the computational procedures described in the 
preceding section. Only the stresses '71,43  are stored. 

Our theory is illustrated by the results of several strain histories: Radial paths and histories 
of prestretch and pretwist are depicted in Figs. 2 and 3. Figures 4-9 display plots of 
moment (m 1 11 ) versus curvature (K 11 ). The same histories were used to obtain curves by the 3-D 
theory (solid lines) and by our 2-D theory (broken lines). For simplicity, the same Poisson 
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ration was used in each case, v = 1/2. Then the transverse normal stress vanishes (an = 0) in 

 the plots of Figs. 4-6, 8 and 9, wherein €22 = — E1112, K22 = —K1112. Figures 4 and 5 offer a 
comparison of results for two materials, n = 1, 10; for practical purposes, the latter is ideally 
plastic. Figures 6 and 7 provide a comparison between plane stress v. 22  = 0 and plane strain 
(Y22 = €22 = K22 = 0). Figures 8 and 9 show the effects of prestretch and pretwist; a similar effect, 
a lower stress (m t "), is evident upon comparisons of the initial loading paths of Figs. 8 or 9 with 
the path of Fig. 4. 

Some discrepancies of the 4-term approximation (broken lines) are evident in Figs. 5 and 7. 
The former is the curve of a material with a pronounced yielding (n = 10) and, consequently, 6 
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terms in eqn (6a) provides a far better approximation of the stress distribution, as indicated by 
the points of Fig. 5. Also, the greater strains of Fig. 7 introduce discrepancies which are 
eliminated by the 6-term approximation. 

The authors are aware of another theory for homogeneous shells of elastic-plastic material: 
That theory, developed by M. Bieniek [37], is founded on the concepts of classical plasticity. 
The initial yield and subsequent yield conditions are expressed as quadratic forms in the 
stresses (m 043, m i "s), and the increments of plastic strain (j)„° ,3, /5,10) are given by equations of 
normality (to the yield surface). Comparisons have shown remarkable similarities between the 
earlier theory [37] and the present theory of n = 10. 

ON APPLICATION 

The present work addresses the central question of elastic-plastic shells; that is the 
development of the constitutive equations in terms of the two-dimensional fields of stress (m,4) 

and strain (€,, o, Ko ). Such equations are intended for thin shells, wherein the magnitudes of 
elastic and inelastic strains are comparable. In the analyses of a given shell, these equations 
must be augmented by kinematical and dynamical equations: The usual equations of thin shells, 
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linear or nonlinear [7], may be employed. In particular, only the customary stresses (forces 
met' and moments m,° 13 ) enter the equations of motion, as the additional stresses (m2" 13, m3"s ) 
perform no work upon the strains (€. 0, Ko). 

The material of our example is described according to eqns (1)-(5) and exhibits the 
attributes of ideal plasticity (0- 1, ?"--0.00). Although computations might ultimately lead to limit 
loads, the theory is not intended as an alternative to the procedures of limit analysis. Indeed, 
the present theory is better suited to materials which yield gradually and exhibit strain 
hardening. 

CONCLUSIONS 

A theory of the elastic-plastic behavior of thin shells is given here in terms of two-
dimensional variables of stress (airs) and strain (e. ft , K,$). Although the theory is founded upon 
certain concepts of endochronic plasticity, yielding does follow the criterion of Mises (n -00) 
and the flow of Prandtl-Reuss. 

Numerous comparisons indicate that the theory is a promising basis for approximations of 
inelastic shells. 

Further research is suggested: The general theory can incorporate other materials, additional 
stresses (rnM, transverse shear stress and strain, and alternatives to the simple unloading 
condition (12). 
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Introduction  

The mechanics of plates and shells has been the subject of countless 

articles since the middle of the 19th century. A brief historical account 

is contained in reference [1]. Until recently, most attention focused 

upon elastic shells. Efforts to devise constitutive equations for inelas-

tic shells are relatively recent; they are recounted in reference [2]. 

Through the support of the National Science Foundation, the author 

has developed rudimentary concepts and procedures which are described 

briefly in the following summary. Coincidentally, the needs for rational 

theories and economical procedures of computation have grown; in particu-

lar, a current need exists for simple, but effective, means to predict 

the inelastic response of submerged shells under dynamic loads [6]. 

Recent investigations by Bieniek [5] and Wempner [2,4] have produced 

theories of an elastic-plastic shell, constitutive equations which relate 

incremental stresses and strains of a surface, in the spirit of a first 

approximation. The former theory [5] was obtained by a direct application 

of classical plasticity to the two-dimensional fields; the latter [2,4] 

were obtained by derivation from theories of three dimensions. The former 

theory requires but three stress tensors; the latter theories require four. 

Each of the computational procedures are available, as subroutines, and 

are adaptable to a multitude of existing programs for the discrete approxi-

mation of shells. 



The efforts to develop approximations of inelastic shells are limited, 

and recent in the long history and evolution of the mechanics and analyses 

of shells. Most of our attention during the past century has been 	d 

to the study of linear elasticity and to nonlinearities related to finite 

deflections. Some groundwork has now been laid to develop the meachnics of 

inelastic shells and to devise procedures of implementation. 

Summary  

Recent efforts were initiated by the author's proposal (NSF No. P4K0493- 

000) of November 1974. The primary objective of the proposal was the devel-

opment of constitutive equations for elastic-plastic shells, incremental re-

lations between the stresses and strains of a surface, in the spirit of the 

first approximation for elastic shells. The initial proposal was followed 

by a grant (ENG 75-14845) which supported a Workshop on Approximations and 

Numerical Methods for the Study of Inelastic Shells, held at the Georgia 

Institute of Technology in May 1975. A subsequent grant (Eng 76.02869) 

has supported the author's efforts from June 1976 to the present. 

The workshop of May 1975 included the prepared papers of seven parti-

cipants and the ensuing discussions which were reported in a bound volume 

to the National Science Foundation. The report is available from the School 

of ESM, Georgia Institute of Technology, Atlanta, Georgia 30332. The work-

shop revealed no general theory for elastic-plastic shells, excepting cer-

tain deformational theories (independent of path) and numerical procedures 

calling upon discrete stations (or layers) through the thickness. The 

workshop served to motivate subsequent work: Firstly, Professor Bieniek 

developed a theory of ideally elastic-plastic shells, which is remarkably 

simple and effective [5,6]; essential features are given in reference [3]. 



Then, two distinct theories emerged from the author's research: One is 

founded upon the gradual evolution of plastic strain and the approxima-

tion of stress distributions by Legendre polynomials; that work is reported 

in reference [2]. Another is based upon the physical model of four dis-

crete layers [4]. 

The work of Bieniek indicates that 9 stresses (3 components of force 

and 6 components of moment) suffice to provide a useful yield condition 

for the ideal shell; with the concepts of classical plasticity and the hy-

pothesis of Kirchhoff-Love, he has developed the incremental equations 

which relate the stresses and strains of the first approximation. His sim-

ple theory has been used effectively to predict the response of shells un-

der dynamic loads. 

The derived theories of the author give acceptable approximations 

with 12 stresses. In the former [2] the usual stresses (forces and mo-

ments), correspond to linear distributions through the thickness; these 

are augmented by higher polynomials. The stress upon the four layers [4] 

represent the usual stresses (forces and moments) augmented by two higher 

moments. 

The theory of Bieniek is achieved by a direct approach to the rela-

tionships between stresses and strains of the surface (forces, moments, 

strains and curvatures). It is elegantly simple, but presently limited 

to the ideal shell. The author's theories are derived from the constitu-

tive equations of 3-dimensions; they provide approximations of the stress 

distributions and apply as well to strain hardening. 

The work cited was accomplished through the part-time efforts of 3 

years, since the symposium of May 1975. In historical perspective, our 



work upon inelastic shells is modest; more than a century has elapsed 

since the inception of the simpler theory of linear elastic shells. Now, 

some conceptual bases for theories of inelastic shells have emerged, but 

require further scrutiny, refinement and development. 
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